c++: Fix value-init crash in template [PR93676]
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "asan.h"
36 #include "stor-layout.h"
37
38 static bool begin_init_stmts (tree *, tree *);
39 static tree finish_init_stmts (bool, tree, tree);
40 static void construct_virtual_base (tree, tree);
41 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
42 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void perform_member_init (tree, tree);
44 static int member_init_ok_or_else (tree, tree, tree);
45 static void expand_virtual_init (tree, tree);
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context (tree);
48 static void expand_cleanup_for_base (tree, tree);
49 static tree dfs_initialize_vtbl_ptrs (tree, void *);
50 static tree build_field_list (tree, tree, int *);
51 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
52
53 static GTY(()) tree fn;
54
55 /* We are about to generate some complex initialization code.
56 Conceptually, it is all a single expression. However, we may want
57 to include conditionals, loops, and other such statement-level
58 constructs. Therefore, we build the initialization code inside a
59 statement-expression. This function starts such an expression.
60 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
61 pass them back to finish_init_stmts when the expression is
62 complete. */
63
64 static bool
65 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
66 {
67 bool is_global = !building_stmt_list_p ();
68
69 *stmt_expr_p = begin_stmt_expr ();
70 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
71
72 return is_global;
73 }
74
75 /* Finish out the statement-expression begun by the previous call to
76 begin_init_stmts. Returns the statement-expression itself. */
77
78 static tree
79 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
80 {
81 finish_compound_stmt (compound_stmt);
82
83 stmt_expr = finish_stmt_expr (stmt_expr, true);
84
85 gcc_assert (!building_stmt_list_p () == is_global);
86
87 return stmt_expr;
88 }
89
90 /* Constructors */
91
92 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
93 which we want to initialize the vtable pointer for, DATA is
94 TREE_LIST whose TREE_VALUE is the this ptr expression. */
95
96 static tree
97 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
98 {
99 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
100 return dfs_skip_bases;
101
102 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
103 {
104 tree base_ptr = TREE_VALUE ((tree) data);
105
106 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
107 tf_warning_or_error);
108
109 expand_virtual_init (binfo, base_ptr);
110 }
111
112 return NULL_TREE;
113 }
114
115 /* Initialize all the vtable pointers in the object pointed to by
116 ADDR. */
117
118 void
119 initialize_vtbl_ptrs (tree addr)
120 {
121 tree list;
122 tree type;
123
124 type = TREE_TYPE (TREE_TYPE (addr));
125 list = build_tree_list (type, addr);
126
127 /* Walk through the hierarchy, initializing the vptr in each base
128 class. We do these in pre-order because we can't find the virtual
129 bases for a class until we've initialized the vtbl for that
130 class. */
131 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
132 }
133
134 /* Return an expression for the zero-initialization of an object with
135 type T. This expression will either be a constant (in the case
136 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
137 aggregate), or NULL (in the case that T does not require
138 initialization). In either case, the value can be used as
139 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
140 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
141 is the number of elements in the array. If STATIC_STORAGE_P is
142 TRUE, initializers are only generated for entities for which
143 zero-initialization does not simply mean filling the storage with
144 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
145 subfields with bit positions at or above that bit size shouldn't
146 be added. Note that this only works when the result is assigned
147 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
148 expand_assignment will end up clearing the full size of TYPE. */
149
150 static tree
151 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
152 tree field_size)
153 {
154 tree init = NULL_TREE;
155
156 /* [dcl.init]
157
158 To zero-initialize an object of type T means:
159
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
162
163 -- if T is a non-union class type, the storage for each nonstatic
164 data member and each base-class subobject is zero-initialized.
165
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
168
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
171
172 -- if T is a reference type, no initialization is performed. */
173
174 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
175
176 if (type == error_mark_node)
177 ;
178 else if (static_storage_p && zero_init_p (type))
179 /* In order to save space, we do not explicitly build initializers
180 for items that do not need them. GCC's semantics are that
181 items with static storage duration that are not otherwise
182 initialized are initialized to zero. */
183 ;
184 else if (TYPE_PTR_OR_PTRMEM_P (type))
185 init = fold (convert (type, nullptr_node));
186 else if (NULLPTR_TYPE_P (type))
187 init = build_int_cst (type, 0);
188 else if (SCALAR_TYPE_P (type))
189 init = fold (convert (type, integer_zero_node));
190 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
191 {
192 tree field;
193 vec<constructor_elt, va_gc> *v = NULL;
194
195 /* Iterate over the fields, building initializations. */
196 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
197 {
198 if (TREE_CODE (field) != FIELD_DECL)
199 continue;
200
201 if (TREE_TYPE (field) == error_mark_node)
202 continue;
203
204 /* Don't add virtual bases for base classes if they are beyond
205 the size of the current field, that means it is present
206 somewhere else in the object. */
207 if (field_size)
208 {
209 tree bitpos = bit_position (field);
210 if (TREE_CODE (bitpos) == INTEGER_CST
211 && !tree_int_cst_lt (bitpos, field_size))
212 continue;
213 }
214
215 /* Note that for class types there will be FIELD_DECLs
216 corresponding to base classes as well. Thus, iterating
217 over TYPE_FIELDs will result in correct initialization of
218 all of the subobjects. */
219 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
220 {
221 tree new_field_size
222 = (DECL_FIELD_IS_BASE (field)
223 && DECL_SIZE (field)
224 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
225 ? DECL_SIZE (field) : NULL_TREE;
226 tree value = build_zero_init_1 (TREE_TYPE (field),
227 /*nelts=*/NULL_TREE,
228 static_storage_p,
229 new_field_size);
230 if (value)
231 CONSTRUCTOR_APPEND_ELT(v, field, value);
232 }
233
234 /* For unions, only the first field is initialized. */
235 if (TREE_CODE (type) == UNION_TYPE)
236 break;
237 }
238
239 /* Build a constructor to contain the initializations. */
240 init = build_constructor (type, v);
241 }
242 else if (TREE_CODE (type) == ARRAY_TYPE)
243 {
244 tree max_index;
245 vec<constructor_elt, va_gc> *v = NULL;
246
247 /* Iterate over the array elements, building initializations. */
248 if (nelts)
249 max_index = fold_build2_loc (input_location,
250 MINUS_EXPR, TREE_TYPE (nelts),
251 nelts, integer_one_node);
252 else
253 max_index = array_type_nelts (type);
254
255 /* If we have an error_mark here, we should just return error mark
256 as we don't know the size of the array yet. */
257 if (max_index == error_mark_node)
258 return error_mark_node;
259 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
260
261 /* A zero-sized array, which is accepted as an extension, will
262 have an upper bound of -1. */
263 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
264 {
265 constructor_elt ce;
266
267 /* If this is a one element array, we just use a regular init. */
268 if (tree_int_cst_equal (size_zero_node, max_index))
269 ce.index = size_zero_node;
270 else
271 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
272 max_index);
273
274 ce.value = build_zero_init_1 (TREE_TYPE (type),
275 /*nelts=*/NULL_TREE,
276 static_storage_p, NULL_TREE);
277 if (ce.value)
278 {
279 vec_alloc (v, 1);
280 v->quick_push (ce);
281 }
282 }
283
284 /* Build a constructor to contain the initializations. */
285 init = build_constructor (type, v);
286 }
287 else if (VECTOR_TYPE_P (type))
288 init = build_zero_cst (type);
289 else
290 {
291 gcc_assert (TYPE_REF_P (type));
292 init = build_zero_cst (type);
293 }
294
295 /* In all cases, the initializer is a constant. */
296 if (init)
297 TREE_CONSTANT (init) = 1;
298
299 return init;
300 }
301
302 /* Return an expression for the zero-initialization of an object with
303 type T. This expression will either be a constant (in the case
304 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
305 aggregate), or NULL (in the case that T does not require
306 initialization). In either case, the value can be used as
307 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
308 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
309 is the number of elements in the array. If STATIC_STORAGE_P is
310 TRUE, initializers are only generated for entities for which
311 zero-initialization does not simply mean filling the storage with
312 zero bytes. */
313
314 tree
315 build_zero_init (tree type, tree nelts, bool static_storage_p)
316 {
317 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
318 }
319
320 /* Return a suitable initializer for value-initializing an object of type
321 TYPE, as described in [dcl.init]. */
322
323 tree
324 build_value_init (tree type, tsubst_flags_t complain)
325 {
326 /* [dcl.init]
327
328 To value-initialize an object of type T means:
329
330 - if T is a class type (clause 9) with either no default constructor
331 (12.1) or a default constructor that is user-provided or deleted,
332 then the object is default-initialized;
333
334 - if T is a (possibly cv-qualified) class type without a user-provided
335 or deleted default constructor, then the object is zero-initialized
336 and the semantic constraints for default-initialization are checked,
337 and if T has a non-trivial default constructor, the object is
338 default-initialized;
339
340 - if T is an array type, then each element is value-initialized;
341
342 - otherwise, the object is zero-initialized.
343
344 A program that calls for default-initialization or
345 value-initialization of an entity of reference type is ill-formed. */
346
347 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
348 gcc_assert (!processing_template_decl
349 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
350
351 if (CLASS_TYPE_P (type) && type_build_ctor_call (type))
352 {
353 tree ctor
354 = build_special_member_call (NULL_TREE, complete_ctor_identifier,
355 NULL, type, LOOKUP_NORMAL, complain);
356 if (ctor == error_mark_node || TREE_CONSTANT (ctor))
357 return ctor;
358 tree fn = NULL_TREE;
359 if (TREE_CODE (ctor) == CALL_EXPR)
360 fn = get_callee_fndecl (ctor);
361 ctor = build_aggr_init_expr (type, ctor);
362 if (fn && user_provided_p (fn))
363 return ctor;
364 else if (TYPE_HAS_COMPLEX_DFLT (type))
365 {
366 /* This is a class that needs constructing, but doesn't have
367 a user-provided constructor. So we need to zero-initialize
368 the object and then call the implicitly defined ctor.
369 This will be handled in simplify_aggr_init_expr. */
370 AGGR_INIT_ZERO_FIRST (ctor) = 1;
371 return ctor;
372 }
373 }
374
375 /* Discard any access checking during subobject initialization;
376 the checks are implied by the call to the ctor which we have
377 verified is OK (cpp0x/defaulted46.C). */
378 push_deferring_access_checks (dk_deferred);
379 tree r = build_value_init_noctor (type, complain);
380 pop_deferring_access_checks ();
381 return r;
382 }
383
384 /* Like build_value_init, but don't call the constructor for TYPE. Used
385 for base initializers. */
386
387 tree
388 build_value_init_noctor (tree type, tsubst_flags_t complain)
389 {
390 if (!COMPLETE_TYPE_P (type))
391 {
392 if (complain & tf_error)
393 error ("value-initialization of incomplete type %qT", type);
394 return error_mark_node;
395 }
396 /* FIXME the class and array cases should just use digest_init once it is
397 SFINAE-enabled. */
398 if (CLASS_TYPE_P (type))
399 {
400 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
401 || errorcount != 0);
402
403 if (TREE_CODE (type) != UNION_TYPE)
404 {
405 tree field;
406 vec<constructor_elt, va_gc> *v = NULL;
407
408 /* Iterate over the fields, building initializations. */
409 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
410 {
411 tree ftype, value;
412
413 if (TREE_CODE (field) != FIELD_DECL)
414 continue;
415
416 ftype = TREE_TYPE (field);
417
418 if (ftype == error_mark_node)
419 continue;
420
421 /* Ignore flexible array members for value initialization. */
422 if (TREE_CODE (ftype) == ARRAY_TYPE
423 && !COMPLETE_TYPE_P (ftype)
424 && !TYPE_DOMAIN (ftype)
425 && COMPLETE_TYPE_P (TREE_TYPE (ftype))
426 && (next_initializable_field (DECL_CHAIN (field))
427 == NULL_TREE))
428 continue;
429
430 /* We could skip vfields and fields of types with
431 user-defined constructors, but I think that won't improve
432 performance at all; it should be simpler in general just
433 to zero out the entire object than try to only zero the
434 bits that actually need it. */
435
436 /* Note that for class types there will be FIELD_DECLs
437 corresponding to base classes as well. Thus, iterating
438 over TYPE_FIELDs will result in correct initialization of
439 all of the subobjects. */
440 value = build_value_init (ftype, complain);
441 value = maybe_constant_init (value);
442
443 if (value == error_mark_node)
444 return error_mark_node;
445
446 CONSTRUCTOR_APPEND_ELT(v, field, value);
447
448 /* We shouldn't have gotten here for anything that would need
449 non-trivial initialization, and gimplify_init_ctor_preeval
450 would need to be fixed to allow it. */
451 gcc_assert (TREE_CODE (value) != TARGET_EXPR
452 && TREE_CODE (value) != AGGR_INIT_EXPR);
453 }
454
455 /* Build a constructor to contain the zero- initializations. */
456 return build_constructor (type, v);
457 }
458 }
459 else if (TREE_CODE (type) == ARRAY_TYPE)
460 {
461 vec<constructor_elt, va_gc> *v = NULL;
462
463 /* Iterate over the array elements, building initializations. */
464 tree max_index = array_type_nelts (type);
465
466 /* If we have an error_mark here, we should just return error mark
467 as we don't know the size of the array yet. */
468 if (max_index == error_mark_node)
469 {
470 if (complain & tf_error)
471 error ("cannot value-initialize array of unknown bound %qT",
472 type);
473 return error_mark_node;
474 }
475 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
476
477 /* A zero-sized array, which is accepted as an extension, will
478 have an upper bound of -1. */
479 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
480 {
481 constructor_elt ce;
482
483 /* If this is a one element array, we just use a regular init. */
484 if (tree_int_cst_equal (size_zero_node, max_index))
485 ce.index = size_zero_node;
486 else
487 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
488
489 ce.value = build_value_init (TREE_TYPE (type), complain);
490 ce.value = maybe_constant_init (ce.value);
491 if (ce.value == error_mark_node)
492 return error_mark_node;
493
494 vec_alloc (v, 1);
495 v->quick_push (ce);
496
497 /* We shouldn't have gotten here for anything that would need
498 non-trivial initialization, and gimplify_init_ctor_preeval
499 would need to be fixed to allow it. */
500 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
501 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
502 }
503
504 /* Build a constructor to contain the initializations. */
505 return build_constructor (type, v);
506 }
507 else if (TREE_CODE (type) == FUNCTION_TYPE)
508 {
509 if (complain & tf_error)
510 error ("value-initialization of function type %qT", type);
511 return error_mark_node;
512 }
513 else if (TYPE_REF_P (type))
514 {
515 if (complain & tf_error)
516 error ("value-initialization of reference type %qT", type);
517 return error_mark_node;
518 }
519
520 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
521 }
522
523 /* Initialize current class with INIT, a TREE_LIST of
524 arguments for a target constructor. If TREE_LIST is void_type_node,
525 an empty initializer list was given. */
526
527 static void
528 perform_target_ctor (tree init)
529 {
530 tree decl = current_class_ref;
531 tree type = current_class_type;
532
533 finish_expr_stmt (build_aggr_init (decl, init,
534 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
535 tf_warning_or_error));
536 if (type_build_dtor_call (type))
537 {
538 tree expr = build_delete (input_location,
539 type, decl, sfk_complete_destructor,
540 LOOKUP_NORMAL
541 |LOOKUP_NONVIRTUAL
542 |LOOKUP_DESTRUCTOR,
543 0, tf_warning_or_error);
544 if (expr != error_mark_node
545 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
546 finish_eh_cleanup (expr);
547 }
548 }
549
550 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
551
552 static GTY((cache)) decl_tree_cache_map *nsdmi_inst;
553
554 tree
555 get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain)
556 {
557 tree init;
558 tree save_ccp = current_class_ptr;
559 tree save_ccr = current_class_ref;
560
561 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
562 {
563 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
564 location_t expr_loc
565 = cp_expr_loc_or_loc (init, DECL_SOURCE_LOCATION (member));
566 if (TREE_CODE (init) == DEFERRED_PARSE)
567 /* Unparsed. */;
568 else if (tree *slot = hash_map_safe_get (nsdmi_inst, member))
569 init = *slot;
570 /* Check recursive instantiation. */
571 else if (DECL_INSTANTIATING_NSDMI_P (member))
572 {
573 if (complain & tf_error)
574 error_at (expr_loc, "recursive instantiation of default member "
575 "initializer for %qD", member);
576 init = error_mark_node;
577 }
578 else
579 {
580 cp_evaluated ev;
581
582 location_t sloc = input_location;
583 input_location = expr_loc;
584
585 DECL_INSTANTIATING_NSDMI_P (member) = 1;
586
587 bool pushed = false;
588 if (!currently_open_class (DECL_CONTEXT (member)))
589 {
590 push_to_top_level ();
591 push_nested_class (DECL_CONTEXT (member));
592 pushed = true;
593 }
594
595 gcc_checking_assert (!processing_template_decl);
596
597 inject_this_parameter (DECL_CONTEXT (member), TYPE_UNQUALIFIED);
598
599 start_lambda_scope (member);
600
601 /* Do deferred instantiation of the NSDMI. */
602 init = (tsubst_copy_and_build
603 (init, DECL_TI_ARGS (member),
604 complain, member, /*function_p=*/false,
605 /*integral_constant_expression_p=*/false));
606 init = digest_nsdmi_init (member, init, complain);
607
608 finish_lambda_scope ();
609
610 DECL_INSTANTIATING_NSDMI_P (member) = 0;
611
612 if (init != error_mark_node)
613 hash_map_safe_put<hm_ggc> (nsdmi_inst, member, init);
614
615 if (pushed)
616 {
617 pop_nested_class ();
618 pop_from_top_level ();
619 }
620
621 input_location = sloc;
622 }
623 }
624 else
625 init = DECL_INITIAL (member);
626
627 if (init && TREE_CODE (init) == DEFERRED_PARSE)
628 {
629 if (complain & tf_error)
630 {
631 error ("default member initializer for %qD required before the end "
632 "of its enclosing class", member);
633 inform (location_of (init), "defined here");
634 DECL_INITIAL (member) = error_mark_node;
635 }
636 init = error_mark_node;
637 }
638
639 if (in_ctor)
640 {
641 current_class_ptr = save_ccp;
642 current_class_ref = save_ccr;
643 }
644 else
645 {
646 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
647 refer to; constexpr evaluation knows what to do with it. */
648 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
649 current_class_ptr = build_address (current_class_ref);
650 }
651
652 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
653 so the aggregate init code below will see a CONSTRUCTOR. */
654 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
655 if (simple_target)
656 init = TARGET_EXPR_INITIAL (init);
657 init = break_out_target_exprs (init, /*loc*/true);
658 if (in_ctor && init && TREE_CODE (init) == TARGET_EXPR)
659 /* This expresses the full initialization, prevent perform_member_init from
660 calling another constructor (58162). */
661 TARGET_EXPR_DIRECT_INIT_P (init) = true;
662 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
663 /* Now put it back so C++17 copy elision works. */
664 init = get_target_expr (init);
665
666 current_class_ptr = save_ccp;
667 current_class_ref = save_ccr;
668 return init;
669 }
670
671 /* Diagnose the flexible array MEMBER if its INITializer is non-null
672 and return true if so. Otherwise return false. */
673
674 bool
675 maybe_reject_flexarray_init (tree member, tree init)
676 {
677 tree type = TREE_TYPE (member);
678
679 if (!init
680 || TREE_CODE (type) != ARRAY_TYPE
681 || TYPE_DOMAIN (type))
682 return false;
683
684 /* Point at the flexible array member declaration if it's initialized
685 in-class, and at the ctor if it's initialized in a ctor member
686 initializer list. */
687 location_t loc;
688 if (DECL_INITIAL (member) == init
689 || !current_function_decl
690 || DECL_DEFAULTED_FN (current_function_decl))
691 loc = DECL_SOURCE_LOCATION (member);
692 else
693 loc = DECL_SOURCE_LOCATION (current_function_decl);
694
695 error_at (loc, "initializer for flexible array member %q#D", member);
696 return true;
697 }
698
699 /* If INIT's value can come from a call to std::initializer_list<T>::begin,
700 return that function. Otherwise, NULL_TREE. */
701
702 static tree
703 find_list_begin (tree init)
704 {
705 STRIP_NOPS (init);
706 while (TREE_CODE (init) == COMPOUND_EXPR)
707 init = TREE_OPERAND (init, 1);
708 STRIP_NOPS (init);
709 if (TREE_CODE (init) == COND_EXPR)
710 {
711 tree left = TREE_OPERAND (init, 1);
712 if (!left)
713 left = TREE_OPERAND (init, 0);
714 left = find_list_begin (left);
715 if (left)
716 return left;
717 return find_list_begin (TREE_OPERAND (init, 2));
718 }
719 if (TREE_CODE (init) == CALL_EXPR)
720 if (tree fn = get_callee_fndecl (init))
