re PR c++/65154 (ICE with {} initialized array with string)
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "stringpool.h"
38 #include "varasm.h"
39 #include "cp-tree.h"
40 #include "flags.h"
41 #include "target.h"
42 #include "gimplify.h"
43 #include "wide-int.h"
44 #include "c-family/c-ubsan.h"
45
46 static bool begin_init_stmts (tree *, tree *);
47 static tree finish_init_stmts (bool, tree, tree);
48 static void construct_virtual_base (tree, tree);
49 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
50 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
51 static void perform_member_init (tree, tree);
52 static int member_init_ok_or_else (tree, tree, tree);
53 static void expand_virtual_init (tree, tree);
54 static tree sort_mem_initializers (tree, tree);
55 static tree initializing_context (tree);
56 static void expand_cleanup_for_base (tree, tree);
57 static tree dfs_initialize_vtbl_ptrs (tree, void *);
58 static tree build_field_list (tree, tree, int *);
59 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
60
61 /* We are about to generate some complex initialization code.
62 Conceptually, it is all a single expression. However, we may want
63 to include conditionals, loops, and other such statement-level
64 constructs. Therefore, we build the initialization code inside a
65 statement-expression. This function starts such an expression.
66 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
67 pass them back to finish_init_stmts when the expression is
68 complete. */
69
70 static bool
71 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
72 {
73 bool is_global = !building_stmt_list_p ();
74
75 *stmt_expr_p = begin_stmt_expr ();
76 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
77
78 return is_global;
79 }
80
81 /* Finish out the statement-expression begun by the previous call to
82 begin_init_stmts. Returns the statement-expression itself. */
83
84 static tree
85 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
86 {
87 finish_compound_stmt (compound_stmt);
88
89 stmt_expr = finish_stmt_expr (stmt_expr, true);
90
91 gcc_assert (!building_stmt_list_p () == is_global);
92
93 return stmt_expr;
94 }
95
96 /* Constructors */
97
98 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
99 which we want to initialize the vtable pointer for, DATA is
100 TREE_LIST whose TREE_VALUE is the this ptr expression. */
101
102 static tree
103 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
104 {
105 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
106 return dfs_skip_bases;
107
108 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
109 {
110 tree base_ptr = TREE_VALUE ((tree) data);
111
112 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
113 tf_warning_or_error);
114
115 expand_virtual_init (binfo, base_ptr);
116 }
117
118 return NULL_TREE;
119 }
120
121 /* Initialize all the vtable pointers in the object pointed to by
122 ADDR. */
123
124 void
125 initialize_vtbl_ptrs (tree addr)
126 {
127 tree list;
128 tree type;
129
130 type = TREE_TYPE (TREE_TYPE (addr));
131 list = build_tree_list (type, addr);
132
133 /* Walk through the hierarchy, initializing the vptr in each base
134 class. We do these in pre-order because we can't find the virtual
135 bases for a class until we've initialized the vtbl for that
136 class. */
137 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
138 }
139
140 /* Return an expression for the zero-initialization of an object with
141 type T. This expression will either be a constant (in the case
142 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
143 aggregate), or NULL (in the case that T does not require
144 initialization). In either case, the value can be used as
145 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
146 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
147 is the number of elements in the array. If STATIC_STORAGE_P is
148 TRUE, initializers are only generated for entities for which
149 zero-initialization does not simply mean filling the storage with
150 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
151 subfields with bit positions at or above that bit size shouldn't
152 be added. Note that this only works when the result is assigned
153 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
154 expand_assignment will end up clearing the full size of TYPE. */
155
156 static tree
157 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
158 tree field_size)
159 {
160 tree init = NULL_TREE;
161
162 /* [dcl.init]
163
164 To zero-initialize an object of type T means:
165
166 -- if T is a scalar type, the storage is set to the value of zero
167 converted to T.
168
169 -- if T is a non-union class type, the storage for each nonstatic
170 data member and each base-class subobject is zero-initialized.
171
172 -- if T is a union type, the storage for its first data member is
173 zero-initialized.
174
175 -- if T is an array type, the storage for each element is
176 zero-initialized.
177
178 -- if T is a reference type, no initialization is performed. */
179
180 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
181
182 if (type == error_mark_node)
183 ;
184 else if (static_storage_p && zero_init_p (type))
185 /* In order to save space, we do not explicitly build initializers
186 for items that do not need them. GCC's semantics are that
187 items with static storage duration that are not otherwise
188 initialized are initialized to zero. */
189 ;
190 else if (TYPE_PTR_OR_PTRMEM_P (type))
191 init = convert (type, nullptr_node);
192 else if (SCALAR_TYPE_P (type))
193 init = convert (type, integer_zero_node);
194 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
195 {
196 tree field;
197 vec<constructor_elt, va_gc> *v = NULL;
198
199 /* Iterate over the fields, building initializations. */
200 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
201 {
202 if (TREE_CODE (field) != FIELD_DECL)
203 continue;
204
205 if (TREE_TYPE (field) == error_mark_node)
206 continue;
207
208 /* Don't add virtual bases for base classes if they are beyond
209 the size of the current field, that means it is present
210 somewhere else in the object. */
211 if (field_size)
212 {
213 tree bitpos = bit_position (field);
214 if (TREE_CODE (bitpos) == INTEGER_CST
215 && !tree_int_cst_lt (bitpos, field_size))
216 continue;
217 }
218
219 /* Note that for class types there will be FIELD_DECLs
220 corresponding to base classes as well. Thus, iterating
221 over TYPE_FIELDs will result in correct initialization of
222 all of the subobjects. */
223 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
224 {
225 tree new_field_size
226 = (DECL_FIELD_IS_BASE (field)
227 && DECL_SIZE (field)
228 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
229 ? DECL_SIZE (field) : NULL_TREE;
230 tree value = build_zero_init_1 (TREE_TYPE (field),
231 /*nelts=*/NULL_TREE,
232 static_storage_p,
233 new_field_size);
234 if (value)
235 CONSTRUCTOR_APPEND_ELT(v, field, value);
236 }
237
238 /* For unions, only the first field is initialized. */
239 if (TREE_CODE (type) == UNION_TYPE)
240 break;
241 }
242
243 /* Build a constructor to contain the initializations. */
244 init = build_constructor (type, v);
245 }
246 else if (TREE_CODE (type) == ARRAY_TYPE)
247 {
248 tree max_index;
249 vec<constructor_elt, va_gc> *v = NULL;
250
251 /* Iterate over the array elements, building initializations. */
252 if (nelts)
253 max_index = fold_build2_loc (input_location,
254 MINUS_EXPR, TREE_TYPE (nelts),
255 nelts, integer_one_node);
256 else
257 max_index = array_type_nelts (type);
258
259 /* If we have an error_mark here, we should just return error mark
260 as we don't know the size of the array yet. */
261 if (max_index == error_mark_node)
262 return error_mark_node;
263 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
264
265 /* A zero-sized array, which is accepted as an extension, will
266 have an upper bound of -1. */
267 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
268 {
269 constructor_elt ce;
270
271 /* If this is a one element array, we just use a regular init. */
272 if (tree_int_cst_equal (size_zero_node, max_index))
273 ce.index = size_zero_node;
274 else
275 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
276 max_index);
277
278 ce.value = build_zero_init_1 (TREE_TYPE (type),
279 /*nelts=*/NULL_TREE,
280 static_storage_p, NULL_TREE);
281 if (ce.value)
282 {
283 vec_alloc (v, 1);
284 v->quick_push (ce);
285 }
286 }
287
288 /* Build a constructor to contain the initializations. */
289 init = build_constructor (type, v);
290 }
291 else if (TREE_CODE (type) == VECTOR_TYPE)
292 init = build_zero_cst (type);
293 else
294 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
295
296 /* In all cases, the initializer is a constant. */
297 if (init)
298 TREE_CONSTANT (init) = 1;
299
300 return init;
301 }
302
303 /* Return an expression for the zero-initialization of an object with
304 type T. This expression will either be a constant (in the case
305 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
306 aggregate), or NULL (in the case that T does not require
307 initialization). In either case, the value can be used as
308 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
309 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
310 is the number of elements in the array. If STATIC_STORAGE_P is
311 TRUE, initializers are only generated for entities for which
312 zero-initialization does not simply mean filling the storage with
313 zero bytes. */
314
315 tree
316 build_zero_init (tree type, tree nelts, bool static_storage_p)
317 {
318 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
319 }
320
321 /* Return a suitable initializer for value-initializing an object of type
322 TYPE, as described in [dcl.init]. */
323
324 tree
325 build_value_init (tree type, tsubst_flags_t complain)
326 {
327 /* [dcl.init]
328
329 To value-initialize an object of type T means:
330
331 - if T is a class type (clause 9) with either no default constructor
332 (12.1) or a default constructor that is user-provided or deleted,
333 then then the object is default-initialized;
334
335 - if T is a (possibly cv-qualified) class type without a user-provided
336 or deleted default constructor, then the object is zero-initialized
337 and the semantic constraints for default-initialization are checked,
338 and if T has a non-trivial default constructor, the object is
339 default-initialized;
340
341 - if T is an array type, then each element is value-initialized;
342
343 - otherwise, the object is zero-initialized.
344
345 A program that calls for default-initialization or
346 value-initialization of an entity of reference type is ill-formed. */
347
348 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
349 gcc_assert (!processing_template_decl
350 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
351
352 if (CLASS_TYPE_P (type)
353 && type_build_ctor_call (type))
354 {
355 tree ctor =
356 build_special_member_call (NULL_TREE, complete_ctor_identifier,
357 NULL, type, LOOKUP_NORMAL,
358 complain);
359 if (ctor == error_mark_node)
360 return ctor;
361 tree fn = NULL_TREE;
362 if (TREE_CODE (ctor) == CALL_EXPR)
363 fn = get_callee_fndecl (ctor);
364 ctor = build_aggr_init_expr (type, ctor);
365 if (fn && user_provided_p (fn))
366 return ctor;
367 else if (TYPE_HAS_COMPLEX_DFLT (type))
368 {
369 /* This is a class that needs constructing, but doesn't have
370 a user-provided constructor. So we need to zero-initialize
371 the object and then call the implicitly defined ctor.
372 This will be handled in simplify_aggr_init_expr. */
373 AGGR_INIT_ZERO_FIRST (ctor) = 1;
374 return ctor;
375 }
376 }
377
378 /* Discard any access checking during subobject initialization;
379 the checks are implied by the call to the ctor which we have
380 verified is OK (cpp0x/defaulted46.C). */
381 push_deferring_access_checks (dk_deferred);
382 tree r = build_value_init_noctor (type, complain);
383 pop_deferring_access_checks ();
384 return r;
385 }
386
387 /* Like build_value_init, but don't call the constructor for TYPE. Used
388 for base initializers. */
389
390 tree
391 build_value_init_noctor (tree type, tsubst_flags_t complain)
392 {
393 if (!COMPLETE_TYPE_P (type))
394 {
395 if (complain & tf_error)
396 error ("value-initialization of incomplete type %qT", type);
397 return error_mark_node;
398 }
399 /* FIXME the class and array cases should just use digest_init once it is
400 SFINAE-enabled. */
401 if (CLASS_TYPE_P (type))
402 {
403 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
404 || errorcount != 0);
405
406 if (TREE_CODE (type) != UNION_TYPE)
407 {
408 tree field;
409 vec<constructor_elt, va_gc> *v = NULL;
410
411 /* Iterate over the fields, building initializations. */
412 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
413 {
414 tree ftype, value;
415
416 if (TREE_CODE (field) != FIELD_DECL)
417 continue;
418
419 ftype = TREE_TYPE (field);
420
421 if (ftype == error_mark_node)
422 continue;
423
424 /* We could skip vfields and fields of types with
425 user-defined constructors, but I think that won't improve
426 performance at all; it should be simpler in general just
427 to zero out the entire object than try to only zero the
428 bits that actually need it. */
429
430 /* Note that for class types there will be FIELD_DECLs
431 corresponding to base classes as well. Thus, iterating
432 over TYPE_FIELDs will result in correct initialization of
433 all of the subobjects. */
434 value = build_value_init (ftype, complain);
435 value = maybe_constant_init (value);
436
437 if (value == error_mark_node)
438 return error_mark_node;
439
440 CONSTRUCTOR_APPEND_ELT(v, field, value);
441
442 /* We shouldn't have gotten here for anything that would need
443 non-trivial initialization, and gimplify_init_ctor_preeval
444 would need to be fixed to allow it. */
445 gcc_assert (TREE_CODE (value) != TARGET_EXPR
446 && TREE_CODE (value) != AGGR_INIT_EXPR);
447 }
448
449 /* Build a constructor to contain the zero- initializations. */
450 return build_constructor (type, v);
451 }
452 }
453 else if (TREE_CODE (type) == ARRAY_TYPE)
454 {
455 vec<constructor_elt, va_gc> *v = NULL;
456
457 /* Iterate over the array elements, building initializations. */
458 tree max_index = array_type_nelts (type);
459
460 /* If we have an error_mark here, we should just return error mark
461 as we don't know the size of the array yet. */
462 if (max_index == error_mark_node)
463 {
464 if (complain & tf_error)
465 error ("cannot value-initialize array of unknown bound %qT",
466 type);
467 return error_mark_node;
468 }
469 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
470
471 /* A zero-sized array, which is accepted as an extension, will
472 have an upper bound of -1. */
473 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
474 {
475 constructor_elt ce;
476
477 /* If this is a one element array, we just use a regular init. */
478 if (tree_int_cst_equal (size_zero_node, max_index))
479 ce.index = size_zero_node;
480 else
481 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
482
483 ce.value = build_value_init (TREE_TYPE (type), complain);
484 ce.value = maybe_constant_init (ce.value);
485 if (ce.value == error_mark_node)
486 return error_mark_node;
487
488 vec_alloc (v, 1);
489 v->quick_push (ce);
490
491 /* We shouldn't have gotten here for anything that would need
492 non-trivial initialization, and gimplify_init_ctor_preeval
493 would need to be fixed to allow it. */
494 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
495 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
496 }
497
498 /* Build a constructor to contain the initializations. */
499 return build_constructor (type, v);
500 }
501 else if (TREE_CODE (type) == FUNCTION_TYPE)
502 {
503 if (complain & tf_error)
504 error ("value-initialization of function type %qT", type);
505 return error_mark_node;
506 }
507 else if (TREE_CODE (type) == REFERENCE_TYPE)
508 {
509 if (complain & tf_error)
510 error ("value-initialization of reference type %qT", type);
511 return error_mark_node;
512 }
513
514 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
515 }
516
517 /* Initialize current class with INIT, a TREE_LIST of
518 arguments for a target constructor. If TREE_LIST is void_type_node,
519 an empty initializer list was given. */
520
521 static void
522 perform_target_ctor (tree init)
523 {
524 tree decl = current_class_ref;
525 tree type = current_class_type;
526
527 finish_expr_stmt (build_aggr_init (decl, init,
528 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
529 tf_warning_or_error));
530 if (type_build_dtor_call (type))
531 {
532 tree expr = build_delete (type, decl, sfk_complete_destructor,
533 LOOKUP_NORMAL
534 |LOOKUP_NONVIRTUAL
535 |LOOKUP_DESTRUCTOR,
536 0, tf_warning_or_error);
537 if (expr != error_mark_node
538 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
539 finish_eh_cleanup (expr);
540 }
541 }
542
543 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
544
545 tree
546 get_nsdmi (tree member, bool in_ctor)
547 {
548 tree init;
549 tree save_ccp = current_class_ptr;
550 tree save_ccr = current_class_ref;
551 if (!in_ctor)
552 {
553 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
554 refer to; constexpr evaluation knows what to do with it. */
555 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
556 current_class_ptr = build_address (current_class_ref);
557 }
558 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
559 {
560 /* Do deferred instantiation of the NSDMI. */
561 init = (tsubst_copy_and_build
562 (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
563 DECL_TI_ARGS (member),
564 tf_warning_or_error, member, /*function_p=*/false,
565 /*integral_constant_expression_p=*/false));
566
567 init = digest_nsdmi_init (member, init);
568 }
569 else
570 {
571 init = DECL_INITIAL (member);
572 if (init && TREE_CODE (init) == DEFAULT_ARG)
573 {
574 error ("constructor required before non-static data member "
575 "for %qD has been parsed", member);
576 DECL_INITIAL (member) = error_mark_node;
577 init = error_mark_node;
578 }
579 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
580 so the aggregate init code below will see a CONSTRUCTOR. */
581 if (init && TREE_CODE (init) == TARGET_EXPR
582 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
583 init = TARGET_EXPR_INITIAL (init);
584 init = break_out_target_exprs (init);
585 }
586 current_class_ptr = save_ccp;
587 current_class_ref = save_ccr;
588 return init;
589 }
590
591 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
592 arguments. If TREE_LIST is void_type_node, an empty initializer
593 list was given; if NULL_TREE no initializer was given. */
594
595 static void
596 perform_member_init (tree member, tree init)
597 {
598 tree decl;
599 tree type = TREE_TYPE (member);
600
601 /* Use the non-static data member initializer if there was no
602 mem-initializer for this field. */
603 if (init == NULL_TREE)
604 init = get_nsdmi (member, /*ctor*/true);
