re PR c++/69095 (internal compiler error: in dependent_type_p, at cp/pt.c:19399)
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32
33 static bool begin_init_stmts (tree *, tree *);
34 static tree finish_init_stmts (bool, tree, tree);
35 static void construct_virtual_base (tree, tree);
36 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
37 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
38 static void perform_member_init (tree, tree);
39 static int member_init_ok_or_else (tree, tree, tree);
40 static void expand_virtual_init (tree, tree);
41 static tree sort_mem_initializers (tree, tree);
42 static tree initializing_context (tree);
43 static void expand_cleanup_for_base (tree, tree);
44 static tree dfs_initialize_vtbl_ptrs (tree, void *);
45 static tree build_field_list (tree, tree, int *);
46 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
47
48 /* We are about to generate some complex initialization code.
49 Conceptually, it is all a single expression. However, we may want
50 to include conditionals, loops, and other such statement-level
51 constructs. Therefore, we build the initialization code inside a
52 statement-expression. This function starts such an expression.
53 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
54 pass them back to finish_init_stmts when the expression is
55 complete. */
56
57 static bool
58 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
59 {
60 bool is_global = !building_stmt_list_p ();
61
62 *stmt_expr_p = begin_stmt_expr ();
63 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
64
65 return is_global;
66 }
67
68 /* Finish out the statement-expression begun by the previous call to
69 begin_init_stmts. Returns the statement-expression itself. */
70
71 static tree
72 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
73 {
74 finish_compound_stmt (compound_stmt);
75
76 stmt_expr = finish_stmt_expr (stmt_expr, true);
77
78 gcc_assert (!building_stmt_list_p () == is_global);
79
80 return stmt_expr;
81 }
82
83 /* Constructors */
84
85 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
86 which we want to initialize the vtable pointer for, DATA is
87 TREE_LIST whose TREE_VALUE is the this ptr expression. */
88
89 static tree
90 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
91 {
92 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
93 return dfs_skip_bases;
94
95 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
96 {
97 tree base_ptr = TREE_VALUE ((tree) data);
98
99 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
100 tf_warning_or_error);
101
102 expand_virtual_init (binfo, base_ptr);
103 }
104
105 return NULL_TREE;
106 }
107
108 /* Initialize all the vtable pointers in the object pointed to by
109 ADDR. */
110
111 void
112 initialize_vtbl_ptrs (tree addr)
113 {
114 tree list;
115 tree type;
116
117 type = TREE_TYPE (TREE_TYPE (addr));
118 list = build_tree_list (type, addr);
119
120 /* Walk through the hierarchy, initializing the vptr in each base
121 class. We do these in pre-order because we can't find the virtual
122 bases for a class until we've initialized the vtbl for that
123 class. */
124 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
125 }
126
127 /* Return an expression for the zero-initialization of an object with
128 type T. This expression will either be a constant (in the case
129 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
130 aggregate), or NULL (in the case that T does not require
131 initialization). In either case, the value can be used as
132 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
133 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
134 is the number of elements in the array. If STATIC_STORAGE_P is
135 TRUE, initializers are only generated for entities for which
136 zero-initialization does not simply mean filling the storage with
137 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
138 subfields with bit positions at or above that bit size shouldn't
139 be added. Note that this only works when the result is assigned
140 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
141 expand_assignment will end up clearing the full size of TYPE. */
142
143 static tree
144 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
145 tree field_size)
146 {
147 tree init = NULL_TREE;
148
149 /* [dcl.init]
150
151 To zero-initialize an object of type T means:
152
153 -- if T is a scalar type, the storage is set to the value of zero
154 converted to T.
155
156 -- if T is a non-union class type, the storage for each nonstatic
157 data member and each base-class subobject is zero-initialized.
158
159 -- if T is a union type, the storage for its first data member is
160 zero-initialized.
161
162 -- if T is an array type, the storage for each element is
163 zero-initialized.
164
165 -- if T is a reference type, no initialization is performed. */
166
167 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
168
169 if (type == error_mark_node)
170 ;
171 else if (static_storage_p && zero_init_p (type))
172 /* In order to save space, we do not explicitly build initializers
173 for items that do not need them. GCC's semantics are that
174 items with static storage duration that are not otherwise
175 initialized are initialized to zero. */
176 ;
177 else if (TYPE_PTR_OR_PTRMEM_P (type))
178 init = fold (convert (type, nullptr_node));
179 else if (SCALAR_TYPE_P (type))
180 init = fold (convert (type, integer_zero_node));
181 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
182 {
183 tree field;
184 vec<constructor_elt, va_gc> *v = NULL;
185
186 /* Iterate over the fields, building initializations. */
187 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
188 {
189 if (TREE_CODE (field) != FIELD_DECL)
190 continue;
191
192 if (TREE_TYPE (field) == error_mark_node)
193 continue;
194
195 /* Don't add virtual bases for base classes if they are beyond
196 the size of the current field, that means it is present
197 somewhere else in the object. */
198 if (field_size)
199 {
200 tree bitpos = bit_position (field);
201 if (TREE_CODE (bitpos) == INTEGER_CST
202 && !tree_int_cst_lt (bitpos, field_size))
203 continue;
204 }
205
206 /* Note that for class types there will be FIELD_DECLs
207 corresponding to base classes as well. Thus, iterating
208 over TYPE_FIELDs will result in correct initialization of
209 all of the subobjects. */
210 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
211 {
212 tree new_field_size
213 = (DECL_FIELD_IS_BASE (field)
214 && DECL_SIZE (field)
215 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
216 ? DECL_SIZE (field) : NULL_TREE;
217 tree value = build_zero_init_1 (TREE_TYPE (field),
218 /*nelts=*/NULL_TREE,
219 static_storage_p,
220 new_field_size);
221 if (value)
222 CONSTRUCTOR_APPEND_ELT(v, field, value);
223 }
224
225 /* For unions, only the first field is initialized. */
226 if (TREE_CODE (type) == UNION_TYPE)
227 break;
228 }
229
230 /* Build a constructor to contain the initializations. */
231 init = build_constructor (type, v);
232 }
233 else if (TREE_CODE (type) == ARRAY_TYPE)
234 {
235 tree max_index;
236 vec<constructor_elt, va_gc> *v = NULL;
237
238 /* Iterate over the array elements, building initializations. */
239 if (nelts)
240 max_index = fold_build2_loc (input_location,
241 MINUS_EXPR, TREE_TYPE (nelts),
242 nelts, integer_one_node);
243 else
244 max_index = array_type_nelts (type);
245
246 /* If we have an error_mark here, we should just return error mark
247 as we don't know the size of the array yet. */
248 if (max_index == error_mark_node)
249 return error_mark_node;
250 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
251
252 /* A zero-sized array, which is accepted as an extension, will
253 have an upper bound of -1. */
254 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
255 {
256 constructor_elt ce;
257
258 /* If this is a one element array, we just use a regular init. */
259 if (tree_int_cst_equal (size_zero_node, max_index))
260 ce.index = size_zero_node;
261 else
262 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
263 max_index);
264
265 ce.value = build_zero_init_1 (TREE_TYPE (type),
266 /*nelts=*/NULL_TREE,
267 static_storage_p, NULL_TREE);
268 if (ce.value)
269 {
270 vec_alloc (v, 1);
271 v->quick_push (ce);
272 }
273 }
274
275 /* Build a constructor to contain the initializations. */
276 init = build_constructor (type, v);
277 }
278 else if (VECTOR_TYPE_P (type))
279 init = build_zero_cst (type);
280 else
281 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
282
283 /* In all cases, the initializer is a constant. */
284 if (init)
285 TREE_CONSTANT (init) = 1;
286
287 return init;
288 }
289
290 /* Return an expression for the zero-initialization of an object with
291 type T. This expression will either be a constant (in the case
292 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
293 aggregate), or NULL (in the case that T does not require
294 initialization). In either case, the value can be used as
295 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
296 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
297 is the number of elements in the array. If STATIC_STORAGE_P is
298 TRUE, initializers are only generated for entities for which
299 zero-initialization does not simply mean filling the storage with
300 zero bytes. */
301
302 tree
303 build_zero_init (tree type, tree nelts, bool static_storage_p)
304 {
305 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
306 }
307
308 /* Return a suitable initializer for value-initializing an object of type
309 TYPE, as described in [dcl.init]. */
310
311 tree
312 build_value_init (tree type, tsubst_flags_t complain)
313 {
314 /* [dcl.init]
315
316 To value-initialize an object of type T means:
317
318 - if T is a class type (clause 9) with either no default constructor
319 (12.1) or a default constructor that is user-provided or deleted,
320 then the object is default-initialized;
321
322 - if T is a (possibly cv-qualified) class type without a user-provided
323 or deleted default constructor, then the object is zero-initialized
324 and the semantic constraints for default-initialization are checked,
325 and if T has a non-trivial default constructor, the object is
326 default-initialized;
327
328 - if T is an array type, then each element is value-initialized;
329
330 - otherwise, the object is zero-initialized.
331
332 A program that calls for default-initialization or
333 value-initialization of an entity of reference type is ill-formed. */
334
335 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
336 gcc_assert (!processing_template_decl
337 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
338
339 if (CLASS_TYPE_P (type)
340 && type_build_ctor_call (type))
341 {
342 tree ctor =
343 build_special_member_call (NULL_TREE, complete_ctor_identifier,
344 NULL, type, LOOKUP_NORMAL,
345 complain);
346 if (ctor == error_mark_node)
347 return ctor;
348 tree fn = NULL_TREE;
349 if (TREE_CODE (ctor) == CALL_EXPR)
350 fn = get_callee_fndecl (ctor);
351 ctor = build_aggr_init_expr (type, ctor);
352 if (fn && user_provided_p (fn))
353 return ctor;
354 else if (TYPE_HAS_COMPLEX_DFLT (type))
355 {
356 /* This is a class that needs constructing, but doesn't have
357 a user-provided constructor. So we need to zero-initialize
358 the object and then call the implicitly defined ctor.
359 This will be handled in simplify_aggr_init_expr. */
360 AGGR_INIT_ZERO_FIRST (ctor) = 1;
361 return ctor;
362 }
363 }
364
365 /* Discard any access checking during subobject initialization;
366 the checks are implied by the call to the ctor which we have
367 verified is OK (cpp0x/defaulted46.C). */
368 push_deferring_access_checks (dk_deferred);
369 tree r = build_value_init_noctor (type, complain);
370 pop_deferring_access_checks ();
371 return r;
372 }
373
374 /* Like build_value_init, but don't call the constructor for TYPE. Used
375 for base initializers. */
376
377 tree
378 build_value_init_noctor (tree type, tsubst_flags_t complain)
379 {
380 if (!COMPLETE_TYPE_P (type))
381 {
382 if (complain & tf_error)
383 error ("value-initialization of incomplete type %qT", type);
384 return error_mark_node;
385 }
386 /* FIXME the class and array cases should just use digest_init once it is
387 SFINAE-enabled. */
388 if (CLASS_TYPE_P (type))
389 {
390 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
391 || errorcount != 0);
392
393 if (TREE_CODE (type) != UNION_TYPE)
394 {
395 tree field;
396 vec<constructor_elt, va_gc> *v = NULL;
397
398 /* Iterate over the fields, building initializations. */
399 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
400 {
401 tree ftype, value;
402
403 if (TREE_CODE (field) != FIELD_DECL)
404 continue;
405
406 ftype = TREE_TYPE (field);
407
408 if (ftype == error_mark_node)
409 continue;
410
411 /* We could skip vfields and fields of types with
412 user-defined constructors, but I think that won't improve
413 performance at all; it should be simpler in general just
414 to zero out the entire object than try to only zero the
415 bits that actually need it. */
416
417 /* Note that for class types there will be FIELD_DECLs
418 corresponding to base classes as well. Thus, iterating
419 over TYPE_FIELDs will result in correct initialization of
420 all of the subobjects. */
421 value = build_value_init (ftype, complain);
422 value = maybe_constant_init (value);
423
424 if (value == error_mark_node)
425 return error_mark_node;
426
427 CONSTRUCTOR_APPEND_ELT(v, field, value);
428
429 /* We shouldn't have gotten here for anything that would need
430 non-trivial initialization, and gimplify_init_ctor_preeval
431 would need to be fixed to allow it. */
432 gcc_assert (TREE_CODE (value) != TARGET_EXPR
433 && TREE_CODE (value) != AGGR_INIT_EXPR);
434 }
435
436 /* Build a constructor to contain the zero- initializations. */
437 return build_constructor (type, v);
438 }
439 }
440 else if (TREE_CODE (type) == ARRAY_TYPE)
441 {
442 vec<constructor_elt, va_gc> *v = NULL;
443
444 /* Iterate over the array elements, building initializations. */
445 tree max_index = array_type_nelts (type);
446
447 /* If we have an error_mark here, we should just return error mark
448 as we don't know the size of the array yet. */
449 if (max_index == error_mark_node)
450 {
451 if (complain & tf_error)
452 error ("cannot value-initialize array of unknown bound %qT",
453 type);
454 return error_mark_node;
455 }
456 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
457
458 /* A zero-sized array, which is accepted as an extension, will
459 have an upper bound of -1. */
460 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
461 {
462 constructor_elt ce;
463
464 /* If this is a one element array, we just use a regular init. */
465 if (tree_int_cst_equal (size_zero_node, max_index))
466 ce.index = size_zero_node;
467 else
468 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
469
470 ce.value = build_value_init (TREE_TYPE (type), complain);
471 ce.value = maybe_constant_init (ce.value);
472 if (ce.value == error_mark_node)
473 return error_mark_node;
474
475 vec_alloc (v, 1);
476 v->quick_push (ce);
477
478 /* We shouldn't have gotten here for anything that would need
479 non-trivial initialization, and gimplify_init_ctor_preeval
480 would need to be fixed to allow it. */
481 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
482 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
483 }
484
485 /* Build a constructor to contain the initializations. */
486 return build_constructor (type, v);
487 }
488 else if (TREE_CODE (type) == FUNCTION_TYPE)
489 {
490 if (complain & tf_error)
491 error ("value-initialization of function type %qT", type);
492 return error_mark_node;
493 }
494 else if (TREE_CODE (type) == REFERENCE_TYPE)
495 {
496 if (complain & tf_error)
497 error ("value-initialization of reference type %qT", type);
498 return error_mark_node;
499 }
500
501 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
502 }
503
504 /* Initialize current class with INIT, a TREE_LIST of
505 arguments for a target constructor. If TREE_LIST is void_type_node,
506 an empty initializer list was given. */
507
508 static void
509 perform_target_ctor (tree init)
510 {
511 tree decl = current_class_ref;
512 tree type = current_class_type;
513
514 finish_expr_stmt (build_aggr_init (decl, init,
515 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
516 tf_warning_or_error));
517 if (type_build_dtor_call (type))
518 {
519 tree expr = build_delete (type, decl, sfk_complete_destructor,
520 LOOKUP_NORMAL
521 |LOOKUP_NONVIRTUAL
522 |LOOKUP_DESTRUCTOR,
523 0, tf_warning_or_error);
524 if (expr != error_mark_node
525 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
526 finish_eh_cleanup (expr);
527 }
528 }
529
530 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
531
532 tree
533 get_nsdmi (tree member, bool in_ctor)
534 {
535 tree init;
536 tree save_ccp = current_class_ptr;
537 tree save_ccr = current_class_ref;
538
539 if (!in_ctor)
540 {
541 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
542 refer to; constexpr evaluation knows what to do with it. */
543 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
544 current_class_ptr = build_address (current_class_ref);
545 }
546
547 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
548 {
549 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
550 if (TREE_CODE (init) == DEFAULT_ARG)
551 goto unparsed;
552
553 /* Check recursive instantiation. */
554 if (DECL_INSTANTIATING_NSDMI_P (member))
555 {
556 error ("recursive instantiation of non-static data member "
557 "initializer for %qD", member);
558 init = error_mark_node;
559 }
560 else
561 {
562 DECL_INSTANTIATING_NSDMI_P (member) = 1;
563
564 /* Do deferred instantiation of the NSDMI. */
565 init = (tsubst_copy_and_build
566 (init, DECL_TI_ARGS (member),
567 tf_warning_or_error, member, /*function_p=*/false,
568 /*integral_constant_expression_p=*/false));
569 init = digest_nsdmi_init (member, init);
570
571 DECL_INSTANTIATING_NSDMI_P (member) = 0;
572 }
573 }
574 else
575 {
576 init = DECL_INITIAL (member);
577 if (init && TREE_CODE (init) == DEFAULT_ARG)
578 {
579 unparsed:
580 error ("constructor required before non-static data member "
581 "for %qD has been parsed", member);
582 DECL_INITIAL (member) = error_mark_node;
583 init = error_mark_node;
584 }
585 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
586 so the aggregate init code below will see a CONSTRUCTOR. */
587 if (init && SIMPLE_TARGET_EXPR_P (init))
588 init = TARGET_EXPR_INITIAL (init);
589 init = break_out_target_exprs (init);
590 }
591 current_class_ptr = save_ccp;
592 current_class_ref = save_ccr;
593 return init;
594 }
595
596 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
597 arguments. If TREE_LIST is void_type_node, an empty initializer
598 list was given; if NULL_TREE no initializer was given. */
599
600 static void
601 perform_member_init (tree member, tree init)
602 {
603 tree decl;
604 tree type = TREE_TYPE (member);
605
606 /* Use the non-static data member initializer if there was no
607 mem-initializer for this field. */
608 if (init == NULL_TREE)
609 init = get_nsdmi (member, /*ctor*/true);
610
611 if (init == error_mark_node)
612 return;
613
614 /* Effective C++ rule 12 requires that all data members be
615 initialized. */
616 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
617 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
