Make CONSTRUCTOR use VEC to store initializers.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_new_1 (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
59
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
68
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 {
72 bool is_global = !building_stmt_tree ();
73
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
76
77 return is_global;
78 }
79
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
82
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 {
86 finish_compound_stmt (compound_stmt);
87
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
89
90 gcc_assert (!building_stmt_tree () == is_global);
91
92 return stmt_expr;
93 }
94
95 /* Constructors */
96
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
100
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 {
104 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
105 return dfs_skip_bases;
106
107 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
108 {
109 tree base_ptr = TREE_VALUE ((tree) data);
110
111 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
112
113 expand_virtual_init (binfo, base_ptr);
114 }
115
116 return NULL_TREE;
117 }
118
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
121
122 void
123 initialize_vtbl_ptrs (tree addr)
124 {
125 tree list;
126 tree type;
127
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
130
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
136 }
137
138 /* Return an expression for the zero-initialization of an object with
139 type T. This expression will either be a constant (in the case
140 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
141 aggregate). In either case, the value can be used as DECL_INITIAL
142 for a decl of the indicated TYPE; it is a valid static initializer.
143 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
144 number of elements in the array. If STATIC_STORAGE_P is TRUE,
145 initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
147 zero bytes. */
148
149 tree
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 {
152 tree init = NULL_TREE;
153
154 /* [dcl.init]
155
156 To zero-initialization storage for an object of type T means:
157
158 -- if T is a scalar type, the storage is set to the value of zero
159 converted to T.
160
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
163
164 -- if T is a union type, the storage for its first data member is
165 zero-initialized.
166
167 -- if T is an array type, the storage for each element is
168 zero-initialized.
169
170 -- if T is a reference type, no initialization is performed. */
171
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173
174 if (type == error_mark_node)
175 ;
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
181 ;
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
185 {
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
188
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 {
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
194
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
200 {
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
205 }
206
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
210 }
211
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
214 }
215 else if (TREE_CODE (type) == ARRAY_TYPE)
216 {
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
219
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
226 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
227
228 /* A zero-sized array, which is accepted as an extension, will
229 have an upper bound of -1. */
230 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
231 {
232 constructor_elt *ce;
233
234 v = VEC_alloc (constructor_elt, gc, 1);
235 ce = VEC_quick_push (constructor_elt, v, NULL);
236
237 /* If this is a one element array, we just use a regular init. */
238 if (tree_int_cst_equal (size_zero_node, max_index))
239 ce->index = size_zero_node;
240 else
241 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
242 max_index);
243
244 ce->value = build_zero_init (TREE_TYPE (type),
245 /*nelts=*/NULL_TREE,
246 static_storage_p);
247 }
248
249 /* Build a constructor to contain the initializations. */
250 init = build_constructor (type, v);
251 }
252 else
253 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
254
255 /* In all cases, the initializer is a constant. */
256 if (init)
257 {
258 TREE_CONSTANT (init) = 1;
259 TREE_INVARIANT (init) = 1;
260 }
261
262 return init;
263 }
264
265 /* Build an expression for the default-initialization of an object of
266 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
267 ARRAY_TYPE, NELTS is the number of elements in the array. If
268 initialization of TYPE requires calling constructors, this function
269 returns NULL_TREE; the caller is responsible for arranging for the
270 constructors to be called. */
271
272 static tree
273 build_default_init (tree type, tree nelts)
274 {
275 /* [dcl.init]:
276
277 To default-initialize an object of type T means:
278
279 --if T is a non-POD class type (clause _class_), the default construc-
280 tor for T is called (and the initialization is ill-formed if T has
281 no accessible default constructor);
282
283 --if T is an array type, each element is default-initialized;
284
285 --otherwise, the storage for the object is zero-initialized.
286
287 A program that calls for default-initialization of an entity of refer-
288 ence type is ill-formed. */
289
290 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
291 performing the initialization. This is confusing in that some
292 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
293 a class with a pointer-to-data member as a non-static data member
294 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
295 passing non-PODs to build_zero_init below, which is contrary to
296 the semantics quoted above from [dcl.init].
