Implement C++11 delegating constructors.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "target.h"
34
35 static bool begin_init_stmts (tree *, tree *);
36 static tree finish_init_stmts (bool, tree, tree);
37 static void construct_virtual_base (tree, tree);
38 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
39 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
40 static void perform_member_init (tree, tree);
41 static tree build_builtin_delete_call (tree);
42 static int member_init_ok_or_else (tree, tree, tree);
43 static void expand_virtual_init (tree, tree);
44 static tree sort_mem_initializers (tree, tree);
45 static tree initializing_context (tree);
46 static void expand_cleanup_for_base (tree, tree);
47 static tree dfs_initialize_vtbl_ptrs (tree, void *);
48 static tree build_field_list (tree, tree, int *);
49 static tree build_vtbl_address (tree);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51
52 /* We are about to generate some complex initialization code.
53 Conceptually, it is all a single expression. However, we may want
54 to include conditionals, loops, and other such statement-level
55 constructs. Therefore, we build the initialization code inside a
56 statement-expression. This function starts such an expression.
57 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
58 pass them back to finish_init_stmts when the expression is
59 complete. */
60
61 static bool
62 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
63 {
64 bool is_global = !building_stmt_list_p ();
65
66 *stmt_expr_p = begin_stmt_expr ();
67 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
68
69 return is_global;
70 }
71
72 /* Finish out the statement-expression begun by the previous call to
73 begin_init_stmts. Returns the statement-expression itself. */
74
75 static tree
76 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
77 {
78 finish_compound_stmt (compound_stmt);
79
80 stmt_expr = finish_stmt_expr (stmt_expr, true);
81
82 gcc_assert (!building_stmt_list_p () == is_global);
83
84 return stmt_expr;
85 }
86
87 /* Constructors */
88
89 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
90 which we want to initialize the vtable pointer for, DATA is
91 TREE_LIST whose TREE_VALUE is the this ptr expression. */
92
93 static tree
94 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
95 {
96 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
97 return dfs_skip_bases;
98
99 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
100 {
101 tree base_ptr = TREE_VALUE ((tree) data);
102
103 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
104 tf_warning_or_error);
105
106 expand_virtual_init (binfo, base_ptr);
107 }
108
109 return NULL_TREE;
110 }
111
112 /* Initialize all the vtable pointers in the object pointed to by
113 ADDR. */
114
115 void
116 initialize_vtbl_ptrs (tree addr)
117 {
118 tree list;
119 tree type;
120
121 type = TREE_TYPE (TREE_TYPE (addr));
122 list = build_tree_list (type, addr);
123
124 /* Walk through the hierarchy, initializing the vptr in each base
125 class. We do these in pre-order because we can't find the virtual
126 bases for a class until we've initialized the vtbl for that
127 class. */
128 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
129 }
130
131 /* Return an expression for the zero-initialization of an object with
132 type T. This expression will either be a constant (in the case
133 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
134 aggregate), or NULL (in the case that T does not require
135 initialization). In either case, the value can be used as
136 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
137 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
138 is the number of elements in the array. If STATIC_STORAGE_P is
139 TRUE, initializers are only generated for entities for which
140 zero-initialization does not simply mean filling the storage with
141 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
142 subfields with bit positions at or above that bit size shouldn't
143 be added. */
144
145 static tree
146 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
147 tree field_size)
148 {
149 tree init = NULL_TREE;
150
151 /* [dcl.init]
152
153 To zero-initialize an object of type T means:
154
155 -- if T is a scalar type, the storage is set to the value of zero
156 converted to T.
157
158 -- if T is a non-union class type, the storage for each nonstatic
159 data member and each base-class subobject is zero-initialized.
160
161 -- if T is a union type, the storage for its first data member is
162 zero-initialized.
163
164 -- if T is an array type, the storage for each element is
165 zero-initialized.
166
167 -- if T is a reference type, no initialization is performed. */
168
169 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
170
171 if (type == error_mark_node)
172 ;
173 else if (static_storage_p && zero_init_p (type))
174 /* In order to save space, we do not explicitly build initializers
175 for items that do not need them. GCC's semantics are that
176 items with static storage duration that are not otherwise
177 initialized are initialized to zero. */
178 ;
179 else if (TYPE_PTR_P (type) || TYPE_PTR_TO_MEMBER_P (type))
180 init = convert (type, nullptr_node);
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (CLASS_TYPE_P (type))
184 {
185 tree field;
186 VEC(constructor_elt,gc) *v = NULL;
187
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
190 {
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
193
194 /* Don't add virtual bases for base classes if they are beyond
195 the size of the current field, that means it is present
196 somewhere else in the object. */
197 if (field_size)
198 {
199 tree bitpos = bit_position (field);
200 if (TREE_CODE (bitpos) == INTEGER_CST
201 && !tree_int_cst_lt (bitpos, field_size))
202 continue;
203 }
204
205 /* Note that for class types there will be FIELD_DECLs
206 corresponding to base classes as well. Thus, iterating
207 over TYPE_FIELDs will result in correct initialization of
208 all of the subobjects. */
209 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
210 {
211 tree new_field_size
212 = (DECL_FIELD_IS_BASE (field)
213 && DECL_SIZE (field)
214 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
215 ? DECL_SIZE (field) : NULL_TREE;
216 tree value = build_zero_init_1 (TREE_TYPE (field),
217 /*nelts=*/NULL_TREE,
218 static_storage_p,
219 new_field_size);
220 if (value)
221 CONSTRUCTOR_APPEND_ELT(v, field, value);
222 }
223
224 /* For unions, only the first field is initialized. */
225 if (TREE_CODE (type) == UNION_TYPE)
226 break;
227 }
228
229 /* Build a constructor to contain the initializations. */
230 init = build_constructor (type, v);
231 }
232 else if (TREE_CODE (type) == ARRAY_TYPE)
233 {
234 tree max_index;
235 VEC(constructor_elt,gc) *v = NULL;
236
237 /* Iterate over the array elements, building initializations. */
238 if (nelts)
239 max_index = fold_build2_loc (input_location,
240 MINUS_EXPR, TREE_TYPE (nelts),
241 nelts, integer_one_node);
242 else
243 max_index = array_type_nelts (type);
244
245 /* If we have an error_mark here, we should just return error mark
246 as we don't know the size of the array yet. */
247 if (max_index == error_mark_node)
248 return error_mark_node;
249 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
250
251 /* A zero-sized array, which is accepted as an extension, will
252 have an upper bound of -1. */
253 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
254 {
255 constructor_elt *ce;
256
257 v = VEC_alloc (constructor_elt, gc, 1);
258 ce = VEC_quick_push (constructor_elt, v, NULL);
259
260 /* If this is a one element array, we just use a regular init. */
261 if (tree_int_cst_equal (size_zero_node, max_index))
262 ce->index = size_zero_node;
263 else
264 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
265 max_index);
266
267 ce->value = build_zero_init_1 (TREE_TYPE (type),
268 /*nelts=*/NULL_TREE,
269 static_storage_p, NULL_TREE);
270 }
271
272 /* Build a constructor to contain the initializations. */
273 init = build_constructor (type, v);
274 }
275 else if (TREE_CODE (type) == VECTOR_TYPE)
276 init = build_zero_cst (type);
277 else
278 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
279
280 /* In all cases, the initializer is a constant. */
281 if (init)
282 TREE_CONSTANT (init) = 1;
283
284 return init;
285 }
286
287 /* Return an expression for the zero-initialization of an object with
288 type T. This expression will either be a constant (in the case
289 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
290 aggregate), or NULL (in the case that T does not require
291 initialization). In either case, the value can be used as
292 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
293 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
294 is the number of elements in the array. If STATIC_STORAGE_P is
295 TRUE, initializers are only generated for entities for which
296 zero-initialization does not simply mean filling the storage with
297 zero bytes. */
298
299 tree
300 build_zero_init (tree type, tree nelts, bool static_storage_p)
301 {
302 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
303 }
304
305 /* Return a suitable initializer for value-initializing an object of type
306 TYPE, as described in [dcl.init]. */
307
308 tree
309 build_value_init (tree type, tsubst_flags_t complain)
310 {
311 /* [dcl.init]
312
313 To value-initialize an object of type T means:
314
315 - if T is a class type (clause 9) with a user-provided constructor
316 (12.1), then the default constructor for T is called (and the
317 initialization is ill-formed if T has no accessible default
318 constructor);
319
320 - if T is a non-union class type without a user-provided constructor,
321 then every non-static data member and base-class component of T is
322 value-initialized;92)
323
324 - if T is an array type, then each element is value-initialized;
325
326 - otherwise, the object is zero-initialized.
327
328 A program that calls for default-initialization or
329 value-initialization of an entity of reference type is ill-formed.
330
331 92) Value-initialization for such a class object may be implemented by
332 zero-initializing the object and then calling the default
333 constructor. */
334
335 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
336 gcc_assert (!processing_template_decl || SCALAR_TYPE_P (type));
337
338 if (CLASS_TYPE_P (type))
339 {
340 /* Instead of the above, only consider the user-providedness of the
341 default constructor itself so value-initializing a class with an
342 explicitly defaulted default constructor and another user-provided
343 constructor works properly (c++std-core-19883). */
344 if (type_has_user_provided_default_constructor (type)
345 || (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
346 && type_has_user_provided_constructor (type)))
347 return build_aggr_init_expr
348 (type,
349 build_special_member_call (NULL_TREE, complete_ctor_identifier,
350 NULL, type, LOOKUP_NORMAL,
351 complain),
352 complain);
353 else if (TYPE_HAS_COMPLEX_DFLT (type))
354 {
355 /* This is a class that needs constructing, but doesn't have
356 a user-provided constructor. So we need to zero-initialize
357 the object and then call the implicitly defined ctor.
358 This will be handled in simplify_aggr_init_expr. */
359 tree ctor = build_special_member_call
360 (NULL_TREE, complete_ctor_identifier,
361 NULL, type, LOOKUP_NORMAL, complain);
362 if (ctor != error_mark_node)
363 {
364 ctor = build_aggr_init_expr (type, ctor, complain);
365 AGGR_INIT_ZERO_FIRST (ctor) = 1;
366 }
367 return ctor;
368 }
369 }
370 return build_value_init_noctor (type, complain);
371 }
372
373 /* Like build_value_init, but don't call the constructor for TYPE. Used
374 for base initializers. */
375
376 tree
377 build_value_init_noctor (tree type, tsubst_flags_t complain)
378 {
379 /* FIXME the class and array cases should just use digest_init once it is
380 SFINAE-enabled. */
381 if (CLASS_TYPE_P (type))
382 {
383 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type));
384
385 if (TREE_CODE (type) != UNION_TYPE)
386 {
387 tree field;
388 VEC(constructor_elt,gc) *v = NULL;
389
390 /* Iterate over the fields, building initializations. */
391 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
392 {
393 tree ftype, value;
394
395 if (TREE_CODE (field) != FIELD_DECL)
396 continue;
397
398 ftype = TREE_TYPE (field);
399
400 /* We could skip vfields and fields of types with
401 user-defined constructors, but I think that won't improve
402 performance at all; it should be simpler in general just
403 to zero out the entire object than try to only zero the
404 bits that actually need it. */
405
406 /* Note that for class types there will be FIELD_DECLs
407 corresponding to base classes as well. Thus, iterating
408 over TYPE_FIELDs will result in correct initialization of
409 all of the subobjects. */
410 value = build_value_init (ftype, complain);
411
412 if (value == error_mark_node)
413 return error_mark_node;
414
415 if (value)
416 CONSTRUCTOR_APPEND_ELT(v, field, value);
417 }
418
419 /* Build a constructor to contain the zero- initializations. */
420 return build_constructor (type, v);
421 }
422 }
423 else if (TREE_CODE (type) == ARRAY_TYPE)
424 {
425 VEC(constructor_elt,gc) *v = NULL;
426
427 /* Iterate over the array elements, building initializations. */
428 tree max_index = array_type_nelts (type);
429
430 /* If we have an error_mark here, we should just return error mark
431 as we don't know the size of the array yet. */
432 if (max_index == error_mark_node)
433 {
434 if (complain & tf_error)
435 error ("cannot value-initialize array of unknown bound %qT",
436 type);
437 return error_mark_node;
438 }
439 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
440
441 /* A zero-sized array, which is accepted as an extension, will
442 have an upper bound of -1. */
443 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
444 {
445 constructor_elt *ce;
446
447 v = VEC_alloc (constructor_elt, gc, 1);
448 ce = VEC_quick_push (constructor_elt, v, NULL);
449
450 /* If this is a one element array, we just use a regular init. */
451 if (tree_int_cst_equal (size_zero_node, max_index))
452 ce->index = size_zero_node;
453 else
454 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
455 max_index);
456
457 ce->value = build_value_init (TREE_TYPE (type), complain);
458
459 if (ce->value == error_mark_node)
460 return error_mark_node;
461
462 /* We shouldn't have gotten here for anything that would need
463 non-trivial initialization, and gimplify_init_ctor_preeval
464 would need to be fixed to allow it. */
465 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
466 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
467 }
468
469 /* Build a constructor to contain the initializations. */
470 return build_constructor (type, v);
471 }
472 else if (TREE_CODE (type) == FUNCTION_TYPE)
473 {
474 if (complain & tf_error)
475 error ("value-initialization of function type %qT", type);
476 return error_mark_node;
477 }
478 else if (TREE_CODE (type) == REFERENCE_TYPE)
479 {
480 if (complain & tf_error)
481 error ("value-initialization of reference type %qT", type);
482 return error_mark_node;
483 }
484
485 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
486 }
487
488 /* Initialize current class with INIT, a TREE_LIST of
489 arguments for a target constructor. If TREE_LIST is void_type_node,
490 an empty initializer list was given. */
491
492 static void
493 perform_target_ctor (tree init)
494 {
495 tree decl = current_class_ref;
496 tree type = current_class_type;
497
498 finish_expr_stmt (build_aggr_init (decl, init, LOOKUP_NORMAL,
499 tf_warning_or_error));
500 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
501 {
502 tree expr = build_delete (type, decl, sfk_complete_destructor,
503 LOOKUP_NORMAL
504 |LOOKUP_NONVIRTUAL
505 |LOOKUP_DESTRUCTOR,
506 0, tf_warning_or_error);
507 if (expr != error_mark_node)
508 finish_eh_cleanup (expr);
509 }
510 }
511
512 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
513 arguments. If TREE_LIST is void_type_node, an empty initializer
514 list was given; if NULL_TREE no initializer was given. */
515
516 static void
517 perform_member_init (tree member, tree init)
518 {
519 tree decl;
520 tree type = TREE_TYPE (member);
521
522 /* Use the non-static data member initializer if there was no
523 mem-initializer for this field. */
524 if (init == NULL_TREE)
525 {
526 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
527 /* Do deferred instantiation of the NSDMI. */
528 init = (tsubst_copy_and_build
529 (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
530 DECL_TI_ARGS (member),
531 tf_warning_or_error, member, /*function_p=*/false,
532 /*integral_constant_expression_p=*/false));
533 else
534 {
535 init = DECL_INITIAL (member);
536 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
537 so the aggregate init code below will see a CONSTRUCTOR. */
538 if (init && TREE_CODE (init) == TARGET_EXPR
539 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
540 init = TARGET_EXPR_INITIAL (init);
541 init = break_out_target_exprs (init);
542 }
543 }
544
545 /* Effective C++ rule 12 requires that all data members be
546 initialized. */
547 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
548 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
549 "%qD should be initialized in the member initialization list",
550 member);
551
552 /* Get an lvalue for the data member. */
553 decl = build_class_member_access_expr (current_class_ref, member,
554 /*access_path=*/NULL_TREE,
555 /*preserve_reference=*/true,
556 tf_warning_or_error);
557 if (decl == error_mark_node)
558 return;
559
560 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
561 && TREE_CHAIN (init) == NULL_TREE)