618 "%qD should be initialized in the member initialization list",
619 member);
620
621 /* Get an lvalue for the data member. */
622 decl = build_class_member_access_expr (current_class_ref, member,
623 /*access_path=*/NULL_TREE,
624 /*preserve_reference=*/true,
625 tf_warning_or_error);
626 if (decl == error_mark_node)
627 return;
628
629 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
630 && TREE_CHAIN (init) == NULL_TREE)
631 {
632 tree val = TREE_VALUE (init);
633 /* Handle references. */
634 if (REFERENCE_REF_P (val))
635 val = TREE_OPERAND (val, 0);
636 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
637 && TREE_OPERAND (val, 0) == current_class_ref)
638 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
639 OPT_Winit_self, "%qD is initialized with itself",
640 member);
641 }
642
643 if (init == void_type_node)
644 {
645 /* mem() means value-initialization. */
646 if (TREE_CODE (type) == ARRAY_TYPE)
647 {
648 init = build_vec_init_expr (type, init, tf_warning_or_error);
649 init = build2 (INIT_EXPR, type, decl, init);
650 finish_expr_stmt (init);
651 }
652 else
653 {
654 tree value = build_value_init (type, tf_warning_or_error);
655 if (value == error_mark_node)
656 return;
657 init = build2 (INIT_EXPR, type, decl, value);
658 finish_expr_stmt (init);
659 }
660 }
661 /* Deal with this here, as we will get confused if we try to call the
662 assignment op for an anonymous union. This can happen in a
663 synthesized copy constructor. */
664 else if (ANON_AGGR_TYPE_P (type))
665 {
666 if (init)
667 {
668 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
669 finish_expr_stmt (init);
670 }
671 }
672 else if (init
673 && (TREE_CODE (type) == REFERENCE_TYPE
674 /* Pre-digested NSDMI. */
675 || (((TREE_CODE (init) == CONSTRUCTOR
676 && TREE_TYPE (init) == type)
677 /* { } mem-initializer. */
678 || (TREE_CODE (init) == TREE_LIST
679 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
680 && (CP_AGGREGATE_TYPE_P (type)
681 || is_std_init_list (type)))))
682 {
683 /* With references and list-initialization, we need to deal with
684 extending temporary lifetimes. 12.2p5: "A temporary bound to a
685 reference member in a constructor’s ctor-initializer (12.6.2)
686 persists until the constructor exits." */
687 unsigned i; tree t;
688 vec<tree, va_gc> *cleanups = make_tree_vector ();
689 if (TREE_CODE (init) == TREE_LIST)
690 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
691 tf_warning_or_error);
692 if (TREE_TYPE (init) != type)
693 {
694 if (BRACE_ENCLOSED_INITIALIZER_P (init)
695 && CP_AGGREGATE_TYPE_P (type))
696 init = reshape_init (type, init, tf_warning_or_error);
697 init = digest_init (type, init, tf_warning_or_error);
698 }
699 if (init == error_mark_node)
700 return;
701 /* A FIELD_DECL doesn't really have a suitable lifetime, but
702 make_temporary_var_for_ref_to_temp will treat it as automatic and
703 set_up_extended_ref_temp wants to use the decl in a warning. */
704 init = extend_ref_init_temps (member, init, &cleanups);
705 if (TREE_CODE (type) == ARRAY_TYPE
706 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
707 init = build_vec_init_expr (type, init, tf_warning_or_error);
708 init = build2 (INIT_EXPR, type, decl, init);
709 finish_expr_stmt (init);
710 FOR_EACH_VEC_ELT (*cleanups, i, t)
711 push_cleanup (decl, t, false);
712 release_tree_vector (cleanups);
713 }
714 else if (type_build_ctor_call (type)
715 || (init && CLASS_TYPE_P (strip_array_types (type))))
716 {
717 if (TREE_CODE (type) == ARRAY_TYPE)
718 {
719 if (init)
720 {
721 if (TREE_CHAIN (init))
722 init = error_mark_node;
723 else
724 init = TREE_VALUE (init);
725 if (BRACE_ENCLOSED_INITIALIZER_P (init))
726 init = digest_init (type, init, tf_warning_or_error);
727 }
728 if (init == NULL_TREE
729 || same_type_ignoring_top_level_qualifiers_p (type,
730 TREE_TYPE (init)))
731 {
732 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
733 {
734 /* Initialize the array only if it's not a flexible
735 array member (i.e., if it has an upper bound). */
736 init = build_vec_init_expr (type, init, tf_warning_or_error);
737 init = build2 (INIT_EXPR, type, decl, init);
738 finish_expr_stmt (init);
739 }
740 }
741 else
742 error ("invalid initializer for array member %q#D", member);
743 }
744 else
745 {
746 int flags = LOOKUP_NORMAL;
747 if (DECL_DEFAULTED_FN (current_function_decl))
748 flags |= LOOKUP_DEFAULTED;
749 if (CP_TYPE_CONST_P (type)
750 && init == NULL_TREE
751 && default_init_uninitialized_part (type))
752 {
753 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
754 vtable; still give this diagnostic. */
755 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
756 "uninitialized const member in %q#T", type))
757 inform (DECL_SOURCE_LOCATION (member),
758 "%q#D should be initialized", member );
759 }
760 finish_expr_stmt (build_aggr_init (decl, init, flags,
761 tf_warning_or_error));
762 }
763 }
764 else
765 {
766 if (init == NULL_TREE)
767 {
768 tree core_type;
769 /* member traversal: note it leaves init NULL */
770 if (TREE_CODE (type) == REFERENCE_TYPE)
771 {
772 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
773 "uninitialized reference member in %q#T", type))
774 inform (DECL_SOURCE_LOCATION (member),
775 "%q#D should be initialized", member);
776 }
777 else if (CP_TYPE_CONST_P (type))
778 {
779 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
780 "uninitialized const member in %q#T", type))
781 inform (DECL_SOURCE_LOCATION (member),
782 "%q#D should be initialized", member );
783 }
784
785 core_type = strip_array_types (type);
786
787 if (CLASS_TYPE_P (core_type)
788 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
789 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
790 diagnose_uninitialized_cst_or_ref_member (core_type,
791 /*using_new=*/false,
792 /*complain=*/true);
793 }
794 else if (TREE_CODE (init) == TREE_LIST)
795 /* There was an explicit member initialization. Do some work
796 in that case. */
797 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
798 tf_warning_or_error);
799
800 if (init)
801 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
802 INIT_EXPR, init,
803 tf_warning_or_error));
804 }
805
806 if (type_build_dtor_call (type))
807 {
808 tree expr;
809
810 expr = build_class_member_access_expr (current_class_ref, member,
811 /*access_path=*/NULL_TREE,
812 /*preserve_reference=*/false,
813 tf_warning_or_error);
814 expr = build_delete (type, expr, sfk_complete_destructor,
815 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
816 tf_warning_or_error);
817
818 if (expr != error_mark_node
819 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
820 finish_eh_cleanup (expr);
821 }
822 }
823
824 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
825 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
826
827 static tree
828 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
829 {
830 tree fields;
831
832 /* Note whether or not T is a union. */
833 if (TREE_CODE (t) == UNION_TYPE)
834 *uses_unions_or_anon_p = 1;
835
836 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
837 {
838 tree fieldtype;
839
840 /* Skip CONST_DECLs for enumeration constants and so forth. */
841 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
842 continue;
843
844 fieldtype = TREE_TYPE (fields);
845
846 /* For an anonymous struct or union, we must recursively
847 consider the fields of the anonymous type. They can be
848 directly initialized from the constructor. */
849 if (ANON_AGGR_TYPE_P (fieldtype))
850 {
851 /* Add this field itself. Synthesized copy constructors
852 initialize the entire aggregate. */
853 list = tree_cons (fields, NULL_TREE, list);
854 /* And now add the fields in the anonymous aggregate. */
855 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
856 *uses_unions_or_anon_p = 1;
857 }
858 /* Add this field. */
859 else if (DECL_NAME (fields))
860 list = tree_cons (fields, NULL_TREE, list);
861 }
862
863 return list;
864 }
865
866 /* Return the innermost aggregate scope for FIELD, whether that is
867 the enclosing class or an anonymous aggregate within it. */
868
869 static tree
870 innermost_aggr_scope (tree field)
871 {
872 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
873 return TREE_TYPE (field);
874 else
875 return DECL_CONTEXT (field);
876 }
877
878 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
879 a FIELD_DECL or BINFO in T that needs initialization. The
880 TREE_VALUE gives the initializer, or list of initializer arguments.
881
882 Return a TREE_LIST containing all of the initializations required
883 for T, in the order in which they should be performed. The output
884 list has the same format as the input. */
885
886 static tree
887 sort_mem_initializers (tree t, tree mem_inits)
888 {
889 tree init;
890 tree base, binfo, base_binfo;
891 tree sorted_inits;
892 tree next_subobject;
893 vec<tree, va_gc> *vbases;
894 int i;
895 int uses_unions_or_anon_p = 0;
896
897 /* Build up a list of initializations. The TREE_PURPOSE of entry
898 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
899 TREE_VALUE will be the constructor arguments, or NULL if no
900 explicit initialization was provided. */
901 sorted_inits = NULL_TREE;
902
903 /* Process the virtual bases. */
904 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
905 vec_safe_iterate (vbases, i, &base); i++)
906 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
907
908 /* Process the direct bases. */
909 for (binfo = TYPE_BINFO (t), i = 0;
910 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
911 if (!BINFO_VIRTUAL_P (base_binfo))
912 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
913
914 /* Process the non-static data members. */
915 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
916 /* Reverse the entire list of initializations, so that they are in
917 the order that they will actually be performed. */
918 sorted_inits = nreverse (sorted_inits);
919
920 /* If the user presented the initializers in an order different from
921 that in which they will actually occur, we issue a warning. Keep
922 track of the next subobject which can be explicitly initialized
923 without issuing a warning. */
924 next_subobject = sorted_inits;
925
926 /* Go through the explicit initializers, filling in TREE_PURPOSE in
927 the SORTED_INITS. */
928 for (init = mem_inits; init; init = TREE_CHAIN (init))
929 {
930 tree subobject;
931 tree subobject_init;
932
933 subobject = TREE_PURPOSE (init);
934
935 /* If the explicit initializers are in sorted order, then
936 SUBOBJECT will be NEXT_SUBOBJECT, or something following
937 it. */
938 for (subobject_init = next_subobject;
939 subobject_init;
940 subobject_init = TREE_CHAIN (subobject_init))
941 if (TREE_PURPOSE (subobject_init) == subobject)
942 break;
943
944 /* Issue a warning if the explicit initializer order does not
945 match that which will actually occur.
946 ??? Are all these on the correct lines? */
947 if (warn_reorder && !subobject_init)
948 {
949 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
950 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
951 OPT_Wreorder, "%qD will be initialized after",
952 TREE_PURPOSE (next_subobject));
953 else
954 warning (OPT_Wreorder, "base %qT will be initialized after",
955 TREE_PURPOSE (next_subobject));
956 if (TREE_CODE (subobject) == FIELD_DECL)
957 warning_at (DECL_SOURCE_LOCATION (subobject),
958 OPT_Wreorder, " %q#D", subobject);
959 else
960 warning (OPT_Wreorder, " base %qT", subobject);
961 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
962 OPT_Wreorder, " when initialized here");
963 }
964
965 /* Look again, from the beginning of the list. */
966 if (!subobject_init)
967 {
968 subobject_init = sorted_inits;
969 while (TREE_PURPOSE (subobject_init) != subobject)
970 subobject_init = TREE_CHAIN (subobject_init);
971 }
972
973 /* It is invalid to initialize the same subobject more than
974 once. */
975 if (TREE_VALUE (subobject_init))
976 {
977 if (TREE_CODE (subobject) == FIELD_DECL)
978 error_at (DECL_SOURCE_LOCATION (current_function_decl),
979 "multiple initializations given for %qD",
980 subobject);
981 else
982 error_at (DECL_SOURCE_LOCATION (current_function_decl),
983 "multiple initializations given for base %qT",
984 subobject);
985 }
986
987 /* Record the initialization. */
988 TREE_VALUE (subobject_init) = TREE_VALUE (init);
989 next_subobject = subobject_init;
990 }
991
992 /* [class.base.init]
993
994 If a ctor-initializer specifies more than one mem-initializer for
995 multiple members of the same union (including members of
996 anonymous unions), the ctor-initializer is ill-formed.
997
998 Here we also splice out uninitialized union members. */
999 if (uses_unions_or_anon_p)
1000 {
1001 tree *last_p = NULL;
1002 tree *p;
1003 for (p = &sorted_inits; *p; )
1004 {
1005 tree field;
1006 tree ctx;
1007
1008 init = *p;
1009
1010 field = TREE_PURPOSE (init);
1011
1012 /* Skip base classes. */
1013 if (TREE_CODE (field) != FIELD_DECL)
1014 goto next;
1015
1016 /* If this is an anonymous aggregate with no explicit initializer,
1017 splice it out. */
1018 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1019 goto splice;
1020
1021 /* See if this field is a member of a union, or a member of a
1022 structure contained in a union, etc. */
1023 ctx = innermost_aggr_scope (field);
1024
1025 /* If this field is not a member of a union, skip it. */
1026 if (TREE_CODE (ctx) != UNION_TYPE
1027 && !ANON_AGGR_TYPE_P (ctx))
1028 goto next;
1029
1030 /* If this union member has no explicit initializer and no NSDMI,
1031 splice it out. */
1032 if (TREE_VALUE (init) || DECL_INITIAL (field))
1033 /* OK. */;
1034 else
1035 goto splice;
1036
1037 /* It's only an error if we have two initializers for the same
1038 union type. */
1039 if (!last_p)
1040 {
1041 last_p = p;
1042 goto next;
1043 }
1044
1045 /* See if LAST_FIELD and the field initialized by INIT are
1046 members of the same union (or the union itself). If so, there's
1047 a problem, unless they're actually members of the same structure
1048 which is itself a member of a union. For example, given:
1049
1050 union { struct { int i; int j; }; };
1051
1052 initializing both `i' and `j' makes sense. */
1053 ctx = common_enclosing_class
1054 (innermost_aggr_scope (field),
1055 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1056
1057 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1058 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1059 {
1060 /* A mem-initializer hides an NSDMI. */
1061 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1062 *last_p = TREE_CHAIN (*last_p);
1063 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1064 goto splice;
1065 else
1066 {
1067 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1068 "initializations for multiple members of %qT",
1069 ctx);
1070 goto splice;
1071 }
1072 }
1073
1074 last_p = p;
1075
1076 next:
1077 p = &TREE_CHAIN (*p);
1078 continue;
1079 splice:
1080 *p = TREE_CHAIN (*p);
1081 continue;
1082 }
1083 }
1084
1085 return sorted_inits;
1086 }
1087
1088 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1089 is a TREE_LIST giving the explicit mem-initializer-list for the
1090 constructor. The TREE_PURPOSE of each entry is a subobject (a
1091 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1092 is a TREE_LIST giving the arguments to the constructor or
1093 void_type_node for an empty list of arguments. */
1094
1095 void
1096 emit_mem_initializers (tree mem_inits)
1097 {
1098 int flags = LOOKUP_NORMAL;
1099
1100 /* We will already have issued an error message about the fact that
1101 the type is incomplete. */
1102 if (!COMPLETE_TYPE_P (current_class_type))
1103 return;
1104
1105 if (mem_inits
1106 && TYPE_P (TREE_PURPOSE (mem_inits))
1107 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1108 {
1109 /* Delegating constructor. */
1110 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1111 perform_target_ctor (TREE_VALUE (mem_inits));
1112 return;
1113 }
1114
1115 if (DECL_DEFAULTED_FN (current_function_decl)
1116 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1117 flags |= LOOKUP_DEFAULTED;
1118
1119 /* Sort the mem-initializers into the order in which the
1120 initializations should be performed. */
1121 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1122
1123 in_base_initializer = 1;
1124
1125 /* Initialize base classes. */
1126 for (; (mem_inits
1127 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1128 mem_inits = TREE_CHAIN (mem_inits))
1129 {
1130 tree subobject = TREE_PURPOSE (mem_inits);
1131 tree arguments = TREE_VALUE (mem_inits);
1132
1133 /* We already have issued an error message. */
1134 if (arguments == error_mark_node)
1135 continue;
1136
1137 if (arguments == NULL_TREE)
1138 {
1139 /* If these initializations are taking place in a copy constructor,
1140 the base class should probably be explicitly initialized if there
1141 is a user-defined constructor in the base class (other than the
1142 default constructor, which will be called anyway). */
1143 if (extra_warnings
1144 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1145 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1146 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1147 OPT_Wextra, "base class %q#T should be explicitly "
1148 "initialized in the copy constructor",
1149 BINFO_TYPE (subobject));
1150 }
1151
1152 /* Initialize the base. */
1153 if (BINFO_VIRTUAL_P (subobject))
1154 construct_virtual_base (subobject, arguments);
1155 else
1156 {
1157 tree base_addr;
1158
1159 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1160 subobject, 1, tf_warning_or_error);
1161 expand_aggr_init_1 (subobject, NULL_TREE,
1162 cp_build_indirect_ref (base_addr, RO_NULL,
1163 tf_warning_or_error),
1164 arguments,
1165 flags,
1166 tf_warning_or_error);
1167 expand_cleanup_for_base (subobject, NULL_TREE);
1168 }
1169 }
1170 in_base_initializer = 0;
1171
1172 /* Initialize the vptrs. */
1173 initialize_vtbl_ptrs (current_class_ptr);
1174
1175 /* Initialize the data members. */
1176 while (mem_inits)
1177 {
1178 perform_member_init (TREE_PURPOSE (mem_inits),
1179 TREE_VALUE (mem_inits));
1180 mem_inits = TREE_CHAIN (mem_inits);
1181 }
1182 }
1183
1184 /* Returns the address of the vtable (i.e., the value that should be
1185 assigned to the vptr) for BINFO. */
1186
1187 tree
1188 build_vtbl_address (tree binfo)
1189 {
1190 tree binfo_for = binfo;
1191 tree vtbl;
1192
1193 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1194 /* If this is a virtual primary base, then the vtable we want to store
1195 is that for the base this is being used as the primary base of. We
1196 can't simply skip the initialization, because we may be expanding the
1197 inits of a subobject constructor where the virtual base layout
1198 can be different. */
1199 while (BINFO_PRIMARY_P (binfo_for))
1200 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1201
1202 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1203 used. */
1204 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1205 TREE_USED (vtbl) = true;
1206
1207 /* Now compute the address to use when initializing the vptr. */
1208 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1209 if (VAR_P (vtbl))
1210 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1211
1212 return vtbl;
1213 }
1214
1215 /* This code sets up the virtual function tables appropriate for
1216 the pointer DECL. It is a one-ply initialization.