297
298 It happens, however, that the behavior of the constructor the
299 standard says we should have generated would be precisely the
300 same as that obtained by calling build_zero_init below, so things
301 work out OK. */
302 if (TYPE_NEEDS_CONSTRUCTING (type)
303 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
304 return NULL_TREE;
305
306 /* At this point, TYPE is either a POD class type, an array of POD
307 classes, or something even more innocuous. */
308 return build_zero_init (type, nelts, /*static_storage_p=*/false);
309 }
310
311 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
312 arguments. If TREE_LIST is void_type_node, an empty initializer
313 list was given; if NULL_TREE no initializer was given. */
314
315 static void
316 perform_member_init (tree member, tree init)
317 {
318 tree decl;
319 tree type = TREE_TYPE (member);
320 bool explicit;
321
322 explicit = (init != NULL_TREE);
323
324 /* Effective C++ rule 12 requires that all data members be
325 initialized. */
326 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
327 warning (0, "%J%qD should be initialized in the member initialization "
328 "list", current_function_decl, member);
329
330 if (init == void_type_node)
331 init = NULL_TREE;
332
333 /* Get an lvalue for the data member. */
334 decl = build_class_member_access_expr (current_class_ref, member,
335 /*access_path=*/NULL_TREE,
336 /*preserve_reference=*/true);
337 if (decl == error_mark_node)
338 return;
339
340 /* Deal with this here, as we will get confused if we try to call the
341 assignment op for an anonymous union. This can happen in a
342 synthesized copy constructor. */
343 if (ANON_AGGR_TYPE_P (type))
344 {
345 if (init)
346 {
347 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
348 finish_expr_stmt (init);
349 }
350 }
351 else if (TYPE_NEEDS_CONSTRUCTING (type))
352 {
353 if (explicit
354 && TREE_CODE (type) == ARRAY_TYPE
355 && init != NULL_TREE
356 && TREE_CHAIN (init) == NULL_TREE
357 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
358 {
359 /* Initialization of one array from another. */
360 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
361 /* from_array=*/1));
362 }
363 else
364 finish_expr_stmt (build_aggr_init (decl, init, 0));
365 }
366 else
367 {
368 if (init == NULL_TREE)
369 {
370 if (explicit)
371 {
372 init = build_default_init (type, /*nelts=*/NULL_TREE);
373 if (TREE_CODE (type) == REFERENCE_TYPE)
374 warning (0, "%Jdefault-initialization of %q#D, "
375 "which has reference type",
376 current_function_decl, member);
377 }
378 /* member traversal: note it leaves init NULL */
379 else if (TREE_CODE (type) == REFERENCE_TYPE)
380 pedwarn ("%Juninitialized reference member %qD",
381 current_function_decl, member);
382 else if (CP_TYPE_CONST_P (type))
383 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
384 current_function_decl, member, type);
385 }
386 else if (TREE_CODE (init) == TREE_LIST)
387 /* There was an explicit member initialization. Do some work
388 in that case. */
389 init = build_x_compound_expr_from_list (init, "member initializer");
390
391 if (init)
392 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
393 }
394
395 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
396 {
397 tree expr;
398
399 expr = build_class_member_access_expr (current_class_ref, member,
400 /*access_path=*/NULL_TREE,
401 /*preserve_reference=*/false);
402 expr = build_delete (type, expr, sfk_complete_destructor,
403 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
404
405 if (expr != error_mark_node)
406 finish_eh_cleanup (expr);
407 }
408 }
409
410 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
411 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
412
413 static tree
414 build_field_list (tree t, tree list, int *uses_unions_p)
415 {
416 tree fields;
417
418 *uses_unions_p = 0;
419
420 /* Note whether or not T is a union. */
421 if (TREE_CODE (t) == UNION_TYPE)
422 *uses_unions_p = 1;
423
424 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
425 {
426 /* Skip CONST_DECLs for enumeration constants and so forth. */
427 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
428 continue;
429
430 /* Keep track of whether or not any fields are unions. */
431 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
432 *uses_unions_p = 1;
433
434 /* For an anonymous struct or union, we must recursively
435 consider the fields of the anonymous type. They can be
436 directly initialized from the constructor. */
437 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
438 {
439 /* Add this field itself. Synthesized copy constructors
440 initialize the entire aggregate. */
441 list = tree_cons (fields, NULL_TREE, list);
442 /* And now add the fields in the anonymous aggregate. */
443 list = build_field_list (TREE_TYPE (fields), list,
444 uses_unions_p);
445 }
446 /* Add this field. */
447 else if (DECL_NAME (fields))
448 list = tree_cons (fields, NULL_TREE, list);
449 }
450
451 return list;
452 }
453
454 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
455 a FIELD_DECL or BINFO in T that needs initialization. The
456 TREE_VALUE gives the initializer, or list of initializer arguments.
457
458 Return a TREE_LIST containing all of the initializations required
459 for T, in the order in which they should be performed. The output
460 list has the same format as the input. */
461
462 static tree
463 sort_mem_initializers (tree t, tree mem_inits)
464 {
465 tree init;
466 tree base, binfo, base_binfo;
467 tree sorted_inits;
468 tree next_subobject;
469 VEC(tree,gc) *vbases;
470 int i;
471 int uses_unions_p;
472
473 /* Build up a list of initializations. The TREE_PURPOSE of entry
474 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
475 TREE_VALUE will be the constructor arguments, or NULL if no
476 explicit initialization was provided. */
477 sorted_inits = NULL_TREE;
478
479 /* Process the virtual bases. */
480 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
481 VEC_iterate (tree, vbases, i, base); i++)
482 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
483
484 /* Process the direct bases. */
485 for (binfo = TYPE_BINFO (t), i = 0;
486 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
487 if (!BINFO_VIRTUAL_P (base_binfo))
488 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
489
490 /* Process the non-static data members. */
491 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
492 /* Reverse the entire list of initializations, so that they are in
493 the order that they will actually be performed. */
494 sorted_inits = nreverse (sorted_inits);
495
496 /* If the user presented the initializers in an order different from
497 that in which they will actually occur, we issue a warning. Keep
498 track of the next subobject which can be explicitly initialized
499 without issuing a warning. */
500 next_subobject = sorted_inits;
501
502 /* Go through the explicit initializers, filling in TREE_PURPOSE in
503 the SORTED_INITS. */
504 for (init = mem_inits; init; init = TREE_CHAIN (init))
505 {
506 tree subobject;
507 tree subobject_init;
508
509 subobject = TREE_PURPOSE (init);
510
511 /* If the explicit initializers are in sorted order, then
512 SUBOBJECT will be NEXT_SUBOBJECT, or something following
513 it. */
514 for (subobject_init = next_subobject;
515 subobject_init;
516 subobject_init = TREE_CHAIN (subobject_init))
517 if (TREE_PURPOSE (subobject_init) == subobject)
518 break;
519
520 /* Issue a warning if the explicit initializer order does not
521 match that which will actually occur.