562 {
563 tree val = TREE_VALUE (init);
564 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
565 && TREE_OPERAND (val, 0) == current_class_ref)
566 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
567 OPT_Wuninitialized, "%qD is initialized with itself",
568 member);
569 }
570
571 if (init == void_type_node)
572 {
573 /* mem() means value-initialization. */
574 if (TREE_CODE (type) == ARRAY_TYPE)
575 {
576 init = build_vec_init_expr (type, init, tf_warning_or_error);
577 init = build2 (INIT_EXPR, type, decl, init);
578 finish_expr_stmt (init);
579 }
580 else
581 {
582 tree value = build_value_init (type, tf_warning_or_error);
583 if (value == error_mark_node)
584 return;
585 init = build2 (INIT_EXPR, type, decl, value);
586 finish_expr_stmt (init);
587 }
588 }
589 /* Deal with this here, as we will get confused if we try to call the
590 assignment op for an anonymous union. This can happen in a
591 synthesized copy constructor. */
592 else if (ANON_AGGR_TYPE_P (type))
593 {
594 if (init)
595 {
596 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
597 finish_expr_stmt (init);
598 }
599 }
600 else if (init
601 && (TREE_CODE (type) == REFERENCE_TYPE
602 /* Pre-digested NSDMI. */
603 || (((TREE_CODE (init) == CONSTRUCTOR
604 && TREE_TYPE (init) == type)
605 /* { } mem-initializer. */
606 || (TREE_CODE (init) == TREE_LIST
607 && TREE_CODE (TREE_VALUE (init)) == CONSTRUCTOR
608 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init))))
609 && (CP_AGGREGATE_TYPE_P (type)
610 || is_std_init_list (type)))))
611 {
612 /* With references and list-initialization, we need to deal with
613 extending temporary lifetimes. 12.2p5: "A temporary bound to a
614 reference member in a constructor’s ctor-initializer (12.6.2)
615 persists until the constructor exits." */
616 unsigned i; tree t;
617 VEC(tree,gc) *cleanups = make_tree_vector ();
618 if (TREE_CODE (init) == TREE_LIST)
619 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
620 tf_warning_or_error);
621 if (TREE_TYPE (init) != type)
622 init = digest_init (type, init, tf_warning_or_error);
623 if (init == error_mark_node)
624 return;
625 /* A FIELD_DECL doesn't really have a suitable lifetime, but
626 make_temporary_var_for_ref_to_temp will treat it as automatic and
627 set_up_extended_ref_temp wants to use the decl in a warning. */
628 init = extend_ref_init_temps (member, init, &cleanups);
629 if (TREE_CODE (type) == ARRAY_TYPE
630 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
631 init = build_vec_init_expr (type, init, tf_warning_or_error);
632 init = build2 (INIT_EXPR, type, decl, init);
633 finish_expr_stmt (init);
634 FOR_EACH_VEC_ELT (tree, cleanups, i, t)
635 push_cleanup (decl, t, false);
636 release_tree_vector (cleanups);
637 }
638 else if (type_build_ctor_call (type)
639 || (init && CLASS_TYPE_P (strip_array_types (type))))
640 {
641 if (TREE_CODE (type) == ARRAY_TYPE)
642 {
643 if (init)
644 {
645 if (TREE_CHAIN (init))
646 init = error_mark_node;
647 else
648 init = TREE_VALUE (init);
649 if (BRACE_ENCLOSED_INITIALIZER_P (init))
650 init = digest_init (type, init, tf_warning_or_error);
651 }
652 if (init == NULL_TREE
653 || same_type_ignoring_top_level_qualifiers_p (type,
654 TREE_TYPE (init)))
655 {
656 init = build_vec_init_expr (type, init, tf_warning_or_error);
657 init = build2 (INIT_EXPR, type, decl, init);
658 finish_expr_stmt (init);
659 }
660 else
661 error ("invalid initializer for array member %q#D", member);
662 }
663 else
664 {
665 int flags = LOOKUP_NORMAL;
666 if (DECL_DEFAULTED_FN (current_function_decl))
667 flags |= LOOKUP_DEFAULTED;
668 if (CP_TYPE_CONST_P (type)
669 && init == NULL_TREE
670 && default_init_uninitialized_part (type))
671 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
672 vtable; still give this diagnostic. */
673 permerror (DECL_SOURCE_LOCATION (current_function_decl),
674 "uninitialized member %qD with %<const%> type %qT",
675 member, type);
676 finish_expr_stmt (build_aggr_init (decl, init, flags,
677 tf_warning_or_error));
678 }
679 }
680 else
681 {
682 if (init == NULL_TREE)
683 {
684 tree core_type;
685 /* member traversal: note it leaves init NULL */
686 if (TREE_CODE (type) == REFERENCE_TYPE)
687 permerror (DECL_SOURCE_LOCATION (current_function_decl),
688 "uninitialized reference member %qD",
689 member);
690 else if (CP_TYPE_CONST_P (type))
691 permerror (DECL_SOURCE_LOCATION (current_function_decl),
692 "uninitialized member %qD with %<const%> type %qT",
693 member, type);
694
695 core_type = strip_array_types (type);
696
697 if (CLASS_TYPE_P (core_type)
698 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
699 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
700 diagnose_uninitialized_cst_or_ref_member (core_type,
701 /*using_new=*/false,
702 /*complain=*/true);
703 }
704 else if (TREE_CODE (init) == TREE_LIST)
705 /* There was an explicit member initialization. Do some work
706 in that case. */
707 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
708 tf_warning_or_error);
709
710 if (init)
711 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
712 tf_warning_or_error));
713 }
714
715 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
716 {
717 tree expr;
718
719 expr = build_class_member_access_expr (current_class_ref, member,
720 /*access_path=*/NULL_TREE,
721 /*preserve_reference=*/false,
722 tf_warning_or_error);
723 expr = build_delete (type, expr, sfk_complete_destructor,
724 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
725 tf_warning_or_error);
726
727 if (expr != error_mark_node)
728 finish_eh_cleanup (expr);
729 }
730 }
731
732 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
733 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
734
735 static tree
736 build_field_list (tree t, tree list, int *uses_unions_p)
737 {
738 tree fields;
739
740 /* Note whether or not T is a union. */
741 if (TREE_CODE (t) == UNION_TYPE)
742 *uses_unions_p = 1;
743
744 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
745 {
746 tree fieldtype;
747
748 /* Skip CONST_DECLs for enumeration constants and so forth. */
749 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
750 continue;
751
752 fieldtype = TREE_TYPE (fields);
753 /* Keep track of whether or not any fields are unions. */
754 if (TREE_CODE (fieldtype) == UNION_TYPE)
755 *uses_unions_p = 1;
756
757 /* For an anonymous struct or union, we must recursively
758 consider the fields of the anonymous type. They can be
759 directly initialized from the constructor. */
760 if (ANON_AGGR_TYPE_P (fieldtype))
761 {
762 /* Add this field itself. Synthesized copy constructors
763 initialize the entire aggregate. */
764 list = tree_cons (fields, NULL_TREE, list);
765 /* And now add the fields in the anonymous aggregate. */
766 list = build_field_list (fieldtype, list, uses_unions_p);
767 }
768 /* Add this field. */
769 else if (DECL_NAME (fields))
770 list = tree_cons (fields, NULL_TREE, list);
771 }
772
773 return list;
774 }
775
776 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
777 a FIELD_DECL or BINFO in T that needs initialization. The
778 TREE_VALUE gives the initializer, or list of initializer arguments.
779
780 Return a TREE_LIST containing all of the initializations required
781 for T, in the order in which they should be performed. The output
782 list has the same format as the input. */
783
784 static tree
785 sort_mem_initializers (tree t, tree mem_inits)
786 {
787 tree init;
788 tree base, binfo, base_binfo;
789 tree sorted_inits;
790 tree next_subobject;
791 VEC(tree,gc) *vbases;
792 int i;
793 int uses_unions_p = 0;
794
795 /* Build up a list of initializations. The TREE_PURPOSE of entry
796 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
797 TREE_VALUE will be the constructor arguments, or NULL if no
798 explicit initialization was provided. */
799 sorted_inits = NULL_TREE;
800
801 /* Process the virtual bases. */
802 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
803 VEC_iterate (tree, vbases, i, base); i++)
804 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
805
806 /* Process the direct bases. */
807 for (binfo = TYPE_BINFO (t), i = 0;
808 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
809 if (!BINFO_VIRTUAL_P (base_binfo))
810 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
811
812 /* Process the non-static data members. */
813 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
814 /* Reverse the entire list of initializations, so that they are in
815 the order that they will actually be performed. */
816 sorted_inits = nreverse (sorted_inits);
817
818 /* If the user presented the initializers in an order different from
819 that in which they will actually occur, we issue a warning. Keep
820 track of the next subobject which can be explicitly initialized
821 without issuing a warning. */
822 next_subobject = sorted_inits;
823
824 /* Go through the explicit initializers, filling in TREE_PURPOSE in
825 the SORTED_INITS. */
826 for (init = mem_inits; init; init = TREE_CHAIN (init))
827 {
828 tree subobject;
829 tree subobject_init;
830
831 subobject = TREE_PURPOSE (init);
832
833 /* If the explicit initializers are in sorted order, then
834 SUBOBJECT will be NEXT_SUBOBJECT, or something following
835 it. */
836 for (subobject_init = next_subobject;
837 subobject_init;
838 subobject_init = TREE_CHAIN (subobject_init))
839 if (TREE_PURPOSE (subobject_init) == subobject)
840 break;
841
842 /* Issue a warning if the explicit initializer order does not
843 match that which will actually occur.
844 ??? Are all these on the correct lines? */
845 if (warn_reorder && !subobject_init)
846 {
847 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
848 warning (OPT_Wreorder, "%q+D will be initialized after",
849 TREE_PURPOSE (next_subobject));
850 else
851 warning (OPT_Wreorder, "base %qT will be initialized after",
852 TREE_PURPOSE (next_subobject));
853 if (TREE_CODE (subobject) == FIELD_DECL)
854 warning (OPT_Wreorder, " %q+#D", subobject);
855 else
856 warning (OPT_Wreorder, " base %qT", subobject);
857 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
858 OPT_Wreorder, " when initialized here");
859 }
860
861 /* Look again, from the beginning of the list. */
862 if (!subobject_init)
863 {
864 subobject_init = sorted_inits;
865 while (TREE_PURPOSE (subobject_init) != subobject)
866 subobject_init = TREE_CHAIN (subobject_init);
867 }
868
869 /* It is invalid to initialize the same subobject more than
870 once. */
871 if (TREE_VALUE (subobject_init))
872 {
873 if (TREE_CODE (subobject) == FIELD_DECL)
874 error_at (DECL_SOURCE_LOCATION (current_function_decl),
875 "multiple initializations given for %qD",
876 subobject);
877 else
878 error_at (DECL_SOURCE_LOCATION (current_function_decl),
879 "multiple initializations given for base %qT",
880 subobject);
881 }
882
883 /* Record the initialization. */
884 TREE_VALUE (subobject_init) = TREE_VALUE (init);
885 next_subobject = subobject_init;
886 }
887
888 /* [class.base.init]
889
890 If a ctor-initializer specifies more than one mem-initializer for
891 multiple members of the same union (including members of
892 anonymous unions), the ctor-initializer is ill-formed.
893
894 Here we also splice out uninitialized union members. */
895 if (uses_unions_p)
896 {
897 tree last_field = NULL_TREE;
898 tree *p;
899 for (p = &sorted_inits; *p; )
900 {
901 tree field;
902 tree ctx;
903 int done;
904
905 init = *p;
906
907 field = TREE_PURPOSE (init);
908
909 /* Skip base classes. */
910 if (TREE_CODE (field) != FIELD_DECL)
911 goto next;
912
913 /* If this is an anonymous union with no explicit initializer,
914 splice it out. */
915 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
916 goto splice;
917
918 /* See if this field is a member of a union, or a member of a
919 structure contained in a union, etc. */
920 for (ctx = DECL_CONTEXT (field);
921 !same_type_p (ctx, t);
922 ctx = TYPE_CONTEXT (ctx))
923 if (TREE_CODE (ctx) == UNION_TYPE)
924 break;
925 /* If this field is not a member of a union, skip it. */
926 if (TREE_CODE (ctx) != UNION_TYPE)
927 goto next;
928
929 /* If this union member has no explicit initializer, splice
930 it out. */
931 if (!TREE_VALUE (init))
932 goto splice;
933
934 /* It's only an error if we have two initializers for the same
935 union type. */
936 if (!last_field)
937 {
938 last_field = field;
939 goto next;
940 }
941
942 /* See if LAST_FIELD and the field initialized by INIT are
943 members of the same union. If so, there's a problem,
944 unless they're actually members of the same structure
945 which is itself a member of a union. For example, given:
946
947 union { struct { int i; int j; }; };
948
949 initializing both `i' and `j' makes sense. */
950 ctx = DECL_CONTEXT (field);
951 done = 0;
952 do
953 {
954 tree last_ctx;
955
956 last_ctx = DECL_CONTEXT (last_field);
957 while (1)
958 {
959 if (same_type_p (last_ctx, ctx))
960 {
961 if (TREE_CODE (ctx) == UNION_TYPE)
962 error_at (DECL_SOURCE_LOCATION (current_function_decl),
963 "initializations for multiple members of %qT",
964 last_ctx);
965 done = 1;
966 break;
967 }
968
969 if (same_type_p (last_ctx, t))
970 break;
971
972 last_ctx = TYPE_CONTEXT (last_ctx);
973 }
974
975 /* If we've reached the outermost class, then we're
976 done. */
977 if (same_type_p (ctx, t))
978 break;
979
980 ctx = TYPE_CONTEXT (ctx);
981 }
982 while (!done);
983
984 last_field = field;
985
986 next:
987 p = &TREE_CHAIN (*p);
988 continue;
989 splice:
990 *p = TREE_CHAIN (*p);
991 continue;
992 }
993 }
994
995 return sorted_inits;
996 }
997
998 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
999 is a TREE_LIST giving the explicit mem-initializer-list for the
1000 constructor. The TREE_PURPOSE of each entry is a subobject (a
1001 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1002 is a TREE_LIST giving the arguments to the constructor or
1003 void_type_node for an empty list of arguments. */
1004
1005 void
1006 emit_mem_initializers (tree mem_inits)
1007 {
1008 int flags = LOOKUP_NORMAL;
1009
1010 /* We will already have issued an error message about the fact that
1011 the type is incomplete. */
1012 if (!COMPLETE_TYPE_P (current_class_type))
1013 return;
1014
1015 if (mem_inits
1016 && TYPE_P (TREE_PURPOSE (mem_inits))
1017 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1018 {
1019 /* Delegating constructor. */
1020 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1021 perform_target_ctor (TREE_VALUE (mem_inits));
1022 return;
1023 }
1024
1025 if (DECL_DEFAULTED_FN (current_function_decl))
1026 flags |= LOOKUP_DEFAULTED;
1027
1028 /* Sort the mem-initializers into the order in which the
1029 initializations should be performed. */
1030 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1031
1032 in_base_initializer = 1;
1033
1034 /* Initialize base classes. */
1035 while (mem_inits
1036 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
1037 {
1038 tree subobject = TREE_PURPOSE (mem_inits);
1039 tree arguments = TREE_VALUE (mem_inits);
1040
1041 if (arguments == NULL_TREE)
1042 {
1043 /* If these initializations are taking place in a copy constructor,
1044 the base class should probably be explicitly initialized if there
1045 is a user-defined constructor in the base class (other than the
1046 default constructor, which will be called anyway). */
1047 if (extra_warnings
1048 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1049 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1050 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1051 OPT_Wextra, "base class %q#T should be explicitly "
1052 "initialized in the copy constructor",
1053 BINFO_TYPE (subobject));
1054 }
1055
1056 /* Initialize the base. */
1057 if (BINFO_VIRTUAL_P (subobject))
1058 construct_virtual_base (subobject, arguments);
1059 else
1060 {
1061 tree base_addr;
1062
1063 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1064 subobject, 1, tf_warning_or_error);
1065 expand_aggr_init_1 (subobject, NULL_TREE,
1066 cp_build_indirect_ref (base_addr, RO_NULL,
1067 tf_warning_or_error),
1068 arguments,
1069 flags,
1070 tf_warning_or_error);
1071 expand_cleanup_for_base (subobject, NULL_TREE);
1072 }
1073
1074 mem_inits = TREE_CHAIN (mem_inits);
1075 }
1076 in_base_initializer = 0;
1077
1078 /* Initialize the vptrs. */
1079 initialize_vtbl_ptrs (current_class_ptr);
1080
1081 /* Initialize the data members. */
1082 while (mem_inits)
1083 {
1084 perform_member_init (TREE_PURPOSE (mem_inits),
1085 TREE_VALUE (mem_inits));
1086 mem_inits = TREE_CHAIN (mem_inits);
1087 }
1088 }
1089
1090 /* Returns the address of the vtable (i.e., the value that should be
1091 assigned to the vptr) for BINFO. */
1092
1093 static tree
1094 build_vtbl_address (tree binfo)
1095 {
1096 tree binfo_for = binfo;
1097 tree vtbl;
1098
1099 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1100 /* If this is a virtual primary base, then the vtable we want to store
1101 is that for the base this is being used as the primary base of. We
1102 can't simply skip the initialization, because we may be expanding the
1103 inits of a subobject constructor where the virtual base layout
1104 can be different. */
1105 while (BINFO_PRIMARY_P (binfo_for))
1106 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1107
1108 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1109 used. */
1110 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1111 TREE_USED (vtbl) = 1;
1112
1113 /* Now compute the address to use when initializing the vptr. */
1114 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1115 if (TREE_CODE (vtbl) == VAR_DECL)
1116 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1117
1118 return vtbl;
1119 }
1120
1121 /* This code sets up the virtual function tables appropriate for
1122 the pointer DECL. It is a one-ply initialization.