1217
1218 BINFO is the exact type that DECL is supposed to be. In
1219 multiple inheritance, this might mean "C's A" if C : A, B. */
1220
1221 static void
1222 expand_virtual_init (tree binfo, tree decl)
1223 {
1224 tree vtbl, vtbl_ptr;
1225 tree vtt_index;
1226
1227 /* Compute the initializer for vptr. */
1228 vtbl = build_vtbl_address (binfo);
1229
1230 /* We may get this vptr from a VTT, if this is a subobject
1231 constructor or subobject destructor. */
1232 vtt_index = BINFO_VPTR_INDEX (binfo);
1233 if (vtt_index)
1234 {
1235 tree vtbl2;
1236 tree vtt_parm;
1237
1238 /* Compute the value to use, when there's a VTT. */
1239 vtt_parm = current_vtt_parm;
1240 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1241 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1242 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1243
1244 /* The actual initializer is the VTT value only in the subobject
1245 constructor. In maybe_clone_body we'll substitute NULL for
1246 the vtt_parm in the case of the non-subobject constructor. */
1247 vtbl = build_if_in_charge (vtbl, vtbl2);
1248 }
1249
1250 /* Compute the location of the vtpr. */
1251 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1252 tf_warning_or_error),
1253 TREE_TYPE (binfo));
1254 gcc_assert (vtbl_ptr != error_mark_node);
1255
1256 /* Assign the vtable to the vptr. */
1257 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1258 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1259 vtbl, tf_warning_or_error));
1260 }
1261
1262 /* If an exception is thrown in a constructor, those base classes already
1263 constructed must be destroyed. This function creates the cleanup
1264 for BINFO, which has just been constructed. If FLAG is non-NULL,
1265 it is a DECL which is nonzero when this base needs to be
1266 destroyed. */
1267
1268 static void
1269 expand_cleanup_for_base (tree binfo, tree flag)
1270 {
1271 tree expr;
1272
1273 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1274 return;
1275
1276 /* Call the destructor. */
1277 expr = build_special_member_call (current_class_ref,
1278 base_dtor_identifier,
1279 NULL,
1280 binfo,
1281 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1282 tf_warning_or_error);
1283
1284 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1285 return;
1286
1287 if (flag)
1288 expr = fold_build3_loc (input_location,
1289 COND_EXPR, void_type_node,
1290 c_common_truthvalue_conversion (input_location, flag),
1291 expr, integer_zero_node);
1292
1293 finish_eh_cleanup (expr);
1294 }
1295
1296 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1297 constructor. */
1298
1299 static void
1300 construct_virtual_base (tree vbase, tree arguments)
1301 {
1302 tree inner_if_stmt;
1303 tree exp;
1304 tree flag;
1305
1306 /* If there are virtual base classes with destructors, we need to
1307 emit cleanups to destroy them if an exception is thrown during
1308 the construction process. These exception regions (i.e., the
1309 period during which the cleanups must occur) begin from the time
1310 the construction is complete to the end of the function. If we
1311 create a conditional block in which to initialize the
1312 base-classes, then the cleanup region for the virtual base begins
1313 inside a block, and ends outside of that block. This situation
1314 confuses the sjlj exception-handling code. Therefore, we do not
1315 create a single conditional block, but one for each
1316 initialization. (That way the cleanup regions always begin
1317 in the outer block.) We trust the back end to figure out
1318 that the FLAG will not change across initializations, and
1319 avoid doing multiple tests. */
1320 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1321 inner_if_stmt = begin_if_stmt ();
1322 finish_if_stmt_cond (flag, inner_if_stmt);
1323
1324 /* Compute the location of the virtual base. If we're
1325 constructing virtual bases, then we must be the most derived
1326 class. Therefore, we don't have to look up the virtual base;
1327 we already know where it is. */
1328 exp = convert_to_base_statically (current_class_ref, vbase);
1329
1330 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1331 0, tf_warning_or_error);
1332 finish_then_clause (inner_if_stmt);
1333 finish_if_stmt (inner_if_stmt);
1334
1335 expand_cleanup_for_base (vbase, flag);
1336 }
1337
1338 /* Find the context in which this FIELD can be initialized. */
1339
1340 static tree
1341 initializing_context (tree field)
1342 {
1343 tree t = DECL_CONTEXT (field);
1344
1345 /* Anonymous union members can be initialized in the first enclosing
1346 non-anonymous union context. */
1347 while (t && ANON_AGGR_TYPE_P (t))
1348 t = TYPE_CONTEXT (t);
1349 return t;
1350 }
1351
1352 /* Function to give error message if member initialization specification
1353 is erroneous. FIELD is the member we decided to initialize.
1354 TYPE is the type for which the initialization is being performed.
1355 FIELD must be a member of TYPE.
1356
1357 MEMBER_NAME is the name of the member. */
1358
1359 static int
1360 member_init_ok_or_else (tree field, tree type, tree member_name)
1361 {
1362 if (field == error_mark_node)
1363 return 0;
1364 if (!field)
1365 {
1366 error ("class %qT does not have any field named %qD", type,
1367 member_name);
1368 return 0;
1369 }
1370 if (VAR_P (field))
1371 {
1372 error ("%q#D is a static data member; it can only be "
1373 "initialized at its definition",
1374 field);
1375 return 0;
1376 }
1377 if (TREE_CODE (field) != FIELD_DECL)
1378 {
1379 error ("%q#D is not a non-static data member of %qT",
1380 field, type);
1381 return 0;
1382 }
1383 if (initializing_context (field) != type)
1384 {
1385 error ("class %qT does not have any field named %qD", type,
1386 member_name);
1387 return 0;
1388 }
1389
1390 return 1;
1391 }
1392
1393 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1394 is a _TYPE node or TYPE_DECL which names a base for that type.
1395 Check the validity of NAME, and return either the base _TYPE, base
1396 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1397 NULL_TREE and issue a diagnostic.
1398
1399 An old style unnamed direct single base construction is permitted,
1400 where NAME is NULL. */
1401
1402 tree
1403 expand_member_init (tree name)
1404 {
1405 tree basetype;
1406 tree field;
1407
1408 if (!current_class_ref)
1409 return NULL_TREE;
1410
1411 if (!name)
1412 {
1413 /* This is an obsolete unnamed base class initializer. The
1414 parser will already have warned about its use. */
1415 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1416 {
1417 case 0:
1418 error ("unnamed initializer for %qT, which has no base classes",
1419 current_class_type);
1420 return NULL_TREE;
1421 case 1:
1422 basetype = BINFO_TYPE
1423 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1424 break;
1425 default:
1426 error ("unnamed initializer for %qT, which uses multiple inheritance",
1427 current_class_type);
1428 return NULL_TREE;
1429 }
1430 }
1431 else if (TYPE_P (name))
1432 {
1433 basetype = TYPE_MAIN_VARIANT (name);
1434 name = TYPE_NAME (name);
1435 }
1436 else if (TREE_CODE (name) == TYPE_DECL)
1437 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1438 else
1439 basetype = NULL_TREE;
1440
1441 if (basetype)
1442 {
1443 tree class_binfo;
1444 tree direct_binfo;
1445 tree virtual_binfo;
1446 int i;
1447
1448 if (current_template_parms
1449 || same_type_p (basetype, current_class_type))
1450 return basetype;
1451
1452 class_binfo = TYPE_BINFO (current_class_type);
1453 direct_binfo = NULL_TREE;
1454 virtual_binfo = NULL_TREE;
1455
1456 /* Look for a direct base. */
1457 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1458 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1459 break;
1460
1461 /* Look for a virtual base -- unless the direct base is itself
1462 virtual. */
1463 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1464 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1465
1466 /* [class.base.init]
1467
1468 If a mem-initializer-id is ambiguous because it designates
1469 both a direct non-virtual base class and an inherited virtual
1470 base class, the mem-initializer is ill-formed. */
1471 if (direct_binfo && virtual_binfo)
1472 {
1473 error ("%qD is both a direct base and an indirect virtual base",
1474 basetype);
1475 return NULL_TREE;
1476 }
1477
1478 if (!direct_binfo && !virtual_binfo)
1479 {
1480 if (CLASSTYPE_VBASECLASSES (current_class_type))
1481 error ("type %qT is not a direct or virtual base of %qT",
1482 basetype, current_class_type);
1483 else
1484 error ("type %qT is not a direct base of %qT",
1485 basetype, current_class_type);
1486 return NULL_TREE;
1487 }
1488
1489 return direct_binfo ? direct_binfo : virtual_binfo;
1490 }
1491 else
1492 {
1493 if (identifier_p (name))
1494 field = lookup_field (current_class_type, name, 1, false);
1495 else
1496 field = name;
1497
1498 if (member_init_ok_or_else (field, current_class_type, name))
1499 return field;
1500 }
1501
1502 return NULL_TREE;
1503 }
1504
1505 /* This is like `expand_member_init', only it stores one aggregate
1506 value into another.
1507
1508 INIT comes in two flavors: it is either a value which
1509 is to be stored in EXP, or it is a parameter list
1510 to go to a constructor, which will operate on EXP.
1511 If INIT is not a parameter list for a constructor, then set
1512 LOOKUP_ONLYCONVERTING.
1513 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1514 the initializer, if FLAGS is 0, then it is the (init) form.
1515 If `init' is a CONSTRUCTOR, then we emit a warning message,
1516 explaining that such initializations are invalid.
1517
1518 If INIT resolves to a CALL_EXPR which happens to return
1519 something of the type we are looking for, then we know
1520 that we can safely use that call to perform the
1521 initialization.
1522
1523 The virtual function table pointer cannot be set up here, because
1524 we do not really know its type.
1525
1526 This never calls operator=().
1527
1528 When initializing, nothing is CONST.
1529
1530 A default copy constructor may have to be used to perform the
1531 initialization.
1532
1533 A constructor or a conversion operator may have to be used to
1534 perform the initialization, but not both, as it would be ambiguous. */
1535
1536 tree
1537 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1538 {
1539 tree stmt_expr;
1540 tree compound_stmt;
1541 int destroy_temps;
1542 tree type = TREE_TYPE (exp);
1543 int was_const = TREE_READONLY (exp);
1544 int was_volatile = TREE_THIS_VOLATILE (exp);
1545 int is_global;
1546
1547 if (init == error_mark_node)
1548 return error_mark_node;
1549
1550 TREE_READONLY (exp) = 0;
1551 TREE_THIS_VOLATILE (exp) = 0;
1552
1553 if (init && init != void_type_node
1554 && TREE_CODE (init) != TREE_LIST
1555 && !(TREE_CODE (init) == TARGET_EXPR
1556 && TARGET_EXPR_DIRECT_INIT_P (init))
1557 && !DIRECT_LIST_INIT_P (init))
1558 flags |= LOOKUP_ONLYCONVERTING;
1559
1560 if (TREE_CODE (type) == ARRAY_TYPE)
1561 {
1562 tree itype;
1563
1564 /* An array may not be initialized use the parenthesized
1565 initialization form -- unless the initializer is "()". */
1566 if (init && TREE_CODE (init) == TREE_LIST)
1567 {
1568 if (complain & tf_error)
1569 error ("bad array initializer");
1570 return error_mark_node;
1571 }
1572 /* Must arrange to initialize each element of EXP
1573 from elements of INIT. */
1574 itype = init ? TREE_TYPE (init) : NULL_TREE;
1575 if (cv_qualified_p (type))
1576 TREE_TYPE (exp) = cv_unqualified (type);
1577 if (itype && cv_qualified_p (itype))
1578 TREE_TYPE (init) = cv_unqualified (itype);
1579 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1580 /*explicit_value_init_p=*/false,
1581 itype && same_type_p (TREE_TYPE (init),
1582 TREE_TYPE (exp)),
1583 complain);
1584 TREE_READONLY (exp) = was_const;
1585 TREE_THIS_VOLATILE (exp) = was_volatile;
1586 TREE_TYPE (exp) = type;
1587 /* Restore the type of init unless it was used directly. */
1588 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1589 TREE_TYPE (init) = itype;
1590 return stmt_expr;
1591 }
1592
1593 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1594 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1595 /* Just know that we've seen something for this node. */
1596 TREE_USED (exp) = 1;
1597
1598 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1599 destroy_temps = stmts_are_full_exprs_p ();
1600 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1601 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1602 init, LOOKUP_NORMAL|flags, complain);
1603 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1604 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1605 TREE_READONLY (exp) = was_const;
1606 TREE_THIS_VOLATILE (exp) = was_volatile;
1607
1608 return stmt_expr;
1609 }
1610
1611 static void
1612 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1613 tsubst_flags_t complain)
1614 {
1615 tree type = TREE_TYPE (exp);
1616 tree ctor_name;
1617
1618 /* It fails because there may not be a constructor which takes
1619 its own type as the first (or only parameter), but which does
1620 take other types via a conversion. So, if the thing initializing
1621 the expression is a unit element of type X, first try X(X&),
1622 followed by initialization by X. If neither of these work
1623 out, then look hard. */
1624 tree rval;
1625 vec<tree, va_gc> *parms;
1626
1627 /* If we have direct-initialization from an initializer list, pull
1628 it out of the TREE_LIST so the code below can see it. */
1629 if (init && TREE_CODE (init) == TREE_LIST
1630 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1631 {
1632 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1633 && TREE_CHAIN (init) == NULL_TREE);
1634 init = TREE_VALUE (init);
1635 /* Only call reshape_init if it has not been called earlier
1636 by the callers. */
1637 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1638 init = reshape_init (type, init, complain);
1639 }
1640
1641 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1642 && CP_AGGREGATE_TYPE_P (type))
1643 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1644 happen for direct-initialization, too. */
1645 init = digest_init (type, init, complain);
1646
1647 /* A CONSTRUCTOR of the target's type is a previously digested
1648 initializer, whether that happened just above or in
1649 cp_parser_late_parsing_nsdmi.
1650
1651 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1652 set represents the whole initialization, so we shouldn't build up
1653 another ctor call. */
1654 if (init
1655 && (TREE_CODE (init) == CONSTRUCTOR
1656 || (TREE_CODE (init) == TARGET_EXPR
1657 && (TARGET_EXPR_DIRECT_INIT_P (init)
1658 || TARGET_EXPR_LIST_INIT_P (init))))
1659 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1660 {
1661 /* Early initialization via a TARGET_EXPR only works for
1662 complete objects. */
1663 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1664
1665 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1666 TREE_SIDE_EFFECTS (init) = 1;
1667 finish_expr_stmt (init);
1668 return;
1669 }
1670
1671 if (init && TREE_CODE (init) != TREE_LIST
1672 && (flags & LOOKUP_ONLYCONVERTING))
1673 {
1674 /* Base subobjects should only get direct-initialization. */
1675 gcc_assert (true_exp == exp);
1676
1677 if (flags & DIRECT_BIND)
1678 /* Do nothing. We hit this in two cases: Reference initialization,
1679 where we aren't initializing a real variable, so we don't want
1680 to run a new constructor; and catching an exception, where we
1681 have already built up the constructor call so we could wrap it
1682 in an exception region. */;
1683 else
1684 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1685 flags, complain);
1686
1687 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1688 /* We need to protect the initialization of a catch parm with a
1689 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1690 around the TARGET_EXPR for the copy constructor. See
1691 initialize_handler_parm. */
1692 {
1693 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1694 TREE_OPERAND (init, 0));
1695 TREE_TYPE (init) = void_type_node;
1696 }
1697 else
1698 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1699 TREE_SIDE_EFFECTS (init) = 1;
1700 finish_expr_stmt (init);
1701 return;
1702 }
1703
1704 if (init == NULL_TREE)
1705 parms = NULL;
1706 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1707 {
1708 parms = make_tree_vector ();
1709 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1710 vec_safe_push (parms, TREE_VALUE (init));
1711 }
1712 else
1713 parms = make_tree_vector_single (init);
1714
1715 if (exp == current_class_ref && current_function_decl
1716 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1717 {
1718 /* Delegating constructor. */
1719 tree complete;
1720 tree base;
1721 tree elt; unsigned i;
1722
1723 /* Unshare the arguments for the second call. */
1724 vec<tree, va_gc> *parms2 = make_tree_vector ();
1725 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1726 {
1727 elt = break_out_target_exprs (elt);
1728 vec_safe_push (parms2, elt);
1729 }
1730 complete = build_special_member_call (exp, complete_ctor_identifier,
1731 &parms2, binfo, flags,
1732 complain);
1733 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1734 release_tree_vector (parms2);
1735
1736 base = build_special_member_call (exp, base_ctor_identifier,
1737 &parms, binfo, flags,
1738 complain);
1739 base = fold_build_cleanup_point_expr (void_type_node, base);
1740 rval = build_if_in_charge (complete, base);
1741 }
1742 else
1743 {
1744 if (true_exp == exp)
1745 ctor_name = complete_ctor_identifier;
1746 else
1747 ctor_name = base_ctor_identifier;
1748 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1749 complain);
1750 }
1751
1752 if (parms != NULL)
1753 release_tree_vector (parms);
1754
1755 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1756 {
1757 tree fn = get_callee_fndecl (rval);
1758 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1759 {
1760 tree e = maybe_constant_init (rval, exp);
1761 if (TREE_CONSTANT (e))
1762 rval = build2 (INIT_EXPR, type, exp, e);
1763 }
1764 }
1765
1766 /* FIXME put back convert_to_void? */
1767 if (TREE_SIDE_EFFECTS (rval))
1768 finish_expr_stmt (rval);
1769 }
1770
1771 /* This function is responsible for initializing EXP with INIT
1772 (if any).
1773
1774 BINFO is the binfo of the type for who we are performing the
1775 initialization. For example, if W is a virtual base class of A and B,
1776 and C : A, B.
1777 If we are initializing B, then W must contain B's W vtable, whereas
1778 were we initializing C, W must contain C's W vtable.
1779
1780 TRUE_EXP is nonzero if it is the true expression being initialized.
1781 In this case, it may be EXP, or may just contain EXP. The reason we
1782 need this is because if EXP is a base element of TRUE_EXP, we
1783 don't necessarily know by looking at EXP where its virtual
1784 baseclass fields should really be pointing. But we do know
1785 from TRUE_EXP. In constructors, we don't know anything about
1786 the value being initialized.
1787
1788 FLAGS is just passed to `build_new_method_call'. See that function
1789 for its description. */
1790
1791 static void
1792 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1793 tsubst_flags_t complain)
1794 {
1795 tree type = TREE_TYPE (exp);
1796
1797 gcc_assert (init != error_mark_node && type != error_mark_node);
1798 gcc_assert (building_stmt_list_p ());
1799
1800 /* Use a function returning the desired type to initialize EXP for us.