605
606 if (init == error_mark_node)
607 return;
608
609 /* Effective C++ rule 12 requires that all data members be
610 initialized. */
611 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
612 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
613 "%qD should be initialized in the member initialization list",
614 member);
615
616 /* Get an lvalue for the data member. */
617 decl = build_class_member_access_expr (current_class_ref, member,
618 /*access_path=*/NULL_TREE,
619 /*preserve_reference=*/true,
620 tf_warning_or_error);
621 if (decl == error_mark_node)
622 return;
623
624 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
625 && TREE_CHAIN (init) == NULL_TREE)
626 {
627 tree val = TREE_VALUE (init);
628 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
629 && TREE_OPERAND (val, 0) == current_class_ref)
630 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
631 OPT_Winit_self, "%qD is initialized with itself",
632 member);
633 }
634
635 if (init == void_type_node)
636 {
637 /* mem() means value-initialization. */
638 if (TREE_CODE (type) == ARRAY_TYPE)
639 {
640 init = build_vec_init_expr (type, init, tf_warning_or_error);
641 init = build2 (INIT_EXPR, type, decl, init);
642 finish_expr_stmt (init);
643 }
644 else
645 {
646 tree value = build_value_init (type, tf_warning_or_error);
647 if (value == error_mark_node)
648 return;
649 init = build2 (INIT_EXPR, type, decl, value);
650 finish_expr_stmt (init);
651 }
652 }
653 /* Deal with this here, as we will get confused if we try to call the
654 assignment op for an anonymous union. This can happen in a
655 synthesized copy constructor. */
656 else if (ANON_AGGR_TYPE_P (type))
657 {
658 if (init)
659 {
660 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
661 finish_expr_stmt (init);
662 }
663 }
664 else if (init
665 && (TREE_CODE (type) == REFERENCE_TYPE
666 /* Pre-digested NSDMI. */
667 || (((TREE_CODE (init) == CONSTRUCTOR
668 && TREE_TYPE (init) == type)
669 /* { } mem-initializer. */
670 || (TREE_CODE (init) == TREE_LIST
671 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
672 && (CP_AGGREGATE_TYPE_P (type)
673 || is_std_init_list (type)))))
674 {
675 /* With references and list-initialization, we need to deal with
676 extending temporary lifetimes. 12.2p5: "A temporary bound to a
677 reference member in a constructor’s ctor-initializer (12.6.2)
678 persists until the constructor exits." */
679 unsigned i; tree t;
680 vec<tree, va_gc> *cleanups = make_tree_vector ();
681 if (TREE_CODE (init) == TREE_LIST)
682 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
683 tf_warning_or_error);
684 if (TREE_TYPE (init) != type)
685 {
686 if (BRACE_ENCLOSED_INITIALIZER_P (init)
687 && CP_AGGREGATE_TYPE_P (type))
688 init = reshape_init (type, init, tf_warning_or_error);
689 init = digest_init (type, init, tf_warning_or_error);
690 }
691 if (init == error_mark_node)
692 return;
693 /* A FIELD_DECL doesn't really have a suitable lifetime, but
694 make_temporary_var_for_ref_to_temp will treat it as automatic and
695 set_up_extended_ref_temp wants to use the decl in a warning. */
696 init = extend_ref_init_temps (member, init, &cleanups);
697 if (TREE_CODE (type) == ARRAY_TYPE
698 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
699 init = build_vec_init_expr (type, init, tf_warning_or_error);
700 init = build2 (INIT_EXPR, type, decl, init);
701 finish_expr_stmt (init);
702 FOR_EACH_VEC_ELT (*cleanups, i, t)
703 push_cleanup (decl, t, false);
704 release_tree_vector (cleanups);
705 }
706 else if (type_build_ctor_call (type)
707 || (init && CLASS_TYPE_P (strip_array_types (type))))
708 {
709 if (TREE_CODE (type) == ARRAY_TYPE)
710 {
711 if (init)
712 {
713 if (TREE_CHAIN (init))
714 init = error_mark_node;
715 else
716 init = TREE_VALUE (init);
717 if (BRACE_ENCLOSED_INITIALIZER_P (init))
718 init = digest_init (type, init, tf_warning_or_error);
719 }
720 if (init == NULL_TREE
721 || same_type_ignoring_top_level_qualifiers_p (type,
722 TREE_TYPE (init)))
723 {
724 init = build_vec_init_expr (type, init, tf_warning_or_error);
725 init = build2 (INIT_EXPR, type, decl, init);
726 finish_expr_stmt (init);
727 }
728 else
729 error ("invalid initializer for array member %q#D", member);
730 }
731 else
732 {
733 int flags = LOOKUP_NORMAL;
734 if (DECL_DEFAULTED_FN (current_function_decl))
735 flags |= LOOKUP_DEFAULTED;
736 if (CP_TYPE_CONST_P (type)
737 && init == NULL_TREE
738 && default_init_uninitialized_part (type))
739 {
740 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
741 vtable; still give this diagnostic. */
742 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
743 "uninitialized const member in %q#T", type))
744 inform (DECL_SOURCE_LOCATION (member),
745 "%q#D should be initialized", member );
746 }
747 finish_expr_stmt (build_aggr_init (decl, init, flags,
748 tf_warning_or_error));
749 }
750 }
751 else
752 {
753 if (init == NULL_TREE)
754 {
755 tree core_type;
756 /* member traversal: note it leaves init NULL */
757 if (TREE_CODE (type) == REFERENCE_TYPE)
758 {
759 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
760 "uninitialized reference member in %q#T", type))
761 inform (DECL_SOURCE_LOCATION (member),
762 "%q#D should be initialized", member);
763 }
764 else if (CP_TYPE_CONST_P (type))
765 {
766 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
767 "uninitialized const member in %q#T", type))
768 inform (DECL_SOURCE_LOCATION (member),
769 "%q#D should be initialized", member );
770 }
771
772 core_type = strip_array_types (type);
773
774 if (CLASS_TYPE_P (core_type)
775 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
776 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
777 diagnose_uninitialized_cst_or_ref_member (core_type,
778 /*using_new=*/false,
779 /*complain=*/true);
780 }
781 else if (TREE_CODE (init) == TREE_LIST)
782 /* There was an explicit member initialization. Do some work
783 in that case. */
784 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
785 tf_warning_or_error);
786
787 if (init)
788 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
789 tf_warning_or_error));
790 }
791
792 if (type_build_dtor_call (type))
793 {
794 tree expr;
795
796 expr = build_class_member_access_expr (current_class_ref, member,
797 /*access_path=*/NULL_TREE,
798 /*preserve_reference=*/false,
799 tf_warning_or_error);
800 expr = build_delete (type, expr, sfk_complete_destructor,
801 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
802 tf_warning_or_error);
803
804 if (expr != error_mark_node
805 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
806 finish_eh_cleanup (expr);
807 }
808 }
809
810 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
811 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
812
813 static tree
814 build_field_list (tree t, tree list, int *uses_unions_p)
815 {
816 tree fields;
817
818 /* Note whether or not T is a union. */
819 if (TREE_CODE (t) == UNION_TYPE)
820 *uses_unions_p = 1;
821
822 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
823 {
824 tree fieldtype;
825
826 /* Skip CONST_DECLs for enumeration constants and so forth. */
827 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
828 continue;
829
830 fieldtype = TREE_TYPE (fields);
831 /* Keep track of whether or not any fields are unions. */
832 if (TREE_CODE (fieldtype) == UNION_TYPE)
833 *uses_unions_p = 1;
834
835 /* For an anonymous struct or union, we must recursively
836 consider the fields of the anonymous type. They can be
837 directly initialized from the constructor. */
838 if (ANON_AGGR_TYPE_P (fieldtype))
839 {
840 /* Add this field itself. Synthesized copy constructors
841 initialize the entire aggregate. */
842 list = tree_cons (fields, NULL_TREE, list);
843 /* And now add the fields in the anonymous aggregate. */
844 list = build_field_list (fieldtype, list, uses_unions_p);
845 }
846 /* Add this field. */
847 else if (DECL_NAME (fields))
848 list = tree_cons (fields, NULL_TREE, list);
849 }
850
851 return list;
852 }
853
854 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
855 a FIELD_DECL or BINFO in T that needs initialization. The
856 TREE_VALUE gives the initializer, or list of initializer arguments.
857
858 Return a TREE_LIST containing all of the initializations required
859 for T, in the order in which they should be performed. The output
860 list has the same format as the input. */
861
862 static tree
863 sort_mem_initializers (tree t, tree mem_inits)
864 {
865 tree init;
866 tree base, binfo, base_binfo;
867 tree sorted_inits;
868 tree next_subobject;
869 vec<tree, va_gc> *vbases;
870 int i;
871 int uses_unions_p = 0;
872
873 /* Build up a list of initializations. The TREE_PURPOSE of entry
874 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
875 TREE_VALUE will be the constructor arguments, or NULL if no
876 explicit initialization was provided. */
877 sorted_inits = NULL_TREE;
878
879 /* Process the virtual bases. */
880 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
881 vec_safe_iterate (vbases, i, &base); i++)
882 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
883
884 /* Process the direct bases. */
885 for (binfo = TYPE_BINFO (t), i = 0;
886 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
887 if (!BINFO_VIRTUAL_P (base_binfo))
888 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
889
890 /* Process the non-static data members. */
891 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
892 /* Reverse the entire list of initializations, so that they are in
893 the order that they will actually be performed. */
894 sorted_inits = nreverse (sorted_inits);
895
896 /* If the user presented the initializers in an order different from
897 that in which they will actually occur, we issue a warning. Keep
898 track of the next subobject which can be explicitly initialized
899 without issuing a warning. */
900 next_subobject = sorted_inits;
901
902 /* Go through the explicit initializers, filling in TREE_PURPOSE in
903 the SORTED_INITS. */
904 for (init = mem_inits; init; init = TREE_CHAIN (init))
905 {
906 tree subobject;
907 tree subobject_init;
908
909 subobject = TREE_PURPOSE (init);
910
911 /* If the explicit initializers are in sorted order, then
912 SUBOBJECT will be NEXT_SUBOBJECT, or something following
913 it. */
914 for (subobject_init = next_subobject;
915 subobject_init;
916 subobject_init = TREE_CHAIN (subobject_init))
917 if (TREE_PURPOSE (subobject_init) == subobject)
918 break;
919
920 /* Issue a warning if the explicit initializer order does not
921 match that which will actually occur.
922 ??? Are all these on the correct lines? */
923 if (warn_reorder && !subobject_init)
924 {
925 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
926 warning (OPT_Wreorder, "%q+D will be initialized after",
927 TREE_PURPOSE (next_subobject));
928 else
929 warning (OPT_Wreorder, "base %qT will be initialized after",
930 TREE_PURPOSE (next_subobject));
931 if (TREE_CODE (subobject) == FIELD_DECL)
932 warning (OPT_Wreorder, " %q+#D", subobject);
933 else
934 warning (OPT_Wreorder, " base %qT", subobject);
935 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
936 OPT_Wreorder, " when initialized here");
937 }
938
939 /* Look again, from the beginning of the list. */
940 if (!subobject_init)
941 {
942 subobject_init = sorted_inits;
943 while (TREE_PURPOSE (subobject_init) != subobject)
944 subobject_init = TREE_CHAIN (subobject_init);
945 }
946
947 /* It is invalid to initialize the same subobject more than
948 once. */
949 if (TREE_VALUE (subobject_init))
950 {
951 if (TREE_CODE (subobject) == FIELD_DECL)
952 error_at (DECL_SOURCE_LOCATION (current_function_decl),
953 "multiple initializations given for %qD",
954 subobject);
955 else
956 error_at (DECL_SOURCE_LOCATION (current_function_decl),
957 "multiple initializations given for base %qT",
958 subobject);
959 }
960
961 /* Record the initialization. */
962 TREE_VALUE (subobject_init) = TREE_VALUE (init);
963 next_subobject = subobject_init;
964 }
965
966 /* [class.base.init]
967
968 If a ctor-initializer specifies more than one mem-initializer for
969 multiple members of the same union (including members of
970 anonymous unions), the ctor-initializer is ill-formed.
971
972 Here we also splice out uninitialized union members. */
973 if (uses_unions_p)
974 {
975 tree *last_p = NULL;
976 tree *p;
977 for (p = &sorted_inits; *p; )
978 {
979 tree field;
980 tree ctx;
981
982 init = *p;
983
984 field = TREE_PURPOSE (init);
985
986 /* Skip base classes. */
987 if (TREE_CODE (field) != FIELD_DECL)
988 goto next;
989
990 /* If this is an anonymous union with no explicit initializer,
991 splice it out. */
992 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
993 goto splice;
994
995 /* See if this field is a member of a union, or a member of a
996 structure contained in a union, etc. */
997 for (ctx = DECL_CONTEXT (field);
998 !same_type_p (ctx, t);
999 ctx = TYPE_CONTEXT (ctx))
1000 if (TREE_CODE (ctx) == UNION_TYPE
1001 || !ANON_AGGR_TYPE_P (ctx))
1002 break;
1003 /* If this field is not a member of a union, skip it. */
1004 if (TREE_CODE (ctx) != UNION_TYPE)
1005 goto next;
1006
1007 /* If this union member has no explicit initializer and no NSDMI,
1008 splice it out. */
1009 if (TREE_VALUE (init) || DECL_INITIAL (field))
1010 /* OK. */;
1011 else
1012 goto splice;
1013
1014 /* It's only an error if we have two initializers for the same
1015 union type. */
1016 if (!last_p)
1017 {
1018 last_p = p;
1019 goto next;
1020 }
1021
1022 /* See if LAST_FIELD and the field initialized by INIT are
1023 members of the same union. If so, there's a problem,
1024 unless they're actually members of the same structure
1025 which is itself a member of a union. For example, given:
1026
1027 union { struct { int i; int j; }; };
1028
1029 initializing both `i' and `j' makes sense. */
1030 ctx = common_enclosing_class (DECL_CONTEXT (field),
1031 DECL_CONTEXT (TREE_PURPOSE (*last_p)));
1032
1033 if (ctx && TREE_CODE (ctx) == UNION_TYPE)
1034 {
1035 /* A mem-initializer hides an NSDMI. */
1036 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1037 *last_p = TREE_CHAIN (*last_p);
1038 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1039 goto splice;
1040 else
1041 {
1042 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1043 "initializations for multiple members of %qT",
1044 ctx);
1045 goto splice;
1046 }
1047 }
1048
1049 last_p = p;
1050
1051 next:
1052 p = &TREE_CHAIN (*p);
1053 continue;
1054 splice:
1055 *p = TREE_CHAIN (*p);
1056 continue;
1057 }
1058 }
1059
1060 return sorted_inits;
1061 }
1062
1063 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1064 is a TREE_LIST giving the explicit mem-initializer-list for the
1065 constructor. The TREE_PURPOSE of each entry is a subobject (a
1066 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1067 is a TREE_LIST giving the arguments to the constructor or
1068 void_type_node for an empty list of arguments. */
1069
1070 void
1071 emit_mem_initializers (tree mem_inits)
1072 {
1073 int flags = LOOKUP_NORMAL;
1074
1075 /* We will already have issued an error message about the fact that
1076 the type is incomplete. */
1077 if (!COMPLETE_TYPE_P (current_class_type))
1078 return;
1079
1080 if (mem_inits
1081 && TYPE_P (TREE_PURPOSE (mem_inits))
1082 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1083 {
1084 /* Delegating constructor. */
1085 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1086 perform_target_ctor (TREE_VALUE (mem_inits));
1087 return;
1088 }
1089
1090 if (DECL_DEFAULTED_FN (current_function_decl)
1091 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1092 flags |= LOOKUP_DEFAULTED;
1093
1094 /* Sort the mem-initializers into the order in which the
1095 initializations should be performed. */
1096 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1097
1098 in_base_initializer = 1;
1099
1100 /* Initialize base classes. */
1101 for (; (mem_inits
1102 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1103 mem_inits = TREE_CHAIN (mem_inits))
1104 {
1105 tree subobject = TREE_PURPOSE (mem_inits);
1106 tree arguments = TREE_VALUE (mem_inits);
1107
1108 /* We already have issued an error message. */
1109 if (arguments == error_mark_node)
1110 continue;
1111
1112 if (arguments == NULL_TREE)
1113 {
1114 /* If these initializations are taking place in a copy constructor,
1115 the base class should probably be explicitly initialized if there
1116 is a user-defined constructor in the base class (other than the
1117 default constructor, which will be called anyway). */
1118 if (extra_warnings
1119 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1120 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1121 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1122 OPT_Wextra, "base class %q#T should be explicitly "
1123 "initialized in the copy constructor",
1124 BINFO_TYPE (subobject));
1125 }
1126
1127 /* Initialize the base. */
1128 if (BINFO_VIRTUAL_P (subobject))
1129 construct_virtual_base (subobject, arguments);
1130 else
1131 {
1132 tree base_addr;
1133
1134 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1135 subobject, 1, tf_warning_or_error);
1136 expand_aggr_init_1 (subobject, NULL_TREE,
1137 cp_build_indirect_ref (base_addr, RO_NULL,
1138 tf_warning_or_error),
1139 arguments,
1140 flags,
1141 tf_warning_or_error);
1142 expand_cleanup_for_base (subobject, NULL_TREE);
1143 }
1144 }
1145 in_base_initializer = 0;
1146
1147 /* Initialize the vptrs. */
1148 initialize_vtbl_ptrs (current_class_ptr);
1149
1150 /* Initialize the data members. */
1151 while (mem_inits)
1152 {
1153 perform_member_init (TREE_PURPOSE (mem_inits),
1154 TREE_VALUE (mem_inits));
1155 mem_inits = TREE_CHAIN (mem_inits);
1156 }
1157 }
1158
1159 /* Returns the address of the vtable (i.e., the value that should be
1160 assigned to the vptr) for BINFO. */
1161
1162 tree
1163 build_vtbl_address (tree binfo)
1164 {
1165 tree binfo_for = binfo;
1166 tree vtbl;
1167
1168 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1169 /* If this is a virtual primary base, then the vtable we want to store
1170 is that for the base this is being used as the primary base of. We
1171 can't simply skip the initialization, because we may be expanding the
1172 inits of a subobject constructor where the virtual base layout
1173 can be different. */
1174 while (BINFO_PRIMARY_P (binfo_for))
1175 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1176
1177 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1178 used. */
1179 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1180 TREE_USED (vtbl) = true;
1181
1182 /* Now compute the address to use when initializing the vptr. */
1183 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1184 if (VAR_P (vtbl))
1185 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1186
1187 return vtbl;
1188 }
1189
1190 /* This code sets up the virtual function tables appropriate for
1191 the pointer DECL. It is a one-ply initialization.
