Daily bump.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_new_1 (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
59
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
68
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 {
72 bool is_global = !building_stmt_tree ();
73
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
76
77 return is_global;
78 }
79
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
82
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 {
86 finish_compound_stmt (compound_stmt);
87
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
89
90 gcc_assert (!building_stmt_tree () == is_global);
91
92 return stmt_expr;
93 }
94
95 /* Constructors */
96
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
100
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 {
104 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
105 return dfs_skip_bases;
106
107 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
108 {
109 tree base_ptr = TREE_VALUE ((tree) data);
110
111 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
112
113 expand_virtual_init (binfo, base_ptr);
114 }
115
116 return NULL_TREE;
117 }
118
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
121
122 void
123 initialize_vtbl_ptrs (tree addr)
124 {
125 tree list;
126 tree type;
127
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
130
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
136 }
137
138 /* Return an expression for the zero-initialization of an object with
139 type T. This expression will either be a constant (in the case
140 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
141 aggregate). In either case, the value can be used as DECL_INITIAL
142 for a decl of the indicated TYPE; it is a valid static initializer.
143 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
144 number of elements in the array. If STATIC_STORAGE_P is TRUE,
145 initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
147 zero bytes. */
148
149 tree
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 {
152 tree init = NULL_TREE;
153
154 /* [dcl.init]
155
156 To zero-initialization storage for an object of type T means:
157
158 -- if T is a scalar type, the storage is set to the value of zero
159 converted to T.
160
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
163
164 -- if T is a union type, the storage for its first data member is
165 zero-initialized.
166
167 -- if T is an array type, the storage for each element is
168 zero-initialized.
169
170 -- if T is a reference type, no initialization is performed. */
171
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173
174 if (type == error_mark_node)
175 ;
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
181 ;
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
185 {
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
188
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 {
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
194
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
200 {
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
205 }
206
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
210 }
211
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
214 }
215 else if (TREE_CODE (type) == ARRAY_TYPE)
216 {
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
219
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
226 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
227
228 /* A zero-sized array, which is accepted as an extension, will
229 have an upper bound of -1. */
230 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
231 {
232 constructor_elt *ce;
233
234 v = VEC_alloc (constructor_elt, gc, 1);
235 ce = VEC_quick_push (constructor_elt, v, NULL);
236
237 /* If this is a one element array, we just use a regular init. */
238 if (tree_int_cst_equal (size_zero_node, max_index))
239 ce->index = size_zero_node;
240 else
241 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
242 max_index);
243
244 ce->value = build_zero_init (TREE_TYPE (type),
245 /*nelts=*/NULL_TREE,
246 static_storage_p);
247 }
248
249 /* Build a constructor to contain the initializations. */
250 init = build_constructor (type, v);
251 }
252 else
253 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
254
255 /* In all cases, the initializer is a constant. */
256 if (init)
257 {
258 TREE_CONSTANT (init) = 1;
259 TREE_INVARIANT (init) = 1;
260 }
261
262 return init;
263 }
264
265 /* Build an expression for the default-initialization of an object of
266 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
267 ARRAY_TYPE, NELTS is the number of elements in the array. If
268 initialization of TYPE requires calling constructors, this function
269 returns NULL_TREE; the caller is responsible for arranging for the
270 constructors to be called. */
271
272 static tree
273 build_default_init (tree type, tree nelts)
274 {
275 /* [dcl.init]:
276
277 To default-initialize an object of type T means:
278
279 --if T is a non-POD class type (clause _class_), the default construc-
280 tor for T is called (and the initialization is ill-formed if T has
281 no accessible default constructor);
282
283 --if T is an array type, each element is default-initialized;
284
285 --otherwise, the storage for the object is zero-initialized.
286
287 A program that calls for default-initialization of an entity of refer-
288 ence type is ill-formed. */
289
290 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
291 performing the initialization. This is confusing in that some
292 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
293 a class with a pointer-to-data member as a non-static data member
294 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
295 passing non-PODs to build_zero_init below, which is contrary to
296 the semantics quoted above from [dcl.init].
297
298 It happens, however, that the behavior of the constructor the
299 standard says we should have generated would be precisely the
300 same as that obtained by calling build_zero_init below, so things
301 work out OK. */
302 if (TYPE_NEEDS_CONSTRUCTING (type)
303 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
304 return NULL_TREE;
305
306 /* At this point, TYPE is either a POD class type, an array of POD
307 classes, or something even more innocuous. */
308 return build_zero_init (type, nelts, /*static_storage_p=*/false);
309 }
310
311 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
312 arguments. If TREE_LIST is void_type_node, an empty initializer
313 list was given; if NULL_TREE no initializer was given. */
314
315 static void
316 perform_member_init (tree member, tree init)
317 {
318 tree decl;
319 tree type = TREE_TYPE (member);
320 bool explicit;
321
322 explicit = (init != NULL_TREE);
323
324 /* Effective C++ rule 12 requires that all data members be
325 initialized. */
326 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
327 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
328 "list", current_function_decl, member);
329
330 if (init == void_type_node)
331 init = NULL_TREE;
332
333 /* Get an lvalue for the data member. */
334 decl = build_class_member_access_expr (current_class_ref, member,
335 /*access_path=*/NULL_TREE,
336 /*preserve_reference=*/true);
337 if (decl == error_mark_node)
338 return;
339
340 /* Deal with this here, as we will get confused if we try to call the
341 assignment op for an anonymous union. This can happen in a
342 synthesized copy constructor. */
343 if (ANON_AGGR_TYPE_P (type))
344 {
345 if (init)
346 {
347 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
348 finish_expr_stmt (init);
349 }
350 }
351 else if (TYPE_NEEDS_CONSTRUCTING (type))
352 {
353 if (explicit
354 && TREE_CODE (type) == ARRAY_TYPE
355 && init != NULL_TREE
356 && TREE_CHAIN (init) == NULL_TREE
357 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
358 {
359 /* Initialization of one array from another. */
360 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
361 /*explicit_default_init_p=*/false,
362 /* from_array=*/1));
363 }
364 else
365 finish_expr_stmt (build_aggr_init (decl, init, 0));
366 }
367 else
368 {
369 if (init == NULL_TREE)
370 {
371 if (explicit)
372 {
373 init = build_default_init (type, /*nelts=*/NULL_TREE);
374 if (TREE_CODE (type) == REFERENCE_TYPE)
375 warning (0, "%Jdefault-initialization of %q#D, "
376 "which has reference type",
377 current_function_decl, member);
378 }
379 /* member traversal: note it leaves init NULL */
380 else if (TREE_CODE (type) == REFERENCE_TYPE)
381 pedwarn ("%Juninitialized reference member %qD",
382 current_function_decl, member);
383 else if (CP_TYPE_CONST_P (type))
384 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
385 current_function_decl, member, type);
386 }
387 else if (TREE_CODE (init) == TREE_LIST)
388 /* There was an explicit member initialization. Do some work
389 in that case. */
390 init = build_x_compound_expr_from_list (init, "member initializer");
391
392 if (init)
393 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
394 }
395
396 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
397 {
398 tree expr;
399
400 expr = build_class_member_access_expr (current_class_ref, member,
401 /*access_path=*/NULL_TREE,
402 /*preserve_reference=*/false);
403 expr = build_delete (type, expr, sfk_complete_destructor,
404 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
405
406 if (expr != error_mark_node)
407 finish_eh_cleanup (expr);
408 }
409 }
410
411 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
412 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
413
414 static tree
415 build_field_list (tree t, tree list, int *uses_unions_p)
416 {
417 tree fields;
418
419 *uses_unions_p = 0;
420
421 /* Note whether or not T is a union. */
422 if (TREE_CODE (t) == UNION_TYPE)
423 *uses_unions_p = 1;
424
425 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
426 {
427 /* Skip CONST_DECLs for enumeration constants and so forth. */
428 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
429 continue;
430
431 /* Keep track of whether or not any fields are unions. */
432 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
433 *uses_unions_p = 1;
434
435 /* For an anonymous struct or union, we must recursively
436 consider the fields of the anonymous type. They can be
437 directly initialized from the constructor. */
438 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
439 {
440 /* Add this field itself. Synthesized copy constructors
441 initialize the entire aggregate. */
442 list = tree_cons (fields, NULL_TREE, list);
443 /* And now add the fields in the anonymous aggregate. */
444 list = build_field_list (TREE_TYPE (fields), list,
445 uses_unions_p);
446 }
447 /* Add this field. */
448 else if (DECL_NAME (fields))
449 list = tree_cons (fields, NULL_TREE, list);
450 }
451
452 return list;
453 }
454
455 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
456 a FIELD_DECL or BINFO in T that needs initialization. The
457 TREE_VALUE gives the initializer, or list of initializer arguments.
458
459 Return a TREE_LIST containing all of the initializations required
460 for T, in the order in which they should be performed. The output
461 list has the same format as the input. */
462
463 static tree
464 sort_mem_initializers (tree t, tree mem_inits)
465 {
466 tree init;
467 tree base, binfo, base_binfo;
468 tree sorted_inits;
469 tree next_subobject;
470 VEC(tree,gc) *vbases;
471 int i;
472 int uses_unions_p;
473
474 /* Build up a list of initializations. The TREE_PURPOSE of entry
475 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
476 TREE_VALUE will be the constructor arguments, or NULL if no
477 explicit initialization was provided. */
478 sorted_inits = NULL_TREE;
479
480 /* Process the virtual bases. */
481 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
482 VEC_iterate (tree, vbases, i, base); i++)
483 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
484
485 /* Process the direct bases. */
486 for (binfo = TYPE_BINFO (t), i = 0;
487 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
488 if (!BINFO_VIRTUAL_P (base_binfo))
489 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
490
491 /* Process the non-static data members. */
492 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
493 /* Reverse the entire list of initializations, so that they are in
494 the order that they will actually be performed. */
495 sorted_inits = nreverse (sorted_inits);
496
497 /* If the user presented the initializers in an order different from
498 that in which they will actually occur, we issue a warning. Keep
499 track of the next subobject which can be explicitly initialized
500 without issuing a warning. */
501 next_subobject = sorted_inits;
502
503 /* Go through the explicit initializers, filling in TREE_PURPOSE in
504 the SORTED_INITS. */
505 for (init = mem_inits; init; init = TREE_CHAIN (init))
506 {
507 tree subobject;
508 tree subobject_init;
509
510 subobject = TREE_PURPOSE (init);
511
512 /* If the explicit initializers are in sorted order, then
513 SUBOBJECT will be NEXT_SUBOBJECT, or something following
514 it. */
515 for (subobject_init = next_subobject;
516 subobject_init;
517 subobject_init = TREE_CHAIN (subobject_init))
518 if (TREE_PURPOSE (subobject_init) == subobject)
519 break;
520
521 /* Issue a warning if the explicit initializer order does not
522 match that which will actually occur.