1123
1124 BINFO is the exact type that DECL is supposed to be. In
1125 multiple inheritance, this might mean "C's A" if C : A, B. */
1126
1127 static void
1128 expand_virtual_init (tree binfo, tree decl)
1129 {
1130 tree vtbl, vtbl_ptr;
1131 tree vtt_index;
1132
1133 /* Compute the initializer for vptr. */
1134 vtbl = build_vtbl_address (binfo);
1135
1136 /* We may get this vptr from a VTT, if this is a subobject
1137 constructor or subobject destructor. */
1138 vtt_index = BINFO_VPTR_INDEX (binfo);
1139 if (vtt_index)
1140 {
1141 tree vtbl2;
1142 tree vtt_parm;
1143
1144 /* Compute the value to use, when there's a VTT. */
1145 vtt_parm = current_vtt_parm;
1146 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1147 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1148 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1149
1150 /* The actual initializer is the VTT value only in the subobject
1151 constructor. In maybe_clone_body we'll substitute NULL for
1152 the vtt_parm in the case of the non-subobject constructor. */
1153 vtbl = build3 (COND_EXPR,
1154 TREE_TYPE (vtbl),
1155 build2 (EQ_EXPR, boolean_type_node,
1156 current_in_charge_parm, integer_zero_node),
1157 vtbl2,
1158 vtbl);
1159 }
1160
1161 /* Compute the location of the vtpr. */
1162 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1163 tf_warning_or_error),
1164 TREE_TYPE (binfo));
1165 gcc_assert (vtbl_ptr != error_mark_node);
1166
1167 /* Assign the vtable to the vptr. */
1168 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
1169 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1170 tf_warning_or_error));
1171 }
1172
1173 /* If an exception is thrown in a constructor, those base classes already
1174 constructed must be destroyed. This function creates the cleanup
1175 for BINFO, which has just been constructed. If FLAG is non-NULL,
1176 it is a DECL which is nonzero when this base needs to be
1177 destroyed. */
1178
1179 static void
1180 expand_cleanup_for_base (tree binfo, tree flag)
1181 {
1182 tree expr;
1183
1184 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1185 return;
1186
1187 /* Call the destructor. */
1188 expr = build_special_member_call (current_class_ref,
1189 base_dtor_identifier,
1190 NULL,
1191 binfo,
1192 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1193 tf_warning_or_error);
1194 if (flag)
1195 expr = fold_build3_loc (input_location,
1196 COND_EXPR, void_type_node,
1197 c_common_truthvalue_conversion (input_location, flag),
1198 expr, integer_zero_node);
1199
1200 finish_eh_cleanup (expr);
1201 }
1202
1203 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1204 constructor. */
1205
1206 static void
1207 construct_virtual_base (tree vbase, tree arguments)
1208 {
1209 tree inner_if_stmt;
1210 tree exp;
1211 tree flag;
1212
1213 /* If there are virtual base classes with destructors, we need to
1214 emit cleanups to destroy them if an exception is thrown during
1215 the construction process. These exception regions (i.e., the
1216 period during which the cleanups must occur) begin from the time
1217 the construction is complete to the end of the function. If we
1218 create a conditional block in which to initialize the
1219 base-classes, then the cleanup region for the virtual base begins
1220 inside a block, and ends outside of that block. This situation
1221 confuses the sjlj exception-handling code. Therefore, we do not
1222 create a single conditional block, but one for each
1223 initialization. (That way the cleanup regions always begin
1224 in the outer block.) We trust the back end to figure out
1225 that the FLAG will not change across initializations, and
1226 avoid doing multiple tests. */
1227 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1228 inner_if_stmt = begin_if_stmt ();
1229 finish_if_stmt_cond (flag, inner_if_stmt);
1230
1231 /* Compute the location of the virtual base. If we're
1232 constructing virtual bases, then we must be the most derived
1233 class. Therefore, we don't have to look up the virtual base;
1234 we already know where it is. */
1235 exp = convert_to_base_statically (current_class_ref, vbase);
1236
1237 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1238 LOOKUP_COMPLAIN, tf_warning_or_error);
1239 finish_then_clause (inner_if_stmt);
1240 finish_if_stmt (inner_if_stmt);
1241
1242 expand_cleanup_for_base (vbase, flag);
1243 }
1244
1245 /* Find the context in which this FIELD can be initialized. */
1246
1247 static tree
1248 initializing_context (tree field)
1249 {
1250 tree t = DECL_CONTEXT (field);
1251
1252 /* Anonymous union members can be initialized in the first enclosing
1253 non-anonymous union context. */
1254 while (t && ANON_AGGR_TYPE_P (t))
1255 t = TYPE_CONTEXT (t);
1256 return t;
1257 }
1258
1259 /* Function to give error message if member initialization specification
1260 is erroneous. FIELD is the member we decided to initialize.
1261 TYPE is the type for which the initialization is being performed.
1262 FIELD must be a member of TYPE.
1263
1264 MEMBER_NAME is the name of the member. */
1265
1266 static int
1267 member_init_ok_or_else (tree field, tree type, tree member_name)
1268 {
1269 if (field == error_mark_node)
1270 return 0;
1271 if (!field)
1272 {
1273 error ("class %qT does not have any field named %qD", type,
1274 member_name);
1275 return 0;
1276 }
1277 if (TREE_CODE (field) == VAR_DECL)
1278 {
1279 error ("%q#D is a static data member; it can only be "
1280 "initialized at its definition",
1281 field);
1282 return 0;
1283 }
1284 if (TREE_CODE (field) != FIELD_DECL)
1285 {
1286 error ("%q#D is not a non-static data member of %qT",
1287 field, type);
1288 return 0;
1289 }
1290 if (initializing_context (field) != type)
1291 {
1292 error ("class %qT does not have any field named %qD", type,
1293 member_name);
1294 return 0;
1295 }
1296
1297 return 1;
1298 }
1299
1300 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1301 is a _TYPE node or TYPE_DECL which names a base for that type.
1302 Check the validity of NAME, and return either the base _TYPE, base
1303 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1304 NULL_TREE and issue a diagnostic.
1305
1306 An old style unnamed direct single base construction is permitted,
1307 where NAME is NULL. */
1308
1309 tree
1310 expand_member_init (tree name)
1311 {
1312 tree basetype;
1313 tree field;
1314
1315 if (!current_class_ref)
1316 return NULL_TREE;
1317
1318 if (!name)
1319 {
1320 /* This is an obsolete unnamed base class initializer. The
1321 parser will already have warned about its use. */
1322 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1323 {
1324 case 0:
1325 error ("unnamed initializer for %qT, which has no base classes",
1326 current_class_type);
1327 return NULL_TREE;
1328 case 1:
1329 basetype = BINFO_TYPE
1330 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1331 break;
1332 default:
1333 error ("unnamed initializer for %qT, which uses multiple inheritance",
1334 current_class_type);
1335 return NULL_TREE;
1336 }
1337 }
1338 else if (TYPE_P (name))
1339 {
1340 basetype = TYPE_MAIN_VARIANT (name);
1341 name = TYPE_NAME (name);
1342 }
1343 else if (TREE_CODE (name) == TYPE_DECL)
1344 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1345 else
1346 basetype = NULL_TREE;
1347
1348 if (basetype)
1349 {
1350 tree class_binfo;
1351 tree direct_binfo;
1352 tree virtual_binfo;
1353 int i;
1354
1355 if (same_type_p (basetype, current_class_type)
1356 || current_template_parms)
1357 return basetype;
1358
1359 class_binfo = TYPE_BINFO (current_class_type);
1360 direct_binfo = NULL_TREE;
1361 virtual_binfo = NULL_TREE;
1362
1363 /* Look for a direct base. */
1364 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1365 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1366 break;
1367
1368 /* Look for a virtual base -- unless the direct base is itself
1369 virtual. */
1370 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1371 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1372
1373 /* [class.base.init]
1374
1375 If a mem-initializer-id is ambiguous because it designates
1376 both a direct non-virtual base class and an inherited virtual
1377 base class, the mem-initializer is ill-formed. */
1378 if (direct_binfo && virtual_binfo)
1379 {
1380 error ("%qD is both a direct base and an indirect virtual base",
1381 basetype);
1382 return NULL_TREE;
1383 }
1384
1385 if (!direct_binfo && !virtual_binfo)
1386 {
1387 if (CLASSTYPE_VBASECLASSES (current_class_type))
1388 error ("type %qT is not a direct or virtual base of %qT",
1389 basetype, current_class_type);
1390 else
1391 error ("type %qT is not a direct base of %qT",
1392 basetype, current_class_type);
1393 return NULL_TREE;
1394 }
1395
1396 return direct_binfo ? direct_binfo : virtual_binfo;
1397 }
1398 else
1399 {
1400 if (TREE_CODE (name) == IDENTIFIER_NODE)
1401 field = lookup_field (current_class_type, name, 1, false);
1402 else
1403 field = name;
1404
1405 if (member_init_ok_or_else (field, current_class_type, name))
1406 return field;
1407 }
1408
1409 return NULL_TREE;
1410 }
1411
1412 /* This is like `expand_member_init', only it stores one aggregate
1413 value into another.
1414
1415 INIT comes in two flavors: it is either a value which
1416 is to be stored in EXP, or it is a parameter list
1417 to go to a constructor, which will operate on EXP.
1418 If INIT is not a parameter list for a constructor, then set
1419 LOOKUP_ONLYCONVERTING.
1420 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1421 the initializer, if FLAGS is 0, then it is the (init) form.
1422 If `init' is a CONSTRUCTOR, then we emit a warning message,
1423 explaining that such initializations are invalid.
1424
1425 If INIT resolves to a CALL_EXPR which happens to return
1426 something of the type we are looking for, then we know
1427 that we can safely use that call to perform the
1428 initialization.
1429
1430 The virtual function table pointer cannot be set up here, because
1431 we do not really know its type.
1432
1433 This never calls operator=().
1434
1435 When initializing, nothing is CONST.
1436
1437 A default copy constructor may have to be used to perform the
1438 initialization.
1439
1440 A constructor or a conversion operator may have to be used to
1441 perform the initialization, but not both, as it would be ambiguous. */
1442
1443 tree
1444 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1445 {
1446 tree stmt_expr;
1447 tree compound_stmt;
1448 int destroy_temps;
1449 tree type = TREE_TYPE (exp);
1450 int was_const = TREE_READONLY (exp);
1451 int was_volatile = TREE_THIS_VOLATILE (exp);
1452 int is_global;
1453
1454 if (init == error_mark_node)
1455 return error_mark_node;
1456
1457 TREE_READONLY (exp) = 0;
1458 TREE_THIS_VOLATILE (exp) = 0;
1459
1460 if (init && TREE_CODE (init) != TREE_LIST
1461 && !(TREE_CODE (init) == TARGET_EXPR
1462 && TARGET_EXPR_DIRECT_INIT_P (init))
1463 && !(BRACE_ENCLOSED_INITIALIZER_P (init)
1464 && CONSTRUCTOR_IS_DIRECT_INIT (init)))
1465 flags |= LOOKUP_ONLYCONVERTING;
1466
1467 if (TREE_CODE (type) == ARRAY_TYPE)
1468 {
1469 tree itype;
1470
1471 /* An array may not be initialized use the parenthesized
1472 initialization form -- unless the initializer is "()". */
1473 if (init && TREE_CODE (init) == TREE_LIST)
1474 {
1475 if (complain & tf_error)
1476 error ("bad array initializer");
1477 return error_mark_node;
1478 }
1479 /* Must arrange to initialize each element of EXP
1480 from elements of INIT. */
1481 itype = init ? TREE_TYPE (init) : NULL_TREE;
1482 if (cv_qualified_p (type))
1483 TREE_TYPE (exp) = cv_unqualified (type);
1484 if (itype && cv_qualified_p (itype))
1485 TREE_TYPE (init) = cv_unqualified (itype);
1486 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1487 /*explicit_value_init_p=*/false,
1488 itype && same_type_p (TREE_TYPE (init),
1489 TREE_TYPE (exp)),
1490 complain);
1491 TREE_READONLY (exp) = was_const;
1492 TREE_THIS_VOLATILE (exp) = was_volatile;
1493 TREE_TYPE (exp) = type;
1494 if (init)
1495 TREE_TYPE (init) = itype;
1496 return stmt_expr;
1497 }
1498
1499 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1500 /* Just know that we've seen something for this node. */
1501 TREE_USED (exp) = 1;
1502
1503 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1504 destroy_temps = stmts_are_full_exprs_p ();
1505 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1506 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1507 init, LOOKUP_NORMAL|flags, complain);
1508 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1509 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1510 TREE_READONLY (exp) = was_const;
1511 TREE_THIS_VOLATILE (exp) = was_volatile;
1512
1513 return stmt_expr;
1514 }
1515
1516 static void
1517 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1518 tsubst_flags_t complain)
1519 {
1520 tree type = TREE_TYPE (exp);
1521 tree ctor_name;
1522
1523 /* It fails because there may not be a constructor which takes
1524 its own type as the first (or only parameter), but which does
1525 take other types via a conversion. So, if the thing initializing
1526 the expression is a unit element of type X, first try X(X&),
1527 followed by initialization by X. If neither of these work
1528 out, then look hard. */
1529 tree rval;
1530 VEC(tree,gc) *parms;
1531
1532 /* If we have direct-initialization from an initializer list, pull
1533 it out of the TREE_LIST so the code below can see it. */
1534 if (init && TREE_CODE (init) == TREE_LIST
1535 && BRACE_ENCLOSED_INITIALIZER_P (TREE_VALUE (init))
1536 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init)))
1537 {
1538 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1539 && TREE_CHAIN (init) == NULL_TREE);
1540 init = TREE_VALUE (init);
1541 }
1542
1543 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1544 && CP_AGGREGATE_TYPE_P (type))
1545 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1546 happen for direct-initialization, too. */
1547 init = digest_init (type, init, complain);
1548
1549 /* A CONSTRUCTOR of the target's type is a previously digested
1550 initializer, whether that happened just above or in
1551 cp_parser_late_parsing_nsdmi.