1192
1193 BINFO is the exact type that DECL is supposed to be. In
1194 multiple inheritance, this might mean "C's A" if C : A, B. */
1195
1196 static void
1197 expand_virtual_init (tree binfo, tree decl)
1198 {
1199 tree vtbl, vtbl_ptr;
1200 tree vtt_index;
1201
1202 /* Compute the initializer for vptr. */
1203 vtbl = build_vtbl_address (binfo);
1204
1205 /* We may get this vptr from a VTT, if this is a subobject
1206 constructor or subobject destructor. */
1207 vtt_index = BINFO_VPTR_INDEX (binfo);
1208 if (vtt_index)
1209 {
1210 tree vtbl2;
1211 tree vtt_parm;
1212
1213 /* Compute the value to use, when there's a VTT. */
1214 vtt_parm = current_vtt_parm;
1215 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1216 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1217 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1218
1219 /* The actual initializer is the VTT value only in the subobject
1220 constructor. In maybe_clone_body we'll substitute NULL for
1221 the vtt_parm in the case of the non-subobject constructor. */
1222 vtbl = build3 (COND_EXPR,
1223 TREE_TYPE (vtbl),
1224 build2 (EQ_EXPR, boolean_type_node,
1225 current_in_charge_parm, integer_zero_node),
1226 vtbl2,
1227 vtbl);
1228 }
1229
1230 /* Compute the location of the vtpr. */
1231 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1232 tf_warning_or_error),
1233 TREE_TYPE (binfo));
1234 gcc_assert (vtbl_ptr != error_mark_node);
1235
1236 /* Assign the vtable to the vptr. */
1237 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1238 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1239 tf_warning_or_error));
1240 }
1241
1242 /* If an exception is thrown in a constructor, those base classes already
1243 constructed must be destroyed. This function creates the cleanup
1244 for BINFO, which has just been constructed. If FLAG is non-NULL,
1245 it is a DECL which is nonzero when this base needs to be
1246 destroyed. */
1247
1248 static void
1249 expand_cleanup_for_base (tree binfo, tree flag)
1250 {
1251 tree expr;
1252
1253 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1254 return;
1255
1256 /* Call the destructor. */
1257 expr = build_special_member_call (current_class_ref,
1258 base_dtor_identifier,
1259 NULL,
1260 binfo,
1261 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1262 tf_warning_or_error);
1263
1264 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1265 return;
1266
1267 if (flag)
1268 expr = fold_build3_loc (input_location,
1269 COND_EXPR, void_type_node,
1270 c_common_truthvalue_conversion (input_location, flag),
1271 expr, integer_zero_node);
1272
1273 finish_eh_cleanup (expr);
1274 }
1275
1276 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1277 constructor. */
1278
1279 static void
1280 construct_virtual_base (tree vbase, tree arguments)
1281 {
1282 tree inner_if_stmt;
1283 tree exp;
1284 tree flag;
1285
1286 /* If there are virtual base classes with destructors, we need to
1287 emit cleanups to destroy them if an exception is thrown during
1288 the construction process. These exception regions (i.e., the
1289 period during which the cleanups must occur) begin from the time
1290 the construction is complete to the end of the function. If we
1291 create a conditional block in which to initialize the
1292 base-classes, then the cleanup region for the virtual base begins
1293 inside a block, and ends outside of that block. This situation
1294 confuses the sjlj exception-handling code. Therefore, we do not
1295 create a single conditional block, but one for each
1296 initialization. (That way the cleanup regions always begin
1297 in the outer block.) We trust the back end to figure out
1298 that the FLAG will not change across initializations, and
1299 avoid doing multiple tests. */
1300 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1301 inner_if_stmt = begin_if_stmt ();
1302 finish_if_stmt_cond (flag, inner_if_stmt);
1303
1304 /* Compute the location of the virtual base. If we're
1305 constructing virtual bases, then we must be the most derived
1306 class. Therefore, we don't have to look up the virtual base;
1307 we already know where it is. */
1308 exp = convert_to_base_statically (current_class_ref, vbase);
1309
1310 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1311 0, tf_warning_or_error);
1312 finish_then_clause (inner_if_stmt);
1313 finish_if_stmt (inner_if_stmt);
1314
1315 expand_cleanup_for_base (vbase, flag);
1316 }
1317
1318 /* Find the context in which this FIELD can be initialized. */
1319
1320 static tree
1321 initializing_context (tree field)
1322 {
1323 tree t = DECL_CONTEXT (field);
1324
1325 /* Anonymous union members can be initialized in the first enclosing
1326 non-anonymous union context. */
1327 while (t && ANON_AGGR_TYPE_P (t))
1328 t = TYPE_CONTEXT (t);
1329 return t;
1330 }
1331
1332 /* Function to give error message if member initialization specification
1333 is erroneous. FIELD is the member we decided to initialize.
1334 TYPE is the type for which the initialization is being performed.
1335 FIELD must be a member of TYPE.
1336
1337 MEMBER_NAME is the name of the member. */
1338
1339 static int
1340 member_init_ok_or_else (tree field, tree type, tree member_name)
1341 {
1342 if (field == error_mark_node)
1343 return 0;
1344 if (!field)
1345 {
1346 error ("class %qT does not have any field named %qD", type,
1347 member_name);
1348 return 0;
1349 }
1350 if (VAR_P (field))
1351 {
1352 error ("%q#D is a static data member; it can only be "
1353 "initialized at its definition",
1354 field);
1355 return 0;
1356 }
1357 if (TREE_CODE (field) != FIELD_DECL)
1358 {
1359 error ("%q#D is not a non-static data member of %qT",
1360 field, type);
1361 return 0;
1362 }
1363 if (initializing_context (field) != type)
1364 {
1365 error ("class %qT does not have any field named %qD", type,
1366 member_name);
1367 return 0;
1368 }
1369
1370 return 1;
1371 }
1372
1373 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1374 is a _TYPE node or TYPE_DECL which names a base for that type.
1375 Check the validity of NAME, and return either the base _TYPE, base
1376 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1377 NULL_TREE and issue a diagnostic.
1378
1379 An old style unnamed direct single base construction is permitted,
1380 where NAME is NULL. */
1381
1382 tree
1383 expand_member_init (tree name)
1384 {
1385 tree basetype;
1386 tree field;
1387
1388 if (!current_class_ref)
1389 return NULL_TREE;
1390
1391 if (!name)
1392 {
1393 /* This is an obsolete unnamed base class initializer. The
1394 parser will already have warned about its use. */
1395 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1396 {
1397 case 0:
1398 error ("unnamed initializer for %qT, which has no base classes",
1399 current_class_type);
1400 return NULL_TREE;
1401 case 1:
1402 basetype = BINFO_TYPE
1403 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1404 break;
1405 default:
1406 error ("unnamed initializer for %qT, which uses multiple inheritance",
1407 current_class_type);
1408 return NULL_TREE;
1409 }
1410 }
1411 else if (TYPE_P (name))
1412 {
1413 basetype = TYPE_MAIN_VARIANT (name);
1414 name = TYPE_NAME (name);
1415 }
1416 else if (TREE_CODE (name) == TYPE_DECL)
1417 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1418 else
1419 basetype = NULL_TREE;
1420
1421 if (basetype)
1422 {
1423 tree class_binfo;
1424 tree direct_binfo;
1425 tree virtual_binfo;
1426 int i;
1427
1428 if (current_template_parms
1429 || same_type_p (basetype, current_class_type))
1430 return basetype;
1431
1432 class_binfo = TYPE_BINFO (current_class_type);
1433 direct_binfo = NULL_TREE;
1434 virtual_binfo = NULL_TREE;
1435
1436 /* Look for a direct base. */
1437 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1438 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1439 break;
1440
1441 /* Look for a virtual base -- unless the direct base is itself
1442 virtual. */
1443 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1444 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1445
1446 /* [class.base.init]
1447
1448 If a mem-initializer-id is ambiguous because it designates
1449 both a direct non-virtual base class and an inherited virtual
1450 base class, the mem-initializer is ill-formed. */
1451 if (direct_binfo && virtual_binfo)
1452 {
1453 error ("%qD is both a direct base and an indirect virtual base",
1454 basetype);
1455 return NULL_TREE;
1456 }
1457
1458 if (!direct_binfo && !virtual_binfo)
1459 {
1460 if (CLASSTYPE_VBASECLASSES (current_class_type))
1461 error ("type %qT is not a direct or virtual base of %qT",
1462 basetype, current_class_type);
1463 else
1464 error ("type %qT is not a direct base of %qT",
1465 basetype, current_class_type);
1466 return NULL_TREE;
1467 }
1468
1469 return direct_binfo ? direct_binfo : virtual_binfo;
1470 }
1471 else
1472 {
1473 if (identifier_p (name))
1474 field = lookup_field (current_class_type, name, 1, false);
1475 else
1476 field = name;
1477
1478 if (member_init_ok_or_else (field, current_class_type, name))
1479 return field;
1480 }
1481
1482 return NULL_TREE;
1483 }
1484
1485 /* This is like `expand_member_init', only it stores one aggregate
1486 value into another.
1487
1488 INIT comes in two flavors: it is either a value which
1489 is to be stored in EXP, or it is a parameter list
1490 to go to a constructor, which will operate on EXP.
1491 If INIT is not a parameter list for a constructor, then set
1492 LOOKUP_ONLYCONVERTING.
1493 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1494 the initializer, if FLAGS is 0, then it is the (init) form.
1495 If `init' is a CONSTRUCTOR, then we emit a warning message,
1496 explaining that such initializations are invalid.
1497
1498 If INIT resolves to a CALL_EXPR which happens to return
1499 something of the type we are looking for, then we know
1500 that we can safely use that call to perform the
1501 initialization.
1502
1503 The virtual function table pointer cannot be set up here, because
1504 we do not really know its type.
1505
1506 This never calls operator=().
1507
1508 When initializing, nothing is CONST.
1509
1510 A default copy constructor may have to be used to perform the
1511 initialization.
1512
1513 A constructor or a conversion operator may have to be used to
1514 perform the initialization, but not both, as it would be ambiguous. */
1515
1516 tree
1517 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1518 {
1519 tree stmt_expr;
1520 tree compound_stmt;
1521 int destroy_temps;
1522 tree type = TREE_TYPE (exp);
1523 int was_const = TREE_READONLY (exp);
1524 int was_volatile = TREE_THIS_VOLATILE (exp);
1525 int is_global;
1526
1527 if (init == error_mark_node)
1528 return error_mark_node;
1529
1530 TREE_READONLY (exp) = 0;
1531 TREE_THIS_VOLATILE (exp) = 0;
1532
1533 if (init && init != void_type_node
1534 && TREE_CODE (init) != TREE_LIST
1535 && !(TREE_CODE (init) == TARGET_EXPR
1536 && TARGET_EXPR_DIRECT_INIT_P (init))
1537 && !DIRECT_LIST_INIT_P (init))
1538 flags |= LOOKUP_ONLYCONVERTING;
1539
1540 if (TREE_CODE (type) == ARRAY_TYPE)
1541 {
1542 tree itype;
1543
1544 /* An array may not be initialized use the parenthesized
1545 initialization form -- unless the initializer is "()". */
1546 if (init && TREE_CODE (init) == TREE_LIST)
1547 {
1548 if (complain & tf_error)
1549 error ("bad array initializer");
1550 return error_mark_node;
1551 }
1552 /* Must arrange to initialize each element of EXP
1553 from elements of INIT. */
1554 itype = init ? TREE_TYPE (init) : NULL_TREE;
1555 if (cv_qualified_p (type))
1556 TREE_TYPE (exp) = cv_unqualified (type);
1557 if (itype && cv_qualified_p (itype))
1558 TREE_TYPE (init) = cv_unqualified (itype);
1559 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1560 /*explicit_value_init_p=*/false,
1561 itype && same_type_p (TREE_TYPE (init),
1562 TREE_TYPE (exp)),
1563 complain);
1564 TREE_READONLY (exp) = was_const;
1565 TREE_THIS_VOLATILE (exp) = was_volatile;
1566 TREE_TYPE (exp) = type;
1567 /* Restore the type of init unless it was used directly. */
1568 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1569 TREE_TYPE (init) = itype;
1570 return stmt_expr;
1571 }
1572
1573 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1574 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1575 /* Just know that we've seen something for this node. */
1576 TREE_USED (exp) = 1;
1577
1578 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1579 destroy_temps = stmts_are_full_exprs_p ();
1580 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1581 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1582 init, LOOKUP_NORMAL|flags, complain);
1583 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1584 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1585 TREE_READONLY (exp) = was_const;
1586 TREE_THIS_VOLATILE (exp) = was_volatile;
1587
1588 return stmt_expr;
1589 }
1590
1591 static void
1592 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1593 tsubst_flags_t complain)
1594 {
1595 tree type = TREE_TYPE (exp);
1596 tree ctor_name;
1597
1598 /* It fails because there may not be a constructor which takes
1599 its own type as the first (or only parameter), but which does
1600 take other types via a conversion. So, if the thing initializing
1601 the expression is a unit element of type X, first try X(X&),
1602 followed by initialization by X. If neither of these work
1603 out, then look hard. */
1604 tree rval;
1605 vec<tree, va_gc> *parms;
1606
1607 /* If we have direct-initialization from an initializer list, pull
1608 it out of the TREE_LIST so the code below can see it. */
1609 if (init && TREE_CODE (init) == TREE_LIST
1610 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1611 {
1612 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1613 && TREE_CHAIN (init) == NULL_TREE);
1614 init = TREE_VALUE (init);
1615 }
1616
1617 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1618 && CP_AGGREGATE_TYPE_P (type))
1619 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1620 happen for direct-initialization, too. */
1621 init = digest_init (type, init, complain);
1622
1623 /* A CONSTRUCTOR of the target's type is a previously digested
1624 initializer, whether that happened just above or in
1625 cp_parser_late_parsing_nsdmi.