1801 If the function is a constructor, and its first argument is
1802 NULL_TREE, know that it was meant for us--just slide exp on
1803 in and expand the constructor. Constructors now come
1804 as TARGET_EXPRs. */
1805
1806 if (init && VAR_P (exp)
1807 && COMPOUND_LITERAL_P (init))
1808 {
1809 vec<tree, va_gc> *cleanups = NULL;
1810 /* If store_init_value returns NULL_TREE, the INIT has been
1811 recorded as the DECL_INITIAL for EXP. That means there's
1812 nothing more we have to do. */
1813 init = store_init_value (exp, init, &cleanups, flags);
1814 if (init)
1815 finish_expr_stmt (init);
1816 gcc_assert (!cleanups);
1817 return;
1818 }
1819
1820 /* If an explicit -- but empty -- initializer list was present,
1821 that's value-initialization. */
1822 if (init == void_type_node)
1823 {
1824 /* If the type has data but no user-provided ctor, we need to zero
1825 out the object. */
1826 if (!type_has_user_provided_constructor (type)
1827 && !is_really_empty_class (type))
1828 {
1829 tree field_size = NULL_TREE;
1830 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1831 /* Don't clobber already initialized virtual bases. */
1832 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1833 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1834 field_size);
1835 init = build2 (INIT_EXPR, type, exp, init);
1836 finish_expr_stmt (init);
1837 }
1838
1839 /* If we don't need to mess with the constructor at all,
1840 then we're done. */
1841 if (! type_build_ctor_call (type))
1842 return;
1843
1844 /* Otherwise fall through and call the constructor. */
1845 init = NULL_TREE;
1846 }
1847
1848 /* We know that expand_default_init can handle everything we want
1849 at this point. */
1850 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1851 }
1852
1853 /* Report an error if TYPE is not a user-defined, class type. If
1854 OR_ELSE is nonzero, give an error message. */
1855
1856 int
1857 is_class_type (tree type, int or_else)
1858 {
1859 if (type == error_mark_node)
1860 return 0;
1861
1862 if (! CLASS_TYPE_P (type))
1863 {
1864 if (or_else)
1865 error ("%qT is not a class type", type);
1866 return 0;
1867 }
1868 return 1;
1869 }
1870
1871 tree
1872 get_type_value (tree name)
1873 {
1874 if (name == error_mark_node)
1875 return NULL_TREE;
1876
1877 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1878 return IDENTIFIER_TYPE_VALUE (name);
1879 else
1880 return NULL_TREE;
1881 }
1882
1883 /* Build a reference to a member of an aggregate. This is not a C++
1884 `&', but really something which can have its address taken, and
1885 then act as a pointer to member, for example TYPE :: FIELD can have
1886 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1887 this expression is the operand of "&".
1888
1889 @@ Prints out lousy diagnostics for operator <typename>
1890 @@ fields.
1891
1892 @@ This function should be rewritten and placed in search.c. */
1893
1894 tree
1895 build_offset_ref (tree type, tree member, bool address_p,
1896 tsubst_flags_t complain)
1897 {
1898 tree decl;
1899 tree basebinfo = NULL_TREE;
1900
1901 /* class templates can come in as TEMPLATE_DECLs here. */
1902 if (TREE_CODE (member) == TEMPLATE_DECL)
1903 return member;
1904
1905 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1906 return build_qualified_name (NULL_TREE, type, member,
1907 /*template_p=*/false);
1908
1909 gcc_assert (TYPE_P (type));
1910 if (! is_class_type (type, 1))
1911 return error_mark_node;
1912
1913 gcc_assert (DECL_P (member) || BASELINK_P (member));
1914 /* Callers should call mark_used before this point. */
1915 gcc_assert (!DECL_P (member) || TREE_USED (member));
1916
1917 type = TYPE_MAIN_VARIANT (type);
1918 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1919 {
1920 if (complain & tf_error)
1921 error ("incomplete type %qT does not have member %qD", type, member);
1922 return error_mark_node;
1923 }
1924
1925 /* Entities other than non-static members need no further
1926 processing. */
1927 if (TREE_CODE (member) == TYPE_DECL)
1928 return member;
1929 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1930 return convert_from_reference (member);
1931
1932 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1933 {
1934 if (complain & tf_error)
1935 error ("invalid pointer to bit-field %qD", member);
1936 return error_mark_node;
1937 }
1938
1939 /* Set up BASEBINFO for member lookup. */
1940 decl = maybe_dummy_object (type, &basebinfo);
1941
1942 /* A lot of this logic is now handled in lookup_member. */
1943 if (BASELINK_P (member))
1944 {
1945 /* Go from the TREE_BASELINK to the member function info. */
1946 tree t = BASELINK_FUNCTIONS (member);
1947
1948 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1949 {
1950 /* Get rid of a potential OVERLOAD around it. */
1951 t = OVL_CURRENT (t);
1952
1953 /* Unique functions are handled easily. */
1954
1955 /* For non-static member of base class, we need a special rule
1956 for access checking [class.protected]:
1957
1958 If the access is to form a pointer to member, the
1959 nested-name-specifier shall name the derived class
1960 (or any class derived from that class). */
1961 if (address_p && DECL_P (t)
1962 && DECL_NONSTATIC_MEMBER_P (t))
1963 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1964 complain);
1965 else
1966 perform_or_defer_access_check (basebinfo, t, t,
1967 complain);
1968
1969 if (DECL_STATIC_FUNCTION_P (t))
1970 return t;
1971 member = t;
1972 }
1973 else
1974 TREE_TYPE (member) = unknown_type_node;
1975 }
1976 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1977 /* We need additional test besides the one in
1978 check_accessibility_of_qualified_id in case it is
1979 a pointer to non-static member. */
1980 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1981 complain);
1982
1983 if (!address_p)
1984 {
1985 /* If MEMBER is non-static, then the program has fallen afoul of
1986 [expr.prim]:
1987
1988 An id-expression that denotes a nonstatic data member or
1989 nonstatic member function of a class can only be used:
1990
1991 -- as part of a class member access (_expr.ref_) in which the
1992 object-expression refers to the member's class or a class
1993 derived from that class, or
1994
1995 -- to form a pointer to member (_expr.unary.op_), or
1996
1997 -- in the body of a nonstatic member function of that class or
1998 of a class derived from that class (_class.mfct.nonstatic_), or
1999
2000 -- in a mem-initializer for a constructor for that class or for
2001 a class derived from that class (_class.base.init_). */
2002 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2003 {
2004 /* Build a representation of the qualified name suitable
2005 for use as the operand to "&" -- even though the "&" is
2006 not actually present. */
2007 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2008 /* In Microsoft mode, treat a non-static member function as if
2009 it were a pointer-to-member. */
2010 if (flag_ms_extensions)
2011 {
2012 PTRMEM_OK_P (member) = 1;
2013 return cp_build_addr_expr (member, complain);
2014 }
2015 if (complain & tf_error)
2016 error ("invalid use of non-static member function %qD",
2017 TREE_OPERAND (member, 1));
2018 return error_mark_node;
2019 }
2020 else if (TREE_CODE (member) == FIELD_DECL)
2021 {
2022 if (complain & tf_error)
2023 error ("invalid use of non-static data member %qD", member);
2024 return error_mark_node;
2025 }
2026 return member;
2027 }
2028
2029 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2030 PTRMEM_OK_P (member) = 1;
2031 return member;
2032 }
2033
2034 /* If DECL is a scalar enumeration constant or variable with a
2035 constant initializer, return the initializer (or, its initializers,
2036 recursively); otherwise, return DECL. If STRICT_P, the
2037 initializer is only returned if DECL is a
2038 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2039 return an aggregate constant. */
2040
2041 static tree
2042 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2043 {
2044 while (TREE_CODE (decl) == CONST_DECL
2045 || (strict_p
2046 ? decl_constant_var_p (decl)
2047 : (VAR_P (decl)
2048 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2049 {
2050 tree init;
2051 /* If DECL is a static data member in a template
2052 specialization, we must instantiate it here. The
2053 initializer for the static data member is not processed
2054 until needed; we need it now. */
2055 mark_used (decl, tf_none);
2056 mark_rvalue_use (decl);
2057 init = DECL_INITIAL (decl);
2058 if (init == error_mark_node)
2059 {
2060 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2061 /* Treat the error as a constant to avoid cascading errors on
2062 excessively recursive template instantiation (c++/9335). */
2063 return init;
2064 else
2065 return decl;
2066 }
2067 /* Initializers in templates are generally expanded during
2068 instantiation, so before that for const int i(2)
2069 INIT is a TREE_LIST with the actual initializer as
2070 TREE_VALUE. */
2071 if (processing_template_decl
2072 && init
2073 && TREE_CODE (init) == TREE_LIST
2074 && TREE_CHAIN (init) == NULL_TREE)
2075 init = TREE_VALUE (init);
2076 /* Instantiate a non-dependent initializer. */
2077 init = instantiate_non_dependent_or_null (init);
2078 if (!init
2079 || !TREE_TYPE (init)
2080 || !TREE_CONSTANT (init)
2081 || (!return_aggregate_cst_ok_p
2082 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2083 return an aggregate constant (of which string
2084 literals are a special case), as we do not want
2085 to make inadvertent copies of such entities, and
2086 we must be sure that their addresses are the
2087 same everywhere. */
2088 && (TREE_CODE (init) == CONSTRUCTOR
2089 || TREE_CODE (init) == STRING_CST)))
2090 break;
2091 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2092 initialization, since it doesn't represent the entire value. */
2093 if (TREE_CODE (init) == CONSTRUCTOR
2094 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2095 break;
2096 decl = unshare_expr (init);
2097 }
2098 return decl;
2099 }
2100
2101 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2102 of integral or enumeration type, or a constexpr variable of scalar type,
2103 then return that value. These are those variables permitted in constant
2104 expressions by [5.19/1]. */
2105
2106 tree
2107 scalar_constant_value (tree decl)
2108 {
2109 return constant_value_1 (decl, /*strict_p=*/true,
2110 /*return_aggregate_cst_ok_p=*/false);
2111 }
2112
2113 /* Like scalar_constant_value, but can also return aggregate initializers. */
2114
2115 tree
2116 decl_really_constant_value (tree decl)
2117 {
2118 return constant_value_1 (decl, /*strict_p=*/true,
2119 /*return_aggregate_cst_ok_p=*/true);
2120 }
2121
2122 /* A more relaxed version of scalar_constant_value, used by the
2123 common C/C++ code. */
2124
2125 tree
2126 decl_constant_value (tree decl)
2127 {
2128 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2129 /*return_aggregate_cst_ok_p=*/true);
2130 }
2131 \f
2132 /* Common subroutines of build_new and build_vec_delete. */
2133 \f
2134 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2135 the type of the object being allocated; otherwise, it's just TYPE.
2136 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2137 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2138 a vector of arguments to be provided as arguments to a placement
2139 new operator. This routine performs no semantic checks; it just
2140 creates and returns a NEW_EXPR. */
2141
2142 static tree
2143 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2144 vec<tree, va_gc> *init, int use_global_new)
2145 {
2146 tree init_list;
2147 tree new_expr;
2148
2149 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2150 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2151 permits us to distinguish the case of a missing initializer "new
2152 int" from an empty initializer "new int()". */
2153 if (init == NULL)
2154 init_list = NULL_TREE;
2155 else if (init->is_empty ())
2156 init_list = void_node;
2157 else
2158 init_list = build_tree_list_vec (init);
2159
2160 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2161 build_tree_list_vec (placement), type, nelts,
2162 init_list);
2163 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2164 TREE_SIDE_EFFECTS (new_expr) = 1;
2165
2166 return new_expr;
2167 }
2168
2169 /* Diagnose uninitialized const members or reference members of type
2170 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2171 new expression without a new-initializer and a declaration. Returns
2172 the error count. */
2173
2174 static int
2175 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2176 bool using_new, bool complain)
2177 {
2178 tree field;
2179 int error_count = 0;
2180
2181 if (type_has_user_provided_constructor (type))
2182 return 0;
2183
2184 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2185 {
2186 tree field_type;
2187
2188 if (TREE_CODE (field) != FIELD_DECL)
2189 continue;
2190
2191 field_type = strip_array_types (TREE_TYPE (field));
2192
2193 if (type_has_user_provided_constructor (field_type))
2194 continue;
2195
2196 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2197 {
2198 ++ error_count;
2199 if (complain)
2200 {
2201 if (DECL_CONTEXT (field) == origin)
2202 {
2203 if (using_new)
2204 error ("uninitialized reference member in %q#T "
2205 "using %<new%> without new-initializer", origin);
2206 else
2207 error ("uninitialized reference member in %q#T", origin);
2208 }
2209 else
2210 {
2211 if (using_new)
2212 error ("uninitialized reference member in base %q#T "
2213 "of %q#T using %<new%> without new-initializer",
2214 DECL_CONTEXT (field), origin);
2215 else
2216 error ("uninitialized reference member in base %q#T "
2217 "of %q#T", DECL_CONTEXT (field), origin);
2218 }
2219 inform (DECL_SOURCE_LOCATION (field),
2220 "%q#D should be initialized", field);
2221 }
2222 }
2223
2224 if (CP_TYPE_CONST_P (field_type))
2225 {
2226 ++ error_count;
2227 if (complain)
2228 {
2229 if (DECL_CONTEXT (field) == origin)
2230 {
2231 if (using_new)
2232 error ("uninitialized const member in %q#T "
2233 "using %<new%> without new-initializer", origin);
2234 else
2235 error ("uninitialized const member in %q#T", origin);
2236 }
2237 else
2238 {
2239 if (using_new)
2240 error ("uninitialized const member in base %q#T "
2241 "of %q#T using %<new%> without new-initializer",
2242 DECL_CONTEXT (field), origin);
2243 else
2244 error ("uninitialized const member in base %q#T "
2245 "of %q#T", DECL_CONTEXT (field), origin);
2246 }
2247 inform (DECL_SOURCE_LOCATION (field),
2248 "%q#D should be initialized", field);
2249 }
2250 }
2251
2252 if (CLASS_TYPE_P (field_type))
2253 error_count
2254 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2255 using_new, complain);
2256 }
2257 return error_count;
2258 }
2259
2260 int
2261 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2262 {
2263 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2264 }
2265
2266 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2267 overflowed. Pretend it returns sizetype so that it plays nicely in the
2268 COND_EXPR. */
2269
2270 tree
2271 throw_bad_array_new_length (void)
2272 {
2273 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2274 if (!get_global_value_if_present (fn, &fn))
2275 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2276 NULL_TREE));
2277
2278 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2279 }
2280
2281 /* Attempt to find the initializer for field T in the initializer INIT,
2282 when non-null. Returns the initializer when successful and NULL
2283 otherwise. */
2284 static tree
2285 find_field_init (tree t, tree init)
2286 {
2287 if (!init)
2288 return NULL_TREE;
2289
2290 unsigned HOST_WIDE_INT idx;
2291 tree field, elt;
2292
2293 /* Iterate over all top-level initializer elements. */
2294 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2295 {
2296 /* If the member T is found, return it. */
2297 if (field == t)
2298 return elt;
2299
2300 /* Otherwise continue and/or recurse into nested initializers. */
2301 if (TREE_CODE (elt) == CONSTRUCTOR
2302 && (init = find_field_init (t, elt)))
2303 return init;
2304 }
2305 return NULL_TREE;
2306 }
2307
2308 /* Attempt to verify that the argument, OPER, of a placement new expression
2309 refers to an object sufficiently large for an object of TYPE or an array
2310 of NELTS of such objects when NELTS is non-null, and issue a warning when
2311 it does not. SIZE specifies the size needed to construct the object or
2312 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2313 greater when the array under construction requires a cookie to store
2314 NELTS. GCC's placement new expression stores the cookie when invoking
2315 a user-defined placement new operator function but not the default one.
2316 Placement new expressions with user-defined placement new operator are
2317 not diagnosed since we don't know how they use the buffer (this could
2318 be a future extension). */
2319 static void
2320 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2321 {
2322 location_t loc = EXPR_LOC_OR_LOC (oper, input_location);
2323
2324 /* The number of bytes to add to or subtract from the size of the provided
2325 buffer based on an offset into an array or an array element reference.
2326 Although intermediate results may be negative (as in a[3] - 2) the final
2327 result cannot be. */
2328 HOST_WIDE_INT adjust = 0;
2329 /* True when the size of the entire destination object should be used
2330 to compute the possibly optimistic estimate of the available space. */
2331 bool use_obj_size = false;
2332 /* True when the reference to the destination buffer is an ADDR_EXPR. */
2333 bool addr_expr = false;
2334
2335 STRIP_NOPS (oper);
2336
2337 /* Using a function argument or a (non-array) variable as an argument
2338 to placement new is not checked since it's unknown what it might
2339 point to. */
2340 if (TREE_CODE (oper) == PARM_DECL
2341 || TREE_CODE (oper) == VAR_DECL
2342 || TREE_CODE (oper) == COMPONENT_REF)
2343 return;
2344
2345 /* Evaluate any constant expressions. */
2346 size = fold_non_dependent_expr (size);
2347
2348 /* Handle the common case of array + offset expression when the offset
2349 is a constant. */
2350 if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2351 {
2352 /* If the offset is comple-time constant, use it to compute a more
2353 accurate estimate of the size of the buffer. Since the operand
2354 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2355 it to signed first.