721 if (id_equal (DECL_NAME (fn), "begin")
722 && is_std_init_list (DECL_CONTEXT (fn)))
723 return fn;
724 return NULL_TREE;
725 }
726
727 /* If INIT initializing MEMBER is copying the address of the underlying array
728 of an initializer_list, warn. */
729
730 static void
731 maybe_warn_list_ctor (tree member, tree init)
732 {
733 tree memtype = TREE_TYPE (member);
734 if (!init || !TYPE_PTR_P (memtype)
735 || !is_list_ctor (current_function_decl))
736 return;
737
738 tree parms = FUNCTION_FIRST_USER_PARMTYPE (current_function_decl);
739 tree initlist = non_reference (TREE_VALUE (parms));
740 tree targs = CLASSTYPE_TI_ARGS (initlist);
741 tree elttype = TREE_VEC_ELT (targs, 0);
742
743 if (!same_type_ignoring_top_level_qualifiers_p
744 (TREE_TYPE (memtype), elttype))
745 return;
746
747 tree begin = find_list_begin (init);
748 if (!begin)
749 return;
750
751 location_t loc = cp_expr_loc_or_input_loc (init);
752 warning_at (loc, OPT_Winit_list_lifetime,
753 "initializing %qD from %qE does not extend the lifetime "
754 "of the underlying array", member, begin);
755 }
756
757 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
758 arguments. If TREE_LIST is void_type_node, an empty initializer
759 list was given; if NULL_TREE no initializer was given. */
760
761 static void
762 perform_member_init (tree member, tree init)
763 {
764 tree decl;
765 tree type = TREE_TYPE (member);
766
767 /* Use the non-static data member initializer if there was no
768 mem-initializer for this field. */
769 if (init == NULL_TREE)
770 init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error);
771
772 if (init == error_mark_node)
773 return;
774
775 /* Effective C++ rule 12 requires that all data members be
776 initialized. */
777 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
778 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
779 "%qD should be initialized in the member initialization list",
780 member);
781
782 /* Get an lvalue for the data member. */
783 decl = build_class_member_access_expr (current_class_ref, member,
784 /*access_path=*/NULL_TREE,
785 /*preserve_reference=*/true,
786 tf_warning_or_error);
787 if (decl == error_mark_node)
788 return;
789
790 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
791 && TREE_CHAIN (init) == NULL_TREE)
792 {
793 tree val = TREE_VALUE (init);
794 /* Handle references. */
795 if (REFERENCE_REF_P (val))
796 val = TREE_OPERAND (val, 0);
797 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
798 && TREE_OPERAND (val, 0) == current_class_ref)
799 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
800 OPT_Winit_self, "%qD is initialized with itself",
801 member);
802 }
803
804 if (array_of_unknown_bound_p (type))
805 {
806 maybe_reject_flexarray_init (member, init);
807 return;
808 }
809
810 if (init && TREE_CODE (init) == TREE_LIST
811 && (DIRECT_LIST_INIT_P (TREE_VALUE (init))
812 /* FIXME C++20 parenthesized aggregate init (PR 92812). */
813 || !(/* cxx_dialect >= cxx2a ? CP_AGGREGATE_TYPE_P (type) */
814 /* : */CLASS_TYPE_P (type))))
815 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
816 tf_warning_or_error);
817
818 if (init == void_type_node)
819 {
820 /* mem() means value-initialization. */
821 if (TREE_CODE (type) == ARRAY_TYPE)
822 {
823 init = build_vec_init_expr (type, init, tf_warning_or_error);
824 init = build2 (INIT_EXPR, type, decl, init);
825 finish_expr_stmt (init);
826 }
827 else
828 {
829 tree value = build_value_init (type, tf_warning_or_error);
830 if (value == error_mark_node)
831 return;
832 init = build2 (INIT_EXPR, type, decl, value);
833 finish_expr_stmt (init);
834 }
835 }
836 /* Deal with this here, as we will get confused if we try to call the
837 assignment op for an anonymous union. This can happen in a
838 synthesized copy constructor. */
839 else if (ANON_AGGR_TYPE_P (type))
840 {
841 if (init)
842 {
843 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
844 finish_expr_stmt (init);
845 }
846 }
847 else if (init
848 && (TYPE_REF_P (type)
849 || (TREE_CODE (init) == CONSTRUCTOR
850 && (CP_AGGREGATE_TYPE_P (type)
851 || is_std_init_list (type)))))
852 {
853 /* With references and list-initialization, we need to deal with
854 extending temporary lifetimes. 12.2p5: "A temporary bound to a
855 reference member in a constructor’s ctor-initializer (12.6.2)
856 persists until the constructor exits." */
857 unsigned i; tree t;
858 releasing_vec cleanups;
859 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
860 {
861 if (BRACE_ENCLOSED_INITIALIZER_P (init)
862 && CP_AGGREGATE_TYPE_P (type))
863 init = reshape_init (type, init, tf_warning_or_error);
864 init = digest_init (type, init, tf_warning_or_error);
865 }
866 if (init == error_mark_node)
867 return;
868 /* A FIELD_DECL doesn't really have a suitable lifetime, but
869 make_temporary_var_for_ref_to_temp will treat it as automatic and
870 set_up_extended_ref_temp wants to use the decl in a warning. */
871 init = extend_ref_init_temps (member, init, &cleanups);
872 if (TREE_CODE (type) == ARRAY_TYPE
873 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
874 init = build_vec_init_expr (type, init, tf_warning_or_error);
875 init = build2 (INIT_EXPR, type, decl, init);
876 finish_expr_stmt (init);
877 FOR_EACH_VEC_ELT (*cleanups, i, t)
878 push_cleanup (decl, t, false);
879 }
880 else if (type_build_ctor_call (type)
881 || (init && CLASS_TYPE_P (strip_array_types (type))))
882 {
883 if (TREE_CODE (type) == ARRAY_TYPE)
884 {
885 if (init == NULL_TREE
886 || same_type_ignoring_top_level_qualifiers_p (type,
887 TREE_TYPE (init)))
888 {
889 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
890 {
891 /* Initialize the array only if it's not a flexible
892 array member (i.e., if it has an upper bound). */
893 init = build_vec_init_expr (type, init, tf_warning_or_error);
894 init = build2 (INIT_EXPR, type, decl, init);
895 finish_expr_stmt (init);
896 }
897 }
898 else
899 error ("invalid initializer for array member %q#D", member);
900 }
901 else
902 {
903 int flags = LOOKUP_NORMAL;
904 if (DECL_DEFAULTED_FN (current_function_decl))
905 flags |= LOOKUP_DEFAULTED;
906 if (CP_TYPE_CONST_P (type)
907 && init == NULL_TREE
908 && default_init_uninitialized_part (type))
909 {
910 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
911 vtable; still give this diagnostic. */
912 auto_diagnostic_group d;
913 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
914 "uninitialized const member in %q#T", type))
915 inform (DECL_SOURCE_LOCATION (member),
916 "%q#D should be initialized", member );
917 }
918 finish_expr_stmt (build_aggr_init (decl, init, flags,
919 tf_warning_or_error));
920 }
921 }
922 else
923 {
924 if (init == NULL_TREE)
925 {
926 tree core_type;
927 /* member traversal: note it leaves init NULL */
928 if (TYPE_REF_P (type))
929 {
930 auto_diagnostic_group d;
931 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
932 "uninitialized reference member in %q#T", type))
933 inform (DECL_SOURCE_LOCATION (member),
934 "%q#D should be initialized", member);
935 }
936 else if (CP_TYPE_CONST_P (type))
937 {
938 auto_diagnostic_group d;
939 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
940 "uninitialized const member in %q#T", type))
941 inform (DECL_SOURCE_LOCATION (member),
942 "%q#D should be initialized", member );
943 }
944
945 core_type = strip_array_types (type);
946
947 if (CLASS_TYPE_P (core_type)
948 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
949 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
950 diagnose_uninitialized_cst_or_ref_member (core_type,
951 /*using_new=*/false,
952 /*complain=*/true);
953 }
954
955 maybe_warn_list_ctor (member, init);
956
957 if (init)
958 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
959 INIT_EXPR, init,
960 tf_warning_or_error));
961 }
962
963 if (type_build_dtor_call (type))
964 {
965 tree expr;
966
967 expr = build_class_member_access_expr (current_class_ref, member,
968 /*access_path=*/NULL_TREE,
969 /*preserve_reference=*/false,
970 tf_warning_or_error);
971 expr = build_delete (input_location,
972 type, expr, sfk_complete_destructor,
973 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
974 tf_warning_or_error);
975
976 if (expr != error_mark_node
977 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
978 finish_eh_cleanup (expr);
979 }
980 }
981
982 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
983 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
984
985 static tree
986 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
987 {
988 tree fields;
989
990 /* Note whether or not T is a union. */
991 if (TREE_CODE (t) == UNION_TYPE)
992 *uses_unions_or_anon_p = 1;
993
994 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
995 {
996 tree fieldtype;
997
998 /* Skip CONST_DECLs for enumeration constants and so forth. */
999 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
1000 continue;
1001
1002 fieldtype = TREE_TYPE (fields);
1003
1004 /* For an anonymous struct or union, we must recursively
1005 consider the fields of the anonymous type. They can be
1006 directly initialized from the constructor. */
1007 if (ANON_AGGR_TYPE_P (fieldtype))
1008 {
1009 /* Add this field itself. Synthesized copy constructors
1010 initialize the entire aggregate. */
1011 list = tree_cons (fields, NULL_TREE, list);
1012 /* And now add the fields in the anonymous aggregate. */
1013 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
1014 *uses_unions_or_anon_p = 1;
1015 }
1016 /* Add this field. */
1017 else if (DECL_NAME (fields))
1018 list = tree_cons (fields, NULL_TREE, list);
1019 }
1020
1021 return list;
1022 }
1023
1024 /* Return the innermost aggregate scope for FIELD, whether that is
1025 the enclosing class or an anonymous aggregate within it. */
1026
1027 static tree
1028 innermost_aggr_scope (tree field)
1029 {
1030 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1031 return TREE_TYPE (field);
1032 else
1033 return DECL_CONTEXT (field);
1034 }
1035
1036 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
1037 a FIELD_DECL or BINFO in T that needs initialization. The
1038 TREE_VALUE gives the initializer, or list of initializer arguments.
1039
1040 Return a TREE_LIST containing all of the initializations required
1041 for T, in the order in which they should be performed. The output
1042 list has the same format as the input. */
1043
1044 static tree
1045 sort_mem_initializers (tree t, tree mem_inits)
1046 {
1047 tree init;
1048 tree base, binfo, base_binfo;
1049 tree sorted_inits;
1050 tree next_subobject;
1051 vec<tree, va_gc> *vbases;
1052 int i;
1053 int uses_unions_or_anon_p = 0;
1054
1055 /* Build up a list of initializations. The TREE_PURPOSE of entry
1056 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
1057 TREE_VALUE will be the constructor arguments, or NULL if no
1058 explicit initialization was provided. */
1059 sorted_inits = NULL_TREE;
1060
1061 /* Process the virtual bases. */
1062 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
1063 vec_safe_iterate (vbases, i, &base); i++)
1064 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
1065
1066 /* Process the direct bases. */
1067 for (binfo = TYPE_BINFO (t), i = 0;
1068 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
1069 if (!BINFO_VIRTUAL_P (base_binfo))
1070 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
1071
1072 /* Process the non-static data members. */
1073 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
1074 /* Reverse the entire list of initializations, so that they are in
1075 the order that they will actually be performed. */
1076 sorted_inits = nreverse (sorted_inits);
1077
1078 /* If the user presented the initializers in an order different from
1079 that in which they will actually occur, we issue a warning. Keep
1080 track of the next subobject which can be explicitly initialized
1081 without issuing a warning. */
1082 next_subobject = sorted_inits;
1083
1084 /* Go through the explicit initializers, filling in TREE_PURPOSE in
1085 the SORTED_INITS. */
1086 for (init = mem_inits; init; init = TREE_CHAIN (init))
1087 {
1088 tree subobject;
1089 tree subobject_init;
1090
1091 subobject = TREE_PURPOSE (init);
1092
1093 /* If the explicit initializers are in sorted order, then
1094 SUBOBJECT will be NEXT_SUBOBJECT, or something following
1095 it. */
1096 for (subobject_init = next_subobject;
1097 subobject_init;
1098 subobject_init = TREE_CHAIN (subobject_init))
1099 if (TREE_PURPOSE (subobject_init) == subobject)
1100 break;
1101
1102 /* Issue a warning if the explicit initializer order does not
1103 match that which will actually occur.
1104 ??? Are all these on the correct lines? */
1105 if (warn_reorder && !subobject_init)
1106 {
1107 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
1108 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
1109 OPT_Wreorder, "%qD will be initialized after",
1110 TREE_PURPOSE (next_subobject));
1111 else
1112 warning (OPT_Wreorder, "base %qT will be initialized after",
1113 TREE_PURPOSE (next_subobject));
1114 if (TREE_CODE (subobject) == FIELD_DECL)
1115 warning_at (DECL_SOURCE_LOCATION (subobject),
1116 OPT_Wreorder, " %q#D", subobject);
1117 else
1118 warning (OPT_Wreorder, " base %qT", subobject);
1119 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1120 OPT_Wreorder, " when initialized here");
1121 }
1122
1123 /* Look again, from the beginning of the list. */
1124 if (!subobject_init)
1125 {
1126 subobject_init = sorted_inits;
1127 while (TREE_PURPOSE (subobject_init) != subobject)
1128 subobject_init = TREE_CHAIN (subobject_init);
1129 }
1130
1131 /* It is invalid to initialize the same subobject more than
1132 once. */
1133 if (TREE_VALUE (subobject_init))
1134 {
1135 if (TREE_CODE (subobject) == FIELD_DECL)
1136 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1137 "multiple initializations given for %qD",
1138 subobject);
1139 else
1140 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1141 "multiple initializations given for base %qT",
1142 subobject);
1143 }
1144
1145 /* Record the initialization. */
1146 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1147 next_subobject = subobject_init;
1148 }
1149
1150 /* [class.base.init]
1151
1152 If a ctor-initializer specifies more than one mem-initializer for
1153 multiple members of the same union (including members of
1154 anonymous unions), the ctor-initializer is ill-formed.
1155
1156 Here we also splice out uninitialized union members. */
1157 if (uses_unions_or_anon_p)
1158 {
1159 tree *last_p = NULL;
1160 tree *p;
1161 for (p = &sorted_inits; *p; )
1162 {
1163 tree field;
1164 tree ctx;
1165
1166 init = *p;
1167
1168 field = TREE_PURPOSE (init);
1169
1170 /* Skip base classes. */
1171 if (TREE_CODE (field) != FIELD_DECL)
1172 goto next;
1173
1174 /* If this is an anonymous aggregate with no explicit initializer,
1175 splice it out. */
1176 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1177 goto splice;
1178
1179 /* See if this field is a member of a union, or a member of a
1180 structure contained in a union, etc. */
1181 ctx = innermost_aggr_scope (field);
1182
1183 /* If this field is not a member of a union, skip it. */
1184 if (TREE_CODE (ctx) != UNION_TYPE
1185 && !ANON_AGGR_TYPE_P (ctx))
1186 goto next;
1187
1188 /* If this union member has no explicit initializer and no NSDMI,
1189 splice it out. */
1190 if (TREE_VALUE (init) || DECL_INITIAL (field))
1191 /* OK. */;
1192 else
1193 goto splice;
1194
1195 /* It's only an error if we have two initializers for the same
1196 union type. */
1197 if (!last_p)
1198 {
1199 last_p = p;
1200 goto next;
1201 }
1202
1203 /* See if LAST_FIELD and the field initialized by INIT are
1204 members of the same union (or the union itself). If so, there's
1205 a problem, unless they're actually members of the same structure
1206 which is itself a member of a union. For example, given:
1207
1208 union { struct { int i; int j; }; };
1209
1210 initializing both `i' and `j' makes sense. */
1211 ctx = common_enclosing_class
1212 (innermost_aggr_scope (field),
1213 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1214
1215 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1216 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1217 {
1218 /* A mem-initializer hides an NSDMI. */
1219 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1220 *last_p = TREE_CHAIN (*last_p);
1221 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1222 goto splice;
1223 else
1224 {
1225 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1226 "initializations for multiple members of %qT",
1227 ctx);
1228 goto splice;
1229 }
1230 }
1231
1232 last_p = p;
1233
1234 next:
1235 p = &TREE_CHAIN (*p);
1236 continue;
1237 splice:
1238 *p = TREE_CHAIN (*p);
1239 continue;
1240 }
1241 }
1242
1243 return sorted_inits;
1244 }
1245
1246 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */
1247
1248 static tree
1249 mark_exp_read_r (tree *tp, int *, void *)
1250 {
1251 tree t = *tp;
1252 if (TREE_CODE (t) == PARM_DECL)
1253 mark_exp_read (t);
1254 return NULL_TREE;
1255 }
1256
1257 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1258 is a TREE_LIST giving the explicit mem-initializer-list for the
1259 constructor. The TREE_PURPOSE of each entry is a subobject (a
1260 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1261 is a TREE_LIST giving the arguments to the constructor or
1262 void_type_node for an empty list of arguments. */
1263
1264 void
1265 emit_mem_initializers (tree mem_inits)
1266 {
1267 int flags = LOOKUP_NORMAL;
1268
1269 /* We will already have issued an error message about the fact that
1270 the type is incomplete. */
1271 if (!COMPLETE_TYPE_P (current_class_type))
1272 return;
1273
1274 if (mem_inits
1275 && TYPE_P (TREE_PURPOSE (mem_inits))
1276 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1277 {
1278 /* Delegating constructor. */
1279 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1280 perform_target_ctor (TREE_VALUE (mem_inits));
1281 return;
1282 }
1283
1284 if (DECL_DEFAULTED_FN (current_function_decl)
1285 && ! DECL_INHERITED_CTOR (current_function_decl))
1286 flags |= LOOKUP_DEFAULTED;
1287
1288 /* Sort the mem-initializers into the order in which the
1289 initializations should be performed. */
1290 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1291
1292 in_base_initializer = 1;
1293
1294 /* Initialize base classes. */
1295 for (; (mem_inits
1296 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1297 mem_inits = TREE_CHAIN (mem_inits))
1298 {
1299 tree subobject = TREE_PURPOSE (mem_inits);
1300 tree arguments = TREE_VALUE (mem_inits);
1301
1302 /* We already have issued an error message. */
1303 if (arguments == error_mark_node)
1304 continue;
1305
1306 /* Suppress access control when calling the inherited ctor. */
1307 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1308 && flag_new_inheriting_ctors
1309 && arguments);
1310 if (inherited_base)
1311 push_deferring_access_checks (dk_deferred);
1312
1313 if (arguments == NULL_TREE)
1314 {
1315 /* If these initializations are taking place in a copy constructor,
1316 the base class should probably be explicitly initialized if there
1317 is a user-defined constructor in the base class (other than the
1318 default constructor, which will be called anyway). */
1319 if (extra_warnings
1320 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1321 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1322 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1323 OPT_Wextra, "base class %q#T should be explicitly "
1324 "initialized in the copy constructor",
1325 BINFO_TYPE (subobject));
1326 }
1327
1328 /* Initialize the base. */
1329 if (!BINFO_VIRTUAL_P (subobject))
1330 {
1331 tree base_addr;
1332
1333 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1334 subobject, 1, tf_warning_or_error);
1335 expand_aggr_init_1 (subobject, NULL_TREE,
1336 cp_build_fold_indirect_ref (base_addr),
1337 arguments,
1338 flags,
1339 tf_warning_or_error);
1340 expand_cleanup_for_base (subobject, NULL_TREE);
1341 }
1342 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1343 /* C++14 DR1658 Means we do not have to construct vbases of
1344 abstract classes. */
1345 construct_virtual_base (subobject, arguments);
1346 else
1347 /* When not constructing vbases of abstract classes, at least mark
1348 the arguments expressions as read to avoid
1349 -Wunused-but-set-parameter false positives. */
1350 cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1351
1352 if (inherited_base)
1353 pop_deferring_access_checks ();
1354 }
1355 in_base_initializer = 0;
1356
1357 /* Initialize the vptrs. */
1358 initialize_vtbl_ptrs (current_class_ptr);
1359
1360 /* Initialize the data members. */
1361 while (mem_inits)
1362 {
1363 perform_member_init (TREE_PURPOSE (mem_inits),
1364 TREE_VALUE (mem_inits));
1365 mem_inits = TREE_CHAIN (mem_inits);
1366 }
1367 }
1368
1369 /* Returns the address of the vtable (i.e., the value that should be
1370 assigned to the vptr) for BINFO. */
1371
1372 tree
1373 build_vtbl_address (tree binfo)
1374 {
1375 tree binfo_for = binfo;
1376 tree vtbl;
1377
1378 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1379 /* If this is a virtual primary base, then the vtable we want to store
1380 is that for the base this is being used as the primary base of. We
1381 can't simply skip the initialization, because we may be expanding the
1382 inits of a subobject constructor where the virtual base layout
1383 can be different. */
1384 while (BINFO_PRIMARY_P (binfo_for))
1385 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1386
1387 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1388 used. */
1389 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1390 TREE_USED (vtbl) = true;
1391
1392 /* Now compute the address to use when initializing the vptr. */
1393 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1394 if (VAR_P (vtbl))
1395 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1396
1397 return vtbl;
1398 }
1399
1400 /* This code sets up the virtual function tables appropriate for
1401 the pointer DECL. It is a one-ply initialization.