1626
1627 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1628 set represents the whole initialization, so we shouldn't build up
1629 another ctor call. */
1630 if (init
1631 && (TREE_CODE (init) == CONSTRUCTOR
1632 || (TREE_CODE (init) == TARGET_EXPR
1633 && (TARGET_EXPR_DIRECT_INIT_P (init)
1634 || TARGET_EXPR_LIST_INIT_P (init))))
1635 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1636 {
1637 /* Early initialization via a TARGET_EXPR only works for
1638 complete objects. */
1639 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1640
1641 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1642 TREE_SIDE_EFFECTS (init) = 1;
1643 finish_expr_stmt (init);
1644 return;
1645 }
1646
1647 if (init && TREE_CODE (init) != TREE_LIST
1648 && (flags & LOOKUP_ONLYCONVERTING))
1649 {
1650 /* Base subobjects should only get direct-initialization. */
1651 gcc_assert (true_exp == exp);
1652
1653 if (flags & DIRECT_BIND)
1654 /* Do nothing. We hit this in two cases: Reference initialization,
1655 where we aren't initializing a real variable, so we don't want
1656 to run a new constructor; and catching an exception, where we
1657 have already built up the constructor call so we could wrap it
1658 in an exception region. */;
1659 else
1660 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1661 flags, complain);
1662
1663 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1664 /* We need to protect the initialization of a catch parm with a
1665 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1666 around the TARGET_EXPR for the copy constructor. See
1667 initialize_handler_parm. */
1668 {
1669 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1670 TREE_OPERAND (init, 0));
1671 TREE_TYPE (init) = void_type_node;
1672 }
1673 else
1674 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1675 TREE_SIDE_EFFECTS (init) = 1;
1676 finish_expr_stmt (init);
1677 return;
1678 }
1679
1680 if (init == NULL_TREE)
1681 parms = NULL;
1682 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1683 {
1684 parms = make_tree_vector ();
1685 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1686 vec_safe_push (parms, TREE_VALUE (init));
1687 }
1688 else
1689 parms = make_tree_vector_single (init);
1690
1691 if (exp == current_class_ref && current_function_decl
1692 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1693 {
1694 /* Delegating constructor. */
1695 tree complete;
1696 tree base;
1697 tree elt; unsigned i;
1698
1699 /* Unshare the arguments for the second call. */
1700 vec<tree, va_gc> *parms2 = make_tree_vector ();
1701 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1702 {
1703 elt = break_out_target_exprs (elt);
1704 vec_safe_push (parms2, elt);
1705 }
1706 complete = build_special_member_call (exp, complete_ctor_identifier,
1707 &parms2, binfo, flags,
1708 complain);
1709 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1710 release_tree_vector (parms2);
1711
1712 base = build_special_member_call (exp, base_ctor_identifier,
1713 &parms, binfo, flags,
1714 complain);
1715 base = fold_build_cleanup_point_expr (void_type_node, base);
1716 rval = build3 (COND_EXPR, void_type_node,
1717 build2 (EQ_EXPR, boolean_type_node,
1718 current_in_charge_parm, integer_zero_node),
1719 base,
1720 complete);
1721 }
1722 else
1723 {
1724 if (true_exp == exp)
1725 ctor_name = complete_ctor_identifier;
1726 else
1727 ctor_name = base_ctor_identifier;
1728 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1729 complain);
1730 }
1731
1732 if (parms != NULL)
1733 release_tree_vector (parms);
1734
1735 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1736 {
1737 tree fn = get_callee_fndecl (rval);
1738 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1739 {
1740 tree e = maybe_constant_init (rval, exp);
1741 if (TREE_CONSTANT (e))
1742 rval = build2 (INIT_EXPR, type, exp, e);
1743 }
1744 }
1745
1746 /* FIXME put back convert_to_void? */
1747 if (TREE_SIDE_EFFECTS (rval))
1748 finish_expr_stmt (rval);
1749 }
1750
1751 /* This function is responsible for initializing EXP with INIT
1752 (if any).
1753
1754 BINFO is the binfo of the type for who we are performing the
1755 initialization. For example, if W is a virtual base class of A and B,
1756 and C : A, B.
1757 If we are initializing B, then W must contain B's W vtable, whereas
1758 were we initializing C, W must contain C's W vtable.
1759
1760 TRUE_EXP is nonzero if it is the true expression being initialized.
1761 In this case, it may be EXP, or may just contain EXP. The reason we
1762 need this is because if EXP is a base element of TRUE_EXP, we
1763 don't necessarily know by looking at EXP where its virtual
1764 baseclass fields should really be pointing. But we do know
1765 from TRUE_EXP. In constructors, we don't know anything about
1766 the value being initialized.
1767
1768 FLAGS is just passed to `build_new_method_call'. See that function
1769 for its description. */
1770
1771 static void
1772 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1773 tsubst_flags_t complain)
1774 {
1775 tree type = TREE_TYPE (exp);
1776
1777 gcc_assert (init != error_mark_node && type != error_mark_node);
1778 gcc_assert (building_stmt_list_p ());
1779
1780 /* Use a function returning the desired type to initialize EXP for us.
1781 If the function is a constructor, and its first argument is
1782 NULL_TREE, know that it was meant for us--just slide exp on
1783 in and expand the constructor. Constructors now come
1784 as TARGET_EXPRs. */
1785
1786 if (init && VAR_P (exp)
1787 && COMPOUND_LITERAL_P (init))
1788 {
1789 vec<tree, va_gc> *cleanups = NULL;
1790 /* If store_init_value returns NULL_TREE, the INIT has been
1791 recorded as the DECL_INITIAL for EXP. That means there's
1792 nothing more we have to do. */
1793 init = store_init_value (exp, init, &cleanups, flags);
1794 if (init)
1795 finish_expr_stmt (init);
1796 gcc_assert (!cleanups);
1797 return;
1798 }
1799
1800 /* If an explicit -- but empty -- initializer list was present,
1801 that's value-initialization. */
1802 if (init == void_type_node)
1803 {
1804 /* If the type has data but no user-provided ctor, we need to zero
1805 out the object. */
1806 if (!type_has_user_provided_constructor (type)
1807 && !is_really_empty_class (type))
1808 {
1809 tree field_size = NULL_TREE;
1810 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1811 /* Don't clobber already initialized virtual bases. */
1812 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1813 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1814 field_size);
1815 init = build2 (INIT_EXPR, type, exp, init);
1816 finish_expr_stmt (init);
1817 }
1818
1819 /* If we don't need to mess with the constructor at all,
1820 then we're done. */
1821 if (! type_build_ctor_call (type))
1822 return;
1823
1824 /* Otherwise fall through and call the constructor. */
1825 init = NULL_TREE;
1826 }
1827
1828 /* We know that expand_default_init can handle everything we want
1829 at this point. */
1830 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1831 }
1832
1833 /* Report an error if TYPE is not a user-defined, class type. If
1834 OR_ELSE is nonzero, give an error message. */
1835
1836 int
1837 is_class_type (tree type, int or_else)
1838 {
1839 if (type == error_mark_node)
1840 return 0;
1841
1842 if (! CLASS_TYPE_P (type))
1843 {
1844 if (or_else)
1845 error ("%qT is not a class type", type);
1846 return 0;
1847 }
1848 return 1;
1849 }
1850
1851 tree
1852 get_type_value (tree name)
1853 {
1854 if (name == error_mark_node)
1855 return NULL_TREE;
1856
1857 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1858 return IDENTIFIER_TYPE_VALUE (name);
1859 else
1860 return NULL_TREE;
1861 }
1862
1863 /* Build a reference to a member of an aggregate. This is not a C++
1864 `&', but really something which can have its address taken, and
1865 then act as a pointer to member, for example TYPE :: FIELD can have
1866 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1867 this expression is the operand of "&".
1868
1869 @@ Prints out lousy diagnostics for operator <typename>
1870 @@ fields.
1871
1872 @@ This function should be rewritten and placed in search.c. */
1873
1874 tree
1875 build_offset_ref (tree type, tree member, bool address_p,
1876 tsubst_flags_t complain)
1877 {
1878 tree decl;
1879 tree basebinfo = NULL_TREE;
1880
1881 /* class templates can come in as TEMPLATE_DECLs here. */
1882 if (TREE_CODE (member) == TEMPLATE_DECL)
1883 return member;
1884
1885 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1886 return build_qualified_name (NULL_TREE, type, member,
1887 /*template_p=*/false);
1888
1889 gcc_assert (TYPE_P (type));
1890 if (! is_class_type (type, 1))
1891 return error_mark_node;
1892
1893 gcc_assert (DECL_P (member) || BASELINK_P (member));
1894 /* Callers should call mark_used before this point. */
1895 gcc_assert (!DECL_P (member) || TREE_USED (member));
1896
1897 type = TYPE_MAIN_VARIANT (type);
1898 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1899 {
1900 if (complain & tf_error)
1901 error ("incomplete type %qT does not have member %qD", type, member);
1902 return error_mark_node;
1903 }
1904
1905 /* Entities other than non-static members need no further
1906 processing. */
1907 if (TREE_CODE (member) == TYPE_DECL)
1908 return member;
1909 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1910 return convert_from_reference (member);
1911
1912 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1913 {
1914 if (complain & tf_error)
1915 error ("invalid pointer to bit-field %qD", member);
1916 return error_mark_node;
1917 }
1918
1919 /* Set up BASEBINFO for member lookup. */
1920 decl = maybe_dummy_object (type, &basebinfo);
1921
1922 /* A lot of this logic is now handled in lookup_member. */
1923 if (BASELINK_P (member))
1924 {
1925 /* Go from the TREE_BASELINK to the member function info. */
1926 tree t = BASELINK_FUNCTIONS (member);
1927
1928 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1929 {
1930 /* Get rid of a potential OVERLOAD around it. */
1931 t = OVL_CURRENT (t);
1932
1933 /* Unique functions are handled easily. */
1934
1935 /* For non-static member of base class, we need a special rule
1936 for access checking [class.protected]:
1937
1938 If the access is to form a pointer to member, the
1939 nested-name-specifier shall name the derived class
1940 (or any class derived from that class). */
1941 if (address_p && DECL_P (t)
1942 && DECL_NONSTATIC_MEMBER_P (t))
1943 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1944 complain);
1945 else
1946 perform_or_defer_access_check (basebinfo, t, t,
1947 complain);
1948
1949 if (DECL_STATIC_FUNCTION_P (t))
1950 return t;
1951 member = t;
1952 }
1953 else
1954 TREE_TYPE (member) = unknown_type_node;
1955 }
1956 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1957 /* We need additional test besides the one in
1958 check_accessibility_of_qualified_id in case it is
1959 a pointer to non-static member. */
1960 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1961 complain);
1962
1963 if (!address_p)
1964 {
1965 /* If MEMBER is non-static, then the program has fallen afoul of
1966 [expr.prim]:
1967
1968 An id-expression that denotes a nonstatic data member or
1969 nonstatic member function of a class can only be used:
1970
1971 -- as part of a class member access (_expr.ref_) in which the
1972 object-expression refers to the member's class or a class
1973 derived from that class, or
1974
1975 -- to form a pointer to member (_expr.unary.op_), or
1976
1977 -- in the body of a nonstatic member function of that class or
1978 of a class derived from that class (_class.mfct.nonstatic_), or
1979
1980 -- in a mem-initializer for a constructor for that class or for
1981 a class derived from that class (_class.base.init_). */
1982 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1983 {
1984 /* Build a representation of the qualified name suitable
1985 for use as the operand to "&" -- even though the "&" is
1986 not actually present. */
1987 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1988 /* In Microsoft mode, treat a non-static member function as if
1989 it were a pointer-to-member. */
1990 if (flag_ms_extensions)
1991 {
1992 PTRMEM_OK_P (member) = 1;
1993 return cp_build_addr_expr (member, complain);
1994 }
1995 if (complain & tf_error)
1996 error ("invalid use of non-static member function %qD",
1997 TREE_OPERAND (member, 1));
1998 return error_mark_node;
1999 }
2000 else if (TREE_CODE (member) == FIELD_DECL)
2001 {
2002 if (complain & tf_error)
2003 error ("invalid use of non-static data member %qD", member);
2004 return error_mark_node;
2005 }
2006 return member;
2007 }
2008
2009 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2010 PTRMEM_OK_P (member) = 1;
2011 return member;
2012 }
2013
2014 /* If DECL is a scalar enumeration constant or variable with a
2015 constant initializer, return the initializer (or, its initializers,
2016 recursively); otherwise, return DECL. If STRICT_P, the
2017 initializer is only returned if DECL is a
2018 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2019 return an aggregate constant. */
2020
2021 static tree
2022 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2023 {
2024 while (TREE_CODE (decl) == CONST_DECL
2025 || (strict_p
2026 ? decl_constant_var_p (decl)
2027 : (VAR_P (decl)
2028 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2029 {
2030 tree init;
2031 /* If DECL is a static data member in a template
2032 specialization, we must instantiate it here. The
2033 initializer for the static data member is not processed
2034 until needed; we need it now. */
2035 mark_used (decl);
2036 mark_rvalue_use (decl);
2037 init = DECL_INITIAL (decl);
2038 if (init == error_mark_node)
2039 {
2040 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2041 /* Treat the error as a constant to avoid cascading errors on
2042 excessively recursive template instantiation (c++/9335). */
2043 return init;
2044 else
2045 return decl;
2046 }
2047 /* Initializers in templates are generally expanded during
2048 instantiation, so before that for const int i(2)
2049 INIT is a TREE_LIST with the actual initializer as
2050 TREE_VALUE. */
2051 if (processing_template_decl
2052 && init
2053 && TREE_CODE (init) == TREE_LIST
2054 && TREE_CHAIN (init) == NULL_TREE)
2055 init = TREE_VALUE (init);
2056 if (!init
2057 || !TREE_TYPE (init)
2058 || !TREE_CONSTANT (init)
2059 || (!return_aggregate_cst_ok_p
2060 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2061 return an aggregate constant (of which string
2062 literals are a special case), as we do not want
2063 to make inadvertent copies of such entities, and
2064 we must be sure that their addresses are the
2065 same everywhere. */
2066 && (TREE_CODE (init) == CONSTRUCTOR
2067 || TREE_CODE (init) == STRING_CST)))
2068 break;
2069 decl = unshare_expr (init);
2070 }
2071 return decl;
2072 }
2073
2074 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2075 of integral or enumeration type, or a constexpr variable of scalar type,
2076 then return that value. These are those variables permitted in constant
2077 expressions by [5.19/1]. */
2078
2079 tree
2080 scalar_constant_value (tree decl)
2081 {
2082 return constant_value_1 (decl, /*strict_p=*/true,
2083 /*return_aggregate_cst_ok_p=*/false);
2084 }
2085
2086 /* Like scalar_constant_value, but can also return aggregate initializers. */
2087
2088 tree
2089 decl_really_constant_value (tree decl)
2090 {
2091 return constant_value_1 (decl, /*strict_p=*/true,
2092 /*return_aggregate_cst_ok_p=*/true);
2093 }
2094
2095 /* A more relaxed version of scalar_constant_value, used by the
2096 common C/C++ code. */
2097
2098 tree
2099 decl_constant_value (tree decl)
2100 {
2101 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2102 /*return_aggregate_cst_ok_p=*/true);
2103 }
2104 \f
2105 /* Common subroutines of build_new and build_vec_delete. */
2106 \f
2107 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2108 the type of the object being allocated; otherwise, it's just TYPE.