2356 Otherwise, use the size of the entire array as an optimistic
2357 estimate (this may lead to false negatives). */
2358 tree adj = TREE_OPERAND (oper, 1);
2359 if (CONSTANT_CLASS_P (adj))
2360 adjust += tree_to_shwi (convert (ssizetype, adj));
2361 else
2362 use_obj_size = true;
2363
2364 oper = TREE_OPERAND (oper, 0);
2365
2366 STRIP_NOPS (oper);
2367 }
2368
2369 if (TREE_CODE (oper) == TARGET_EXPR)
2370 oper = TREE_OPERAND (oper, 1);
2371 else if (TREE_CODE (oper) == ADDR_EXPR)
2372 {
2373 addr_expr = true;
2374 oper = TREE_OPERAND (oper, 0);
2375 }
2376
2377 STRIP_NOPS (oper);
2378
2379 if (TREE_CODE (oper) == ARRAY_REF)
2380 {
2381 /* Similar to the offset computed above, see if the array index
2382 is a compile-time constant. If so, and unless the offset was
2383 not a compile-time constant, use the index to determine the
2384 size of the buffer. Otherwise, use the entire array as
2385 an optimistic estimate of the size. */
2386 const_tree adj = TREE_OPERAND (oper, 1);
2387 if (!use_obj_size && CONSTANT_CLASS_P (adj))
2388 adjust += tree_to_shwi (adj);
2389 else
2390 {
2391 use_obj_size = true;
2392 adjust = 0;
2393 }
2394
2395 oper = TREE_OPERAND (oper, 0);
2396 }
2397
2398 /* Refers to the declared object that constains the subobject referenced
2399 by OPER. When the object is initialized, makes it possible to determine
2400 the actual size of a flexible array member used as the buffer passed
2401 as OPER to placement new. */
2402 tree var_decl = NULL_TREE;
2403 /* True when operand is a COMPONENT_REF, to distinguish flexible array
2404 members from arrays of unspecified size. */
2405 bool compref = TREE_CODE (oper) == COMPONENT_REF;
2406
2407 /* Descend into a struct or union to find the member whose address
2408 is being used as the agument. */
2409 while (TREE_CODE (oper) == COMPONENT_REF)
2410 {
2411 tree op0 = oper;
2412 while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2413 if (TREE_CODE (op0) == VAR_DECL)
2414 var_decl = op0;
2415 oper = TREE_OPERAND (oper, 1);
2416 }
2417
2418 if ((addr_expr || !POINTER_TYPE_P (TREE_TYPE (oper)))
2419 && (TREE_CODE (oper) == VAR_DECL
2420 || TREE_CODE (oper) == FIELD_DECL
2421 || TREE_CODE (oper) == PARM_DECL))
2422 {
2423 /* A possibly optimistic estimate of the number of bytes available
2424 in the destination buffer. */
2425 unsigned HOST_WIDE_INT bytes_avail = 0;
2426 /* True when the estimate above is in fact the exact size
2427 of the destination buffer rather than an estimate. */
2428 bool exact_size = true;
2429
2430 /* Treat members of unions and members of structs uniformly, even
2431 though the size of a member of a union may be viewed as extending
2432 to the end of the union itself (it is by __builtin_object_size). */
2433 if ((TREE_CODE (oper) == VAR_DECL || use_obj_size)
2434 && DECL_SIZE_UNIT (oper)
2435 && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2436 {
2437 /* Use the size of the entire array object when the expression
2438 refers to a variable or its size depends on an expression
2439 that's not a compile-time constant. */
2440 bytes_avail = tree_to_uhwi (DECL_SIZE_UNIT (oper));
2441 exact_size = !use_obj_size;
2442 }
2443 else if (TYPE_SIZE_UNIT (TREE_TYPE (oper))
2444 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (oper))))
2445 {
2446 /* Use the size of the type of the destination buffer object
2447 as the optimistic estimate of the available space in it. */
2448 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (oper)));
2449 }
2450 else if (var_decl)
2451 {
2452 /* Constructing into a buffer provided by the flexible array
2453 member of a declared object (which is permitted as a G++
2454 extension). If the array member has been initialized,
2455 determine its size from the initializer. Otherwise,
2456 the array size is zero. */
2457 bytes_avail = 0;
2458
2459 if (tree init = find_field_init (oper, DECL_INITIAL (var_decl)))
2460 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2461 }
2462 else
2463 {
2464 /* Bail if neither the size of the object nor its type is known. */
2465 return;
2466 }
2467
2468 tree_code oper_code = TREE_CODE (TREE_TYPE (oper));
2469
2470 if (compref && oper_code == ARRAY_TYPE)
2471 {
2472 /* Avoid diagnosing flexible array members (which are accepted
2473 as an extension and diagnosed with -Wpedantic) and zero-length
2474 arrays (also an extension).
2475 Overflowing construction in one-element arrays is diagnosed
2476 only at level 2. */
2477 if (bytes_avail == 0 && !var_decl)
2478 return;
2479
2480 tree nelts = array_type_nelts_top (TREE_TYPE (oper));
2481 tree nelts_cst = maybe_constant_value (nelts);
2482 if (TREE_CODE (nelts_cst) == INTEGER_CST
2483 && integer_onep (nelts_cst)
2484 && !var_decl
2485 && warn_placement_new < 2)
2486 return;
2487 }
2488
2489 /* The size of the buffer can only be adjusted down but not up. */
2490 gcc_checking_assert (0 <= adjust);
2491
2492 /* Reduce the size of the buffer by the adjustment computed above
2493 from the offset and/or the index into the array. */
2494 if (bytes_avail < static_cast<unsigned HOST_WIDE_INT>(adjust))
2495 bytes_avail = 0;
2496 else
2497 bytes_avail -= adjust;
2498
2499 /* The minimum amount of space needed for the allocation. This
2500 is an optimistic estimate that makes it possible to detect
2501 placement new invocation for some undersize buffers but not
2502 others. */
2503 unsigned HOST_WIDE_INT bytes_need;
2504
2505 if (CONSTANT_CLASS_P (size))
2506 bytes_need = tree_to_uhwi (size);
2507 else if (nelts && CONSTANT_CLASS_P (nelts))
2508 bytes_need = tree_to_uhwi (nelts)
2509 * tree_to_uhwi (TYPE_SIZE_UNIT (type));
2510 else
2511 bytes_need = tree_to_uhwi (TYPE_SIZE_UNIT (type));
2512
2513 if (bytes_avail < bytes_need)
2514 {
2515 if (nelts)
2516 if (CONSTANT_CLASS_P (nelts))
2517 warning_at (loc, OPT_Wplacement_new_,
2518 exact_size ?
2519 "placement new constructing an object of type "
2520 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2521 "and size %qwi"
2522 : "placement new constructing an object of type "
2523 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2524 "and size at most %qwu",
2525 type, tree_to_uhwi (nelts), bytes_need,
2526 TREE_TYPE (oper),
2527 bytes_avail);
2528 else
2529 warning_at (loc, OPT_Wplacement_new_,
2530 exact_size ?
2531 "placement new constructing an array of objects "
2532 "of type %qT and size %qwu in a region of type %qT "
2533 "and size %qwi"
2534 : "placement new constructing an array of objects "
2535 "of type %qT and size %qwu in a region of type %qT "
2536 "and size at most %qwu",
2537 type, bytes_need, TREE_TYPE (oper),
2538 bytes_avail);
2539 else
2540 warning_at (loc, OPT_Wplacement_new_,
2541 exact_size ?
2542 "placement new constructing an object of type %qT "
2543 "and size %qwu in a region of type %qT and size %qwi"
2544 : "placement new constructing an object of type %qT"
2545 "and size %qwu in a region of type %qT and size "
2546 "at most %qwu",
2547 type, bytes_need, TREE_TYPE (oper),
2548 bytes_avail);
2549 }
2550 }
2551 }
2552
2553 /* Generate code for a new-expression, including calling the "operator
2554 new" function, initializing the object, and, if an exception occurs
2555 during construction, cleaning up. The arguments are as for
2556 build_raw_new_expr. This may change PLACEMENT and INIT.
2557 TYPE is the type of the object being constructed, possibly an array
2558 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2559 be an array of the form U[inner], with the whole expression being
2560 "new U[NELTS][inner]"). */
2561
2562 static tree
2563 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2564 vec<tree, va_gc> **init, bool globally_qualified_p,
2565 tsubst_flags_t complain)
2566 {
2567 tree size, rval;
2568 /* True iff this is a call to "operator new[]" instead of just
2569 "operator new". */
2570 bool array_p = false;
2571 /* If ARRAY_P is true, the element type of the array. This is never
2572 an ARRAY_TYPE; for something like "new int[3][4]", the
2573 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2574 TYPE. */
2575 tree elt_type;
2576 /* The type of the new-expression. (This type is always a pointer
2577 type.) */
2578 tree pointer_type;
2579 tree non_const_pointer_type;
2580 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2581 tree outer_nelts = NULL_TREE;
2582 /* For arrays with a non-constant number of elements, a bounds checks
2583 on the NELTS parameter to avoid integer overflow at runtime. */
2584 tree outer_nelts_check = NULL_TREE;
2585 bool outer_nelts_from_type = false;
2586 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2587 offset_int inner_nelts_count = 1;
2588 tree alloc_call, alloc_expr;
2589 /* Size of the inner array elements (those with constant dimensions). */
2590 offset_int inner_size;
2591 /* The address returned by the call to "operator new". This node is
2592 a VAR_DECL and is therefore reusable. */
2593 tree alloc_node;
2594 tree alloc_fn;
2595 tree cookie_expr, init_expr;
2596 int nothrow, check_new;
2597 int use_java_new = 0;
2598 /* If non-NULL, the number of extra bytes to allocate at the
2599 beginning of the storage allocated for an array-new expression in
2600 order to store the number of elements. */
2601 tree cookie_size = NULL_TREE;
2602 tree placement_first;
2603 tree placement_expr = NULL_TREE;
2604 /* True if the function we are calling is a placement allocation
2605 function. */
2606 bool placement_allocation_fn_p;
2607 /* True if the storage must be initialized, either by a constructor
2608 or due to an explicit new-initializer. */
2609 bool is_initialized;
2610 /* The address of the thing allocated, not including any cookie. In
2611 particular, if an array cookie is in use, DATA_ADDR is the
2612 address of the first array element. This node is a VAR_DECL, and
2613 is therefore reusable. */
2614 tree data_addr;
2615 tree init_preeval_expr = NULL_TREE;
2616 tree orig_type = type;
2617
2618 if (nelts)
2619 {
2620 outer_nelts = nelts;
2621 array_p = true;
2622 }
2623 else if (TREE_CODE (type) == ARRAY_TYPE)
2624 {
2625 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2626 extension for variable N. (This also covers new T where T is
2627 a VLA typedef.) */
2628 array_p = true;
2629 nelts = array_type_nelts_top (type);
2630 outer_nelts = nelts;
2631 type = TREE_TYPE (type);
2632 outer_nelts_from_type = true;
2633 }
2634
2635 /* Lots of logic below. depends on whether we have a constant number of
2636 elements, so go ahead and fold it now. */
2637 if (outer_nelts)
2638 outer_nelts = maybe_constant_value (outer_nelts);
2639
2640 /* If our base type is an array, then make sure we know how many elements
2641 it has. */
2642 for (elt_type = type;
2643 TREE_CODE (elt_type) == ARRAY_TYPE;
2644 elt_type = TREE_TYPE (elt_type))
2645 {
2646 tree inner_nelts = array_type_nelts_top (elt_type);
2647 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2648 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2649 {
2650 bool overflow;
2651 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2652 inner_nelts_count, SIGNED, &overflow);
2653 if (overflow)
2654 {
2655 if (complain & tf_error)
2656 error ("integer overflow in array size");
2657 nelts = error_mark_node;
2658 }
2659 inner_nelts_count = result;
2660 }
2661 else
2662 {
2663 if (complain & tf_error)
2664 {
2665 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2666 "array size in new-expression must be constant");
2667 cxx_constant_value(inner_nelts);
2668 }
2669 nelts = error_mark_node;
2670 }
2671 if (nelts != error_mark_node)
2672 nelts = cp_build_binary_op (input_location,
2673 MULT_EXPR, nelts,
2674 inner_nelts_cst,
2675 complain);
2676 }
2677
2678 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2679 {
2680 error ("variably modified type not allowed in new-expression");
2681 return error_mark_node;
2682 }
2683
2684 if (nelts == error_mark_node)
2685 return error_mark_node;
2686
2687 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2688 variable. */
2689 if (outer_nelts_from_type
2690 && !TREE_CONSTANT (outer_nelts))
2691 {
2692 if (complain & tf_warning_or_error)
2693 {
2694 const char *msg;
2695 if (typedef_variant_p (orig_type))
2696 msg = ("non-constant array new length must be specified "
2697 "directly, not by typedef");
2698 else
2699 msg = ("non-constant array new length must be specified "
2700 "without parentheses around the type-id");
2701 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2702 OPT_Wvla, msg);
2703 }
2704 else
2705 return error_mark_node;
2706 }
2707
2708 if (VOID_TYPE_P (elt_type))
2709 {
2710 if (complain & tf_error)
2711 error ("invalid type %<void%> for new");
2712 return error_mark_node;
2713 }
2714
2715 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2716 return error_mark_node;
2717
2718 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2719
2720 if (*init == NULL && cxx_dialect < cxx11)
2721 {
2722 bool maybe_uninitialized_error = false;
2723 /* A program that calls for default-initialization [...] of an
2724 entity of reference type is ill-formed. */
2725 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2726 maybe_uninitialized_error = true;
2727
2728 /* A new-expression that creates an object of type T initializes
2729 that object as follows:
2730 - If the new-initializer is omitted:
2731 -- If T is a (possibly cv-qualified) non-POD class type
2732 (or array thereof), the object is default-initialized (8.5).
2733 [...]
2734 -- Otherwise, the object created has indeterminate
2735 value. If T is a const-qualified type, or a (possibly
2736 cv-qualified) POD class type (or array thereof)
2737 containing (directly or indirectly) a member of
2738 const-qualified type, the program is ill-formed; */
2739
2740 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2741 maybe_uninitialized_error = true;
2742
2743 if (maybe_uninitialized_error
2744 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2745 /*using_new=*/true,
2746 complain & tf_error))
2747 return error_mark_node;
2748 }
2749
2750 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2751 && default_init_uninitialized_part (elt_type))
2752 {
2753 if (complain & tf_error)
2754 error ("uninitialized const in %<new%> of %q#T", elt_type);
2755 return error_mark_node;
2756 }
2757
2758 size = size_in_bytes (elt_type);
2759 if (array_p)
2760 {
2761 /* Maximum available size in bytes. Half of the address space
2762 minus the cookie size. */
2763 offset_int max_size
2764 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2765 /* Maximum number of outer elements which can be allocated. */
2766 offset_int max_outer_nelts;
2767 tree max_outer_nelts_tree;
2768
2769 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2770 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2771 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2772 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2773 /* Unconditionally subtract the cookie size. This decreases the
2774 maximum object size and is safe even if we choose not to use
2775 a cookie after all. */
2776 max_size -= wi::to_offset (cookie_size);
2777 bool overflow;
2778 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2779 &overflow);
2780 if (overflow || wi::gtu_p (inner_size, max_size))
2781 {
2782 if (complain & tf_error)
2783 error ("size of array is too large");
2784 return error_mark_node;
2785 }
2786
2787 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2788 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2789
2790 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
2791
2792 if (INTEGER_CST == TREE_CODE (outer_nelts))
2793 {
2794 if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts))
2795 {
2796 /* When the array size is constant, check it at compile time
2797 to make sure it doesn't exceed the implementation-defined
2798 maximum, as required by C++ 14 (in C++ 11 this requirement
2799 isn't explicitly stated but it's enforced anyway -- see
2800 grokdeclarator in cp/decl.c). */
2801 if (complain & tf_error)
2802 error ("size of array is too large");
2803 return error_mark_node;
2804 }
2805 }
2806 else
2807 {
2808 /* When a runtime check is necessary because the array size
2809 isn't constant, keep only the top-most seven bits (starting
2810 with the most significant non-zero bit) of the maximum size
2811 to compare the array size against, to simplify encoding the
2812 constant maximum size in the instruction stream. */
2813
2814 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2815 - wi::clz (max_outer_nelts);
2816 max_outer_nelts = (max_outer_nelts >> shift) << shift;
2817
2818 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2819 outer_nelts,
2820 max_outer_nelts_tree);
2821 }
2822 }
2823
2824 alloc_fn = NULL_TREE;
2825
2826 /* If PLACEMENT is a single simple pointer type not passed by
2827 reference, prepare to capture it in a temporary variable. Do
2828 this now, since PLACEMENT will change in the calls below. */
2829 placement_first = NULL_TREE;
2830 if (vec_safe_length (*placement) == 1
2831 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2832 placement_first = (**placement)[0];
2833
2834 bool member_new_p = false;
2835
2836 /* Allocate the object. */
2837 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2838 {
2839 tree class_addr;
2840 tree class_decl;
2841 static const char alloc_name[] = "_Jv_AllocObject";
2842
2843 if (!MAYBE_CLASS_TYPE_P (elt_type))
2844 {
2845 error ("%qT isn%'t a valid Java class type", elt_type);
2846 return error_mark_node;
2847 }
2848
2849 class_decl = build_java_class_ref (elt_type);
2850 if (class_decl == error_mark_node)
2851 return error_mark_node;
2852
2853 use_java_new = 1;
2854 if (!get_global_value_if_present (get_identifier (alloc_name),
2855 &alloc_fn))
2856 {
2857 if (complain & tf_error)
2858 error ("call to Java constructor with %qs undefined", alloc_name);
2859 return error_mark_node;
2860 }
2861 else if (really_overloaded_fn (alloc_fn))
2862 {
2863 if (complain & tf_error)
2864 error ("%qD should never be overloaded", alloc_fn);
2865 return error_mark_node;
2866 }
2867 alloc_fn = OVL_CURRENT (alloc_fn);
2868 if (TREE_CODE (alloc_fn) != FUNCTION_DECL
2869 || TREE_CODE (TREE_TYPE (alloc_fn)) != FUNCTION_TYPE
2870 || !POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (alloc_fn))))
2871 {
2872 if (complain & tf_error)
2873 error ("%qD is not a function returning a pointer", alloc_fn);
2874 return error_mark_node;
2875 }
2876 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2877 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2878 class_addr, NULL_TREE);
2879 }
2880 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2881 {
2882 error ("Java class %q#T object allocated using placement new", elt_type);
2883 return error_mark_node;
2884 }
2885 else
2886 {
2887 tree fnname;
2888 tree fns;
2889
2890 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2891
2892 member_new_p = !globally_qualified_p
2893 && CLASS_TYPE_P (elt_type)
2894 && (array_p
2895 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2896 : TYPE_HAS_NEW_OPERATOR (elt_type));
2897
2898 if (member_new_p)
2899 {
2900 /* Use a class-specific operator new. */
2901 /* If a cookie is required, add some extra space. */
2902 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2903 size = size_binop (PLUS_EXPR, size, cookie_size);
2904 else
2905 {
2906 cookie_size = NULL_TREE;
2907 /* No size arithmetic necessary, so the size check is
2908 not needed. */
2909 if (outer_nelts_check != NULL && inner_size == 1)
2910 outer_nelts_check = NULL_TREE;
2911 }
2912 /* Perform the overflow check. */
2913 tree errval = TYPE_MAX_VALUE (sizetype);
2914 if (cxx_dialect >= cxx11 && flag_exceptions)
2915 errval = throw_bad_array_new_length ();
2916 if (outer_nelts_check != NULL_TREE)
2917 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2918 size, errval);
2919 /* Create the argument list. */
2920 vec_safe_insert (*placement, 0, size);
2921 /* Do name-lookup to find the appropriate operator. */
2922 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2923 if (fns == NULL_TREE)
2924 {
2925 if (complain & tf_error)
2926 error ("no suitable %qD found in class %qT", fnname, elt_type);
2927 return error_mark_node;
2928 }
2929 if (TREE_CODE (fns) == TREE_LIST)
2930 {
2931 if (complain & tf_error)
2932 {
2933 error ("request for member %qD is ambiguous", fnname);
2934 print_candidates (fns);
2935 }
2936 return error_mark_node;
2937 }
2938 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2939 fns, placement,
2940 /*conversion_path=*/NULL_TREE,
2941 LOOKUP_NORMAL,
2942 &alloc_fn,
2943 complain);
2944 }
2945 else
2946 {
2947 /* Use a global operator new. */
2948 /* See if a cookie might be required. */
2949 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2950 {
2951 cookie_size = NULL_TREE;
2952 /* No size arithmetic necessary, so the size check is
2953 not needed. */
2954 if (outer_nelts_check != NULL && inner_size == 1)
2955 outer_nelts_check = NULL_TREE;
2956 }
2957
2958 alloc_call = build_operator_new_call (fnname, placement,
2959 &size, &cookie_size,
2960 outer_nelts_check,
2961 &alloc_fn, complain);
2962 }
2963 }
2964
2965 if (alloc_call == error_mark_node)
2966 return error_mark_node;
2967
2968 gcc_assert (alloc_fn != NULL_TREE);
2969
2970 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2971 into a temporary variable. */
2972 if (!processing_template_decl
2973 && TREE_CODE (alloc_call) == CALL_EXPR
2974 && call_expr_nargs (alloc_call) == 2
2975 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2976 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2977 {
2978 tree placement = CALL_EXPR_ARG (alloc_call, 1);
2979
2980 if (placement_first != NULL_TREE
2981 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
2982 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
2983 {
2984 placement_expr = get_target_expr (placement_first);
2985 CALL_EXPR_ARG (alloc_call, 1)
2986 = fold_convert (TREE_TYPE (placement), placement_expr);
2987 }
2988
2989 if (!member_new_p
2990 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
2991 {
2992 /* Attempt to make the warning point at the operator new argument. */
2993 if (placement_first)
2994 placement = placement_first;
2995
2996 warn_placement_new_too_small (orig_type, nelts, size, placement);
2997 }
2998 }
2999
3000 /* In the simple case, we can stop now. */
3001 pointer_type = build_pointer_type (type);
3002 if (!cookie_size && !is_initialized)
3003 return build_nop (pointer_type, alloc_call);
3004
3005 /* Store the result of the allocation call in a variable so that we can
3006 use it more than once. */
3007 alloc_expr = get_target_expr (alloc_call);
3008 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3009
3010 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3011 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3012 alloc_call = TREE_OPERAND (alloc_call, 1);
3013
3014 /* Now, check to see if this function is actually a placement
3015 allocation function. This can happen even when PLACEMENT is NULL
3016 because we might have something like:
3017
3018 struct S { void* operator new (size_t, int i = 0); };
3019
3020 A call to `new S' will get this allocation function, even though
3021 there is no explicit placement argument. If there is more than
3022 one argument, or there are variable arguments, then this is a
3023 placement allocation function. */
3024 placement_allocation_fn_p
3025 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3026 || varargs_function_p (alloc_fn));
3027
3028 /* Preevaluate the placement args so that we don't reevaluate them for a
3029 placement delete. */
3030 if (placement_allocation_fn_p)
3031 {
3032 tree inits;
3033 stabilize_call (alloc_call, &inits);
3034 if (inits)
3035 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3036 alloc_expr);
3037 }
3038
3039 /* unless an allocation function is declared with an empty excep-
3040 tion-specification (_except.spec_), throw(), it indicates failure to
3041 allocate storage by throwing a bad_alloc exception (clause _except_,
3042 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3043 cation function is declared with an empty exception-specification,
3044 throw(), it returns null to indicate failure to allocate storage and a
3045 non-null pointer otherwise.