523 ??? Are all these on the correct lines? */
524 if (warn_reorder && !subobject_init)
525 {
526 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
527 warning (OPT_Wreorder, "%q+D will be initialized after",
528 TREE_PURPOSE (next_subobject));
529 else
530 warning (OPT_Wreorder, "base %qT will be initialized after",
531 TREE_PURPOSE (next_subobject));
532 if (TREE_CODE (subobject) == FIELD_DECL)
533 warning (OPT_Wreorder, " %q+#D", subobject);
534 else
535 warning (OPT_Wreorder, " base %qT", subobject);
536 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
537 }
538
539 /* Look again, from the beginning of the list. */
540 if (!subobject_init)
541 {
542 subobject_init = sorted_inits;
543 while (TREE_PURPOSE (subobject_init) != subobject)
544 subobject_init = TREE_CHAIN (subobject_init);
545 }
546
547 /* It is invalid to initialize the same subobject more than
548 once. */
549 if (TREE_VALUE (subobject_init))
550 {
551 if (TREE_CODE (subobject) == FIELD_DECL)
552 error ("%Jmultiple initializations given for %qD",
553 current_function_decl, subobject);
554 else
555 error ("%Jmultiple initializations given for base %qT",
556 current_function_decl, subobject);
557 }
558
559 /* Record the initialization. */
560 TREE_VALUE (subobject_init) = TREE_VALUE (init);
561 next_subobject = subobject_init;
562 }
563
564 /* [class.base.init]
565
566 If a ctor-initializer specifies more than one mem-initializer for
567 multiple members of the same union (including members of
568 anonymous unions), the ctor-initializer is ill-formed. */
569 if (uses_unions_p)
570 {
571 tree last_field = NULL_TREE;
572 for (init = sorted_inits; init; init = TREE_CHAIN (init))
573 {
574 tree field;
575 tree field_type;
576 int done;
577
578 /* Skip uninitialized members and base classes. */
579 if (!TREE_VALUE (init)
580 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
581 continue;
582 /* See if this field is a member of a union, or a member of a
583 structure contained in a union, etc. */
584 field = TREE_PURPOSE (init);
585 for (field_type = DECL_CONTEXT (field);
586 !same_type_p (field_type, t);
587 field_type = TYPE_CONTEXT (field_type))
588 if (TREE_CODE (field_type) == UNION_TYPE)
589 break;
590 /* If this field is not a member of a union, skip it. */
591 if (TREE_CODE (field_type) != UNION_TYPE)
592 continue;
593
594 /* It's only an error if we have two initializers for the same
595 union type. */
596 if (!last_field)
597 {
598 last_field = field;
599 continue;
600 }
601
602 /* See if LAST_FIELD and the field initialized by INIT are
603 members of the same union. If so, there's a problem,
604 unless they're actually members of the same structure
605 which is itself a member of a union. For example, given:
606
607 union { struct { int i; int j; }; };
608
609 initializing both `i' and `j' makes sense. */
610 field_type = DECL_CONTEXT (field);
611 done = 0;
612 do
613 {
614 tree last_field_type;
615
616 last_field_type = DECL_CONTEXT (last_field);
617 while (1)
618 {
619 if (same_type_p (last_field_type, field_type))
620 {
621 if (TREE_CODE (field_type) == UNION_TYPE)
622 error ("%Jinitializations for multiple members of %qT",
623 current_function_decl, last_field_type);
624 done = 1;
625 break;
626 }
627
628 if (same_type_p (last_field_type, t))
629 break;
630
631 last_field_type = TYPE_CONTEXT (last_field_type);
632 }
633
634 /* If we've reached the outermost class, then we're
635 done. */
636 if (same_type_p (field_type, t))
637 break;
638
639 field_type = TYPE_CONTEXT (field_type);
640 }
641 while (!done);
642
643 last_field = field;
644 }
645 }
646
647 return sorted_inits;
648 }
649
650 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
651 is a TREE_LIST giving the explicit mem-initializer-list for the
652 constructor. The TREE_PURPOSE of each entry is a subobject (a
653 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
654 is a TREE_LIST giving the arguments to the constructor or
655 void_type_node for an empty list of arguments. */
656
657 void
658 emit_mem_initializers (tree mem_inits)
659 {
660 /* We will already have issued an error message about the fact that
661 the type is incomplete. */
662 if (!COMPLETE_TYPE_P (current_class_type))
663 return;
664
665 /* Sort the mem-initializers into the order in which the
666 initializations should be performed. */
667 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
668
669 in_base_initializer = 1;
670
671 /* Initialize base classes. */
672 while (mem_inits
673 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
674 {
675 tree subobject = TREE_PURPOSE (mem_inits);
676 tree arguments = TREE_VALUE (mem_inits);
677
678 /* If these initializations are taking place in a copy
679 constructor, the base class should probably be explicitly
680 initialized. */
681 if (extra_warnings && !arguments
682 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
683 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
684 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
685 "copy constructor",
686 current_function_decl, BINFO_TYPE (subobject));
687
688 /* If an explicit -- but empty -- initializer list was present,
689 treat it just like default initialization at this point. */
690 if (arguments == void_type_node)
691 arguments = NULL_TREE;
692
693 /* Initialize the base. */
694 if (BINFO_VIRTUAL_P (subobject))
695 construct_virtual_base (subobject, arguments);
696 else
697 {
698 tree base_addr;
699
700 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
701 subobject, 1);
702 expand_aggr_init_1 (subobject, NULL_TREE,
703 build_indirect_ref (base_addr, NULL),
704 arguments,
705 LOOKUP_NORMAL);
706 expand_cleanup_for_base (subobject, NULL_TREE);
707 }
708
709 mem_inits = TREE_CHAIN (mem_inits);
710 }
711 in_base_initializer = 0;
712
713 /* Initialize the vptrs. */
714 initialize_vtbl_ptrs (current_class_ptr);
715
716 /* Initialize the data members. */
717 while (mem_inits)
718 {
719 perform_member_init (TREE_PURPOSE (mem_inits),
720 TREE_VALUE (mem_inits));
721 mem_inits = TREE_CHAIN (mem_inits);
722 }
723 }
724
725 /* Returns the address of the vtable (i.e., the value that should be
726 assigned to the vptr) for BINFO. */
727
728 static tree
729 build_vtbl_address (tree binfo)
730 {
731 tree binfo_for = binfo;
732 tree vtbl;
733
734 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
735 /* If this is a virtual primary base, then the vtable we want to store
736 is that for the base this is being used as the primary base of. We
737 can't simply skip the initialization, because we may be expanding the
738 inits of a subobject constructor where the virtual base layout
739 can be different. */
740 while (BINFO_PRIMARY_P (binfo_for))
741 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
742
743 /* Figure out what vtable BINFO's vtable is based on, and mark it as
744 used. */
745 vtbl = get_vtbl_decl_for_binfo (binfo_for);
746 assemble_external (vtbl);
747 TREE_USED (vtbl) = 1;
748
749 /* Now compute the address to use when initializing the vptr. */
750 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
751 if (TREE_CODE (vtbl) == VAR_DECL)
752 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
753
754 return vtbl;
755 }
756
757 /* This code sets up the virtual function tables appropriate for
758 the pointer DECL. It is a one-ply initialization.
759
760 BINFO is the exact type that DECL is supposed to be. In
761 multiple inheritance, this might mean "C's A" if C : A, B. */
762
763 static void
764 expand_virtual_init (tree binfo, tree decl)
765 {
766 tree vtbl, vtbl_ptr;
767 tree vtt_index;
768
769 /* Compute the initializer for vptr. */
770 vtbl = build_vtbl_address (binfo);
771
772 /* We may get this vptr from a VTT, if this is a subobject
773 constructor or subobject destructor. */
774 vtt_index = BINFO_VPTR_INDEX (binfo);
775 if (vtt_index)
776 {
777 tree vtbl2;
778 tree vtt_parm;
779
780 /* Compute the value to use, when there's a VTT. */
781 vtt_parm = current_vtt_parm;
782 vtbl2 = build2 (PLUS_EXPR,
783 TREE_TYPE (vtt_parm),
784 vtt_parm,
785 vtt_index);
786 vtbl2 = build_indirect_ref (vtbl2, NULL);
787 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
788
789 /* The actual initializer is the VTT value only in the subobject
790 constructor. In maybe_clone_body we'll substitute NULL for
791 the vtt_parm in the case of the non-subobject constructor. */
792 vtbl = build3 (COND_EXPR,
793 TREE_TYPE (vtbl),
794 build2 (EQ_EXPR, boolean_type_node,
795 current_in_charge_parm, integer_zero_node),
796 vtbl2,
797 vtbl);
798 }
799
800 /* Compute the location of the vtpr. */
801 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
802 TREE_TYPE (binfo));
803 gcc_assert (vtbl_ptr != error_mark_node);
804
805 /* Assign the vtable to the vptr. */
806 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
807 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
808 }
809
810 /* If an exception is thrown in a constructor, those base classes already
811 constructed must be destroyed. This function creates the cleanup
812 for BINFO, which has just been constructed. If FLAG is non-NULL,
813 it is a DECL which is nonzero when this base needs to be
814 destroyed. */
815
816 static void
817 expand_cleanup_for_base (tree binfo, tree flag)
818 {
819 tree expr;
820
821 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
822 return;
823
824 /* Call the destructor. */
825 expr = build_special_member_call (current_class_ref,
826 base_dtor_identifier,
827 NULL_TREE,
828 binfo,
829 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
830 if (flag)
831 expr = fold_build3 (COND_EXPR, void_type_node,
832 c_common_truthvalue_conversion (flag),
833 expr, integer_zero_node);
834
835 finish_eh_cleanup (expr);
836 }
837
838 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
839 constructor. */
840
841 static void
842 construct_virtual_base (tree vbase, tree arguments)
843 {
844 tree inner_if_stmt;
845 tree exp;
846 tree flag;
847
848 /* If there are virtual base classes with destructors, we need to
849 emit cleanups to destroy them if an exception is thrown during
850 the construction process. These exception regions (i.e., the
851 period during which the cleanups must occur) begin from the time
852 the construction is complete to the end of the function. If we
853 create a conditional block in which to initialize the
854 base-classes, then the cleanup region for the virtual base begins
855 inside a block, and ends outside of that block. This situation
856 confuses the sjlj exception-handling code. Therefore, we do not
857 create a single conditional block, but one for each
858 initialization. (That way the cleanup regions always begin
859 in the outer block.) We trust the back-end to figure out
860 that the FLAG will not change across initializations, and
861 avoid doing multiple tests. */
862 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
863 inner_if_stmt = begin_if_stmt ();
864 finish_if_stmt_cond (flag, inner_if_stmt);
865
866 /* Compute the location of the virtual base. If we're
867 constructing virtual bases, then we must be the most derived
868 class. Therefore, we don't have to look up the virtual base;
869 we already know where it is. */
870 exp = convert_to_base_statically (current_class_ref, vbase);
871
872 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
873 LOOKUP_COMPLAIN);
874 finish_then_clause (inner_if_stmt);
875 finish_if_stmt (inner_if_stmt);
876
877 expand_cleanup_for_base (vbase, flag);
878 }
879
880 /* Find the context in which this FIELD can be initialized. */
881
882 static tree
883 initializing_context (tree field)
884 {
885 tree t = DECL_CONTEXT (field);
886
887 /* Anonymous union members can be initialized in the first enclosing
888 non-anonymous union context. */
889 while (t && ANON_AGGR_TYPE_P (t))
890 t = TYPE_CONTEXT (t);
891 return t;
892 }
893
894 /* Function to give error message if member initialization specification
895 is erroneous. FIELD is the member we decided to initialize.