1402
1403 BINFO is the exact type that DECL is supposed to be. In
1404 multiple inheritance, this might mean "C's A" if C : A, B. */
1405
1406 static void
1407 expand_virtual_init (tree binfo, tree decl)
1408 {
1409 tree vtbl, vtbl_ptr;
1410 tree vtt_index;
1411
1412 /* Compute the initializer for vptr. */
1413 vtbl = build_vtbl_address (binfo);
1414
1415 /* We may get this vptr from a VTT, if this is a subobject
1416 constructor or subobject destructor. */
1417 vtt_index = BINFO_VPTR_INDEX (binfo);
1418 if (vtt_index)
1419 {
1420 tree vtbl2;
1421 tree vtt_parm;
1422
1423 /* Compute the value to use, when there's a VTT. */
1424 vtt_parm = current_vtt_parm;
1425 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1426 vtbl2 = cp_build_fold_indirect_ref (vtbl2);
1427 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1428
1429 /* The actual initializer is the VTT value only in the subobject
1430 constructor. In maybe_clone_body we'll substitute NULL for
1431 the vtt_parm in the case of the non-subobject constructor. */
1432 vtbl = build_if_in_charge (vtbl, vtbl2);
1433 }
1434
1435 /* Compute the location of the vtpr. */
1436 vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl),
1437 TREE_TYPE (binfo));
1438 gcc_assert (vtbl_ptr != error_mark_node);
1439
1440 /* Assign the vtable to the vptr. */
1441 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1442 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1443 vtbl, tf_warning_or_error));
1444 }
1445
1446 /* If an exception is thrown in a constructor, those base classes already
1447 constructed must be destroyed. This function creates the cleanup
1448 for BINFO, which has just been constructed. If FLAG is non-NULL,
1449 it is a DECL which is nonzero when this base needs to be
1450 destroyed. */
1451
1452 static void
1453 expand_cleanup_for_base (tree binfo, tree flag)
1454 {
1455 tree expr;
1456
1457 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1458 return;
1459
1460 /* Call the destructor. */
1461 expr = build_special_member_call (current_class_ref,
1462 base_dtor_identifier,
1463 NULL,
1464 binfo,
1465 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1466 tf_warning_or_error);
1467
1468 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1469 return;
1470
1471 if (flag)
1472 expr = fold_build3_loc (input_location,
1473 COND_EXPR, void_type_node,
1474 c_common_truthvalue_conversion (input_location, flag),
1475 expr, integer_zero_node);
1476
1477 finish_eh_cleanup (expr);
1478 }
1479
1480 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1481 constructor. */
1482
1483 static void
1484 construct_virtual_base (tree vbase, tree arguments)
1485 {
1486 tree inner_if_stmt;
1487 tree exp;
1488 tree flag;
1489
1490 /* If there are virtual base classes with destructors, we need to
1491 emit cleanups to destroy them if an exception is thrown during
1492 the construction process. These exception regions (i.e., the
1493 period during which the cleanups must occur) begin from the time
1494 the construction is complete to the end of the function. If we
1495 create a conditional block in which to initialize the
1496 base-classes, then the cleanup region for the virtual base begins
1497 inside a block, and ends outside of that block. This situation
1498 confuses the sjlj exception-handling code. Therefore, we do not
1499 create a single conditional block, but one for each
1500 initialization. (That way the cleanup regions always begin
1501 in the outer block.) We trust the back end to figure out
1502 that the FLAG will not change across initializations, and
1503 avoid doing multiple tests. */
1504 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1505 inner_if_stmt = begin_if_stmt ();
1506 finish_if_stmt_cond (flag, inner_if_stmt);
1507
1508 /* Compute the location of the virtual base. If we're
1509 constructing virtual bases, then we must be the most derived
1510 class. Therefore, we don't have to look up the virtual base;
1511 we already know where it is. */
1512 exp = convert_to_base_statically (current_class_ref, vbase);
1513
1514 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1515 0, tf_warning_or_error);
1516 finish_then_clause (inner_if_stmt);
1517 finish_if_stmt (inner_if_stmt);
1518
1519 expand_cleanup_for_base (vbase, flag);
1520 }
1521
1522 /* Find the context in which this FIELD can be initialized. */
1523
1524 static tree
1525 initializing_context (tree field)
1526 {
1527 tree t = DECL_CONTEXT (field);
1528
1529 /* Anonymous union members can be initialized in the first enclosing
1530 non-anonymous union context. */
1531 while (t && ANON_AGGR_TYPE_P (t))
1532 t = TYPE_CONTEXT (t);
1533 return t;
1534 }
1535
1536 /* Function to give error message if member initialization specification
1537 is erroneous. FIELD is the member we decided to initialize.
1538 TYPE is the type for which the initialization is being performed.
1539 FIELD must be a member of TYPE.
1540
1541 MEMBER_NAME is the name of the member. */
1542
1543 static int
1544 member_init_ok_or_else (tree field, tree type, tree member_name)
1545 {
1546 if (field == error_mark_node)
1547 return 0;
1548 if (!field)
1549 {
1550 error ("class %qT does not have any field named %qD", type,
1551 member_name);
1552 return 0;
1553 }
1554 if (VAR_P (field))
1555 {
1556 error ("%q#D is a static data member; it can only be "
1557 "initialized at its definition",
1558 field);
1559 return 0;
1560 }
1561 if (TREE_CODE (field) != FIELD_DECL)
1562 {
1563 error ("%q#D is not a non-static data member of %qT",
1564 field, type);
1565 return 0;
1566 }
1567 if (initializing_context (field) != type)
1568 {
1569 error ("class %qT does not have any field named %qD", type,
1570 member_name);
1571 return 0;
1572 }
1573
1574 return 1;
1575 }
1576
1577 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1578 is a _TYPE node or TYPE_DECL which names a base for that type.
1579 Check the validity of NAME, and return either the base _TYPE, base
1580 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1581 NULL_TREE and issue a diagnostic.
1582
1583 An old style unnamed direct single base construction is permitted,
1584 where NAME is NULL. */
1585
1586 tree
1587 expand_member_init (tree name)
1588 {
1589 tree basetype;
1590 tree field;
1591
1592 if (!current_class_ref)
1593 return NULL_TREE;
1594
1595 if (!name)
1596 {
1597 /* This is an obsolete unnamed base class initializer. The
1598 parser will already have warned about its use. */
1599 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1600 {
1601 case 0:
1602 error ("unnamed initializer for %qT, which has no base classes",
1603 current_class_type);
1604 return NULL_TREE;
1605 case 1:
1606 basetype = BINFO_TYPE
1607 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1608 break;
1609 default:
1610 error ("unnamed initializer for %qT, which uses multiple inheritance",
1611 current_class_type);
1612 return NULL_TREE;
1613 }
1614 }
1615 else if (TYPE_P (name))
1616 {
1617 basetype = TYPE_MAIN_VARIANT (name);
1618 name = TYPE_NAME (name);
1619 }
1620 else if (TREE_CODE (name) == TYPE_DECL)
1621 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1622 else
1623 basetype = NULL_TREE;
1624
1625 if (basetype)
1626 {
1627 tree class_binfo;
1628 tree direct_binfo;
1629 tree virtual_binfo;
1630 int i;
1631
1632 if (current_template_parms
1633 || same_type_p (basetype, current_class_type))
1634 return basetype;
1635
1636 class_binfo = TYPE_BINFO (current_class_type);
1637 direct_binfo = NULL_TREE;
1638 virtual_binfo = NULL_TREE;
1639
1640 /* Look for a direct base. */
1641 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1642 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1643 break;
1644
1645 /* Look for a virtual base -- unless the direct base is itself
1646 virtual. */
1647 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1648 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1649
1650 /* [class.base.init]
1651
1652 If a mem-initializer-id is ambiguous because it designates
1653 both a direct non-virtual base class and an inherited virtual
1654 base class, the mem-initializer is ill-formed. */
1655 if (direct_binfo && virtual_binfo)
1656 {
1657 error ("%qD is both a direct base and an indirect virtual base",
1658 basetype);
1659 return NULL_TREE;
1660 }
1661
1662 if (!direct_binfo && !virtual_binfo)
1663 {
1664 if (CLASSTYPE_VBASECLASSES (current_class_type))
1665 error ("type %qT is not a direct or virtual base of %qT",
1666 basetype, current_class_type);
1667 else
1668 error ("type %qT is not a direct base of %qT",
1669 basetype, current_class_type);
1670 return NULL_TREE;
1671 }
1672
1673 return direct_binfo ? direct_binfo : virtual_binfo;
1674 }
1675 else
1676 {
1677 if (identifier_p (name))
1678 field = lookup_field (current_class_type, name, 1, false);
1679 else
1680 field = name;
1681
1682 if (member_init_ok_or_else (field, current_class_type, name))
1683 return field;
1684 }
1685
1686 return NULL_TREE;
1687 }
1688
1689 /* This is like `expand_member_init', only it stores one aggregate
1690 value into another.
1691
1692 INIT comes in two flavors: it is either a value which
1693 is to be stored in EXP, or it is a parameter list
1694 to go to a constructor, which will operate on EXP.
1695 If INIT is not a parameter list for a constructor, then set
1696 LOOKUP_ONLYCONVERTING.
1697 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1698 the initializer, if FLAGS is 0, then it is the (init) form.
1699 If `init' is a CONSTRUCTOR, then we emit a warning message,
1700 explaining that such initializations are invalid.
1701
1702 If INIT resolves to a CALL_EXPR which happens to return
1703 something of the type we are looking for, then we know
1704 that we can safely use that call to perform the
1705 initialization.
1706
1707 The virtual function table pointer cannot be set up here, because
1708 we do not really know its type.
1709
1710 This never calls operator=().
1711
1712 When initializing, nothing is CONST.
1713
1714 A default copy constructor may have to be used to perform the
1715 initialization.
1716
1717 A constructor or a conversion operator may have to be used to
1718 perform the initialization, but not both, as it would be ambiguous. */
1719
1720 tree
1721 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1722 {
1723 tree stmt_expr;
1724 tree compound_stmt;
1725 int destroy_temps;
1726 tree type = TREE_TYPE (exp);
1727 int was_const = TREE_READONLY (exp);
1728 int was_volatile = TREE_THIS_VOLATILE (exp);
1729 int is_global;
1730
1731 if (init == error_mark_node)
1732 return error_mark_node;
1733
1734 location_t init_loc = (init
1735 ? cp_expr_loc_or_input_loc (init)
1736 : location_of (exp));
1737
1738 TREE_READONLY (exp) = 0;
1739 TREE_THIS_VOLATILE (exp) = 0;
1740
1741 if (TREE_CODE (type) == ARRAY_TYPE)
1742 {
1743 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1744 int from_array = 0;
1745
1746 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1747 {
1748 from_array = 1;
1749 init = mark_rvalue_use (init);
1750 if (init
1751 && DECL_P (tree_strip_any_location_wrapper (init))
1752 && !(flags & LOOKUP_ONLYCONVERTING))
1753 {
1754 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1755 recognizes it as direct-initialization. */
1756 init = build_constructor_single (init_list_type_node,
1757 NULL_TREE, init);
1758 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1759 }
1760 }
1761 else
1762 {
1763 /* Must arrange to initialize each element of EXP
1764 from elements of INIT. */
1765 if (cv_qualified_p (type))
1766 TREE_TYPE (exp) = cv_unqualified (type);
1767 if (itype && cv_qualified_p (itype))
1768 TREE_TYPE (init) = cv_unqualified (itype);
1769 from_array = (itype && same_type_p (TREE_TYPE (init),
1770 TREE_TYPE (exp)));
1771
1772 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)
1773 && (!from_array
1774 || (TREE_CODE (init) != CONSTRUCTOR
1775 /* Can happen, eg, handling the compound-literals
1776 extension (ext/complit12.C). */
1777 && TREE_CODE (init) != TARGET_EXPR)))
1778 {
1779 if (complain & tf_error)
1780 error_at (init_loc, "array must be initialized "
1781 "with a brace-enclosed initializer");
1782 return error_mark_node;
1783 }
1784 }
1785
1786 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1787 /*explicit_value_init_p=*/false,
1788 from_array,
1789 complain);
1790 TREE_READONLY (exp) = was_const;
1791 TREE_THIS_VOLATILE (exp) = was_volatile;
1792 TREE_TYPE (exp) = type;
1793 /* Restore the type of init unless it was used directly. */
1794 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1795 TREE_TYPE (init) = itype;
1796 return stmt_expr;
1797 }
1798
1799 if (init && init != void_type_node
1800 && TREE_CODE (init) != TREE_LIST
1801 && !(TREE_CODE (init) == TARGET_EXPR
1802 && TARGET_EXPR_DIRECT_INIT_P (init))
1803 && !DIRECT_LIST_INIT_P (init))
1804 flags |= LOOKUP_ONLYCONVERTING;
1805
1806 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1807 destroy_temps = stmts_are_full_exprs_p ();
1808 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1809 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1810 init, LOOKUP_NORMAL|flags, complain);
1811 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1812 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1813 TREE_READONLY (exp) = was_const;
1814 TREE_THIS_VOLATILE (exp) = was_volatile;
1815
1816 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1817 && TREE_SIDE_EFFECTS (stmt_expr)
1818 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1819 /* Just know that we've seen something for this node. */
1820 TREE_USED (exp) = 1;
1821
1822 return stmt_expr;
1823 }
1824
1825 static void
1826 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1827 tsubst_flags_t complain)
1828 {
1829 tree type = TREE_TYPE (exp);
1830
1831 /* It fails because there may not be a constructor which takes
1832 its own type as the first (or only parameter), but which does
1833 take other types via a conversion. So, if the thing initializing
1834 the expression is a unit element of type X, first try X(X&),
1835 followed by initialization by X. If neither of these work
1836 out, then look hard. */
1837 tree rval;
1838 vec<tree, va_gc> *parms;
1839
1840 /* If we have direct-initialization from an initializer list, pull
1841 it out of the TREE_LIST so the code below can see it. */
1842 if (init && TREE_CODE (init) == TREE_LIST
1843 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1844 {
1845 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1846 && TREE_CHAIN (init) == NULL_TREE);
1847 init = TREE_VALUE (init);
1848 /* Only call reshape_init if it has not been called earlier
1849 by the callers. */
1850 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1851 init = reshape_init (type, init, complain);
1852 }
1853
1854 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1855 && CP_AGGREGATE_TYPE_P (type))
1856 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1857 happen for direct-initialization, too. */
1858 init = digest_init (type, init, complain);
1859
1860 /* A CONSTRUCTOR of the target's type is a previously digested
1861 initializer, whether that happened just above or in
1862 cp_parser_late_parsing_nsdmi.
1863
1864 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1865 set represents the whole initialization, so we shouldn't build up
1866 another ctor call. */
1867 if (init
1868 && (TREE_CODE (init) == CONSTRUCTOR
1869 || (TREE_CODE (init) == TARGET_EXPR
1870 && (TARGET_EXPR_DIRECT_INIT_P (init)
1871 || TARGET_EXPR_LIST_INIT_P (init))))
1872 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1873 {
1874 /* Early initialization via a TARGET_EXPR only works for
1875 complete objects. */
1876 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1877
1878 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1879 TREE_SIDE_EFFECTS (init) = 1;
1880 finish_expr_stmt (init);
1881 return;
1882 }
1883
1884 if (init && TREE_CODE (init) != TREE_LIST
1885 && (flags & LOOKUP_ONLYCONVERTING))
1886 {
1887 /* Base subobjects should only get direct-initialization. */
1888 gcc_assert (true_exp == exp);
1889
1890 if (flags & DIRECT_BIND)
1891 /* Do nothing. We hit this in two cases: Reference initialization,
1892 where we aren't initializing a real variable, so we don't want
1893 to run a new constructor; and catching an exception, where we
1894 have already built up the constructor call so we could wrap it
1895 in an exception region. */;
1896 else
1897 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1898 flags, complain);
1899
1900 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1901 /* We need to protect the initialization of a catch parm with a
1902 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1903 around the TARGET_EXPR for the copy constructor. See
1904 initialize_handler_parm. */
1905 {
1906 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1907 TREE_OPERAND (init, 0));
1908 TREE_TYPE (init) = void_type_node;
1909 }
1910 else
1911 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1912 TREE_SIDE_EFFECTS (init) = 1;
1913 finish_expr_stmt (init);
1914 return;
1915 }
1916
1917 if (init == NULL_TREE)
1918 parms = NULL;
1919 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1920 {
1921 parms = make_tree_vector ();
1922 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1923 vec_safe_push (parms, TREE_VALUE (init));
1924 }
1925 else
1926 parms = make_tree_vector_single (init);
1927
1928 if (exp == current_class_ref && current_function_decl
1929 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1930 {
1931 /* Delegating constructor. */
1932 tree complete;
1933 tree base;
1934 tree elt; unsigned i;
1935
1936 /* Unshare the arguments for the second call. */
1937 releasing_vec parms2;
1938 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1939 {
1940 elt = break_out_target_exprs (elt);
1941 vec_safe_push (parms2, elt);
1942 }
1943 complete = build_special_member_call (exp, complete_ctor_identifier,
1944 &parms2, binfo, flags,
1945 complain);
1946 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1947
1948 base = build_special_member_call (exp, base_ctor_identifier,
1949 &parms, binfo, flags,
1950 complain);
1951 base = fold_build_cleanup_point_expr (void_type_node, base);
1952 rval = build_if_in_charge (complete, base);
1953 }
1954 else
1955 {
1956 tree ctor_name = (true_exp == exp
1957 ? complete_ctor_identifier : base_ctor_identifier);
1958
1959 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1960 complain);
1961 }
1962
1963 if (parms != NULL)
1964 release_tree_vector (parms);
1965
1966 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1967 {
1968 tree fn = get_callee_fndecl (rval);
1969 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1970 {
1971 tree e = maybe_constant_init (rval, exp);
1972 if (TREE_CONSTANT (e))
1973 rval = build2 (INIT_EXPR, type, exp, e);
1974 }
1975 }
1976
1977 /* FIXME put back convert_to_void? */
1978 if (TREE_SIDE_EFFECTS (rval))
1979 finish_expr_stmt (rval);
1980 }
1981
1982 /* This function is responsible for initializing EXP with INIT
1983 (if any).
1984
1985 BINFO is the binfo of the type for who we are performing the
1986 initialization. For example, if W is a virtual base class of A and B,
1987 and C : A, B.
1988 If we are initializing B, then W must contain B's W vtable, whereas
1989 were we initializing C, W must contain C's W vtable.
1990
1991 TRUE_EXP is nonzero if it is the true expression being initialized.
1992 In this case, it may be EXP, or may just contain EXP. The reason we
1993 need this is because if EXP is a base element of TRUE_EXP, we
1994 don't necessarily know by looking at EXP where its virtual
1995 baseclass fields should really be pointing. But we do know
1996 from TRUE_EXP. In constructors, we don't know anything about
1997 the value being initialized.
1998
1999 FLAGS is just passed to `build_new_method_call'. See that function
2000 for its description. */
2001
2002 static void
2003 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
2004 tsubst_flags_t complain)
2005 {
2006 tree type = TREE_TYPE (exp);
2007
2008 gcc_assert (init != error_mark_node && type != error_mark_node);
2009 gcc_assert (building_stmt_list_p ());
2010
2011 /* Use a function returning the desired type to initialize EXP for us.
2012 If the function is a constructor, and its first argument is
2013 NULL_TREE, know that it was meant for us--just slide exp on
2014 in and expand the constructor. Constructors now come
2015 as TARGET_EXPRs. */
2016
2017 if (init && VAR_P (exp)
2018 && COMPOUND_LITERAL_P (init))
2019 {
2020 vec<tree, va_gc> *cleanups = NULL;
2021 /* If store_init_value returns NULL_TREE, the INIT has been
2022 recorded as the DECL_INITIAL for EXP. That means there's
2023 nothing more we have to do. */
2024 init = store_init_value (exp, init, &cleanups, flags);
2025 if (init)
2026 finish_expr_stmt (init);
2027 gcc_assert (!cleanups);
2028 return;
2029 }
2030
2031 /* List-initialization from {} becomes value-initialization for non-aggregate
2032 classes with default constructors. Handle this here when we're
2033 initializing a base, so protected access works. */
2034 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
2035 {
2036 tree elt = TREE_VALUE (init);
2037 if (DIRECT_LIST_INIT_P (elt)
2038 && CONSTRUCTOR_ELTS (elt) == 0
2039 && CLASSTYPE_NON_AGGREGATE (type)
2040 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2041 init = void_type_node;
2042 }
2043
2044 /* If an explicit -- but empty -- initializer list was present,
2045 that's value-initialization. */
2046 if (init == void_type_node)
2047 {
2048 /* If the type has data but no user-provided ctor, we need to zero
2049 out the object. */
2050 if (!type_has_user_provided_constructor (type)
2051 && !is_really_empty_class (type, /*ignore_vptr*/true))
2052 {
2053 tree field_size = NULL_TREE;
2054 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
2055 /* Don't clobber already initialized virtual bases. */
2056 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
2057 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
2058 field_size);
2059 init = build2 (INIT_EXPR, type, exp, init);
2060 finish_expr_stmt (init);
2061 }
2062
2063 /* If we don't need to mess with the constructor at all,
2064 then we're done. */
2065 if (! type_build_ctor_call (type))
2066 return;
2067
2068 /* Otherwise fall through and call the constructor. */
2069 init = NULL_TREE;
2070 }
2071
2072 /* We know that expand_default_init can handle everything we want
2073 at this point. */
2074 expand_default_init (binfo, true_exp, exp, init, flags, complain);
2075 }
2076
2077 /* Report an error if TYPE is not a user-defined, class type. If
2078 OR_ELSE is nonzero, give an error message. */
2079
2080 int
2081 is_class_type (tree type, int or_else)
2082 {
2083 if (type == error_mark_node)
2084 return 0;
2085
2086 if (! CLASS_TYPE_P (type))
2087 {
2088 if (or_else)
2089 error ("%qT is not a class type", type);
2090 return 0;
2091 }
2092 return 1;
2093 }
2094
2095 tree
2096 get_type_value (tree name)
2097 {
2098 if (name == error_mark_node)
2099 return NULL_TREE;
2100
2101 if (IDENTIFIER_HAS_TYPE_VALUE (name))
2102 return IDENTIFIER_TYPE_VALUE (name);
2103 else
2104 return NULL_TREE;
2105 }
2106
2107 /* Build a reference to a member of an aggregate. This is not a C++
2108 `&', but really something which can have its address taken, and
2109 then act as a pointer to member, for example TYPE :: FIELD can have
2110 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
2111 this expression is the operand of "&".
