e1dee1d10dcb3187c809e6ee5ea28291525efb8e
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
57 static void diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool);
58
59 /* We are about to generate some complex initialization code.
60 Conceptually, it is all a single expression. However, we may want
61 to include conditionals, loops, and other such statement-level
62 constructs. Therefore, we build the initialization code inside a
63 statement-expression. This function starts such an expression.
64 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
65 pass them back to finish_init_stmts when the expression is
66 complete. */
67
68 static bool
69 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 {
71 bool is_global = !building_stmt_tree ();
72
73 *stmt_expr_p = begin_stmt_expr ();
74 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75
76 return is_global;
77 }
78
79 /* Finish out the statement-expression begun by the previous call to
80 begin_init_stmts. Returns the statement-expression itself. */
81
82 static tree
83 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 {
85 finish_compound_stmt (compound_stmt);
86
87 stmt_expr = finish_stmt_expr (stmt_expr, true);
88
89 gcc_assert (!building_stmt_tree () == is_global);
90
91 return stmt_expr;
92 }
93
94 /* Constructors */
95
96 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
97 which we want to initialize the vtable pointer for, DATA is
98 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99
100 static tree
101 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 {
103 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
104 return dfs_skip_bases;
105
106 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 {
108 tree base_ptr = TREE_VALUE ((tree) data);
109
110 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111
112 expand_virtual_init (binfo, base_ptr);
113 }
114
115 return NULL_TREE;
116 }
117
118 /* Initialize all the vtable pointers in the object pointed to by
119 ADDR. */
120
121 void
122 initialize_vtbl_ptrs (tree addr)
123 {
124 tree list;
125 tree type;
126
127 type = TREE_TYPE (TREE_TYPE (addr));
128 list = build_tree_list (type, addr);
129
130 /* Walk through the hierarchy, initializing the vptr in each base
131 class. We do these in pre-order because we can't find the virtual
132 bases for a class until we've initialized the vtbl for that
133 class. */
134 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
135 }
136
137 /* Return an expression for the zero-initialization of an object with
138 type T. This expression will either be a constant (in the case
139 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
140 aggregate), or NULL (in the case that T does not require
141 initialization). In either case, the value can be used as
142 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
143 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
144 is the number of elements in the array. If STATIC_STORAGE_P is
145 TRUE, initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
147 zero bytes. */
148
149 tree
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 {
152 tree init = NULL_TREE;
153
154 /* [dcl.init]
155
156 To zero-initialize an object of type T means:
157
158 -- if T is a scalar type, the storage is set to the value of zero
159 converted to T.
160
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
163
164 -- if T is a union type, the storage for its first data member is
165 zero-initialized.
166
167 -- if T is an array type, the storage for each element is
168 zero-initialized.
169
170 -- if T is a reference type, no initialization is performed. */
171
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173
174 if (type == error_mark_node)
175 ;
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
181 ;
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
185 {
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
188
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 {
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
194
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
200 {
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 if (value)
205 CONSTRUCTOR_APPEND_ELT(v, field, value);
206 }
207
208 /* For unions, only the first field is initialized. */
209 if (TREE_CODE (type) == UNION_TYPE)
210 break;
211 }
212
213 /* Build a constructor to contain the initializations. */
214 init = build_constructor (type, v);
215 }
216 else if (TREE_CODE (type) == ARRAY_TYPE)
217 {
218 tree max_index;
219 VEC(constructor_elt,gc) *v = NULL;
220
221 /* Iterate over the array elements, building initializations. */
222 if (nelts)
223 max_index = fold_build2_loc (input_location,
224 MINUS_EXPR, TREE_TYPE (nelts),
225 nelts, integer_one_node);
226 else
227 max_index = array_type_nelts (type);
228
229 /* If we have an error_mark here, we should just return error mark
230 as we don't know the size of the array yet. */
231 if (max_index == error_mark_node)
232 return error_mark_node;
233 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
234
235 /* A zero-sized array, which is accepted as an extension, will
236 have an upper bound of -1. */
237 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
238 {
239 constructor_elt *ce;
240
241 v = VEC_alloc (constructor_elt, gc, 1);
242 ce = VEC_quick_push (constructor_elt, v, NULL);
243
244 /* If this is a one element array, we just use a regular init. */
245 if (tree_int_cst_equal (size_zero_node, max_index))
246 ce->index = size_zero_node;
247 else
248 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
249 max_index);
250
251 ce->value = build_zero_init (TREE_TYPE (type),
252 /*nelts=*/NULL_TREE,
253 static_storage_p);
254 }
255
256 /* Build a constructor to contain the initializations. */
257 init = build_constructor (type, v);
258 }
259 else if (TREE_CODE (type) == VECTOR_TYPE)
260 init = fold_convert (type, integer_zero_node);
261 else
262 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
263
264 /* In all cases, the initializer is a constant. */
265 if (init)
266 TREE_CONSTANT (init) = 1;
267
268 return init;
269 }
270
271 /* Return a suitable initializer for value-initializing an object of type
272 TYPE, as described in [dcl.init]. */
273
274 tree
275 build_value_init (tree type)
276 {
277 /* [dcl.init]
278
279 To value-initialize an object of type T means:
280
281 - if T is a class type (clause 9) with a user-provided constructor
282 (12.1), then the default constructor for T is called (and the
283 initialization is ill-formed if T has no accessible default
284 constructor);
285
286 - if T is a non-union class type without a user-provided constructor,
287 then every non-static data member and base-class component of T is
288 value-initialized;92)
289
290 - if T is an array type, then each element is value-initialized;
291
292 - otherwise, the object is zero-initialized.
293
294 A program that calls for default-initialization or
295 value-initialization of an entity of reference type is ill-formed.
296
297 92) Value-initialization for such a class object may be implemented by
298 zero-initializing the object and then calling the default
299 constructor. */
300
301 if (CLASS_TYPE_P (type))
302 {
303 if (type_has_user_provided_constructor (type))
304 return build_aggr_init_expr
305 (type,
306 build_special_member_call (NULL_TREE, complete_ctor_identifier,
307 NULL, type, LOOKUP_NORMAL,
308 tf_warning_or_error));
309 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
310 {
311 /* This is a class that needs constructing, but doesn't have
312 a user-provided constructor. So we need to zero-initialize
313 the object and then call the implicitly defined ctor.
314 This will be handled in simplify_aggr_init_expr. */
315 tree ctor = build_special_member_call
316 (NULL_TREE, complete_ctor_identifier,
317 NULL, type, LOOKUP_NORMAL, tf_warning_or_error);
318
319 ctor = build_aggr_init_expr (type, ctor);
320 AGGR_INIT_ZERO_FIRST (ctor) = 1;
321 return ctor;
322 }
323 }
324 return build_value_init_noctor (type);
325 }
326
327 /* Like build_value_init, but don't call the constructor for TYPE. Used
328 for base initializers. */
329
330 tree
331 build_value_init_noctor (tree type)
332 {
333 if (CLASS_TYPE_P (type))
334 {
335 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
336
337 if (TREE_CODE (type) != UNION_TYPE)
338 {
339 tree field;
340 VEC(constructor_elt,gc) *v = NULL;
341
342 /* Iterate over the fields, building initializations. */
343 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
344 {
345 tree ftype, value;
346
347 if (TREE_CODE (field) != FIELD_DECL)
348 continue;
349
350 ftype = TREE_TYPE (field);
351
352 if (TREE_CODE (ftype) == REFERENCE_TYPE)
353 error ("value-initialization of reference");
354
355 /* We could skip vfields and fields of types with
356 user-defined constructors, but I think that won't improve
357 performance at all; it should be simpler in general just
358 to zero out the entire object than try to only zero the
359 bits that actually need it. */
360
361 /* Note that for class types there will be FIELD_DECLs
362 corresponding to base classes as well. Thus, iterating
363 over TYPE_FIELDs will result in correct initialization of
364 all of the subobjects. */
365 value = build_value_init (ftype);
366
367 if (value)
368 CONSTRUCTOR_APPEND_ELT(v, field, value);
369 }
370
371 /* Build a constructor to contain the zero- initializations. */
372 return build_constructor (type, v);
373 }
374 }
375 else if (TREE_CODE (type) == ARRAY_TYPE)
376 {
377 VEC(constructor_elt,gc) *v = NULL;
378
379 /* Iterate over the array elements, building initializations. */
380 tree max_index = array_type_nelts (type);
381
382 /* If we have an error_mark here, we should just return error mark
383 as we don't know the size of the array yet. */
384 if (max_index == error_mark_node)
385 return error_mark_node;
386 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
387
388 /* A zero-sized array, which is accepted as an extension, will
389 have an upper bound of -1. */
390 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
391 {
392 constructor_elt *ce;
393
394 v = VEC_alloc (constructor_elt, gc, 1);
395 ce = VEC_quick_push (constructor_elt, v, NULL);
396
397 /* If this is a one element array, we just use a regular init. */
398 if (tree_int_cst_equal (size_zero_node, max_index))
399 ce->index = size_zero_node;
400 else
401 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
402 max_index);
403
404 ce->value = build_value_init (TREE_TYPE (type));
405
406 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
407 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
408 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
409 }
410
411 /* Build a constructor to contain the initializations. */
412 return build_constructor (type, v);
413 }
414
415 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
416 }
417
418 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
419 arguments. If TREE_LIST is void_type_node, an empty initializer
420 list was given; if NULL_TREE no initializer was given. */
421
422 static void
423 perform_member_init (tree member, tree init)
424 {
425 tree decl;
426 tree type = TREE_TYPE (member);
427
428 /* Effective C++ rule 12 requires that all data members be
429 initialized. */
430 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
431 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
432 "%qD should be initialized in the member initialization list",
433 member);
434
435 /* Get an lvalue for the data member. */
436 decl = build_class_member_access_expr (current_class_ref, member,
437 /*access_path=*/NULL_TREE,
438 /*preserve_reference=*/true,
439 tf_warning_or_error);
440 if (decl == error_mark_node)
441 return;
442
443 if (init == void_type_node)
444 {
445 /* mem() means value-initialization. */
446 if (TREE_CODE (type) == ARRAY_TYPE)
447 {
448 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
449 /*explicit_value_init_p=*/true,
450 /* from_array=*/0,
451 tf_warning_or_error);
452 finish_expr_stmt (init);
453 }
454 else
455 {
456 if (TREE_CODE (type) == REFERENCE_TYPE)
457 permerror (DECL_SOURCE_LOCATION (current_function_decl),
458 "value-initialization of %q#D, which has reference type",
459 member);
460 else
461 {
462 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
463 finish_expr_stmt (init);
464 }
465 }
466 }
467 /* Deal with this here, as we will get confused if we try to call the
468 assignment op for an anonymous union. This can happen in a
469 synthesized copy constructor. */
470 else if (ANON_AGGR_TYPE_P (type))
471 {
472 if (init)
473 {
474 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
475 finish_expr_stmt (init);
476 }
477 }
478 else if (TYPE_NEEDS_CONSTRUCTING (type))
479 {
480 if (init != NULL_TREE
481 && TREE_CODE (type) == ARRAY_TYPE
482 && TREE_CHAIN (init) == NULL_TREE
483 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
484 {
485 /* Initialization of one array from another. */
486 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
487 /*explicit_value_init_p=*/false,
488 /* from_array=*/1,
489 tf_warning_or_error));
490 }
491 else
492 {
493 if (CP_TYPE_CONST_P (type)
494 && init == NULL_TREE
495 && !type_has_user_provided_default_constructor (type))
496 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
497 vtable; still give this diagnostic. */
498 permerror (DECL_SOURCE_LOCATION (current_function_decl),
499 "uninitialized member %qD with %<const%> type %qT",
500 member, type);
501 finish_expr_stmt (build_aggr_init (decl, init, 0,
502 tf_warning_or_error));
503 }
504 }
505 else
506 {
507 if (init == NULL_TREE)
508 {
509 /* member traversal: note it leaves init NULL */
510 if (TREE_CODE (type) == REFERENCE_TYPE)
511 permerror (DECL_SOURCE_LOCATION (current_function_decl),
512 "uninitialized reference member %qD",
513 member);
514 else if (CP_TYPE_CONST_P (type))
515 permerror (DECL_SOURCE_LOCATION (current_function_decl),
516 "uninitialized member %qD with %<const%> type %qT",
517 member, type);
518 }
519 else if (TREE_CODE (init) == TREE_LIST)
520 /* There was an explicit member initialization. Do some work
521 in that case. */
522 init = build_x_compound_expr_from_list (init, "member initializer");
523
524 if (init)
525 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
526 tf_warning_or_error));
527 }
528
529 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
530 {
531 tree expr;
532
533 expr = build_class_member_access_expr (current_class_ref, member,
534 /*access_path=*/NULL_TREE,
535 /*preserve_reference=*/false,
536 tf_warning_or_error);
537 expr = build_delete (type, expr, sfk_complete_destructor,
538 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
539
540 if (expr != error_mark_node)
541 finish_eh_cleanup (expr);
542 }
543 }
544
545 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
546 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
547
548 static tree
549 build_field_list (tree t, tree list, int *uses_unions_p)
550 {
551 tree fields;
552
553 *uses_unions_p = 0;
554
555 /* Note whether or not T is a union. */
556 if (TREE_CODE (t) == UNION_TYPE)
557 *uses_unions_p = 1;
558
559 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
560 {
561 /* Skip CONST_DECLs for enumeration constants and so forth. */
562 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
563 continue;
564
565 /* Keep track of whether or not any fields are unions. */
566 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
567 *uses_unions_p = 1;
568
569 /* For an anonymous struct or union, we must recursively
570 consider the fields of the anonymous type. They can be
571 directly initialized from the constructor. */
572 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
573 {
574 /* Add this field itself. Synthesized copy constructors
575 initialize the entire aggregate. */
576 list = tree_cons (fields, NULL_TREE, list);
577 /* And now add the fields in the anonymous aggregate. */
578 list = build_field_list (TREE_TYPE (fields), list,
579 uses_unions_p);
580 }
581 /* Add this field. */
582 else if (DECL_NAME (fields))
583 list = tree_cons (fields, NULL_TREE, list);
584 }
585
586 return list;