896 TYPE is the type for which the initialization is being performed.
897 FIELD must be a member of TYPE.
898
899 MEMBER_NAME is the name of the member. */
900
901 static int
902 member_init_ok_or_else (tree field, tree type, tree member_name)
903 {
904 if (field == error_mark_node)
905 return 0;
906 if (!field)
907 {
908 error ("class %qT does not have any field named %qD", type,
909 member_name);
910 return 0;
911 }
912 if (TREE_CODE (field) == VAR_DECL)
913 {
914 error ("%q#D is a static data member; it can only be "
915 "initialized at its definition",
916 field);
917 return 0;
918 }
919 if (TREE_CODE (field) != FIELD_DECL)
920 {
921 error ("%q#D is not a non-static data member of %qT",
922 field, type);
923 return 0;
924 }
925 if (initializing_context (field) != type)
926 {
927 error ("class %qT does not have any field named %qD", type,
928 member_name);
929 return 0;
930 }
931
932 return 1;
933 }
934
935 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
936 is a _TYPE node or TYPE_DECL which names a base for that type.
937 Check the validity of NAME, and return either the base _TYPE, base
938 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
939 NULL_TREE and issue a diagnostic.
940
941 An old style unnamed direct single base construction is permitted,
942 where NAME is NULL. */
943
944 tree
945 expand_member_init (tree name)
946 {
947 tree basetype;
948 tree field;
949
950 if (!current_class_ref)
951 return NULL_TREE;
952
953 if (!name)
954 {
955 /* This is an obsolete unnamed base class initializer. The
956 parser will already have warned about its use. */
957 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
958 {
959 case 0:
960 error ("unnamed initializer for %qT, which has no base classes",
961 current_class_type);
962 return NULL_TREE;
963 case 1:
964 basetype = BINFO_TYPE
965 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
966 break;
967 default:
968 error ("unnamed initializer for %qT, which uses multiple inheritance",
969 current_class_type);
970 return NULL_TREE;
971 }
972 }
973 else if (TYPE_P (name))
974 {
975 basetype = TYPE_MAIN_VARIANT (name);
976 name = TYPE_NAME (name);
977 }
978 else if (TREE_CODE (name) == TYPE_DECL)
979 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
980 else
981 basetype = NULL_TREE;
982
983 if (basetype)
984 {
985 tree class_binfo;
986 tree direct_binfo;
987 tree virtual_binfo;
988 int i;
989
990 if (current_template_parms)
991 return basetype;
992
993 class_binfo = TYPE_BINFO (current_class_type);
994 direct_binfo = NULL_TREE;
995 virtual_binfo = NULL_TREE;
996
997 /* Look for a direct base. */
998 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
999 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1000 break;
1001
1002 /* Look for a virtual base -- unless the direct base is itself
1003 virtual. */
1004 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1005 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1006
1007 /* [class.base.init]
1008
1009 If a mem-initializer-id is ambiguous because it designates
1010 both a direct non-virtual base class and an inherited virtual
1011 base class, the mem-initializer is ill-formed. */
1012 if (direct_binfo && virtual_binfo)
1013 {
1014 error ("%qD is both a direct base and an indirect virtual base",
1015 basetype);
1016 return NULL_TREE;
1017 }
1018
1019 if (!direct_binfo && !virtual_binfo)
1020 {
1021 if (CLASSTYPE_VBASECLASSES (current_class_type))
1022 error ("type %qT is not a direct or virtual base of %qT",
1023 basetype, current_class_type);
1024 else
1025 error ("type %qT is not a direct base of %qT",
1026 basetype, current_class_type);
1027 return NULL_TREE;
1028 }
1029
1030 return direct_binfo ? direct_binfo : virtual_binfo;
1031 }
1032 else
1033 {
1034 if (TREE_CODE (name) == IDENTIFIER_NODE)
1035 field = lookup_field (current_class_type, name, 1, false);
1036 else
1037 field = name;
1038
1039 if (member_init_ok_or_else (field, current_class_type, name))
1040 return field;
1041 }
1042
1043 return NULL_TREE;
1044 }
1045
1046 /* This is like `expand_member_init', only it stores one aggregate
1047 value into another.
1048
1049 INIT comes in two flavors: it is either a value which
1050 is to be stored in EXP, or it is a parameter list
1051 to go to a constructor, which will operate on EXP.
1052 If INIT is not a parameter list for a constructor, then set
1053 LOOKUP_ONLYCONVERTING.
1054 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1055 the initializer, if FLAGS is 0, then it is the (init) form.
1056 If `init' is a CONSTRUCTOR, then we emit a warning message,
1057 explaining that such initializations are invalid.
1058
1059 If INIT resolves to a CALL_EXPR which happens to return
1060 something of the type we are looking for, then we know
1061 that we can safely use that call to perform the
1062 initialization.
1063
1064 The virtual function table pointer cannot be set up here, because
1065 we do not really know its type.
1066
1067 This never calls operator=().
1068
1069 When initializing, nothing is CONST.
1070
1071 A default copy constructor may have to be used to perform the
1072 initialization.
1073
1074 A constructor or a conversion operator may have to be used to
1075 perform the initialization, but not both, as it would be ambiguous. */
1076
1077 tree
1078 build_aggr_init (tree exp, tree init, int flags)
1079 {
1080 tree stmt_expr;
1081 tree compound_stmt;
1082 int destroy_temps;
1083 tree type = TREE_TYPE (exp);
1084 int was_const = TREE_READONLY (exp);
1085 int was_volatile = TREE_THIS_VOLATILE (exp);
1086 int is_global;
1087
1088 if (init == error_mark_node)
1089 return error_mark_node;
1090
1091 TREE_READONLY (exp) = 0;
1092 TREE_THIS_VOLATILE (exp) = 0;
1093
1094 if (init && TREE_CODE (init) != TREE_LIST)
1095 flags |= LOOKUP_ONLYCONVERTING;
1096
1097 if (TREE_CODE (type) == ARRAY_TYPE)
1098 {
1099 tree itype;
1100
1101 /* An array may not be initialized use the parenthesized
1102 initialization form -- unless the initializer is "()". */
1103 if (init && TREE_CODE (init) == TREE_LIST)
1104 {
1105 error ("bad array initializer");
1106 return error_mark_node;
1107 }
1108 /* Must arrange to initialize each element of EXP
1109 from elements of INIT. */
1110 itype = init ? TREE_TYPE (init) : NULL_TREE;
1111 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1112 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1113 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1114 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1115 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1116 /*explicit_default_init_p=*/false,
1117 itype && same_type_p (itype,
1118 TREE_TYPE (exp)));
1119 TREE_READONLY (exp) = was_const;
1120 TREE_THIS_VOLATILE (exp) = was_volatile;
1121 TREE_TYPE (exp) = type;
1122 if (init)
1123 TREE_TYPE (init) = itype;
1124 return stmt_expr;
1125 }
1126
1127 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1128 /* Just know that we've seen something for this node. */
1129 TREE_USED (exp) = 1;
1130
1131 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1132 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1133 destroy_temps = stmts_are_full_exprs_p ();
1134 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1135 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1136 init, LOOKUP_NORMAL|flags);
1137 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1138 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1139 TREE_TYPE (exp) = type;
1140 TREE_READONLY (exp) = was_const;
1141 TREE_THIS_VOLATILE (exp) = was_volatile;
1142
1143 return stmt_expr;
1144 }
1145
1146 /* Like build_aggr_init, but not just for aggregates. */
1147
1148 tree
1149 build_init (tree decl, tree init, int flags)
1150 {
1151 tree expr;
1152
1153 if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1154 expr = build_aggr_init (decl, init, flags);
1155 else if (CLASS_TYPE_P (TREE_TYPE (decl)))
1156 expr = build_special_member_call (decl, complete_ctor_identifier,
1157 build_tree_list (NULL_TREE, init),
1158 TREE_TYPE (decl),
1159 LOOKUP_NORMAL|flags);
1160 else
1161 expr = build2 (INIT_EXPR, TREE_TYPE (decl), decl, init);
1162
1163 return expr;
1164 }
1165
1166 static void
1167 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1168 {
1169 tree type = TREE_TYPE (exp);
1170 tree ctor_name;
1171
1172 /* It fails because there may not be a constructor which takes
1173 its own type as the first (or only parameter), but which does
1174 take other types via a conversion. So, if the thing initializing
1175 the expression is a unit element of type X, first try X(X&),
1176 followed by initialization by X. If neither of these work
1177 out, then look hard. */
1178 tree rval;
1179 tree parms;
1180
1181 if (init && TREE_CODE (init) != TREE_LIST
1182 && (flags & LOOKUP_ONLYCONVERTING))
1183 {
1184 /* Base subobjects should only get direct-initialization. */
1185 gcc_assert (true_exp == exp);
1186
1187 if (flags & DIRECT_BIND)
1188 /* Do nothing. We hit this in two cases: Reference initialization,
1189 where we aren't initializing a real variable, so we don't want
1190 to run a new constructor; and catching an exception, where we
1191 have already built up the constructor call so we could wrap it
1192 in an exception region. */;
1193 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1194 {
1195 /* A brace-enclosed initializer for an aggregate. */
1196 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1197 init = digest_init (type, init);
1198 }
1199 else
1200 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1201
1202 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1203 /* We need to protect the initialization of a catch parm with a
1204 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1205 around the TARGET_EXPR for the copy constructor. See
1206 initialize_handler_parm. */
1207 {
1208 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1209 TREE_OPERAND (init, 0));
1210 TREE_TYPE (init) = void_type_node;
1211 }
1212 else
1213 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1214 TREE_SIDE_EFFECTS (init) = 1;
1215 finish_expr_stmt (init);
1216 return;
1217 }
1218
1219 if (init == NULL_TREE
1220 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1221 {
1222 parms = init;
1223 if (parms)
1224 init = TREE_VALUE (parms);
1225 }
1226 else
1227 parms = build_tree_list (NULL_TREE, init);
1228
1229 if (true_exp == exp)
1230 ctor_name = complete_ctor_identifier;
1231 else
1232 ctor_name = base_ctor_identifier;
1233
1234 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1235 if (TREE_SIDE_EFFECTS (rval))
1236 finish_expr_stmt (convert_to_void (rval, NULL));
1237 }
1238
1239 /* This function is responsible for initializing EXP with INIT
1240 (if any).
1241
1242 BINFO is the binfo of the type for who we are performing the
1243 initialization. For example, if W is a virtual base class of A and B,
1244 and C : A, B.
1245 If we are initializing B, then W must contain B's W vtable, whereas
1246 were we initializing C, W must contain C's W vtable.