2112
2113 @@ Prints out lousy diagnostics for operator <typename>
2114 @@ fields.
2115
2116 @@ This function should be rewritten and placed in search.c. */
2117
2118 tree
2119 build_offset_ref (tree type, tree member, bool address_p,
2120 tsubst_flags_t complain)
2121 {
2122 tree decl;
2123 tree basebinfo = NULL_TREE;
2124
2125 /* class templates can come in as TEMPLATE_DECLs here. */
2126 if (TREE_CODE (member) == TEMPLATE_DECL)
2127 return member;
2128
2129 if (dependent_scope_p (type) || type_dependent_expression_p (member))
2130 return build_qualified_name (NULL_TREE, type, member,
2131 /*template_p=*/false);
2132
2133 gcc_assert (TYPE_P (type));
2134 if (! is_class_type (type, 1))
2135 return error_mark_node;
2136
2137 gcc_assert (DECL_P (member) || BASELINK_P (member));
2138 /* Callers should call mark_used before this point. */
2139 gcc_assert (!DECL_P (member) || TREE_USED (member));
2140
2141 type = TYPE_MAIN_VARIANT (type);
2142 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2143 {
2144 if (complain & tf_error)
2145 error ("incomplete type %qT does not have member %qD", type, member);
2146 return error_mark_node;
2147 }
2148
2149 /* Entities other than non-static members need no further
2150 processing. */
2151 if (TREE_CODE (member) == TYPE_DECL)
2152 return member;
2153 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2154 return convert_from_reference (member);
2155
2156 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2157 {
2158 if (complain & tf_error)
2159 error ("invalid pointer to bit-field %qD", member);
2160 return error_mark_node;
2161 }
2162
2163 /* Set up BASEBINFO for member lookup. */
2164 decl = maybe_dummy_object (type, &basebinfo);
2165
2166 /* A lot of this logic is now handled in lookup_member. */
2167 if (BASELINK_P (member))
2168 {
2169 /* Go from the TREE_BASELINK to the member function info. */
2170 tree t = BASELINK_FUNCTIONS (member);
2171
2172 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2173 {
2174 /* Get rid of a potential OVERLOAD around it. */
2175 t = OVL_FIRST (t);
2176
2177 /* Unique functions are handled easily. */
2178
2179 /* For non-static member of base class, we need a special rule
2180 for access checking [class.protected]:
2181
2182 If the access is to form a pointer to member, the
2183 nested-name-specifier shall name the derived class
2184 (or any class derived from that class). */
2185 bool ok;
2186 if (address_p && DECL_P (t)
2187 && DECL_NONSTATIC_MEMBER_P (t))
2188 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2189 complain);
2190 else
2191 ok = perform_or_defer_access_check (basebinfo, t, t,
2192 complain);
2193 if (!ok)
2194 return error_mark_node;
2195 if (DECL_STATIC_FUNCTION_P (t))
2196 return t;
2197 member = t;
2198 }
2199 else
2200 TREE_TYPE (member) = unknown_type_node;
2201 }
2202 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2203 {
2204 /* We need additional test besides the one in
2205 check_accessibility_of_qualified_id in case it is
2206 a pointer to non-static member. */
2207 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2208 complain))
2209 return error_mark_node;
2210 }
2211
2212 if (!address_p)
2213 {
2214 /* If MEMBER is non-static, then the program has fallen afoul of
2215 [expr.prim]:
2216
2217 An id-expression that denotes a nonstatic data member or
2218 nonstatic member function of a class can only be used:
2219
2220 -- as part of a class member access (_expr.ref_) in which the
2221 object-expression refers to the member's class or a class
2222 derived from that class, or
2223
2224 -- to form a pointer to member (_expr.unary.op_), or
2225
2226 -- in the body of a nonstatic member function of that class or
2227 of a class derived from that class (_class.mfct.nonstatic_), or
2228
2229 -- in a mem-initializer for a constructor for that class or for
2230 a class derived from that class (_class.base.init_). */
2231 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2232 {
2233 /* Build a representation of the qualified name suitable
2234 for use as the operand to "&" -- even though the "&" is
2235 not actually present. */
2236 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2237 /* In Microsoft mode, treat a non-static member function as if
2238 it were a pointer-to-member. */
2239 if (flag_ms_extensions)
2240 {
2241 PTRMEM_OK_P (member) = 1;
2242 return cp_build_addr_expr (member, complain);
2243 }
2244 if (complain & tf_error)
2245 error ("invalid use of non-static member function %qD",
2246 TREE_OPERAND (member, 1));
2247 return error_mark_node;
2248 }
2249 else if (TREE_CODE (member) == FIELD_DECL)
2250 {
2251 if (complain & tf_error)
2252 error ("invalid use of non-static data member %qD", member);
2253 return error_mark_node;
2254 }
2255 return member;
2256 }
2257
2258 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2259 PTRMEM_OK_P (member) = 1;
2260 return member;
2261 }
2262
2263 /* If DECL is a scalar enumeration constant or variable with a
2264 constant initializer, return the initializer (or, its initializers,
2265 recursively); otherwise, return DECL. If STRICT_P, the
2266 initializer is only returned if DECL is a
2267 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2268 return an aggregate constant. */
2269
2270 static tree
2271 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2272 {
2273 while (TREE_CODE (decl) == CONST_DECL
2274 || decl_constant_var_p (decl)
2275 || (!strict_p && VAR_P (decl)
2276 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2277 {
2278 tree init;
2279 /* If DECL is a static data member in a template
2280 specialization, we must instantiate it here. The
2281 initializer for the static data member is not processed
2282 until needed; we need it now. */
2283 mark_used (decl, tf_none);
2284 init = DECL_INITIAL (decl);
2285 if (init == error_mark_node)
2286 {
2287 if (TREE_CODE (decl) == CONST_DECL
2288 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2289 /* Treat the error as a constant to avoid cascading errors on
2290 excessively recursive template instantiation (c++/9335). */
2291 return init;
2292 else
2293 return decl;
2294 }
2295 /* Initializers in templates are generally expanded during
2296 instantiation, so before that for const int i(2)
2297 INIT is a TREE_LIST with the actual initializer as
2298 TREE_VALUE. */
2299 if (processing_template_decl
2300 && init
2301 && TREE_CODE (init) == TREE_LIST
2302 && TREE_CHAIN (init) == NULL_TREE)
2303 init = TREE_VALUE (init);
2304 /* Instantiate a non-dependent initializer for user variables. We
2305 mustn't do this for the temporary for an array compound literal;
2306 trying to instatiate the initializer will keep creating new
2307 temporaries until we crash. Probably it's not useful to do it for
2308 other artificial variables, either. */
2309 if (!DECL_ARTIFICIAL (decl))
2310 init = instantiate_non_dependent_or_null (init);
2311 if (!init
2312 || !TREE_TYPE (init)
2313 || !TREE_CONSTANT (init)
2314 || (!return_aggregate_cst_ok_p
2315 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2316 return an aggregate constant (of which string
2317 literals are a special case), as we do not want
2318 to make inadvertent copies of such entities, and
2319 we must be sure that their addresses are the
2320 same everywhere. */
2321 && (TREE_CODE (init) == CONSTRUCTOR
2322 || TREE_CODE (init) == STRING_CST)))
2323 break;
2324 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2325 initialization, since it doesn't represent the entire value.
2326 Similarly for VECTOR_CSTs created by cp_folding those
2327 CONSTRUCTORs. */
2328 if ((TREE_CODE (init) == CONSTRUCTOR
2329 || TREE_CODE (init) == VECTOR_CST)
2330 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2331 break;
2332 /* If the variable has a dynamic initializer, don't use its
2333 DECL_INITIAL which doesn't reflect the real value. */
2334 if (VAR_P (decl)
2335 && TREE_STATIC (decl)
2336 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2337 && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2338 break;
2339 decl = unshare_expr (init);
2340 }
2341 return decl;
2342 }
2343
2344 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2345 of integral or enumeration type, or a constexpr variable of scalar type,
2346 then return that value. These are those variables permitted in constant
2347 expressions by [5.19/1]. */
2348
2349 tree
2350 scalar_constant_value (tree decl)
2351 {
2352 return constant_value_1 (decl, /*strict_p=*/true,
2353 /*return_aggregate_cst_ok_p=*/false);
2354 }
2355
2356 /* Like scalar_constant_value, but can also return aggregate initializers. */
2357
2358 tree
2359 decl_really_constant_value (tree decl)
2360 {
2361 return constant_value_1 (decl, /*strict_p=*/true,
2362 /*return_aggregate_cst_ok_p=*/true);
2363 }
2364
2365 /* A more relaxed version of scalar_constant_value, used by the
2366 common C/C++ code. */
2367
2368 tree
2369 decl_constant_value (tree decl)
2370 {
2371 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2372 /*return_aggregate_cst_ok_p=*/true);
2373 }
2374 \f
2375 /* Common subroutines of build_new and build_vec_delete. */
2376 \f
2377 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2378 the type of the object being allocated; otherwise, it's just TYPE.
2379 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2380 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2381 a vector of arguments to be provided as arguments to a placement
2382 new operator. This routine performs no semantic checks; it just
2383 creates and returns a NEW_EXPR. */
2384
2385 static tree
2386 build_raw_new_expr (location_t loc, vec<tree, va_gc> *placement, tree type,
2387 tree nelts, vec<tree, va_gc> *init, int use_global_new)
2388 {
2389 tree init_list;
2390 tree new_expr;
2391
2392 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2393 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2394 permits us to distinguish the case of a missing initializer "new
2395 int" from an empty initializer "new int()". */
2396 if (init == NULL)
2397 init_list = NULL_TREE;
2398 else if (init->is_empty ())
2399 init_list = void_node;
2400 else
2401 init_list = build_tree_list_vec (init);
2402
2403 new_expr = build4_loc (loc, NEW_EXPR, build_pointer_type (type),
2404 build_tree_list_vec (placement), type, nelts,
2405 init_list);
2406 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2407 TREE_SIDE_EFFECTS (new_expr) = 1;
2408
2409 return new_expr;
2410 }
2411
2412 /* Diagnose uninitialized const members or reference members of type
2413 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2414 new expression without a new-initializer and a declaration. Returns
2415 the error count. */
2416
2417 static int
2418 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2419 bool using_new, bool complain)
2420 {
2421 tree field;
2422 int error_count = 0;
2423
2424 if (type_has_user_provided_constructor (type))
2425 return 0;
2426
2427 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2428 {
2429 tree field_type;
2430
2431 if (TREE_CODE (field) != FIELD_DECL)
2432 continue;
2433
2434 field_type = strip_array_types (TREE_TYPE (field));
2435
2436 if (type_has_user_provided_constructor (field_type))
2437 continue;
2438
2439 if (TYPE_REF_P (field_type))
2440 {
2441 ++ error_count;
2442 if (complain)
2443 {
2444 if (DECL_CONTEXT (field) == origin)
2445 {
2446 if (using_new)
2447 error ("uninitialized reference member in %q#T "
2448 "using %<new%> without new-initializer", origin);
2449 else
2450 error ("uninitialized reference member in %q#T", origin);
2451 }
2452 else
2453 {
2454 if (using_new)
2455 error ("uninitialized reference member in base %q#T "
2456 "of %q#T using %<new%> without new-initializer",
2457 DECL_CONTEXT (field), origin);
2458 else
2459 error ("uninitialized reference member in base %q#T "
2460 "of %q#T", DECL_CONTEXT (field), origin);
2461 }
2462 inform (DECL_SOURCE_LOCATION (field),
2463 "%q#D should be initialized", field);
2464 }
2465 }
2466
2467 if (CP_TYPE_CONST_P (field_type))
2468 {
2469 ++ error_count;
2470 if (complain)
2471 {
2472 if (DECL_CONTEXT (field) == origin)
2473 {
2474 if (using_new)
2475 error ("uninitialized const member in %q#T "
2476 "using %<new%> without new-initializer", origin);
2477 else
2478 error ("uninitialized const member in %q#T", origin);
2479 }
2480 else
2481 {
2482 if (using_new)
2483 error ("uninitialized const member in base %q#T "
2484 "of %q#T using %<new%> without new-initializer",
2485 DECL_CONTEXT (field), origin);
2486 else
2487 error ("uninitialized const member in base %q#T "
2488 "of %q#T", DECL_CONTEXT (field), origin);
2489 }
2490 inform (DECL_SOURCE_LOCATION (field),
2491 "%q#D should be initialized", field);
2492 }
2493 }
2494
2495 if (CLASS_TYPE_P (field_type))
2496 error_count
2497 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2498 using_new, complain);
2499 }
2500 return error_count;
2501 }
2502
2503 int
2504 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2505 {
2506 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2507 }
2508
2509 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2510 overflowed. Pretend it returns sizetype so that it plays nicely in the
2511 COND_EXPR. */
2512
2513 tree
2514 throw_bad_array_new_length (void)
2515 {
2516 if (!fn)
2517 {
2518 tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2519
2520 fn = get_global_binding (name);
2521 if (!fn)
2522 fn = push_throw_library_fn
2523 (name, build_function_type_list (sizetype, NULL_TREE));
2524 }
2525
2526 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2527 }
2528
2529 /* Attempt to find the initializer for flexible array field T in the
2530 initializer INIT, when non-null. Returns the initializer when
2531 successful and NULL otherwise. */
2532 static tree
2533 find_flexarray_init (tree t, tree init)
2534 {
2535 if (!init || init == error_mark_node)
2536 return NULL_TREE;
2537
2538 unsigned HOST_WIDE_INT idx;
2539 tree field, elt;
2540
2541 /* Iterate over all top-level initializer elements. */
2542 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2543 /* If the member T is found, return it. */
2544 if (field == t)
2545 return elt;
2546
2547 return NULL_TREE;
2548 }
2549
2550 /* Attempt to verify that the argument, OPER, of a placement new expression
2551 refers to an object sufficiently large for an object of TYPE or an array
2552 of NELTS of such objects when NELTS is non-null, and issue a warning when
2553 it does not. SIZE specifies the size needed to construct the object or
2554 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2555 greater when the array under construction requires a cookie to store
2556 NELTS. GCC's placement new expression stores the cookie when invoking
2557 a user-defined placement new operator function but not the default one.
2558 Placement new expressions with user-defined placement new operator are
2559 not diagnosed since we don't know how they use the buffer (this could
2560 be a future extension). */
2561 static void
2562 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2563 {
2564 location_t loc = cp_expr_loc_or_input_loc (oper);
2565
2566 /* The number of bytes to add to or subtract from the size of the provided
2567 buffer based on an offset into an array or an array element reference.
2568 Although intermediate results may be negative (as in a[3] - 2) a valid
2569 final result cannot be. */
2570 offset_int adjust = 0;
2571 /* True when the size of the entire destination object should be used
2572 to compute the possibly optimistic estimate of the available space. */
2573 bool use_obj_size = false;
2574 /* True when the reference to the destination buffer is an ADDR_EXPR. */
2575 bool addr_expr = false;
2576
2577 STRIP_NOPS (oper);
2578
2579 /* Using a function argument or a (non-array) variable as an argument
2580 to placement new is not checked since it's unknown what it might
2581 point to. */
2582 if (TREE_CODE (oper) == PARM_DECL
2583 || VAR_P (oper)
2584 || TREE_CODE (oper) == COMPONENT_REF)
2585 return;
2586
2587 /* Evaluate any constant expressions. */
2588 size = fold_non_dependent_expr (size);
2589
2590 /* Handle the common case of array + offset expression when the offset
2591 is a constant. */
2592 if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2593 {
2594 /* If the offset is compile-time constant, use it to compute a more
2595 accurate estimate of the size of the buffer. Since the operand
2596 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2597 it to signed first.
2598 Otherwise, use the size of the entire array as an optimistic
2599 estimate (this may lead to false negatives). */
2600 tree adj = TREE_OPERAND (oper, 1);
2601 adj = fold_for_warn (adj);
2602 if (CONSTANT_CLASS_P (adj))
2603 adjust += wi::to_offset (convert (ssizetype, adj));
2604 else
2605 use_obj_size = true;
2606
2607 oper = TREE_OPERAND (oper, 0);
2608
2609 STRIP_NOPS (oper);
2610 }
2611
2612 if (TREE_CODE (oper) == TARGET_EXPR)
2613 oper = TREE_OPERAND (oper, 1);
2614 else if (TREE_CODE (oper) == ADDR_EXPR)
2615 {
2616 addr_expr = true;
2617 oper = TREE_OPERAND (oper, 0);
2618 }
2619
2620 STRIP_NOPS (oper);
2621
2622 if (TREE_CODE (oper) == ARRAY_REF
2623 && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2624 {
2625 /* Similar to the offset computed above, see if the array index
2626 is a compile-time constant. If so, and unless the offset was
2627 not a compile-time constant, use the index to determine the
2628 size of the buffer. Otherwise, use the entire array as
2629 an optimistic estimate of the size. */
2630 const_tree adj = fold_non_dependent_expr (TREE_OPERAND (oper, 1));
2631 if (!use_obj_size && CONSTANT_CLASS_P (adj))
2632 adjust += wi::to_offset (adj);
2633 else
2634 {
2635 use_obj_size = true;
2636 adjust = 0;
2637 }
2638
2639 oper = TREE_OPERAND (oper, 0);
2640 }
2641
2642 /* Refers to the declared object that constains the subobject referenced
2643 by OPER. When the object is initialized, makes it possible to determine
2644 the actual size of a flexible array member used as the buffer passed
2645 as OPER to placement new. */
2646 tree var_decl = NULL_TREE;
2647 /* True when operand is a COMPONENT_REF, to distinguish flexible array
2648 members from arrays of unspecified size. */
2649 bool compref = TREE_CODE (oper) == COMPONENT_REF;
2650
2651 /* For COMPONENT_REF (i.e., a struct member) the size of the entire
2652 enclosing struct. Used to validate the adjustment (offset) into
2653 an array at the end of a struct. */
2654 offset_int compsize = 0;
2655
2656 /* Descend into a struct or union to find the member whose address
2657 is being used as the argument. */
2658 if (TREE_CODE (oper) == COMPONENT_REF)
2659 {
2660 tree comptype = TREE_TYPE (TREE_OPERAND (oper, 0));
2661 compsize = wi::to_offset (TYPE_SIZE_UNIT (comptype));
2662
2663 tree op0 = oper;
2664 while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2665 STRIP_ANY_LOCATION_WRAPPER (op0);
2666 if (VAR_P (op0))
2667 var_decl = op0;
2668 oper = TREE_OPERAND (oper, 1);
2669 }
2670
2671 STRIP_ANY_LOCATION_WRAPPER (oper);
2672 tree opertype = TREE_TYPE (oper);
2673 if ((addr_expr || !INDIRECT_TYPE_P (opertype))
2674 && (VAR_P (oper)
2675 || TREE_CODE (oper) == FIELD_DECL
2676 || TREE_CODE (oper) == PARM_DECL))
2677 {
2678 /* A possibly optimistic estimate of the number of bytes available
2679 in the destination buffer. */
2680 offset_int bytes_avail = 0;
2681 /* True when the estimate above is in fact the exact size
2682 of the destination buffer rather than an estimate. */
2683 bool exact_size = true;
2684
2685 /* Treat members of unions and members of structs uniformly, even
2686 though the size of a member of a union may be viewed as extending
2687 to the end of the union itself (it is by __builtin_object_size). */
2688 if ((VAR_P (oper) || use_obj_size)
2689 && DECL_SIZE_UNIT (oper)
2690 && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2691 {
2692 /* Use the size of the entire array object when the expression
2693 refers to a variable or its size depends on an expression
2694 that's not a compile-time constant. */
2695 bytes_avail = wi::to_offset (DECL_SIZE_UNIT (oper));
2696 exact_size = !use_obj_size;
2697 }
2698 else if (tree opersize = TYPE_SIZE_UNIT (opertype))
2699 {
2700 /* Use the size of the type of the destination buffer object
2701 as the optimistic estimate of the available space in it.