587 }
588
589 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
590 a FIELD_DECL or BINFO in T that needs initialization. The
591 TREE_VALUE gives the initializer, or list of initializer arguments.
592
593 Return a TREE_LIST containing all of the initializations required
594 for T, in the order in which they should be performed. The output
595 list has the same format as the input. */
596
597 static tree
598 sort_mem_initializers (tree t, tree mem_inits)
599 {
600 tree init;
601 tree base, binfo, base_binfo;
602 tree sorted_inits;
603 tree next_subobject;
604 VEC(tree,gc) *vbases;
605 int i;
606 int uses_unions_p;
607
608 /* Build up a list of initializations. The TREE_PURPOSE of entry
609 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
610 TREE_VALUE will be the constructor arguments, or NULL if no
611 explicit initialization was provided. */
612 sorted_inits = NULL_TREE;
613
614 /* Process the virtual bases. */
615 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
616 VEC_iterate (tree, vbases, i, base); i++)
617 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
618
619 /* Process the direct bases. */
620 for (binfo = TYPE_BINFO (t), i = 0;
621 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
622 if (!BINFO_VIRTUAL_P (base_binfo))
623 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
624
625 /* Process the non-static data members. */
626 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
627 /* Reverse the entire list of initializations, so that they are in
628 the order that they will actually be performed. */
629 sorted_inits = nreverse (sorted_inits);
630
631 /* If the user presented the initializers in an order different from
632 that in which they will actually occur, we issue a warning. Keep
633 track of the next subobject which can be explicitly initialized
634 without issuing a warning. */
635 next_subobject = sorted_inits;
636
637 /* Go through the explicit initializers, filling in TREE_PURPOSE in
638 the SORTED_INITS. */
639 for (init = mem_inits; init; init = TREE_CHAIN (init))
640 {
641 tree subobject;
642 tree subobject_init;
643
644 subobject = TREE_PURPOSE (init);
645
646 /* If the explicit initializers are in sorted order, then
647 SUBOBJECT will be NEXT_SUBOBJECT, or something following
648 it. */
649 for (subobject_init = next_subobject;
650 subobject_init;
651 subobject_init = TREE_CHAIN (subobject_init))
652 if (TREE_PURPOSE (subobject_init) == subobject)
653 break;
654
655 /* Issue a warning if the explicit initializer order does not
656 match that which will actually occur.
657 ??? Are all these on the correct lines? */
658 if (warn_reorder && !subobject_init)
659 {
660 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
661 warning (OPT_Wreorder, "%q+D will be initialized after",
662 TREE_PURPOSE (next_subobject));
663 else
664 warning (OPT_Wreorder, "base %qT will be initialized after",
665 TREE_PURPOSE (next_subobject));
666 if (TREE_CODE (subobject) == FIELD_DECL)
667 warning (OPT_Wreorder, " %q+#D", subobject);
668 else
669 warning (OPT_Wreorder, " base %qT", subobject);
670 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
671 OPT_Wreorder, " when initialized here");
672 }
673
674 /* Look again, from the beginning of the list. */
675 if (!subobject_init)
676 {
677 subobject_init = sorted_inits;
678 while (TREE_PURPOSE (subobject_init) != subobject)
679 subobject_init = TREE_CHAIN (subobject_init);
680 }
681
682 /* It is invalid to initialize the same subobject more than
683 once. */
684 if (TREE_VALUE (subobject_init))
685 {
686 if (TREE_CODE (subobject) == FIELD_DECL)
687 error_at (DECL_SOURCE_LOCATION (current_function_decl),
688 "multiple initializations given for %qD",
689 subobject);
690 else
691 error_at (DECL_SOURCE_LOCATION (current_function_decl),
692 "multiple initializations given for base %qT",
693 subobject);
694 }
695
696 /* Record the initialization. */
697 TREE_VALUE (subobject_init) = TREE_VALUE (init);
698 next_subobject = subobject_init;
699 }
700
701 /* [class.base.init]
702
703 If a ctor-initializer specifies more than one mem-initializer for
704 multiple members of the same union (including members of
705 anonymous unions), the ctor-initializer is ill-formed. */
706 if (uses_unions_p)
707 {
708 tree last_field = NULL_TREE;
709 for (init = sorted_inits; init; init = TREE_CHAIN (init))
710 {
711 tree field;
712 tree field_type;
713 int done;
714
715 /* Skip uninitialized members and base classes. */
716 if (!TREE_VALUE (init)
717 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
718 continue;
719 /* See if this field is a member of a union, or a member of a
720 structure contained in a union, etc. */
721 field = TREE_PURPOSE (init);
722 for (field_type = DECL_CONTEXT (field);
723 !same_type_p (field_type, t);
724 field_type = TYPE_CONTEXT (field_type))
725 if (TREE_CODE (field_type) == UNION_TYPE)
726 break;
727 /* If this field is not a member of a union, skip it. */
728 if (TREE_CODE (field_type) != UNION_TYPE)
729 continue;
730
731 /* It's only an error if we have two initializers for the same
732 union type. */
733 if (!last_field)
734 {
735 last_field = field;
736 continue;
737 }
738
739 /* See if LAST_FIELD and the field initialized by INIT are
740 members of the same union. If so, there's a problem,
741 unless they're actually members of the same structure
742 which is itself a member of a union. For example, given:
743
744 union { struct { int i; int j; }; };
745
746 initializing both `i' and `j' makes sense. */
747 field_type = DECL_CONTEXT (field);
748 done = 0;
749 do
750 {
751 tree last_field_type;
752
753 last_field_type = DECL_CONTEXT (last_field);
754 while (1)
755 {
756 if (same_type_p (last_field_type, field_type))
757 {
758 if (TREE_CODE (field_type) == UNION_TYPE)
759 error_at (DECL_SOURCE_LOCATION (current_function_decl),
760 "initializations for multiple members of %qT",
761 last_field_type);
762 done = 1;
763 break;
764 }
765
766 if (same_type_p (last_field_type, t))
767 break;
768
769 last_field_type = TYPE_CONTEXT (last_field_type);
770 }
771
772 /* If we've reached the outermost class, then we're
773 done. */
774 if (same_type_p (field_type, t))
775 break;
776
777 field_type = TYPE_CONTEXT (field_type);
778 }
779 while (!done);
780
781 last_field = field;
782 }
783 }
784
785 return sorted_inits;
786 }
787
788 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
789 is a TREE_LIST giving the explicit mem-initializer-list for the
790 constructor. The TREE_PURPOSE of each entry is a subobject (a
791 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
792 is a TREE_LIST giving the arguments to the constructor or
793 void_type_node for an empty list of arguments. */
794
795 void
796 emit_mem_initializers (tree mem_inits)
797 {
798 /* We will already have issued an error message about the fact that
799 the type is incomplete. */
800 if (!COMPLETE_TYPE_P (current_class_type))
801 return;
802
803 /* Sort the mem-initializers into the order in which the
804 initializations should be performed. */
805 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
806
807 in_base_initializer = 1;
808
809 /* Initialize base classes. */
810 while (mem_inits
811 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
812 {
813 tree subobject = TREE_PURPOSE (mem_inits);
814 tree arguments = TREE_VALUE (mem_inits);
815
816 /* If these initializations are taking place in a copy constructor,
817 the base class should probably be explicitly initialized if there
818 is a user-defined constructor in the base class (other than the
819 default constructor, which will be called anyway). */
820 if (extra_warnings && !arguments
821 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
822 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
823 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Wextra,
824 "base class %q#T should be explicitly initialized in the "
825 "copy constructor",
826 BINFO_TYPE (subobject));
827
828 /* Initialize the base. */
829 if (BINFO_VIRTUAL_P (subobject))
830 construct_virtual_base (subobject, arguments);
831 else
832 {
833 tree base_addr;
834
835 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
836 subobject, 1);
837 expand_aggr_init_1 (subobject, NULL_TREE,
838 cp_build_indirect_ref (base_addr, RO_NULL,
839 tf_warning_or_error),
840 arguments,
841 LOOKUP_NORMAL,
842 tf_warning_or_error);
843 expand_cleanup_for_base (subobject, NULL_TREE);
844 }
845
846 mem_inits = TREE_CHAIN (mem_inits);
847 }
848 in_base_initializer = 0;
849
850 /* Initialize the vptrs. */
851 initialize_vtbl_ptrs (current_class_ptr);
852
853 /* Initialize the data members. */
854 while (mem_inits)
855 {
856 perform_member_init (TREE_PURPOSE (mem_inits),
857 TREE_VALUE (mem_inits));
858 mem_inits = TREE_CHAIN (mem_inits);
859 }
860 }
861
862 /* Returns the address of the vtable (i.e., the value that should be
863 assigned to the vptr) for BINFO. */
864
865 static tree
866 build_vtbl_address (tree binfo)
867 {
868 tree binfo_for = binfo;
869 tree vtbl;
870
871 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
872 /* If this is a virtual primary base, then the vtable we want to store
873 is that for the base this is being used as the primary base of. We
874 can't simply skip the initialization, because we may be expanding the
875 inits of a subobject constructor where the virtual base layout
876 can be different. */
877 while (BINFO_PRIMARY_P (binfo_for))
878 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
879
880 /* Figure out what vtable BINFO's vtable is based on, and mark it as
881 used. */
882 vtbl = get_vtbl_decl_for_binfo (binfo_for);
883 TREE_USED (vtbl) = 1;
884
885 /* Now compute the address to use when initializing the vptr. */
886 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
887 if (TREE_CODE (vtbl) == VAR_DECL)
888 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
889
890 return vtbl;
891 }
892
893 /* This code sets up the virtual function tables appropriate for
894 the pointer DECL. It is a one-ply initialization.