1247
1248 TRUE_EXP is nonzero if it is the true expression being initialized.
1249 In this case, it may be EXP, or may just contain EXP. The reason we
1250 need this is because if EXP is a base element of TRUE_EXP, we
1251 don't necessarily know by looking at EXP where its virtual
1252 baseclass fields should really be pointing. But we do know
1253 from TRUE_EXP. In constructors, we don't know anything about
1254 the value being initialized.
1255
1256 FLAGS is just passed to `build_new_method_call'. See that function
1257 for its description. */
1258
1259 static void
1260 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1261 {
1262 tree type = TREE_TYPE (exp);
1263
1264 gcc_assert (init != error_mark_node && type != error_mark_node);
1265 gcc_assert (building_stmt_tree ());
1266
1267 /* Use a function returning the desired type to initialize EXP for us.
1268 If the function is a constructor, and its first argument is
1269 NULL_TREE, know that it was meant for us--just slide exp on
1270 in and expand the constructor. Constructors now come
1271 as TARGET_EXPRs. */
1272
1273 if (init && TREE_CODE (exp) == VAR_DECL
1274 && COMPOUND_LITERAL_P (init))
1275 {
1276 /* If store_init_value returns NULL_TREE, the INIT has been
1277 recorded as the DECL_INITIAL for EXP. That means there's
1278 nothing more we have to do. */
1279 init = store_init_value (exp, init);
1280 if (init)
1281 finish_expr_stmt (init);
1282 return;
1283 }
1284
1285 /* We know that expand_default_init can handle everything we want
1286 at this point. */
1287 expand_default_init (binfo, true_exp, exp, init, flags);
1288 }
1289
1290 /* Report an error if TYPE is not a user-defined, aggregate type. If
1291 OR_ELSE is nonzero, give an error message. */
1292
1293 int
1294 is_aggr_type (tree type, int or_else)
1295 {
1296 if (type == error_mark_node)
1297 return 0;
1298
1299 if (! IS_AGGR_TYPE (type)
1300 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1301 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1302 {
1303 if (or_else)
1304 error ("%qT is not an aggregate type", type);
1305 return 0;
1306 }
1307 return 1;
1308 }
1309
1310 tree
1311 get_type_value (tree name)
1312 {
1313 if (name == error_mark_node)
1314 return NULL_TREE;
1315
1316 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1317 return IDENTIFIER_TYPE_VALUE (name);
1318 else
1319 return NULL_TREE;
1320 }
1321
1322 /* Build a reference to a member of an aggregate. This is not a C++
1323 `&', but really something which can have its address taken, and
1324 then act as a pointer to member, for example TYPE :: FIELD can have
1325 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1326 this expression is the operand of "&".
1327
1328 @@ Prints out lousy diagnostics for operator <typename>
1329 @@ fields.
1330
1331 @@ This function should be rewritten and placed in search.c. */
1332
1333 tree
1334 build_offset_ref (tree type, tree member, bool address_p)
1335 {
1336 tree decl;
1337 tree basebinfo = NULL_TREE;
1338
1339 /* class templates can come in as TEMPLATE_DECLs here. */
1340 if (TREE_CODE (member) == TEMPLATE_DECL)
1341 return member;
1342
1343 if (dependent_type_p (type) || type_dependent_expression_p (member))
1344 return build_qualified_name (NULL_TREE, type, member,
1345 /*template_p=*/false);
1346
1347 gcc_assert (TYPE_P (type));
1348 if (! is_aggr_type (type, 1))
1349 return error_mark_node;
1350
1351 gcc_assert (DECL_P (member) || BASELINK_P (member));
1352 /* Callers should call mark_used before this point. */
1353 gcc_assert (!DECL_P (member) || TREE_USED (member));
1354
1355 if (!COMPLETE_TYPE_P (complete_type (type))
1356 && !TYPE_BEING_DEFINED (type))
1357 {
1358 error ("incomplete type %qT does not have member %qD", type, member);
1359 return error_mark_node;
1360 }
1361
1362 /* Entities other than non-static members need no further
1363 processing. */
1364 if (TREE_CODE (member) == TYPE_DECL)
1365 return member;
1366 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1367 return convert_from_reference (member);
1368
1369 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1370 {
1371 error ("invalid pointer to bit-field %qD", member);
1372 return error_mark_node;
1373 }
1374
1375 /* Set up BASEBINFO for member lookup. */
1376 decl = maybe_dummy_object (type, &basebinfo);
1377
1378 /* A lot of this logic is now handled in lookup_member. */
1379 if (BASELINK_P (member))
1380 {
1381 /* Go from the TREE_BASELINK to the member function info. */
1382 tree fnfields = member;
1383 tree t = BASELINK_FUNCTIONS (fnfields);
1384
1385 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1386 {
1387 /* Get rid of a potential OVERLOAD around it. */
1388 t = OVL_CURRENT (t);
1389
1390 /* Unique functions are handled easily. */
1391
1392 /* For non-static member of base class, we need a special rule
1393 for access checking [class.protected]:
1394
1395 If the access is to form a pointer to member, the
1396 nested-name-specifier shall name the derived class
1397 (or any class derived from that class). */
1398 if (address_p && DECL_P (t)
1399 && DECL_NONSTATIC_MEMBER_P (t))
1400 perform_or_defer_access_check (TYPE_BINFO (type), t);
1401 else
1402 perform_or_defer_access_check (basebinfo, t);
1403
1404 if (DECL_STATIC_FUNCTION_P (t))
1405 return t;
1406 member = t;
1407 }
1408 else
1409 {
1410 TREE_TYPE (fnfields) = unknown_type_node;
1411 member = fnfields;
1412 }
1413 }
1414 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1415 /* We need additional test besides the one in
1416 check_accessibility_of_qualified_id in case it is
1417 a pointer to non-static member. */
1418 perform_or_defer_access_check (TYPE_BINFO (type), member);
1419
1420 if (!address_p)
1421 {
1422 /* If MEMBER is non-static, then the program has fallen afoul of
1423 [expr.prim]:
1424
1425 An id-expression that denotes a nonstatic data member or
1426 nonstatic member function of a class can only be used:
1427
1428 -- as part of a class member access (_expr.ref_) in which the
1429 object-expression refers to the member's class or a class
1430 derived from that class, or
1431
1432 -- to form a pointer to member (_expr.unary.op_), or
1433
1434 -- in the body of a nonstatic member function of that class or
1435 of a class derived from that class (_class.mfct.nonstatic_), or
1436
1437 -- in a mem-initializer for a constructor for that class or for
1438 a class derived from that class (_class.base.init_). */
1439 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1440 {
1441 /* Build a representation of a the qualified name suitable
1442 for use as the operand to "&" -- even though the "&" is
1443 not actually present. */
1444 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1445 /* In Microsoft mode, treat a non-static member function as if
1446 it were a pointer-to-member. */
1447 if (flag_ms_extensions)
1448 {
1449 PTRMEM_OK_P (member) = 1;
1450 return build_unary_op (ADDR_EXPR, member, 0);
1451 }
1452 error ("invalid use of non-static member function %qD",
1453 TREE_OPERAND (member, 1));
1454 return member;
1455 }
1456 else if (TREE_CODE (member) == FIELD_DECL)
1457 {
1458 error ("invalid use of non-static data member %qD", member);
1459 return error_mark_node;
1460 }
1461 return member;
1462 }
1463
1464 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1465 PTRMEM_OK_P (member) = 1;
1466 return member;
1467 }
1468
1469 /* If DECL is a scalar enumeration constant or variable with a
1470 constant initializer, return the initializer (or, its initializers,
1471 recursively); otherwise, return DECL. If INTEGRAL_P, the
1472 initializer is only returned if DECL is an integral
1473 constant-expression. */
1474
1475 static tree
1476 constant_value_1 (tree decl, bool integral_p)
1477 {
1478 while (TREE_CODE (decl) == CONST_DECL
1479 || (integral_p
1480 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1481 : (TREE_CODE (decl) == VAR_DECL
1482 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1483 {
1484 tree init;
1485 /* Static data members in template classes may have
1486 non-dependent initializers. References to such non-static
1487 data members are not value-dependent, so we must retrieve the
1488 initializer here. The DECL_INITIAL will have the right type,
1489 but will not have been folded because that would prevent us
1490 from performing all appropriate semantic checks at
1491 instantiation time. */
1492 if (DECL_CLASS_SCOPE_P (decl)
1493 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1494 && uses_template_parms (CLASSTYPE_TI_ARGS
1495 (DECL_CONTEXT (decl))))
1496 {
1497 ++processing_template_decl;
1498 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1499 --processing_template_decl;
1500 }
1501 else
1502 {
1503 /* If DECL is a static data member in a template
1504 specialization, we must instantiate it here. The
1505 initializer for the static data member is not processed
1506 until needed; we need it now. */
1507 mark_used (decl);
1508 init = DECL_INITIAL (decl);
1509 }
1510 if (init == error_mark_node)
1511 return error_mark_node;
1512 if (!init
1513 || !TREE_TYPE (init)
1514 || (integral_p
1515 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1516 : (!TREE_CONSTANT (init)
1517 /* Do not return an aggregate constant (of which
1518 string literals are a special case), as we do not
1519 want to make inadvertent copies of such entities,
1520 and we must be sure that their addresses are the
1521 same everywhere. */
1522 || TREE_CODE (init) == CONSTRUCTOR
1523 || TREE_CODE (init) == STRING_CST)))
1524 break;
1525 decl = unshare_expr (init);
1526 }
1527 return decl;
1528 }
1529
1530 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1531 constant of integral or enumeration type, then return that value.