1552
1553 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1554 set represents the whole initialization, so we shouldn't build up
1555 another ctor call. */
1556 if (init
1557 && (TREE_CODE (init) == CONSTRUCTOR
1558 || (TREE_CODE (init) == TARGET_EXPR
1559 && (TARGET_EXPR_DIRECT_INIT_P (init)
1560 || TARGET_EXPR_LIST_INIT_P (init))))
1561 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1562 {
1563 /* Early initialization via a TARGET_EXPR only works for
1564 complete objects. */
1565 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1566
1567 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1568 TREE_SIDE_EFFECTS (init) = 1;
1569 finish_expr_stmt (init);
1570 return;
1571 }
1572
1573 if (init && TREE_CODE (init) != TREE_LIST
1574 && (flags & LOOKUP_ONLYCONVERTING))
1575 {
1576 /* Base subobjects should only get direct-initialization. */
1577 gcc_assert (true_exp == exp);
1578
1579 if (flags & DIRECT_BIND)
1580 /* Do nothing. We hit this in two cases: Reference initialization,
1581 where we aren't initializing a real variable, so we don't want
1582 to run a new constructor; and catching an exception, where we
1583 have already built up the constructor call so we could wrap it
1584 in an exception region. */;
1585 else
1586 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1587
1588 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1589 /* We need to protect the initialization of a catch parm with a
1590 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1591 around the TARGET_EXPR for the copy constructor. See
1592 initialize_handler_parm. */
1593 {
1594 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1595 TREE_OPERAND (init, 0));
1596 TREE_TYPE (init) = void_type_node;
1597 }
1598 else
1599 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1600 TREE_SIDE_EFFECTS (init) = 1;
1601 finish_expr_stmt (init);
1602 return;
1603 }
1604
1605 if (init == NULL_TREE)
1606 parms = NULL;
1607 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1608 {
1609 parms = make_tree_vector ();
1610 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1611 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1612 }
1613 else
1614 parms = make_tree_vector_single (init);
1615
1616 if (exp == current_class_ref && current_function_decl
1617 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1618 {
1619 /* Delegating constructor. */
1620 tree complete;
1621 tree base;
1622 complete = build_special_member_call (exp, complete_ctor_identifier,
1623 &parms, binfo, flags,
1624 complain);
1625 base = build_special_member_call (exp, base_ctor_identifier,
1626 &parms, binfo, flags,
1627 complain);
1628 rval = build3 (COND_EXPR, TREE_TYPE (complete),
1629 build2 (EQ_EXPR, boolean_type_node,
1630 current_in_charge_parm, integer_zero_node),
1631 base,
1632 complete);
1633 }
1634 else
1635 {
1636 if (true_exp == exp)
1637 ctor_name = complete_ctor_identifier;
1638 else
1639 ctor_name = base_ctor_identifier;
1640 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1641 complain);
1642 }
1643
1644 if (parms != NULL)
1645 release_tree_vector (parms);
1646
1647 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1648 {
1649 tree fn = get_callee_fndecl (rval);
1650 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1651 {
1652 tree e = maybe_constant_init (rval);
1653 if (TREE_CONSTANT (e))
1654 rval = build2 (INIT_EXPR, type, exp, e);
1655 }
1656 }
1657
1658 /* FIXME put back convert_to_void? */
1659 if (TREE_SIDE_EFFECTS (rval))
1660 finish_expr_stmt (rval);
1661 }
1662
1663 /* This function is responsible for initializing EXP with INIT
1664 (if any).
1665
1666 BINFO is the binfo of the type for who we are performing the
1667 initialization. For example, if W is a virtual base class of A and B,
1668 and C : A, B.
1669 If we are initializing B, then W must contain B's W vtable, whereas
1670 were we initializing C, W must contain C's W vtable.
1671
1672 TRUE_EXP is nonzero if it is the true expression being initialized.
1673 In this case, it may be EXP, or may just contain EXP. The reason we
1674 need this is because if EXP is a base element of TRUE_EXP, we
1675 don't necessarily know by looking at EXP where its virtual
1676 baseclass fields should really be pointing. But we do know
1677 from TRUE_EXP. In constructors, we don't know anything about
1678 the value being initialized.
1679
1680 FLAGS is just passed to `build_new_method_call'. See that function
1681 for its description. */
1682
1683 static void
1684 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1685 tsubst_flags_t complain)
1686 {
1687 tree type = TREE_TYPE (exp);
1688
1689 gcc_assert (init != error_mark_node && type != error_mark_node);
1690 gcc_assert (building_stmt_list_p ());
1691
1692 /* Use a function returning the desired type to initialize EXP for us.
1693 If the function is a constructor, and its first argument is
1694 NULL_TREE, know that it was meant for us--just slide exp on
1695 in and expand the constructor. Constructors now come
1696 as TARGET_EXPRs. */
1697
1698 if (init && TREE_CODE (exp) == VAR_DECL
1699 && COMPOUND_LITERAL_P (init))
1700 {
1701 VEC(tree,gc)* cleanups = NULL;
1702 /* If store_init_value returns NULL_TREE, the INIT has been
1703 recorded as the DECL_INITIAL for EXP. That means there's
1704 nothing more we have to do. */
1705 init = store_init_value (exp, init, &cleanups, flags);
1706 if (init)
1707 finish_expr_stmt (init);
1708 gcc_assert (!cleanups);
1709 return;
1710 }
1711
1712 /* If an explicit -- but empty -- initializer list was present,
1713 that's value-initialization. */
1714 if (init == void_type_node)
1715 {
1716 /* If no user-provided ctor, we need to zero out the object. */
1717 if (!type_has_user_provided_constructor (type))
1718 {
1719 tree field_size = NULL_TREE;
1720 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1721 /* Don't clobber already initialized virtual bases. */
1722 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1723 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1724 field_size);
1725 init = build2 (INIT_EXPR, type, exp, init);
1726 finish_expr_stmt (init);
1727 }
1728
1729 /* If we don't need to mess with the constructor at all,
1730 then we're done. */
1731 if (! type_build_ctor_call (type))
1732 return;
1733
1734 /* Otherwise fall through and call the constructor. */
1735 init = NULL_TREE;
1736 }
1737
1738 /* We know that expand_default_init can handle everything we want
1739 at this point. */
1740 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1741 }
1742
1743 /* Report an error if TYPE is not a user-defined, class type. If
1744 OR_ELSE is nonzero, give an error message. */
1745
1746 int
1747 is_class_type (tree type, int or_else)
1748 {
1749 if (type == error_mark_node)
1750 return 0;
1751
1752 if (! CLASS_TYPE_P (type))
1753 {
1754 if (or_else)
1755 error ("%qT is not a class type", type);
1756 return 0;
1757 }
1758 return 1;
1759 }
1760
1761 tree
1762 get_type_value (tree name)
1763 {
1764 if (name == error_mark_node)
1765 return NULL_TREE;
1766
1767 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1768 return IDENTIFIER_TYPE_VALUE (name);
1769 else
1770 return NULL_TREE;
1771 }
1772
1773 /* Build a reference to a member of an aggregate. This is not a C++
1774 `&', but really something which can have its address taken, and
1775 then act as a pointer to member, for example TYPE :: FIELD can have
1776 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1777 this expression is the operand of "&".
1778
1779 @@ Prints out lousy diagnostics for operator <typename>
1780 @@ fields.
1781
1782 @@ This function should be rewritten and placed in search.c. */
1783
1784 tree
1785 build_offset_ref (tree type, tree member, bool address_p)
1786 {
1787 tree decl;
1788 tree basebinfo = NULL_TREE;
1789
1790 /* class templates can come in as TEMPLATE_DECLs here. */
1791 if (TREE_CODE (member) == TEMPLATE_DECL)
1792 return member;
1793
1794 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1795 return build_qualified_name (NULL_TREE, type, member,
1796 /*template_p=*/false);
1797
1798 gcc_assert (TYPE_P (type));
1799 if (! is_class_type (type, 1))
1800 return error_mark_node;
1801
1802 gcc_assert (DECL_P (member) || BASELINK_P (member));
1803 /* Callers should call mark_used before this point. */
1804 gcc_assert (!DECL_P (member) || TREE_USED (member));
1805
1806 type = TYPE_MAIN_VARIANT (type);
1807 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1808 {
1809 error ("incomplete type %qT does not have member %qD", type, member);
1810 return error_mark_node;
1811 }
1812
1813 /* Entities other than non-static members need no further
1814 processing. */
1815 if (TREE_CODE (member) == TYPE_DECL)
1816 return member;
1817 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1818 return convert_from_reference (member);
1819
1820 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1821 {
1822 error ("invalid pointer to bit-field %qD", member);
1823 return error_mark_node;
1824 }
1825
1826 /* Set up BASEBINFO for member lookup. */
1827 decl = maybe_dummy_object (type, &basebinfo);
1828
1829 /* A lot of this logic is now handled in lookup_member. */
1830 if (BASELINK_P (member))
1831 {
1832 /* Go from the TREE_BASELINK to the member function info. */
1833 tree t = BASELINK_FUNCTIONS (member);
1834
1835 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1836 {
1837 /* Get rid of a potential OVERLOAD around it. */
1838 t = OVL_CURRENT (t);
1839
1840 /* Unique functions are handled easily. */
1841
1842 /* For non-static member of base class, we need a special rule
1843 for access checking [class.protected]:
1844
1845 If the access is to form a pointer to member, the
1846 nested-name-specifier shall name the derived class
1847 (or any class derived from that class). */
1848 if (address_p && DECL_P (t)
1849 && DECL_NONSTATIC_MEMBER_P (t))
1850 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1851 else
1852 perform_or_defer_access_check (basebinfo, t, t);
1853
1854 if (DECL_STATIC_FUNCTION_P (t))
1855 return t;
1856 member = t;
1857 }
1858 else
1859 TREE_TYPE (member) = unknown_type_node;
1860 }
1861 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1862 /* We need additional test besides the one in
1863 check_accessibility_of_qualified_id in case it is
1864 a pointer to non-static member. */
1865 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1866
1867 if (!address_p)
1868 {
1869 /* If MEMBER is non-static, then the program has fallen afoul of
1870 [expr.prim]:
1871
1872 An id-expression that denotes a nonstatic data member or
1873 nonstatic member function of a class can only be used:
1874
1875 -- as part of a class member access (_expr.ref_) in which the
1876 object-expression refers to the member's class or a class
1877 derived from that class, or
1878
1879 -- to form a pointer to member (_expr.unary.op_), or
1880
1881 -- in the body of a nonstatic member function of that class or
1882 of a class derived from that class (_class.mfct.nonstatic_), or
1883
1884 -- in a mem-initializer for a constructor for that class or for
1885 a class derived from that class (_class.base.init_). */
1886 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1887 {
1888 /* Build a representation of the qualified name suitable
1889 for use as the operand to "&" -- even though the "&" is
1890 not actually present. */
1891 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1892 /* In Microsoft mode, treat a non-static member function as if
1893 it were a pointer-to-member. */
1894 if (flag_ms_extensions)
1895 {
1896 PTRMEM_OK_P (member) = 1;
1897 return cp_build_addr_expr (member, tf_warning_or_error);
1898 }
1899 error ("invalid use of non-static member function %qD",
1900 TREE_OPERAND (member, 1));
1901 return error_mark_node;
1902 }
1903 else if (TREE_CODE (member) == FIELD_DECL)
1904 {
1905 error ("invalid use of non-static data member %qD", member);
1906 return error_mark_node;
1907 }
1908 return member;
1909 }
1910
1911 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1912 PTRMEM_OK_P (member) = 1;
1913 return member;
1914 }
1915
1916 /* If DECL is a scalar enumeration constant or variable with a
1917 constant initializer, return the initializer (or, its initializers,
1918 recursively); otherwise, return DECL. If INTEGRAL_P, the
1919 initializer is only returned if DECL is an integral
1920 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
1921 return an aggregate constant. */
1922
1923 static tree
1924 constant_value_1 (tree decl, bool integral_p, bool return_aggregate_cst_ok_p)
1925 {
1926 while (TREE_CODE (decl) == CONST_DECL
1927 || (integral_p
1928 ? decl_constant_var_p (decl)
1929 : (TREE_CODE (decl) == VAR_DECL
1930 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1931 {
1932 tree init;
1933 /* If DECL is a static data member in a template
1934 specialization, we must instantiate it here. The
1935 initializer for the static data member is not processed
1936 until needed; we need it now. */
1937 mark_used (decl);
1938 mark_rvalue_use (decl);
1939 init = DECL_INITIAL (decl);
1940 if (init == error_mark_node)
1941 {
1942 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1943 /* Treat the error as a constant to avoid cascading errors on
1944 excessively recursive template instantiation (c++/9335). */
1945 return init;
1946 else
1947 return decl;
1948 }
1949 /* Initializers in templates are generally expanded during
1950 instantiation, so before that for const int i(2)
1951 INIT is a TREE_LIST with the actual initializer as
1952 TREE_VALUE. */
1953 if (processing_template_decl
1954 && init
1955 && TREE_CODE (init) == TREE_LIST
1956 && TREE_CHAIN (init) == NULL_TREE)
1957 init = TREE_VALUE (init);
1958 if (!init
1959 || !TREE_TYPE (init)
1960 || !TREE_CONSTANT (init)
1961 || (!integral_p && !return_aggregate_cst_ok_p
1962 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
1963 return an aggregate constant (of which string
1964 literals are a special case), as we do not want
1965 to make inadvertent copies of such entities, and
1966 we must be sure that their addresses are the
1967 same everywhere. */
1968 && (TREE_CODE (init) == CONSTRUCTOR
1969 || TREE_CODE (init) == STRING_CST)))
1970 break;
1971 decl = unshare_expr (init);
1972 }
1973 return decl;
1974 }
1975
1976 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1977 constant of integral or enumeration type, then return that value.