2702 Use the maximum possible size for zero-size arrays and
2703 flexible array members (except of initialized objects
2704 thereof). */
2705 if (TREE_CODE (opersize) == INTEGER_CST)
2706 bytes_avail = wi::to_offset (opersize);
2707 }
2708
2709 if (bytes_avail == 0)
2710 {
2711 if (var_decl)
2712 {
2713 /* Constructing into a buffer provided by the flexible array
2714 member of a declared object (which is permitted as a G++
2715 extension). If the array member has been initialized,
2716 determine its size from the initializer. Otherwise,
2717 the array size is zero. */
2718 if (tree init = find_flexarray_init (oper,
2719 DECL_INITIAL (var_decl)))
2720 bytes_avail = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2721 }
2722 else
2723 bytes_avail = (wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node))
2724 - compsize);
2725 }
2726
2727 tree_code oper_code = TREE_CODE (opertype);
2728
2729 if (compref && oper_code == ARRAY_TYPE)
2730 {
2731 tree nelts = array_type_nelts_top (opertype);
2732 tree nelts_cst = maybe_constant_value (nelts);
2733 if (TREE_CODE (nelts_cst) == INTEGER_CST
2734 && integer_onep (nelts_cst)
2735 && !var_decl
2736 && warn_placement_new < 2)
2737 return;
2738 }
2739
2740 /* Reduce the size of the buffer by the adjustment computed above
2741 from the offset and/or the index into the array. */
2742 if (bytes_avail < adjust || adjust < 0)
2743 bytes_avail = 0;
2744 else
2745 {
2746 tree elttype = (TREE_CODE (opertype) == ARRAY_TYPE
2747 ? TREE_TYPE (opertype) : opertype);
2748 if (tree eltsize = TYPE_SIZE_UNIT (elttype))
2749 {
2750 bytes_avail -= adjust * wi::to_offset (eltsize);
2751 if (bytes_avail < 0)
2752 bytes_avail = 0;
2753 }
2754 }
2755
2756 /* The minimum amount of space needed for the allocation. This
2757 is an optimistic estimate that makes it possible to detect
2758 placement new invocation for some undersize buffers but not
2759 others. */
2760 offset_int bytes_need;
2761
2762 if (nelts)
2763 nelts = fold_for_warn (nelts);
2764
2765 if (CONSTANT_CLASS_P (size))
2766 bytes_need = wi::to_offset (size);
2767 else if (nelts && CONSTANT_CLASS_P (nelts))
2768 bytes_need = (wi::to_offset (nelts)
2769 * wi::to_offset (TYPE_SIZE_UNIT (type)));
2770 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2771 bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type));
2772 else
2773 {
2774 /* The type is a VLA. */
2775 return;
2776 }
2777
2778 if (bytes_avail < bytes_need)
2779 {
2780 if (nelts)
2781 if (CONSTANT_CLASS_P (nelts))
2782 warning_at (loc, OPT_Wplacement_new_,
2783 exact_size ?
2784 "placement new constructing an object of type "
2785 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2786 "and size %qwi"
2787 : "placement new constructing an object of type "
2788 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2789 "and size at most %qwu",
2790 type, tree_to_uhwi (nelts), bytes_need.to_uhwi (),
2791 opertype, bytes_avail.to_uhwi ());
2792 else
2793 warning_at (loc, OPT_Wplacement_new_,
2794 exact_size ?
2795 "placement new constructing an array of objects "
2796 "of type %qT and size %qwu in a region of type %qT "
2797 "and size %qwi"
2798 : "placement new constructing an array of objects "
2799 "of type %qT and size %qwu in a region of type %qT "
2800 "and size at most %qwu",
2801 type, bytes_need.to_uhwi (), opertype,
2802 bytes_avail.to_uhwi ());
2803 else
2804 warning_at (loc, OPT_Wplacement_new_,
2805 exact_size ?
2806 "placement new constructing an object of type %qT "
2807 "and size %qwu in a region of type %qT and size %qwi"
2808 : "placement new constructing an object of type %qT "
2809 "and size %qwu in a region of type %qT and size "
2810 "at most %qwu",
2811 type, bytes_need.to_uhwi (), opertype,
2812 bytes_avail.to_uhwi ());
2813 }
2814 }
2815 }
2816
2817 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2818
2819 bool
2820 type_has_new_extended_alignment (tree t)
2821 {
2822 return (aligned_new_threshold
2823 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2824 }
2825
2826 /* Return the alignment we expect malloc to guarantee. This should just be
2827 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2828 reason, so don't let the threshold be smaller than max_align_t_align. */
2829
2830 unsigned
2831 malloc_alignment ()
2832 {
2833 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2834 }
2835
2836 /* Determine whether an allocation function is a namespace-scope
2837 non-replaceable placement new function. See DR 1748. */
2838 static bool
2839 std_placement_new_fn_p (tree alloc_fn)
2840 {
2841 if (DECL_NAMESPACE_SCOPE_P (alloc_fn))
2842 {
2843 tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2844 if ((TREE_VALUE (first_arg) == ptr_type_node)
2845 && TREE_CHAIN (first_arg) == void_list_node)
2846 return true;
2847 }
2848 return false;
2849 }
2850
2851 /* For element type ELT_TYPE, return the appropriate type of the heap object
2852 containing such element(s). COOKIE_SIZE is NULL or the size of cookie
2853 in bytes. FULL_SIZE is NULL if it is unknown how big the heap allocation
2854 will be, otherwise size of the heap object. If COOKIE_SIZE is NULL,
2855 return array type ELT_TYPE[FULL_SIZE / sizeof(ELT_TYPE)], otherwise return
2856 struct { size_t[COOKIE_SIZE/sizeof(size_t)]; ELT_TYPE[N]; }
2857 where N is nothing (flexible array member) if FULL_SIZE is NULL, otherwise
2858 it is computed such that the size of the struct fits into FULL_SIZE. */
2859
2860 tree
2861 build_new_constexpr_heap_type (tree elt_type, tree cookie_size, tree full_size)
2862 {
2863 gcc_assert (cookie_size == NULL_TREE || tree_fits_uhwi_p (cookie_size));
2864 gcc_assert (full_size == NULL_TREE || tree_fits_uhwi_p (full_size));
2865 unsigned HOST_WIDE_INT csz = cookie_size ? tree_to_uhwi (cookie_size) : 0;
2866 tree itype2 = NULL_TREE;
2867 if (full_size)
2868 {
2869 unsigned HOST_WIDE_INT fsz = tree_to_uhwi (full_size);
2870 gcc_assert (fsz >= csz);
2871 fsz -= csz;
2872 fsz /= int_size_in_bytes (elt_type);
2873 itype2 = build_index_type (size_int (fsz - 1));
2874 if (!cookie_size)
2875 return build_cplus_array_type (elt_type, itype2);
2876 }
2877 else
2878 gcc_assert (cookie_size);
2879 csz /= int_size_in_bytes (sizetype);
2880 tree itype1 = build_index_type (size_int (csz - 1));
2881 tree atype1 = build_cplus_array_type (sizetype, itype1);
2882 tree atype2 = build_cplus_array_type (elt_type, itype2);
2883 tree rtype = cxx_make_type (RECORD_TYPE);
2884 TYPE_NAME (rtype) = heap_identifier;
2885 tree fld1 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype1);
2886 tree fld2 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype2);
2887 DECL_FIELD_CONTEXT (fld1) = rtype;
2888 DECL_FIELD_CONTEXT (fld2) = rtype;
2889 DECL_ARTIFICIAL (fld1) = true;
2890 DECL_ARTIFICIAL (fld2) = true;
2891 TYPE_FIELDS (rtype) = fld1;
2892 DECL_CHAIN (fld1) = fld2;
2893 layout_type (rtype);
2894 return rtype;
2895 }
2896
2897 /* Help the constexpr code to find the right type for the heap variable
2898 by adding a NOP_EXPR around ALLOC_CALL if needed for cookie_size.
2899 Return ALLOC_CALL or ALLOC_CALL cast to a pointer to
2900 struct { size_t[cookie_size/sizeof(size_t)]; elt_type[]; }. */
2901
2902 static tree
2903 maybe_wrap_new_for_constexpr (tree alloc_call, tree elt_type, tree cookie_size)
2904 {
2905 if (cxx_dialect < cxx2a)
2906 return alloc_call;
2907
2908 if (current_function_decl != NULL_TREE
2909 && !DECL_DECLARED_CONSTEXPR_P (current_function_decl))
2910 return alloc_call;
2911
2912 tree call_expr = extract_call_expr (alloc_call);
2913 if (call_expr == error_mark_node)
2914 return alloc_call;
2915
2916 tree alloc_call_fndecl = cp_get_callee_fndecl_nofold (call_expr);
2917 if (alloc_call_fndecl == NULL_TREE
2918 || !IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_call_fndecl))
2919 || CP_DECL_CONTEXT (alloc_call_fndecl) != global_namespace)
2920 return alloc_call;
2921
2922 tree rtype = build_new_constexpr_heap_type (elt_type, cookie_size,
2923 NULL_TREE);
2924 return build_nop (build_pointer_type (rtype), alloc_call);
2925 }
2926
2927 /* Generate code for a new-expression, including calling the "operator
2928 new" function, initializing the object, and, if an exception occurs
2929 during construction, cleaning up. The arguments are as for
2930 build_raw_new_expr. This may change PLACEMENT and INIT.
2931 TYPE is the type of the object being constructed, possibly an array
2932 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2933 be an array of the form U[inner], with the whole expression being
2934 "new U[NELTS][inner]"). */
2935
2936 static tree
2937 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2938 vec<tree, va_gc> **init, bool globally_qualified_p,
2939 tsubst_flags_t complain)
2940 {
2941 tree size, rval;
2942 /* True iff this is a call to "operator new[]" instead of just
2943 "operator new". */
2944 bool array_p = false;
2945 /* If ARRAY_P is true, the element type of the array. This is never
2946 an ARRAY_TYPE; for something like "new int[3][4]", the
2947 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2948 TYPE. */
2949 tree elt_type;
2950 /* The type of the new-expression. (This type is always a pointer
2951 type.) */
2952 tree pointer_type;
2953 tree non_const_pointer_type;
2954 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2955 tree outer_nelts = NULL_TREE;
2956 /* For arrays with a non-constant number of elements, a bounds checks
2957 on the NELTS parameter to avoid integer overflow at runtime. */
2958 tree outer_nelts_check = NULL_TREE;
2959 bool outer_nelts_from_type = false;
2960 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2961 offset_int inner_nelts_count = 1;
2962 tree alloc_call, alloc_expr;
2963 /* Size of the inner array elements (those with constant dimensions). */
2964 offset_int inner_size;
2965 /* The address returned by the call to "operator new". This node is
2966 a VAR_DECL and is therefore reusable. */
2967 tree alloc_node;
2968 tree alloc_fn;
2969 tree cookie_expr, init_expr;
2970 int nothrow, check_new;
2971 /* If non-NULL, the number of extra bytes to allocate at the
2972 beginning of the storage allocated for an array-new expression in
2973 order to store the number of elements. */
2974 tree cookie_size = NULL_TREE;
2975 tree placement_first;
2976 tree placement_expr = NULL_TREE;
2977 /* True if the function we are calling is a placement allocation
2978 function. */
2979 bool placement_allocation_fn_p;
2980 /* True if the storage must be initialized, either by a constructor
2981 or due to an explicit new-initializer. */
2982 bool is_initialized;
2983 /* The address of the thing allocated, not including any cookie. In
2984 particular, if an array cookie is in use, DATA_ADDR is the
2985 address of the first array element. This node is a VAR_DECL, and
2986 is therefore reusable. */
2987 tree data_addr;
2988 tree init_preeval_expr = NULL_TREE;
2989 tree orig_type = type;
2990
2991 if (nelts)
2992 {
2993 outer_nelts = nelts;
2994 array_p = true;
2995 }
2996 else if (TREE_CODE (type) == ARRAY_TYPE)
2997 {
2998 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2999 extension for variable N. (This also covers new T where T is
3000 a VLA typedef.) */
3001 array_p = true;
3002 nelts = array_type_nelts_top (type);
3003 outer_nelts = nelts;
3004 type = TREE_TYPE (type);
3005 outer_nelts_from_type = true;
3006 }
3007
3008 /* Lots of logic below depends on whether we have a constant number of
3009 elements, so go ahead and fold it now. */
3010 const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts, complain);
3011
3012 /* If our base type is an array, then make sure we know how many elements
3013 it has. */
3014 for (elt_type = type;
3015 TREE_CODE (elt_type) == ARRAY_TYPE;
3016 elt_type = TREE_TYPE (elt_type))
3017 {
3018 tree inner_nelts = array_type_nelts_top (elt_type);
3019 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
3020 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
3021 {
3022 wi::overflow_type overflow;
3023 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
3024 inner_nelts_count, SIGNED, &overflow);
3025 if (overflow)
3026 {
3027 if (complain & tf_error)
3028 error ("integer overflow in array size");
3029 nelts = error_mark_node;
3030 }
3031 inner_nelts_count = result;
3032 }
3033 else
3034 {
3035 if (complain & tf_error)
3036 {
3037 error_at (cp_expr_loc_or_input_loc (inner_nelts),
3038 "array size in new-expression must be constant");
3039 cxx_constant_value(inner_nelts);
3040 }
3041 nelts = error_mark_node;
3042 }
3043 if (nelts != error_mark_node)
3044 nelts = cp_build_binary_op (input_location,
3045 MULT_EXPR, nelts,
3046 inner_nelts_cst,
3047 complain);
3048 }
3049
3050 if (!verify_type_context (input_location, TCTX_ALLOCATION, elt_type,
3051 !(complain & tf_error)))
3052 return error_mark_node;
3053
3054 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
3055 {
3056 error ("variably modified type not allowed in new-expression");
3057 return error_mark_node;
3058 }
3059
3060 if (nelts == error_mark_node)
3061 return error_mark_node;
3062
3063 /* Warn if we performed the (T[N]) to T[N] transformation and N is
3064 variable. */
3065 if (outer_nelts_from_type
3066 && !TREE_CONSTANT (cst_outer_nelts))
3067 {
3068 if (complain & tf_warning_or_error)
3069 {
3070 pedwarn (cp_expr_loc_or_input_loc (outer_nelts), OPT_Wvla,
3071 typedef_variant_p (orig_type)
3072 ? G_("non-constant array new length must be specified "
3073 "directly, not by %<typedef%>")
3074 : G_("non-constant array new length must be specified "
3075 "without parentheses around the type-id"));
3076 }
3077 else
3078 return error_mark_node;
3079 }
3080
3081 if (VOID_TYPE_P (elt_type))
3082 {
3083 if (complain & tf_error)
3084 error ("invalid type %<void%> for %<new%>");
3085 return error_mark_node;
3086 }
3087
3088 if (is_std_init_list (elt_type))
3089 warning (OPT_Winit_list_lifetime,
3090 "%<new%> of %<initializer_list%> does not "
3091 "extend the lifetime of the underlying array");
3092
3093 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
3094 return error_mark_node;
3095
3096 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
3097
3098 if (*init == NULL && cxx_dialect < cxx11)
3099 {
3100 bool maybe_uninitialized_error = false;
3101 /* A program that calls for default-initialization [...] of an
3102 entity of reference type is ill-formed. */
3103 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
3104 maybe_uninitialized_error = true;
3105
3106 /* A new-expression that creates an object of type T initializes
3107 that object as follows:
3108 - If the new-initializer is omitted:
3109 -- If T is a (possibly cv-qualified) non-POD class type
3110 (or array thereof), the object is default-initialized (8.5).
3111 [...]