1532 These are those variables permitted in constant expressions by
1533 [5.19/1]. */
1534
1535 tree
1536 integral_constant_value (tree decl)
1537 {
1538 return constant_value_1 (decl, /*integral_p=*/true);
1539 }
1540
1541 /* A more relaxed version of integral_constant_value, used by the
1542 common C/C++ code and by the C++ front-end for optimization
1543 purposes. */
1544
1545 tree
1546 decl_constant_value (tree decl)
1547 {
1548 return constant_value_1 (decl,
1549 /*integral_p=*/processing_template_decl);
1550 }
1551 \f
1552 /* Common subroutines of build_new and build_vec_delete. */
1553
1554 /* Call the global __builtin_delete to delete ADDR. */
1555
1556 static tree
1557 build_builtin_delete_call (tree addr)
1558 {
1559 mark_used (global_delete_fndecl);
1560 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1561 }
1562 \f
1563 /* Generate a representation for a C++ "new" expression. PLACEMENT is
1564 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
1565 NELTS is NULL, TYPE is the type of the storage to be allocated. If
1566 NELTS is not NULL, then this is an array-new allocation; TYPE is
1567 the type of the elements in the array and NELTS is the number of
1568 elements in the array. INIT, if non-NULL, is the initializer for
1569 the new object. If USE_GLOBAL_NEW is true, then the user
1570 explicitly wrote "::new" rather than just "new". */
1571
1572 tree
1573 build_new (tree placement, tree type, tree nelts, tree init,
1574 int use_global_new)
1575 {
1576 tree rval;
1577
1578 if (type == error_mark_node)
1579 return error_mark_node;
1580
1581 if (processing_template_decl)
1582 {
1583 rval = build_min (NEW_EXPR, build_pointer_type (type),
1584 placement, type, nelts, init);
1585 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1586 TREE_SIDE_EFFECTS (rval) = 1;
1587 return rval;
1588 }
1589
1590 if (nelts)
1591 {
1592 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
1593 pedwarn ("size in array new must have integral type");
1594 nelts = save_expr (cp_convert (sizetype, nelts));
1595 if (nelts == integer_zero_node)
1596 warning (0, "zero size array reserves no space");
1597 }
1598
1599 /* ``A reference cannot be created by the new operator. A reference
1600 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1601 returned by new.'' ARM 5.3.3 */
1602 if (TREE_CODE (type) == REFERENCE_TYPE)
1603 {
1604 error ("new cannot be applied to a reference type");
1605 type = TREE_TYPE (type);
1606 }
1607
1608 if (TREE_CODE (type) == FUNCTION_TYPE)
1609 {
1610 error ("new cannot be applied to a function type");
1611 return error_mark_node;
1612 }
1613
1614 rval = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1615 nelts, init);
1616 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1617 TREE_SIDE_EFFECTS (rval) = 1;
1618 rval = build_new_1 (rval);
1619 if (rval == error_mark_node)
1620 return error_mark_node;
1621
1622 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1623 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1624 TREE_NO_WARNING (rval) = 1;
1625
1626 return rval;
1627 }
1628
1629 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1630
1631 tree
1632 build_java_class_ref (tree type)
1633 {
1634 tree name = NULL_TREE, class_decl;
1635 static tree CL_suffix = NULL_TREE;
1636 if (CL_suffix == NULL_TREE)
1637 CL_suffix = get_identifier("class$");
1638 if (jclass_node == NULL_TREE)
1639 {
1640 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1641 if (jclass_node == NULL_TREE)
1642 fatal_error ("call to Java constructor, while %<jclass%> undefined");
1643
1644 jclass_node = TREE_TYPE (jclass_node);
1645 }
1646
1647 /* Mangle the class$ field. */
1648 {
1649 tree field;
1650 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1651 if (DECL_NAME (field) == CL_suffix)
1652 {
1653 mangle_decl (field);
1654 name = DECL_ASSEMBLER_NAME (field);
1655 break;
1656 }
1657 if (!field)
1658 internal_error ("can't find class$");
1659 }
1660
1661 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1662 if (class_decl == NULL_TREE)
1663 {
1664 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1665 TREE_STATIC (class_decl) = 1;
1666 DECL_EXTERNAL (class_decl) = 1;
1667 TREE_PUBLIC (class_decl) = 1;
1668 DECL_ARTIFICIAL (class_decl) = 1;
1669 DECL_IGNORED_P (class_decl) = 1;
1670 pushdecl_top_level (class_decl);
1671 make_decl_rtl (class_decl);
1672 }
1673 return class_decl;
1674 }
1675
1676
1677 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1678 value is immediately handed to expand_expr. */
1679
1680 static tree
1681 build_new_1 (tree exp)
1682 {
1683 tree placement, init;
1684 tree size, rval;
1685 /* True iff this is a call to "operator new[]" instead of just
1686 "operator new". */
1687 bool array_p = false;
1688 /* True iff ARRAY_P is true and the bound of the array type is
1689 not necessarily a compile time constant. For example, VLA_P is
1690 true for "new int[f()]". */
1691 bool vla_p = false;
1692 /* The type being allocated. If ARRAY_P is true, this will be an
1693 ARRAY_TYPE. */
1694 tree full_type;
1695 /* If ARRAY_P is true, the element type of the array. This is an
1696 never ARRAY_TYPE; for something like "new int[3][4]", the
1697 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1698 FULL_TYPE. */
1699 tree elt_type;
1700 /* The type of the new-expression. (This type is always a pointer
1701 type.) */
1702 tree pointer_type;
1703 /* The type pointed to by POINTER_TYPE. This type may be different
1704 from ELT_TYPE for a multi-dimensional array; ELT_TYPE is never an
1705 ARRAY_TYPE, but TYPE may be an ARRAY_TYPE. */
1706 tree type;
1707 /* A pointer type pointing to the FULL_TYPE. */
1708 tree full_pointer_type;
1709 tree outer_nelts = NULL_TREE;
1710 tree nelts = NULL_TREE;
1711 tree alloc_call, alloc_expr;
1712 /* The address returned by the call to "operator new". This node is
1713 a VAR_DECL and is therefore reusable. */
1714 tree alloc_node;
1715 tree alloc_fn;
1716 tree cookie_expr, init_expr;
1717 int nothrow, check_new;
1718 /* Nonzero if the user wrote `::new' rather than just `new'. */
1719 int globally_qualified_p;
1720 int use_java_new = 0;
1721 /* If non-NULL, the number of extra bytes to allocate at the
1722 beginning of the storage allocated for an array-new expression in
1723 order to store the number of elements. */
1724 tree cookie_size = NULL_TREE;
1725 /* True if the function we are calling is a placement allocation
1726 function. */
1727 bool placement_allocation_fn_p;
1728 tree args = NULL_TREE;
1729 /* True if the storage must be initialized, either by a constructor
1730 or due to an explicit new-initializer. */
1731 bool is_initialized;
1732 /* The address of the thing allocated, not including any cookie. In
1733 particular, if an array cookie is in use, DATA_ADDR is the
1734 address of the first array element. This node is a VAR_DECL, and
1735 is therefore reusable. */
1736 tree data_addr;
1737 tree init_preeval_expr = NULL_TREE;
1738
1739 placement = TREE_OPERAND (exp, 0);
1740 type = TREE_OPERAND (exp, 1);
1741 nelts = TREE_OPERAND (exp, 2);
1742 init = TREE_OPERAND (exp, 3);
1743 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1744
1745 if (nelts)
1746 {
1747 tree index;
1748
1749 outer_nelts = nelts;
1750 array_p = true;
1751
1752 /* ??? The middle-end will error on us for building a VLA outside a
1753 function context. Methinks that's not it's purvey. So we'll do
1754 our own VLA layout later. */
1755 vla_p = true;
1756 full_type = build_cplus_array_type (type, NULL_TREE);
1757 index = convert (sizetype, nelts);
1758 index = size_binop (MINUS_EXPR, index, size_one_node);
1759 TYPE_DOMAIN (full_type) = build_index_type (index);
1760 }
1761 else
1762 {
1763 full_type = type;
1764 if (TREE_CODE (type) == ARRAY_TYPE)
1765 {
1766 array_p = true;
1767 nelts = array_type_nelts_top (type);
1768 outer_nelts = nelts;
1769 type = TREE_TYPE (type);
1770 }
1771 }
1772
1773 if (!complete_type_or_else (type, exp))
1774 return error_mark_node;
1775
1776 /* If our base type is an array, then make sure we know how many elements
1777 it has. */
1778 for (elt_type = type;
1779 TREE_CODE (elt_type) == ARRAY_TYPE;
1780 elt_type = TREE_TYPE (elt_type))
1781 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1782 array_type_nelts_top (elt_type));
1783
1784 if (TREE_CODE (elt_type) == VOID_TYPE)
1785 {
1786 error ("invalid type %<void%> for new");
1787 return error_mark_node;
1788 }
1789
1790 if (abstract_virtuals_error (NULL_TREE, elt_type))
1791 return error_mark_node;
1792
1793 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1794 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1795 {
1796 error ("uninitialized const in %<new%> of %q#T", elt_type);
1797 return error_mark_node;
1798 }
1799
1800 size = size_in_bytes (elt_type);
1801 if (array_p)
1802 {
1803 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1804 if (vla_p)
1805 {
1806 tree n, bitsize;
1807
1808 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1809 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1810 ...>> to be valid. */
1811 TYPE_SIZE_UNIT (full_type) = size;
1812 n = convert (bitsizetype, nelts);
1813 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1814 TYPE_SIZE (full_type) = bitsize;
1815 }
1816 }
1817
1818 /* Allocate the object. */
1819 if (! placement && TYPE_FOR_JAVA (elt_type))
1820 {
1821 tree class_addr, alloc_decl;
1822 tree class_decl = build_java_class_ref (elt_type);
1823 static const char alloc_name[] = "_Jv_AllocObject";
1824
1825 use_java_new = 1;
1826 alloc_decl = NULL;
1827 if (!get_global_value_if_present (get_identifier (alloc_name),
1828 &alloc_decl))
1829 {
1830 error ("call to Java constructor with %qs undefined", alloc_name);
1831 return error_mark_node;
1832 }
1833 else if (really_overloaded_fn (alloc_decl))
1834 {
1835 error ("%qD should never be overloaded", alloc_decl);
1836 return error_mark_node;
1837 }
1838 alloc_decl = OVL_CURRENT (alloc_decl);
1839 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1840 alloc_call = (build_function_call
1841 (alloc_decl,
1842 build_tree_list (NULL_TREE, class_addr)));
1843 }
1844 else
1845 {
1846 tree fnname;
1847 tree fns;
1848
1849 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1850
1851 if (!globally_qualified_p
1852 && CLASS_TYPE_P (elt_type)
1853 && (array_p
1854 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1855 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1856 {
1857 /* Use a class-specific operator new. */
1858 /* If a cookie is required, add some extra space. */
1859 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1860 {
1861 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1862 size = size_binop (PLUS_EXPR, size, cookie_size);
1863 }
1864 /* Create the argument list. */
1865 args = tree_cons (NULL_TREE, size, placement);
1866 /* Do name-lookup to find the appropriate operator. */
1867 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1868 if (fns == NULL_TREE)
1869 {
1870 error ("no suitable %qD found in class %qT", fnname, elt_type);
1871 return error_mark_node;
1872 }
1873 if (TREE_CODE (fns) == TREE_LIST)
1874 {
1875 error ("request for member %qD is ambiguous", fnname);
1876 print_candidates (fns);
1877 return error_mark_node;
1878 }
1879 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1880 fns, args,
1881 /*conversion_path=*/NULL_TREE,
1882 LOOKUP_NORMAL);
1883 }
1884 else
1885 {
1886 /* Use a global operator new. */
1887 /* See if a cookie might be required. */
1888 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1889 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1890 else
1891 cookie_size = NULL_TREE;
1892
1893 alloc_call = build_operator_new_call (fnname, placement,
1894 &size, &cookie_size);
1895 }
1896 }
1897
1898 if (alloc_call == error_mark_node)
1899 return error_mark_node;
1900
1901 /* In the simple case, we can stop now. */
1902 pointer_type = build_pointer_type (type);
1903 if (!cookie_size && !is_initialized)
1904 return build_nop (pointer_type, alloc_call);
1905
1906 /* While we're working, use a pointer to the type we've actually
1907 allocated. Store the result of the call in a variable so that we
1908 can use it more than once. */
1909 full_pointer_type = build_pointer_type (full_type);
1910 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1911 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1912
1913 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1914 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1915 alloc_call = TREE_OPERAND (alloc_call, 1);
1916 alloc_fn = get_callee_fndecl (alloc_call);
1917 gcc_assert (alloc_fn != NULL_TREE);
1918
1919 /* Now, check to see if this function is actually a placement
1920 allocation function. This can happen even when PLACEMENT is NULL
1921 because we might have something like:
1922
1923 struct S { void* operator new (size_t, int i = 0); };
1924
1925 A call to `new S' will get this allocation function, even though
1926 there is no explicit placement argument. If there is more than
1927 one argument, or there are variable arguments, then this is a
1928 placement allocation function. */
1929 placement_allocation_fn_p
1930 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1931 || varargs_function_p (alloc_fn));
1932
1933 /* Preevaluate the placement args so that we don't reevaluate them for a
1934 placement delete. */
1935 if (placement_allocation_fn_p)
1936 {
1937 tree inits;
1938 stabilize_call (alloc_call, &inits);
1939 if (inits)
1940 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1941 alloc_expr);
1942 }
1943
1944 /* unless an allocation function is declared with an empty excep-
1945 tion-specification (_except.spec_), throw(), it indicates failure to
1946 allocate storage by throwing a bad_alloc exception (clause _except_,
1947 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1948 cation function is declared with an empty exception-specification,
1949 throw(), it returns null to indicate failure to allocate storage and a
1950 non-null pointer otherwise.