1978 These are those variables permitted in constant expressions by
1979 [5.19/1]. */
1980
1981 tree
1982 integral_constant_value (tree decl)
1983 {
1984 return constant_value_1 (decl, /*integral_p=*/true,
1985 /*return_aggregate_cst_ok_p=*/false);
1986 }
1987
1988 /* A more relaxed version of integral_constant_value, used by the
1989 common C/C++ code. */
1990
1991 tree
1992 decl_constant_value (tree decl)
1993 {
1994 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
1995 /*return_aggregate_cst_ok_p=*/true);
1996 }
1997
1998 /* A version of integral_constant_value used by the C++ front end for
1999 optimization purposes. */
2000
2001 tree
2002 decl_constant_value_safe (tree decl)
2003 {
2004 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2005 /*return_aggregate_cst_ok_p=*/false);
2006 }
2007 \f
2008 /* Common subroutines of build_new and build_vec_delete. */
2009
2010 /* Call the global __builtin_delete to delete ADDR. */
2011
2012 static tree
2013 build_builtin_delete_call (tree addr)
2014 {
2015 mark_used (global_delete_fndecl);
2016 return build_call_n (global_delete_fndecl, 1, addr);
2017 }
2018 \f
2019 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2020 the type of the object being allocated; otherwise, it's just TYPE.
2021 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2022 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2023 a vector of arguments to be provided as arguments to a placement
2024 new operator. This routine performs no semantic checks; it just
2025 creates and returns a NEW_EXPR. */
2026
2027 static tree
2028 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
2029 VEC(tree,gc) *init, int use_global_new)
2030 {
2031 tree init_list;
2032 tree new_expr;
2033
2034 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2035 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2036 permits us to distinguish the case of a missing initializer "new
2037 int" from an empty initializer "new int()". */
2038 if (init == NULL)
2039 init_list = NULL_TREE;
2040 else if (VEC_empty (tree, init))
2041 init_list = void_zero_node;
2042 else
2043 init_list = build_tree_list_vec (init);
2044
2045 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2046 build_tree_list_vec (placement), type, nelts,
2047 init_list);
2048 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2049 TREE_SIDE_EFFECTS (new_expr) = 1;
2050
2051 return new_expr;
2052 }
2053
2054 /* Diagnose uninitialized const members or reference members of type
2055 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2056 new expression without a new-initializer and a declaration. Returns
2057 the error count. */
2058
2059 static int
2060 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2061 bool using_new, bool complain)
2062 {
2063 tree field;
2064 int error_count = 0;
2065
2066 if (type_has_user_provided_constructor (type))
2067 return 0;
2068
2069 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2070 {
2071 tree field_type;
2072
2073 if (TREE_CODE (field) != FIELD_DECL)
2074 continue;
2075
2076 field_type = strip_array_types (TREE_TYPE (field));
2077
2078 if (type_has_user_provided_constructor (field_type))
2079 continue;
2080
2081 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2082 {
2083 ++ error_count;
2084 if (complain)
2085 {
2086 if (using_new)
2087 error ("uninitialized reference member in %q#T "
2088 "using %<new%> without new-initializer", origin);
2089 else
2090 error ("uninitialized reference member in %q#T", origin);
2091 inform (DECL_SOURCE_LOCATION (field),
2092 "%qD should be initialized", field);
2093 }
2094 }
2095
2096 if (CP_TYPE_CONST_P (field_type))
2097 {
2098 ++ error_count;
2099 if (complain)
2100 {
2101 if (using_new)
2102 error ("uninitialized const member in %q#T "
2103 "using %<new%> without new-initializer", origin);
2104 else
2105 error ("uninitialized const member in %q#T", origin);
2106 inform (DECL_SOURCE_LOCATION (field),
2107 "%qD should be initialized", field);
2108 }
2109 }
2110
2111 if (CLASS_TYPE_P (field_type))
2112 error_count
2113 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2114 using_new, complain);
2115 }
2116 return error_count;
2117 }
2118
2119 int
2120 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2121 {
2122 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2123 }
2124
2125 /* Generate code for a new-expression, including calling the "operator
2126 new" function, initializing the object, and, if an exception occurs
2127 during construction, cleaning up. The arguments are as for
2128 build_raw_new_expr. This may change PLACEMENT and INIT. */
2129
2130 static tree
2131 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
2132 VEC(tree,gc) **init, bool globally_qualified_p,
2133 tsubst_flags_t complain)
2134 {
2135 tree size, rval;
2136 /* True iff this is a call to "operator new[]" instead of just
2137 "operator new". */
2138 bool array_p = false;
2139 /* If ARRAY_P is true, the element type of the array. This is never
2140 an ARRAY_TYPE; for something like "new int[3][4]", the
2141 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2142 TYPE. */
2143 tree elt_type;
2144 /* The type of the new-expression. (This type is always a pointer
2145 type.) */
2146 tree pointer_type;
2147 tree non_const_pointer_type;
2148 tree outer_nelts = NULL_TREE;
2149 tree alloc_call, alloc_expr;
2150 /* The address returned by the call to "operator new". This node is
2151 a VAR_DECL and is therefore reusable. */
2152 tree alloc_node;
2153 tree alloc_fn;
2154 tree cookie_expr, init_expr;
2155 int nothrow, check_new;
2156 int use_java_new = 0;
2157 /* If non-NULL, the number of extra bytes to allocate at the
2158 beginning of the storage allocated for an array-new expression in
2159 order to store the number of elements. */
2160 tree cookie_size = NULL_TREE;
2161 tree placement_first;
2162 tree placement_expr = NULL_TREE;
2163 /* True if the function we are calling is a placement allocation
2164 function. */
2165 bool placement_allocation_fn_p;
2166 /* True if the storage must be initialized, either by a constructor
2167 or due to an explicit new-initializer. */
2168 bool is_initialized;
2169 /* The address of the thing allocated, not including any cookie. In
2170 particular, if an array cookie is in use, DATA_ADDR is the
2171 address of the first array element. This node is a VAR_DECL, and
2172 is therefore reusable. */
2173 tree data_addr;
2174 tree init_preeval_expr = NULL_TREE;
2175
2176 if (nelts)
2177 {
2178 outer_nelts = nelts;
2179 array_p = true;
2180 }
2181 else if (TREE_CODE (type) == ARRAY_TYPE)
2182 {
2183 array_p = true;
2184 nelts = array_type_nelts_top (type);
2185 outer_nelts = nelts;
2186 type = TREE_TYPE (type);
2187 }
2188
2189 /* If our base type is an array, then make sure we know how many elements
2190 it has. */
2191 for (elt_type = type;
2192 TREE_CODE (elt_type) == ARRAY_TYPE;
2193 elt_type = TREE_TYPE (elt_type))
2194 nelts = cp_build_binary_op (input_location,
2195 MULT_EXPR, nelts,
2196 array_type_nelts_top (elt_type),
2197 complain);
2198
2199 if (TREE_CODE (elt_type) == VOID_TYPE)
2200 {
2201 if (complain & tf_error)
2202 error ("invalid type %<void%> for new");
2203 return error_mark_node;
2204 }
2205
2206 if (abstract_virtuals_error_sfinae (NULL_TREE, elt_type, complain))
2207 return error_mark_node;
2208
2209 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2210
2211 if (*init == NULL)
2212 {
2213 bool maybe_uninitialized_error = false;
2214 /* A program that calls for default-initialization [...] of an
2215 entity of reference type is ill-formed. */
2216 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2217 maybe_uninitialized_error = true;
2218
2219 /* A new-expression that creates an object of type T initializes
2220 that object as follows:
2221 - If the new-initializer is omitted:
2222 -- If T is a (possibly cv-qualified) non-POD class type
2223 (or array thereof), the object is default-initialized (8.5).
2224 [...]
2225 -- Otherwise, the object created has indeterminate
2226 value. If T is a const-qualified type, or a (possibly
2227 cv-qualified) POD class type (or array thereof)
2228 containing (directly or indirectly) a member of
2229 const-qualified type, the program is ill-formed; */
2230
2231 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2232 maybe_uninitialized_error = true;
2233
2234 if (maybe_uninitialized_error
2235 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2236 /*using_new=*/true,
2237 complain & tf_error))
2238 return error_mark_node;
2239 }
2240
2241 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2242 && default_init_uninitialized_part (elt_type))
2243 {
2244 if (complain & tf_error)
2245 error ("uninitialized const in %<new%> of %q#T", elt_type);
2246 return error_mark_node;
2247 }
2248
2249 size = size_in_bytes (elt_type);
2250 if (array_p)
2251 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2252
2253 alloc_fn = NULL_TREE;
2254
2255 /* If PLACEMENT is a single simple pointer type not passed by
2256 reference, prepare to capture it in a temporary variable. Do
2257 this now, since PLACEMENT will change in the calls below. */
2258 placement_first = NULL_TREE;
2259 if (VEC_length (tree, *placement) == 1
2260 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
2261 == POINTER_TYPE))
2262 placement_first = VEC_index (tree, *placement, 0);
2263
2264 /* Allocate the object. */
2265 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
2266 {
2267 tree class_addr;
2268 tree class_decl = build_java_class_ref (elt_type);
2269 static const char alloc_name[] = "_Jv_AllocObject";
2270
2271 if (class_decl == error_mark_node)
2272 return error_mark_node;
2273
2274 use_java_new = 1;
2275 if (!get_global_value_if_present (get_identifier (alloc_name),
2276 &alloc_fn))
2277 {
2278 if (complain & tf_error)
2279 error ("call to Java constructor with %qs undefined", alloc_name);
2280 return error_mark_node;
2281 }
2282 else if (really_overloaded_fn (alloc_fn))
2283 {
2284 if (complain & tf_error)
2285 error ("%qD should never be overloaded", alloc_fn);
2286 return error_mark_node;
2287 }
2288 alloc_fn = OVL_CURRENT (alloc_fn);
2289 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2290 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2291 class_addr, NULL_TREE);
2292 }
2293 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2294 {
2295 error ("Java class %q#T object allocated using placement new", elt_type);
2296 return error_mark_node;
2297 }
2298 else
2299 {
2300 tree fnname;
2301 tree fns;
2302
2303 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2304
2305 if (!globally_qualified_p
2306 && CLASS_TYPE_P (elt_type)
2307 && (array_p
2308 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2309 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2310 {
2311 /* Use a class-specific operator new. */
2312 /* If a cookie is required, add some extra space. */
2313 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2314 {
2315 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2316 size = size_binop (PLUS_EXPR, size, cookie_size);
2317 }
2318 /* Create the argument list. */
2319 VEC_safe_insert (tree, gc, *placement, 0, size);
2320 /* Do name-lookup to find the appropriate operator. */
2321 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2322 if (fns == NULL_TREE)
2323 {
2324 if (complain & tf_error)
2325 error ("no suitable %qD found in class %qT", fnname, elt_type);
2326 return error_mark_node;
2327 }
2328 if (TREE_CODE (fns) == TREE_LIST)
2329 {
2330 if (complain & tf_error)
2331 {
2332 error ("request for member %qD is ambiguous", fnname);
2333 print_candidates (fns);
2334 }
2335 return error_mark_node;
2336 }
2337 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2338 fns, placement,
2339 /*conversion_path=*/NULL_TREE,
2340 LOOKUP_NORMAL,
2341 &alloc_fn,
2342 complain);
2343 }
2344 else
2345 {
2346 /* Use a global operator new. */
2347 /* See if a cookie might be required. */
2348 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2349 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2350 else
2351 cookie_size = NULL_TREE;
2352
2353 alloc_call = build_operator_new_call (fnname, placement,
2354 &size, &cookie_size,
2355 &alloc_fn);
2356 }
2357 }
2358
2359 if (alloc_call == error_mark_node)
2360 return error_mark_node;
2361
2362 gcc_assert (alloc_fn != NULL_TREE);
2363
2364 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2365 into a temporary variable. */
2366 if (!processing_template_decl
2367 && placement_first != NULL_TREE
2368 && TREE_CODE (alloc_call) == CALL_EXPR
2369 && call_expr_nargs (alloc_call) == 2
2370 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2371 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2372 {
2373 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2374
2375 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2376 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2377 {
2378 placement_expr = get_target_expr (placement_first);
2379 CALL_EXPR_ARG (alloc_call, 1)
2380 = convert (TREE_TYPE (placement_arg), placement_expr);
2381 }
2382 }
2383
2384 /* In the simple case, we can stop now. */
2385 pointer_type = build_pointer_type (type);
2386 if (!cookie_size && !is_initialized)
2387 return build_nop (pointer_type, alloc_call);
2388
2389 /* Store the result of the allocation call in a variable so that we can
2390 use it more than once. */
2391 alloc_expr = get_target_expr (alloc_call);
2392 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2393
2394 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2395 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2396 alloc_call = TREE_OPERAND (alloc_call, 1);
2397
2398 /* Now, check to see if this function is actually a placement
2399 allocation function. This can happen even when PLACEMENT is NULL
2400 because we might have something like:
2401
2402 struct S { void* operator new (size_t, int i = 0); };
2403
2404 A call to `new S' will get this allocation function, even though
2405 there is no explicit placement argument. If there is more than
2406 one argument, or there are variable arguments, then this is a
2407 placement allocation function. */
2408 placement_allocation_fn_p
2409 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2410 || varargs_function_p (alloc_fn));
2411
2412 /* Preevaluate the placement args so that we don't reevaluate them for a
2413 placement delete. */
2414 if (placement_allocation_fn_p)
2415 {
2416 tree inits;
2417 stabilize_call (alloc_call, &inits);
2418 if (inits)
2419 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2420 alloc_expr);
2421 }
2422
2423 /* unless an allocation function is declared with an empty excep-
2424 tion-specification (_except.spec_), throw(), it indicates failure to
2425 allocate storage by throwing a bad_alloc exception (clause _except_,
2426 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2427 cation function is declared with an empty exception-specification,
2428 throw(), it returns null to indicate failure to allocate storage and a
2429 non-null pointer otherwise.