522 ??? Are all these on the correct lines? */
523 if (warn_reorder && !subobject_init)
524 {
525 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
526 warning (0, "%q+D will be initialized after",
527 TREE_PURPOSE (next_subobject));
528 else
529 warning (0, "base %qT will be initialized after",
530 TREE_PURPOSE (next_subobject));
531 if (TREE_CODE (subobject) == FIELD_DECL)
532 warning (0, " %q+#D", subobject);
533 else
534 warning (0, " base %qT", subobject);
535 warning (0, "%J when initialized here", current_function_decl);
536 }
537
538 /* Look again, from the beginning of the list. */
539 if (!subobject_init)
540 {
541 subobject_init = sorted_inits;
542 while (TREE_PURPOSE (subobject_init) != subobject)
543 subobject_init = TREE_CHAIN (subobject_init);
544 }
545
546 /* It is invalid to initialize the same subobject more than
547 once. */
548 if (TREE_VALUE (subobject_init))
549 {
550 if (TREE_CODE (subobject) == FIELD_DECL)
551 error ("%Jmultiple initializations given for %qD",
552 current_function_decl, subobject);
553 else
554 error ("%Jmultiple initializations given for base %qT",
555 current_function_decl, subobject);
556 }
557
558 /* Record the initialization. */
559 TREE_VALUE (subobject_init) = TREE_VALUE (init);
560 next_subobject = subobject_init;
561 }
562
563 /* [class.base.init]
564
565 If a ctor-initializer specifies more than one mem-initializer for
566 multiple members of the same union (including members of
567 anonymous unions), the ctor-initializer is ill-formed. */
568 if (uses_unions_p)
569 {
570 tree last_field = NULL_TREE;
571 for (init = sorted_inits; init; init = TREE_CHAIN (init))
572 {
573 tree field;
574 tree field_type;
575 int done;
576
577 /* Skip uninitialized members and base classes. */
578 if (!TREE_VALUE (init)
579 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
580 continue;
581 /* See if this field is a member of a union, or a member of a
582 structure contained in a union, etc. */
583 field = TREE_PURPOSE (init);
584 for (field_type = DECL_CONTEXT (field);
585 !same_type_p (field_type, t);
586 field_type = TYPE_CONTEXT (field_type))
587 if (TREE_CODE (field_type) == UNION_TYPE)
588 break;
589 /* If this field is not a member of a union, skip it. */
590 if (TREE_CODE (field_type) != UNION_TYPE)
591 continue;
592
593 /* It's only an error if we have two initializers for the same
594 union type. */
595 if (!last_field)
596 {
597 last_field = field;
598 continue;
599 }
600
601 /* See if LAST_FIELD and the field initialized by INIT are
602 members of the same union. If so, there's a problem,
603 unless they're actually members of the same structure
604 which is itself a member of a union. For example, given:
605
606 union { struct { int i; int j; }; };
607
608 initializing both `i' and `j' makes sense. */
609 field_type = DECL_CONTEXT (field);
610 done = 0;
611 do
612 {
613 tree last_field_type;
614
615 last_field_type = DECL_CONTEXT (last_field);
616 while (1)
617 {
618 if (same_type_p (last_field_type, field_type))
619 {
620 if (TREE_CODE (field_type) == UNION_TYPE)
621 error ("%Jinitializations for multiple members of %qT",
622 current_function_decl, last_field_type);
623 done = 1;
624 break;
625 }
626
627 if (same_type_p (last_field_type, t))
628 break;
629
630 last_field_type = TYPE_CONTEXT (last_field_type);
631 }
632
633 /* If we've reached the outermost class, then we're
634 done. */
635 if (same_type_p (field_type, t))
636 break;
637
638 field_type = TYPE_CONTEXT (field_type);
639 }
640 while (!done);
641
642 last_field = field;
643 }
644 }
645
646 return sorted_inits;
647 }
648
649 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
650 is a TREE_LIST giving the explicit mem-initializer-list for the
651 constructor. The TREE_PURPOSE of each entry is a subobject (a
652 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
653 is a TREE_LIST giving the arguments to the constructor or
654 void_type_node for an empty list of arguments. */
655
656 void
657 emit_mem_initializers (tree mem_inits)
658 {
659 /* We will already have issued an error message about the fact that
660 the type is incomplete. */
661 if (!COMPLETE_TYPE_P (current_class_type))
662 return;
663
664 /* Sort the mem-initializers into the order in which the
665 initializations should be performed. */
666 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
667
668 in_base_initializer = 1;
669
670 /* Initialize base classes. */
671 while (mem_inits
672 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
673 {
674 tree subobject = TREE_PURPOSE (mem_inits);
675 tree arguments = TREE_VALUE (mem_inits);
676
677 /* If these initializations are taking place in a copy
678 constructor, the base class should probably be explicitly
679 initialized. */
680 if (extra_warnings && !arguments
681 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
682 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
683 warning (0, "%Jbase class %q#T should be explicitly initialized in the "
684 "copy constructor",
685 current_function_decl, BINFO_TYPE (subobject));
686
687 /* If an explicit -- but empty -- initializer list was present,
688 treat it just like default initialization at this point. */
689 if (arguments == void_type_node)
690 arguments = NULL_TREE;
691
692 /* Initialize the base. */
693 if (BINFO_VIRTUAL_P (subobject))
694 construct_virtual_base (subobject, arguments);