895
896 BINFO is the exact type that DECL is supposed to be. In
897 multiple inheritance, this might mean "C's A" if C : A, B. */
898
899 static void
900 expand_virtual_init (tree binfo, tree decl)
901 {
902 tree vtbl, vtbl_ptr;
903 tree vtt_index;
904
905 /* Compute the initializer for vptr. */
906 vtbl = build_vtbl_address (binfo);
907
908 /* We may get this vptr from a VTT, if this is a subobject
909 constructor or subobject destructor. */
910 vtt_index = BINFO_VPTR_INDEX (binfo);
911 if (vtt_index)
912 {
913 tree vtbl2;
914 tree vtt_parm;
915
916 /* Compute the value to use, when there's a VTT. */
917 vtt_parm = current_vtt_parm;
918 vtbl2 = build2 (POINTER_PLUS_EXPR,
919 TREE_TYPE (vtt_parm),
920 vtt_parm,
921 vtt_index);
922 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
923 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
924
925 /* The actual initializer is the VTT value only in the subobject
926 constructor. In maybe_clone_body we'll substitute NULL for
927 the vtt_parm in the case of the non-subobject constructor. */
928 vtbl = build3 (COND_EXPR,
929 TREE_TYPE (vtbl),
930 build2 (EQ_EXPR, boolean_type_node,
931 current_in_charge_parm, integer_zero_node),
932 vtbl2,
933 vtbl);
934 }
935
936 /* Compute the location of the vtpr. */
937 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
938 tf_warning_or_error),
939 TREE_TYPE (binfo));
940 gcc_assert (vtbl_ptr != error_mark_node);
941
942 /* Assign the vtable to the vptr. */
943 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
944 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
945 tf_warning_or_error));
946 }
947
948 /* If an exception is thrown in a constructor, those base classes already
949 constructed must be destroyed. This function creates the cleanup
950 for BINFO, which has just been constructed. If FLAG is non-NULL,
951 it is a DECL which is nonzero when this base needs to be
952 destroyed. */
953
954 static void
955 expand_cleanup_for_base (tree binfo, tree flag)
956 {
957 tree expr;
958
959 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
960 return;
961
962 /* Call the destructor. */
963 expr = build_special_member_call (current_class_ref,
964 base_dtor_identifier,
965 NULL,
966 binfo,
967 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
968 tf_warning_or_error);
969 if (flag)
970 expr = fold_build3_loc (input_location,
971 COND_EXPR, void_type_node,
972 c_common_truthvalue_conversion (input_location, flag),
973 expr, integer_zero_node);
974
975 finish_eh_cleanup (expr);
976 }
977
978 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
979 constructor. */
980
981 static void
982 construct_virtual_base (tree vbase, tree arguments)
983 {
984 tree inner_if_stmt;
985 tree exp;
986 tree flag;
987
988 /* If there are virtual base classes with destructors, we need to
989 emit cleanups to destroy them if an exception is thrown during
990 the construction process. These exception regions (i.e., the
991 period during which the cleanups must occur) begin from the time
992 the construction is complete to the end of the function. If we
993 create a conditional block in which to initialize the
994 base-classes, then the cleanup region for the virtual base begins
995 inside a block, and ends outside of that block. This situation
996 confuses the sjlj exception-handling code. Therefore, we do not
997 create a single conditional block, but one for each
998 initialization. (That way the cleanup regions always begin
999 in the outer block.) We trust the back end to figure out
1000 that the FLAG will not change across initializations, and
1001 avoid doing multiple tests. */
1002 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
1003 inner_if_stmt = begin_if_stmt ();
1004 finish_if_stmt_cond (flag, inner_if_stmt);
1005
1006 /* Compute the location of the virtual base. If we're
1007 constructing virtual bases, then we must be the most derived
1008 class. Therefore, we don't have to look up the virtual base;
1009 we already know where it is. */
1010 exp = convert_to_base_statically (current_class_ref, vbase);
1011
1012 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1013 LOOKUP_COMPLAIN, tf_warning_or_error);
1014 finish_then_clause (inner_if_stmt);
1015 finish_if_stmt (inner_if_stmt);
1016
1017 expand_cleanup_for_base (vbase, flag);
1018 }
1019
1020 /* Find the context in which this FIELD can be initialized. */
1021
1022 static tree
1023 initializing_context (tree field)
1024 {
1025 tree t = DECL_CONTEXT (field);
1026
1027 /* Anonymous union members can be initialized in the first enclosing
1028 non-anonymous union context. */
1029 while (t && ANON_AGGR_TYPE_P (t))
1030 t = TYPE_CONTEXT (t);
1031 return t;
1032 }
1033
1034 /* Function to give error message if member initialization specification
1035 is erroneous. FIELD is the member we decided to initialize.
1036 TYPE is the type for which the initialization is being performed.
1037 FIELD must be a member of TYPE.
1038
1039 MEMBER_NAME is the name of the member. */
1040
1041 static int
1042 member_init_ok_or_else (tree field, tree type, tree member_name)
1043 {
1044 if (field == error_mark_node)
1045 return 0;
1046 if (!field)
1047 {
1048 error ("class %qT does not have any field named %qD", type,
1049 member_name);
1050 return 0;
1051 }
1052 if (TREE_CODE (field) == VAR_DECL)
1053 {
1054 error ("%q#D is a static data member; it can only be "
1055 "initialized at its definition",
1056 field);
1057 return 0;
1058 }
1059 if (TREE_CODE (field) != FIELD_DECL)
1060 {
1061 error ("%q#D is not a non-static data member of %qT",
1062 field, type);
1063 return 0;
1064 }
1065 if (initializing_context (field) != type)
1066 {
1067 error ("class %qT does not have any field named %qD", type,
1068 member_name);
1069 return 0;
1070 }
1071
1072 return 1;
1073 }
1074
1075 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1076 is a _TYPE node or TYPE_DECL which names a base for that type.
1077 Check the validity of NAME, and return either the base _TYPE, base
1078 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1079 NULL_TREE and issue a diagnostic.
1080
1081 An old style unnamed direct single base construction is permitted,
1082 where NAME is NULL. */
1083
1084 tree
1085 expand_member_init (tree name)
1086 {
1087 tree basetype;
1088 tree field;
1089
1090 if (!current_class_ref)
1091 return NULL_TREE;
1092
1093 if (!name)
1094 {
1095 /* This is an obsolete unnamed base class initializer. The
1096 parser will already have warned about its use. */
1097 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1098 {
1099 case 0:
1100 error ("unnamed initializer for %qT, which has no base classes",
1101 current_class_type);
1102 return NULL_TREE;
1103 case 1:
1104 basetype = BINFO_TYPE
1105 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1106 break;
1107 default:
1108 error ("unnamed initializer for %qT, which uses multiple inheritance",
1109 current_class_type);
1110 return NULL_TREE;
1111 }
1112 }
1113 else if (TYPE_P (name))
1114 {
1115 basetype = TYPE_MAIN_VARIANT (name);
1116 name = TYPE_NAME (name);
1117 }
1118 else if (TREE_CODE (name) == TYPE_DECL)
1119 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1120 else
1121 basetype = NULL_TREE;
1122
1123 if (basetype)
1124 {
1125 tree class_binfo;
1126 tree direct_binfo;
1127 tree virtual_binfo;
1128 int i;
1129
1130 if (current_template_parms)
1131 return basetype;
1132
1133 class_binfo = TYPE_BINFO (current_class_type);
1134 direct_binfo = NULL_TREE;
1135 virtual_binfo = NULL_TREE;
1136
1137 /* Look for a direct base. */
1138 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1139 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1140 break;
1141
1142 /* Look for a virtual base -- unless the direct base is itself
1143 virtual. */
1144 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1145 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1146
1147 /* [class.base.init]
1148
1149 If a mem-initializer-id is ambiguous because it designates
1150 both a direct non-virtual base class and an inherited virtual
1151 base class, the mem-initializer is ill-formed. */
1152 if (direct_binfo && virtual_binfo)
1153 {
1154 error ("%qD is both a direct base and an indirect virtual base",
1155 basetype);
1156 return NULL_TREE;
1157 }
1158
1159 if (!direct_binfo && !virtual_binfo)
1160 {
1161 if (CLASSTYPE_VBASECLASSES (current_class_type))
1162 error ("type %qT is not a direct or virtual base of %qT",
1163 basetype, current_class_type);
1164 else
1165 error ("type %qT is not a direct base of %qT",
1166 basetype, current_class_type);
1167 return NULL_TREE;
1168 }
1169
1170 return direct_binfo ? direct_binfo : virtual_binfo;
1171 }
1172 else
1173 {
1174 if (TREE_CODE (name) == IDENTIFIER_NODE)
1175 field = lookup_field (current_class_type, name, 1, false);
1176 else
1177 field = name;
1178
1179 if (member_init_ok_or_else (field, current_class_type, name))
1180 return field;
1181 }
1182
1183 return NULL_TREE;
1184 }
1185
1186 /* This is like `expand_member_init', only it stores one aggregate
1187 value into another.
1188
1189 INIT comes in two flavors: it is either a value which
1190 is to be stored in EXP, or it is a parameter list
1191 to go to a constructor, which will operate on EXP.
1192 If INIT is not a parameter list for a constructor, then set
1193 LOOKUP_ONLYCONVERTING.
1194 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1195 the initializer, if FLAGS is 0, then it is the (init) form.
1196 If `init' is a CONSTRUCTOR, then we emit a warning message,
1197 explaining that such initializations are invalid.
1198
1199 If INIT resolves to a CALL_EXPR which happens to return
1200 something of the type we are looking for, then we know
1201 that we can safely use that call to perform the
1202 initialization.
1203
1204 The virtual function table pointer cannot be set up here, because
1205 we do not really know its type.
1206
1207 This never calls operator=().
1208
1209 When initializing, nothing is CONST.
1210
1211 A default copy constructor may have to be used to perform the
1212 initialization.
1213
1214 A constructor or a conversion operator may have to be used to
1215 perform the initialization, but not both, as it would be ambiguous. */
1216
1217 tree
1218 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1219 {
1220 tree stmt_expr;
1221 tree compound_stmt;
1222 int destroy_temps;
1223 tree type = TREE_TYPE (exp);
1224 int was_const = TREE_READONLY (exp);
1225 int was_volatile = TREE_THIS_VOLATILE (exp);
1226 int is_global;
1227
1228 if (init == error_mark_node)
1229 return error_mark_node;
1230
1231 TREE_READONLY (exp) = 0;
1232 TREE_THIS_VOLATILE (exp) = 0;
1233
1234 if (init && TREE_CODE (init) != TREE_LIST)
1235 flags |= LOOKUP_ONLYCONVERTING;
1236
1237 if (TREE_CODE (type) == ARRAY_TYPE)
1238 {
1239 tree itype;
1240
1241 /* An array may not be initialized use the parenthesized
1242 initialization form -- unless the initializer is "()". */
1243 if (init && TREE_CODE (init) == TREE_LIST)
1244 {
1245 if (complain & tf_error)
1246 error ("bad array initializer");
1247 return error_mark_node;
1248 }
1249 /* Must arrange to initialize each element of EXP
1250 from elements of INIT. */
1251 itype = init ? TREE_TYPE (init) : NULL_TREE;
1252 if (cv_qualified_p (type))
1253 TREE_TYPE (exp) = cv_unqualified (type);
1254 if (itype && cv_qualified_p (itype))
1255 TREE_TYPE (init) = cv_unqualified (itype);
1256 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1257 /*explicit_value_init_p=*/false,
1258 itype && same_type_p (TREE_TYPE (init),
1259 TREE_TYPE (exp)),
1260 complain);
1261 TREE_READONLY (exp) = was_const;
1262 TREE_THIS_VOLATILE (exp) = was_volatile;
1263 TREE_TYPE (exp) = type;
1264 if (init)
1265 TREE_TYPE (init) = itype;
1266 return stmt_expr;
1267 }
1268
1269 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1270 /* Just know that we've seen something for this node. */
1271 TREE_USED (exp) = 1;
1272
1273 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1274 destroy_temps = stmts_are_full_exprs_p ();
1275 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1276 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1277 init, LOOKUP_NORMAL|flags, complain);
1278 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1279 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1280 TREE_READONLY (exp) = was_const;
1281 TREE_THIS_VOLATILE (exp) = was_volatile;
1282
1283 return stmt_expr;
1284 }
1285
1286 static void
1287 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1288 tsubst_flags_t complain)
1289 {
1290 tree type = TREE_TYPE (exp);
1291 tree ctor_name;
1292
1293 /* It fails because there may not be a constructor which takes
1294 its own type as the first (or only parameter), but which does
1295 take other types via a conversion. So, if the thing initializing
1296 the expression is a unit element of type X, first try X(X&),
1297 followed by initialization by X. If neither of these work
1298 out, then look hard. */
1299 tree rval;
1300 VEC(tree,gc) *parms;
1301
1302 if (init && TREE_CODE (init) != TREE_LIST
1303 && (flags & LOOKUP_ONLYCONVERTING))
1304 {
1305 /* Base subobjects should only get direct-initialization. */
1306 gcc_assert (true_exp == exp);
1307
1308 if (flags & DIRECT_BIND)
1309 /* Do nothing. We hit this in two cases: Reference initialization,
1310 where we aren't initializing a real variable, so we don't want
1311 to run a new constructor; and catching an exception, where we
1312 have already built up the constructor call so we could wrap it
1313 in an exception region. */;
1314 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1315 && CP_AGGREGATE_TYPE_P (type))
1316 {
1317 /* A brace-enclosed initializer for an aggregate. */
1318 init = digest_init (type, init);
1319 }
1320 else
1321 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1322
1323 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1324 /* We need to protect the initialization of a catch parm with a
1325 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1326 around the TARGET_EXPR for the copy constructor. See
1327 initialize_handler_parm. */
1328 {
1329 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1330 TREE_OPERAND (init, 0));
1331 TREE_TYPE (init) = void_type_node;
1332 }
1333 else
1334 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1335 TREE_SIDE_EFFECTS (init) = 1;
1336 finish_expr_stmt (init);
1337 return;
1338 }
1339
1340 if (init == NULL_TREE)
1341 parms = NULL;
1342 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1343 {
1344 parms = make_tree_vector ();
1345 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1346 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1347 }
1348 else
1349 parms = make_tree_vector_single (init);
1350
1351 if (true_exp == exp)
1352 ctor_name = complete_ctor_identifier;
1353 else
1354 ctor_name = base_ctor_identifier;
1355
1356 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1357 complain);
1358
1359 if (parms != NULL)
1360 release_tree_vector (parms);
1361
1362 if (TREE_SIDE_EFFECTS (rval))
1363 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1364 }
1365
1366 /* This function is responsible for initializing EXP with INIT
1367 (if any).
1368
1369 BINFO is the binfo of the type for who we are performing the
1370 initialization. For example, if W is a virtual base class of A and B,
1371 and C : A, B.
1372 If we are initializing B, then W must contain B's W vtable, whereas
1373 were we initializing C, W must contain C's W vtable.