2109 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2110 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2111 a vector of arguments to be provided as arguments to a placement
2112 new operator. This routine performs no semantic checks; it just
2113 creates and returns a NEW_EXPR. */
2114
2115 static tree
2116 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2117 vec<tree, va_gc> *init, int use_global_new)
2118 {
2119 tree init_list;
2120 tree new_expr;
2121
2122 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2123 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2124 permits us to distinguish the case of a missing initializer "new
2125 int" from an empty initializer "new int()". */
2126 if (init == NULL)
2127 init_list = NULL_TREE;
2128 else if (init->is_empty ())
2129 init_list = void_node;
2130 else
2131 init_list = build_tree_list_vec (init);
2132
2133 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2134 build_tree_list_vec (placement), type, nelts,
2135 init_list);
2136 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2137 TREE_SIDE_EFFECTS (new_expr) = 1;
2138
2139 return new_expr;
2140 }
2141
2142 /* Diagnose uninitialized const members or reference members of type
2143 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2144 new expression without a new-initializer and a declaration. Returns
2145 the error count. */
2146
2147 static int
2148 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2149 bool using_new, bool complain)
2150 {
2151 tree field;
2152 int error_count = 0;
2153
2154 if (type_has_user_provided_constructor (type))
2155 return 0;
2156
2157 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2158 {
2159 tree field_type;
2160
2161 if (TREE_CODE (field) != FIELD_DECL)
2162 continue;
2163
2164 field_type = strip_array_types (TREE_TYPE (field));
2165
2166 if (type_has_user_provided_constructor (field_type))
2167 continue;
2168
2169 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2170 {
2171 ++ error_count;
2172 if (complain)
2173 {
2174 if (DECL_CONTEXT (field) == origin)
2175 {
2176 if (using_new)
2177 error ("uninitialized reference member in %q#T "
2178 "using %<new%> without new-initializer", origin);
2179 else
2180 error ("uninitialized reference member in %q#T", origin);
2181 }
2182 else
2183 {
2184 if (using_new)
2185 error ("uninitialized reference member in base %q#T "
2186 "of %q#T using %<new%> without new-initializer",
2187 DECL_CONTEXT (field), origin);
2188 else
2189 error ("uninitialized reference member in base %q#T "
2190 "of %q#T", DECL_CONTEXT (field), origin);
2191 }
2192 inform (DECL_SOURCE_LOCATION (field),
2193 "%q#D should be initialized", field);
2194 }
2195 }
2196
2197 if (CP_TYPE_CONST_P (field_type))
2198 {
2199 ++ error_count;
2200 if (complain)
2201 {
2202 if (DECL_CONTEXT (field) == origin)
2203 {
2204 if (using_new)
2205 error ("uninitialized const member in %q#T "
2206 "using %<new%> without new-initializer", origin);
2207 else
2208 error ("uninitialized const member in %q#T", origin);
2209 }
2210 else
2211 {
2212 if (using_new)
2213 error ("uninitialized const member in base %q#T "
2214 "of %q#T using %<new%> without new-initializer",
2215 DECL_CONTEXT (field), origin);
2216 else
2217 error ("uninitialized const member in base %q#T "
2218 "of %q#T", DECL_CONTEXT (field), origin);
2219 }
2220 inform (DECL_SOURCE_LOCATION (field),
2221 "%q#D should be initialized", field);
2222 }
2223 }
2224
2225 if (CLASS_TYPE_P (field_type))
2226 error_count
2227 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2228 using_new, complain);
2229 }
2230 return error_count;
2231 }
2232
2233 int
2234 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2235 {
2236 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2237 }
2238
2239 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2240 overflowed. Pretend it returns sizetype so that it plays nicely in the
2241 COND_EXPR. */
2242
2243 tree
2244 throw_bad_array_new_length (void)
2245 {
2246 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2247 if (!get_global_value_if_present (fn, &fn))
2248 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2249 NULL_TREE));
2250
2251 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2252 }
2253
2254 /* Generate code for a new-expression, including calling the "operator
2255 new" function, initializing the object, and, if an exception occurs
2256 during construction, cleaning up. The arguments are as for
2257 build_raw_new_expr. This may change PLACEMENT and INIT. */
2258
2259 static tree
2260 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2261 vec<tree, va_gc> **init, bool globally_qualified_p,
2262 tsubst_flags_t complain)
2263 {
2264 tree size, rval;
2265 /* True iff this is a call to "operator new[]" instead of just
2266 "operator new". */
2267 bool array_p = false;
2268 /* If ARRAY_P is true, the element type of the array. This is never
2269 an ARRAY_TYPE; for something like "new int[3][4]", the
2270 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2271 TYPE. */
2272 tree elt_type;
2273 /* The type of the new-expression. (This type is always a pointer
2274 type.) */
2275 tree pointer_type;
2276 tree non_const_pointer_type;
2277 tree outer_nelts = NULL_TREE;
2278 /* For arrays, a bounds checks on the NELTS parameter. */
2279 tree outer_nelts_check = NULL_TREE;
2280 bool outer_nelts_from_type = false;
2281 offset_int inner_nelts_count = 1;
2282 tree alloc_call, alloc_expr;
2283 /* Size of the inner array elements. */
2284 offset_int inner_size;
2285 /* The address returned by the call to "operator new". This node is
2286 a VAR_DECL and is therefore reusable. */
2287 tree alloc_node;
2288 tree alloc_fn;
2289 tree cookie_expr, init_expr;
2290 int nothrow, check_new;
2291 int use_java_new = 0;
2292 /* If non-NULL, the number of extra bytes to allocate at the
2293 beginning of the storage allocated for an array-new expression in
2294 order to store the number of elements. */
2295 tree cookie_size = NULL_TREE;
2296 tree placement_first;
2297 tree placement_expr = NULL_TREE;
2298 /* True if the function we are calling is a placement allocation
2299 function. */
2300 bool placement_allocation_fn_p;
2301 /* True if the storage must be initialized, either by a constructor
2302 or due to an explicit new-initializer. */
2303 bool is_initialized;
2304 /* The address of the thing allocated, not including any cookie. In
2305 particular, if an array cookie is in use, DATA_ADDR is the
2306 address of the first array element. This node is a VAR_DECL, and
2307 is therefore reusable. */
2308 tree data_addr;
2309 tree init_preeval_expr = NULL_TREE;
2310 tree orig_type = type;
2311
2312 if (nelts)
2313 {
2314 outer_nelts = nelts;
2315 array_p = true;
2316 }
2317 else if (TREE_CODE (type) == ARRAY_TYPE)
2318 {
2319 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2320 extension for variable N. (This also covers new T where T is
2321 a VLA typedef.) */
2322 array_p = true;
2323 nelts = array_type_nelts_top (type);
2324 outer_nelts = nelts;
2325 type = TREE_TYPE (type);
2326 outer_nelts_from_type = true;
2327 }
2328
2329 /* If our base type is an array, then make sure we know how many elements
2330 it has. */
2331 for (elt_type = type;
2332 TREE_CODE (elt_type) == ARRAY_TYPE;
2333 elt_type = TREE_TYPE (elt_type))
2334 {
2335 tree inner_nelts = array_type_nelts_top (elt_type);
2336 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2337 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2338 {
2339 bool overflow;
2340 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2341 inner_nelts_count, SIGNED, &overflow);
2342 if (overflow)
2343 {
2344 if (complain & tf_error)
2345 error ("integer overflow in array size");
2346 nelts = error_mark_node;
2347 }
2348 inner_nelts_count = result;
2349 }
2350 else
2351 {
2352 if (complain & tf_error)
2353 {
2354 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2355 "array size in new-expression must be constant");
2356 cxx_constant_value(inner_nelts);
2357 }
2358 nelts = error_mark_node;
2359 }
2360 if (nelts != error_mark_node)
2361 nelts = cp_build_binary_op (input_location,
2362 MULT_EXPR, nelts,
2363 inner_nelts_cst,
2364 complain);
2365 }
2366
2367 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2368 {
2369 error ("variably modified type not allowed in new-expression");
2370 return error_mark_node;
2371 }
2372
2373 if (nelts == error_mark_node)
2374 return error_mark_node;
2375
2376 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2377 variable. */
2378 if (outer_nelts_from_type
2379 && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2380 {
2381 if (complain & tf_warning_or_error)
2382 {
2383 const char *msg;
2384 if (typedef_variant_p (orig_type))
2385 msg = ("non-constant array new length must be specified "
2386 "directly, not by typedef");
2387 else
2388 msg = ("non-constant array new length must be specified "
2389 "without parentheses around the type-id");
2390 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2391 OPT_Wvla, msg);
2392 }
2393 else
2394 return error_mark_node;
2395 }
2396
2397 if (VOID_TYPE_P (elt_type))
2398 {
2399 if (complain & tf_error)
2400 error ("invalid type %<void%> for new");
2401 return error_mark_node;
2402 }
2403
2404 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2405 return error_mark_node;
2406
2407 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2408
2409 if (*init == NULL && cxx_dialect < cxx11)
2410 {
2411 bool maybe_uninitialized_error = false;
2412 /* A program that calls for default-initialization [...] of an
2413 entity of reference type is ill-formed. */
2414 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2415 maybe_uninitialized_error = true;
2416
2417 /* A new-expression that creates an object of type T initializes
2418 that object as follows:
2419 - If the new-initializer is omitted:
2420 -- If T is a (possibly cv-qualified) non-POD class type
2421 (or array thereof), the object is default-initialized (8.5).
2422 [...]
2423 -- Otherwise, the object created has indeterminate
2424 value. If T is a const-qualified type, or a (possibly
2425 cv-qualified) POD class type (or array thereof)
2426 containing (directly or indirectly) a member of
2427 const-qualified type, the program is ill-formed; */
2428
2429 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2430 maybe_uninitialized_error = true;
2431
2432 if (maybe_uninitialized_error
2433 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2434 /*using_new=*/true,
2435 complain & tf_error))
2436 return error_mark_node;
2437 }
2438
2439 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2440 && default_init_uninitialized_part (elt_type))
2441 {
2442 if (complain & tf_error)
2443 error ("uninitialized const in %<new%> of %q#T", elt_type);
2444 return error_mark_node;
2445 }
2446
2447 size = size_in_bytes (elt_type);
2448 if (array_p)
2449 {
2450 /* Maximum available size in bytes. Half of the address space
2451 minus the cookie size. */
2452 offset_int max_size
2453 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2454 /* Maximum number of outer elements which can be allocated. */
2455 offset_int max_outer_nelts;
2456 tree max_outer_nelts_tree;
2457
2458 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2459 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2460 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2461 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2462 /* Unconditionally subtract the cookie size. This decreases the
2463 maximum object size and is safe even if we choose not to use
2464 a cookie after all. */
2465 max_size -= wi::to_offset (cookie_size);
2466 bool overflow;
2467 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2468 &overflow);
2469 if (overflow || wi::gtu_p (inner_size, max_size))
2470 {
2471 if (complain & tf_error)
2472 error ("size of array is too large");
2473 return error_mark_node;
2474 }
2475
2476 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2477 /* Only keep the top-most seven bits, to simplify encoding the
2478 constant in the instruction stream. */
2479 {
2480 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2481 - wi::clz (max_outer_nelts);
2482 max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
2483 shift);
2484 }
2485 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2486
2487 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2488 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2489 outer_nelts,
2490 max_outer_nelts_tree);
2491 }
2492
2493 alloc_fn = NULL_TREE;
2494
2495 /* If PLACEMENT is a single simple pointer type not passed by
2496 reference, prepare to capture it in a temporary variable. Do
2497 this now, since PLACEMENT will change in the calls below. */
2498 placement_first = NULL_TREE;
2499 if (vec_safe_length (*placement) == 1
2500 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2501 placement_first = (**placement)[0];
2502
2503 /* Allocate the object. */
2504 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2505 {
2506 tree class_addr;
2507 tree class_decl;
2508 static const char alloc_name[] = "_Jv_AllocObject";
2509
2510 if (!MAYBE_CLASS_TYPE_P (elt_type))
2511 {
2512 error ("%qT isn%'t a valid Java class type", elt_type);
2513 return error_mark_node;
2514 }
2515
2516 class_decl = build_java_class_ref (elt_type);
2517 if (class_decl == error_mark_node)
2518 return error_mark_node;
2519
2520 use_java_new = 1;
2521 if (!get_global_value_if_present (get_identifier (alloc_name),
2522 &alloc_fn))
2523 {
2524 if (complain & tf_error)
2525 error ("call to Java constructor with %qs undefined", alloc_name);
2526 return error_mark_node;
2527 }
2528 else if (really_overloaded_fn (alloc_fn))
2529 {
2530 if (complain & tf_error)
2531 error ("%qD should never be overloaded", alloc_fn);
2532 return error_mark_node;
2533 }
2534 alloc_fn = OVL_CURRENT (alloc_fn);
2535 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2536 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2537 class_addr, NULL_TREE);
2538 }
2539 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2540 {
2541 error ("Java class %q#T object allocated using placement new", elt_type);
2542 return error_mark_node;
2543 }
2544 else
2545 {
2546 tree fnname;
2547 tree fns;
2548
2549 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2550
2551 if (!globally_qualified_p
2552 && CLASS_TYPE_P (elt_type)
2553 && (array_p
2554 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2555 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2556 {
2557 /* Use a class-specific operator new. */
2558 /* If a cookie is required, add some extra space. */
2559 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2560 size = size_binop (PLUS_EXPR, size, cookie_size);
2561 else
2562 {
2563 cookie_size = NULL_TREE;
2564 /* No size arithmetic necessary, so the size check is
2565 not needed. */
2566 if (outer_nelts_check != NULL && inner_size == 1)
2567 outer_nelts_check = NULL_TREE;
2568 }
2569 /* Perform the overflow check. */
2570 tree errval = TYPE_MAX_VALUE (sizetype);
2571 if (cxx_dialect >= cxx11 && flag_exceptions)
2572 errval = throw_bad_array_new_length ();
2573 if (outer_nelts_check != NULL_TREE)
2574 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2575 size, errval);
2576 /* Create the argument list. */
2577 vec_safe_insert (*placement, 0, size);
2578 /* Do name-lookup to find the appropriate operator. */
2579 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2580 if (fns == NULL_TREE)
2581 {
2582 if (complain & tf_error)
2583 error ("no suitable %qD found in class %qT", fnname, elt_type);
2584 return error_mark_node;
2585 }
2586 if (TREE_CODE (fns) == TREE_LIST)
2587 {
2588 if (complain & tf_error)
2589 {
2590 error ("request for member %qD is ambiguous", fnname);
2591 print_candidates (fns);
2592 }
2593 return error_mark_node;
2594 }
2595 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2596 fns, placement,
2597 /*conversion_path=*/NULL_TREE,
2598 LOOKUP_NORMAL,
2599 &alloc_fn,
2600 complain);
2601 }
2602 else
2603 {
2604 /* Use a global operator new. */
2605 /* See if a cookie might be required. */
2606 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2607 {
2608 cookie_size = NULL_TREE;
2609 /* No size arithmetic necessary, so the size check is
2610 not needed. */
2611 if (outer_nelts_check != NULL && inner_size == 1)
2612 outer_nelts_check = NULL_TREE;
2613 }
2614
2615 alloc_call = build_operator_new_call (fnname, placement,
2616 &size, &cookie_size,
2617 outer_nelts_check,
2618 &alloc_fn, complain);
2619 }
2620 }
2621
2622 if (alloc_call == error_mark_node)
2623 return error_mark_node;
2624
2625 gcc_assert (alloc_fn != NULL_TREE);
2626
2627 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2628 into a temporary variable. */
2629 if (!processing_template_decl
2630 && placement_first != NULL_TREE
2631 && TREE_CODE (alloc_call) == CALL_EXPR
2632 && call_expr_nargs (alloc_call) == 2
2633 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2634 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2635 {
2636 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2637
2638 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2639 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2640 {
2641 placement_expr = get_target_expr (placement_first);
2642 CALL_EXPR_ARG (alloc_call, 1)
2643 = convert (TREE_TYPE (placement_arg), placement_expr);
2644 }
2645 }
2646
2647 /* In the simple case, we can stop now. */
2648 pointer_type = build_pointer_type (type);
2649 if (!cookie_size && !is_initialized)
2650 return build_nop (pointer_type, alloc_call);
2651
2652 /* Store the result of the allocation call in a variable so that we can
2653 use it more than once. */
2654 alloc_expr = get_target_expr (alloc_call);
2655 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2656
2657 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2658 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2659 alloc_call = TREE_OPERAND (alloc_call, 1);
2660
2661 /* Now, check to see if this function is actually a placement
2662 allocation function. This can happen even when PLACEMENT is NULL
2663 because we might have something like:
2664
2665 struct S { void* operator new (size_t, int i = 0); };
2666
2667 A call to `new S' will get this allocation function, even though
2668 there is no explicit placement argument. If there is more than
2669 one argument, or there are variable arguments, then this is a
2670 placement allocation function. */
2671 placement_allocation_fn_p
2672 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2673 || varargs_function_p (alloc_fn));
2674
2675 /* Preevaluate the placement args so that we don't reevaluate them for a
2676 placement delete. */
2677 if (placement_allocation_fn_p)
2678 {
2679 tree inits;
2680 stabilize_call (alloc_call, &inits);
2681 if (inits)
2682 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2683 alloc_expr);
2684 }
2685
2686 /* unless an allocation function is declared with an empty excep-
2687 tion-specification (_except.spec_), throw(), it indicates failure to
2688 allocate storage by throwing a bad_alloc exception (clause _except_,
2689 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2690 cation function is declared with an empty exception-specification,
2691 throw(), it returns null to indicate failure to allocate storage and a
2692 non-null pointer otherwise.