695 else
696 {
697 tree base_addr;
698
699 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
700 subobject, 1);
701 expand_aggr_init_1 (subobject, NULL_TREE,
702 build_indirect_ref (base_addr, NULL),
703 arguments,
704 LOOKUP_NORMAL);
705 expand_cleanup_for_base (subobject, NULL_TREE);
706 }
707
708 mem_inits = TREE_CHAIN (mem_inits);
709 }
710 in_base_initializer = 0;
711
712 /* Initialize the vptrs. */
713 initialize_vtbl_ptrs (current_class_ptr);
714
715 /* Initialize the data members. */
716 while (mem_inits)
717 {
718 perform_member_init (TREE_PURPOSE (mem_inits),
719 TREE_VALUE (mem_inits));
720 mem_inits = TREE_CHAIN (mem_inits);
721 }
722 }
723
724 /* Returns the address of the vtable (i.e., the value that should be
725 assigned to the vptr) for BINFO. */
726
727 static tree
728 build_vtbl_address (tree binfo)
729 {
730 tree binfo_for = binfo;
731 tree vtbl;
732
733 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
734 /* If this is a virtual primary base, then the vtable we want to store
735 is that for the base this is being used as the primary base of. We
736 can't simply skip the initialization, because we may be expanding the
737 inits of a subobject constructor where the virtual base layout
738 can be different. */
739 while (BINFO_PRIMARY_P (binfo_for))
740 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
741
742 /* Figure out what vtable BINFO's vtable is based on, and mark it as
743 used. */
744 vtbl = get_vtbl_decl_for_binfo (binfo_for);
745 assemble_external (vtbl);
746 TREE_USED (vtbl) = 1;
747
748 /* Now compute the address to use when initializing the vptr. */
749 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
750 if (TREE_CODE (vtbl) == VAR_DECL)
751 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
752
753 return vtbl;
754 }
755
756 /* This code sets up the virtual function tables appropriate for
757 the pointer DECL. It is a one-ply initialization.
758
759 BINFO is the exact type that DECL is supposed to be. In
760 multiple inheritance, this might mean "C's A" if C : A, B. */
761
762 static void
763 expand_virtual_init (tree binfo, tree decl)
764 {
765 tree vtbl, vtbl_ptr;
766 tree vtt_index;
767
768 /* Compute the initializer for vptr. */
769 vtbl = build_vtbl_address (binfo);
770
771 /* We may get this vptr from a VTT, if this is a subobject
772 constructor or subobject destructor. */
773 vtt_index = BINFO_VPTR_INDEX (binfo);
774 if (vtt_index)
775 {
776 tree vtbl2;
777 tree vtt_parm;
778
779 /* Compute the value to use, when there's a VTT. */
780 vtt_parm = current_vtt_parm;
781 vtbl2 = build2 (PLUS_EXPR,
782 TREE_TYPE (vtt_parm),
783 vtt_parm,
784 vtt_index);
785 vtbl2 = build_indirect_ref (vtbl2, NULL);
786 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
787
788 /* The actual initializer is the VTT value only in the subobject
789 constructor. In maybe_clone_body we'll substitute NULL for
790 the vtt_parm in the case of the non-subobject constructor. */
791 vtbl = build3 (COND_EXPR,
792 TREE_TYPE (vtbl),
793 build2 (EQ_EXPR, boolean_type_node,
794 current_in_charge_parm, integer_zero_node),
795 vtbl2,
796 vtbl);
797 }
798
799 /* Compute the location of the vtpr. */
800 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
801 TREE_TYPE (binfo));
802 gcc_assert (vtbl_ptr != error_mark_node);
803
804 /* Assign the vtable to the vptr. */
805 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
806 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
807 }
808
809 /* If an exception is thrown in a constructor, those base classes already
810 constructed must be destroyed. This function creates the cleanup
811 for BINFO, which has just been constructed. If FLAG is non-NULL,
812 it is a DECL which is nonzero when this base needs to be
813 destroyed. */
814
815 static void
816 expand_cleanup_for_base (tree binfo, tree flag)
817 {
818 tree expr;
819
820 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
821 return;
822
823 /* Call the destructor. */
824 expr = build_special_member_call (current_class_ref,
825 base_dtor_identifier,
826 NULL_TREE,
827 binfo,
828 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
829 if (flag)
830 expr = fold_build3 (COND_EXPR, void_type_node,
831 c_common_truthvalue_conversion (flag),
832 expr, integer_zero_node);
833
834 finish_eh_cleanup (expr);
835 }
836
837 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
838 constructor. */
839
840 static void
841 construct_virtual_base (tree vbase, tree arguments)
842 {
843 tree inner_if_stmt;
844 tree exp;
845 tree flag;
846
847 /* If there are virtual base classes with destructors, we need to
848 emit cleanups to destroy them if an exception is thrown during
849 the construction process. These exception regions (i.e., the
850 period during which the cleanups must occur) begin from the time
851 the construction is complete to the end of the function. If we
852 create a conditional block in which to initialize the
853 base-classes, then the cleanup region for the virtual base begins
854 inside a block, and ends outside of that block. This situation
855 confuses the sjlj exception-handling code. Therefore, we do not
856 create a single conditional block, but one for each
857 initialization. (That way the cleanup regions always begin
858 in the outer block.) We trust the back-end to figure out