1374
1375 TRUE_EXP is nonzero if it is the true expression being initialized.
1376 In this case, it may be EXP, or may just contain EXP. The reason we
1377 need this is because if EXP is a base element of TRUE_EXP, we
1378 don't necessarily know by looking at EXP where its virtual
1379 baseclass fields should really be pointing. But we do know
1380 from TRUE_EXP. In constructors, we don't know anything about
1381 the value being initialized.
1382
1383 FLAGS is just passed to `build_new_method_call'. See that function
1384 for its description. */
1385
1386 static void
1387 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1388 tsubst_flags_t complain)
1389 {
1390 tree type = TREE_TYPE (exp);
1391
1392 gcc_assert (init != error_mark_node && type != error_mark_node);
1393 gcc_assert (building_stmt_tree ());
1394
1395 /* Use a function returning the desired type to initialize EXP for us.
1396 If the function is a constructor, and its first argument is
1397 NULL_TREE, know that it was meant for us--just slide exp on
1398 in and expand the constructor. Constructors now come
1399 as TARGET_EXPRs. */
1400
1401 if (init && TREE_CODE (exp) == VAR_DECL
1402 && COMPOUND_LITERAL_P (init))
1403 {
1404 /* If store_init_value returns NULL_TREE, the INIT has been
1405 recorded as the DECL_INITIAL for EXP. That means there's
1406 nothing more we have to do. */
1407 init = store_init_value (exp, init, flags);
1408 if (init)
1409 finish_expr_stmt (init);
1410 return;
1411 }
1412
1413 /* If an explicit -- but empty -- initializer list was present,
1414 that's value-initialization. */
1415 if (init == void_type_node)
1416 {
1417 /* If there's a user-provided constructor, we just call that. */
1418 if (type_has_user_provided_constructor (type))
1419 /* Fall through. */;
1420 /* If there isn't, but we still need to call the constructor,
1421 zero out the object first. */
1422 else if (TYPE_NEEDS_CONSTRUCTING (type))
1423 {
1424 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1425 init = build2 (INIT_EXPR, type, exp, init);
1426 finish_expr_stmt (init);
1427 /* And then call the constructor. */
1428 }
1429 /* If we don't need to mess with the constructor at all,
1430 then just zero out the object and we're done. */
1431 else
1432 {
1433 init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
1434 finish_expr_stmt (init);
1435 return;
1436 }
1437 init = NULL_TREE;
1438 }
1439
1440 /* We know that expand_default_init can handle everything we want
1441 at this point. */
1442 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1443 }
1444
1445 /* Report an error if TYPE is not a user-defined, class type. If
1446 OR_ELSE is nonzero, give an error message. */
1447
1448 int
1449 is_class_type (tree type, int or_else)
1450 {
1451 if (type == error_mark_node)
1452 return 0;
1453
1454 if (! CLASS_TYPE_P (type))
1455 {
1456 if (or_else)
1457 error ("%qT is not a class type", type);
1458 return 0;
1459 }
1460 return 1;
1461 }
1462
1463 tree
1464 get_type_value (tree name)
1465 {
1466 if (name == error_mark_node)
1467 return NULL_TREE;
1468
1469 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1470 return IDENTIFIER_TYPE_VALUE (name);
1471 else
1472 return NULL_TREE;
1473 }
1474
1475 /* Build a reference to a member of an aggregate. This is not a C++
1476 `&', but really something which can have its address taken, and
1477 then act as a pointer to member, for example TYPE :: FIELD can have
1478 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1479 this expression is the operand of "&".
1480
1481 @@ Prints out lousy diagnostics for operator <typename>
1482 @@ fields.
1483
1484 @@ This function should be rewritten and placed in search.c. */
1485
1486 tree
1487 build_offset_ref (tree type, tree member, bool address_p)
1488 {
1489 tree decl;
1490 tree basebinfo = NULL_TREE;
1491
1492 /* class templates can come in as TEMPLATE_DECLs here. */
1493 if (TREE_CODE (member) == TEMPLATE_DECL)
1494 return member;
1495
1496 if (dependent_type_p (type) || type_dependent_expression_p (member))
1497 return build_qualified_name (NULL_TREE, type, member,
1498 /*template_p=*/false);
1499
1500 gcc_assert (TYPE_P (type));
1501 if (! is_class_type (type, 1))
1502 return error_mark_node;
1503
1504 gcc_assert (DECL_P (member) || BASELINK_P (member));
1505 /* Callers should call mark_used before this point. */
1506 gcc_assert (!DECL_P (member) || TREE_USED (member));
1507
1508 if (!COMPLETE_TYPE_P (complete_type (type))
1509 && !TYPE_BEING_DEFINED (type))
1510 {
1511 error ("incomplete type %qT does not have member %qD", type, member);
1512 return error_mark_node;
1513 }
1514
1515 /* Entities other than non-static members need no further
1516 processing. */
1517 if (TREE_CODE (member) == TYPE_DECL)
1518 return member;
1519 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1520 return convert_from_reference (member);
1521
1522 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1523 {
1524 error ("invalid pointer to bit-field %qD", member);
1525 return error_mark_node;
1526 }
1527
1528 /* Set up BASEBINFO for member lookup. */
1529 decl = maybe_dummy_object (type, &basebinfo);
1530
1531 /* A lot of this logic is now handled in lookup_member. */
1532 if (BASELINK_P (member))
1533 {
1534 /* Go from the TREE_BASELINK to the member function info. */
1535 tree t = BASELINK_FUNCTIONS (member);
1536
1537 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1538 {
1539 /* Get rid of a potential OVERLOAD around it. */
1540 t = OVL_CURRENT (t);
1541
1542 /* Unique functions are handled easily. */
1543
1544 /* For non-static member of base class, we need a special rule
1545 for access checking [class.protected]:
1546
1547 If the access is to form a pointer to member, the
1548 nested-name-specifier shall name the derived class
1549 (or any class derived from that class). */
1550 if (address_p && DECL_P (t)
1551 && DECL_NONSTATIC_MEMBER_P (t))
1552 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1553 else
1554 perform_or_defer_access_check (basebinfo, t, t);
1555
1556 if (DECL_STATIC_FUNCTION_P (t))
1557 return t;
1558 member = t;
1559 }
1560 else
1561 TREE_TYPE (member) = unknown_type_node;
1562 }
1563 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1564 /* We need additional test besides the one in
1565 check_accessibility_of_qualified_id in case it is
1566 a pointer to non-static member. */
1567 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1568
1569 if (!address_p)
1570 {
1571 /* If MEMBER is non-static, then the program has fallen afoul of
1572 [expr.prim]:
1573
1574 An id-expression that denotes a nonstatic data member or
1575 nonstatic member function of a class can only be used:
1576
1577 -- as part of a class member access (_expr.ref_) in which the
1578 object-expression refers to the member's class or a class
1579 derived from that class, or
1580
1581 -- to form a pointer to member (_expr.unary.op_), or
1582
1583 -- in the body of a nonstatic member function of that class or
1584 of a class derived from that class (_class.mfct.nonstatic_), or
1585
1586 -- in a mem-initializer for a constructor for that class or for
1587 a class derived from that class (_class.base.init_). */
1588 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1589 {
1590 /* Build a representation of the qualified name suitable
1591 for use as the operand to "&" -- even though the "&" is
1592 not actually present. */
1593 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1594 /* In Microsoft mode, treat a non-static member function as if
1595 it were a pointer-to-member. */
1596 if (flag_ms_extensions)
1597 {
1598 PTRMEM_OK_P (member) = 1;
1599 return cp_build_unary_op (ADDR_EXPR, member, 0,
1600 tf_warning_or_error);
1601 }
1602 error ("invalid use of non-static member function %qD",
1603 TREE_OPERAND (member, 1));
1604 return error_mark_node;
1605 }
1606 else if (TREE_CODE (member) == FIELD_DECL)
1607 {
1608 error ("invalid use of non-static data member %qD", member);
1609 return error_mark_node;
1610 }
1611 return member;
1612 }
1613
1614 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1615 PTRMEM_OK_P (member) = 1;
1616 return member;
1617 }
1618
1619 /* If DECL is a scalar enumeration constant or variable with a
1620 constant initializer, return the initializer (or, its initializers,
1621 recursively); otherwise, return DECL. If INTEGRAL_P, the
1622 initializer is only returned if DECL is an integral
1623 constant-expression. */
1624
1625 static tree
1626 constant_value_1 (tree decl, bool integral_p)
1627 {
1628 while (TREE_CODE (decl) == CONST_DECL
1629 || (integral_p
1630 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1631 : (TREE_CODE (decl) == VAR_DECL
1632 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1633 {
1634 tree init;
1635 /* Static data members in template classes may have
1636 non-dependent initializers. References to such non-static
1637 data members are not value-dependent, so we must retrieve the
1638 initializer here. The DECL_INITIAL will have the right type,
1639 but will not have been folded because that would prevent us
1640 from performing all appropriate semantic checks at
1641 instantiation time. */
1642 if (DECL_CLASS_SCOPE_P (decl)
1643 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1644 && uses_template_parms (CLASSTYPE_TI_ARGS
1645 (DECL_CONTEXT (decl))))
1646 {
1647 ++processing_template_decl;
1648 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1649 --processing_template_decl;
1650 }
1651 else
1652 {
1653 /* If DECL is a static data member in a template
1654 specialization, we must instantiate it here. The
1655 initializer for the static data member is not processed
1656 until needed; we need it now. */
1657 mark_used (decl);
1658 init = DECL_INITIAL (decl);
1659 }
1660 if (init == error_mark_node)
1661 {
1662 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1663 /* Treat the error as a constant to avoid cascading errors on
1664 excessively recursive template instantiation (c++/9335). */
1665 return init;
1666 else
1667 return decl;
1668 }
1669 /* Initializers in templates are generally expanded during
1670 instantiation, so before that for const int i(2)
1671 INIT is a TREE_LIST with the actual initializer as
1672 TREE_VALUE. */
1673 if (processing_template_decl
1674 && init
1675 && TREE_CODE (init) == TREE_LIST
1676 && TREE_CHAIN (init) == NULL_TREE)
1677 init = TREE_VALUE (init);
1678 if (!init
1679 || !TREE_TYPE (init)
1680 || (integral_p
1681 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1682 : (!TREE_CONSTANT (init)
1683 /* Do not return an aggregate constant (of which
1684 string literals are a special case), as we do not
1685 want to make inadvertent copies of such entities,
1686 and we must be sure that their addresses are the
1687 same everywhere. */
1688 || TREE_CODE (init) == CONSTRUCTOR
1689 || TREE_CODE (init) == STRING_CST)))
1690 break;
1691 decl = unshare_expr (init);
1692 }
1693 return decl;
1694 }
1695
1696 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1697 constant of integral or enumeration type, then return that value.
1698 These are those variables permitted in constant expressions by
1699 [5.19/1]. */
1700
1701 tree
1702 integral_constant_value (tree decl)
1703 {
1704 return constant_value_1 (decl, /*integral_p=*/true);
1705 }
1706
1707 /* A more relaxed version of integral_constant_value, used by the
1708 common C/C++ code and by the C++ front end for optimization
1709 purposes. */
1710
1711 tree
1712 decl_constant_value (tree decl)
1713 {
1714 return constant_value_1 (decl,
1715 /*integral_p=*/processing_template_decl);
1716 }
1717 \f
1718 /* Common subroutines of build_new and build_vec_delete. */
1719
1720 /* Call the global __builtin_delete to delete ADDR. */
1721
1722 static tree
1723 build_builtin_delete_call (tree addr)
1724 {
1725 mark_used (global_delete_fndecl);
1726 return build_call_n (global_delete_fndecl, 1, addr);
1727 }
1728 \f
1729 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1730 the type of the object being allocated; otherwise, it's just TYPE.