2693
2694 So check for a null exception spec on the op new we just called. */
2695
2696 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2697 check_new = (flag_check_new || nothrow) && ! use_java_new;
2698
2699 if (cookie_size)
2700 {
2701 tree cookie;
2702 tree cookie_ptr;
2703 tree size_ptr_type;
2704
2705 /* Adjust so we're pointing to the start of the object. */
2706 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2707
2708 /* Store the number of bytes allocated so that we can know how
2709 many elements to destroy later. We use the last sizeof
2710 (size_t) bytes to store the number of elements. */
2711 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2712 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2713 alloc_node, cookie_ptr);
2714 size_ptr_type = build_pointer_type (sizetype);
2715 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2716 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2717
2718 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2719
2720 if (targetm.cxx.cookie_has_size ())
2721 {
2722 /* Also store the element size. */
2723 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2724 fold_build1_loc (input_location,
2725 NEGATE_EXPR, sizetype,
2726 size_in_bytes (sizetype)));
2727
2728 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2729 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2730 size_in_bytes (elt_type));
2731 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2732 cookie, cookie_expr);
2733 }
2734 }
2735 else
2736 {
2737 cookie_expr = NULL_TREE;
2738 data_addr = alloc_node;
2739 }
2740
2741 /* Now use a pointer to the type we've actually allocated. */
2742
2743 /* But we want to operate on a non-const version to start with,
2744 since we'll be modifying the elements. */
2745 non_const_pointer_type = build_pointer_type
2746 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2747
2748 data_addr = fold_convert (non_const_pointer_type, data_addr);
2749 /* Any further uses of alloc_node will want this type, too. */
2750 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2751
2752 /* Now initialize the allocated object. Note that we preevaluate the
2753 initialization expression, apart from the actual constructor call or
2754 assignment--we do this because we want to delay the allocation as long
2755 as possible in order to minimize the size of the exception region for
2756 placement delete. */
2757 if (is_initialized)
2758 {
2759 bool stable;
2760 bool explicit_value_init_p = false;
2761
2762 if (*init != NULL && (*init)->is_empty ())
2763 {
2764 *init = NULL;
2765 explicit_value_init_p = true;
2766 }
2767
2768 if (processing_template_decl && explicit_value_init_p)
2769 {
2770 /* build_value_init doesn't work in templates, and we don't need
2771 the initializer anyway since we're going to throw it away and
2772 rebuild it at instantiation time, so just build up a single
2773 constructor call to get any appropriate diagnostics. */
2774 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2775 if (type_build_ctor_call (elt_type))
2776 init_expr = build_special_member_call (init_expr,
2777 complete_ctor_identifier,
2778 init, elt_type,
2779 LOOKUP_NORMAL,
2780 complain);
2781 stable = stabilize_init (init_expr, &init_preeval_expr);
2782 }
2783 else if (array_p)
2784 {
2785 tree vecinit = NULL_TREE;
2786 if (vec_safe_length (*init) == 1
2787 && DIRECT_LIST_INIT_P ((**init)[0]))
2788 {
2789 vecinit = (**init)[0];
2790 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2791 /* List-value-initialization, leave it alone. */;
2792 else
2793 {
2794 tree arraytype, domain;
2795 if (TREE_CONSTANT (nelts))
2796 domain = compute_array_index_type (NULL_TREE, nelts,
2797 complain);
2798 else
2799 /* We'll check the length at runtime. */
2800 domain = NULL_TREE;
2801 arraytype = build_cplus_array_type (type, domain);
2802 vecinit = digest_init (arraytype, vecinit, complain);
2803 }
2804 }
2805 else if (*init)
2806 {
2807 if (complain & tf_error)
2808 permerror (input_location,
2809 "parenthesized initializer in array new");
2810 else
2811 return error_mark_node;
2812 vecinit = build_tree_list_vec (*init);
2813 }
2814 init_expr
2815 = build_vec_init (data_addr,
2816 cp_build_binary_op (input_location,
2817 MINUS_EXPR, outer_nelts,
2818 integer_one_node,
2819 complain),
2820 vecinit,
2821 explicit_value_init_p,
2822 /*from_array=*/0,
2823 complain);
2824
2825 /* An array initialization is stable because the initialization
2826 of each element is a full-expression, so the temporaries don't
2827 leak out. */
2828 stable = true;
2829 }
2830 else
2831 {
2832 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2833
2834 if (type_build_ctor_call (type) && !explicit_value_init_p)
2835 {
2836 init_expr = build_special_member_call (init_expr,
2837 complete_ctor_identifier,
2838 init, elt_type,
2839 LOOKUP_NORMAL,
2840 complain);
2841 }
2842 else if (explicit_value_init_p)
2843 {
2844 /* Something like `new int()'. */
2845 tree val = build_value_init (type, complain);
2846 if (val == error_mark_node)
2847 return error_mark_node;
2848 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2849 }
2850 else
2851 {
2852 tree ie;
2853
2854 /* We are processing something like `new int (10)', which
2855 means allocate an int, and initialize it with 10. */
2856
2857 ie = build_x_compound_expr_from_vec (*init, "new initializer",
2858 complain);
2859 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2860 complain);
2861 }
2862 stable = stabilize_init (init_expr, &init_preeval_expr);
2863 }
2864
2865 if (init_expr == error_mark_node)
2866 return error_mark_node;
2867
2868 /* If any part of the object initialization terminates by throwing an
2869 exception and a suitable deallocation function can be found, the
2870 deallocation function is called to free the memory in which the
2871 object was being constructed, after which the exception continues
2872 to propagate in the context of the new-expression. If no
2873 unambiguous matching deallocation function can be found,
2874 propagating the exception does not cause the object's memory to be
2875 freed. */
2876 if (flag_exceptions && ! use_java_new)
2877 {
2878 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2879 tree cleanup;
2880
2881 /* The Standard is unclear here, but the right thing to do
2882 is to use the same method for finding deallocation
2883 functions that we use for finding allocation functions. */
2884 cleanup = (build_op_delete_call
2885 (dcode,
2886 alloc_node,
2887 size,
2888 globally_qualified_p,
2889 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2890 alloc_fn,
2891 complain));
2892
2893 if (!cleanup)
2894 /* We're done. */;
2895 else if (stable)
2896 /* This is much simpler if we were able to preevaluate all of
2897 the arguments to the constructor call. */
2898 {
2899 /* CLEANUP is compiler-generated, so no diagnostics. */
2900 TREE_NO_WARNING (cleanup) = true;
2901 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2902 init_expr, cleanup);
2903 /* Likewise, this try-catch is compiler-generated. */
2904 TREE_NO_WARNING (init_expr) = true;
2905 }
2906 else
2907 /* Ack! First we allocate the memory. Then we set our sentry
2908 variable to true, and expand a cleanup that deletes the
2909 memory if sentry is true. Then we run the constructor, and
2910 finally clear the sentry.
2911
2912 We need to do this because we allocate the space first, so
2913 if there are any temporaries with cleanups in the
2914 constructor args and we weren't able to preevaluate them, we
2915 need this EH region to extend until end of full-expression
2916 to preserve nesting. */
2917 {
2918 tree end, sentry, begin;
2919
2920 begin = get_target_expr (boolean_true_node);
2921 CLEANUP_EH_ONLY (begin) = 1;
2922
2923 sentry = TARGET_EXPR_SLOT (begin);
2924
2925 /* CLEANUP is compiler-generated, so no diagnostics. */
2926 TREE_NO_WARNING (cleanup) = true;
2927
2928 TARGET_EXPR_CLEANUP (begin)
2929 = build3 (COND_EXPR, void_type_node, sentry,
2930 cleanup, void_node);
2931
2932 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2933 sentry, boolean_false_node);
2934
2935 init_expr
2936 = build2 (COMPOUND_EXPR, void_type_node, begin,
2937 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2938 end));
2939 /* Likewise, this is compiler-generated. */
2940 TREE_NO_WARNING (init_expr) = true;
2941 }
2942 }
2943 }
2944 else
2945 init_expr = NULL_TREE;
2946
2947 /* Now build up the return value in reverse order. */
2948
2949 rval = data_addr;
2950
2951 if (init_expr)
2952 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2953 if (cookie_expr)
2954 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2955
2956 if (rval == data_addr)
2957 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2958 and return the call (which doesn't need to be adjusted). */
2959 rval = TARGET_EXPR_INITIAL (alloc_expr);
2960 else
2961 {
2962 if (check_new)
2963 {
2964 tree ifexp = cp_build_binary_op (input_location,
2965 NE_EXPR, alloc_node,
2966 nullptr_node,
2967 complain);
2968 rval = build_conditional_expr (input_location, ifexp, rval,
2969 alloc_node, complain);
2970 }
2971
2972 /* Perform the allocation before anything else, so that ALLOC_NODE
2973 has been initialized before we start using it. */
2974 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2975 }
2976
2977 if (init_preeval_expr)
2978 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2979
2980 /* A new-expression is never an lvalue. */
2981 gcc_assert (!lvalue_p (rval));
2982
2983 return convert (pointer_type, rval);
2984 }
2985
2986 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2987 is a vector of placement-new arguments (or NULL if none). If NELTS
2988 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2989 is not NULL, then this is an array-new allocation; TYPE is the type
2990 of the elements in the array and NELTS is the number of elements in
2991 the array. *INIT, if non-NULL, is the initializer for the new
2992 object, or an empty vector to indicate an initializer of "()". If
2993 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2994 rather than just "new". This may change PLACEMENT and INIT. */
2995
2996 tree
2997 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
2998 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
2999 {
3000 tree rval;
3001 vec<tree, va_gc> *orig_placement = NULL;
3002 tree orig_nelts = NULL_TREE;
3003 vec<tree, va_gc> *orig_init = NULL;
3004
3005 if (type == error_mark_node)
3006 return error_mark_node;
3007
3008 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3009 /* Don't do auto deduction where it might affect mangling. */
3010 && (!processing_template_decl || at_function_scope_p ()))
3011 {
3012 tree auto_node = type_uses_auto (type);
3013 if (auto_node)
3014 {
3015 tree d_init = (**init)[0];
3016 d_init = resolve_nondeduced_context (d_init);
3017 type = do_auto_deduction (type, d_init, auto_node);
3018 }
3019 }
3020
3021 if (processing_template_decl)
3022 {
3023 if (dependent_type_p (type)
3024 || any_type_dependent_arguments_p (*placement)
3025 || (nelts && type_dependent_expression_p (nelts))
3026 || (nelts && *init)
3027 || any_type_dependent_arguments_p (*init))
3028 return build_raw_new_expr (*placement, type, nelts, *init,
3029 use_global_new);
3030
3031 orig_placement = make_tree_vector_copy (*placement);
3032 orig_nelts = nelts;
3033 if (*init)
3034 orig_init = make_tree_vector_copy (*init);
3035
3036 make_args_non_dependent (*placement);
3037 if (nelts)
3038 nelts = build_non_dependent_expr (nelts);
3039 make_args_non_dependent (*init);
3040 }
3041
3042 if (nelts)
3043 {
3044 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3045 {
3046 if (complain & tf_error)
3047 permerror (input_location, "size in array new must have integral type");
3048 else
3049 return error_mark_node;
3050 }
3051 nelts = mark_rvalue_use (nelts);
3052 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3053 }
3054
3055 /* ``A reference cannot be created by the new operator. A reference
3056 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3057 returned by new.'' ARM 5.3.3 */
3058 if (TREE_CODE (type) == REFERENCE_TYPE)
3059 {
3060 if (complain & tf_error)
3061 error ("new cannot be applied to a reference type");
3062 else
3063 return error_mark_node;
3064 type = TREE_TYPE (type);
3065 }
3066
3067 if (TREE_CODE (type) == FUNCTION_TYPE)
3068 {
3069 if (complain & tf_error)
3070 error ("new cannot be applied to a function type");
3071 return error_mark_node;
3072 }
3073
3074 /* The type allocated must be complete. If the new-type-id was
3075 "T[N]" then we are just checking that "T" is complete here, but
3076 that is equivalent, since the value of "N" doesn't matter. */
3077 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3078 return error_mark_node;
3079
3080 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3081 if (rval == error_mark_node)
3082 return error_mark_node;
3083
3084 if (processing_template_decl)
3085 {
3086 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3087 orig_init, use_global_new);
3088 release_tree_vector (orig_placement);
3089 release_tree_vector (orig_init);
3090 return ret;
3091 }
3092
3093 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3094 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3095 TREE_NO_WARNING (rval) = 1;
3096
3097 return rval;
3098 }
3099
3100 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3101
3102 tree
3103 build_java_class_ref (tree type)
3104 {
3105 tree name = NULL_TREE, class_decl;
3106 static tree CL_suffix = NULL_TREE;
3107 if (CL_suffix == NULL_TREE)
3108 CL_suffix = get_identifier("class$");
3109 if (jclass_node == NULL_TREE)
3110 {
3111 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3112 if (jclass_node == NULL_TREE)
3113 {
3114 error ("call to Java constructor, while %<jclass%> undefined");
3115 return error_mark_node;
3116 }
3117 jclass_node = TREE_TYPE (jclass_node);
3118 }
3119
3120 /* Mangle the class$ field. */
3121 {
3122 tree field;
3123 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3124 if (DECL_NAME (field) == CL_suffix)
3125 {
3126 mangle_decl (field);
3127 name = DECL_ASSEMBLER_NAME (field);
3128 break;
3129 }
3130 if (!field)
3131 {
3132 error ("can%'t find %<class$%> in %qT", type);
3133 return error_mark_node;
3134 }
3135 }
3136
3137 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3138 if (class_decl == NULL_TREE)
3139 {
3140 class_decl = build_decl (input_location,
3141 VAR_DECL, name, TREE_TYPE (jclass_node));
3142 TREE_STATIC (class_decl) = 1;
3143 DECL_EXTERNAL (class_decl) = 1;
3144 TREE_PUBLIC (class_decl) = 1;
3145 DECL_ARTIFICIAL (class_decl) = 1;
3146 DECL_IGNORED_P (class_decl) = 1;
3147 pushdecl_top_level (class_decl);
3148 make_decl_rtl (class_decl);
3149 }
3150 return class_decl;
3151 }
3152 \f
3153 static tree
3154 build_vec_delete_1 (tree base, tree maxindex, tree type,
3155 special_function_kind auto_delete_vec,
3156 int use_global_delete, tsubst_flags_t complain)
3157 {
3158 tree virtual_size;
3159 tree ptype = build_pointer_type (type = complete_type (type));
3160 tree size_exp;
3161
3162 /* Temporary variables used by the loop. */
3163 tree tbase, tbase_init;
3164
3165 /* This is the body of the loop that implements the deletion of a
3166 single element, and moves temp variables to next elements. */
3167 tree body;
3168
3169 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3170 tree loop = 0;
3171
3172 /* This is the thing that governs what to do after the loop has run. */
3173 tree deallocate_expr = 0;
3174
3175 /* This is the BIND_EXPR which holds the outermost iterator of the
3176 loop. It is convenient to set this variable up and test it before
3177 executing any other code in the loop.