3046
3047 So check for a null exception spec on the op new we just called. */
3048
3049 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3050 check_new = (flag_check_new || nothrow) && ! use_java_new;
3051
3052 if (cookie_size)
3053 {
3054 tree cookie;
3055 tree cookie_ptr;
3056 tree size_ptr_type;
3057
3058 /* Adjust so we're pointing to the start of the object. */
3059 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3060
3061 /* Store the number of bytes allocated so that we can know how
3062 many elements to destroy later. We use the last sizeof
3063 (size_t) bytes to store the number of elements. */
3064 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3065 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3066 alloc_node, cookie_ptr);
3067 size_ptr_type = build_pointer_type (sizetype);
3068 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3069 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3070
3071 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3072
3073 if (targetm.cxx.cookie_has_size ())
3074 {
3075 /* Also store the element size. */
3076 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3077 fold_build1_loc (input_location,
3078 NEGATE_EXPR, sizetype,
3079 size_in_bytes (sizetype)));
3080
3081 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3082 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3083 size_in_bytes (elt_type));
3084 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3085 cookie, cookie_expr);
3086 }
3087 }
3088 else
3089 {
3090 cookie_expr = NULL_TREE;
3091 data_addr = alloc_node;
3092 }
3093
3094 /* Now use a pointer to the type we've actually allocated. */
3095
3096 /* But we want to operate on a non-const version to start with,
3097 since we'll be modifying the elements. */
3098 non_const_pointer_type = build_pointer_type
3099 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3100
3101 data_addr = fold_convert (non_const_pointer_type, data_addr);
3102 /* Any further uses of alloc_node will want this type, too. */
3103 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3104
3105 /* Now initialize the allocated object. Note that we preevaluate the
3106 initialization expression, apart from the actual constructor call or
3107 assignment--we do this because we want to delay the allocation as long
3108 as possible in order to minimize the size of the exception region for
3109 placement delete. */
3110 if (is_initialized)
3111 {
3112 bool stable;
3113 bool explicit_value_init_p = false;
3114
3115 if (*init != NULL && (*init)->is_empty ())
3116 {
3117 *init = NULL;
3118 explicit_value_init_p = true;
3119 }
3120
3121 if (processing_template_decl && explicit_value_init_p)
3122 {
3123 /* build_value_init doesn't work in templates, and we don't need
3124 the initializer anyway since we're going to throw it away and
3125 rebuild it at instantiation time, so just build up a single
3126 constructor call to get any appropriate diagnostics. */
3127 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3128 if (type_build_ctor_call (elt_type))
3129 init_expr = build_special_member_call (init_expr,
3130 complete_ctor_identifier,
3131 init, elt_type,
3132 LOOKUP_NORMAL,
3133 complain);
3134 stable = stabilize_init (init_expr, &init_preeval_expr);
3135 }
3136 else if (array_p)
3137 {
3138 tree vecinit = NULL_TREE;
3139 if (vec_safe_length (*init) == 1
3140 && DIRECT_LIST_INIT_P ((**init)[0]))
3141 {
3142 vecinit = (**init)[0];
3143 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3144 /* List-value-initialization, leave it alone. */;
3145 else
3146 {
3147 tree arraytype, domain;
3148 if (TREE_CONSTANT (nelts))
3149 domain = compute_array_index_type (NULL_TREE, nelts,
3150 complain);
3151 else
3152 /* We'll check the length at runtime. */
3153 domain = NULL_TREE;
3154 arraytype = build_cplus_array_type (type, domain);
3155 vecinit = digest_init (arraytype, vecinit, complain);
3156 }
3157 }
3158 else if (*init)
3159 {
3160 if (complain & tf_error)
3161 permerror (input_location,
3162 "parenthesized initializer in array new");
3163 else
3164 return error_mark_node;
3165 vecinit = build_tree_list_vec (*init);
3166 }
3167 init_expr
3168 = build_vec_init (data_addr,
3169 cp_build_binary_op (input_location,
3170 MINUS_EXPR, outer_nelts,
3171 integer_one_node,
3172 complain),
3173 vecinit,
3174 explicit_value_init_p,
3175 /*from_array=*/0,
3176 complain);
3177
3178 /* An array initialization is stable because the initialization
3179 of each element is a full-expression, so the temporaries don't
3180 leak out. */
3181 stable = true;
3182 }
3183 else
3184 {
3185 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3186
3187 if (type_build_ctor_call (type) && !explicit_value_init_p)
3188 {
3189 init_expr = build_special_member_call (init_expr,
3190 complete_ctor_identifier,
3191 init, elt_type,
3192 LOOKUP_NORMAL,
3193 complain);
3194 }
3195 else if (explicit_value_init_p)
3196 {
3197 /* Something like `new int()'. */
3198 tree val = build_value_init (type, complain);
3199 if (val == error_mark_node)
3200 return error_mark_node;
3201 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3202 }
3203 else
3204 {
3205 tree ie;
3206
3207 /* We are processing something like `new int (10)', which
3208 means allocate an int, and initialize it with 10. */
3209
3210 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3211 complain);
3212 init_expr = cp_build_modify_expr (input_location, init_expr,
3213 INIT_EXPR, ie, complain);
3214 }
3215 stable = stabilize_init (init_expr, &init_preeval_expr);
3216 }
3217
3218 if (init_expr == error_mark_node)
3219 return error_mark_node;
3220
3221 /* If any part of the object initialization terminates by throwing an
3222 exception and a suitable deallocation function can be found, the
3223 deallocation function is called to free the memory in which the
3224 object was being constructed, after which the exception continues
3225 to propagate in the context of the new-expression. If no
3226 unambiguous matching deallocation function can be found,
3227 propagating the exception does not cause the object's memory to be
3228 freed. */
3229 if (flag_exceptions && ! use_java_new)
3230 {
3231 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3232 tree cleanup;
3233
3234 /* The Standard is unclear here, but the right thing to do
3235 is to use the same method for finding deallocation
3236 functions that we use for finding allocation functions. */
3237 cleanup = (build_op_delete_call
3238 (dcode,
3239 alloc_node,
3240 size,
3241 globally_qualified_p,
3242 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3243 alloc_fn,
3244 complain));
3245
3246 if (!cleanup)
3247 /* We're done. */;
3248 else if (stable)
3249 /* This is much simpler if we were able to preevaluate all of
3250 the arguments to the constructor call. */
3251 {
3252 /* CLEANUP is compiler-generated, so no diagnostics. */
3253 TREE_NO_WARNING (cleanup) = true;
3254 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3255 init_expr, cleanup);
3256 /* Likewise, this try-catch is compiler-generated. */
3257 TREE_NO_WARNING (init_expr) = true;
3258 }
3259 else
3260 /* Ack! First we allocate the memory. Then we set our sentry
3261 variable to true, and expand a cleanup that deletes the
3262 memory if sentry is true. Then we run the constructor, and
3263 finally clear the sentry.
3264
3265 We need to do this because we allocate the space first, so
3266 if there are any temporaries with cleanups in the
3267 constructor args and we weren't able to preevaluate them, we
3268 need this EH region to extend until end of full-expression
3269 to preserve nesting. */
3270 {
3271 tree end, sentry, begin;
3272
3273 begin = get_target_expr (boolean_true_node);
3274 CLEANUP_EH_ONLY (begin) = 1;
3275
3276 sentry = TARGET_EXPR_SLOT (begin);
3277
3278 /* CLEANUP is compiler-generated, so no diagnostics. */
3279 TREE_NO_WARNING (cleanup) = true;
3280
3281 TARGET_EXPR_CLEANUP (begin)
3282 = build3 (COND_EXPR, void_type_node, sentry,
3283 cleanup, void_node);
3284
3285 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3286 sentry, boolean_false_node);
3287
3288 init_expr
3289 = build2 (COMPOUND_EXPR, void_type_node, begin,
3290 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3291 end));
3292 /* Likewise, this is compiler-generated. */
3293 TREE_NO_WARNING (init_expr) = true;
3294 }
3295 }
3296 }
3297 else
3298 init_expr = NULL_TREE;
3299
3300 /* Now build up the return value in reverse order. */
3301
3302 rval = data_addr;
3303
3304 if (init_expr)
3305 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3306 if (cookie_expr)
3307 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3308
3309 if (rval == data_addr)
3310 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3311 and return the call (which doesn't need to be adjusted). */
3312 rval = TARGET_EXPR_INITIAL (alloc_expr);
3313 else
3314 {
3315 if (check_new)
3316 {
3317 tree ifexp = cp_build_binary_op (input_location,
3318 NE_EXPR, alloc_node,
3319 nullptr_node,
3320 complain);
3321 rval = build_conditional_expr (input_location, ifexp, rval,
3322 alloc_node, complain);
3323 }
3324
3325 /* Perform the allocation before anything else, so that ALLOC_NODE
3326 has been initialized before we start using it. */
3327 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3328 }
3329
3330 if (init_preeval_expr)
3331 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3332
3333 /* A new-expression is never an lvalue. */
3334 gcc_assert (!lvalue_p (rval));
3335
3336 return convert (pointer_type, rval);
3337 }
3338
3339 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3340 is a vector of placement-new arguments (or NULL if none). If NELTS
3341 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3342 is not NULL, then this is an array-new allocation; TYPE is the type
3343 of the elements in the array and NELTS is the number of elements in
3344 the array. *INIT, if non-NULL, is the initializer for the new
3345 object, or an empty vector to indicate an initializer of "()". If
3346 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3347 rather than just "new". This may change PLACEMENT and INIT. */
3348
3349 tree
3350 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3351 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3352 {
3353 tree rval;
3354 vec<tree, va_gc> *orig_placement = NULL;
3355 tree orig_nelts = NULL_TREE;
3356 vec<tree, va_gc> *orig_init = NULL;
3357
3358 if (type == error_mark_node)
3359 return error_mark_node;
3360
3361 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3362 /* Don't do auto deduction where it might affect mangling. */
3363 && (!processing_template_decl || at_function_scope_p ()))
3364 {
3365 tree auto_node = type_uses_auto (type);
3366 if (auto_node)
3367 {
3368 tree d_init = (**init)[0];
3369 d_init = resolve_nondeduced_context (d_init, complain);
3370 type = do_auto_deduction (type, d_init, auto_node);
3371 }
3372 }
3373
3374 if (processing_template_decl)
3375 {
3376 if (dependent_type_p (type)
3377 || any_type_dependent_arguments_p (*placement)
3378 || (nelts && type_dependent_expression_p (nelts))
3379 || (nelts && *init)
3380 || any_type_dependent_arguments_p (*init))
3381 return build_raw_new_expr (*placement, type, nelts, *init,
3382 use_global_new);
3383
3384 orig_placement = make_tree_vector_copy (*placement);
3385 orig_nelts = nelts;
3386 if (*init)
3387 orig_init = make_tree_vector_copy (*init);
3388
3389 make_args_non_dependent (*placement);
3390 if (nelts)
3391 nelts = build_non_dependent_expr (nelts);
3392 make_args_non_dependent (*init);
3393 }
3394
3395 if (nelts)
3396 {
3397 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3398 {
3399 if (complain & tf_error)
3400 permerror (input_location, "size in array new must have integral type");
3401 else
3402 return error_mark_node;
3403 }
3404
3405 /* Try to determine the constant value only for the purposes
3406 of the diagnostic below but continue to use the original
3407 value and handle const folding later. */
3408 const_tree cst_nelts = maybe_constant_value (nelts);
3409
3410 /* The expression in a noptr-new-declarator is erroneous if it's of
3411 non-class type and its value before converting to std::size_t is
3412 less than zero. ... If the expression is a constant expression,
3413 the program is ill-fomed. */
3414 if (INTEGER_CST == TREE_CODE (cst_nelts)
3415 && tree_int_cst_sgn (cst_nelts) == -1)
3416 {
3417 if (complain & tf_error)
3418 error ("size of array is negative");
3419 return error_mark_node;
3420 }
3421
3422 nelts = mark_rvalue_use (nelts);
3423 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3424 }
3425
3426 /* ``A reference cannot be created by the new operator. A reference
3427 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3428 returned by new.'' ARM 5.3.3 */
3429 if (TREE_CODE (type) == REFERENCE_TYPE)
3430 {
3431 if (complain & tf_error)
3432 error ("new cannot be applied to a reference type");
3433 else
3434 return error_mark_node;
3435 type = TREE_TYPE (type);
3436 }
3437
3438 if (TREE_CODE (type) == FUNCTION_TYPE)
3439 {
3440 if (complain & tf_error)
3441 error ("new cannot be applied to a function type");
3442 return error_mark_node;
3443 }
3444
3445 /* The type allocated must be complete. If the new-type-id was
3446 "T[N]" then we are just checking that "T" is complete here, but
3447 that is equivalent, since the value of "N" doesn't matter. */
3448 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3449 return error_mark_node;
3450
3451 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3452 if (rval == error_mark_node)
3453 return error_mark_node;
3454
3455 if (processing_template_decl)
3456 {
3457 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3458 orig_init, use_global_new);
3459 release_tree_vector (orig_placement);
3460 release_tree_vector (orig_init);
3461 return ret;
3462 }
3463
3464 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3465 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3466 TREE_NO_WARNING (rval) = 1;
3467
3468 return rval;
3469 }
3470
3471 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3472
3473 tree
3474 build_java_class_ref (tree type)
3475 {
3476 tree name = NULL_TREE, class_decl;
3477 static tree CL_suffix = NULL_TREE;
3478 if (CL_suffix == NULL_TREE)
3479 CL_suffix = get_identifier("class$");
3480 if (jclass_node == NULL_TREE)
3481 {
3482 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3483 if (jclass_node == NULL_TREE)
3484 {
3485 error ("call to Java constructor, while %<jclass%> undefined");
3486 return error_mark_node;
3487 }
3488 jclass_node = TREE_TYPE (jclass_node);
3489 }
3490
3491 /* Mangle the class$ field. */
3492 {
3493 tree field;
3494 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3495 if (DECL_NAME (field) == CL_suffix)
3496 {
3497 mangle_decl (field);
3498 name = DECL_ASSEMBLER_NAME (field);
3499 break;
3500 }
3501 if (!field)
3502 {
3503 error ("can%'t find %<class$%> in %qT", type);
3504 return error_mark_node;
3505 }
3506 }
3507
3508 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3509 if (class_decl == NULL_TREE)
3510 {
3511 class_decl = build_decl (input_location,
3512 VAR_DECL, name, TREE_TYPE (jclass_node));
3513 TREE_STATIC (class_decl) = 1;
3514 DECL_EXTERNAL (class_decl) = 1;
3515 TREE_PUBLIC (class_decl) = 1;
3516 DECL_ARTIFICIAL (class_decl) = 1;
3517 DECL_IGNORED_P (class_decl) = 1;
3518 pushdecl_top_level (class_decl);
3519 make_decl_rtl (class_decl);
3520 }
3521 return class_decl;
3522 }
3523 \f
3524 static tree
3525 build_vec_delete_1 (tree base, tree maxindex, tree type,
3526 special_function_kind auto_delete_vec,
3527 int use_global_delete, tsubst_flags_t complain)
3528 {
3529 tree virtual_size;
3530 tree ptype = build_pointer_type (type = complete_type (type));
3531 tree size_exp;
3532
3533 /* Temporary variables used by the loop. */
3534 tree tbase, tbase_init;
3535
3536 /* This is the body of the loop that implements the deletion of a
3537 single element, and moves temp variables to next elements. */
3538 tree body;
3539
3540 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3541 tree loop = 0;
3542
3543 /* This is the thing that governs what to do after the loop has run. */
3544 tree deallocate_expr = 0;
3545
3546 /* This is the BIND_EXPR which holds the outermost iterator of the
3547 loop. It is convenient to set this variable up and test it before
3548 executing any other code in the loop.