1731 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1732 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1733 a vector of arguments to be provided as arguments to a placement
1734 new operator. This routine performs no semantic checks; it just
1735 creates and returns a NEW_EXPR. */
1736
1737 static tree
1738 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
1739 VEC(tree,gc) *init, int use_global_new)
1740 {
1741 tree init_list;
1742 tree new_expr;
1743
1744 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
1745 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
1746 permits us to distinguish the case of a missing initializer "new
1747 int" from an empty initializer "new int()". */
1748 if (init == NULL)
1749 init_list = NULL_TREE;
1750 else if (VEC_empty (tree, init))
1751 init_list = void_zero_node;
1752 else
1753 init_list = build_tree_list_vec (init);
1754
1755 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
1756 build_tree_list_vec (placement), type, nelts,
1757 init_list);
1758 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1759 TREE_SIDE_EFFECTS (new_expr) = 1;
1760
1761 return new_expr;
1762 }
1763
1764 /* Diagnose uninitialized const members or reference members of type
1765 TYPE. USING_NEW is used to disambiguate the diagnostic between a
1766 new expression without a new-initializer and a declaration */
1767
1768 static void
1769 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
1770 bool using_new)
1771 {
1772 tree field;
1773
1774 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1775 {
1776 tree field_type;
1777
1778 if (TREE_CODE (field) != FIELD_DECL)
1779 continue;
1780
1781 field_type = strip_array_types (TREE_TYPE (field));
1782
1783 if (TREE_CODE (field_type) == REFERENCE_TYPE)
1784 {
1785 if (using_new)
1786 error ("uninitialized reference member in %q#T using %<new%>",
1787 origin);
1788 else
1789 error ("uninitialized reference member in %q#T", origin);
1790 inform (DECL_SOURCE_LOCATION (field),
1791 "%qD should be initialized", field);
1792 }
1793
1794 if (CP_TYPE_CONST_P (field_type))
1795 {
1796 if (using_new)
1797 error ("uninitialized const member in %q#T using %<new%>",
1798 origin);
1799 else
1800 error ("uninitialized const member in %q#T", origin);
1801 inform (DECL_SOURCE_LOCATION (field),
1802 "%qD should be initialized", field);
1803 }
1804
1805 if (CLASS_TYPE_P (field_type))
1806 diagnose_uninitialized_cst_or_ref_member_1 (field_type,
1807 origin, using_new);
1808 }
1809 }
1810
1811 void
1812 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new)
1813 {
1814 diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new);
1815 }
1816
1817 /* Generate code for a new-expression, including calling the "operator
1818 new" function, initializing the object, and, if an exception occurs
1819 during construction, cleaning up. The arguments are as for
1820 build_raw_new_expr. This may change PLACEMENT and INIT. */
1821
1822 static tree
1823 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
1824 VEC(tree,gc) **init, bool globally_qualified_p,
1825 tsubst_flags_t complain)
1826 {
1827 tree size, rval;
1828 /* True iff this is a call to "operator new[]" instead of just
1829 "operator new". */
1830 bool array_p = false;
1831 /* If ARRAY_P is true, the element type of the array. This is never
1832 an ARRAY_TYPE; for something like "new int[3][4]", the
1833 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1834 TYPE. */
1835 tree elt_type;
1836 /* The type of the new-expression. (This type is always a pointer
1837 type.) */
1838 tree pointer_type;
1839 tree non_const_pointer_type;
1840 tree outer_nelts = NULL_TREE;
1841 tree alloc_call, alloc_expr;
1842 /* The address returned by the call to "operator new". This node is
1843 a VAR_DECL and is therefore reusable. */
1844 tree alloc_node;
1845 tree alloc_fn;
1846 tree cookie_expr, init_expr;
1847 int nothrow, check_new;
1848 int use_java_new = 0;
1849 /* If non-NULL, the number of extra bytes to allocate at the
1850 beginning of the storage allocated for an array-new expression in
1851 order to store the number of elements. */
1852 tree cookie_size = NULL_TREE;
1853 tree placement_first;
1854 tree placement_expr = NULL_TREE;
1855 /* True if the function we are calling is a placement allocation
1856 function. */
1857 bool placement_allocation_fn_p;
1858 /* True if the storage must be initialized, either by a constructor
1859 or due to an explicit new-initializer. */
1860 bool is_initialized;
1861 /* The address of the thing allocated, not including any cookie. In
1862 particular, if an array cookie is in use, DATA_ADDR is the
1863 address of the first array element. This node is a VAR_DECL, and
1864 is therefore reusable. */
1865 tree data_addr;
1866 tree init_preeval_expr = NULL_TREE;
1867
1868 if (nelts)
1869 {
1870 outer_nelts = nelts;
1871 array_p = true;
1872 }
1873 else if (TREE_CODE (type) == ARRAY_TYPE)
1874 {
1875 array_p = true;
1876 nelts = array_type_nelts_top (type);
1877 outer_nelts = nelts;
1878 type = TREE_TYPE (type);
1879 }
1880
1881 /* If our base type is an array, then make sure we know how many elements
1882 it has. */
1883 for (elt_type = type;
1884 TREE_CODE (elt_type) == ARRAY_TYPE;
1885 elt_type = TREE_TYPE (elt_type))
1886 nelts = cp_build_binary_op (input_location,
1887 MULT_EXPR, nelts,
1888 array_type_nelts_top (elt_type),
1889 complain);
1890
1891 if (TREE_CODE (elt_type) == VOID_TYPE)
1892 {
1893 if (complain & tf_error)
1894 error ("invalid type %<void%> for new");
1895 return error_mark_node;
1896 }
1897
1898 if (abstract_virtuals_error (NULL_TREE, elt_type))
1899 return error_mark_node;
1900
1901 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
1902
1903 if (*init == NULL && !type_has_user_provided_constructor (elt_type))
1904 {
1905 bool uninitialized_error = false;
1906 /* A program that calls for default-initialization [...] of an
1907 entity of reference type is ill-formed. */
1908 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
1909 uninitialized_error = true;
1910
1911 /* A new-expression that creates an object of type T initializes
1912 that object as follows:
1913 - If the new-initializer is omitted:
1914 -- If T is a (possibly cv-qualified) non-POD class type
1915 (or array thereof), the object is default-initialized (8.5).
1916 [...]
1917 -- Otherwise, the object created has indeterminate
1918 value. If T is a const-qualified type, or a (possibly
1919 cv-qualified) POD class type (or array thereof)
1920 containing (directly or indirectly) a member of
1921 const-qualified type, the program is ill-formed; */
1922
1923 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
1924 uninitialized_error = true;
1925
1926 if (uninitialized_error)
1927 {
1928 if (complain & tf_error)
1929 diagnose_uninitialized_cst_or_ref_member (elt_type,
1930 /*using_new*/true);
1931 return error_mark_node;
1932 }
1933 }
1934
1935 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
1936 && !type_has_user_provided_default_constructor (elt_type))
1937 {
1938 if (complain & tf_error)
1939 error ("uninitialized const in %<new%> of %q#T", elt_type);
1940 return error_mark_node;
1941 }
1942
1943 size = size_in_bytes (elt_type);
1944 if (array_p)
1945 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1946
1947 alloc_fn = NULL_TREE;
1948
1949 /* If PLACEMENT is a single simple pointer type not passed by
1950 reference, prepare to capture it in a temporary variable. Do
1951 this now, since PLACEMENT will change in the calls below. */
1952 placement_first = NULL_TREE;
1953 if (VEC_length (tree, *placement) == 1
1954 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
1955 == POINTER_TYPE))
1956 placement_first = VEC_index (tree, *placement, 0);
1957
1958 /* Allocate the object. */
1959 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
1960 {
1961 tree class_addr;
1962 tree class_decl = build_java_class_ref (elt_type);
1963 static const char alloc_name[] = "_Jv_AllocObject";
1964
1965 if (class_decl == error_mark_node)
1966 return error_mark_node;
1967
1968 use_java_new = 1;
1969 if (!get_global_value_if_present (get_identifier (alloc_name),
1970 &alloc_fn))
1971 {
1972 if (complain & tf_error)
1973 error ("call to Java constructor with %qs undefined", alloc_name);
1974 return error_mark_node;
1975 }
1976 else if (really_overloaded_fn (alloc_fn))
1977 {
1978 if (complain & tf_error)
1979 error ("%qD should never be overloaded", alloc_fn);
1980 return error_mark_node;
1981 }
1982 alloc_fn = OVL_CURRENT (alloc_fn);
1983 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1984 alloc_call = (cp_build_function_call
1985 (alloc_fn,
1986 build_tree_list (NULL_TREE, class_addr),
1987 complain));
1988 }
1989 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
1990 {
1991 error ("Java class %q#T object allocated using placement new", elt_type);
1992 return error_mark_node;
1993 }
1994 else
1995 {
1996 tree fnname;
1997 tree fns;
1998
1999 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2000
2001 if (!globally_qualified_p
2002 && CLASS_TYPE_P (elt_type)
2003 && (array_p
2004 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2005 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2006 {
2007 /* Use a class-specific operator new. */
2008 /* If a cookie is required, add some extra space. */
2009 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2010 {
2011 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2012 size = size_binop (PLUS_EXPR, size, cookie_size);
2013 }
2014 /* Create the argument list. */
2015 VEC_safe_insert (tree, gc, *placement, 0, size);
2016 /* Do name-lookup to find the appropriate operator. */
2017 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2018 if (fns == NULL_TREE)
2019 {
2020 if (complain & tf_error)
2021 error ("no suitable %qD found in class %qT", fnname, elt_type);
2022 return error_mark_node;
2023 }
2024 if (TREE_CODE (fns) == TREE_LIST)
2025 {
2026 if (complain & tf_error)
2027 {
2028 error ("request for member %qD is ambiguous", fnname);
2029 print_candidates (fns);
2030 }
2031 return error_mark_node;
2032 }
2033 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2034 fns, placement,
2035 /*conversion_path=*/NULL_TREE,
2036 LOOKUP_NORMAL,
2037 &alloc_fn,
2038 complain);
2039 }
2040 else
2041 {
2042 /* Use a global operator new. */
2043 /* See if a cookie might be required. */
2044 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2045 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2046 else
2047 cookie_size = NULL_TREE;
2048
2049 alloc_call = build_operator_new_call (fnname, placement,
2050 &size, &cookie_size,
2051 &alloc_fn);
2052 }
2053 }
2054
2055 if (alloc_call == error_mark_node)
2056 return error_mark_node;
2057
2058 gcc_assert (alloc_fn != NULL_TREE);
2059
2060 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2061 into a temporary variable. */
2062 if (!processing_template_decl
2063 && placement_first != NULL_TREE
2064 && TREE_CODE (alloc_call) == CALL_EXPR
2065 && call_expr_nargs (alloc_call) == 2
2066 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2067 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2068 {
2069 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2070
2071 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2072 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2073 {
2074 placement_expr = get_target_expr (placement_first);
2075 CALL_EXPR_ARG (alloc_call, 1)
2076 = convert (TREE_TYPE (placement_arg), placement_expr);
2077 }
2078 }
2079
2080 /* In the simple case, we can stop now. */
2081 pointer_type = build_pointer_type (type);
2082 if (!cookie_size && !is_initialized)
2083 return build_nop (pointer_type, alloc_call);
2084
2085 /* Store the result of the allocation call in a variable so that we can
2086 use it more than once. */
2087 alloc_expr = get_target_expr (alloc_call);
2088 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2089
2090 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2091 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2092 alloc_call = TREE_OPERAND (alloc_call, 1);
2093
2094 /* Now, check to see if this function is actually a placement
2095 allocation function. This can happen even when PLACEMENT is NULL
2096 because we might have something like:
2097
2098 struct S { void* operator new (size_t, int i = 0); };
2099
2100 A call to `new S' will get this allocation function, even though
2101 there is no explicit placement argument. If there is more than
2102 one argument, or there are variable arguments, then this is a
2103 placement allocation function. */
2104 placement_allocation_fn_p
2105 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2106 || varargs_function_p (alloc_fn));
2107
2108 /* Preevaluate the placement args so that we don't reevaluate them for a
2109 placement delete. */
2110 if (placement_allocation_fn_p)
2111 {
2112 tree inits;
2113 stabilize_call (alloc_call, &inits);
2114 if (inits)
2115 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2116 alloc_expr);
2117 }
2118
2119 /* unless an allocation function is declared with an empty excep-
2120 tion-specification (_except.spec_), throw(), it indicates failure to
2121 allocate storage by throwing a bad_alloc exception (clause _except_,
2122 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2123 cation function is declared with an empty exception-specification,
2124 throw(), it returns null to indicate failure to allocate storage and a
2125 non-null pointer otherwise.