3112 -- Otherwise, the object created has indeterminate
3113 value. If T is a const-qualified type, or a (possibly
3114 cv-qualified) POD class type (or array thereof)
3115 containing (directly or indirectly) a member of
3116 const-qualified type, the program is ill-formed; */
3117
3118 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
3119 maybe_uninitialized_error = true;
3120
3121 if (maybe_uninitialized_error
3122 && diagnose_uninitialized_cst_or_ref_member (elt_type,
3123 /*using_new=*/true,
3124 complain & tf_error))
3125 return error_mark_node;
3126 }
3127
3128 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
3129 && default_init_uninitialized_part (elt_type))
3130 {
3131 if (complain & tf_error)
3132 error ("uninitialized const in %<new%> of %q#T", elt_type);
3133 return error_mark_node;
3134 }
3135
3136 size = size_in_bytes (elt_type);
3137 if (array_p)
3138 {
3139 /* Maximum available size in bytes. Half of the address space
3140 minus the cookie size. */
3141 offset_int max_size
3142 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
3143 /* Maximum number of outer elements which can be allocated. */
3144 offset_int max_outer_nelts;
3145 tree max_outer_nelts_tree;
3146
3147 gcc_assert (TREE_CODE (size) == INTEGER_CST);
3148 cookie_size = targetm.cxx.get_cookie_size (elt_type);
3149 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
3150 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
3151 /* Unconditionally subtract the cookie size. This decreases the
3152 maximum object size and is safe even if we choose not to use
3153 a cookie after all. */
3154 max_size -= wi::to_offset (cookie_size);
3155 wi::overflow_type overflow;
3156 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
3157 &overflow);
3158 if (overflow || wi::gtu_p (inner_size, max_size))
3159 {
3160 if (complain & tf_error)
3161 {
3162 cst_size_error error;
3163 if (overflow)
3164 error = cst_size_overflow;
3165 else
3166 {
3167 error = cst_size_too_big;
3168 size = size_binop (MULT_EXPR, size,
3169 wide_int_to_tree (sizetype,
3170 inner_nelts_count));
3171 size = cp_fully_fold (size);
3172 }
3173 invalid_array_size_error (input_location, error, size,
3174 /*name=*/NULL_TREE);
3175 }
3176 return error_mark_node;
3177 }
3178
3179 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
3180 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
3181
3182 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
3183
3184 if (TREE_CODE (cst_outer_nelts) == INTEGER_CST)
3185 {
3186 if (tree_int_cst_lt (max_outer_nelts_tree, cst_outer_nelts))
3187 {
3188 /* When the array size is constant, check it at compile time
3189 to make sure it doesn't exceed the implementation-defined
3190 maximum, as required by C++ 14 (in C++ 11 this requirement
3191 isn't explicitly stated but it's enforced anyway -- see
3192 grokdeclarator in cp/decl.c). */
3193 if (complain & tf_error)
3194 {
3195 size = cp_fully_fold (size);
3196 invalid_array_size_error (input_location, cst_size_too_big,
3197 size, NULL_TREE);
3198 }
3199 return error_mark_node;
3200 }
3201 }
3202 else
3203 {
3204 /* When a runtime check is necessary because the array size
3205 isn't constant, keep only the top-most seven bits (starting
3206 with the most significant non-zero bit) of the maximum size
3207 to compare the array size against, to simplify encoding the
3208 constant maximum size in the instruction stream. */
3209
3210 unsigned shift = (max_outer_nelts.get_precision ()) - 7
3211 - wi::clz (max_outer_nelts);
3212 max_outer_nelts = (max_outer_nelts >> shift) << shift;
3213
3214 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
3215 outer_nelts,
3216 max_outer_nelts_tree);
3217 }
3218 }
3219
3220 tree align_arg = NULL_TREE;
3221 if (type_has_new_extended_alignment (elt_type))
3222 align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
3223
3224 alloc_fn = NULL_TREE;
3225
3226 /* If PLACEMENT is a single simple pointer type not passed by
3227 reference, prepare to capture it in a temporary variable. Do
3228 this now, since PLACEMENT will change in the calls below. */
3229 placement_first = NULL_TREE;
3230 if (vec_safe_length (*placement) == 1
3231 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3232 placement_first = (**placement)[0];
3233
3234 bool member_new_p = false;
3235
3236 /* Allocate the object. */
3237 tree fnname;
3238 tree fns;
3239
3240 fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR);
3241
3242 member_new_p = !globally_qualified_p
3243 && CLASS_TYPE_P (elt_type)
3244 && (array_p
3245 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3246 : TYPE_HAS_NEW_OPERATOR (elt_type));
3247
3248 if (member_new_p)
3249 {
3250 /* Use a class-specific operator new. */
3251 /* If a cookie is required, add some extra space. */
3252 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3253 size = size_binop (PLUS_EXPR, size, cookie_size);
3254 else
3255 {
3256 cookie_size = NULL_TREE;
3257 /* No size arithmetic necessary, so the size check is
3258 not needed. */
3259 if (outer_nelts_check != NULL && inner_size == 1)
3260 outer_nelts_check = NULL_TREE;
3261 }
3262 /* Perform the overflow check. */
3263 tree errval = TYPE_MAX_VALUE (sizetype);
3264 if (cxx_dialect >= cxx11 && flag_exceptions)
3265 errval = throw_bad_array_new_length ();
3266 if (outer_nelts_check != NULL_TREE)
3267 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3268 size, errval);
3269 /* Create the argument list. */
3270 vec_safe_insert (*placement, 0, size);
3271 /* Do name-lookup to find the appropriate operator. */
3272 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
3273 if (fns == NULL_TREE)
3274 {
3275 if (complain & tf_error)
3276 error ("no suitable %qD found in class %qT", fnname, elt_type);
3277 return error_mark_node;
3278 }
3279 if (TREE_CODE (fns) == TREE_LIST)
3280 {
3281 if (complain & tf_error)
3282 {
3283 error ("request for member %qD is ambiguous", fnname);
3284 print_candidates (fns);
3285 }
3286 return error_mark_node;
3287 }
3288 tree dummy = build_dummy_object (elt_type);
3289 alloc_call = NULL_TREE;
3290 if (align_arg)
3291 {
3292 vec<tree, va_gc> *align_args
3293 = vec_copy_and_insert (*placement, align_arg, 1);
3294 alloc_call
3295 = build_new_method_call (dummy, fns, &align_args,
3296 /*conversion_path=*/NULL_TREE,
3297 LOOKUP_NORMAL, &alloc_fn, tf_none);
3298 /* If no matching function is found and the allocated object type
3299 has new-extended alignment, the alignment argument is removed
3300 from the argument list, and overload resolution is performed
3301 again. */
3302 if (alloc_call == error_mark_node)
3303 alloc_call = NULL_TREE;
3304 }
3305 if (!alloc_call)
3306 alloc_call = build_new_method_call (dummy, fns, placement,
3307 /*conversion_path=*/NULL_TREE,
3308 LOOKUP_NORMAL,
3309 &alloc_fn, complain);
3310 }
3311 else
3312 {
3313 /* Use a global operator new. */
3314 /* See if a cookie might be required. */
3315 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3316 {
3317 cookie_size = NULL_TREE;
3318 /* No size arithmetic necessary, so the size check is
3319 not needed. */
3320 if (outer_nelts_check != NULL && inner_size == 1)
3321 outer_nelts_check = NULL_TREE;
3322 }
3323
3324 alloc_call = build_operator_new_call (fnname, placement,
3325 &size, &cookie_size,
3326 align_arg, outer_nelts_check,
3327 &alloc_fn, complain);
3328 }
3329
3330 if (alloc_call == error_mark_node)
3331 return error_mark_node;
3332
3333 gcc_assert (alloc_fn != NULL_TREE);
3334
3335 /* Now, check to see if this function is actually a placement
3336 allocation function. This can happen even when PLACEMENT is NULL
3337 because we might have something like:
3338
3339 struct S { void* operator new (size_t, int i = 0); };
3340
3341 A call to `new S' will get this allocation function, even though
3342 there is no explicit placement argument. If there is more than
3343 one argument, or there are variable arguments, then this is a
3344 placement allocation function. */
3345 placement_allocation_fn_p
3346 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3347 || varargs_function_p (alloc_fn));
3348
3349 if (warn_aligned_new
3350 && !placement_allocation_fn_p
3351 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3352 && (warn_aligned_new > 1
3353 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3354 && !aligned_allocation_fn_p (alloc_fn))
3355 {
3356 auto_diagnostic_group d;
3357 if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3358 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3359 {
3360 inform (input_location, "uses %qD, which does not have an alignment "
3361 "parameter", alloc_fn);
3362 if (!aligned_new_threshold)
3363 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3364 "over-aligned new support");
3365 }
3366 }
3367
3368 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3369 into a temporary variable. */
3370 if (!processing_template_decl
3371 && TREE_CODE (alloc_call) == CALL_EXPR
3372 && call_expr_nargs (alloc_call) == 2
3373 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3374 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3375 {
3376 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3377
3378 if (placement_first != NULL_TREE
3379 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3380 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3381 {
3382 placement_expr = get_target_expr (placement_first);
3383 CALL_EXPR_ARG (alloc_call, 1)
3384 = fold_convert (TREE_TYPE (placement), placement_expr);
3385 }
3386
3387 if (!member_new_p
3388 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3389 {
3390 /* Attempt to make the warning point at the operator new argument. */
3391 if (placement_first)
3392 placement = placement_first;
3393
3394 warn_placement_new_too_small (orig_type, nelts, size, placement);
3395 }
3396 }
3397
3398 tree alloc_call_expr = extract_call_expr (alloc_call);
3399 if (TREE_CODE (alloc_call_expr) == CALL_EXPR)
3400 CALL_FROM_NEW_OR_DELETE_P (alloc_call_expr) = 1;
3401
3402 if (cookie_size)
3403 alloc_call = maybe_wrap_new_for_constexpr (alloc_call, elt_type,
3404 cookie_size);
3405
3406 /* In the simple case, we can stop now. */
3407 pointer_type = build_pointer_type (type);
3408 if (!cookie_size && !is_initialized)
3409 return build_nop (pointer_type, alloc_call);
3410
3411 /* Store the result of the allocation call in a variable so that we can
3412 use it more than once. */
3413 alloc_expr = get_target_expr (alloc_call);
3414 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3415
3416 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3417 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3418 alloc_call = TREE_OPERAND (alloc_call, 1);
3419
3420 /* Preevaluate the placement args so that we don't reevaluate them for a
3421 placement delete. */
3422 if (placement_allocation_fn_p)
3423 {
3424 tree inits;
3425 stabilize_call (alloc_call, &inits);
3426 if (inits)
3427 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3428 alloc_expr);
3429 }
3430
3431 /* unless an allocation function is declared with an empty excep-
3432 tion-specification (_except.spec_), throw(), it indicates failure to
3433 allocate storage by throwing a bad_alloc exception (clause _except_,
3434 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3435 cation function is declared with an empty exception-specification,
3436 throw(), it returns null to indicate failure to allocate storage and a
3437 non-null pointer otherwise.
3438
3439 So check for a null exception spec on the op new we just called. */
3440
3441 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3442 check_new
3443 = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3444
3445 if (cookie_size)
3446 {
3447 tree cookie;
3448 tree cookie_ptr;
3449 tree size_ptr_type;
3450
3451 /* Adjust so we're pointing to the start of the object. */
3452 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3453
3454 /* Store the number of bytes allocated so that we can know how
3455 many elements to destroy later. We use the last sizeof
3456 (size_t) bytes to store the number of elements. */
3457 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3458 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3459 alloc_node, cookie_ptr);
3460 size_ptr_type = build_pointer_type (sizetype);
3461 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3462 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3463
3464 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3465
3466 if (targetm.cxx.cookie_has_size ())
3467 {
3468 /* Also store the element size. */
3469 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3470 fold_build1_loc (input_location,
3471 NEGATE_EXPR, sizetype,
3472 size_in_bytes (sizetype)));
3473
3474 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3475 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3476 size_in_bytes (elt_type));
3477 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3478 cookie, cookie_expr);
3479 }
3480 }
3481 else
3482 {
3483 cookie_expr = NULL_TREE;
3484 data_addr = alloc_node;
3485 }
3486
3487 /* Now use a pointer to the type we've actually allocated. */
3488
3489 /* But we want to operate on a non-const version to start with,
3490 since we'll be modifying the elements. */
3491 non_const_pointer_type = build_pointer_type
3492 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3493
3494 data_addr = fold_convert (non_const_pointer_type, data_addr);
3495 /* Any further uses of alloc_node will want this type, too. */
3496 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3497
3498 /* Now initialize the allocated object. Note that we preevaluate the
3499 initialization expression, apart from the actual constructor call or
3500 assignment--we do this because we want to delay the allocation as long
3501 as possible in order to minimize the size of the exception region for
3502 placement delete. */
3503 if (is_initialized)
3504 {
3505 bool stable;
3506 bool explicit_value_init_p = false;
3507
3508 if (*init != NULL && (*init)->is_empty ())
3509 {
3510 *init = NULL;
3511 explicit_value_init_p = true;
3512 }
3513
3514 if (processing_template_decl)
3515 {
3516 /* Avoid an ICE when converting to a base in build_simple_base_path.
3517 We'll throw this all away anyway, and build_new will create
3518 a NEW_EXPR. */
3519 tree t = fold_convert (build_pointer_type (elt_type), data_addr);
3520 /* build_value_init doesn't work in templates, and we don't need
3521 the initializer anyway since we're going to throw it away and
3522 rebuild it at instantiation time, so just build up a single
3523 constructor call to get any appropriate diagnostics. */
3524 init_expr = cp_build_fold_indirect_ref (t);
3525 if (type_build_ctor_call (elt_type))
3526 init_expr = build_special_member_call (init_expr,
3527 complete_ctor_identifier,
3528 init, elt_type,
3529 LOOKUP_NORMAL,
3530 complain);
3531 stable = stabilize_init (init_expr, &init_preeval_expr);
3532 }
3533 else if (array_p)
3534 {
3535 tree vecinit = NULL_TREE;
3536 if (vec_safe_length (*init) == 1
3537 && DIRECT_LIST_INIT_P ((**init)[0]))
3538 {
3539 vecinit = (**init)[0];
3540 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3541 /* List-value-initialization, leave it alone. */;
3542 else
3543 {
3544 tree arraytype, domain;
3545 if (TREE_CONSTANT (nelts))
3546 domain = compute_array_index_type (NULL_TREE, nelts,
3547 complain);
3548 else
3549 /* We'll check the length at runtime. */
3550 domain = NULL_TREE;
3551 arraytype = build_cplus_array_type (type, domain);
3552 vecinit = digest_init (arraytype, vecinit, complain);
3553 }
3554 }
3555 else if (*init)
3556 {
3557 if (complain & tf_error)
3558 error ("parenthesized initializer in array new");
3559 return error_mark_node;
3560 }
3561 init_expr
3562 = build_vec_init (data_addr,
3563 cp_build_binary_op (input_location,
3564 MINUS_EXPR, outer_nelts,
3565 integer_one_node,
3566 complain),
3567 vecinit,
3568 explicit_value_init_p,
3569 /*from_array=*/0,
3570 complain);
3571
3572 /* An array initialization is stable because the initialization
3573 of each element is a full-expression, so the temporaries don't
3574 leak out. */
3575 stable = true;
3576 }
3577 else
3578 {
3579 init_expr = cp_build_fold_indirect_ref (data_addr);
3580
3581 if (type_build_ctor_call (type) && !explicit_value_init_p)
3582 {
3583 init_expr = build_special_member_call (init_expr,
3584 complete_ctor_identifier,
3585 init, elt_type,
3586 LOOKUP_NORMAL,
3587 complain|tf_no_cleanup);
3588 }
3589 else if (explicit_value_init_p)
3590 {
3591 /* Something like `new int()'. NO_CLEANUP is needed so
3592 we don't try and build a (possibly ill-formed)
3593 destructor. */
3594 tree val = build_value_init (type, complain | tf_no_cleanup);
3595 if (val == error_mark_node)
3596 return error_mark_node;
3597 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3598 }
3599 else
3600 {
3601 tree ie;
3602
3603 /* We are processing something like `new int (10)', which
3604 means allocate an int, and initialize it with 10.
3605
3606 In C++20, also handle `new A(1, 2)'. */
3607 if (cxx_dialect >= cxx2a
3608 && AGGREGATE_TYPE_P (type)
3609 && (*init)->length () > 1)
3610 {
3611 ie = build_tree_list_vec (*init);
3612 ie = build_constructor_from_list (init_list_type_node, ie);
3613 CONSTRUCTOR_IS_DIRECT_INIT (ie) = true;
3614 CONSTRUCTOR_IS_PAREN_INIT (ie) = true;
3615 ie = digest_init (type, ie, complain);
3616 }
3617 else
3618 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3619 complain);
3620 init_expr = cp_build_modify_expr (input_location, init_expr,
3621 INIT_EXPR, ie, complain);
3622 }
3623 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3624 object being initialized, replace them now and don't try to
3625 preevaluate. */
3626 bool had_placeholder = false;
3627 if (!processing_template_decl
3628 && TREE_CODE (init_expr) == INIT_EXPR)
3629 TREE_OPERAND (init_expr, 1)
3630 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3631 TREE_OPERAND (init_expr, 0),
3632 &had_placeholder);
3633 stable = (!had_placeholder
3634 && stabilize_init (init_expr, &init_preeval_expr));
3635 }
3636
3637 if (init_expr == error_mark_node)
3638 return error_mark_node;
3639
3640 /* If any part of the object initialization terminates by throwing an
3641 exception and a suitable deallocation function can be found, the
3642 deallocation function is called to free the memory in which the
3643 object was being constructed, after which the exception continues
3644 to propagate in the context of the new-expression. If no
3645 unambiguous matching deallocation function can be found,
3646 propagating the exception does not cause the object's memory to be
3647 freed. */
3648 if (flag_exceptions)
3649 {
3650 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3651 tree cleanup;
3652
3653 /* The Standard is unclear here, but the right thing to do
3654 is to use the same method for finding deallocation
3655 functions that we use for finding allocation functions. */
3656 cleanup = (build_op_delete_call
3657 (dcode,
3658 alloc_node,
3659 size,
3660 globally_qualified_p,
3661 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3662 alloc_fn,
3663 complain));
3664
3665 if (!cleanup)
3666 /* We're done. */;
3667 else if (stable)
3668 /* This is much simpler if we were able to preevaluate all of
3669 the arguments to the constructor call. */
3670 {
3671 /* CLEANUP is compiler-generated, so no diagnostics. */
3672 TREE_NO_WARNING (cleanup) = true;
3673 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3674 init_expr, cleanup);
3675 /* Likewise, this try-catch is compiler-generated. */
3676 TREE_NO_WARNING (init_expr) = true;
3677 }
3678 else
3679 /* Ack! First we allocate the memory. Then we set our sentry
3680 variable to true, and expand a cleanup that deletes the
3681 memory if sentry is true. Then we run the constructor, and
3682 finally clear the sentry.
3683
3684 We need to do this because we allocate the space first, so
3685 if there are any temporaries with cleanups in the
3686 constructor args and we weren't able to preevaluate them, we
3687 need this EH region to extend until end of full-expression
3688 to preserve nesting. */
3689 {
3690 tree end, sentry, begin;
3691
3692 begin = get_target_expr (boolean_true_node);
3693 CLEANUP_EH_ONLY (begin) = 1;
3694
3695 sentry = TARGET_EXPR_SLOT (begin);
3696
3697 /* CLEANUP is compiler-generated, so no diagnostics. */
3698 TREE_NO_WARNING (cleanup) = true;
3699
3700 TARGET_EXPR_CLEANUP (begin)
3701 = build3 (COND_EXPR, void_type_node, sentry,
3702 cleanup, void_node);
3703
3704 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3705 sentry, boolean_false_node);
3706
3707 init_expr
3708 = build2 (COMPOUND_EXPR, void_type_node, begin,
3709 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3710 end));
3711 /* Likewise, this is compiler-generated. */
3712 TREE_NO_WARNING (init_expr) = true;
3713 }
3714 }
3715 }
3716 else
3717 init_expr = NULL_TREE;
3718
3719 /* Now build up the return value in reverse order. */
3720
3721 rval = data_addr;
3722
3723 if (init_expr)
3724 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3725 if (cookie_expr)
3726 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3727
3728 if (rval == data_addr)
3729 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3730 and return the call (which doesn't need to be adjusted). */
3731 rval = TARGET_EXPR_INITIAL (alloc_expr);
3732 else
3733 {
3734 if (check_new)
3735 {
3736 tree ifexp = cp_build_binary_op (input_location,
3737 NE_EXPR, alloc_node,
3738 nullptr_node,
3739 complain);
3740 rval = build_conditional_expr (input_location, ifexp, rval,
3741 alloc_node, complain);
3742 }
3743
3744 /* Perform the allocation before anything else, so that ALLOC_NODE
3745 has been initialized before we start using it. */
3746 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3747 }
3748
3749 if (init_preeval_expr)
3750 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3751
3752 /* A new-expression is never an lvalue. */
3753 gcc_assert (!obvalue_p (rval));
3754
3755 return convert (pointer_type, rval);
3756 }
3757
3758 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3759 is a vector of placement-new arguments (or NULL if none). If NELTS
3760 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3761 is not NULL, then this is an array-new allocation; TYPE is the type
3762 of the elements in the array and NELTS is the number of elements in
3763 the array. *INIT, if non-NULL, is the initializer for the new
3764 object, or an empty vector to indicate an initializer of "()". If
3765 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3766 rather than just "new". This may change PLACEMENT and INIT. */
3767
3768 tree
3769 build_new (location_t loc, vec<tree, va_gc> **placement, tree type,
3770 tree nelts, vec<tree, va_gc> **init, int use_global_new,
3771 tsubst_flags_t complain)
3772 {
3773 tree rval;
3774 vec<tree, va_gc> *orig_placement = NULL;
3775 tree orig_nelts = NULL_TREE;
3776 vec<tree, va_gc> *orig_init = NULL;
3777
3778 if (type == error_mark_node)
3779 return error_mark_node;
3780
3781 if (nelts == NULL_TREE
3782 /* Don't do auto deduction where it might affect mangling. */
3783 && (!processing_template_decl || at_function_scope_p ()))
3784 {
3785 tree auto_node = type_uses_auto (type);
3786 if (auto_node)
3787 {
3788 tree d_init = NULL_TREE;
3789 const size_t len = vec_safe_length (*init);
3790 /* E.g. new auto(x) must have exactly one element, or
3791 a {} initializer will have one element. */
3792 if (len == 1)
3793 {
3794 d_init = (**init)[0];
3795 d_init = resolve_nondeduced_context (d_init, complain);
3796 }
3797 /* For the rest, e.g. new A(1, 2, 3), create a list. */
3798 else if (len > 1)
3799 {
3800 unsigned int n;
3801 tree t;
3802 tree *pp = &d_init;
3803 FOR_EACH_VEC_ELT (**init, n, t)
3804 {
3805 t = resolve_nondeduced_context (t, complain);
3806 *pp = build_tree_list (NULL_TREE, t);
3807 pp = &TREE_CHAIN (*pp);
3808 }
3809 }
3810 type = do_auto_deduction (type, d_init, auto_node, complain);
3811 }
3812 }
3813
3814 if (processing_template_decl)
3815 {
3816 if (dependent_type_p (type)
3817 || any_type_dependent_arguments_p (*placement)
3818 || (nelts && type_dependent_expression_p (nelts))
3819 || (nelts && *init)
3820 || any_type_dependent_arguments_p (*init))
3821 return build_raw_new_expr (loc, *placement, type, nelts, *init,
3822 use_global_new);
3823
3824 orig_placement = make_tree_vector_copy (*placement);
3825 orig_nelts = nelts;
3826 if (*init)
3827 {
3828 orig_init = make_tree_vector_copy (*init);
3829 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3830 digest_init clobber them in place. */
3831 for (unsigned i = 0; i < orig_init->length(); ++i)
3832 {
3833 tree e = (**init)[i];
3834 if (TREE_CODE (e) == CONSTRUCTOR)
3835 (**init)[i] = copy_node (e);
3836 }
3837 }
3838
3839 make_args_non_dependent (*placement);
3840 if (nelts)
3841 nelts = build_non_dependent_expr (nelts);
3842 make_args_non_dependent (*init);
3843 }
3844
3845 if (nelts)
3846 {
3847 location_t nelts_loc = cp_expr_loc_or_loc (nelts, loc);
3848 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3849 {
3850 if (complain & tf_error)
3851 permerror (nelts_loc,
3852 "size in array new must have integral type");
3853 else
3854 return error_mark_node;
3855 }
3856
3857 /* Try to determine the constant value only for the purposes
3858 of the diagnostic below but continue to use the original
3859 value and handle const folding later. */
3860 const_tree cst_nelts = fold_non_dependent_expr (nelts, complain);
3861
3862 /* The expression in a noptr-new-declarator is erroneous if it's of
3863 non-class type and its value before converting to std::size_t is
3864 less than zero. ... If the expression is a constant expression,
3865 the program is ill-fomed. */
3866 if (TREE_CODE (cst_nelts) == INTEGER_CST
3867 && !valid_array_size_p (nelts_loc, cst_nelts, NULL_TREE,
3868 complain & tf_error))
3869 return error_mark_node;
3870
3871 nelts = mark_rvalue_use (nelts);
3872 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3873 }
3874
3875 /* ``A reference cannot be created by the new operator. A reference
3876 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3877 returned by new.'' ARM 5.3.3 */
3878 if (TYPE_REF_P (type))
3879 {
3880 if (complain & tf_error)
3881 error_at (loc, "new cannot be applied to a reference type");
3882 else
3883 return error_mark_node;
3884 type = TREE_TYPE (type);
3885 }
3886
3887 if (TREE_CODE (type) == FUNCTION_TYPE)
3888 {
3889 if (complain & tf_error)
3890 error_at (loc, "new cannot be applied to a function type");
3891 return error_mark_node;
3892 }
3893
3894 /* The type allocated must be complete. If the new-type-id was
3895 "T[N]" then we are just checking that "T" is complete here, but
3896 that is equivalent, since the value of "N" doesn't matter. */
3897 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3898 return error_mark_node;
3899
3900 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3901 if (rval == error_mark_node)
3902 return error_mark_node;
3903
3904 if (processing_template_decl)
3905 {
3906 tree ret = build_raw_new_expr (loc, orig_placement, type, orig_nelts,
3907 orig_init, use_global_new);
3908 release_tree_vector (orig_placement);
3909 release_tree_vector (orig_init);
3910 return ret;
3911 }
3912
3913 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3914 rval = build1_loc (loc, NOP_EXPR, TREE_TYPE (rval), rval);
3915 TREE_NO_WARNING (rval) = 1;
3916
3917 return rval;
3918 }
3919 \f
3920 static tree
3921 build_vec_delete_1 (location_t loc, tree base, tree maxindex, tree type,
3922 special_function_kind auto_delete_vec,
3923 int use_global_delete, tsubst_flags_t complain)
3924 {
3925 tree virtual_size;
3926 tree ptype = build_pointer_type (type = complete_type (type));
3927 tree size_exp;
3928
3929 /* Temporary variables used by the loop. */
3930 tree tbase, tbase_init;
3931
3932 /* This is the body of the loop that implements the deletion of a
3933 single element, and moves temp variables to next elements. */
3934 tree body;
3935
3936 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3937 tree loop = 0;
3938
3939 /* This is the thing that governs what to do after the loop has run. */
3940 tree deallocate_expr = 0;
3941
3942 /* This is the BIND_EXPR which holds the outermost iterator of the
3943 loop. It is convenient to set this variable up and test it before
3944 executing any other code in the loop.