1951
1952 So check for a null exception spec on the op new we just called. */
1953
1954 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1955 check_new = (flag_check_new || nothrow) && ! use_java_new;
1956
1957 if (cookie_size)
1958 {
1959 tree cookie;
1960 tree cookie_ptr;
1961
1962 /* Adjust so we're pointing to the start of the object. */
1963 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
1964 alloc_node, cookie_size));
1965
1966 /* Store the number of bytes allocated so that we can know how
1967 many elements to destroy later. We use the last sizeof
1968 (size_t) bytes to store the number of elements. */
1969 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1970 data_addr, size_in_bytes (sizetype));
1971 cookie = build_indirect_ref (cookie_ptr, NULL);
1972
1973 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
1974
1975 if (targetm.cxx.cookie_has_size ())
1976 {
1977 /* Also store the element size. */
1978 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1979 cookie_ptr, size_in_bytes (sizetype));
1980 cookie = build_indirect_ref (cookie_ptr, NULL);
1981 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
1982 size_in_bytes(elt_type));
1983 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
1984 cookie, cookie_expr);
1985 }
1986 data_addr = TARGET_EXPR_SLOT (data_addr);
1987 }
1988 else
1989 {
1990 cookie_expr = NULL_TREE;
1991 data_addr = alloc_node;
1992 }
1993
1994 /* Now initialize the allocated object. Note that we preevaluate the
1995 initialization expression, apart from the actual constructor call or
1996 assignment--we do this because we want to delay the allocation as long
1997 as possible in order to minimize the size of the exception region for
1998 placement delete. */
1999 if (is_initialized)
2000 {
2001 bool stable;
2002
2003 init_expr = build_indirect_ref (data_addr, NULL);
2004
2005 if (array_p)
2006 {
2007 bool explicit_default_init_p = false;
2008
2009 if (init == void_zero_node)
2010 {
2011 init = NULL_TREE;
2012 explicit_default_init_p = true;
2013 }
2014 else if (init)
2015 pedwarn ("ISO C++ forbids initialization in array new");
2016
2017 init_expr
2018 = build_vec_init (init_expr,
2019 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2020 integer_one_node),
2021 init,
2022 explicit_default_init_p,
2023 /*from_array=*/0);
2024
2025 /* An array initialization is stable because the initialization
2026 of each element is a full-expression, so the temporaries don't
2027 leak out. */
2028 stable = true;
2029 }
2030 else
2031 {
2032 if (init == void_zero_node)
2033 init = build_default_init (full_type, nelts);
2034
2035 if (TYPE_NEEDS_CONSTRUCTING (type))
2036 {
2037 init_expr = build_special_member_call (init_expr,
2038 complete_ctor_identifier,
2039 init, elt_type,
2040 LOOKUP_NORMAL);
2041 stable = stabilize_init (init_expr, &init_preeval_expr);
2042 }
2043 else
2044 {
2045 /* We are processing something like `new int (10)', which
2046 means allocate an int, and initialize it with 10. */
2047
2048 if (TREE_CODE (init) == TREE_LIST)
2049 init = build_x_compound_expr_from_list (init,
2050 "new initializer");
2051 else
2052 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2053 || TREE_TYPE (init) != NULL_TREE);
2054
2055 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2056 stable = stabilize_init (init_expr, &init_preeval_expr);
2057 }
2058 }
2059
2060 if (init_expr == error_mark_node)
2061 return error_mark_node;
2062
2063 /* If any part of the object initialization terminates by throwing an
2064 exception and a suitable deallocation function can be found, the
2065 deallocation function is called to free the memory in which the
2066 object was being constructed, after which the exception continues
2067 to propagate in the context of the new-expression. If no
2068 unambiguous matching deallocation function can be found,
2069 propagating the exception does not cause the object's memory to be
2070 freed. */
2071 if (flag_exceptions && ! use_java_new)
2072 {
2073 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2074 tree cleanup;
2075
2076 /* The Standard is unclear here, but the right thing to do
2077 is to use the same method for finding deallocation
2078 functions that we use for finding allocation functions. */
2079 cleanup = build_op_delete_call (dcode, alloc_node, size,
2080 globally_qualified_p,
2081 (placement_allocation_fn_p
2082 ? alloc_call : NULL_TREE));
2083
2084 if (!cleanup)
2085 /* We're done. */;
2086 else if (stable)
2087 /* This is much simpler if we were able to preevaluate all of
2088 the arguments to the constructor call. */
2089 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2090 init_expr, cleanup);
2091 else
2092 /* Ack! First we allocate the memory. Then we set our sentry
2093 variable to true, and expand a cleanup that deletes the
2094 memory if sentry is true. Then we run the constructor, and
2095 finally clear the sentry.
2096
2097 We need to do this because we allocate the space first, so
2098 if there are any temporaries with cleanups in the
2099 constructor args and we weren't able to preevaluate them, we
2100 need this EH region to extend until end of full-expression
2101 to preserve nesting. */
2102 {
2103 tree end, sentry, begin;
2104
2105 begin = get_target_expr (boolean_true_node);
2106 CLEANUP_EH_ONLY (begin) = 1;
2107
2108 sentry = TARGET_EXPR_SLOT (begin);
2109
2110 TARGET_EXPR_CLEANUP (begin)
2111 = build3 (COND_EXPR, void_type_node, sentry,
2112 cleanup, void_zero_node);
2113
2114 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2115 sentry, boolean_false_node);
2116
2117 init_expr
2118 = build2 (COMPOUND_EXPR, void_type_node, begin,
2119 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2120 end));
2121 }
2122
2123 }
2124 }
2125 else
2126 init_expr = NULL_TREE;
2127
2128 /* Now build up the return value in reverse order. */
2129
2130 rval = data_addr;
2131
2132 if (init_expr)
2133 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2134 if (cookie_expr)
2135 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2136
2137 if (rval == alloc_node)
2138 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2139 and return the call (which doesn't need to be adjusted). */
2140 rval = TARGET_EXPR_INITIAL (alloc_expr);
2141 else
2142 {
2143 if (check_new)
2144 {
2145 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2146 integer_zero_node);
2147 rval = build_conditional_expr (ifexp, rval, alloc_node);
2148 }
2149
2150 /* Perform the allocation before anything else, so that ALLOC_NODE
2151 has been initialized before we start using it. */
2152 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2153 }
2154
2155 if (init_preeval_expr)
2156 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2157
2158 /* Convert to the final type. */
2159 rval = build_nop (pointer_type, rval);
2160
2161 /* A new-expression is never an lvalue. */
2162 rval = rvalue (rval);
2163
2164 return rval;
2165 }
2166 \f
2167 static tree
2168 build_vec_delete_1 (tree base, tree maxindex, tree type,
2169 special_function_kind auto_delete_vec, int use_global_delete)
2170 {
2171 tree virtual_size;
2172 tree ptype = build_pointer_type (type = complete_type (type));
2173 tree size_exp = size_in_bytes (type);
2174
2175 /* Temporary variables used by the loop. */
2176 tree tbase, tbase_init;
2177
2178 /* This is the body of the loop that implements the deletion of a
2179 single element, and moves temp variables to next elements. */
2180 tree body;
2181
2182 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2183 tree loop = 0;
2184
2185 /* This is the thing that governs what to do after the loop has run. */
2186 tree deallocate_expr = 0;
2187
2188 /* This is the BIND_EXPR which holds the outermost iterator of the
2189 loop. It is convenient to set this variable up and test it before
2190 executing any other code in the loop.
2191 This is also the containing expression returned by this function. */
2192 tree controller = NULL_TREE;
2193
2194 /* We should only have 1-D arrays here. */
2195 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2196
2197 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2198 goto no_destructor;
2199
2200 /* The below is short by the cookie size. */
2201 virtual_size = size_binop (MULT_EXPR, size_exp,
2202 convert (sizetype, maxindex));
2203
2204 tbase = create_temporary_var (ptype);
2205 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2206 fold_build2 (PLUS_EXPR, ptype,
2207 base,
2208 virtual_size));
2209 DECL_REGISTER (tbase) = 1;
2210 controller = build3 (BIND_EXPR, void_type_node, tbase,
2211 NULL_TREE, NULL_TREE);
2212 TREE_SIDE_EFFECTS (controller) = 1;
2213
2214 body = build1 (EXIT_EXPR, void_type_node,
2215 build2 (EQ_EXPR, boolean_type_node, base, tbase));
2216 body = build_compound_expr
2217 (body, build_modify_expr (tbase, NOP_EXPR,
2218 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2219 body = build_compound_expr
2220 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2221 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2222
2223 loop = build1 (LOOP_EXPR, void_type_node, body);
2224 loop = build_compound_expr (tbase_init, loop);
2225
2226 no_destructor:
2227 /* If the delete flag is one, or anything else with the low bit set,
2228 delete the storage. */
2229 if (auto_delete_vec != sfk_base_destructor)
2230 {
2231 tree base_tbd;
2232
2233 /* The below is short by the cookie size. */
2234 virtual_size = size_binop (MULT_EXPR, size_exp,
2235 convert (sizetype, maxindex));
2236
2237 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2238 /* no header */
2239 base_tbd = base;
2240 else
2241 {
2242 tree cookie_size;
2243
2244 cookie_size = targetm.cxx.get_cookie_size (type);
2245 base_tbd
2246 = cp_convert (ptype,
2247 cp_build_binary_op (MINUS_EXPR,
2248 cp_convert (string_type_node,
2249 base),
2250 cookie_size));
2251 /* True size with header. */
2252 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2253 }
2254
2255 if (auto_delete_vec == sfk_deleting_destructor)
2256 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2257 base_tbd, virtual_size,
2258 use_global_delete & 1,
2259 NULL_TREE);
2260 }
2261
2262 body = loop;
2263 if (!deallocate_expr)
2264 ;
2265 else if (!body)
2266 body = deallocate_expr;
2267 else
2268 body = build_compound_expr (body, deallocate_expr);
2269
2270 if (!body)
2271 body = integer_zero_node;
2272
2273 /* Outermost wrapper: If pointer is null, punt. */
2274 body = fold_build3 (COND_EXPR, void_type_node,
2275 fold_build2 (NE_EXPR, boolean_type_node, base,
2276 convert (TREE_TYPE (base),
2277 integer_zero_node)),
2278 body, integer_zero_node);
2279 body = build1 (NOP_EXPR, void_type_node, body);
2280
2281 if (controller)
2282 {
2283 TREE_OPERAND (controller, 1) = body;
2284 body = controller;
2285 }
2286
2287 if (TREE_CODE (base) == SAVE_EXPR)
2288 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2289 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2290
2291 return convert_to_void (body, /*implicit=*/NULL);
2292 }
2293
2294 /* Create an unnamed variable of the indicated TYPE. */
2295
2296 tree
2297 create_temporary_var (tree type)
2298 {
2299 tree decl;
2300
2301 decl = build_decl (VAR_DECL, NULL_TREE, type);
2302 TREE_USED (decl) = 1;
2303 DECL_ARTIFICIAL (decl) = 1;
2304 DECL_IGNORED_P (decl) = 1;
2305 DECL_SOURCE_LOCATION (decl) = input_location;
2306 DECL_CONTEXT (decl) = current_function_decl;
2307
2308 return decl;
2309 }
2310
2311 /* Create a new temporary variable of the indicated TYPE, initialized
2312 to INIT.