859 that the FLAG will not change across initializations, and
860 avoid doing multiple tests. */
861 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
862 inner_if_stmt = begin_if_stmt ();
863 finish_if_stmt_cond (flag, inner_if_stmt);
864
865 /* Compute the location of the virtual base. If we're
866 constructing virtual bases, then we must be the most derived
867 class. Therefore, we don't have to look up the virtual base;
868 we already know where it is. */
869 exp = convert_to_base_statically (current_class_ref, vbase);
870
871 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
872 LOOKUP_COMPLAIN);
873 finish_then_clause (inner_if_stmt);
874 finish_if_stmt (inner_if_stmt);
875
876 expand_cleanup_for_base (vbase, flag);
877 }
878
879 /* Find the context in which this FIELD can be initialized. */
880
881 static tree
882 initializing_context (tree field)
883 {
884 tree t = DECL_CONTEXT (field);
885
886 /* Anonymous union members can be initialized in the first enclosing
887 non-anonymous union context. */
888 while (t && ANON_AGGR_TYPE_P (t))
889 t = TYPE_CONTEXT (t);
890 return t;
891 }
892
893 /* Function to give error message if member initialization specification
894 is erroneous. FIELD is the member we decided to initialize.
895 TYPE is the type for which the initialization is being performed.
896 FIELD must be a member of TYPE.
897
898 MEMBER_NAME is the name of the member. */
899
900 static int
901 member_init_ok_or_else (tree field, tree type, tree member_name)
902 {
903 if (field == error_mark_node)
904 return 0;
905 if (!field)
906 {
907 error ("class %qT does not have any field named %qD", type,
908 member_name);
909 return 0;
910 }
911 if (TREE_CODE (field) == VAR_DECL)
912 {
913 error ("%q#D is a static data member; it can only be "
914 "initialized at its definition",
915 field);
916 return 0;
917 }
918 if (TREE_CODE (field) != FIELD_DECL)
919 {
920 error ("%q#D is not a non-static data member of %qT",
921 field, type);
922 return 0;
923 }
924 if (initializing_context (field) != type)
925 {
926 error ("class %qT does not have any field named %qD", type,
927 member_name);
928 return 0;
929 }
930
931 return 1;
932 }
933
934 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
935 is a _TYPE node or TYPE_DECL which names a base for that type.
936 Check the validity of NAME, and return either the base _TYPE, base
937 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
938 NULL_TREE and issue a diagnostic.
939
940 An old style unnamed direct single base construction is permitted,
941 where NAME is NULL. */
942
943 tree
944 expand_member_init (tree name)
945 {
946 tree basetype;
947 tree field;
948
949 if (!current_class_ref)
950 return NULL_TREE;
951
952 if (!name)
953 {
954 /* This is an obsolete unnamed base class initializer. The
955 parser will already have warned about its use. */
956 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
957 {
958 case 0:
959 error ("unnamed initializer for %qT, which has no base classes",
960 current_class_type);
961 return NULL_TREE;
962 case 1:
963 basetype = BINFO_TYPE
964 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
965 break;
966 default:
967 error ("unnamed initializer for %qT, which uses multiple inheritance",
968 current_class_type);
969 return NULL_TREE;
970 }
971 }
972 else if (TYPE_P (name))
973 {
974 basetype = TYPE_MAIN_VARIANT (name);
975 name = TYPE_NAME (name);
976 }
977 else if (TREE_CODE (name) == TYPE_DECL)
978 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
979 else
980 basetype = NULL_TREE;
981
982 if (basetype)
983 {
984 tree class_binfo;
985 tree direct_binfo;
986 tree virtual_binfo;
987 int i;
988
989 if (current_template_parms)
990 return basetype;
991
992 class_binfo = TYPE_BINFO (current_class_type);
993 direct_binfo = NULL_TREE;
994 virtual_binfo = NULL_TREE;
995
996 /* Look for a direct base. */
997 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
998 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
999 break;
1000
1001 /* Look for a virtual base -- unless the direct base is itself
1002 virtual. */
1003 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1004 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1005
1006 /* [class.base.init]
1007
1008 If a mem-initializer-id is ambiguous because it designates
1009 both a direct non-virtual base class and an inherited virtual
1010 base class, the mem-initializer is ill-formed. */
1011 if (direct_binfo && virtual_binfo)
1012 {
1013 error ("%qD is both a direct base and an indirect virtual base",
1014 basetype);
1015 return NULL_TREE;
1016 }
1017
1018 if (!direct_binfo && !virtual_binfo)
1019 {
1020 if (CLASSTYPE_VBASECLASSES (current_class_type))
1021 error ("type %qD is not a direct or virtual base of %qT",
1022 name, current_class_type);
1023 else
1024 error ("type %qD is not a direct base of %qT",
1025 name, current_class_type);
1026 return NULL_TREE;
1027 }
1028
1029 return direct_binfo ? direct_binfo : virtual_binfo;
1030 }
1031 else
1032 {
1033 if (TREE_CODE (name) == IDENTIFIER_NODE)
1034 field = lookup_field (current_class_type, name, 1, false);
1035 else
1036 field = name;
1037
1038 if (member_init_ok_or_else (field, current_class_type, name))
1039 return field;
1040 }
1041
1042 return NULL_TREE;
1043 }
1044
1045 /* This is like `expand_member_init', only it stores one aggregate
1046 value into another.