2126
2127 So check for a null exception spec on the op new we just called. */
2128
2129 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2130 check_new = (flag_check_new || nothrow) && ! use_java_new;
2131
2132 if (cookie_size)
2133 {
2134 tree cookie;
2135 tree cookie_ptr;
2136 tree size_ptr_type;
2137
2138 /* Adjust so we're pointing to the start of the object. */
2139 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2140 alloc_node, cookie_size);
2141
2142 /* Store the number of bytes allocated so that we can know how
2143 many elements to destroy later. We use the last sizeof
2144 (size_t) bytes to store the number of elements. */
2145 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2146 cookie_ptr = fold_build2_loc (input_location,
2147 POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2148 alloc_node, cookie_ptr);
2149 size_ptr_type = build_pointer_type (sizetype);
2150 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2151 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2152
2153 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2154
2155 if (targetm.cxx.cookie_has_size ())
2156 {
2157 /* Also store the element size. */
2158 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2159 fold_build1_loc (input_location,
2160 NEGATE_EXPR, sizetype,
2161 size_in_bytes (sizetype)));
2162
2163 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2164 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2165 size_in_bytes (elt_type));
2166 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2167 cookie, cookie_expr);
2168 }
2169 }
2170 else
2171 {
2172 cookie_expr = NULL_TREE;
2173 data_addr = alloc_node;
2174 }
2175
2176 /* Now use a pointer to the type we've actually allocated. */
2177
2178 /* But we want to operate on a non-const version to start with,
2179 since we'll be modifying the elements. */
2180 non_const_pointer_type = build_pointer_type
2181 (cp_build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_CONST));
2182
2183 data_addr = fold_convert (non_const_pointer_type, data_addr);
2184 /* Any further uses of alloc_node will want this type, too. */
2185 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2186
2187 /* Now initialize the allocated object. Note that we preevaluate the
2188 initialization expression, apart from the actual constructor call or
2189 assignment--we do this because we want to delay the allocation as long
2190 as possible in order to minimize the size of the exception region for
2191 placement delete. */
2192 if (is_initialized)
2193 {
2194 bool stable;
2195 bool explicit_value_init_p = false;
2196
2197 if (*init != NULL && VEC_empty (tree, *init))
2198 {
2199 *init = NULL;
2200 explicit_value_init_p = true;
2201 }
2202
2203 if (array_p)
2204 {
2205 tree vecinit = NULL_TREE;
2206 if (*init && VEC_length (tree, *init) == 1
2207 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2208 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2209 {
2210 tree arraytype, domain;
2211 vecinit = VEC_index (tree, *init, 0);
2212 if (TREE_CONSTANT (nelts))
2213 domain = compute_array_index_type (NULL_TREE, nelts);
2214 else
2215 {
2216 domain = NULL_TREE;
2217 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2218 warning (0, "non-constant array size in new, unable to "
2219 "verify length of initializer-list");
2220 }
2221 arraytype = build_cplus_array_type (type, domain);
2222 vecinit = digest_init (arraytype, vecinit);
2223 }
2224 else if (*init)
2225 {
2226 if (complain & tf_error)
2227 permerror (input_location, "ISO C++ forbids initialization in array new");
2228 else
2229 return error_mark_node;
2230 vecinit = build_tree_list_vec (*init);
2231 }
2232 init_expr
2233 = build_vec_init (data_addr,
2234 cp_build_binary_op (input_location,
2235 MINUS_EXPR, outer_nelts,
2236 integer_one_node,
2237 complain),
2238 vecinit,
2239 explicit_value_init_p,
2240 /*from_array=*/0,
2241 complain);
2242
2243 /* An array initialization is stable because the initialization
2244 of each element is a full-expression, so the temporaries don't
2245 leak out. */
2246 stable = true;
2247 }
2248 else
2249 {
2250 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2251
2252 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2253 {
2254 init_expr = build_special_member_call (init_expr,
2255 complete_ctor_identifier,
2256 init, elt_type,
2257 LOOKUP_NORMAL,
2258 complain);
2259 }
2260 else if (explicit_value_init_p)
2261 {
2262 /* Something like `new int()'. */
2263 init_expr = build2 (INIT_EXPR, type,
2264 init_expr, build_value_init (type));
2265 }
2266 else
2267 {
2268 tree ie;
2269
2270 /* We are processing something like `new int (10)', which
2271 means allocate an int, and initialize it with 10. */
2272
2273 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2274 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2275 complain);
2276 }
2277 stable = stabilize_init (init_expr, &init_preeval_expr);
2278 }
2279
2280 if (init_expr == error_mark_node)
2281 return error_mark_node;
2282
2283 /* If any part of the object initialization terminates by throwing an
2284 exception and a suitable deallocation function can be found, the
2285 deallocation function is called to free the memory in which the
2286 object was being constructed, after which the exception continues
2287 to propagate in the context of the new-expression. If no
2288 unambiguous matching deallocation function can be found,
2289 propagating the exception does not cause the object's memory to be
2290 freed. */
2291 if (flag_exceptions && ! use_java_new)
2292 {
2293 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2294 tree cleanup;
2295
2296 /* The Standard is unclear here, but the right thing to do
2297 is to use the same method for finding deallocation
2298 functions that we use for finding allocation functions. */
2299 cleanup = (build_op_delete_call
2300 (dcode,
2301 alloc_node,
2302 size,
2303 globally_qualified_p,
2304 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2305 alloc_fn));
2306
2307 if (!cleanup)
2308 /* We're done. */;
2309 else if (stable)
2310 /* This is much simpler if we were able to preevaluate all of
2311 the arguments to the constructor call. */
2312 {
2313 /* CLEANUP is compiler-generated, so no diagnostics. */
2314 TREE_NO_WARNING (cleanup) = true;
2315 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2316 init_expr, cleanup);
2317 /* Likewise, this try-catch is compiler-generated. */
2318 TREE_NO_WARNING (init_expr) = true;
2319 }
2320 else
2321 /* Ack! First we allocate the memory. Then we set our sentry
2322 variable to true, and expand a cleanup that deletes the
2323 memory if sentry is true. Then we run the constructor, and
2324 finally clear the sentry.
2325
2326 We need to do this because we allocate the space first, so
2327 if there are any temporaries with cleanups in the
2328 constructor args and we weren't able to preevaluate them, we
2329 need this EH region to extend until end of full-expression
2330 to preserve nesting. */
2331 {
2332 tree end, sentry, begin;
2333
2334 begin = get_target_expr (boolean_true_node);
2335 CLEANUP_EH_ONLY (begin) = 1;
2336
2337 sentry = TARGET_EXPR_SLOT (begin);
2338
2339 /* CLEANUP is compiler-generated, so no diagnostics. */
2340 TREE_NO_WARNING (cleanup) = true;
2341
2342 TARGET_EXPR_CLEANUP (begin)
2343 = build3 (COND_EXPR, void_type_node, sentry,
2344 cleanup, void_zero_node);
2345
2346 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2347 sentry, boolean_false_node);
2348
2349 init_expr
2350 = build2 (COMPOUND_EXPR, void_type_node, begin,
2351 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2352 end));
2353 /* Likewise, this is compiler-generated. */
2354 TREE_NO_WARNING (init_expr) = true;
2355 }
2356 }
2357 }
2358 else
2359 init_expr = NULL_TREE;
2360
2361 /* Now build up the return value in reverse order. */
2362
2363 rval = data_addr;
2364
2365 if (init_expr)
2366 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2367 if (cookie_expr)
2368 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2369
2370 if (rval == data_addr)
2371 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2372 and return the call (which doesn't need to be adjusted). */
2373 rval = TARGET_EXPR_INITIAL (alloc_expr);
2374 else
2375 {
2376 if (check_new)
2377 {
2378 tree ifexp = cp_build_binary_op (input_location,
2379 NE_EXPR, alloc_node,
2380 integer_zero_node,
2381 complain);
2382 rval = build_conditional_expr (ifexp, rval, alloc_node,
2383 complain);
2384 }
2385
2386 /* Perform the allocation before anything else, so that ALLOC_NODE
2387 has been initialized before we start using it. */
2388 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2389 }
2390
2391 if (init_preeval_expr)
2392 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2393
2394 /* A new-expression is never an lvalue. */
2395 gcc_assert (!lvalue_p (rval));
2396
2397 return convert (pointer_type, rval);
2398 }
2399
2400 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2401 is a vector of placement-new arguments (or NULL if none). If NELTS
2402 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2403 is not NULL, then this is an array-new allocation; TYPE is the type
2404 of the elements in the array and NELTS is the number of elements in
2405 the array. *INIT, if non-NULL, is the initializer for the new
2406 object, or an empty vector to indicate an initializer of "()". If
2407 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2408 rather than just "new". This may change PLACEMENT and INIT. */
2409
2410 tree
2411 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2412 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2413 {
2414 tree rval;
2415 VEC(tree,gc) *orig_placement = NULL;
2416 tree orig_nelts = NULL_TREE;
2417 VEC(tree,gc) *orig_init = NULL;
2418
2419 if (type == error_mark_node)
2420 return error_mark_node;
2421
2422 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2423 {
2424 tree auto_node = type_uses_auto (type);
2425 if (auto_node && describable_type (VEC_index (tree, *init, 0)))
2426 type = do_auto_deduction (type, VEC_index (tree, *init, 0), auto_node);
2427 }
2428
2429 if (processing_template_decl)
2430 {
2431 if (dependent_type_p (type)
2432 || any_type_dependent_arguments_p (*placement)
2433 || (nelts && type_dependent_expression_p (nelts))
2434 || any_type_dependent_arguments_p (*init))
2435 return build_raw_new_expr (*placement, type, nelts, *init,
2436 use_global_new);
2437
2438 orig_placement = make_tree_vector_copy (*placement);
2439 orig_nelts = nelts;
2440 orig_init = make_tree_vector_copy (*init);
2441
2442 make_args_non_dependent (*placement);
2443 if (nelts)
2444 nelts = build_non_dependent_expr (nelts);
2445 make_args_non_dependent (*init);
2446 }
2447
2448 if (nelts)
2449 {
2450 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2451 {
2452 if (complain & tf_error)
2453 permerror (input_location, "size in array new must have integral type");
2454 else
2455 return error_mark_node;
2456 }
2457 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2458 }
2459
2460 /* ``A reference cannot be created by the new operator. A reference
2461 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2462 returned by new.'' ARM 5.3.3 */
2463 if (TREE_CODE (type) == REFERENCE_TYPE)
2464 {
2465 if (complain & tf_error)
2466 error ("new cannot be applied to a reference type");
2467 else
2468 return error_mark_node;
2469 type = TREE_TYPE (type);
2470 }
2471
2472 if (TREE_CODE (type) == FUNCTION_TYPE)
2473 {
2474 if (complain & tf_error)
2475 error ("new cannot be applied to a function type");
2476 return error_mark_node;
2477 }
2478
2479 /* The type allocated must be complete. If the new-type-id was
2480 "T[N]" then we are just checking that "T" is complete here, but
2481 that is equivalent, since the value of "N" doesn't matter. */
2482 if (!complete_type_or_else (type, NULL_TREE))
2483 return error_mark_node;
2484
2485 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2486 if (rval == error_mark_node)
2487 return error_mark_node;
2488
2489 if (processing_template_decl)
2490 {
2491 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2492 orig_init, use_global_new);
2493 release_tree_vector (orig_placement);
2494 release_tree_vector (orig_init);
2495 return ret;
2496 }
2497
2498 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2499 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2500 TREE_NO_WARNING (rval) = 1;
2501
2502 return rval;
2503 }
2504
2505 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2506
2507 tree
2508 build_java_class_ref (tree type)
2509 {
2510 tree name = NULL_TREE, class_decl;
2511 static tree CL_suffix = NULL_TREE;
2512 if (CL_suffix == NULL_TREE)
2513 CL_suffix = get_identifier("class$");
2514 if (jclass_node == NULL_TREE)
2515 {
2516 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2517 if (jclass_node == NULL_TREE)
2518 {
2519 error ("call to Java constructor, while %<jclass%> undefined");
2520 return error_mark_node;
2521 }
2522 jclass_node = TREE_TYPE (jclass_node);
2523 }
2524
2525 /* Mangle the class$ field. */
2526 {
2527 tree field;
2528 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2529 if (DECL_NAME (field) == CL_suffix)
2530 {
2531 mangle_decl (field);
2532 name = DECL_ASSEMBLER_NAME (field);
2533 break;
2534 }
2535 if (!field)
2536 {
2537 error ("can't find %<class$%> in %qT", type);
2538 return error_mark_node;
2539 }
2540 }
2541
2542 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2543 if (class_decl == NULL_TREE)
2544 {
2545 class_decl = build_decl (input_location,
2546 VAR_DECL, name, TREE_TYPE (jclass_node));
2547 TREE_STATIC (class_decl) = 1;
2548 DECL_EXTERNAL (class_decl) = 1;
2549 TREE_PUBLIC (class_decl) = 1;
2550 DECL_ARTIFICIAL (class_decl) = 1;
2551 DECL_IGNORED_P (class_decl) = 1;
2552 pushdecl_top_level (class_decl);
2553 make_decl_rtl (class_decl);
2554 }
2555 return class_decl;
2556 }
2557 \f
2558 static tree
2559 build_vec_delete_1 (tree base, tree maxindex, tree type,
2560 special_function_kind auto_delete_vec, int use_global_delete)
2561 {
2562 tree virtual_size;
2563 tree ptype = build_pointer_type (type = complete_type (type));
2564 tree size_exp = size_in_bytes (type);
2565
2566 /* Temporary variables used by the loop. */
2567 tree tbase, tbase_init;
2568
2569 /* This is the body of the loop that implements the deletion of a
2570 single element, and moves temp variables to next elements. */
2571 tree body;
2572
2573 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2574 tree loop = 0;
2575
2576 /* This is the thing that governs what to do after the loop has run. */
2577 tree deallocate_expr = 0;
2578
2579 /* This is the BIND_EXPR which holds the outermost iterator of the
2580 loop. It is convenient to set this variable up and test it before
2581 executing any other code in the loop.