3549 This is also the containing expression returned by this function. */
3550 tree controller = NULL_TREE;
3551 tree tmp;
3552
3553 /* We should only have 1-D arrays here. */
3554 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3555
3556 if (base == error_mark_node || maxindex == error_mark_node)
3557 return error_mark_node;
3558
3559 if (!COMPLETE_TYPE_P (type))
3560 {
3561 if ((complain & tf_warning)
3562 && warning (OPT_Wdelete_incomplete,
3563 "possible problem detected in invocation of "
3564 "delete [] operator:"))
3565 {
3566 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3567 inform (input_location, "neither the destructor nor the "
3568 "class-specific operator delete [] will be called, "
3569 "even if they are declared when the class is defined");
3570 }
3571 /* This size won't actually be used. */
3572 size_exp = size_one_node;
3573 goto no_destructor;
3574 }
3575
3576 size_exp = size_in_bytes (type);
3577
3578 if (! MAYBE_CLASS_TYPE_P (type))
3579 goto no_destructor;
3580 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3581 {
3582 /* Make sure the destructor is callable. */
3583 if (type_build_dtor_call (type))
3584 {
3585 tmp = build_delete (ptype, base, sfk_complete_destructor,
3586 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3587 complain);
3588 if (tmp == error_mark_node)
3589 return error_mark_node;
3590 }
3591 goto no_destructor;
3592 }
3593
3594 /* The below is short by the cookie size. */
3595 virtual_size = size_binop (MULT_EXPR, size_exp,
3596 fold_convert (sizetype, maxindex));
3597
3598 tbase = create_temporary_var (ptype);
3599 tbase_init
3600 = cp_build_modify_expr (input_location, tbase, NOP_EXPR,
3601 fold_build_pointer_plus_loc (input_location,
3602 fold_convert (ptype,
3603 base),
3604 virtual_size),
3605 complain);
3606 if (tbase_init == error_mark_node)
3607 return error_mark_node;
3608 controller = build3 (BIND_EXPR, void_type_node, tbase,
3609 NULL_TREE, NULL_TREE);
3610 TREE_SIDE_EFFECTS (controller) = 1;
3611
3612 body = build1 (EXIT_EXPR, void_type_node,
3613 build2 (EQ_EXPR, boolean_type_node, tbase,
3614 fold_convert (ptype, base)));
3615 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3616 tmp = fold_build_pointer_plus (tbase, tmp);
3617 tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain);
3618 if (tmp == error_mark_node)
3619 return error_mark_node;
3620 body = build_compound_expr (input_location, body, tmp);
3621 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3622 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3623 complain);
3624 if (tmp == error_mark_node)
3625 return error_mark_node;
3626 body = build_compound_expr (input_location, body, tmp);
3627
3628 loop = build1 (LOOP_EXPR, void_type_node, body);
3629 loop = build_compound_expr (input_location, tbase_init, loop);
3630
3631 no_destructor:
3632 /* Delete the storage if appropriate. */
3633 if (auto_delete_vec == sfk_deleting_destructor)
3634 {
3635 tree base_tbd;
3636
3637 /* The below is short by the cookie size. */
3638 virtual_size = size_binop (MULT_EXPR, size_exp,
3639 fold_convert (sizetype, maxindex));
3640
3641 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3642 /* no header */
3643 base_tbd = base;
3644 else
3645 {
3646 tree cookie_size;
3647
3648 cookie_size = targetm.cxx.get_cookie_size (type);
3649 base_tbd = cp_build_binary_op (input_location,
3650 MINUS_EXPR,
3651 cp_convert (string_type_node,
3652 base, complain),
3653 cookie_size,
3654 complain);
3655 if (base_tbd == error_mark_node)
3656 return error_mark_node;
3657 base_tbd = cp_convert (ptype, base_tbd, complain);
3658 /* True size with header. */
3659 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3660 }
3661
3662 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3663 base_tbd, virtual_size,
3664 use_global_delete & 1,
3665 /*placement=*/NULL_TREE,
3666 /*alloc_fn=*/NULL_TREE,
3667 complain);
3668 }
3669
3670 body = loop;
3671 if (!deallocate_expr)
3672 ;
3673 else if (!body)
3674 body = deallocate_expr;
3675 else
3676 /* The delete operator mist be called, even if a destructor
3677 throws. */
3678 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3679
3680 if (!body)
3681 body = integer_zero_node;
3682
3683 /* Outermost wrapper: If pointer is null, punt. */
3684 tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base,
3685 fold_convert (TREE_TYPE (base), nullptr_node));
3686 /* This is a compiler generated comparison, don't emit
3687 e.g. -Wnonnull-compare warning for it. */
3688 TREE_NO_WARNING (cond) = 1;
3689 body = build3_loc (input_location, COND_EXPR, void_type_node,
3690 cond, body, integer_zero_node);
3691 COND_EXPR_IS_VEC_DELETE (body) = true;
3692 body = build1 (NOP_EXPR, void_type_node, body);
3693
3694 if (controller)
3695 {
3696 TREE_OPERAND (controller, 1) = body;
3697 body = controller;
3698 }
3699
3700 if (TREE_CODE (base) == SAVE_EXPR)
3701 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3702 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3703
3704 return convert_to_void (body, ICV_CAST, complain);
3705 }
3706
3707 /* Create an unnamed variable of the indicated TYPE. */
3708
3709 tree
3710 create_temporary_var (tree type)
3711 {
3712 tree decl;
3713
3714 decl = build_decl (input_location,
3715 VAR_DECL, NULL_TREE, type);
3716 TREE_USED (decl) = 1;
3717 DECL_ARTIFICIAL (decl) = 1;
3718 DECL_IGNORED_P (decl) = 1;
3719 DECL_CONTEXT (decl) = current_function_decl;
3720
3721 return decl;
3722 }
3723
3724 /* Create a new temporary variable of the indicated TYPE, initialized
3725 to INIT.
3726
3727 It is not entered into current_binding_level, because that breaks
3728 things when it comes time to do final cleanups (which take place
3729 "outside" the binding contour of the function). */
3730
3731 tree
3732 get_temp_regvar (tree type, tree init)
3733 {
3734 tree decl;
3735
3736 decl = create_temporary_var (type);
3737 add_decl_expr (decl);
3738
3739 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
3740 init, tf_warning_or_error));
3741
3742 return decl;
3743 }
3744
3745 /* Subroutine of build_vec_init. Returns true if assigning to an array of
3746 INNER_ELT_TYPE from INIT is trivial. */
3747
3748 static bool
3749 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3750 {
3751 tree fromtype = inner_elt_type;
3752 if (real_lvalue_p (init))
3753 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3754 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3755 }
3756
3757 /* `build_vec_init' returns tree structure that performs
3758 initialization of a vector of aggregate types.
3759
3760 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3761 to the first element, of POINTER_TYPE.
3762 MAXINDEX is the maximum index of the array (one less than the
3763 number of elements). It is only used if BASE is a pointer or
3764 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3765
3766 INIT is the (possibly NULL) initializer.
3767
3768 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3769 elements in the array are value-initialized.
3770
3771 FROM_ARRAY is 0 if we should init everything with INIT
3772 (i.e., every element initialized from INIT).
3773 FROM_ARRAY is 1 if we should index into INIT in parallel
3774 with initialization of DECL.
3775 FROM_ARRAY is 2 if we should index into INIT in parallel,
3776 but use assignment instead of initialization. */
3777
3778 tree
3779 build_vec_init (tree base, tree maxindex, tree init,
3780 bool explicit_value_init_p,
3781 int from_array, tsubst_flags_t complain)
3782 {
3783 tree rval;
3784 tree base2 = NULL_TREE;
3785 tree itype = NULL_TREE;
3786 tree iterator;
3787 /* The type of BASE. */
3788 tree atype = TREE_TYPE (base);
3789 /* The type of an element in the array. */
3790 tree type = TREE_TYPE (atype);
3791 /* The element type reached after removing all outer array
3792 types. */
3793 tree inner_elt_type;
3794 /* The type of a pointer to an element in the array. */
3795 tree ptype;
3796 tree stmt_expr;
3797 tree compound_stmt;
3798 int destroy_temps;
3799 tree try_block = NULL_TREE;
3800 int num_initialized_elts = 0;
3801 bool is_global;
3802 tree obase = base;
3803 bool xvalue = false;
3804 bool errors = false;
3805
3806 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3807 maxindex = array_type_nelts (atype);
3808
3809 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3810 return error_mark_node;
3811
3812 maxindex = maybe_constant_value (maxindex);
3813 if (explicit_value_init_p)
3814 gcc_assert (!init);
3815
3816 inner_elt_type = strip_array_types (type);
3817
3818 /* Look through the TARGET_EXPR around a compound literal. */
3819 if (init && TREE_CODE (init) == TARGET_EXPR
3820 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3821 && from_array != 2)
3822 init = TARGET_EXPR_INITIAL (init);
3823
3824 /* If we have a braced-init-list, make sure that the array
3825 is big enough for all the initializers. */
3826 bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
3827 && CONSTRUCTOR_NELTS (init) > 0
3828 && !TREE_CONSTANT (maxindex));
3829
3830 if (init
3831 && TREE_CODE (atype) == ARRAY_TYPE
3832 && TREE_CONSTANT (maxindex)
3833 && (from_array == 2
3834 ? vec_copy_assign_is_trivial (inner_elt_type, init)
3835 : !TYPE_NEEDS_CONSTRUCTING (type))
3836 && ((TREE_CODE (init) == CONSTRUCTOR
3837 /* Don't do this if the CONSTRUCTOR might contain something
3838 that might throw and require us to clean up. */
3839 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3840 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3841 || from_array))
3842 {
3843 /* Do non-default initialization of trivial arrays resulting from
3844 brace-enclosed initializers. In this case, digest_init and
3845 store_constructor will handle the semantics for us. */
3846
3847 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3848 init = digest_init (atype, init, complain);
3849 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3850 return stmt_expr;
3851 }
3852
3853 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3854 maxindex = fold_simple (maxindex);
3855
3856 if (TREE_CODE (atype) == ARRAY_TYPE)
3857 {
3858 ptype = build_pointer_type (type);
3859 base = decay_conversion (base, complain);
3860 if (base == error_mark_node)
3861 return error_mark_node;
3862 base = cp_convert (ptype, base, complain);
3863 }
3864 else
3865 ptype = atype;
3866
3867 /* The code we are generating looks like:
3868 ({
3869 T* t1 = (T*) base;
3870 T* rval = t1;
3871 ptrdiff_t iterator = maxindex;
3872 try {
3873 for (; iterator != -1; --iterator) {
3874 ... initialize *t1 ...
3875 ++t1;
3876 }
3877 } catch (...) {
3878 ... destroy elements that were constructed ...
3879 }
3880 rval;
3881 })
3882
3883 We can omit the try and catch blocks if we know that the
3884 initialization will never throw an exception, or if the array
3885 elements do not have destructors. We can omit the loop completely if
3886 the elements of the array do not have constructors.
3887
3888 We actually wrap the entire body of the above in a STMT_EXPR, for
3889 tidiness.
3890
3891 When copying from array to another, when the array elements have
3892 only trivial copy constructors, we should use __builtin_memcpy
3893 rather than generating a loop. That way, we could take advantage
3894 of whatever cleverness the back end has for dealing with copies
3895 of blocks of memory. */
3896
3897 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3898 destroy_temps = stmts_are_full_exprs_p ();
3899 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3900 rval = get_temp_regvar (ptype, base);
3901 base = get_temp_regvar (ptype, rval);
3902 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3903
3904 /* If initializing one array from another, initialize element by
3905 element. We rely upon the below calls to do the argument
3906 checking. Evaluate the initializer before entering the try block. */
3907 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3908 {
3909 if (lvalue_kind (init) & clk_rvalueref)
3910 xvalue = true;
3911 base2 = decay_conversion (init, complain);
3912 if (base2 == error_mark_node)
3913 return error_mark_node;
3914 itype = TREE_TYPE (base2);
3915 base2 = get_temp_regvar (itype, base2);
3916 itype = TREE_TYPE (itype);
3917 }
3918
3919 /* Protect the entire array initialization so that we can destroy
3920 the partially constructed array if an exception is thrown.
3921 But don't do this if we're assigning. */
3922 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3923 && from_array != 2)
3924 {
3925 try_block = begin_try_block ();
3926 }
3927
3928 /* Should we try to create a constant initializer? */
3929 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3930 && TREE_CONSTANT (maxindex)
3931 && (init ? TREE_CODE (init) == CONSTRUCTOR
3932 : (type_has_constexpr_default_constructor
3933 (inner_elt_type)))
3934 && (literal_type_p (inner_elt_type)
3935 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3936 vec<constructor_elt, va_gc> *const_vec = NULL;
3937 bool saw_non_const = false;
3938 /* If we're initializing a static array, we want to do static
3939 initialization of any elements with constant initializers even if
3940 some are non-constant. */
3941 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3942
3943 bool empty_list = false;
3944 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3945 && CONSTRUCTOR_NELTS (init) == 0)
3946 /* Skip over the handling of non-empty init lists. */
3947 empty_list = true;
3948
3949 /* Maybe pull out constant value when from_array? */
3950
3951 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3952 {
3953 /* Do non-default initialization of non-trivial arrays resulting from
3954 brace-enclosed initializers. */
3955 unsigned HOST_WIDE_INT idx;
3956 tree field, elt;
3957 /* If the constructor already has the array type, it's been through
3958 digest_init, so we shouldn't try to do anything more. */
3959 bool digested = same_type_p (atype, TREE_TYPE (init));
3960 from_array = 0;
3961
3962 if (length_check)
3963 {
3964 tree nelts = build_int_cst (ptrdiff_type_node,
3965 CONSTRUCTOR_NELTS (init) - 1);
3966 if (TREE_CODE (atype) != ARRAY_TYPE)
3967 {
3968 if (flag_exceptions)
3969 {
3970 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3971 nelts);
3972 c = build3 (COND_EXPR, void_type_node, c,
3973 throw_bad_array_new_length (), void_node);
3974 finish_expr_stmt (c);
3975 }
3976 /* Don't check an array new when -fno-exceptions. */
3977 }
3978 else if (flag_sanitize & SANITIZE_BOUNDS
3979 && do_ubsan_in_current_function ())
3980 {
3981 /* Make sure the last element of the initializer is in bounds. */
3982 finish_expr_stmt
3983 (ubsan_instrument_bounds
3984 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3985 }
3986 }
3987
3988 if (try_const)
3989 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
3990
3991 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3992 {
3993 tree baseref = build1 (INDIRECT_REF, type, base);
3994 tree one_init;
3995
3996 num_initialized_elts++;
3997
3998 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3999 if (digested)
4000 one_init = build2 (INIT_EXPR, type, baseref, elt);
4001 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4002 one_init = build_aggr_init (baseref, elt, 0, complain);
4003 else
4004 one_init = cp_build_modify_expr (input_location, baseref,
4005 NOP_EXPR, elt, complain);
4006 if (one_init == error_mark_node)
4007 errors = true;
4008 if (try_const)
4009 {
4010 tree e = maybe_constant_init (one_init);
4011 if (reduced_constant_expression_p (e))
4012 {
4013 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4014 if (do_static_init)
4015 one_init = NULL_TREE;
4016 else
4017 one_init = build2 (INIT_EXPR, type, baseref, e);
4018 }
4019 else
4020 {
4021 if (do_static_init)
4022 {
4023 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4024 true);
4025 if (value)
4026 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4027 }
4028 saw_non_const = true;
4029 }
4030 }
4031
4032 if (one_init)
4033 finish_expr_stmt (one_init);
4034 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4035
4036 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
4037 if (one_init == error_mark_node)
4038 errors = true;
4039 else
4040 finish_expr_stmt (one_init);
4041
4042 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
4043 complain);
4044 if (one_init == error_mark_node)
4045 errors = true;
4046 else
4047 finish_expr_stmt (one_init);
4048 }
4049
4050 /* Any elements without explicit initializers get T{}. */
4051 empty_list = true;
4052 }
4053 else if (from_array)
4054 {
4055 if (init)
4056 /* OK, we set base2 above. */;
4057 else if (CLASS_TYPE_P (type)
4058 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4059 {
4060 if (complain & tf_error)
4061 error ("initializer ends prematurely");
4062 errors = true;
4063 }
4064 }
4065
4066 /* Now, default-initialize any remaining elements. We don't need to
4067 do that if a) the type does not need constructing, or b) we've
4068 already initialized all the elements.
4069
4070 We do need to keep going if we're copying an array. */
4071
4072 if (try_const && !init)
4073 /* With a constexpr default constructor, which we checked for when
4074 setting try_const above, default-initialization is equivalent to
4075 value-initialization, and build_value_init gives us something more
4076 friendly to maybe_constant_init. */
4077 explicit_value_init_p = true;
4078 if (from_array
4079 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4080 && ! (tree_fits_shwi_p (maxindex)
4081 && (num_initialized_elts
4082 == tree_to_shwi (maxindex) + 1))))
4083 {
4084 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4085 we've already initialized all the elements. */
4086 tree for_stmt;
4087 tree elt_init;
4088 tree to;
4089
4090 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4091 finish_for_init_stmt (for_stmt);
4092 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4093 build_int_cst (TREE_TYPE (iterator), -1)),
4094 for_stmt, false);
4095 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
4096 complain);
4097 if (elt_init == error_mark_node)
4098 errors = true;
4099 finish_for_expr (elt_init, for_stmt);
4100
4101 to = build1 (INDIRECT_REF, type, base);
4102
4103 /* If the initializer is {}, then all elements are initialized from T{}.