1047
1048 INIT comes in two flavors: it is either a value which
1049 is to be stored in EXP, or it is a parameter list
1050 to go to a constructor, which will operate on EXP.
1051 If INIT is not a parameter list for a constructor, then set
1052 LOOKUP_ONLYCONVERTING.
1053 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1054 the initializer, if FLAGS is 0, then it is the (init) form.
1055 If `init' is a CONSTRUCTOR, then we emit a warning message,
1056 explaining that such initializations are invalid.
1057
1058 If INIT resolves to a CALL_EXPR which happens to return
1059 something of the type we are looking for, then we know
1060 that we can safely use that call to perform the
1061 initialization.
1062
1063 The virtual function table pointer cannot be set up here, because
1064 we do not really know its type.
1065
1066 This never calls operator=().
1067
1068 When initializing, nothing is CONST.
1069
1070 A default copy constructor may have to be used to perform the
1071 initialization.
1072
1073 A constructor or a conversion operator may have to be used to
1074 perform the initialization, but not both, as it would be ambiguous. */
1075
1076 tree
1077 build_aggr_init (tree exp, tree init, int flags)
1078 {
1079 tree stmt_expr;
1080 tree compound_stmt;
1081 int destroy_temps;
1082 tree type = TREE_TYPE (exp);
1083 int was_const = TREE_READONLY (exp);
1084 int was_volatile = TREE_THIS_VOLATILE (exp);
1085 int is_global;
1086
1087 if (init == error_mark_node)
1088 return error_mark_node;
1089
1090 TREE_READONLY (exp) = 0;
1091 TREE_THIS_VOLATILE (exp) = 0;
1092
1093 if (init && TREE_CODE (init) != TREE_LIST)
1094 flags |= LOOKUP_ONLYCONVERTING;
1095
1096 if (TREE_CODE (type) == ARRAY_TYPE)
1097 {
1098 tree itype;
1099
1100 /* An array may not be initialized use the parenthesized
1101 initialization form -- unless the initializer is "()". */
1102 if (init && TREE_CODE (init) == TREE_LIST)
1103 {
1104 error ("bad array initializer");
1105 return error_mark_node;
1106 }
1107 /* Must arrange to initialize each element of EXP
1108 from elements of INIT. */
1109 itype = init ? TREE_TYPE (init) : NULL_TREE;
1110 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1111 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1112 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1113 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1114 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1115 itype && same_type_p (itype,
1116 TREE_TYPE (exp)));
1117 TREE_READONLY (exp) = was_const;
1118 TREE_THIS_VOLATILE (exp) = was_volatile;
1119 TREE_TYPE (exp) = type;
1120 if (init)
1121 TREE_TYPE (init) = itype;
1122 return stmt_expr;
1123 }
1124
1125 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1126 /* Just know that we've seen something for this node. */
1127 TREE_USED (exp) = 1;
1128
1129 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1130 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1131 destroy_temps = stmts_are_full_exprs_p ();
1132 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1133 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1134 init, LOOKUP_NORMAL|flags);
1135 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1136 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1137 TREE_TYPE (exp) = type;
1138 TREE_READONLY (exp) = was_const;
1139 TREE_THIS_VOLATILE (exp) = was_volatile;
1140
1141 return stmt_expr;
1142 }
1143
1144 /* Like build_aggr_init, but not just for aggregates. */
1145
1146 tree
1147 build_init (tree decl, tree init, int flags)
1148 {
1149 tree expr;
1150
1151 if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1152 expr = build_aggr_init (decl, init, flags);
1153 else if (CLASS_TYPE_P (TREE_TYPE (decl)))
1154 expr = build_special_member_call (decl, complete_ctor_identifier,
1155 build_tree_list (NULL_TREE, init),
1156 TREE_TYPE (decl),
1157 LOOKUP_NORMAL|flags);
1158 else
1159 expr = build2 (INIT_EXPR, TREE_TYPE (decl), decl, init);
1160
1161 return expr;
1162 }
1163
1164 static void
1165 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1166 {
1167 tree type = TREE_TYPE (exp);
1168 tree ctor_name;
1169
1170 /* It fails because there may not be a constructor which takes
1171 its own type as the first (or only parameter), but which does
1172 take other types via a conversion. So, if the thing initializing
1173 the expression is a unit element of type X, first try X(X&),
1174 followed by initialization by X. If neither of these work
1175 out, then look hard. */
1176 tree rval;
1177 tree parms;
1178
1179 if (init && TREE_CODE (init) != TREE_LIST
1180 && (flags & LOOKUP_ONLYCONVERTING))
1181 {
1182 /* Base subobjects should only get direct-initialization. */
1183 gcc_assert (true_exp == exp);
1184
1185 if (flags & DIRECT_BIND)