2313
2314 It is not entered into current_binding_level, because that breaks
2315 things when it comes time to do final cleanups (which take place
2316 "outside" the binding contour of the function). */
2317
2318 static tree
2319 get_temp_regvar (tree type, tree init)
2320 {
2321 tree decl;
2322
2323 decl = create_temporary_var (type);
2324 add_decl_expr (decl);
2325
2326 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2327
2328 return decl;
2329 }
2330
2331 /* `build_vec_init' returns tree structure that performs
2332 initialization of a vector of aggregate types.
2333
2334 BASE is a reference to the vector, of ARRAY_TYPE.
2335 MAXINDEX is the maximum index of the array (one less than the
2336 number of elements). It is only used if
2337 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2338
2339 INIT is the (possibly NULL) initializer.
2340
2341 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2342 elements in the array are default-initialized.
2343
2344 FROM_ARRAY is 0 if we should init everything with INIT
2345 (i.e., every element initialized from INIT).
2346 FROM_ARRAY is 1 if we should index into INIT in parallel
2347 with initialization of DECL.
2348 FROM_ARRAY is 2 if we should index into INIT in parallel,
2349 but use assignment instead of initialization. */
2350
2351 tree
2352 build_vec_init (tree base, tree maxindex, tree init,
2353 bool explicit_default_init_p,
2354 int from_array)
2355 {
2356 tree rval;
2357 tree base2 = NULL_TREE;
2358 tree size;
2359 tree itype = NULL_TREE;
2360 tree iterator;
2361 /* The type of the array. */
2362 tree atype = TREE_TYPE (base);
2363 /* The type of an element in the array. */
2364 tree type = TREE_TYPE (atype);
2365 /* The element type reached after removing all outer array
2366 types. */
2367 tree inner_elt_type;
2368 /* The type of a pointer to an element in the array. */
2369 tree ptype;
2370 tree stmt_expr;
2371 tree compound_stmt;
2372 int destroy_temps;
2373 tree try_block = NULL_TREE;
2374 int num_initialized_elts = 0;
2375 bool is_global;
2376
2377 if (TYPE_DOMAIN (atype))
2378 maxindex = array_type_nelts (atype);
2379
2380 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2381 return error_mark_node;
2382
2383 if (explicit_default_init_p)
2384 gcc_assert (!init);
2385
2386 inner_elt_type = strip_array_types (atype);
2387 if (init
2388 && (from_array == 2
2389 ? (!CLASS_TYPE_P (inner_elt_type)
2390 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2391 : !TYPE_NEEDS_CONSTRUCTING (type))
2392 && ((TREE_CODE (init) == CONSTRUCTOR
2393 /* Don't do this if the CONSTRUCTOR might contain something
2394 that might throw and require us to clean up. */
2395 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2396 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2397 || from_array))
2398 {
2399 /* Do non-default initialization of POD arrays resulting from
2400 brace-enclosed initializers. In this case, digest_init and
2401 store_constructor will handle the semantics for us. */
2402
2403 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2404 return stmt_expr;
2405 }
2406
2407 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2408 ptype = build_pointer_type (type);
2409 size = size_in_bytes (type);
2410 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2411 base = cp_convert (ptype, decay_conversion (base));
2412
2413 /* The code we are generating looks like:
2414 ({
2415 T* t1 = (T*) base;
2416 T* rval = t1;
2417 ptrdiff_t iterator = maxindex;
2418 try {
2419 for (; iterator != -1; --iterator) {
2420 ... initialize *t1 ...
2421 ++t1;
2422 }
2423 } catch (...) {
2424 ... destroy elements that were constructed ...
2425 }
2426 rval;
2427 })
2428
2429 We can omit the try and catch blocks if we know that the
2430 initialization will never throw an exception, or if the array
2431 elements do not have destructors. We can omit the loop completely if
2432 the elements of the array do not have constructors.
2433
2434 We actually wrap the entire body of the above in a STMT_EXPR, for
2435 tidiness.
2436
2437 When copying from array to another, when the array elements have
2438 only trivial copy constructors, we should use __builtin_memcpy
2439 rather than generating a loop. That way, we could take advantage
2440 of whatever cleverness the back-end has for dealing with copies
2441 of blocks of memory. */
2442
2443 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2444 destroy_temps = stmts_are_full_exprs_p ();
2445 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2446 rval = get_temp_regvar (ptype, base);
2447 base = get_temp_regvar (ptype, rval);
2448 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2449
2450 /* Protect the entire array initialization so that we can destroy
2451 the partially constructed array if an exception is thrown.
2452 But don't do this if we're assigning. */
2453 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2454 && from_array != 2)
2455 {
2456 try_block = begin_try_block ();
2457 }
2458
2459 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2460 {
2461 /* Do non-default initialization of non-POD arrays resulting from
2462 brace-enclosed initializers. */
2463 unsigned HOST_WIDE_INT idx;
2464 tree elt;
2465 from_array = 0;
2466
2467 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2468 {
2469 tree baseref = build1 (INDIRECT_REF, type, base);
2470
2471 num_initialized_elts++;
2472
2473 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2474 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2475 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2476 else
2477 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2478 elt));
2479 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2480
2481 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2482 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2483 }
2484
2485 /* Clear out INIT so that we don't get confused below. */
2486 init = NULL_TREE;
2487 }
2488 else if (from_array)
2489 {
2490 /* If initializing one array from another, initialize element by
2491 element. We rely upon the below calls the do argument
2492 checking. */
2493 if (init)
2494 {
2495 base2 = decay_conversion (init);
2496 itype = TREE_TYPE (base2);
2497 base2 = get_temp_regvar (itype, base2);
2498 itype = TREE_TYPE (itype);
2499 }
2500 else if (TYPE_LANG_SPECIFIC (type)
2501 && TYPE_NEEDS_CONSTRUCTING (type)
2502 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2503 {
2504 error ("initializer ends prematurely");
2505 return error_mark_node;
2506 }
2507 }
2508
2509 /* Now, default-initialize any remaining elements. We don't need to
2510 do that if a) the type does not need constructing, or b) we've
2511 already initialized all the elements.
2512
2513 We do need to keep going if we're copying an array. */
2514
2515 if (from_array
2516 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2517 && ! (host_integerp (maxindex, 0)
2518 && (num_initialized_elts
2519 == tree_low_cst (maxindex, 0) + 1))))
2520 {
2521 /* If the ITERATOR is equal to -1, then we don't have to loop;
2522 we've already initialized all the elements. */
2523 tree for_stmt;
2524 tree elt_init;
2525 tree to;
2526
2527 for_stmt = begin_for_stmt ();
2528 finish_for_init_stmt (for_stmt);
2529 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2530 build_int_cst (TREE_TYPE (iterator), -1)),
2531 for_stmt);
2532 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2533 for_stmt);
2534
2535 to = build1 (INDIRECT_REF, type, base);
2536
2537 if (from_array)
2538 {
2539 tree from;
2540
2541 if (base2)
2542 from = build1 (INDIRECT_REF, itype, base2);
2543 else
2544 from = NULL_TREE;
2545
2546 if (from_array == 2)
2547 elt_init = build_modify_expr (to, NOP_EXPR, from);
2548 else if (TYPE_NEEDS_CONSTRUCTING (type))
2549 elt_init = build_aggr_init (to, from, 0);
2550 else if (from)
2551 elt_init = build_modify_expr (to, NOP_EXPR, from);
2552 else
2553 gcc_unreachable ();
2554 }
2555 else if (TREE_CODE (type) == ARRAY_TYPE)
2556 {
2557 if (init != 0)
2558 sorry
2559 ("cannot initialize multi-dimensional array with initializer");
2560 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2561 0, 0,
2562 /*explicit_default_init_p=*/false,
2563 0);
2564 }
2565 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2566 elt_init = (build_modify_expr
2567 (to, INIT_EXPR,
2568 build_zero_init (type, size_one_node,
2569 /*static_storage_p=*/false)));
2570 else
2571 elt_init = build_aggr_init (to, init, 0);
2572
2573 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2574 finish_expr_stmt (elt_init);
2575 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2576
2577 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2578 if (base2)
2579 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2580
2581 finish_for_stmt (for_stmt);
2582 }
2583
2584 /* Make sure to cleanup any partially constructed elements. */
2585 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2586 && from_array != 2)
2587 {
2588 tree e;
2589 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2590
2591 /* Flatten multi-dimensional array since build_vec_delete only
2592 expects one-dimensional array. */
2593 if (TREE_CODE (type) == ARRAY_TYPE)
2594 m = cp_build_binary_op (MULT_EXPR, m,
2595 array_type_nelts_total (type));
2596
2597 finish_cleanup_try_block (try_block);
2598 e = build_vec_delete_1 (rval, m,
2599 inner_elt_type, sfk_base_destructor,
2600 /*use_global_delete=*/0);
2601 finish_cleanup (e, try_block);
2602 }
2603
2604 /* The value of the array initialization is the array itself, RVAL
2605 is a pointer to the first element. */
2606 finish_stmt_expr_expr (rval, stmt_expr);
2607
2608 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2609
2610 /* Now convert make the result have the correct type. */
2611 atype = build_pointer_type (atype);
2612 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2613 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2614
2615 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2616 return stmt_expr;
2617 }
2618
2619 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2620 build_delete. */
2621
2622 static tree
2623 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2624 {
2625 tree name;
2626 tree fn;
2627 switch (dtor_kind)
2628 {
2629 case sfk_complete_destructor:
2630 name = complete_dtor_identifier;
2631 break;
2632
2633 case sfk_base_destructor:
2634 name = base_dtor_identifier;
2635 break;
2636
2637 case sfk_deleting_destructor:
2638 name = deleting_dtor_identifier;
2639 break;
2640
2641 default:
2642 gcc_unreachable ();
2643 }
2644 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2645 return build_new_method_call (exp, fn,
2646 /*args=*/NULL_TREE,
2647 /*conversion_path=*/NULL_TREE,
2648 flags);
2649 }
2650
2651 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2652 ADDR is an expression which yields the store to be destroyed.