2582 This is also the containing expression returned by this function. */
2583 tree controller = NULL_TREE;
2584 tree tmp;
2585
2586 /* We should only have 1-D arrays here. */
2587 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2588
2589 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2590 goto no_destructor;
2591
2592 /* The below is short by the cookie size. */
2593 virtual_size = size_binop (MULT_EXPR, size_exp,
2594 convert (sizetype, maxindex));
2595
2596 tbase = create_temporary_var (ptype);
2597 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2598 fold_build2_loc (input_location,
2599 POINTER_PLUS_EXPR, ptype,
2600 fold_convert (ptype, base),
2601 virtual_size),
2602 tf_warning_or_error);
2603 controller = build3 (BIND_EXPR, void_type_node, tbase,
2604 NULL_TREE, NULL_TREE);
2605 TREE_SIDE_EFFECTS (controller) = 1;
2606
2607 body = build1 (EXIT_EXPR, void_type_node,
2608 build2 (EQ_EXPR, boolean_type_node, tbase,
2609 fold_convert (ptype, base)));
2610 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2611 body = build_compound_expr
2612 (input_location,
2613 body, cp_build_modify_expr (tbase, NOP_EXPR,
2614 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2615 tf_warning_or_error));
2616 body = build_compound_expr
2617 (input_location,
2618 body, build_delete (ptype, tbase, sfk_complete_destructor,
2619 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2620
2621 loop = build1 (LOOP_EXPR, void_type_node, body);
2622 loop = build_compound_expr (input_location, tbase_init, loop);
2623
2624 no_destructor:
2625 /* If the delete flag is one, or anything else with the low bit set,
2626 delete the storage. */
2627 if (auto_delete_vec != sfk_base_destructor)
2628 {
2629 tree base_tbd;
2630
2631 /* The below is short by the cookie size. */
2632 virtual_size = size_binop (MULT_EXPR, size_exp,
2633 convert (sizetype, maxindex));
2634
2635 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2636 /* no header */
2637 base_tbd = base;
2638 else
2639 {
2640 tree cookie_size;
2641
2642 cookie_size = targetm.cxx.get_cookie_size (type);
2643 base_tbd
2644 = cp_convert (ptype,
2645 cp_build_binary_op (input_location,
2646 MINUS_EXPR,
2647 cp_convert (string_type_node,
2648 base),
2649 cookie_size,
2650 tf_warning_or_error));
2651 /* True size with header. */
2652 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2653 }
2654
2655 if (auto_delete_vec == sfk_deleting_destructor)
2656 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2657 base_tbd, virtual_size,
2658 use_global_delete & 1,
2659 /*placement=*/NULL_TREE,
2660 /*alloc_fn=*/NULL_TREE);
2661 }
2662
2663 body = loop;
2664 if (!deallocate_expr)
2665 ;
2666 else if (!body)
2667 body = deallocate_expr;
2668 else
2669 body = build_compound_expr (input_location, body, deallocate_expr);
2670
2671 if (!body)
2672 body = integer_zero_node;
2673
2674 /* Outermost wrapper: If pointer is null, punt. */
2675 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
2676 fold_build2_loc (input_location,
2677 NE_EXPR, boolean_type_node, base,
2678 convert (TREE_TYPE (base),
2679 integer_zero_node)),
2680 body, integer_zero_node);
2681 body = build1 (NOP_EXPR, void_type_node, body);
2682
2683 if (controller)
2684 {
2685 TREE_OPERAND (controller, 1) = body;
2686 body = controller;
2687 }
2688
2689 if (TREE_CODE (base) == SAVE_EXPR)
2690 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2691 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2692
2693 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2694 }
2695
2696 /* Create an unnamed variable of the indicated TYPE. */
2697
2698 tree
2699 create_temporary_var (tree type)
2700 {
2701 tree decl;
2702
2703 decl = build_decl (input_location,
2704 VAR_DECL, NULL_TREE, type);
2705 TREE_USED (decl) = 1;
2706 DECL_ARTIFICIAL (decl) = 1;
2707 DECL_IGNORED_P (decl) = 1;
2708 DECL_CONTEXT (decl) = current_function_decl;
2709
2710 return decl;
2711 }
2712
2713 /* Create a new temporary variable of the indicated TYPE, initialized
2714 to INIT.
2715
2716 It is not entered into current_binding_level, because that breaks
2717 things when it comes time to do final cleanups (which take place
2718 "outside" the binding contour of the function). */
2719
2720 static tree
2721 get_temp_regvar (tree type, tree init)
2722 {
2723 tree decl;
2724
2725 decl = create_temporary_var (type);
2726 add_decl_expr (decl);
2727
2728 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2729 tf_warning_or_error));
2730
2731 return decl;
2732 }
2733
2734 /* `build_vec_init' returns tree structure that performs
2735 initialization of a vector of aggregate types.
2736
2737 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2738 to the first element, of POINTER_TYPE.
2739 MAXINDEX is the maximum index of the array (one less than the
2740 number of elements). It is only used if BASE is a pointer or
2741 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2742
2743 INIT is the (possibly NULL) initializer.
2744
2745 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2746 elements in the array are value-initialized.
2747
2748 FROM_ARRAY is 0 if we should init everything with INIT
2749 (i.e., every element initialized from INIT).
2750 FROM_ARRAY is 1 if we should index into INIT in parallel
2751 with initialization of DECL.
2752 FROM_ARRAY is 2 if we should index into INIT in parallel,
2753 but use assignment instead of initialization. */
2754
2755 tree
2756 build_vec_init (tree base, tree maxindex, tree init,
2757 bool explicit_value_init_p,
2758 int from_array, tsubst_flags_t complain)
2759 {
2760 tree rval;
2761 tree base2 = NULL_TREE;
2762 tree itype = NULL_TREE;
2763 tree iterator;
2764 /* The type of BASE. */
2765 tree atype = TREE_TYPE (base);
2766 /* The type of an element in the array. */
2767 tree type = TREE_TYPE (atype);
2768 /* The element type reached after removing all outer array
2769 types. */
2770 tree inner_elt_type;
2771 /* The type of a pointer to an element in the array. */
2772 tree ptype;
2773 tree stmt_expr;
2774 tree compound_stmt;
2775 int destroy_temps;
2776 tree try_block = NULL_TREE;
2777 int num_initialized_elts = 0;
2778 bool is_global;
2779
2780 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2781 maxindex = array_type_nelts (atype);
2782
2783 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2784 return error_mark_node;
2785
2786 if (explicit_value_init_p)
2787 gcc_assert (!init);
2788
2789 inner_elt_type = strip_array_types (type);
2790
2791 /* Look through the TARGET_EXPR around a compound literal. */
2792 if (init && TREE_CODE (init) == TARGET_EXPR
2793 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
2794 && from_array != 2)
2795 init = TARGET_EXPR_INITIAL (init);
2796
2797 if (init
2798 && TREE_CODE (atype) == ARRAY_TYPE
2799 && (from_array == 2
2800 ? (!CLASS_TYPE_P (inner_elt_type)
2801 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2802 : !TYPE_NEEDS_CONSTRUCTING (type))
2803 && ((TREE_CODE (init) == CONSTRUCTOR
2804 /* Don't do this if the CONSTRUCTOR might contain something
2805 that might throw and require us to clean up. */
2806 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2807 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2808 || from_array))
2809 {
2810 /* Do non-default initialization of trivial arrays resulting from
2811 brace-enclosed initializers. In this case, digest_init and
2812 store_constructor will handle the semantics for us. */
2813
2814 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2815 return stmt_expr;
2816 }
2817
2818 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2819 if (TREE_CODE (atype) == ARRAY_TYPE)
2820 {
2821 ptype = build_pointer_type (type);
2822 base = cp_convert (ptype, decay_conversion (base));
2823 }
2824 else
2825 ptype = atype;
2826
2827 /* The code we are generating looks like:
2828 ({
2829 T* t1 = (T*) base;
2830 T* rval = t1;
2831 ptrdiff_t iterator = maxindex;
2832 try {
2833 for (; iterator != -1; --iterator) {
2834 ... initialize *t1 ...
2835 ++t1;
2836 }
2837 } catch (...) {
2838 ... destroy elements that were constructed ...
2839 }
2840 rval;
2841 })
2842
2843 We can omit the try and catch blocks if we know that the
2844 initialization will never throw an exception, or if the array
2845 elements do not have destructors. We can omit the loop completely if
2846 the elements of the array do not have constructors.
2847
2848 We actually wrap the entire body of the above in a STMT_EXPR, for
2849 tidiness.
2850
2851 When copying from array to another, when the array elements have
2852 only trivial copy constructors, we should use __builtin_memcpy
2853 rather than generating a loop. That way, we could take advantage
2854 of whatever cleverness the back end has for dealing with copies
2855 of blocks of memory. */
2856
2857 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2858 destroy_temps = stmts_are_full_exprs_p ();
2859 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2860 rval = get_temp_regvar (ptype, base);
2861 base = get_temp_regvar (ptype, rval);
2862 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2863
2864 /* If initializing one array from another, initialize element by
2865 element. We rely upon the below calls to do the argument
2866 checking. Evaluate the initializer before entering the try block. */
2867 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
2868 {
2869 base2 = decay_conversion (init);
2870 itype = TREE_TYPE (base2);
2871 base2 = get_temp_regvar (itype, base2);
2872 itype = TREE_TYPE (itype);
2873 }
2874
2875 /* Protect the entire array initialization so that we can destroy
2876 the partially constructed array if an exception is thrown.
2877 But don't do this if we're assigning. */
2878 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2879 && from_array != 2)
2880 {
2881 try_block = begin_try_block ();
2882 }
2883
2884 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2885 {
2886 /* Do non-default initialization of non-trivial arrays resulting from
2887 brace-enclosed initializers. */
2888 unsigned HOST_WIDE_INT idx;
2889 tree elt;
2890 from_array = 0;
2891
2892 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2893 {
2894 tree baseref = build1 (INDIRECT_REF, type, base);
2895
2896 num_initialized_elts++;
2897
2898 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2899 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2900 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2901 else
2902 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2903 elt, complain));
2904 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2905
2906 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2907 complain));
2908 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2909 complain));
2910 }
2911
2912 /* Clear out INIT so that we don't get confused below. */
2913 init = NULL_TREE;
2914 }
2915 else if (from_array)
2916 {
2917 if (init)
2918 /* OK, we set base2 above. */;
2919 else if (TYPE_LANG_SPECIFIC (type)
2920 && TYPE_NEEDS_CONSTRUCTING (type)
2921 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2922 {
2923 if (complain & tf_error)
2924 error ("initializer ends prematurely");
2925 return error_mark_node;
2926 }
2927 }
2928
2929 /* Now, default-initialize any remaining elements. We don't need to
2930 do that if a) the type does not need constructing, or b) we've
2931 already initialized all the elements.
2932
2933 We do need to keep going if we're copying an array. */
2934
2935 if (from_array
2936 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2937 && ! (host_integerp (maxindex, 0)
2938 && (num_initialized_elts
2939 == tree_low_cst (maxindex, 0) + 1))))
2940 {
2941 /* If the ITERATOR is equal to -1, then we don't have to loop;
2942 we've already initialized all the elements. */
2943 tree for_stmt;
2944 tree elt_init;
2945 tree to;
2946
2947 for_stmt = begin_for_stmt ();
2948 finish_for_init_stmt (for_stmt);
2949 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2950 build_int_cst (TREE_TYPE (iterator), -1)),
2951 for_stmt);
2952 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2953 complain),
2954 for_stmt);
2955
2956 to = build1 (INDIRECT_REF, type, base);
2957
2958 if (from_array)
2959 {
2960 tree from;
2961
2962 if (base2)
2963 from = build1 (INDIRECT_REF, itype, base2);
2964 else
2965 from = NULL_TREE;
2966
2967 if (from_array == 2)
2968 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2969 complain);
2970 else if (TYPE_NEEDS_CONSTRUCTING (type))
2971 elt_init = build_aggr_init (to, from, 0, complain);
2972 else if (from)
2973 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2974 complain);
2975 else
2976 gcc_unreachable ();
2977 }
2978 else if (TREE_CODE (type) == ARRAY_TYPE)
2979 {
2980 if (init != 0)
2981 sorry
2982 ("cannot initialize multi-dimensional array with initializer");
2983 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2984 0, 0,
2985 explicit_value_init_p,
2986 0, complain);
2987 }
2988 else if (explicit_value_init_p)
2989 elt_init = build2 (INIT_EXPR, type, to,
2990 build_value_init (type));
2991 else
2992 {
2993 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
2994 elt_init = build_aggr_init (to, init, 0, complain);
2995 }
2996
2997 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2998 finish_expr_stmt (elt_init);
2999 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3000
3001 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3002 complain));
3003 if (base2)
3004 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3005 complain));
3006
3007 finish_for_stmt (for_stmt);
3008 }
3009
3010 /* Make sure to cleanup any partially constructed elements. */
3011 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3012 && from_array != 2)
3013 {
3014 tree e;
3015 tree m = cp_build_binary_op (input_location,
3016 MINUS_EXPR, maxindex, iterator,
3017 complain);
3018
3019 /* Flatten multi-dimensional array since build_vec_delete only
3020 expects one-dimensional array. */
3021 if (TREE_CODE (type) == ARRAY_TYPE)
3022 m = cp_build_binary_op (input_location,
3023 MULT_EXPR, m,
3024 array_type_nelts_total (type),
3025 complain);
3026
3027 finish_cleanup_try_block (try_block);
3028 e = build_vec_delete_1 (rval, m,
3029 inner_elt_type, sfk_base_destructor,
3030 /*use_global_delete=*/0);
3031 finish_cleanup (e, try_block);
3032 }
3033
3034 /* The value of the array initialization is the array itself, RVAL
3035 is a pointer to the first element. */
3036 finish_stmt_expr_expr (rval, stmt_expr);
3037
3038 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3039
3040 /* Now make the result have the correct type. */
3041 if (TREE_CODE (atype) == ARRAY_TYPE)
3042 {
3043 atype = build_pointer_type (atype);
3044 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3045 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3046 TREE_NO_WARNING (stmt_expr) = 1;
3047 }
3048
3049 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3050 return stmt_expr;
3051 }
3052
3053 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3054 build_delete. */
3055
3056 static tree
3057 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
3058 {
3059 tree name;
3060 tree fn;
3061 switch (dtor_kind)
3062 {
3063 case sfk_complete_destructor:
3064 name = complete_dtor_identifier;
3065 break;
3066
3067 case sfk_base_destructor:
3068 name = base_dtor_identifier;
3069 break;
3070
3071 case sfk_deleting_destructor:
3072 name = deleting_dtor_identifier;
3073 break;
3074
3075 default:
3076 gcc_unreachable ();
3077 }
3078 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3079 return build_new_method_call (exp, fn,
3080 /*args=*/NULL,
3081 /*conversion_path=*/NULL_TREE,
3082 flags,
3083 /*fn_p=*/NULL,
3084 tf_warning_or_error);
3085 }
3086
3087 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3088 ADDR is an expression which yields the store to be destroyed.