3945 This is also the containing expression returned by this function. */
3946 tree controller = NULL_TREE;
3947 tree tmp;
3948
3949 /* We should only have 1-D arrays here. */
3950 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3951
3952 if (base == error_mark_node || maxindex == error_mark_node)
3953 return error_mark_node;
3954
3955 if (!verify_type_context (loc, TCTX_DEALLOCATION, type,
3956 !(complain & tf_error)))
3957 return error_mark_node;
3958
3959 if (!COMPLETE_TYPE_P (type))
3960 {
3961 if (complain & tf_warning)
3962 {
3963 auto_diagnostic_group d;
3964 if (warning_at (loc, OPT_Wdelete_incomplete,
3965 "possible problem detected in invocation of "
3966 "operator %<delete []%>"))
3967 {
3968 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3969 inform (loc, "neither the destructor nor the "
3970 "class-specific operator %<delete []%> will be called, "
3971 "even if they are declared when the class is defined");
3972 }
3973 }
3974 /* This size won't actually be used. */
3975 size_exp = size_one_node;
3976 goto no_destructor;
3977 }
3978
3979 size_exp = size_in_bytes (type);
3980
3981 if (! MAYBE_CLASS_TYPE_P (type))
3982 goto no_destructor;
3983 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3984 {
3985 /* Make sure the destructor is callable. */
3986 if (type_build_dtor_call (type))
3987 {
3988 tmp = build_delete (loc, ptype, base, sfk_complete_destructor,
3989 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3990 complain);
3991 if (tmp == error_mark_node)
3992 return error_mark_node;
3993 }
3994 goto no_destructor;
3995 }
3996
3997 /* The below is short by the cookie size. */
3998 virtual_size = size_binop (MULT_EXPR, size_exp,
3999 fold_convert (sizetype, maxindex));
4000
4001 tbase = create_temporary_var (ptype);
4002 DECL_INITIAL (tbase)
4003 = fold_build_pointer_plus_loc (loc, fold_convert (ptype, base),
4004 virtual_size);
4005 tbase_init = build_stmt (loc, DECL_EXPR, tbase);
4006 controller = build3 (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
4007 TREE_SIDE_EFFECTS (controller) = 1;
4008
4009 body = build1 (EXIT_EXPR, void_type_node,
4010 build2 (EQ_EXPR, boolean_type_node, tbase,
4011 fold_convert (ptype, base)));
4012 tmp = fold_build1_loc (loc, NEGATE_EXPR, sizetype, size_exp);
4013 tmp = fold_build_pointer_plus (tbase, tmp);
4014 tmp = cp_build_modify_expr (loc, tbase, NOP_EXPR, tmp, complain);
4015 if (tmp == error_mark_node)
4016 return error_mark_node;
4017 body = build_compound_expr (loc, body, tmp);
4018 tmp = build_delete (loc, ptype, tbase, sfk_complete_destructor,
4019 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
4020 complain);
4021 if (tmp == error_mark_node)
4022 return error_mark_node;
4023 body = build_compound_expr (loc, body, tmp);
4024
4025 loop = build1 (LOOP_EXPR, void_type_node, body);
4026 loop = build_compound_expr (loc, tbase_init, loop);
4027
4028 no_destructor:
4029 /* Delete the storage if appropriate. */
4030 if (auto_delete_vec == sfk_deleting_destructor)
4031 {
4032 tree base_tbd;
4033
4034 /* The below is short by the cookie size. */
4035 virtual_size = size_binop (MULT_EXPR, size_exp,
4036 fold_convert (sizetype, maxindex));
4037
4038 if (! TYPE_VEC_NEW_USES_COOKIE (type))
4039 /* no header */
4040 base_tbd = base;
4041 else
4042 {
4043 tree cookie_size;
4044
4045 cookie_size = targetm.cxx.get_cookie_size (type);
4046 base_tbd = cp_build_binary_op (loc,
4047 MINUS_EXPR,
4048 cp_convert (string_type_node,
4049 base, complain),
4050 cookie_size,
4051 complain);
4052 if (base_tbd == error_mark_node)
4053 return error_mark_node;
4054 base_tbd = cp_convert (ptype, base_tbd, complain);
4055 /* True size with header. */
4056 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
4057 }
4058
4059 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
4060 base_tbd, virtual_size,
4061 use_global_delete & 1,
4062 /*placement=*/NULL_TREE,
4063 /*alloc_fn=*/NULL_TREE,
4064 complain);
4065
4066 tree deallocate_call_expr = extract_call_expr (deallocate_expr);
4067 if (TREE_CODE (deallocate_call_expr) == CALL_EXPR)
4068 CALL_FROM_NEW_OR_DELETE_P (deallocate_call_expr) = 1;
4069 }
4070
4071 body = loop;
4072 if (!deallocate_expr)
4073 ;
4074 else if (!body)
4075 body = deallocate_expr;
4076 else
4077 /* The delete operator must be called, even if a destructor
4078 throws. */
4079 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
4080
4081 if (!body)
4082 body = integer_zero_node;
4083
4084 /* Outermost wrapper: If pointer is null, punt. */
4085 tree cond = build2_loc (loc, NE_EXPR, boolean_type_node, base,
4086 fold_convert (TREE_TYPE (base), nullptr_node));
4087 /* This is a compiler generated comparison, don't emit
4088 e.g. -Wnonnull-compare warning for it. */
4089 TREE_NO_WARNING (cond) = 1;
4090 body = build3_loc (loc, COND_EXPR, void_type_node,
4091 cond, body, integer_zero_node);
4092 COND_EXPR_IS_VEC_DELETE (body) = true;
4093 body = build1 (NOP_EXPR, void_type_node, body);
4094
4095 if (controller)
4096 {
4097 TREE_OPERAND (controller, 1) = body;
4098 body = controller;
4099 }
4100
4101 if (TREE_CODE (base) == SAVE_EXPR)
4102 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
4103 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
4104
4105 return convert_to_void (body, ICV_CAST, complain);
4106 }
4107
4108 /* Create an unnamed variable of the indicated TYPE. */
4109
4110 tree
4111 create_temporary_var (tree type)
4112 {
4113 tree decl;
4114
4115 decl = build_decl (input_location,
4116 VAR_DECL, NULL_TREE, type);
4117 TREE_USED (decl) = 1;
4118 DECL_ARTIFICIAL (decl) = 1;
4119 DECL_IGNORED_P (decl) = 1;
4120 DECL_CONTEXT (decl) = current_function_decl;
4121
4122 return decl;
4123 }
4124
4125 /* Create a new temporary variable of the indicated TYPE, initialized
4126 to INIT.
4127
4128 It is not entered into current_binding_level, because that breaks
4129 things when it comes time to do final cleanups (which take place
4130 "outside" the binding contour of the function). */
4131
4132 tree
4133 get_temp_regvar (tree type, tree init)
4134 {
4135 tree decl;
4136
4137 decl = create_temporary_var (type);
4138 add_decl_expr (decl);
4139
4140 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
4141 init, tf_warning_or_error));
4142
4143 return decl;
4144 }
4145
4146 /* Subroutine of build_vec_init. Returns true if assigning to an array of
4147 INNER_ELT_TYPE from INIT is trivial. */
4148
4149 static bool
4150 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
4151 {
4152 tree fromtype = inner_elt_type;
4153 if (lvalue_p (init))
4154 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
4155 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
4156 }
4157
4158 /* Subroutine of build_vec_init: Check that the array has at least N
4159 elements. Other parameters are local variables in build_vec_init. */
4160
4161 void
4162 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
4163 {
4164 tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
4165 if (TREE_CODE (atype) != ARRAY_TYPE)
4166 {
4167 if (flag_exceptions)
4168 {
4169 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
4170 nelts);
4171 c = build3 (COND_EXPR, void_type_node, c,
4172 throw_bad_array_new_length (), void_node);
4173 finish_expr_stmt (c);
4174 }
4175 /* Don't check an array new when -fno-exceptions. */
4176 }
4177 else if (sanitize_flags_p (SANITIZE_BOUNDS)
4178 && current_function_decl != NULL_TREE)
4179 {
4180 /* Make sure the last element of the initializer is in bounds. */
4181 finish_expr_stmt
4182 (ubsan_instrument_bounds
4183 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
4184 }
4185 }
4186
4187 /* `build_vec_init' returns tree structure that performs
4188 initialization of a vector of aggregate types.
4189
4190 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
4191 to the first element, of POINTER_TYPE.
4192 MAXINDEX is the maximum index of the array (one less than the
4193 number of elements). It is only used if BASE is a pointer or
4194 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
4195
4196 INIT is the (possibly NULL) initializer.
4197
4198 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
4199 elements in the array are value-initialized.
4200
4201 FROM_ARRAY is 0 if we should init everything with INIT
4202 (i.e., every element initialized from INIT).
4203 FROM_ARRAY is 1 if we should index into INIT in parallel
4204 with initialization of DECL.
4205 FROM_ARRAY is 2 if we should index into INIT in parallel,
4206 but use assignment instead of initialization. */
4207
4208 tree
4209 build_vec_init (tree base, tree maxindex, tree init,
4210 bool explicit_value_init_p,
4211 int from_array, tsubst_flags_t complain)
4212 {
4213 tree rval;
4214 tree base2 = NULL_TREE;
4215 tree itype = NULL_TREE;
4216 tree iterator;
4217 /* The type of BASE. */
4218 tree atype = TREE_TYPE (base);
4219 /* The type of an element in the array. */
4220 tree type = TREE_TYPE (atype);
4221 /* The element type reached after removing all outer array
4222 types. */
4223 tree inner_elt_type;
4224 /* The type of a pointer to an element in the array. */
4225 tree ptype;
4226 tree stmt_expr;
4227 tree compound_stmt;
4228 int destroy_temps;
4229 tree try_block = NULL_TREE;
4230 HOST_WIDE_INT num_initialized_elts = 0;
4231 bool is_global;
4232 tree obase = base;
4233 bool xvalue = false;
4234 bool errors = false;
4235 location_t loc = (init ? cp_expr_loc_or_input_loc (init)
4236 : location_of (base));
4237
4238 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
4239 maxindex = array_type_nelts (atype);
4240
4241 if (maxindex == NULL_TREE || maxindex == error_mark_node)
4242 return error_mark_node;
4243
4244 maxindex = maybe_constant_value (maxindex);
4245 if (explicit_value_init_p)
4246 gcc_assert (!init);
4247
4248 inner_elt_type = strip_array_types (type);
4249
4250 /* Look through the TARGET_EXPR around a compound literal. */
4251 if (init && TREE_CODE (init) == TARGET_EXPR
4252 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
4253 && from_array != 2)
4254 init = TARGET_EXPR_INITIAL (init);
4255
4256 bool direct_init = false;
4257 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
4258 && CONSTRUCTOR_NELTS (init) == 1)
4259 {
4260 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
4261 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
4262 {
4263 direct_init = DIRECT_LIST_INIT_P (init);
4264 init = elt;
4265 }
4266 }
4267
4268 /* If we have a braced-init-list or string constant, make sure that the array
4269 is big enough for all the initializers. */
4270 bool length_check = (init
4271 && (TREE_CODE (init) == STRING_CST
4272 || (TREE_CODE (init) == CONSTRUCTOR
4273 && CONSTRUCTOR_NELTS (init) > 0))
4274 && !TREE_CONSTANT (maxindex));
4275
4276 if (init
4277 && TREE_CODE (atype) == ARRAY_TYPE
4278 && TREE_CONSTANT (maxindex)
4279 && (from_array == 2
4280 ? vec_copy_assign_is_trivial (inner_elt_type, init)
4281 : !TYPE_NEEDS_CONSTRUCTING (type))
4282 && ((TREE_CODE (init) == CONSTRUCTOR
4283 && (BRACE_ENCLOSED_INITIALIZER_P (init)
4284 || (same_type_ignoring_top_level_qualifiers_p
4285 (atype, TREE_TYPE (init))))
4286 /* Don't do this if the CONSTRUCTOR might contain something
4287 that might throw and require us to clean up. */
4288 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4289 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4290 || from_array))
4291 {
4292 /* Do non-default initialization of trivial arrays resulting from
4293 brace-enclosed initializers. In this case, digest_init and
4294 store_constructor will handle the semantics for us. */
4295
4296 if (BRACE_ENCLOSED_INITIALIZER_P (init))
4297 init = digest_init (atype, init, complain);
4298 stmt_expr = build2 (INIT_EXPR, atype, base, init);
4299 return stmt_expr;
4300 }
4301
4302 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4303 maxindex = fold_simple (maxindex);
4304
4305 if (TREE_CODE (atype) == ARRAY_TYPE)
4306 {
4307 ptype = build_pointer_type (type);
4308 base = decay_conversion (base, complain);
4309 if (base == error_mark_node)
4310 return error_mark_node;
4311 base = cp_convert (ptype, base, complain);
4312 }
4313 else
4314 ptype = atype;
4315
4316 /* The code we are generating looks like:
4317 ({
4318 T* t1 = (T*) base;
4319 T* rval = t1;
4320 ptrdiff_t iterator = maxindex;
4321 try {
4322 for (; iterator != -1; --iterator) {
4323 ... initialize *t1 ...
4324 ++t1;
4325 }
4326 } catch (...) {
4327 ... destroy elements that were constructed ...
4328 }
4329 rval;
4330 })
4331
4332 We can omit the try and catch blocks if we know that the
4333 initialization will never throw an exception, or if the array
4334 elements do not have destructors. We can omit the loop completely if
4335 the elements of the array do not have constructors.
4336
4337 We actually wrap the entire body of the above in a STMT_EXPR, for
4338 tidiness.
4339
4340 When copying from array to another, when the array elements have
4341 only trivial copy constructors, we should use __builtin_memcpy
4342 rather than generating a loop. That way, we could take advantage
4343 of whatever cleverness the back end has for dealing with copies
4344 of blocks of memory. */
4345
4346 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4347 destroy_temps = stmts_are_full_exprs_p ();
4348 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4349 rval = get_temp_regvar (ptype, base);
4350 base = get_temp_regvar (ptype, rval);
4351 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
4352
4353 /* If initializing one array from another, initialize element by
4354 element. We rely upon the below calls to do the argument
4355 checking. Evaluate the initializer before entering the try block. */
4356 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4357 {
4358 if (lvalue_kind (init) & clk_rvalueref)
4359 xvalue = true;
4360 base2 = decay_conversion (init, complain);
4361 if (base2 == error_mark_node)
4362 return error_mark_node;
4363 itype = TREE_TYPE (base2);
4364 base2 = get_temp_regvar (itype, base2);
4365 itype = TREE_TYPE (itype);
4366 }
4367
4368 /* Protect the entire array initialization so that we can destroy
4369 the partially constructed array if an exception is thrown.
4370 But don't do this if we're assigning. */
4371 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4372 && from_array != 2)
4373 {
4374 try_block = begin_try_block ();
4375 }
4376
4377 /* Should we try to create a constant initializer? */
4378 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4379 && TREE_CONSTANT (maxindex)
4380 && (init ? TREE_CODE (init) == CONSTRUCTOR
4381 : (type_has_constexpr_default_constructor
4382 (inner_elt_type)))
4383 && (literal_type_p (inner_elt_type)
4384 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4385 vec<constructor_elt, va_gc> *const_vec = NULL;
4386 bool saw_non_const = false;
4387 /* If we're initializing a static array, we want to do static
4388 initialization of any elements with constant initializers even if
4389 some are non-constant. */
4390 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4391
4392 bool empty_list = false;
4393 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4394 && CONSTRUCTOR_NELTS (init) == 0)
4395 /* Skip over the handling of non-empty init lists. */
4396 empty_list = true;
4397
4398 /* Maybe pull out constant value when from_array? */
4399
4400 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4401 {
4402 /* Do non-default initialization of non-trivial arrays resulting from
4403 brace-enclosed initializers. */
4404 unsigned HOST_WIDE_INT idx;
4405 tree field, elt;
4406 /* If the constructor already has the array type, it's been through
4407 digest_init, so we shouldn't try to do anything more. */
4408 bool digested = same_type_p (atype, TREE_TYPE (init));
4409 from_array = 0;
4410
4411 if (length_check)
4412 finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4413
4414 if (try_const)
4415 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4416
4417 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4418 {
4419 tree baseref = build1 (INDIRECT_REF, type, base);
4420 tree one_init;
4421
4422 num_initialized_elts++;
4423
4424 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4425 if (digested)
4426 one_init = build2 (INIT_EXPR, type, baseref, elt);
4427 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4428 one_init = build_aggr_init (baseref, elt, 0, complain);
4429 else
4430 one_init = cp_build_modify_expr (input_location, baseref,
4431 NOP_EXPR, elt, complain);
4432 if (one_init == error_mark_node)
4433 errors = true;
4434 if (try_const)
4435 {
4436 tree e = maybe_constant_init (one_init);
4437 if (reduced_constant_expression_p (e))
4438 {
4439 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4440 if (do_static_init)
4441 one_init = NULL_TREE;
4442 else
4443 one_init = build2 (INIT_EXPR, type, baseref, e);
4444 }
4445 else
4446 {
4447 if (do_static_init)
4448 {
4449 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4450 true);
4451 if (value)
4452 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4453 }
4454 saw_non_const = true;
4455 }
4456 }
4457
4458 if (one_init)
4459 finish_expr_stmt (one_init);
4460 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4461
4462 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4463 complain);
4464 if (one_init == error_mark_node)
4465 errors = true;
4466 else
4467 finish_expr_stmt (one_init);
4468
4469 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4470 complain);
4471 if (one_init == error_mark_node)
4472 errors = true;
4473 else
4474 finish_expr_stmt (one_init);
4475 }
4476
4477 /* Any elements without explicit initializers get T{}. */
4478 empty_list = true;
4479 }
4480 else if (init && TREE_CODE (init) == STRING_CST)
4481 {
4482 /* Check that the array is at least as long as the string. */
4483 if (length_check)
4484 finish_length_check (atype, iterator, obase,
4485 TREE_STRING_LENGTH (init));
4486 tree length = build_int_cst (ptrdiff_type_node,
4487 TREE_STRING_LENGTH (init));
4488
4489 /* Copy the string to the first part of the array. */
4490 tree alias_set = build_int_cst (build_pointer_type (type), 0);
4491 tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4492 tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4493 finish_expr_stmt (stmt);
4494
4495 /* Adjust the counter and pointer. */
4496 stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4497 stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4498 finish_expr_stmt (stmt);
4499
4500 stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4501 stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4502 finish_expr_stmt (stmt);
4503
4504 /* And set the rest of the array to NUL. */
4505 from_array = 0;
4506 explicit_value_init_p = true;
4507 }
4508 else if (from_array)
4509 {
4510 if (init)
4511 /* OK, we set base2 above. */;
4512 else if (CLASS_TYPE_P (type)
4513 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4514 {
4515 if (complain & tf_error)
4516 error ("initializer ends prematurely");
4517 errors = true;
4518 }
4519 }
4520
4521 /* Now, default-initialize any remaining elements. We don't need to
4522 do that if a) the type does not need constructing, or b) we've
4523 already initialized all the elements.
4524
4525 We do need to keep going if we're copying an array. */
4526
4527 if (try_const && !init)
4528 /* With a constexpr default constructor, which we checked for when
4529 setting try_const above, default-initialization is equivalent to
4530 value-initialization, and build_value_init gives us something more
4531 friendly to maybe_constant_init. */
4532 explicit_value_init_p = true;
4533 if (from_array
4534 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4535 && ! (tree_fits_shwi_p (maxindex)
4536 && (num_initialized_elts
4537 == tree_to_shwi (maxindex) + 1))))
4538 {
4539 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4540 we've already initialized all the elements. */
4541 tree for_stmt;
4542 tree elt_init;
4543 tree to;
4544
4545 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4546 finish_init_stmt (for_stmt);
4547 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4548 build_int_cst (TREE_TYPE (iterator), -1)),
4549 for_stmt, false, 0);
4550 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4551 complain);
4552 if (elt_init == error_mark_node)
4553 errors = true;
4554 finish_for_expr (elt_init, for_stmt);
4555
4556 to = build1 (INDIRECT_REF, type, base);
4557
4558 /* If the initializer is {}, then all elements are initialized from T{}.