1186 /* Do nothing. We hit this in two cases: Reference initialization,
1187 where we aren't initializing a real variable, so we don't want
1188 to run a new constructor; and catching an exception, where we
1189 have already built up the constructor call so we could wrap it
1190 in an exception region. */;
1191 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1192 {
1193 /* A brace-enclosed initializer for an aggregate. */
1194 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1195 init = digest_init (type, init);
1196 }
1197 else
1198 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1199
1200 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1201 /* We need to protect the initialization of a catch parm with a
1202 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1203 around the TARGET_EXPR for the copy constructor. See
1204 initialize_handler_parm. */
1205 {
1206 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1207 TREE_OPERAND (init, 0));
1208 TREE_TYPE (init) = void_type_node;
1209 }
1210 else
1211 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1212 TREE_SIDE_EFFECTS (init) = 1;
1213 finish_expr_stmt (init);
1214 return;
1215 }
1216
1217 if (init == NULL_TREE
1218 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1219 {
1220 parms = init;
1221 if (parms)
1222 init = TREE_VALUE (parms);
1223 }
1224 else
1225 parms = build_tree_list (NULL_TREE, init);
1226
1227 if (true_exp == exp)
1228 ctor_name = complete_ctor_identifier;
1229 else
1230 ctor_name = base_ctor_identifier;
1231
1232 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1233 if (TREE_SIDE_EFFECTS (rval))
1234 finish_expr_stmt (convert_to_void (rval, NULL));
1235 }
1236
1237 /* This function is responsible for initializing EXP with INIT
1238 (if any).
1239
1240 BINFO is the binfo of the type for who we are performing the
1241 initialization. For example, if W is a virtual base class of A and B,
1242 and C : A, B.
1243 If we are initializing B, then W must contain B's W vtable, whereas
1244 were we initializing C, W must contain C's W vtable.
1245
1246 TRUE_EXP is nonzero if it is the true expression being initialized.
1247 In this case, it may be EXP, or may just contain EXP. The reason we
1248 need this is because if EXP is a base element of TRUE_EXP, we
1249 don't necessarily know by looking at EXP where its virtual
1250 baseclass fields should really be pointing. But we do know
1251 from TRUE_EXP. In constructors, we don't know anything about
1252 the value being initialized.
1253
1254 FLAGS is just passed to `build_new_method_call'. See that function
1255 for its description. */
1256
1257 static void
1258 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1259 {
1260 tree type = TREE_TYPE (exp);
1261
1262 gcc_assert (init != error_mark_node && type != error_mark_node);
1263 gcc_assert (building_stmt_tree ());
1264
1265 /* Use a function returning the desired type to initialize EXP for us.
1266 If the function is a constructor, and its first argument is
1267 NULL_TREE, know that it was meant for us--just slide exp on
1268 in and expand the constructor. Constructors now come
1269 as TARGET_EXPRs. */
1270
1271 if (init && TREE_CODE (exp) == VAR_DECL
1272 && TREE_CODE (init) == CONSTRUCTOR
1273 && TREE_HAS_CONSTRUCTOR (init))
1274 {
1275 /* If store_init_value returns NULL_TREE, the INIT has been
1276 record in the DECL_INITIAL for EXP. That means there's
1277 nothing more we have to do. */
1278 init = store_init_value (exp, init);
1279 if (init)
1280 finish_expr_stmt (init);
1281 return;
1282 }
1283
1284 /* We know that expand_default_init can handle everything we want
1285 at this point. */
1286 expand_default_init (binfo, true_exp, exp, init, flags);
1287 }
1288
1289 /* Report an error if TYPE is not a user-defined, aggregate type. If
1290 OR_ELSE is nonzero, give an error message. */
1291
1292 int
1293 is_aggr_type (tree type, int or_else)
1294 {
1295 if (type == error_mark_node)
1296 return 0;
1297
1298 if (! IS_AGGR_TYPE (type)
1299 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1300 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1301 {
1302 if (or_else)
1303 error ("%qT is not an aggregate type", type);
1304 return 0;
1305 }
1306 return 1;
1307 }
1308
1309 tree
1310 get_type_value (tree name)
1311 {
1312 if (name == error_mark_node)
1313 return NULL_TREE;
1314
1315 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1316 return IDENTIFIER_TYPE_VALUE (name);
1317 else
1318 return NULL_TREE;
1319 }
1320
1321 /* Build a reference to a member of an aggregate. This is not a C++
1322 `&', but really something which can have its address taken, and
1323 then act as a pointer to member, for example TYPE :: FIELD can have
1324 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1325 this expression is the operand of "&".