4104 But for non-classes, that's the same as value-initialization. */
4105 if (empty_list)
4106 {
4107 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4108 {
4109 init = build_constructor (init_list_type_node, NULL);
4110 }
4111 else
4112 {
4113 init = NULL_TREE;
4114 explicit_value_init_p = true;
4115 }
4116 }
4117
4118 if (from_array)
4119 {
4120 tree from;
4121
4122 if (base2)
4123 {
4124 from = build1 (INDIRECT_REF, itype, base2);
4125 if (xvalue)
4126 from = move (from);
4127 }
4128 else
4129 from = NULL_TREE;
4130
4131 if (from_array == 2)
4132 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4133 from, complain);
4134 else if (type_build_ctor_call (type))
4135 elt_init = build_aggr_init (to, from, 0, complain);
4136 else if (from)
4137 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4138 complain);
4139 else
4140 gcc_unreachable ();
4141 }
4142 else if (TREE_CODE (type) == ARRAY_TYPE)
4143 {
4144 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4145 sorry
4146 ("cannot initialize multi-dimensional array with initializer");
4147 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4148 0, init,
4149 explicit_value_init_p,
4150 0, complain);
4151 }
4152 else if (explicit_value_init_p)
4153 {
4154 elt_init = build_value_init (type, complain);
4155 if (elt_init != error_mark_node)
4156 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4157 }
4158 else
4159 {
4160 gcc_assert (type_build_ctor_call (type) || init);
4161 if (CLASS_TYPE_P (type))
4162 elt_init = build_aggr_init (to, init, 0, complain);
4163 else
4164 {
4165 if (TREE_CODE (init) == TREE_LIST)
4166 init = build_x_compound_expr_from_list (init, ELK_INIT,
4167 complain);
4168 elt_init = build2 (INIT_EXPR, type, to, init);
4169 }
4170 }
4171
4172 if (elt_init == error_mark_node)
4173 errors = true;
4174
4175 if (try_const)
4176 {
4177 /* FIXME refs to earlier elts */
4178 tree e = maybe_constant_init (elt_init);
4179 if (reduced_constant_expression_p (e))
4180 {
4181 if (initializer_zerop (e))
4182 /* Don't fill the CONSTRUCTOR with zeros. */
4183 e = NULL_TREE;
4184 if (do_static_init)
4185 elt_init = NULL_TREE;
4186 }
4187 else
4188 {
4189 saw_non_const = true;
4190 if (do_static_init)
4191 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4192 else
4193 e = NULL_TREE;
4194 }
4195
4196 if (e)
4197 {
4198 int max = tree_to_shwi (maxindex)+1;
4199 for (; num_initialized_elts < max; ++num_initialized_elts)
4200 {
4201 tree field = size_int (num_initialized_elts);
4202 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4203 }
4204 }
4205 }
4206
4207 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4208 if (elt_init)
4209 finish_expr_stmt (elt_init);
4210 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4211
4212 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
4213 complain));
4214 if (base2)
4215 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
4216 complain));
4217
4218 finish_for_stmt (for_stmt);
4219 }
4220
4221 /* Make sure to cleanup any partially constructed elements. */
4222 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4223 && from_array != 2)
4224 {
4225 tree e;
4226 tree m = cp_build_binary_op (input_location,
4227 MINUS_EXPR, maxindex, iterator,
4228 complain);
4229
4230 /* Flatten multi-dimensional array since build_vec_delete only
4231 expects one-dimensional array. */
4232 if (TREE_CODE (type) == ARRAY_TYPE)
4233 m = cp_build_binary_op (input_location,
4234 MULT_EXPR, m,
4235 /* Avoid mixing signed and unsigned. */
4236 convert (TREE_TYPE (m),
4237 array_type_nelts_total (type)),
4238 complain);
4239
4240 finish_cleanup_try_block (try_block);
4241 e = build_vec_delete_1 (rval, m,
4242 inner_elt_type, sfk_complete_destructor,
4243 /*use_global_delete=*/0, complain);
4244 if (e == error_mark_node)
4245 errors = true;
4246 finish_cleanup (e, try_block);
4247 }
4248
4249 /* The value of the array initialization is the array itself, RVAL
4250 is a pointer to the first element. */
4251 finish_stmt_expr_expr (rval, stmt_expr);
4252
4253 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4254
4255 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4256
4257 if (errors)
4258 return error_mark_node;
4259
4260 if (try_const)
4261 {
4262 if (!saw_non_const)
4263 {
4264 tree const_init = build_constructor (atype, const_vec);
4265 return build2 (INIT_EXPR, atype, obase, const_init);
4266 }
4267 else if (do_static_init && !vec_safe_is_empty (const_vec))
4268 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4269 else
4270 vec_free (const_vec);
4271 }
4272
4273 /* Now make the result have the correct type. */
4274 if (TREE_CODE (atype) == ARRAY_TYPE)
4275 {
4276 atype = build_pointer_type (atype);
4277 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4278 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
4279 TREE_NO_WARNING (stmt_expr) = 1;
4280 }
4281
4282 return stmt_expr;
4283 }
4284
4285 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4286 build_delete. */
4287
4288 static tree
4289 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4290 tsubst_flags_t complain)
4291 {
4292 tree name;
4293 tree fn;
4294 switch (dtor_kind)
4295 {
4296 case sfk_complete_destructor:
4297 name = complete_dtor_identifier;
4298 break;
4299
4300 case sfk_base_destructor:
4301 name = base_dtor_identifier;
4302 break;
4303
4304 case sfk_deleting_destructor:
4305 name = deleting_dtor_identifier;
4306 break;
4307
4308 default:
4309 gcc_unreachable ();
4310 }
4311 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
4312 return build_new_method_call (exp, fn,
4313 /*args=*/NULL,
4314 /*conversion_path=*/NULL_TREE,
4315 flags,
4316 /*fn_p=*/NULL,
4317 complain);
4318 }
4319
4320 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4321 ADDR is an expression which yields the store to be destroyed.
4322 AUTO_DELETE is the name of the destructor to call, i.e., either
4323 sfk_complete_destructor, sfk_base_destructor, or
4324 sfk_deleting_destructor.
4325
4326 FLAGS is the logical disjunction of zero or more LOOKUP_
4327 flags. See cp-tree.h for more info. */
4328
4329 tree
4330 build_delete (tree otype, tree addr, special_function_kind auto_delete,
4331 int flags, int use_global_delete, tsubst_flags_t complain)
4332 {
4333 tree expr;
4334
4335 if (addr == error_mark_node)
4336 return error_mark_node;
4337
4338 tree type = TYPE_MAIN_VARIANT (otype);
4339
4340 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4341 set to `error_mark_node' before it gets properly cleaned up. */
4342 if (type == error_mark_node)
4343 return error_mark_node;
4344
4345 if (TREE_CODE (type) == POINTER_TYPE)
4346 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4347
4348 if (TREE_CODE (type) == ARRAY_TYPE)
4349 {
4350 if (TYPE_DOMAIN (type) == NULL_TREE)
4351 {
4352 if (complain & tf_error)
4353 error ("unknown array size in delete");
4354 return error_mark_node;
4355 }
4356 return build_vec_delete (addr, array_type_nelts (type),
4357 auto_delete, use_global_delete, complain);
4358 }
4359
4360 if (TYPE_PTR_P (otype))
4361 {
4362 addr = mark_rvalue_use (addr);
4363
4364 /* We don't want to warn about delete of void*, only other
4365 incomplete types. Deleting other incomplete types
4366 invokes undefined behavior, but it is not ill-formed, so
4367 compile to something that would even do The Right Thing
4368 (TM) should the type have a trivial dtor and no delete
4369 operator. */
4370 if (!VOID_TYPE_P (type))
4371 {
4372 complete_type (type);
4373 if (!COMPLETE_TYPE_P (type))
4374 {
4375 if ((complain & tf_warning)
4376 && warning (OPT_Wdelete_incomplete,
4377 "possible problem detected in invocation of "
4378 "delete operator:"))
4379 {
4380 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4381 inform (input_location,
4382 "neither the destructor nor the class-specific "
4383 "operator delete will be called, even if they are "
4384 "declared when the class is defined");
4385 }
4386 }
4387 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4388 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4389 && TYPE_POLYMORPHIC_P (type))
4390 {
4391 tree dtor;
4392 dtor = CLASSTYPE_DESTRUCTORS (type);
4393 if (!dtor || !DECL_VINDEX (dtor))
4394 {
4395 if (CLASSTYPE_PURE_VIRTUALS (type))
4396 warning (OPT_Wdelete_non_virtual_dtor,
4397 "deleting object of abstract class type %qT"
4398 " which has non-virtual destructor"
4399 " will cause undefined behavior", type);
4400 else
4401 warning (OPT_Wdelete_non_virtual_dtor,
4402 "deleting object of polymorphic class type %qT"
4403 " which has non-virtual destructor"
4404 " might cause undefined behavior", type);
4405 }
4406 }
4407 }
4408 if (TREE_SIDE_EFFECTS (addr))
4409 addr = save_expr (addr);
4410
4411 /* Throw away const and volatile on target type of addr. */
4412 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4413 }
4414 else
4415 {
4416 /* Don't check PROTECT here; leave that decision to the
4417 destructor. If the destructor is accessible, call it,
4418 else report error. */
4419 addr = cp_build_addr_expr (addr, complain);
4420 if (addr == error_mark_node)
4421 return error_mark_node;
4422 if (TREE_SIDE_EFFECTS (addr))
4423 addr = save_expr (addr);
4424
4425 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4426 }
4427
4428 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4429 {
4430 /* Make sure the destructor is callable. */
4431 if (type_build_dtor_call (type))
4432 {
4433 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4434 complain),
4435 sfk_complete_destructor, flags, complain);
4436 if (expr == error_mark_node)
4437 return error_mark_node;
4438 }
4439
4440 if (auto_delete != sfk_deleting_destructor)
4441 return void_node;
4442
4443 return build_op_delete_call (DELETE_EXPR, addr,
4444 cxx_sizeof_nowarn (type),
4445 use_global_delete,
4446 /*placement=*/NULL_TREE,
4447 /*alloc_fn=*/NULL_TREE,
4448 complain);
4449 }
4450 else
4451 {
4452 tree head = NULL_TREE;
4453 tree do_delete = NULL_TREE;
4454 tree ifexp;
4455
4456 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4457 lazily_declare_fn (sfk_destructor, type);
4458
4459 /* For `::delete x', we must not use the deleting destructor
4460 since then we would not be sure to get the global `operator
4461 delete'. */
4462 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4463 {
4464 /* We will use ADDR multiple times so we must save it. */
4465 addr = save_expr (addr);
4466 head = get_target_expr (build_headof (addr));
4467 /* Delete the object. */
4468 do_delete = build_op_delete_call (DELETE_EXPR,
4469 head,
4470 cxx_sizeof_nowarn (type),
4471 /*global_p=*/true,
4472 /*placement=*/NULL_TREE,
4473 /*alloc_fn=*/NULL_TREE,
4474 complain);
4475 /* Otherwise, treat this like a complete object destructor
4476 call. */
4477 auto_delete = sfk_complete_destructor;
4478 }
4479 /* If the destructor is non-virtual, there is no deleting
4480 variant. Instead, we must explicitly call the appropriate
4481 `operator delete' here. */
4482 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4483 && auto_delete == sfk_deleting_destructor)
4484 {
4485 /* We will use ADDR multiple times so we must save it. */
4486 addr = save_expr (addr);
4487 /* Build the call. */
4488 do_delete = build_op_delete_call (DELETE_EXPR,
4489 addr,
4490 cxx_sizeof_nowarn (type),
4491 /*global_p=*/false,
4492 /*placement=*/NULL_TREE,
4493 /*alloc_fn=*/NULL_TREE,
4494 complain);
4495 /* Call the complete object destructor. */
4496 auto_delete = sfk_complete_destructor;
4497 }
4498 else if (auto_delete == sfk_deleting_destructor
4499 && TYPE_GETS_REG_DELETE (type))
4500 {
4501 /* Make sure we have access to the member op delete, even though
4502 we'll actually be calling it from the destructor. */
4503 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4504 /*global_p=*/false,
4505 /*placement=*/NULL_TREE,
4506 /*alloc_fn=*/NULL_TREE,
4507 complain);
4508 }
4509
4510 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4511 auto_delete, flags, complain);
4512 if (expr == error_mark_node)
4513 return error_mark_node;
4514 if (do_delete)
4515 /* The delete operator must be called, regardless of whether
4516 the destructor throws.
4517
4518 [expr.delete]/7 The deallocation function is called
4519 regardless of whether the destructor for the object or some
4520 element of the array throws an exception. */
4521 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4522
4523 /* We need to calculate this before the dtor changes the vptr. */
4524 if (head)
4525 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4526
4527 if (flags & LOOKUP_DESTRUCTOR)
4528 /* Explicit destructor call; don't check for null pointer. */
4529 ifexp = integer_one_node;
4530 else
4531 {
4532 /* Handle deleting a null pointer. */
4533 warning_sentinel s (warn_address);
4534 ifexp = cp_build_binary_op (input_location, NE_EXPR, addr,
4535 nullptr_node, complain);
4536 if (ifexp == error_mark_node)
4537 return error_mark_node;
4538 /* This is a compiler generated comparison, don't emit
4539 e.g. -Wnonnull-compare warning for it. */
4540 else if (TREE_CODE (ifexp) == NE_EXPR)
4541 TREE_NO_WARNING (ifexp) = 1;
4542 }
4543
4544 if (ifexp != integer_one_node)
4545 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4546
4547 return expr;
4548 }
4549 }
4550
4551 /* At the beginning of a destructor, push cleanups that will call the
4552 destructors for our base classes and members.
4553
4554 Called from begin_destructor_body. */
4555
4556 void
4557 push_base_cleanups (void)
4558 {
4559 tree binfo, base_binfo;
4560 int i;
4561 tree member;
4562 tree expr;
4563 vec<tree, va_gc> *vbases;
4564
4565 /* Run destructors for all virtual baseclasses. */
4566 if (CLASSTYPE_VBASECLASSES (current_class_type))
4567 {
4568 tree cond = (condition_conversion
4569 (build2 (BIT_AND_EXPR, integer_type_node,
4570 current_in_charge_parm,
4571 integer_two_node)));
4572
4573 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4574 order, which is also the right order for pushing cleanups. */
4575 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4576 vec_safe_iterate (vbases, i, &base_binfo); i++)
4577 {
4578 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4579 {
4580 expr = build_special_member_call (current_class_ref,
4581 base_dtor_identifier,
4582 NULL,
4583 base_binfo,
4584 (LOOKUP_NORMAL
4585 | LOOKUP_NONVIRTUAL),
4586 tf_warning_or_error);
4587 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4588 {
4589 expr = build3 (COND_EXPR, void_type_node, cond,
4590 expr, void_node);
4591 finish_decl_cleanup (NULL_TREE, expr);
4592 }
4593 }
4594 }
4595 }
4596
4597 /* Take care of the remaining baseclasses. */
4598 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4599 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4600 {
4601 if (BINFO_VIRTUAL_P (base_binfo)
4602 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4603 continue;
4604
4605 expr = build_special_member_call (current_class_ref,
4606 base_dtor_identifier,
4607 NULL, base_binfo,
4608 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4609 tf_warning_or_error);
4610 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4611 finish_decl_cleanup (NULL_TREE, expr);
4612 }
4613
4614 /* Don't automatically destroy union members. */
4615 if (TREE_CODE (current_class_type) == UNION_TYPE)
4616 return;
4617
4618 for (member = TYPE_FIELDS (current_class_type); member;
4619 member = DECL_CHAIN (member))
4620 {
4621 tree this_type = TREE_TYPE (member);
4622 if (this_type == error_mark_node
4623 || TREE_CODE (member) != FIELD_DECL
4624 || DECL_ARTIFICIAL (member))
4625 continue;
4626 if (ANON_AGGR_TYPE_P (this_type))
4627 continue;
4628 if (type_build_dtor_call (this_type))
4629 {
4630 tree this_member = (build_class_member_access_expr
4631 (current_class_ref, member,
4632 /*access_path=*/NULL_TREE,
4633 /*preserve_reference=*/false,
4634 tf_warning_or_error));
4635 expr = build_delete (this_type, this_member,
4636 sfk_complete_destructor,
4637 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4638 0, tf_warning_or_error);
4639 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4640 finish_decl_cleanup (NULL_TREE, expr);
4641 }
4642 }
4643 }
4644
4645 /* Build a C++ vector delete expression.
4646 MAXINDEX is the number of elements to be deleted.
4647 ELT_SIZE is the nominal size of each element in the vector.
4648 BASE is the expression that should yield the store to be deleted.
4649 This function expands (or synthesizes) these calls itself.
4650 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4651
4652 This also calls delete for virtual baseclasses of elements of the vector.
4653
4654 Update: MAXINDEX is no longer needed. The size can be extracted from the
4655 start of the vector for pointers, and from the type for arrays. We still
4656 use MAXINDEX for arrays because it happens to already have one of the
4657 values we'd have to extract. (We could use MAXINDEX with pointers to
4658 confirm the size, and trap if the numbers differ; not clear that it'd
4659 be worth bothering.) */
4660
4661 tree
4662 build_vec_delete (tree base, tree maxindex,
4663 special_function_kind auto_delete_vec,
4664 int use_global_delete, tsubst_flags_t complain)
4665 {
4666 tree type;
4667 tree rval;
4668 tree base_init = NULL_TREE;
4669
4670 type = TREE_TYPE (base);
4671
4672 if (TYPE_PTR_P (type))
4673 {
4674 /* Step back one from start of vector, and read dimension. */
4675 tree cookie_addr;
4676 tree size_ptr_type = build_pointer_type (sizetype);
4677
4678 base = mark_rvalue_use (base);
4679 if (TREE_SIDE_EFFECTS (base))
4680 {
4681 base_init = get_target_expr (base);
4682 base = TARGET_EXPR_SLOT (base_init);
4683 }
4684 type = strip_array_types (TREE_TYPE (type));
4685 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4686 sizetype, TYPE_SIZE_UNIT (sizetype));
4687 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4688 cookie_addr);
4689 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4690 }
4691 else if (TREE_CODE (type) == ARRAY_TYPE)
4692 {
4693 /* Get the total number of things in the array, maxindex is a
4694 bad name. */
4695 maxindex = array_type_nelts_total (type);
4696 type = strip_array_types (type);
4697 base = decay_conversion (base, complain);
4698 if (base == error_mark_node)
4699 return error_mark_node;
4700 if (TREE_SIDE_EFFECTS (base))
4701 {
4702 base_init = get_target_expr (base);
4703 base = TARGET_EXPR_SLOT (base_init);
4704 }
4705 }
4706 else
4707 {
4708 if (base != error_mark_node && !(complain & tf_error))
4709 error ("type to vector delete is neither pointer or array type");
4710 return error_mark_node;
4711 }
4712
4713 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4714 use_global_delete, complain);
4715 if (base_init && rval != error_mark_node)
4716 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4717
4718 return rval;
4719 }