3178 This is also the containing expression returned by this function. */
3179 tree controller = NULL_TREE;
3180 tree tmp;
3181
3182 /* We should only have 1-D arrays here. */
3183 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3184
3185 if (base == error_mark_node || maxindex == error_mark_node)
3186 return error_mark_node;
3187
3188 if (!COMPLETE_TYPE_P (type))
3189 {
3190 if ((complain & tf_warning)
3191 && warning (OPT_Wdelete_incomplete,
3192 "possible problem detected in invocation of "
3193 "delete [] operator:"))
3194 {
3195 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3196 inform (input_location, "neither the destructor nor the "
3197 "class-specific operator delete [] will be called, "
3198 "even if they are declared when the class is defined");
3199 }
3200 /* This size won't actually be used. */
3201 size_exp = size_one_node;
3202 goto no_destructor;
3203 }
3204
3205 size_exp = size_in_bytes (type);
3206
3207 if (! MAYBE_CLASS_TYPE_P (type))
3208 goto no_destructor;
3209 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3210 {
3211 /* Make sure the destructor is callable. */
3212 if (type_build_dtor_call (type))
3213 {
3214 tmp = build_delete (ptype, base, sfk_complete_destructor,
3215 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3216 complain);
3217 if (tmp == error_mark_node)
3218 return error_mark_node;
3219 }
3220 goto no_destructor;
3221 }
3222
3223 /* The below is short by the cookie size. */
3224 virtual_size = size_binop (MULT_EXPR, size_exp,
3225 convert (sizetype, maxindex));
3226
3227 tbase = create_temporary_var (ptype);
3228 tbase_init
3229 = cp_build_modify_expr (tbase, NOP_EXPR,
3230 fold_build_pointer_plus_loc (input_location,
3231 fold_convert (ptype,
3232 base),
3233 virtual_size),
3234 complain);
3235 if (tbase_init == error_mark_node)
3236 return error_mark_node;
3237 controller = build3 (BIND_EXPR, void_type_node, tbase,
3238 NULL_TREE, NULL_TREE);
3239 TREE_SIDE_EFFECTS (controller) = 1;
3240
3241 body = build1 (EXIT_EXPR, void_type_node,
3242 build2 (EQ_EXPR, boolean_type_node, tbase,
3243 fold_convert (ptype, base)));
3244 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3245 tmp = fold_build_pointer_plus (tbase, tmp);
3246 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3247 if (tmp == error_mark_node)
3248 return error_mark_node;
3249 body = build_compound_expr (input_location, body, tmp);
3250 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3251 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3252 complain);
3253 if (tmp == error_mark_node)
3254 return error_mark_node;
3255 body = build_compound_expr (input_location, body, tmp);
3256
3257 loop = build1 (LOOP_EXPR, void_type_node, body);
3258 loop = build_compound_expr (input_location, tbase_init, loop);
3259
3260 no_destructor:
3261 /* Delete the storage if appropriate. */
3262 if (auto_delete_vec == sfk_deleting_destructor)
3263 {
3264 tree base_tbd;
3265
3266 /* The below is short by the cookie size. */
3267 virtual_size = size_binop (MULT_EXPR, size_exp,
3268 convert (sizetype, maxindex));
3269
3270 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3271 /* no header */
3272 base_tbd = base;
3273 else
3274 {
3275 tree cookie_size;
3276
3277 cookie_size = targetm.cxx.get_cookie_size (type);
3278 base_tbd = cp_build_binary_op (input_location,
3279 MINUS_EXPR,
3280 cp_convert (string_type_node,
3281 base, complain),
3282 cookie_size,
3283 complain);
3284 if (base_tbd == error_mark_node)
3285 return error_mark_node;
3286 base_tbd = cp_convert (ptype, base_tbd, complain);
3287 /* True size with header. */
3288 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3289 }
3290
3291 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3292 base_tbd, virtual_size,
3293 use_global_delete & 1,
3294 /*placement=*/NULL_TREE,
3295 /*alloc_fn=*/NULL_TREE,
3296 complain);
3297 }
3298
3299 body = loop;
3300 if (!deallocate_expr)
3301 ;
3302 else if (!body)
3303 body = deallocate_expr;
3304 else
3305 body = build_compound_expr (input_location, body, deallocate_expr);
3306
3307 if (!body)
3308 body = integer_zero_node;
3309
3310 /* Outermost wrapper: If pointer is null, punt. */
3311 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3312 fold_build2_loc (input_location,
3313 NE_EXPR, boolean_type_node, base,
3314 convert (TREE_TYPE (base),
3315 nullptr_node)),
3316 body, integer_zero_node);
3317 body = build1 (NOP_EXPR, void_type_node, body);
3318
3319 if (controller)
3320 {
3321 TREE_OPERAND (controller, 1) = body;
3322 body = controller;
3323 }
3324
3325 if (TREE_CODE (base) == SAVE_EXPR)
3326 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3327 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3328
3329 return convert_to_void (body, ICV_CAST, complain);
3330 }
3331
3332 /* Create an unnamed variable of the indicated TYPE. */
3333
3334 tree
3335 create_temporary_var (tree type)
3336 {
3337 tree decl;
3338
3339 decl = build_decl (input_location,
3340 VAR_DECL, NULL_TREE, type);
3341 TREE_USED (decl) = 1;
3342 DECL_ARTIFICIAL (decl) = 1;
3343 DECL_IGNORED_P (decl) = 1;
3344 DECL_CONTEXT (decl) = current_function_decl;
3345
3346 return decl;
3347 }
3348
3349 /* Create a new temporary variable of the indicated TYPE, initialized
3350 to INIT.
3351
3352 It is not entered into current_binding_level, because that breaks
3353 things when it comes time to do final cleanups (which take place
3354 "outside" the binding contour of the function). */
3355
3356 tree
3357 get_temp_regvar (tree type, tree init)
3358 {
3359 tree decl;
3360
3361 decl = create_temporary_var (type);
3362 add_decl_expr (decl);
3363
3364 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3365 tf_warning_or_error));
3366
3367 return decl;
3368 }
3369
3370 /* `build_vec_init' returns tree structure that performs
3371 initialization of a vector of aggregate types.
3372
3373 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3374 to the first element, of POINTER_TYPE.
3375 MAXINDEX is the maximum index of the array (one less than the
3376 number of elements). It is only used if BASE is a pointer or
3377 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3378
3379 INIT is the (possibly NULL) initializer.
3380
3381 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3382 elements in the array are value-initialized.
3383
3384 FROM_ARRAY is 0 if we should init everything with INIT
3385 (i.e., every element initialized from INIT).
3386 FROM_ARRAY is 1 if we should index into INIT in parallel
3387 with initialization of DECL.
3388 FROM_ARRAY is 2 if we should index into INIT in parallel,
3389 but use assignment instead of initialization. */
3390
3391 tree
3392 build_vec_init (tree base, tree maxindex, tree init,
3393 bool explicit_value_init_p,
3394 int from_array, tsubst_flags_t complain)
3395 {
3396 tree rval;
3397 tree base2 = NULL_TREE;
3398 tree itype = NULL_TREE;
3399 tree iterator;
3400 /* The type of BASE. */
3401 tree atype = TREE_TYPE (base);
3402 /* The type of an element in the array. */
3403 tree type = TREE_TYPE (atype);
3404 /* The element type reached after removing all outer array
3405 types. */
3406 tree inner_elt_type;
3407 /* The type of a pointer to an element in the array. */
3408 tree ptype;
3409 tree stmt_expr;
3410 tree compound_stmt;
3411 int destroy_temps;
3412 tree try_block = NULL_TREE;
3413 int num_initialized_elts = 0;
3414 bool is_global;
3415 tree obase = base;
3416 bool xvalue = false;
3417 bool errors = false;
3418
3419 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3420 maxindex = array_type_nelts (atype);
3421
3422 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3423 return error_mark_node;
3424
3425 if (explicit_value_init_p)
3426 gcc_assert (!init);
3427
3428 inner_elt_type = strip_array_types (type);
3429
3430 /* Look through the TARGET_EXPR around a compound literal. */
3431 if (init && TREE_CODE (init) == TARGET_EXPR
3432 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3433 && from_array != 2)
3434 init = TARGET_EXPR_INITIAL (init);
3435
3436 /* If we have a braced-init-list, make sure that the array
3437 is big enough for all the initializers. */
3438 bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
3439 && CONSTRUCTOR_NELTS (init) > 0
3440 && !TREE_CONSTANT (maxindex));
3441
3442 if (init
3443 && TREE_CODE (atype) == ARRAY_TYPE
3444 && TREE_CONSTANT (maxindex)
3445 && (from_array == 2
3446 ? (!CLASS_TYPE_P (inner_elt_type)
3447 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3448 : !TYPE_NEEDS_CONSTRUCTING (type))
3449 && ((TREE_CODE (init) == CONSTRUCTOR
3450 /* Don't do this if the CONSTRUCTOR might contain something
3451 that might throw and require us to clean up. */
3452 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3453 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3454 || from_array))
3455 {
3456 /* Do non-default initialization of trivial arrays resulting from
3457 brace-enclosed initializers. In this case, digest_init and
3458 store_constructor will handle the semantics for us. */
3459
3460 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3461 init = digest_init (atype, init, complain);
3462 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3463 return stmt_expr;
3464 }
3465
3466 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3467 if (TREE_CODE (atype) == ARRAY_TYPE)
3468 {
3469 ptype = build_pointer_type (type);
3470 base = decay_conversion (base, complain);
3471 if (base == error_mark_node)
3472 return error_mark_node;
3473 base = cp_convert (ptype, base, complain);
3474 }
3475 else
3476 ptype = atype;
3477
3478 /* The code we are generating looks like:
3479 ({
3480 T* t1 = (T*) base;
3481 T* rval = t1;
3482 ptrdiff_t iterator = maxindex;
3483 try {
3484 for (; iterator != -1; --iterator) {
3485 ... initialize *t1 ...
3486 ++t1;
3487 }
3488 } catch (...) {
3489 ... destroy elements that were constructed ...
3490 }
3491 rval;
3492 })
3493
3494 We can omit the try and catch blocks if we know that the
3495 initialization will never throw an exception, or if the array
3496 elements do not have destructors. We can omit the loop completely if
3497 the elements of the array do not have constructors.
3498
3499 We actually wrap the entire body of the above in a STMT_EXPR, for
3500 tidiness.
3501
3502 When copying from array to another, when the array elements have
3503 only trivial copy constructors, we should use __builtin_memcpy
3504 rather than generating a loop. That way, we could take advantage
3505 of whatever cleverness the back end has for dealing with copies
3506 of blocks of memory. */
3507
3508 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3509 destroy_temps = stmts_are_full_exprs_p ();
3510 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3511 rval = get_temp_regvar (ptype, base);
3512 base = get_temp_regvar (ptype, rval);
3513 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3514
3515 /* If initializing one array from another, initialize element by
3516 element. We rely upon the below calls to do the argument
3517 checking. Evaluate the initializer before entering the try block. */
3518 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3519 {
3520 if (lvalue_kind (init) & clk_rvalueref)
3521 xvalue = true;
3522 base2 = decay_conversion (init, complain);
3523 if (base2 == error_mark_node)
3524 return error_mark_node;
3525 itype = TREE_TYPE (base2);
3526 base2 = get_temp_regvar (itype, base2);
3527 itype = TREE_TYPE (itype);
3528 }
3529
3530 /* Protect the entire array initialization so that we can destroy
3531 the partially constructed array if an exception is thrown.
3532 But don't do this if we're assigning. */
3533 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3534 && from_array != 2)
3535 {
3536 try_block = begin_try_block ();
3537 }
3538
3539 /* Should we try to create a constant initializer? */
3540 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3541 && TREE_CONSTANT (maxindex)
3542 && (init ? TREE_CODE (init) == CONSTRUCTOR
3543 : (type_has_constexpr_default_constructor
3544 (inner_elt_type)))
3545 && (literal_type_p (inner_elt_type)
3546 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3547 vec<constructor_elt, va_gc> *const_vec = NULL;
3548 bool saw_non_const = false;
3549 /* If we're initializing a static array, we want to do static
3550 initialization of any elements with constant initializers even if
3551 some are non-constant. */
3552 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3553
3554 bool empty_list = false;
3555 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3556 && CONSTRUCTOR_NELTS (init) == 0)
3557 /* Skip over the handling of non-empty init lists. */
3558 empty_list = true;
3559
3560 /* Maybe pull out constant value when from_array? */
3561
3562 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3563 {
3564 /* Do non-default initialization of non-trivial arrays resulting from
3565 brace-enclosed initializers. */
3566 unsigned HOST_WIDE_INT idx;
3567 tree field, elt;
3568 /* If the constructor already has the array type, it's been through
3569 digest_init, so we shouldn't try to do anything more. */
3570 bool digested = same_type_p (atype, TREE_TYPE (init));
3571 from_array = 0;
3572
3573 if (length_check)
3574 {
3575 tree nelts = size_int (CONSTRUCTOR_NELTS (init) - 1);
3576 if (TREE_CODE (atype) != ARRAY_TYPE)
3577 {
3578 if (flag_exceptions)
3579 {
3580 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3581 nelts);
3582 c = build3 (COND_EXPR, void_type_node, c,
3583 throw_bad_array_new_length (), void_node);
3584 finish_expr_stmt (c);
3585 }
3586 /* Don't check an array new when -fno-exceptions. */
3587 }
3588 else if (flag_sanitize & SANITIZE_BOUNDS
3589 && do_ubsan_in_current_function ())
3590 {
3591 /* Make sure the last element of the initializer is in bounds. */
3592 finish_expr_stmt
3593 (ubsan_instrument_bounds
3594 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3595 }
3596 }
3597
3598 if (try_const)
3599 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
3600
3601 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3602 {
3603 tree baseref = build1 (INDIRECT_REF, type, base);
3604 tree one_init;
3605
3606 num_initialized_elts++;
3607
3608 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3609 if (digested)
3610 one_init = build2 (INIT_EXPR, type, baseref, elt);
3611 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3612 one_init = build_aggr_init (baseref, elt, 0, complain);
3613 else
3614 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3615 elt, complain);
3616 if (one_init == error_mark_node)
3617 errors = true;
3618 if (try_const)
3619 {
3620 tree e = maybe_constant_init (one_init);
3621 if (reduced_constant_expression_p (e))
3622 {
3623 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3624 if (do_static_init)
3625 one_init = NULL_TREE;
3626 else
3627 one_init = build2 (INIT_EXPR, type, baseref, e);
3628 }
3629 else
3630 {
3631 if (do_static_init)
3632 {
3633 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3634 true);
3635 if (value)
3636 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
3637 }
3638 saw_non_const = true;
3639 }
3640 }
3641
3642 if (one_init)
3643 finish_expr_stmt (one_init);
3644 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3645
3646 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3647 if (one_init == error_mark_node)
3648 errors = true;
3649 else
3650 finish_expr_stmt (one_init);
3651
3652 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3653 complain);
3654 if (one_init == error_mark_node)
3655 errors = true;
3656 else
3657 finish_expr_stmt (one_init);
3658 }
3659
3660 /* Any elements without explicit initializers get T{}. */
3661 empty_list = true;
3662 }
3663 else if (from_array)
3664 {
3665 if (init)
3666 /* OK, we set base2 above. */;
3667 else if (CLASS_TYPE_P (type)
3668 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3669 {
3670 if (complain & tf_error)
3671 error ("initializer ends prematurely");
3672 errors = true;
3673 }
3674 }
3675
3676 /* Now, default-initialize any remaining elements. We don't need to
3677 do that if a) the type does not need constructing, or b) we've
3678 already initialized all the elements.
3679
3680 We do need to keep going if we're copying an array. */
3681
3682 if (try_const && !init)
3683 /* With a constexpr default constructor, which we checked for when
3684 setting try_const above, default-initialization is equivalent to
3685 value-initialization, and build_value_init gives us something more
3686 friendly to maybe_constant_init. */
3687 explicit_value_init_p = true;
3688 if (from_array
3689 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3690 && ! (tree_fits_shwi_p (maxindex)
3691 && (num_initialized_elts
3692 == tree_to_shwi (maxindex) + 1))))
3693 {
3694 /* If the ITERATOR is equal to -1, then we don't have to loop;
3695 we've already initialized all the elements. */
3696 tree for_stmt;
3697 tree elt_init;
3698 tree to;
3699
3700 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3701 finish_for_init_stmt (for_stmt);
3702 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3703 build_int_cst (TREE_TYPE (iterator), -1)),
3704 for_stmt, false);
3705 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3706 complain);
3707 if (elt_init == error_mark_node)
3708 errors = true;
3709 finish_for_expr (elt_init, for_stmt);
3710
3711 to = build1 (INDIRECT_REF, type, base);
3712
3713 /* If the initializer is {}, then all elements are initialized from T{}.