2430
2431 So check for a null exception spec on the op new we just called. */
2432
2433 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2434 check_new = (flag_check_new || nothrow) && ! use_java_new;
2435
2436 if (cookie_size)
2437 {
2438 tree cookie;
2439 tree cookie_ptr;
2440 tree size_ptr_type;
2441
2442 /* Adjust so we're pointing to the start of the object. */
2443 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2444
2445 /* Store the number of bytes allocated so that we can know how
2446 many elements to destroy later. We use the last sizeof
2447 (size_t) bytes to store the number of elements. */
2448 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2449 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2450 alloc_node, cookie_ptr);
2451 size_ptr_type = build_pointer_type (sizetype);
2452 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2453 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2454
2455 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2456
2457 if (targetm.cxx.cookie_has_size ())
2458 {
2459 /* Also store the element size. */
2460 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2461 fold_build1_loc (input_location,
2462 NEGATE_EXPR, sizetype,
2463 size_in_bytes (sizetype)));
2464
2465 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2466 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2467 size_in_bytes (elt_type));
2468 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2469 cookie, cookie_expr);
2470 }
2471 }
2472 else
2473 {
2474 cookie_expr = NULL_TREE;
2475 data_addr = alloc_node;
2476 }
2477
2478 /* Now use a pointer to the type we've actually allocated. */
2479
2480 /* But we want to operate on a non-const version to start with,
2481 since we'll be modifying the elements. */
2482 non_const_pointer_type = build_pointer_type
2483 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2484
2485 data_addr = fold_convert (non_const_pointer_type, data_addr);
2486 /* Any further uses of alloc_node will want this type, too. */
2487 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2488
2489 /* Now initialize the allocated object. Note that we preevaluate the
2490 initialization expression, apart from the actual constructor call or
2491 assignment--we do this because we want to delay the allocation as long
2492 as possible in order to minimize the size of the exception region for
2493 placement delete. */
2494 if (is_initialized)
2495 {
2496 bool stable;
2497 bool explicit_value_init_p = false;
2498
2499 if (*init != NULL && VEC_empty (tree, *init))
2500 {
2501 *init = NULL;
2502 explicit_value_init_p = true;
2503 }
2504
2505 if (processing_template_decl && explicit_value_init_p)
2506 {
2507 /* build_value_init doesn't work in templates, and we don't need
2508 the initializer anyway since we're going to throw it away and
2509 rebuild it at instantiation time, so just build up a single
2510 constructor call to get any appropriate diagnostics. */
2511 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2512 if (type_build_ctor_call (elt_type))
2513 init_expr = build_special_member_call (init_expr,
2514 complete_ctor_identifier,
2515 init, elt_type,
2516 LOOKUP_NORMAL,
2517 complain);
2518 stable = stabilize_init (init_expr, &init_preeval_expr);
2519 }
2520 else if (array_p)
2521 {
2522 tree vecinit = NULL_TREE;
2523 if (*init && VEC_length (tree, *init) == 1
2524 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2525 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2526 {
2527 vecinit = VEC_index (tree, *init, 0);
2528 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2529 /* List-value-initialization, leave it alone. */;
2530 else
2531 {
2532 tree arraytype, domain;
2533 if (TREE_CONSTANT (nelts))
2534 domain = compute_array_index_type (NULL_TREE, nelts,
2535 complain);
2536 else
2537 {
2538 domain = NULL_TREE;
2539 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2540 warning (0, "non-constant array size in new, unable "
2541 "to verify length of initializer-list");
2542 }
2543 arraytype = build_cplus_array_type (type, domain);
2544 vecinit = digest_init (arraytype, vecinit, complain);
2545 }
2546 }
2547 else if (*init)
2548 {
2549 if (complain & tf_error)
2550 permerror (input_location,
2551 "parenthesized initializer in array new");
2552 else
2553 return error_mark_node;
2554 vecinit = build_tree_list_vec (*init);
2555 }
2556 init_expr
2557 = build_vec_init (data_addr,
2558 cp_build_binary_op (input_location,
2559 MINUS_EXPR, outer_nelts,
2560 integer_one_node,
2561 complain),
2562 vecinit,
2563 explicit_value_init_p,
2564 /*from_array=*/0,
2565 complain);
2566
2567 /* An array initialization is stable because the initialization
2568 of each element is a full-expression, so the temporaries don't
2569 leak out. */
2570 stable = true;
2571 }
2572 else
2573 {
2574 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2575
2576 if (type_build_ctor_call (type) && !explicit_value_init_p)
2577 {
2578 init_expr = build_special_member_call (init_expr,
2579 complete_ctor_identifier,
2580 init, elt_type,
2581 LOOKUP_NORMAL,
2582 complain);
2583 }
2584 else if (explicit_value_init_p)
2585 {
2586 /* Something like `new int()'. */
2587 tree val = build_value_init (type, complain);
2588 if (val == error_mark_node)
2589 return error_mark_node;
2590 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2591 }
2592 else
2593 {
2594 tree ie;
2595
2596 /* We are processing something like `new int (10)', which
2597 means allocate an int, and initialize it with 10. */
2598
2599 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2600 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2601 complain);
2602 }
2603 stable = stabilize_init (init_expr, &init_preeval_expr);
2604 }
2605
2606 if (init_expr == error_mark_node)
2607 return error_mark_node;
2608
2609 /* If any part of the object initialization terminates by throwing an
2610 exception and a suitable deallocation function can be found, the
2611 deallocation function is called to free the memory in which the
2612 object was being constructed, after which the exception continues
2613 to propagate in the context of the new-expression. If no
2614 unambiguous matching deallocation function can be found,
2615 propagating the exception does not cause the object's memory to be
2616 freed. */
2617 if (flag_exceptions && ! use_java_new)
2618 {
2619 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2620 tree cleanup;
2621
2622 /* The Standard is unclear here, but the right thing to do
2623 is to use the same method for finding deallocation
2624 functions that we use for finding allocation functions. */
2625 cleanup = (build_op_delete_call
2626 (dcode,
2627 alloc_node,
2628 size,
2629 globally_qualified_p,
2630 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2631 alloc_fn));
2632
2633 if (!cleanup)
2634 /* We're done. */;
2635 else if (stable)
2636 /* This is much simpler if we were able to preevaluate all of
2637 the arguments to the constructor call. */
2638 {
2639 /* CLEANUP is compiler-generated, so no diagnostics. */
2640 TREE_NO_WARNING (cleanup) = true;
2641 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2642 init_expr, cleanup);
2643 /* Likewise, this try-catch is compiler-generated. */
2644 TREE_NO_WARNING (init_expr) = true;
2645 }
2646 else
2647 /* Ack! First we allocate the memory. Then we set our sentry
2648 variable to true, and expand a cleanup that deletes the
2649 memory if sentry is true. Then we run the constructor, and
2650 finally clear the sentry.
2651
2652 We need to do this because we allocate the space first, so
2653 if there are any temporaries with cleanups in the
2654 constructor args and we weren't able to preevaluate them, we
2655 need this EH region to extend until end of full-expression
2656 to preserve nesting. */
2657 {
2658 tree end, sentry, begin;
2659
2660 begin = get_target_expr (boolean_true_node);
2661 CLEANUP_EH_ONLY (begin) = 1;
2662
2663 sentry = TARGET_EXPR_SLOT (begin);
2664
2665 /* CLEANUP is compiler-generated, so no diagnostics. */
2666 TREE_NO_WARNING (cleanup) = true;
2667
2668 TARGET_EXPR_CLEANUP (begin)
2669 = build3 (COND_EXPR, void_type_node, sentry,
2670 cleanup, void_zero_node);
2671
2672 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2673 sentry, boolean_false_node);
2674
2675 init_expr
2676 = build2 (COMPOUND_EXPR, void_type_node, begin,
2677 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2678 end));
2679 /* Likewise, this is compiler-generated. */
2680 TREE_NO_WARNING (init_expr) = true;
2681 }
2682 }
2683 }
2684 else
2685 init_expr = NULL_TREE;
2686
2687 /* Now build up the return value in reverse order. */
2688
2689 rval = data_addr;
2690
2691 if (init_expr)
2692 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2693 if (cookie_expr)
2694 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2695
2696 if (rval == data_addr)
2697 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2698 and return the call (which doesn't need to be adjusted). */
2699 rval = TARGET_EXPR_INITIAL (alloc_expr);
2700 else
2701 {
2702 if (check_new)
2703 {
2704 tree ifexp = cp_build_binary_op (input_location,
2705 NE_EXPR, alloc_node,
2706 nullptr_node,
2707 complain);
2708 rval = build_conditional_expr (ifexp, rval, alloc_node,
2709 complain);
2710 }
2711
2712 /* Perform the allocation before anything else, so that ALLOC_NODE
2713 has been initialized before we start using it. */
2714 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2715 }
2716
2717 if (init_preeval_expr)
2718 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2719
2720 /* A new-expression is never an lvalue. */
2721 gcc_assert (!lvalue_p (rval));
2722
2723 return convert (pointer_type, rval);
2724 }
2725
2726 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2727 is a vector of placement-new arguments (or NULL if none). If NELTS
2728 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2729 is not NULL, then this is an array-new allocation; TYPE is the type
2730 of the elements in the array and NELTS is the number of elements in
2731 the array. *INIT, if non-NULL, is the initializer for the new
2732 object, or an empty vector to indicate an initializer of "()". If
2733 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2734 rather than just "new". This may change PLACEMENT and INIT. */
2735
2736 tree
2737 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2738 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2739 {
2740 tree rval;
2741 VEC(tree,gc) *orig_placement = NULL;
2742 tree orig_nelts = NULL_TREE;
2743 VEC(tree,gc) *orig_init = NULL;
2744
2745 if (type == error_mark_node)
2746 return error_mark_node;
2747
2748 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2749 {
2750 tree auto_node = type_uses_auto (type);
2751 if (auto_node)
2752 {
2753 tree d_init = VEC_index (tree, *init, 0);
2754 d_init = resolve_nondeduced_context (d_init);
2755 type = do_auto_deduction (type, d_init, auto_node);
2756 }
2757 }
2758
2759 if (processing_template_decl)
2760 {
2761 if (dependent_type_p (type)
2762 || any_type_dependent_arguments_p (*placement)
2763 || (nelts && type_dependent_expression_p (nelts))
2764 || any_type_dependent_arguments_p (*init))
2765 return build_raw_new_expr (*placement, type, nelts, *init,
2766 use_global_new);
2767
2768 orig_placement = make_tree_vector_copy (*placement);
2769 orig_nelts = nelts;
2770 orig_init = make_tree_vector_copy (*init);
2771
2772 make_args_non_dependent (*placement);
2773 if (nelts)
2774 nelts = build_non_dependent_expr (nelts);
2775 make_args_non_dependent (*init);
2776 }
2777
2778 if (nelts)
2779 {
2780 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2781 {
2782 if (complain & tf_error)
2783 permerror (input_location, "size in array new must have integral type");
2784 else
2785 return error_mark_node;
2786 }
2787 nelts = mark_rvalue_use (nelts);
2788 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2789 }
2790
2791 /* ``A reference cannot be created by the new operator. A reference
2792 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2793 returned by new.'' ARM 5.3.3 */
2794 if (TREE_CODE (type) == REFERENCE_TYPE)
2795 {
2796 if (complain & tf_error)
2797 error ("new cannot be applied to a reference type");
2798 else
2799 return error_mark_node;
2800 type = TREE_TYPE (type);
2801 }
2802
2803 if (TREE_CODE (type) == FUNCTION_TYPE)
2804 {
2805 if (complain & tf_error)
2806 error ("new cannot be applied to a function type");
2807 return error_mark_node;
2808 }
2809
2810 /* The type allocated must be complete. If the new-type-id was
2811 "T[N]" then we are just checking that "T" is complete here, but
2812 that is equivalent, since the value of "N" doesn't matter. */
2813 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
2814 return error_mark_node;
2815
2816 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2817 if (rval == error_mark_node)
2818 return error_mark_node;
2819
2820 if (processing_template_decl)
2821 {
2822 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2823 orig_init, use_global_new);
2824 release_tree_vector (orig_placement);
2825 release_tree_vector (orig_init);
2826 return ret;
2827 }
2828
2829 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2830 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2831 TREE_NO_WARNING (rval) = 1;
2832
2833 return rval;
2834 }
2835
2836 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2837
2838 tree
2839 build_java_class_ref (tree type)
2840 {
2841 tree name = NULL_TREE, class_decl;
2842 static tree CL_suffix = NULL_TREE;
2843 if (CL_suffix == NULL_TREE)
2844 CL_suffix = get_identifier("class$");
2845 if (jclass_node == NULL_TREE)
2846 {
2847 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2848 if (jclass_node == NULL_TREE)
2849 {
2850 error ("call to Java constructor, while %<jclass%> undefined");
2851 return error_mark_node;
2852 }
2853 jclass_node = TREE_TYPE (jclass_node);
2854 }
2855
2856 /* Mangle the class$ field. */
2857 {
2858 tree field;
2859 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2860 if (DECL_NAME (field) == CL_suffix)
2861 {
2862 mangle_decl (field);
2863 name = DECL_ASSEMBLER_NAME (field);
2864 break;
2865 }
2866 if (!field)
2867 {
2868 error ("can%'t find %<class$%> in %qT", type);
2869 return error_mark_node;
2870 }
2871 }
2872
2873 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2874 if (class_decl == NULL_TREE)
2875 {
2876 class_decl = build_decl (input_location,
2877 VAR_DECL, name, TREE_TYPE (jclass_node));
2878 TREE_STATIC (class_decl) = 1;
2879 DECL_EXTERNAL (class_decl) = 1;
2880 TREE_PUBLIC (class_decl) = 1;
2881 DECL_ARTIFICIAL (class_decl) = 1;
2882 DECL_IGNORED_P (class_decl) = 1;
2883 pushdecl_top_level (class_decl);
2884 make_decl_rtl (class_decl);
2885 }
2886 return class_decl;
2887 }
2888 \f
2889 static tree
2890 build_vec_delete_1 (tree base, tree maxindex, tree type,
2891 special_function_kind auto_delete_vec,
2892 int use_global_delete, tsubst_flags_t complain)
2893 {
2894 tree virtual_size;
2895 tree ptype = build_pointer_type (type = complete_type (type));
2896 tree size_exp = size_in_bytes (type);
2897
2898 /* Temporary variables used by the loop. */
2899 tree tbase, tbase_init;
2900
2901 /* This is the body of the loop that implements the deletion of a
2902 single element, and moves temp variables to next elements. */
2903 tree body;
2904
2905 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2906 tree loop = 0;
2907
2908 /* This is the thing that governs what to do after the loop has run. */
2909 tree deallocate_expr = 0;
2910
2911 /* This is the BIND_EXPR which holds the outermost iterator of the
2912 loop. It is convenient to set this variable up and test it before
2913 executing any other code in the loop.