4559 But for non-classes, that's the same as value-initialization. */
4560 if (empty_list)
4561 {
4562 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4563 {
4564 init = build_constructor (init_list_type_node, NULL);
4565 }
4566 else
4567 {
4568 init = NULL_TREE;
4569 explicit_value_init_p = true;
4570 }
4571 }
4572
4573 if (from_array)
4574 {
4575 tree from;
4576
4577 if (base2)
4578 {
4579 from = build1 (INDIRECT_REF, itype, base2);
4580 if (xvalue)
4581 from = move (from);
4582 if (direct_init)
4583 from = build_tree_list (NULL_TREE, from);
4584 }
4585 else
4586 from = NULL_TREE;
4587
4588 if (TREE_CODE (type) == ARRAY_TYPE)
4589 elt_init = build_vec_init (to, NULL_TREE, from, /*val_init*/false,
4590 from_array, complain);
4591 else if (from_array == 2)
4592 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4593 from, complain);
4594 else if (type_build_ctor_call (type))
4595 elt_init = build_aggr_init (to, from, 0, complain);
4596 else if (from)
4597 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4598 complain);
4599 else
4600 gcc_unreachable ();
4601 }
4602 else if (TREE_CODE (type) == ARRAY_TYPE)
4603 {
4604 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4605 {
4606 if ((complain & tf_error))
4607 error_at (loc, "array must be initialized "
4608 "with a brace-enclosed initializer");
4609 elt_init = error_mark_node;
4610 }
4611 else
4612 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4613 0, init,
4614 explicit_value_init_p,
4615 0, complain);
4616 }
4617 else if (explicit_value_init_p)
4618 {
4619 elt_init = build_value_init (type, complain);
4620 if (elt_init != error_mark_node)
4621 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4622 }
4623 else
4624 {
4625 gcc_assert (type_build_ctor_call (type) || init);
4626 if (CLASS_TYPE_P (type))
4627 elt_init = build_aggr_init (to, init, 0, complain);
4628 else
4629 {
4630 if (TREE_CODE (init) == TREE_LIST)
4631 init = build_x_compound_expr_from_list (init, ELK_INIT,
4632 complain);
4633 elt_init = (init == error_mark_node
4634 ? error_mark_node
4635 : build2 (INIT_EXPR, type, to, init));
4636 }
4637 }
4638
4639 if (elt_init == error_mark_node)
4640 errors = true;
4641
4642 if (try_const)
4643 {
4644 /* FIXME refs to earlier elts */
4645 tree e = maybe_constant_init (elt_init);
4646 if (reduced_constant_expression_p (e))
4647 {
4648 if (initializer_zerop (e))
4649 /* Don't fill the CONSTRUCTOR with zeros. */
4650 e = NULL_TREE;
4651 if (do_static_init)
4652 elt_init = NULL_TREE;
4653 }
4654 else
4655 {
4656 saw_non_const = true;
4657 if (do_static_init)
4658 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4659 else
4660 e = NULL_TREE;
4661 }
4662
4663 if (e)
4664 {
4665 HOST_WIDE_INT last = tree_to_shwi (maxindex);
4666 if (num_initialized_elts <= last)
4667 {
4668 tree field = size_int (num_initialized_elts);
4669 if (num_initialized_elts != last)
4670 field = build2 (RANGE_EXPR, sizetype, field,
4671 size_int (last));
4672 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4673 }
4674 }
4675 }
4676
4677 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4678 if (elt_init && !errors)
4679 finish_expr_stmt (elt_init);
4680 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4681
4682 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4683 complain));
4684 if (base2)
4685 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4686 complain));
4687
4688 finish_for_stmt (for_stmt);
4689 }
4690
4691 /* Make sure to cleanup any partially constructed elements. */
4692 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4693 && from_array != 2)
4694 {
4695 tree e;
4696 tree m = cp_build_binary_op (input_location,
4697 MINUS_EXPR, maxindex, iterator,
4698 complain);
4699
4700 /* Flatten multi-dimensional array since build_vec_delete only
4701 expects one-dimensional array. */
4702 if (TREE_CODE (type) == ARRAY_TYPE)
4703 m = cp_build_binary_op (input_location,
4704 MULT_EXPR, m,
4705 /* Avoid mixing signed and unsigned. */
4706 convert (TREE_TYPE (m),
4707 array_type_nelts_total (type)),
4708 complain);
4709
4710 finish_cleanup_try_block (try_block);
4711 e = build_vec_delete_1 (input_location, rval, m,
4712 inner_elt_type, sfk_complete_destructor,
4713 /*use_global_delete=*/0, complain);
4714 if (e == error_mark_node)
4715 errors = true;
4716 finish_cleanup (e, try_block);
4717 }
4718
4719 /* The value of the array initialization is the array itself, RVAL
4720 is a pointer to the first element. */
4721 finish_stmt_expr_expr (rval, stmt_expr);
4722
4723 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4724
4725 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4726
4727 if (errors)
4728 return error_mark_node;
4729
4730 if (try_const)
4731 {
4732 if (!saw_non_const)
4733 {
4734 tree const_init = build_constructor (atype, const_vec);
4735 return build2 (INIT_EXPR, atype, obase, const_init);
4736 }
4737 else if (do_static_init && !vec_safe_is_empty (const_vec))
4738 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4739 else
4740 vec_free (const_vec);
4741 }
4742
4743 /* Now make the result have the correct type. */
4744 if (TREE_CODE (atype) == ARRAY_TYPE)
4745 {
4746 atype = build_pointer_type (atype);
4747 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4748 stmt_expr = cp_build_fold_indirect_ref (stmt_expr);
4749 TREE_NO_WARNING (stmt_expr) = 1;
4750 }
4751
4752 return stmt_expr;
4753 }
4754
4755 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4756 build_delete. */
4757
4758 static tree
4759 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4760 tsubst_flags_t complain)
4761 {
4762 tree name;
4763 switch (dtor_kind)
4764 {
4765 case sfk_complete_destructor:
4766 name = complete_dtor_identifier;
4767 break;
4768
4769 case sfk_base_destructor:
4770 name = base_dtor_identifier;
4771 break;
4772
4773 case sfk_deleting_destructor:
4774 name = deleting_dtor_identifier;
4775 break;
4776
4777 default:
4778 gcc_unreachable ();
4779 }
4780
4781 return build_special_member_call (exp, name,
4782 /*args=*/NULL,
4783 /*binfo=*/TREE_TYPE (exp),
4784 flags,
4785 complain);
4786 }
4787
4788 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4789 ADDR is an expression which yields the store to be destroyed.
4790 AUTO_DELETE is the name of the destructor to call, i.e., either
4791 sfk_complete_destructor, sfk_base_destructor, or
4792 sfk_deleting_destructor.
4793
4794 FLAGS is the logical disjunction of zero or more LOOKUP_
4795 flags. See cp-tree.h for more info. */
4796
4797 tree
4798 build_delete (location_t loc, tree otype, tree addr,
4799 special_function_kind auto_delete,
4800 int flags, int use_global_delete, tsubst_flags_t complain)
4801 {
4802 tree expr;
4803
4804 if (addr == error_mark_node)
4805 return error_mark_node;
4806
4807 tree type = TYPE_MAIN_VARIANT (otype);
4808
4809 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4810 set to `error_mark_node' before it gets properly cleaned up. */
4811 if (type == error_mark_node)
4812 return error_mark_node;
4813
4814 if (TYPE_PTR_P (type))
4815 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4816
4817 if (TREE_CODE (type) == ARRAY_TYPE)
4818 {
4819 if (TYPE_DOMAIN (type) == NULL_TREE)
4820 {
4821 if (complain & tf_error)
4822 error_at (loc, "unknown array size in delete");
4823 return error_mark_node;
4824 }
4825 return build_vec_delete (loc, addr, array_type_nelts (type),
4826 auto_delete, use_global_delete, complain);
4827 }
4828
4829 bool deleting = (auto_delete == sfk_deleting_destructor);
4830 gcc_assert (deleting == !(flags & LOOKUP_DESTRUCTOR));
4831
4832 if (TYPE_PTR_P (otype))
4833 {
4834 addr = mark_rvalue_use (addr);
4835
4836 /* We don't want to warn about delete of void*, only other
4837 incomplete types. Deleting other incomplete types
4838 invokes undefined behavior, but it is not ill-formed, so
4839 compile to something that would even do The Right Thing
4840 (TM) should the type have a trivial dtor and no delete
4841 operator. */
4842 if (!VOID_TYPE_P (type))
4843 {
4844 complete_type (type);
4845 if (deleting
4846 && !verify_type_context (loc, TCTX_DEALLOCATION, type,
4847 !(complain & tf_error)))
4848 return error_mark_node;
4849
4850 if (!COMPLETE_TYPE_P (type))
4851 {
4852 if (complain & tf_warning)
4853 {
4854 auto_diagnostic_group d;
4855 if (warning_at (loc, OPT_Wdelete_incomplete,
4856 "possible problem detected in invocation of "
4857 "%<operator delete%>"))
4858 {
4859 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4860 inform (loc,
4861 "neither the destructor nor the class-specific "
4862 "%<operator delete%> will be called, even if "
4863 "they are declared when the class is defined");
4864 }
4865 }
4866 }
4867 else if (deleting && warn_delnonvdtor
4868 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4869 && TYPE_POLYMORPHIC_P (type))
4870 {
4871 tree dtor = CLASSTYPE_DESTRUCTOR (type);
4872 if (!dtor || !DECL_VINDEX (dtor))
4873 {
4874 if (CLASSTYPE_PURE_VIRTUALS (type))
4875 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
4876 "deleting object of abstract class type %qT"
4877 " which has non-virtual destructor"
4878 " will cause undefined behavior", type);
4879 else
4880 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
4881 "deleting object of polymorphic class type %qT"
4882 " which has non-virtual destructor"
4883 " might cause undefined behavior", type);
4884 }
4885 }
4886 }
4887
4888 /* Throw away const and volatile on target type of addr. */
4889 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4890 }
4891 else
4892 {
4893 /* Don't check PROTECT here; leave that decision to the
4894 destructor. If the destructor is accessible, call it,
4895 else report error. */
4896 addr = cp_build_addr_expr (addr, complain);
4897 if (addr == error_mark_node)
4898 return error_mark_node;
4899
4900 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4901 }
4902
4903 if (deleting)
4904 /* We will use ADDR multiple times so we must save it. */
4905 addr = save_expr (addr);
4906
4907 bool virtual_p = false;
4908 if (type_build_dtor_call (type))
4909 {
4910 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4911 lazily_declare_fn (sfk_destructor, type);
4912 virtual_p = DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type));
4913 }
4914
4915 tree head = NULL_TREE;
4916 tree do_delete = NULL_TREE;
4917 bool destroying_delete = false;
4918
4919 if (!deleting)
4920 {
4921 /* Leave do_delete null. */
4922 }
4923 /* For `::delete x', we must not use the deleting destructor
4924 since then we would not be sure to get the global `operator
4925 delete'. */
4926 else if (use_global_delete)
4927 {
4928 head = get_target_expr (build_headof (addr));
4929 /* Delete the object. */
4930 do_delete = build_op_delete_call (DELETE_EXPR,
4931 head,
4932 cxx_sizeof_nowarn (type),
4933 /*global_p=*/true,
4934 /*placement=*/NULL_TREE,
4935 /*alloc_fn=*/NULL_TREE,
4936 complain);
4937 /* Otherwise, treat this like a complete object destructor
4938 call. */
4939 auto_delete = sfk_complete_destructor;
4940 }
4941 /* If the destructor is non-virtual, there is no deleting
4942 variant. Instead, we must explicitly call the appropriate
4943 `operator delete' here. */
4944 else if (!virtual_p)
4945 {
4946 /* Build the call. */
4947 do_delete = build_op_delete_call (DELETE_EXPR,
4948 addr,
4949 cxx_sizeof_nowarn (type),
4950 /*global_p=*/false,
4951 /*placement=*/NULL_TREE,
4952 /*alloc_fn=*/NULL_TREE,
4953 complain);
4954 /* Call the complete object destructor. */
4955 auto_delete = sfk_complete_destructor;
4956 if (do_delete != error_mark_node)
4957 {
4958 tree fn = get_callee_fndecl (do_delete);
4959 destroying_delete = destroying_delete_p (fn);
4960 }
4961 }
4962 else if (TYPE_GETS_REG_DELETE (type))
4963 {
4964 /* Make sure we have access to the member op delete, even though
4965 we'll actually be calling it from the destructor. */
4966 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4967 /*global_p=*/false,
4968 /*placement=*/NULL_TREE,
4969 /*alloc_fn=*/NULL_TREE,
4970 complain);
4971 }
4972
4973 if (!destroying_delete && type_build_dtor_call (type))
4974 expr = build_dtor_call (cp_build_fold_indirect_ref (addr),
4975 auto_delete, flags, complain);
4976 else
4977 expr = build_trivial_dtor_call (addr);
4978 if (expr == error_mark_node)
4979 return error_mark_node;
4980
4981 if (!deleting)
4982 {
4983 protected_set_expr_location (expr, loc);
4984 return expr;
4985 }
4986
4987 if (do_delete)
4988 {
4989 tree do_delete_call_expr = extract_call_expr (do_delete);
4990 if (TREE_CODE (do_delete_call_expr) == CALL_EXPR)
4991 CALL_FROM_NEW_OR_DELETE_P (do_delete_call_expr) = 1;
4992 }
4993
4994 if (do_delete && !TREE_SIDE_EFFECTS (expr))
4995 expr = do_delete;
4996 else if (do_delete)
4997 /* The delete operator must be called, regardless of whether
4998 the destructor throws.
4999
5000 [expr.delete]/7 The deallocation function is called
5001 regardless of whether the destructor for the object or some
5002 element of the array throws an exception. */
5003 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
5004
5005 /* We need to calculate this before the dtor changes the vptr. */
5006 if (head)
5007 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
5008
5009 /* Handle deleting a null pointer. */
5010 warning_sentinel s (warn_address);
5011 tree ifexp = cp_build_binary_op (loc, NE_EXPR, addr,
5012 nullptr_node, complain);
5013 ifexp = cp_fully_fold (ifexp);
5014
5015 if (ifexp == error_mark_node)
5016 return error_mark_node;
5017 /* This is a compiler generated comparison, don't emit
5018 e.g. -Wnonnull-compare warning for it. */
5019 else if (TREE_CODE (ifexp) == NE_EXPR)
5020 TREE_NO_WARNING (ifexp) = 1;
5021
5022 if (!integer_nonzerop (ifexp))
5023 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
5024
5025 protected_set_expr_location (expr, loc);
5026 return expr;
5027 }
5028
5029 /* At the beginning of a destructor, push cleanups that will call the
5030 destructors for our base classes and members.
5031
5032 Called from begin_destructor_body. */
5033
5034 void
5035 push_base_cleanups (void)
5036 {
5037 tree binfo, base_binfo;
5038 int i;
5039 tree member;
5040 tree expr;
5041 vec<tree, va_gc> *vbases;
5042
5043 /* Run destructors for all virtual baseclasses. */
5044 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
5045 && CLASSTYPE_VBASECLASSES (current_class_type))
5046 {
5047 tree cond = (condition_conversion
5048 (build2 (BIT_AND_EXPR, integer_type_node,
5049 current_in_charge_parm,
5050 integer_two_node)));
5051
5052 /* The CLASSTYPE_VBASECLASSES vector is in initialization
5053 order, which is also the right order for pushing cleanups. */
5054 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
5055 vec_safe_iterate (vbases, i, &base_binfo); i++)
5056 {
5057 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
5058 {
5059 expr = build_special_member_call (current_class_ref,
5060 base_dtor_identifier,
5061 NULL,
5062 base_binfo,
5063 (LOOKUP_NORMAL
5064 | LOOKUP_NONVIRTUAL),
5065 tf_warning_or_error);
5066 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5067 {
5068 expr = build3 (COND_EXPR, void_type_node, cond,
5069 expr, void_node);
5070 finish_decl_cleanup (NULL_TREE, expr);
5071 }
5072 }
5073 }
5074 }
5075
5076 /* Take care of the remaining baseclasses. */
5077 for (binfo = TYPE_BINFO (current_class_type), i = 0;
5078 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5079 {
5080 if (BINFO_VIRTUAL_P (base_binfo)
5081 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
5082 continue;
5083
5084 expr = build_special_member_call (current_class_ref,
5085 base_dtor_identifier,
5086 NULL, base_binfo,
5087 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
5088 tf_warning_or_error);
5089 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5090 finish_decl_cleanup (NULL_TREE, expr);
5091 }
5092
5093 /* Don't automatically destroy union members. */
5094 if (TREE_CODE (current_class_type) == UNION_TYPE)
5095 return;
5096
5097 for (member = TYPE_FIELDS (current_class_type); member;
5098 member = DECL_CHAIN (member))
5099 {
5100 tree this_type = TREE_TYPE (member);
5101 if (this_type == error_mark_node
5102 || TREE_CODE (member) != FIELD_DECL
5103 || DECL_ARTIFICIAL (member))
5104 continue;
5105 if (ANON_AGGR_TYPE_P (this_type))
5106 continue;
5107 if (type_build_dtor_call (this_type))
5108 {
5109 tree this_member = (build_class_member_access_expr
5110 (current_class_ref, member,
5111 /*access_path=*/NULL_TREE,
5112 /*preserve_reference=*/false,
5113 tf_warning_or_error));
5114 expr = build_delete (input_location, this_type, this_member,
5115 sfk_complete_destructor,
5116 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
5117 0, tf_warning_or_error);
5118 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
5119 finish_decl_cleanup (NULL_TREE, expr);
5120 }
5121 }
5122 }
5123
5124 /* Build a C++ vector delete expression.
5125 MAXINDEX is the number of elements to be deleted.
5126 ELT_SIZE is the nominal size of each element in the vector.
5127 BASE is the expression that should yield the store to be deleted.
5128 This function expands (or synthesizes) these calls itself.
5129 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
5130
5131 This also calls delete for virtual baseclasses of elements of the vector.
5132
5133 Update: MAXINDEX is no longer needed. The size can be extracted from the
5134 start of the vector for pointers, and from the type for arrays. We still
5135 use MAXINDEX for arrays because it happens to already have one of the
5136 values we'd have to extract. (We could use MAXINDEX with pointers to
5137 confirm the size, and trap if the numbers differ; not clear that it'd
5138 be worth bothering.) */
5139
5140 tree
5141 build_vec_delete (location_t loc, tree base, tree maxindex,
5142 special_function_kind auto_delete_vec,
5143 int use_global_delete, tsubst_flags_t complain)
5144 {
5145 tree type;
5146 tree rval;
5147 tree base_init = NULL_TREE;
5148
5149 type = TREE_TYPE (base);
5150
5151 if (TYPE_PTR_P (type))
5152 {
5153 /* Step back one from start of vector, and read dimension. */
5154 tree cookie_addr;
5155 tree size_ptr_type = build_pointer_type (sizetype);
5156
5157 base = mark_rvalue_use (base);
5158 if (TREE_SIDE_EFFECTS (base))
5159 {
5160 base_init = get_target_expr (base);
5161 base = TARGET_EXPR_SLOT (base_init);
5162 }
5163 type = strip_array_types (TREE_TYPE (type));
5164 cookie_addr = fold_build1_loc (loc, NEGATE_EXPR,
5165 sizetype, TYPE_SIZE_UNIT (sizetype));
5166 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
5167 cookie_addr);
5168 maxindex = cp_build_fold_indirect_ref (cookie_addr);
5169 }
5170 else if (TREE_CODE (type) == ARRAY_TYPE)
5171 {
5172 /* Get the total number of things in the array, maxindex is a
5173 bad name. */
5174 maxindex = array_type_nelts_total (type);
5175 type = strip_array_types (type);
5176 base = decay_conversion (base, complain);
5177 if (base == error_mark_node)
5178 return error_mark_node;
5179 if (TREE_SIDE_EFFECTS (base))
5180 {
5181 base_init = get_target_expr (base);
5182 base = TARGET_EXPR_SLOT (base_init);
5183 }
5184 }
5185 else
5186 {
5187 if (base != error_mark_node && !(complain & tf_error))
5188 error_at (loc,
5189 "type to vector delete is neither pointer or array type");
5190 return error_mark_node;
5191 }
5192
5193 rval = build_vec_delete_1 (loc, base, maxindex, type, auto_delete_vec,
5194 use_global_delete, complain);
5195 if (base_init && rval != error_mark_node)
5196 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
5197
5198 protected_set_expr_location (rval, loc);
5199 return rval;
5200 }
5201
5202 #include "gt-cp-init.h"