3089 AUTO_DELETE is the name of the destructor to call, i.e., either
3090 sfk_complete_destructor, sfk_base_destructor, or
3091 sfk_deleting_destructor.
3092
3093 FLAGS is the logical disjunction of zero or more LOOKUP_
3094 flags. See cp-tree.h for more info. */
3095
3096 tree
3097 build_delete (tree type, tree addr, special_function_kind auto_delete,
3098 int flags, int use_global_delete)
3099 {
3100 tree expr;
3101
3102 if (addr == error_mark_node)
3103 return error_mark_node;
3104
3105 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3106 set to `error_mark_node' before it gets properly cleaned up. */
3107 if (type == error_mark_node)
3108 return error_mark_node;
3109
3110 type = TYPE_MAIN_VARIANT (type);
3111
3112 if (TREE_CODE (type) == POINTER_TYPE)
3113 {
3114 bool complete_p = true;
3115
3116 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3117 if (TREE_CODE (type) == ARRAY_TYPE)
3118 goto handle_array;
3119
3120 /* We don't want to warn about delete of void*, only other
3121 incomplete types. Deleting other incomplete types
3122 invokes undefined behavior, but it is not ill-formed, so
3123 compile to something that would even do The Right Thing
3124 (TM) should the type have a trivial dtor and no delete
3125 operator. */
3126 if (!VOID_TYPE_P (type))
3127 {
3128 complete_type (type);
3129 if (!COMPLETE_TYPE_P (type))
3130 {
3131 if (warning (0, "possible problem detected in invocation of "
3132 "delete operator:"))
3133 {
3134 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3135 inform (input_location, "neither the destructor nor the class-specific "
3136 "operator delete will be called, even if they are "
3137 "declared when the class is defined.");
3138 }
3139 complete_p = false;
3140 }
3141 }
3142 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3143 /* Call the builtin operator delete. */
3144 return build_builtin_delete_call (addr);
3145 if (TREE_SIDE_EFFECTS (addr))
3146 addr = save_expr (addr);
3147
3148 /* Throw away const and volatile on target type of addr. */
3149 addr = convert_force (build_pointer_type (type), addr, 0);
3150 }
3151 else if (TREE_CODE (type) == ARRAY_TYPE)
3152 {
3153 handle_array:
3154
3155 if (TYPE_DOMAIN (type) == NULL_TREE)
3156 {
3157 error ("unknown array size in delete");
3158 return error_mark_node;
3159 }
3160 return build_vec_delete (addr, array_type_nelts (type),
3161 auto_delete, use_global_delete);
3162 }
3163 else
3164 {
3165 /* Don't check PROTECT here; leave that decision to the
3166 destructor. If the destructor is accessible, call it,
3167 else report error. */
3168 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3169 if (TREE_SIDE_EFFECTS (addr))
3170 addr = save_expr (addr);
3171
3172 addr = convert_force (build_pointer_type (type), addr, 0);
3173 }
3174
3175 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3176
3177 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3178 {
3179 if (auto_delete != sfk_deleting_destructor)
3180 return void_zero_node;
3181
3182 return build_op_delete_call (DELETE_EXPR, addr,
3183 cxx_sizeof_nowarn (type),
3184 use_global_delete,
3185 /*placement=*/NULL_TREE,
3186 /*alloc_fn=*/NULL_TREE);
3187 }
3188 else
3189 {
3190 tree head = NULL_TREE;
3191 tree do_delete = NULL_TREE;
3192 tree ifexp;
3193
3194 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3195 lazily_declare_fn (sfk_destructor, type);
3196
3197 /* For `::delete x', we must not use the deleting destructor
3198 since then we would not be sure to get the global `operator
3199 delete'. */
3200 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3201 {
3202 /* We will use ADDR multiple times so we must save it. */
3203 addr = save_expr (addr);
3204 head = get_target_expr (build_headof (addr));
3205 /* Delete the object. */
3206 do_delete = build_builtin_delete_call (head);
3207 /* Otherwise, treat this like a complete object destructor
3208 call. */
3209 auto_delete = sfk_complete_destructor;
3210 }
3211 /* If the destructor is non-virtual, there is no deleting
3212 variant. Instead, we must explicitly call the appropriate
3213 `operator delete' here. */
3214 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3215 && auto_delete == sfk_deleting_destructor)
3216 {
3217 /* We will use ADDR multiple times so we must save it. */
3218 addr = save_expr (addr);
3219 /* Build the call. */
3220 do_delete = build_op_delete_call (DELETE_EXPR,
3221 addr,
3222 cxx_sizeof_nowarn (type),
3223 /*global_p=*/false,
3224 /*placement=*/NULL_TREE,
3225 /*alloc_fn=*/NULL_TREE);
3226 /* Call the complete object destructor. */
3227 auto_delete = sfk_complete_destructor;
3228 }
3229 else if (auto_delete == sfk_deleting_destructor
3230 && TYPE_GETS_REG_DELETE (type))
3231 {
3232 /* Make sure we have access to the member op delete, even though
3233 we'll actually be calling it from the destructor. */
3234 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3235 /*global_p=*/false,
3236 /*placement=*/NULL_TREE,
3237 /*alloc_fn=*/NULL_TREE);
3238 }
3239
3240 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3241 tf_warning_or_error),
3242 auto_delete, flags);
3243 if (do_delete)
3244 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3245
3246 /* We need to calculate this before the dtor changes the vptr. */
3247 if (head)
3248 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3249
3250 if (flags & LOOKUP_DESTRUCTOR)
3251 /* Explicit destructor call; don't check for null pointer. */
3252 ifexp = integer_one_node;
3253 else
3254 /* Handle deleting a null pointer. */
3255 ifexp = fold (cp_build_binary_op (input_location,
3256 NE_EXPR, addr, integer_zero_node,
3257 tf_warning_or_error));
3258
3259 if (ifexp != integer_one_node)
3260 expr = build3 (COND_EXPR, void_type_node,
3261 ifexp, expr, void_zero_node);
3262
3263 return expr;
3264 }
3265 }
3266
3267 /* At the beginning of a destructor, push cleanups that will call the
3268 destructors for our base classes and members.
3269
3270 Called from begin_destructor_body. */
3271
3272 void
3273 push_base_cleanups (void)
3274 {
3275 tree binfo, base_binfo;
3276 int i;
3277 tree member;
3278 tree expr;
3279 VEC(tree,gc) *vbases;
3280
3281 /* Run destructors for all virtual baseclasses. */
3282 if (CLASSTYPE_VBASECLASSES (current_class_type))
3283 {
3284 tree cond = (condition_conversion
3285 (build2 (BIT_AND_EXPR, integer_type_node,
3286 current_in_charge_parm,
3287 integer_two_node)));
3288
3289 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3290 order, which is also the right order for pushing cleanups. */
3291 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3292 VEC_iterate (tree, vbases, i, base_binfo); i++)
3293 {
3294 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3295 {
3296 expr = build_special_member_call (current_class_ref,
3297 base_dtor_identifier,
3298 NULL,
3299 base_binfo,
3300 (LOOKUP_NORMAL
3301 | LOOKUP_NONVIRTUAL),
3302 tf_warning_or_error);
3303 expr = build3 (COND_EXPR, void_type_node, cond,
3304 expr, void_zero_node);
3305 finish_decl_cleanup (NULL_TREE, expr);
3306 }
3307 }
3308 }
3309
3310 /* Take care of the remaining baseclasses. */
3311 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3312 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3313 {
3314 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3315 || BINFO_VIRTUAL_P (base_binfo))
3316 continue;
3317
3318 expr = build_special_member_call (current_class_ref,
3319 base_dtor_identifier,
3320 NULL, base_binfo,
3321 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3322 tf_warning_or_error);
3323 finish_decl_cleanup (NULL_TREE, expr);
3324 }
3325
3326 for (member = TYPE_FIELDS (current_class_type); member;
3327 member = TREE_CHAIN (member))
3328 {
3329 if (TREE_TYPE (member) == error_mark_node
3330 || TREE_CODE (member) != FIELD_DECL
3331 || DECL_ARTIFICIAL (member))
3332 continue;
3333 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3334 {
3335 tree this_member = (build_class_member_access_expr
3336 (current_class_ref, member,
3337 /*access_path=*/NULL_TREE,
3338 /*preserve_reference=*/false,
3339 tf_warning_or_error));
3340 tree this_type = TREE_TYPE (member);
3341 expr = build_delete (this_type, this_member,
3342 sfk_complete_destructor,
3343 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3344 0);
3345 finish_decl_cleanup (NULL_TREE, expr);
3346 }
3347 }
3348 }
3349
3350 /* Build a C++ vector delete expression.
3351 MAXINDEX is the number of elements to be deleted.
3352 ELT_SIZE is the nominal size of each element in the vector.
3353 BASE is the expression that should yield the store to be deleted.
3354 This function expands (or synthesizes) these calls itself.
3355 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3356
3357 This also calls delete for virtual baseclasses of elements of the vector.
3358
3359 Update: MAXINDEX is no longer needed. The size can be extracted from the
3360 start of the vector for pointers, and from the type for arrays. We still
3361 use MAXINDEX for arrays because it happens to already have one of the
3362 values we'd have to extract. (We could use MAXINDEX with pointers to
3363 confirm the size, and trap if the numbers differ; not clear that it'd
3364 be worth bothering.) */
3365
3366 tree
3367 build_vec_delete (tree base, tree maxindex,
3368 special_function_kind auto_delete_vec, int use_global_delete)
3369 {
3370 tree type;
3371 tree rval;
3372 tree base_init = NULL_TREE;
3373
3374 type = TREE_TYPE (base);
3375
3376 if (TREE_CODE (type) == POINTER_TYPE)
3377 {
3378 /* Step back one from start of vector, and read dimension. */
3379 tree cookie_addr;
3380 tree size_ptr_type = build_pointer_type (sizetype);
3381
3382 if (TREE_SIDE_EFFECTS (base))
3383 {
3384 base_init = get_target_expr (base);
3385 base = TARGET_EXPR_SLOT (base_init);
3386 }
3387 type = strip_array_types (TREE_TYPE (type));
3388 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3389 sizetype, TYPE_SIZE_UNIT (sizetype));
3390 cookie_addr = build2 (POINTER_PLUS_EXPR,
3391 size_ptr_type,
3392 fold_convert (size_ptr_type, base),
3393 cookie_addr);
3394 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, tf_warning_or_error);
3395 }
3396 else if (TREE_CODE (type) == ARRAY_TYPE)
3397 {
3398 /* Get the total number of things in the array, maxindex is a
3399 bad name. */
3400 maxindex = array_type_nelts_total (type);
3401 type = strip_array_types (type);
3402 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3403 if (TREE_SIDE_EFFECTS (base))
3404 {
3405 base_init = get_target_expr (base);
3406 base = TARGET_EXPR_SLOT (base_init);
3407 }
3408 }
3409 else
3410 {
3411 if (base != error_mark_node)
3412 error ("type to vector delete is neither pointer or array type");
3413 return error_mark_node;
3414 }
3415
3416 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3417 use_global_delete);
3418 if (base_init)
3419 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3420
3421 return rval;
3422 }