2914 This is also the containing expression returned by this function. */
2915 tree controller = NULL_TREE;
2916 tree tmp;
2917
2918 /* We should only have 1-D arrays here. */
2919 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2920
2921 if (base == error_mark_node || maxindex == error_mark_node)
2922 return error_mark_node;
2923
2924 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2925 goto no_destructor;
2926
2927 /* The below is short by the cookie size. */
2928 virtual_size = size_binop (MULT_EXPR, size_exp,
2929 convert (sizetype, maxindex));
2930
2931 tbase = create_temporary_var (ptype);
2932 tbase_init
2933 = cp_build_modify_expr (tbase, NOP_EXPR,
2934 fold_build_pointer_plus_loc (input_location,
2935 fold_convert (ptype,
2936 base),
2937 virtual_size),
2938 complain);
2939 if (tbase_init == error_mark_node)
2940 return error_mark_node;
2941 controller = build3 (BIND_EXPR, void_type_node, tbase,
2942 NULL_TREE, NULL_TREE);
2943 TREE_SIDE_EFFECTS (controller) = 1;
2944
2945 body = build1 (EXIT_EXPR, void_type_node,
2946 build2 (EQ_EXPR, boolean_type_node, tbase,
2947 fold_convert (ptype, base)));
2948 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2949 tmp = fold_build_pointer_plus (tbase, tmp);
2950 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
2951 if (tmp == error_mark_node)
2952 return error_mark_node;
2953 body = build_compound_expr (input_location, body, tmp);
2954 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
2955 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
2956 complain);
2957 if (tmp == error_mark_node)
2958 return error_mark_node;
2959 body = build_compound_expr (input_location, body, tmp);
2960
2961 loop = build1 (LOOP_EXPR, void_type_node, body);
2962 loop = build_compound_expr (input_location, tbase_init, loop);
2963
2964 no_destructor:
2965 /* Delete the storage if appropriate. */
2966 if (auto_delete_vec == sfk_deleting_destructor)
2967 {
2968 tree base_tbd;
2969
2970 /* The below is short by the cookie size. */
2971 virtual_size = size_binop (MULT_EXPR, size_exp,
2972 convert (sizetype, maxindex));
2973
2974 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2975 /* no header */
2976 base_tbd = base;
2977 else
2978 {
2979 tree cookie_size;
2980
2981 cookie_size = targetm.cxx.get_cookie_size (type);
2982 base_tbd = cp_build_binary_op (input_location,
2983 MINUS_EXPR,
2984 cp_convert (string_type_node,
2985 base),
2986 cookie_size,
2987 complain);
2988 if (base_tbd == error_mark_node)
2989 return error_mark_node;
2990 base_tbd = cp_convert (ptype, base_tbd);
2991 /* True size with header. */
2992 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2993 }
2994
2995 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2996 base_tbd, virtual_size,
2997 use_global_delete & 1,
2998 /*placement=*/NULL_TREE,
2999 /*alloc_fn=*/NULL_TREE);
3000 }
3001
3002 body = loop;
3003 if (!deallocate_expr)
3004 ;
3005 else if (!body)
3006 body = deallocate_expr;
3007 else
3008 body = build_compound_expr (input_location, body, deallocate_expr);
3009
3010 if (!body)
3011 body = integer_zero_node;
3012
3013 /* Outermost wrapper: If pointer is null, punt. */
3014 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3015 fold_build2_loc (input_location,
3016 NE_EXPR, boolean_type_node, base,
3017 convert (TREE_TYPE (base),
3018 nullptr_node)),
3019 body, integer_zero_node);
3020 body = build1 (NOP_EXPR, void_type_node, body);
3021
3022 if (controller)
3023 {
3024 TREE_OPERAND (controller, 1) = body;
3025 body = controller;
3026 }
3027
3028 if (TREE_CODE (base) == SAVE_EXPR)
3029 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3030 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3031
3032 return convert_to_void (body, ICV_CAST, complain);
3033 }
3034
3035 /* Create an unnamed variable of the indicated TYPE. */
3036
3037 tree
3038 create_temporary_var (tree type)
3039 {
3040 tree decl;
3041
3042 decl = build_decl (input_location,
3043 VAR_DECL, NULL_TREE, type);
3044 TREE_USED (decl) = 1;
3045 DECL_ARTIFICIAL (decl) = 1;
3046 DECL_IGNORED_P (decl) = 1;
3047 DECL_CONTEXT (decl) = current_function_decl;
3048
3049 return decl;
3050 }
3051
3052 /* Create a new temporary variable of the indicated TYPE, initialized
3053 to INIT.
3054
3055 It is not entered into current_binding_level, because that breaks
3056 things when it comes time to do final cleanups (which take place
3057 "outside" the binding contour of the function). */
3058
3059 tree
3060 get_temp_regvar (tree type, tree init)
3061 {
3062 tree decl;
3063
3064 decl = create_temporary_var (type);
3065 add_decl_expr (decl);
3066
3067 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3068 tf_warning_or_error));
3069
3070 return decl;
3071 }
3072
3073 /* `build_vec_init' returns tree structure that performs
3074 initialization of a vector of aggregate types.
3075
3076 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3077 to the first element, of POINTER_TYPE.
3078 MAXINDEX is the maximum index of the array (one less than the
3079 number of elements). It is only used if BASE is a pointer or
3080 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3081
3082 INIT is the (possibly NULL) initializer.
3083
3084 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3085 elements in the array are value-initialized.
3086
3087 FROM_ARRAY is 0 if we should init everything with INIT
3088 (i.e., every element initialized from INIT).
3089 FROM_ARRAY is 1 if we should index into INIT in parallel
3090 with initialization of DECL.
3091 FROM_ARRAY is 2 if we should index into INIT in parallel,
3092 but use assignment instead of initialization. */
3093
3094 tree
3095 build_vec_init (tree base, tree maxindex, tree init,
3096 bool explicit_value_init_p,
3097 int from_array, tsubst_flags_t complain)
3098 {
3099 tree rval;
3100 tree base2 = NULL_TREE;
3101 tree itype = NULL_TREE;
3102 tree iterator;
3103 /* The type of BASE. */
3104 tree atype = TREE_TYPE (base);
3105 /* The type of an element in the array. */
3106 tree type = TREE_TYPE (atype);
3107 /* The element type reached after removing all outer array
3108 types. */
3109 tree inner_elt_type;
3110 /* The type of a pointer to an element in the array. */
3111 tree ptype;
3112 tree stmt_expr;
3113 tree compound_stmt;
3114 int destroy_temps;
3115 tree try_block = NULL_TREE;
3116 int num_initialized_elts = 0;
3117 bool is_global;
3118 tree const_init = NULL_TREE;
3119 tree obase = base;
3120 bool xvalue = false;
3121 bool errors = false;
3122
3123 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3124 maxindex = array_type_nelts (atype);
3125
3126 if (maxindex == NULL_TREE || maxindex == error_mark_node
3127 || integer_all_onesp (maxindex))
3128 return error_mark_node;
3129
3130 if (explicit_value_init_p)
3131 gcc_assert (!init);
3132
3133 inner_elt_type = strip_array_types (type);
3134
3135 /* Look through the TARGET_EXPR around a compound literal. */
3136 if (init && TREE_CODE (init) == TARGET_EXPR
3137 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3138 && from_array != 2)
3139 init = TARGET_EXPR_INITIAL (init);
3140
3141 if (init
3142 && TREE_CODE (atype) == ARRAY_TYPE
3143 && (from_array == 2
3144 ? (!CLASS_TYPE_P (inner_elt_type)
3145 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3146 : !TYPE_NEEDS_CONSTRUCTING (type))
3147 && ((TREE_CODE (init) == CONSTRUCTOR
3148 /* Don't do this if the CONSTRUCTOR might contain something
3149 that might throw and require us to clean up. */
3150 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
3151 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3152 || from_array))
3153 {
3154 /* Do non-default initialization of trivial arrays resulting from
3155 brace-enclosed initializers. In this case, digest_init and
3156 store_constructor will handle the semantics for us. */
3157
3158 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3159 return stmt_expr;
3160 }
3161
3162 maxindex = cp_convert (ptrdiff_type_node, maxindex);
3163 if (TREE_CODE (atype) == ARRAY_TYPE)
3164 {
3165 ptype = build_pointer_type (type);
3166 base = cp_convert (ptype, decay_conversion (base));
3167 }
3168 else
3169 ptype = atype;
3170
3171 /* The code we are generating looks like:
3172 ({
3173 T* t1 = (T*) base;
3174 T* rval = t1;
3175 ptrdiff_t iterator = maxindex;
3176 try {
3177 for (; iterator != -1; --iterator) {
3178 ... initialize *t1 ...
3179 ++t1;
3180 }
3181 } catch (...) {
3182 ... destroy elements that were constructed ...
3183 }
3184 rval;
3185 })
3186
3187 We can omit the try and catch blocks if we know that the
3188 initialization will never throw an exception, or if the array
3189 elements do not have destructors. We can omit the loop completely if
3190 the elements of the array do not have constructors.
3191
3192 We actually wrap the entire body of the above in a STMT_EXPR, for
3193 tidiness.
3194
3195 When copying from array to another, when the array elements have
3196 only trivial copy constructors, we should use __builtin_memcpy
3197 rather than generating a loop. That way, we could take advantage
3198 of whatever cleverness the back end has for dealing with copies
3199 of blocks of memory. */
3200
3201 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3202 destroy_temps = stmts_are_full_exprs_p ();
3203 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3204 rval = get_temp_regvar (ptype, base);
3205 base = get_temp_regvar (ptype, rval);
3206 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3207
3208 /* If initializing one array from another, initialize element by
3209 element. We rely upon the below calls to do the argument
3210 checking. Evaluate the initializer before entering the try block. */
3211 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3212 {
3213 if (lvalue_kind (init) & clk_rvalueref)
3214 xvalue = true;
3215 base2 = decay_conversion (init);
3216 itype = TREE_TYPE (base2);
3217 base2 = get_temp_regvar (itype, base2);
3218 itype = TREE_TYPE (itype);
3219 }
3220
3221 /* Protect the entire array initialization so that we can destroy
3222 the partially constructed array if an exception is thrown.
3223 But don't do this if we're assigning. */
3224 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3225 && from_array != 2)
3226 {
3227 try_block = begin_try_block ();
3228 }
3229
3230 /* If the initializer is {}, then all elements are initialized from {}.
3231 But for non-classes, that's the same as value-initialization. */
3232 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3233 && CONSTRUCTOR_NELTS (init) == 0)
3234 {
3235 if (CLASS_TYPE_P (type))
3236 /* Leave init alone. */;
3237 else
3238 {
3239 init = NULL_TREE;
3240 explicit_value_init_p = true;
3241 }
3242 }
3243
3244 /* Maybe pull out constant value when from_array? */
3245
3246 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3247 {
3248 /* Do non-default initialization of non-trivial arrays resulting from
3249 brace-enclosed initializers. */
3250 unsigned HOST_WIDE_INT idx;
3251 tree field, elt;
3252 /* Should we try to create a constant initializer? */
3253 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3254 && (literal_type_p (inner_elt_type)
3255 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3256 /* If the constructor already has the array type, it's been through
3257 digest_init, so we shouldn't try to do anything more. */
3258 bool digested = same_type_p (atype, TREE_TYPE (init));
3259 bool saw_non_const = false;
3260 bool saw_const = false;
3261 /* If we're initializing a static array, we want to do static
3262 initialization of any elements with constant initializers even if
3263 some are non-constant. */
3264 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3265 VEC(constructor_elt,gc) *new_vec;
3266 from_array = 0;
3267
3268 if (try_const)
3269 new_vec = VEC_alloc (constructor_elt, gc, CONSTRUCTOR_NELTS (init));
3270 else
3271 new_vec = NULL;
3272
3273 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3274 {
3275 tree baseref = build1 (INDIRECT_REF, type, base);
3276 tree one_init;
3277
3278 num_initialized_elts++;
3279
3280 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3281 if (digested)
3282 one_init = build2 (INIT_EXPR, type, baseref, elt);
3283 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3284 one_init = build_aggr_init (baseref, elt, 0, complain);
3285 else
3286 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3287 elt, complain);
3288 if (one_init == error_mark_node)
3289 errors = true;
3290 if (try_const)
3291 {
3292 tree e = one_init;
3293 if (TREE_CODE (e) == EXPR_STMT)
3294 e = TREE_OPERAND (e, 0);
3295 if (TREE_CODE (e) == CONVERT_EXPR
3296 && VOID_TYPE_P (TREE_TYPE (e)))
3297 e = TREE_OPERAND (e, 0);
3298 e = maybe_constant_init (e);
3299 if (reduced_constant_expression_p (e))
3300 {
3301 CONSTRUCTOR_APPEND_ELT (new_vec, field, e);
3302 if (do_static_init)
3303 one_init = NULL_TREE;
3304 else
3305 one_init = build2 (INIT_EXPR, type, baseref, e);
3306 saw_const = true;
3307 }
3308 else
3309 {
3310 if (do_static_init)
3311 CONSTRUCTOR_APPEND_ELT (new_vec, field,
3312 build_zero_init (TREE_TYPE (e),
3313 NULL_TREE, true));
3314 saw_non_const = true;
3315 }
3316 }
3317
3318 if (one_init)
3319 finish_expr_stmt (one_init);
3320 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3321
3322 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3323 if (one_init == error_mark_node)
3324 errors = true;
3325 else
3326 finish_expr_stmt (one_init);
3327
3328 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3329 complain);
3330 if (one_init == error_mark_node)
3331 errors = true;
3332 else
3333 finish_expr_stmt (one_init);
3334 }
3335
3336 if (try_const)
3337 {
3338 if (!saw_non_const)
3339 const_init = build_constructor (atype, new_vec);
3340 else if (do_static_init && saw_const)
3341 DECL_INITIAL (obase) = build_constructor (atype, new_vec);
3342 else
3343 VEC_free (constructor_elt, gc, new_vec);
3344 }
3345
3346 /* Clear out INIT so that we don't get confused below. */
3347 init = NULL_TREE;
3348 }
3349 else if (from_array)
3350 {
3351 if (init)
3352 /* OK, we set base2 above. */;
3353 else if (CLASS_TYPE_P (type)
3354 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3355 {
3356 if (complain & tf_error)
3357 error ("initializer ends prematurely");
3358 errors = true;
3359 }
3360 }
3361
3362 /* Now, default-initialize any remaining elements. We don't need to
3363 do that if a) the type does not need constructing, or b) we've
3364 already initialized all the elements.