2653 AUTO_DELETE is the name of the destructor to call, i.e., either
2654 sfk_complete_destructor, sfk_base_destructor, or
2655 sfk_deleting_destructor.
2656
2657 FLAGS is the logical disjunction of zero or more LOOKUP_
2658 flags. See cp-tree.h for more info. */
2659
2660 tree
2661 build_delete (tree type, tree addr, special_function_kind auto_delete,
2662 int flags, int use_global_delete)
2663 {
2664 tree expr;
2665
2666 if (addr == error_mark_node)
2667 return error_mark_node;
2668
2669 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2670 set to `error_mark_node' before it gets properly cleaned up. */
2671 if (type == error_mark_node)
2672 return error_mark_node;
2673
2674 type = TYPE_MAIN_VARIANT (type);
2675
2676 if (TREE_CODE (type) == POINTER_TYPE)
2677 {
2678 bool complete_p = true;
2679
2680 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2681 if (TREE_CODE (type) == ARRAY_TYPE)
2682 goto handle_array;
2683
2684 /* We don't want to warn about delete of void*, only other
2685 incomplete types. Deleting other incomplete types
2686 invokes undefined behavior, but it is not ill-formed, so
2687 compile to something that would even do The Right Thing
2688 (TM) should the type have a trivial dtor and no delete
2689 operator. */
2690 if (!VOID_TYPE_P (type))
2691 {
2692 complete_type (type);
2693 if (!COMPLETE_TYPE_P (type))
2694 {
2695 warning (0, "possible problem detected in invocation of "
2696 "delete operator:");
2697 cxx_incomplete_type_diagnostic (addr, type, 1);
2698 inform ("neither the destructor nor the class-specific "
2699 "operator delete will be called, even if they are "
2700 "declared when the class is defined.");
2701 complete_p = false;
2702 }
2703 }
2704 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2705 /* Call the builtin operator delete. */
2706 return build_builtin_delete_call (addr);
2707 if (TREE_SIDE_EFFECTS (addr))
2708 addr = save_expr (addr);
2709
2710 /* Throw away const and volatile on target type of addr. */
2711 addr = convert_force (build_pointer_type (type), addr, 0);
2712 }
2713 else if (TREE_CODE (type) == ARRAY_TYPE)
2714 {
2715 handle_array:
2716
2717 if (TYPE_DOMAIN (type) == NULL_TREE)
2718 {
2719 error ("unknown array size in delete");
2720 return error_mark_node;
2721 }
2722 return build_vec_delete (addr, array_type_nelts (type),
2723 auto_delete, use_global_delete);
2724 }
2725 else
2726 {
2727 /* Don't check PROTECT here; leave that decision to the
2728 destructor. If the destructor is accessible, call it,
2729 else report error. */
2730 addr = build_unary_op (ADDR_EXPR, addr, 0);
2731 if (TREE_SIDE_EFFECTS (addr))
2732 addr = save_expr (addr);
2733
2734 addr = convert_force (build_pointer_type (type), addr, 0);
2735 }
2736
2737 gcc_assert (IS_AGGR_TYPE (type));
2738
2739 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2740 {
2741 if (auto_delete != sfk_deleting_destructor)
2742 return void_zero_node;
2743
2744 return build_op_delete_call
2745 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), use_global_delete,
2746 NULL_TREE);
2747 }
2748 else
2749 {
2750 tree do_delete = NULL_TREE;
2751 tree ifexp;
2752
2753 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2754 lazily_declare_fn (sfk_destructor, type);
2755
2756 /* For `::delete x', we must not use the deleting destructor
2757 since then we would not be sure to get the global `operator
2758 delete'. */
2759 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2760 {
2761 /* We will use ADDR multiple times so we must save it. */
2762 addr = save_expr (addr);
2763 /* Delete the object. */
2764 do_delete = build_builtin_delete_call (addr);
2765 /* Otherwise, treat this like a complete object destructor
2766 call. */
2767 auto_delete = sfk_complete_destructor;
2768 }
2769 /* If the destructor is non-virtual, there is no deleting
2770 variant. Instead, we must explicitly call the appropriate
2771 `operator delete' here. */
2772 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2773 && auto_delete == sfk_deleting_destructor)
2774 {
2775 /* We will use ADDR multiple times so we must save it. */
2776 addr = save_expr (addr);
2777 /* Build the call. */
2778 do_delete = build_op_delete_call (DELETE_EXPR,
2779 addr,
2780 cxx_sizeof_nowarn (type),
2781 /*global_p=*/false,
2782 NULL_TREE);
2783 /* Call the complete object destructor. */
2784 auto_delete = sfk_complete_destructor;
2785 }
2786 else if (auto_delete == sfk_deleting_destructor
2787 && TYPE_GETS_REG_DELETE (type))
2788 {
2789 /* Make sure we have access to the member op delete, even though
2790 we'll actually be calling it from the destructor. */
2791 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2792 /*global_p=*/false, NULL_TREE);
2793 }
2794
2795 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2796 auto_delete, flags);
2797 if (do_delete)
2798 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2799
2800 if (flags & LOOKUP_DESTRUCTOR)
2801 /* Explicit destructor call; don't check for null pointer. */
2802 ifexp = integer_one_node;
2803 else
2804 /* Handle deleting a null pointer. */
2805 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2806
2807 if (ifexp != integer_one_node)
2808 expr = build3 (COND_EXPR, void_type_node,
2809 ifexp, expr, void_zero_node);
2810
2811 return expr;
2812 }
2813 }
2814
2815 /* At the beginning of a destructor, push cleanups that will call the
2816 destructors for our base classes and members.
2817
2818 Called from begin_destructor_body. */
2819
2820 void
2821 push_base_cleanups (void)
2822 {
2823 tree binfo, base_binfo;
2824 int i;
2825 tree member;
2826 tree expr;
2827 VEC(tree,gc) *vbases;
2828
2829 /* Run destructors for all virtual baseclasses. */
2830 if (CLASSTYPE_VBASECLASSES (current_class_type))
2831 {
2832 tree cond = (condition_conversion
2833 (build2 (BIT_AND_EXPR, integer_type_node,
2834 current_in_charge_parm,
2835 integer_two_node)));
2836
2837 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2838 order, which is also the right order for pushing cleanups. */
2839 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2840 VEC_iterate (tree, vbases, i, base_binfo); i++)
2841 {
2842 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2843 {
2844 expr = build_special_member_call (current_class_ref,
2845 base_dtor_identifier,
2846 NULL_TREE,
2847 base_binfo,
2848 (LOOKUP_NORMAL
2849 | LOOKUP_NONVIRTUAL));
2850 expr = build3 (COND_EXPR, void_type_node, cond,
2851 expr, void_zero_node);
2852 finish_decl_cleanup (NULL_TREE, expr);
2853 }
2854 }
2855 }
2856
2857 /* Take care of the remaining baseclasses. */
2858 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2859 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2860 {
2861 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2862 || BINFO_VIRTUAL_P (base_binfo))
2863 continue;
2864
2865 expr = build_special_member_call (current_class_ref,
2866 base_dtor_identifier,
2867 NULL_TREE, base_binfo,
2868 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2869 finish_decl_cleanup (NULL_TREE, expr);
2870 }
2871
2872 for (member = TYPE_FIELDS (current_class_type); member;
2873 member = TREE_CHAIN (member))
2874 {
2875 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
2876 continue;
2877 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2878 {
2879 tree this_member = (build_class_member_access_expr
2880 (current_class_ref, member,
2881 /*access_path=*/NULL_TREE,
2882 /*preserve_reference=*/false));
2883 tree this_type = TREE_TYPE (member);
2884 expr = build_delete (this_type, this_member,
2885 sfk_complete_destructor,
2886 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2887 0);
2888 finish_decl_cleanup (NULL_TREE, expr);
2889 }
2890 }
2891 }
2892
2893 /* Build a C++ vector delete expression.
2894 MAXINDEX is the number of elements to be deleted.
2895 ELT_SIZE is the nominal size of each element in the vector.
2896 BASE is the expression that should yield the store to be deleted.
2897 This function expands (or synthesizes) these calls itself.
2898 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2899
2900 This also calls delete for virtual baseclasses of elements of the vector.
2901
2902 Update: MAXINDEX is no longer needed. The size can be extracted from the
2903 start of the vector for pointers, and from the type for arrays. We still
2904 use MAXINDEX for arrays because it happens to already have one of the
2905 values we'd have to extract. (We could use MAXINDEX with pointers to
2906 confirm the size, and trap if the numbers differ; not clear that it'd
2907 be worth bothering.) */
2908
2909 tree
2910 build_vec_delete (tree base, tree maxindex,
2911 special_function_kind auto_delete_vec, int use_global_delete)
2912 {
2913 tree type;
2914 tree rval;
2915 tree base_init = NULL_TREE;
2916
2917 type = TREE_TYPE (base);
2918
2919 if (TREE_CODE (type) == POINTER_TYPE)
2920 {
2921 /* Step back one from start of vector, and read dimension. */
2922 tree cookie_addr;
2923
2924 if (TREE_SIDE_EFFECTS (base))
2925 {
2926 base_init = get_target_expr (base);
2927 base = TARGET_EXPR_SLOT (base_init);
2928 }
2929 type = strip_array_types (TREE_TYPE (type));
2930 cookie_addr = build2 (MINUS_EXPR,
2931 build_pointer_type (sizetype),
2932 base,
2933 TYPE_SIZE_UNIT (sizetype));
2934 maxindex = build_indirect_ref (cookie_addr, NULL);
2935 }
2936 else if (TREE_CODE (type) == ARRAY_TYPE)
2937 {
2938 /* Get the total number of things in the array, maxindex is a
2939 bad name. */
2940 maxindex = array_type_nelts_total (type);
2941 type = strip_array_types (type);
2942 base = build_unary_op (ADDR_EXPR, base, 1);
2943 if (TREE_SIDE_EFFECTS (base))
2944 {
2945 base_init = get_target_expr (base);
2946 base = TARGET_EXPR_SLOT (base_init);
2947 }
2948 }
2949 else
2950 {
2951 if (base != error_mark_node)
2952 error ("type to vector delete is neither pointer or array type");
2953 return error_mark_node;
2954 }
2955
2956 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
2957 use_global_delete);
2958 if (base_init)
2959 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
2960
2961 return rval;
2962 }