3714 But for non-classes, that's the same as value-initialization. */
3715 if (empty_list)
3716 {
3717 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3718 {
3719 init = build_constructor (init_list_type_node, NULL);
3720 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
3721 }
3722 else
3723 {
3724 init = NULL_TREE;
3725 explicit_value_init_p = true;
3726 }
3727 }
3728
3729 if (from_array)
3730 {
3731 tree from;
3732
3733 if (base2)
3734 {
3735 from = build1 (INDIRECT_REF, itype, base2);
3736 if (xvalue)
3737 from = move (from);
3738 }
3739 else
3740 from = NULL_TREE;
3741
3742 if (from_array == 2)
3743 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3744 complain);
3745 else if (type_build_ctor_call (type))
3746 elt_init = build_aggr_init (to, from, 0, complain);
3747 else if (from)
3748 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3749 complain);
3750 else
3751 gcc_unreachable ();
3752 }
3753 else if (TREE_CODE (type) == ARRAY_TYPE)
3754 {
3755 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3756 sorry
3757 ("cannot initialize multi-dimensional array with initializer");
3758 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3759 0, init,
3760 explicit_value_init_p,
3761 0, complain);
3762 }
3763 else if (explicit_value_init_p)
3764 {
3765 elt_init = build_value_init (type, complain);
3766 if (elt_init != error_mark_node)
3767 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3768 }
3769 else
3770 {
3771 gcc_assert (type_build_ctor_call (type) || init);
3772 if (CLASS_TYPE_P (type))
3773 elt_init = build_aggr_init (to, init, 0, complain);
3774 else
3775 {
3776 if (TREE_CODE (init) == TREE_LIST)
3777 init = build_x_compound_expr_from_list (init, ELK_INIT,
3778 complain);
3779 elt_init = build2 (INIT_EXPR, type, to, init);
3780 }
3781 }
3782
3783 if (elt_init == error_mark_node)
3784 errors = true;
3785
3786 if (try_const)
3787 {
3788 /* FIXME refs to earlier elts */
3789 tree e = maybe_constant_init (elt_init);
3790 if (reduced_constant_expression_p (e))
3791 {
3792 if (initializer_zerop (e))
3793 /* Don't fill the CONSTRUCTOR with zeros. */
3794 e = NULL_TREE;
3795 if (do_static_init)
3796 elt_init = NULL_TREE;
3797 }
3798 else
3799 {
3800 saw_non_const = true;
3801 if (do_static_init)
3802 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
3803 else
3804 e = NULL_TREE;
3805 }
3806
3807 if (e)
3808 {
3809 int max = tree_to_shwi (maxindex)+1;
3810 for (; num_initialized_elts < max; ++num_initialized_elts)
3811 {
3812 tree field = size_int (num_initialized_elts);
3813 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3814 }
3815 }
3816 }
3817
3818 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3819 if (elt_init)
3820 finish_expr_stmt (elt_init);
3821 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3822
3823 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3824 complain));
3825 if (base2)
3826 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3827 complain));
3828
3829 finish_for_stmt (for_stmt);
3830 }
3831
3832 /* Make sure to cleanup any partially constructed elements. */
3833 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3834 && from_array != 2)
3835 {
3836 tree e;
3837 tree m = cp_build_binary_op (input_location,
3838 MINUS_EXPR, maxindex, iterator,
3839 complain);
3840
3841 /* Flatten multi-dimensional array since build_vec_delete only
3842 expects one-dimensional array. */
3843 if (TREE_CODE (type) == ARRAY_TYPE)
3844 m = cp_build_binary_op (input_location,
3845 MULT_EXPR, m,
3846 /* Avoid mixing signed and unsigned. */
3847 convert (TREE_TYPE (m),
3848 array_type_nelts_total (type)),
3849 complain);
3850
3851 finish_cleanup_try_block (try_block);
3852 e = build_vec_delete_1 (rval, m,
3853 inner_elt_type, sfk_complete_destructor,
3854 /*use_global_delete=*/0, complain);
3855 if (e == error_mark_node)
3856 errors = true;
3857 finish_cleanup (e, try_block);
3858 }
3859
3860 /* The value of the array initialization is the array itself, RVAL
3861 is a pointer to the first element. */
3862 finish_stmt_expr_expr (rval, stmt_expr);
3863
3864 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3865
3866 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3867
3868 if (errors)
3869 return error_mark_node;
3870
3871 if (try_const)
3872 {
3873 if (!saw_non_const)
3874 {
3875 tree const_init = build_constructor (atype, const_vec);
3876 return build2 (INIT_EXPR, atype, obase, const_init);
3877 }
3878 else if (do_static_init && !vec_safe_is_empty (const_vec))
3879 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
3880 else
3881 vec_free (const_vec);
3882 }
3883
3884 /* Now make the result have the correct type. */
3885 if (TREE_CODE (atype) == ARRAY_TYPE)
3886 {
3887 atype = build_pointer_type (atype);
3888 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3889 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3890 TREE_NO_WARNING (stmt_expr) = 1;
3891 }
3892
3893 return stmt_expr;
3894 }
3895
3896 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3897 build_delete. */
3898
3899 static tree
3900 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3901 tsubst_flags_t complain)
3902 {
3903 tree name;
3904 tree fn;
3905 switch (dtor_kind)
3906 {
3907 case sfk_complete_destructor:
3908 name = complete_dtor_identifier;
3909 break;
3910
3911 case sfk_base_destructor:
3912 name = base_dtor_identifier;
3913 break;
3914
3915 case sfk_deleting_destructor:
3916 name = deleting_dtor_identifier;
3917 break;
3918
3919 default:
3920 gcc_unreachable ();
3921 }
3922 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3923 return build_new_method_call (exp, fn,
3924 /*args=*/NULL,
3925 /*conversion_path=*/NULL_TREE,
3926 flags,
3927 /*fn_p=*/NULL,
3928 complain);
3929 }
3930
3931 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3932 ADDR is an expression which yields the store to be destroyed.
3933 AUTO_DELETE is the name of the destructor to call, i.e., either
3934 sfk_complete_destructor, sfk_base_destructor, or
3935 sfk_deleting_destructor.
3936
3937 FLAGS is the logical disjunction of zero or more LOOKUP_
3938 flags. See cp-tree.h for more info. */
3939
3940 tree
3941 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3942 int flags, int use_global_delete, tsubst_flags_t complain)
3943 {
3944 tree expr;
3945
3946 if (addr == error_mark_node)
3947 return error_mark_node;
3948
3949 tree type = TYPE_MAIN_VARIANT (otype);
3950
3951 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3952 set to `error_mark_node' before it gets properly cleaned up. */
3953 if (type == error_mark_node)
3954 return error_mark_node;
3955
3956 if (TREE_CODE (type) == POINTER_TYPE)
3957 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3958
3959 if (TREE_CODE (type) == ARRAY_TYPE)
3960 {
3961 if (TYPE_DOMAIN (type) == NULL_TREE)
3962 {
3963 if (complain & tf_error)
3964 error ("unknown array size in delete");
3965 return error_mark_node;
3966 }
3967 return build_vec_delete (addr, array_type_nelts (type),
3968 auto_delete, use_global_delete, complain);
3969 }
3970
3971 if (TYPE_PTR_P (otype))
3972 {
3973 addr = mark_rvalue_use (addr);
3974
3975 /* We don't want to warn about delete of void*, only other
3976 incomplete types. Deleting other incomplete types
3977 invokes undefined behavior, but it is not ill-formed, so
3978 compile to something that would even do The Right Thing
3979 (TM) should the type have a trivial dtor and no delete
3980 operator. */
3981 if (!VOID_TYPE_P (type))
3982 {
3983 complete_type (type);
3984 if (!COMPLETE_TYPE_P (type))
3985 {
3986 if ((complain & tf_warning)
3987 && warning (OPT_Wdelete_incomplete,
3988 "possible problem detected in invocation of "
3989 "delete operator:"))
3990 {
3991 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3992 inform (input_location,
3993 "neither the destructor nor the class-specific "
3994 "operator delete will be called, even if they are "
3995 "declared when the class is defined");
3996 }
3997 }
3998 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3999 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4000 && TYPE_POLYMORPHIC_P (type))
4001 {
4002 tree dtor;
4003 dtor = CLASSTYPE_DESTRUCTORS (type);
4004 if (!dtor || !DECL_VINDEX (dtor))
4005 {
4006 if (CLASSTYPE_PURE_VIRTUALS (type))
4007 warning (OPT_Wdelete_non_virtual_dtor,
4008 "deleting object of abstract class type %qT"
4009 " which has non-virtual destructor"
4010 " will cause undefined behaviour", type);
4011 else
4012 warning (OPT_Wdelete_non_virtual_dtor,
4013 "deleting object of polymorphic class type %qT"
4014 " which has non-virtual destructor"
4015 " might cause undefined behaviour", type);
4016 }
4017 }
4018 }
4019 if (TREE_SIDE_EFFECTS (addr))
4020 addr = save_expr (addr);
4021
4022 /* Throw away const and volatile on target type of addr. */
4023 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4024 }
4025 else
4026 {
4027 /* Don't check PROTECT here; leave that decision to the
4028 destructor. If the destructor is accessible, call it,
4029 else report error. */
4030 addr = cp_build_addr_expr (addr, complain);
4031 if (addr == error_mark_node)
4032 return error_mark_node;
4033 if (TREE_SIDE_EFFECTS (addr))
4034 addr = save_expr (addr);
4035
4036 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4037 }
4038
4039 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4040 {
4041 /* Make sure the destructor is callable. */
4042 if (type_build_dtor_call (type))
4043 {
4044 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4045 complain),
4046 sfk_complete_destructor, flags, complain);
4047 if (expr == error_mark_node)
4048 return error_mark_node;
4049 }
4050
4051 if (auto_delete != sfk_deleting_destructor)
4052 return void_node;
4053
4054 return build_op_delete_call (DELETE_EXPR, addr,
4055 cxx_sizeof_nowarn (type),
4056 use_global_delete,
4057 /*placement=*/NULL_TREE,
4058 /*alloc_fn=*/NULL_TREE,
4059 complain);
4060 }
4061 else
4062 {
4063 tree head = NULL_TREE;
4064 tree do_delete = NULL_TREE;
4065 tree ifexp;
4066
4067 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4068 lazily_declare_fn (sfk_destructor, type);
4069
4070 /* For `::delete x', we must not use the deleting destructor
4071 since then we would not be sure to get the global `operator
4072 delete'. */
4073 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4074 {
4075 /* We will use ADDR multiple times so we must save it. */
4076 addr = save_expr (addr);
4077 head = get_target_expr (build_headof (addr));
4078 /* Delete the object. */
4079 do_delete = build_op_delete_call (DELETE_EXPR,
4080 head,
4081 cxx_sizeof_nowarn (type),
4082 /*global_p=*/true,
4083 /*placement=*/NULL_TREE,
4084 /*alloc_fn=*/NULL_TREE,
4085 complain);
4086 /* Otherwise, treat this like a complete object destructor
4087 call. */
4088 auto_delete = sfk_complete_destructor;
4089 }
4090 /* If the destructor is non-virtual, there is no deleting
4091 variant. Instead, we must explicitly call the appropriate
4092 `operator delete' here. */
4093 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4094 && auto_delete == sfk_deleting_destructor)
4095 {
4096 /* We will use ADDR multiple times so we must save it. */
4097 addr = save_expr (addr);
4098 /* Build the call. */
4099 do_delete = build_op_delete_call (DELETE_EXPR,
4100 addr,
4101 cxx_sizeof_nowarn (type),
4102 /*global_p=*/false,
4103 /*placement=*/NULL_TREE,
4104 /*alloc_fn=*/NULL_TREE,
4105 complain);
4106 /* Call the complete object destructor. */
4107 auto_delete = sfk_complete_destructor;
4108 }
4109 else if (auto_delete == sfk_deleting_destructor
4110 && TYPE_GETS_REG_DELETE (type))
4111 {
4112 /* Make sure we have access to the member op delete, even though
4113 we'll actually be calling it from the destructor. */
4114 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4115 /*global_p=*/false,
4116 /*placement=*/NULL_TREE,
4117 /*alloc_fn=*/NULL_TREE,
4118 complain);
4119 }
4120
4121 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4122 auto_delete, flags, complain);
4123 if (expr == error_mark_node)
4124 return error_mark_node;
4125 if (do_delete)
4126 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4127
4128 /* We need to calculate this before the dtor changes the vptr. */
4129 if (head)
4130 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4131
4132 if (flags & LOOKUP_DESTRUCTOR)
4133 /* Explicit destructor call; don't check for null pointer. */
4134 ifexp = integer_one_node;
4135 else
4136 {
4137 /* Handle deleting a null pointer. */
4138 ifexp = fold (cp_build_binary_op (input_location,
4139 NE_EXPR, addr, nullptr_node,
4140 complain));
4141 if (ifexp == error_mark_node)
4142 return error_mark_node;
4143 }
4144
4145 if (ifexp != integer_one_node)
4146 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4147
4148 return expr;
4149 }
4150 }
4151
4152 /* At the beginning of a destructor, push cleanups that will call the
4153 destructors for our base classes and members.
4154
4155 Called from begin_destructor_body. */
4156
4157 void
4158 push_base_cleanups (void)
4159 {
4160 tree binfo, base_binfo;
4161 int i;
4162 tree member;
4163 tree expr;
4164 vec<tree, va_gc> *vbases;
4165
4166 /* Run destructors for all virtual baseclasses. */
4167 if (CLASSTYPE_VBASECLASSES (current_class_type))
4168 {
4169 tree cond = (condition_conversion
4170 (build2 (BIT_AND_EXPR, integer_type_node,
4171 current_in_charge_parm,
4172 integer_two_node)));
4173
4174 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4175 order, which is also the right order for pushing cleanups. */
4176 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4177 vec_safe_iterate (vbases, i, &base_binfo); i++)
4178 {
4179 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4180 {
4181 expr = build_special_member_call (current_class_ref,
4182 base_dtor_identifier,
4183 NULL,
4184 base_binfo,
4185 (LOOKUP_NORMAL
4186 | LOOKUP_NONVIRTUAL),
4187 tf_warning_or_error);
4188 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4189 {
4190 expr = build3 (COND_EXPR, void_type_node, cond,
4191 expr, void_node);
4192 finish_decl_cleanup (NULL_TREE, expr);
4193 }
4194 }
4195 }
4196 }
4197
4198 /* Take care of the remaining baseclasses. */
4199 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4200 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4201 {
4202 if (BINFO_VIRTUAL_P (base_binfo)
4203 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4204 continue;
4205
4206 expr = build_special_member_call (current_class_ref,
4207 base_dtor_identifier,
4208 NULL, base_binfo,
4209 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4210 tf_warning_or_error);
4211 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4212 finish_decl_cleanup (NULL_TREE, expr);
4213 }
4214
4215 /* Don't automatically destroy union members. */
4216 if (TREE_CODE (current_class_type) == UNION_TYPE)
4217 return;
4218
4219 for (member = TYPE_FIELDS (current_class_type); member;
4220 member = DECL_CHAIN (member))
4221 {
4222 tree this_type = TREE_TYPE (member);
4223 if (this_type == error_mark_node
4224 || TREE_CODE (member) != FIELD_DECL
4225 || DECL_ARTIFICIAL (member))
4226 continue;
4227 if (ANON_AGGR_TYPE_P (this_type))
4228 continue;
4229 if (type_build_dtor_call (this_type))
4230 {
4231 tree this_member = (build_class_member_access_expr
4232 (current_class_ref, member,
4233 /*access_path=*/NULL_TREE,
4234 /*preserve_reference=*/false,
4235 tf_warning_or_error));
4236 expr = build_delete (this_type, this_member,
4237 sfk_complete_destructor,
4238 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4239 0, tf_warning_or_error);
4240 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4241 finish_decl_cleanup (NULL_TREE, expr);
4242 }
4243 }
4244 }
4245
4246 /* Build a C++ vector delete expression.
4247 MAXINDEX is the number of elements to be deleted.
4248 ELT_SIZE is the nominal size of each element in the vector.
4249 BASE is the expression that should yield the store to be deleted.
4250 This function expands (or synthesizes) these calls itself.
4251 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4252
4253 This also calls delete for virtual baseclasses of elements of the vector.
4254
4255 Update: MAXINDEX is no longer needed. The size can be extracted from the
4256 start of the vector for pointers, and from the type for arrays. We still
4257 use MAXINDEX for arrays because it happens to already have one of the
4258 values we'd have to extract. (We could use MAXINDEX with pointers to
4259 confirm the size, and trap if the numbers differ; not clear that it'd
4260 be worth bothering.) */
4261
4262 tree
4263 build_vec_delete (tree base, tree maxindex,
4264 special_function_kind auto_delete_vec,
4265 int use_global_delete, tsubst_flags_t complain)
4266 {
4267 tree type;
4268 tree rval;
4269 tree base_init = NULL_TREE;
4270
4271 type = TREE_TYPE (base);
4272
4273 if (TYPE_PTR_P (type))
4274 {
4275 /* Step back one from start of vector, and read dimension. */
4276 tree cookie_addr;
4277 tree size_ptr_type = build_pointer_type (sizetype);
4278
4279 base = mark_rvalue_use (base);
4280 if (TREE_SIDE_EFFECTS (base))
4281 {
4282 base_init = get_target_expr (base);
4283 base = TARGET_EXPR_SLOT (base_init);
4284 }
4285 type = strip_array_types (TREE_TYPE (type));
4286 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4287 sizetype, TYPE_SIZE_UNIT (sizetype));
4288 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4289 cookie_addr);
4290 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4291 }
4292 else if (TREE_CODE (type) == ARRAY_TYPE)
4293 {
4294 /* Get the total number of things in the array, maxindex is a
4295 bad name. */
4296 maxindex = array_type_nelts_total (type);
4297 type = strip_array_types (type);
4298 base = decay_conversion (base, complain);
4299 if (base == error_mark_node)
4300 return error_mark_node;
4301 if (TREE_SIDE_EFFECTS (base))
4302 {
4303 base_init = get_target_expr (base);
4304 base = TARGET_EXPR_SLOT (base_init);
4305 }
4306 }
4307 else
4308 {
4309 if (base != error_mark_node && !(complain & tf_error))
4310 error ("type to vector delete is neither pointer or array type");
4311 return error_mark_node;
4312 }
4313
4314 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4315 use_global_delete, complain);
4316 if (base_init && rval != error_mark_node)
4317 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4318
4319 return rval;
4320 }