3365
3366 We do need to keep going if we're copying an array. */
3367
3368 if (from_array
3369 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3370 && ! (host_integerp (maxindex, 0)
3371 && (num_initialized_elts
3372 == tree_low_cst (maxindex, 0) + 1))))
3373 {
3374 /* If the ITERATOR is equal to -1, then we don't have to loop;
3375 we've already initialized all the elements. */
3376 tree for_stmt;
3377 tree elt_init;
3378 tree to;
3379
3380 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3381 finish_for_init_stmt (for_stmt);
3382 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3383 build_int_cst (TREE_TYPE (iterator), -1)),
3384 for_stmt);
3385 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3386 complain);
3387 if (elt_init == error_mark_node)
3388 errors = true;
3389 finish_for_expr (elt_init, for_stmt);
3390
3391 to = build1 (INDIRECT_REF, type, base);
3392
3393 if (from_array)
3394 {
3395 tree from;
3396
3397 if (base2)
3398 {
3399 from = build1 (INDIRECT_REF, itype, base2);
3400 if (xvalue)
3401 from = move (from);
3402 }
3403 else
3404 from = NULL_TREE;
3405
3406 if (from_array == 2)
3407 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3408 complain);
3409 else if (type_build_ctor_call (type))
3410 elt_init = build_aggr_init (to, from, 0, complain);
3411 else if (from)
3412 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3413 complain);
3414 else
3415 gcc_unreachable ();
3416 }
3417 else if (TREE_CODE (type) == ARRAY_TYPE)
3418 {
3419 if (init != 0)
3420 sorry
3421 ("cannot initialize multi-dimensional array with initializer");
3422 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3423 0, 0,
3424 explicit_value_init_p,
3425 0, complain);
3426 }
3427 else if (explicit_value_init_p)
3428 {
3429 elt_init = build_value_init (type, complain);
3430 if (elt_init != error_mark_node)
3431 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3432 }
3433 else
3434 {
3435 gcc_assert (type_build_ctor_call (type) || init);
3436 if (CLASS_TYPE_P (type))
3437 elt_init = build_aggr_init (to, init, 0, complain);
3438 else
3439 {
3440 if (TREE_CODE (init) == TREE_LIST)
3441 init = build_x_compound_expr_from_list (init, ELK_INIT,
3442 complain);
3443 elt_init = build2 (INIT_EXPR, type, to, init);
3444 }
3445 }
3446
3447 if (elt_init == error_mark_node)
3448 errors = true;
3449
3450 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3451 finish_expr_stmt (elt_init);
3452 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3453
3454 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3455 complain));
3456 if (base2)
3457 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3458 complain));
3459
3460 finish_for_stmt (for_stmt);
3461 }
3462
3463 /* Make sure to cleanup any partially constructed elements. */
3464 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3465 && from_array != 2)
3466 {
3467 tree e;
3468 tree m = cp_build_binary_op (input_location,
3469 MINUS_EXPR, maxindex, iterator,
3470 complain);
3471
3472 /* Flatten multi-dimensional array since build_vec_delete only
3473 expects one-dimensional array. */
3474 if (TREE_CODE (type) == ARRAY_TYPE)
3475 m = cp_build_binary_op (input_location,
3476 MULT_EXPR, m,
3477 array_type_nelts_total (type),
3478 complain);
3479
3480 finish_cleanup_try_block (try_block);
3481 e = build_vec_delete_1 (rval, m,
3482 inner_elt_type, sfk_complete_destructor,
3483 /*use_global_delete=*/0, complain);
3484 if (e == error_mark_node)
3485 errors = true;
3486 finish_cleanup (e, try_block);
3487 }
3488
3489 /* The value of the array initialization is the array itself, RVAL
3490 is a pointer to the first element. */
3491 finish_stmt_expr_expr (rval, stmt_expr);
3492
3493 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3494
3495 /* Now make the result have the correct type. */
3496 if (TREE_CODE (atype) == ARRAY_TYPE)
3497 {
3498 atype = build_pointer_type (atype);
3499 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3500 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3501 TREE_NO_WARNING (stmt_expr) = 1;
3502 }
3503
3504 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3505
3506 if (const_init)
3507 return build2 (INIT_EXPR, atype, obase, const_init);
3508 if (errors)
3509 return error_mark_node;
3510 return stmt_expr;
3511 }
3512
3513 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3514 build_delete. */
3515
3516 static tree
3517 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3518 tsubst_flags_t complain)
3519 {
3520 tree name;
3521 tree fn;
3522 switch (dtor_kind)
3523 {
3524 case sfk_complete_destructor:
3525 name = complete_dtor_identifier;
3526 break;
3527
3528 case sfk_base_destructor:
3529 name = base_dtor_identifier;
3530 break;
3531
3532 case sfk_deleting_destructor:
3533 name = deleting_dtor_identifier;
3534 break;
3535
3536 default:
3537 gcc_unreachable ();
3538 }
3539 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3540 return build_new_method_call (exp, fn,
3541 /*args=*/NULL,
3542 /*conversion_path=*/NULL_TREE,
3543 flags,
3544 /*fn_p=*/NULL,
3545 complain);
3546 }
3547
3548 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3549 ADDR is an expression which yields the store to be destroyed.
3550 AUTO_DELETE is the name of the destructor to call, i.e., either
3551 sfk_complete_destructor, sfk_base_destructor, or
3552 sfk_deleting_destructor.
3553
3554 FLAGS is the logical disjunction of zero or more LOOKUP_
3555 flags. See cp-tree.h for more info. */
3556
3557 tree
3558 build_delete (tree type, tree addr, special_function_kind auto_delete,
3559 int flags, int use_global_delete, tsubst_flags_t complain)
3560 {
3561 tree expr;
3562
3563 if (addr == error_mark_node)
3564 return error_mark_node;
3565
3566 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3567 set to `error_mark_node' before it gets properly cleaned up. */
3568 if (type == error_mark_node)
3569 return error_mark_node;
3570
3571 type = TYPE_MAIN_VARIANT (type);
3572
3573 addr = mark_rvalue_use (addr);
3574
3575 if (TREE_CODE (type) == POINTER_TYPE)
3576 {
3577 bool complete_p = true;
3578
3579 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3580 if (TREE_CODE (type) == ARRAY_TYPE)
3581 goto handle_array;
3582
3583 /* We don't want to warn about delete of void*, only other
3584 incomplete types. Deleting other incomplete types
3585 invokes undefined behavior, but it is not ill-formed, so
3586 compile to something that would even do The Right Thing
3587 (TM) should the type have a trivial dtor and no delete
3588 operator. */
3589 if (!VOID_TYPE_P (type))
3590 {
3591 complete_type (type);
3592 if (!COMPLETE_TYPE_P (type))
3593 {
3594 if ((complain & tf_warning)
3595 && warning (0, "possible problem detected in invocation of "
3596 "delete operator:"))
3597 {
3598 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3599 inform (input_location, "neither the destructor nor the class-specific "
3600 "operator delete will be called, even if they are "
3601 "declared when the class is defined");
3602 }
3603 complete_p = false;
3604 }
3605 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3606 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
3607 && TYPE_POLYMORPHIC_P (type))
3608 {
3609 tree dtor;
3610 dtor = CLASSTYPE_DESTRUCTORS (type);
3611 if (!dtor || !DECL_VINDEX (dtor))
3612 {
3613 if (CLASSTYPE_PURE_VIRTUALS (type))
3614 warning (OPT_Wdelete_non_virtual_dtor,
3615 "deleting object of abstract class type %qT"
3616 " which has non-virtual destructor"
3617 " will cause undefined behaviour", type);
3618 else
3619 warning (OPT_Wdelete_non_virtual_dtor,
3620 "deleting object of polymorphic class type %qT"
3621 " which has non-virtual destructor"
3622 " might cause undefined behaviour", type);
3623 }
3624 }
3625 }
3626 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3627 /* Call the builtin operator delete. */
3628 return build_builtin_delete_call (addr);
3629 if (TREE_SIDE_EFFECTS (addr))
3630 addr = save_expr (addr);
3631
3632 /* Throw away const and volatile on target type of addr. */
3633 addr = convert_force (build_pointer_type (type), addr, 0);
3634 }
3635 else if (TREE_CODE (type) == ARRAY_TYPE)
3636 {
3637 handle_array:
3638
3639 if (TYPE_DOMAIN (type) == NULL_TREE)
3640 {
3641 if (complain & tf_error)
3642 error ("unknown array size in delete");
3643 return error_mark_node;
3644 }
3645 return build_vec_delete (addr, array_type_nelts (type),
3646 auto_delete, use_global_delete, complain);
3647 }
3648 else
3649 {
3650 /* Don't check PROTECT here; leave that decision to the
3651 destructor. If the destructor is accessible, call it,
3652 else report error. */
3653 addr = cp_build_addr_expr (addr, complain);
3654 if (addr == error_mark_node)
3655 return error_mark_node;
3656 if (TREE_SIDE_EFFECTS (addr))
3657 addr = save_expr (addr);
3658
3659 addr = convert_force (build_pointer_type (type), addr, 0);
3660 }
3661
3662 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3663
3664 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3665 {
3666 if (auto_delete != sfk_deleting_destructor)
3667 return void_zero_node;
3668
3669 return build_op_delete_call (DELETE_EXPR, addr,
3670 cxx_sizeof_nowarn (type),
3671 use_global_delete,
3672 /*placement=*/NULL_TREE,
3673 /*alloc_fn=*/NULL_TREE);
3674 }
3675 else
3676 {
3677 tree head = NULL_TREE;
3678 tree do_delete = NULL_TREE;
3679 tree ifexp;
3680
3681 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3682 lazily_declare_fn (sfk_destructor, type);
3683
3684 /* For `::delete x', we must not use the deleting destructor
3685 since then we would not be sure to get the global `operator
3686 delete'. */
3687 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3688 {
3689 /* We will use ADDR multiple times so we must save it. */
3690 addr = save_expr (addr);
3691 head = get_target_expr (build_headof (addr));
3692 /* Delete the object. */
3693 do_delete = build_builtin_delete_call (head);
3694 /* Otherwise, treat this like a complete object destructor
3695 call. */
3696 auto_delete = sfk_complete_destructor;
3697 }
3698 /* If the destructor is non-virtual, there is no deleting
3699 variant. Instead, we must explicitly call the appropriate
3700 `operator delete' here. */
3701 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3702 && auto_delete == sfk_deleting_destructor)
3703 {
3704 /* We will use ADDR multiple times so we must save it. */
3705 addr = save_expr (addr);
3706 /* Build the call. */
3707 do_delete = build_op_delete_call (DELETE_EXPR,
3708 addr,
3709 cxx_sizeof_nowarn (type),
3710 /*global_p=*/false,
3711 /*placement=*/NULL_TREE,
3712 /*alloc_fn=*/NULL_TREE);
3713 /* Call the complete object destructor. */
3714 auto_delete = sfk_complete_destructor;
3715 }
3716 else if (auto_delete == sfk_deleting_destructor
3717 && TYPE_GETS_REG_DELETE (type))
3718 {
3719 /* Make sure we have access to the member op delete, even though
3720 we'll actually be calling it from the destructor. */
3721 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3722 /*global_p=*/false,
3723 /*placement=*/NULL_TREE,
3724 /*alloc_fn=*/NULL_TREE);
3725 }
3726
3727 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
3728 auto_delete, flags, complain);
3729 if (expr == error_mark_node)
3730 return error_mark_node;
3731 if (do_delete)
3732 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3733
3734 /* We need to calculate this before the dtor changes the vptr. */
3735 if (head)
3736 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3737
3738 if (flags & LOOKUP_DESTRUCTOR)
3739 /* Explicit destructor call; don't check for null pointer. */
3740 ifexp = integer_one_node;
3741 else
3742 {
3743 /* Handle deleting a null pointer. */
3744 ifexp = fold (cp_build_binary_op (input_location,
3745 NE_EXPR, addr, nullptr_node,
3746 complain));
3747 if (ifexp == error_mark_node)
3748 return error_mark_node;
3749 }
3750
3751 if (ifexp != integer_one_node)
3752 expr = build3 (COND_EXPR, void_type_node,
3753 ifexp, expr, void_zero_node);
3754
3755 return expr;
3756 }
3757 }
3758
3759 /* At the beginning of a destructor, push cleanups that will call the
3760 destructors for our base classes and members.
3761
3762 Called from begin_destructor_body. */
3763
3764 void
3765 push_base_cleanups (void)
3766 {
3767 tree binfo, base_binfo;
3768 int i;
3769 tree member;
3770 tree expr;
3771 VEC(tree,gc) *vbases;
3772
3773 /* Run destructors for all virtual baseclasses. */
3774 if (CLASSTYPE_VBASECLASSES (current_class_type))
3775 {
3776 tree cond = (condition_conversion
3777 (build2 (BIT_AND_EXPR, integer_type_node,
3778 current_in_charge_parm,
3779 integer_two_node)));
3780
3781 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3782 order, which is also the right order for pushing cleanups. */
3783 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3784 VEC_iterate (tree, vbases, i, base_binfo); i++)
3785 {
3786 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3787 {
3788 expr = build_special_member_call (current_class_ref,
3789 base_dtor_identifier,
3790 NULL,
3791 base_binfo,
3792 (LOOKUP_NORMAL
3793 | LOOKUP_NONVIRTUAL),
3794 tf_warning_or_error);
3795 expr = build3 (COND_EXPR, void_type_node, cond,
3796 expr, void_zero_node);
3797 finish_decl_cleanup (NULL_TREE, expr);
3798 }
3799 }
3800 }
3801
3802 /* Take care of the remaining baseclasses. */
3803 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3804 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3805 {
3806 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3807 || BINFO_VIRTUAL_P (base_binfo))
3808 continue;
3809
3810 expr = build_special_member_call (current_class_ref,
3811 base_dtor_identifier,
3812 NULL, base_binfo,
3813 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3814 tf_warning_or_error);
3815 finish_decl_cleanup (NULL_TREE, expr);
3816 }
3817
3818 /* Don't automatically destroy union members. */
3819 if (TREE_CODE (current_class_type) == UNION_TYPE)
3820 return;
3821
3822 for (member = TYPE_FIELDS (current_class_type); member;
3823 member = DECL_CHAIN (member))
3824 {
3825 tree this_type = TREE_TYPE (member);
3826 if (this_type == error_mark_node
3827 || TREE_CODE (member) != FIELD_DECL
3828 || DECL_ARTIFICIAL (member))
3829 continue;
3830 if (ANON_UNION_TYPE_P (this_type))
3831 continue;
3832 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
3833 {
3834 tree this_member = (build_class_member_access_expr
3835 (current_class_ref, member,
3836 /*access_path=*/NULL_TREE,
3837 /*preserve_reference=*/false,
3838 tf_warning_or_error));
3839 expr = build_delete (this_type, this_member,
3840 sfk_complete_destructor,
3841 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3842 0, tf_warning_or_error);
3843 finish_decl_cleanup (NULL_TREE, expr);
3844 }
3845 }
3846 }
3847
3848 /* Build a C++ vector delete expression.
3849 MAXINDEX is the number of elements to be deleted.
3850 ELT_SIZE is the nominal size of each element in the vector.
3851 BASE is the expression that should yield the store to be deleted.
3852 This function expands (or synthesizes) these calls itself.
3853 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3854
3855 This also calls delete for virtual baseclasses of elements of the vector.
3856
3857 Update: MAXINDEX is no longer needed. The size can be extracted from the
3858 start of the vector for pointers, and from the type for arrays. We still
3859 use MAXINDEX for arrays because it happens to already have one of the
3860 values we'd have to extract. (We could use MAXINDEX with pointers to
3861 confirm the size, and trap if the numbers differ; not clear that it'd
3862 be worth bothering.) */
3863
3864 tree
3865 build_vec_delete (tree base, tree maxindex,
3866 special_function_kind auto_delete_vec,
3867 int use_global_delete, tsubst_flags_t complain)
3868 {
3869 tree type;
3870 tree rval;
3871 tree base_init = NULL_TREE;
3872
3873 type = TREE_TYPE (base);
3874
3875 if (TREE_CODE (type) == POINTER_TYPE)
3876 {
3877 /* Step back one from start of vector, and read dimension. */
3878 tree cookie_addr;
3879 tree size_ptr_type = build_pointer_type (sizetype);
3880
3881 if (TREE_SIDE_EFFECTS (base))
3882 {
3883 base_init = get_target_expr (base);
3884 base = TARGET_EXPR_SLOT (base_init);
3885 }
3886 type = strip_array_types (TREE_TYPE (type));
3887 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3888 sizetype, TYPE_SIZE_UNIT (sizetype));
3889 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
3890 cookie_addr);
3891 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
3892 }
3893 else if (TREE_CODE (type) == ARRAY_TYPE)
3894 {
3895 /* Get the total number of things in the array, maxindex is a
3896 bad name. */
3897 maxindex = array_type_nelts_total (type);
3898 type = strip_array_types (type);
3899 base = cp_build_addr_expr (base, complain);
3900 if (base == error_mark_node)
3901 return error_mark_node;
3902 if (TREE_SIDE_EFFECTS (base))
3903 {
3904 base_init = get_target_expr (base);
3905 base = TARGET_EXPR_SLOT (base_init);
3906 }
3907 }
3908 else
3909 {
3910 if (base != error_mark_node && !(complain & tf_error))
3911 error ("type to vector delete is neither pointer or array type");
3912 return error_mark_node;
3913 }
3914
3915 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3916 use_global_delete, complain);
3917 if (base_init && rval != error_mark_node)
3918 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3919
3920 return rval;
3921 }