1326
1327 @@ Prints out lousy diagnostics for operator <typename>
1328 @@ fields.
1329
1330 @@ This function should be rewritten and placed in search.c. */
1331
1332 tree
1333 build_offset_ref (tree type, tree name, bool address_p)
1334 {
1335 tree decl;
1336 tree member;
1337 tree basebinfo = NULL_TREE;
1338 tree orig_name = name;
1339
1340 /* class templates can come in as TEMPLATE_DECLs here. */
1341 if (TREE_CODE (name) == TEMPLATE_DECL)
1342 return name;
1343
1344 if (dependent_type_p (type) || type_dependent_expression_p (name))
1345 return build_min_nt (SCOPE_REF, type, name);
1346
1347 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1348 {
1349 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1350 something like `a.template f<int>' or the like. For the most
1351 part, we treat this just like a.f. We do remember, however,
1352 the template-id that was used. */
1353 name = TREE_OPERAND (orig_name, 0);
1354
1355 if (DECL_P (name))
1356 name = DECL_NAME (name);
1357 else
1358 {
1359 if (TREE_CODE (name) == COMPONENT_REF)
1360 name = TREE_OPERAND (name, 1);
1361 if (TREE_CODE (name) == OVERLOAD)
1362 name = DECL_NAME (OVL_CURRENT (name));
1363 }
1364
1365 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1366 }
1367
1368 if (type == NULL_TREE)
1369 return error_mark_node;
1370
1371 /* Handle namespace names fully here. */
1372 if (TREE_CODE (type) == NAMESPACE_DECL)
1373 {
1374 tree t = lookup_namespace_name (type, name);
1375 if (t == error_mark_node)
1376 return t;
1377 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1378 /* Reconstruct the TEMPLATE_ID_EXPR. */
1379 t = build2 (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1380 t, TREE_OPERAND (orig_name, 1));
1381 if (! type_unknown_p (t))
1382 {
1383 mark_used (t);
1384 t = convert_from_reference (t);
1385 }
1386 return t;
1387 }
1388
1389 if (! is_aggr_type (type, 1))
1390 return error_mark_node;
1391
1392 if (TREE_CODE (name) == BIT_NOT_EXPR)
1393 {
1394 if (! check_dtor_name (type, name))
1395 error ("qualified type %qT does not match destructor name %<~%T%>",
1396 type, TREE_OPERAND (name, 0));
1397 name = dtor_identifier;
1398 }
1399
1400 if (!COMPLETE_TYPE_P (complete_type (type))
1401 && !TYPE_BEING_DEFINED (type))
1402 {
1403 error ("incomplete type %qT does not have member %qD", type, name);
1404 return error_mark_node;
1405 }
1406
1407 /* Set up BASEBINFO for member lookup. */
1408 decl = maybe_dummy_object (type, &basebinfo);
1409
1410 if (BASELINK_P (name) || DECL_P (name))
1411 member = name;
1412 else
1413 {
1414 member = lookup_member (basebinfo, name, 1, 0);
1415
1416 if (member == error_mark_node)
1417 return error_mark_node;
1418 }
1419
1420 if (!member)
1421 {
1422 error ("%qD is not a member of type %qT", name, type);
1423 return error_mark_node;
1424 }
1425
1426 if (TREE_CODE (member) == TYPE_DECL)
1427 {
1428 TREE_USED (member) = 1;
1429 return member;
1430 }
1431 /* static class members and class-specific enum
1432 values can be returned without further ado. */
1433 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1434 {
1435 mark_used (member);
1436 return convert_from_reference (member);
1437 }
1438
1439 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1440 {
1441 error ("invalid pointer to bit-field %qD", member);
1442 return error_mark_node;
1443 }
1444
1445 /* A lot of this logic is now handled in lookup_member. */
1446 if (BASELINK_P (member))
1447 {
1448 /* Go from the TREE_BASELINK to the member function info. */
1449 tree fnfields = member;
1450 tree t = BASELINK_FUNCTIONS (fnfields);
1451
1452 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1453 {
1454 /* The FNFIELDS are going to contain functions that aren't
1455 necessarily templates, and templates that don't
1456 necessarily match the explicit template parameters. We
1457 save all the functions, and the explicit parameters, and
1458 then figure out exactly what to instantiate with what
1459 arguments in instantiate_type. */
1460
1461 if (TREE_CODE (t) != OVERLOAD)
1462 /* The code in instantiate_type which will process this
1463 expects to encounter OVERLOADs, not raw functions. */
1464 t = ovl_cons (t, NULL_TREE);
1465
1466 t = build2 (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1467 TREE_OPERAND (orig_name, 1));
1468 t = build2 (OFFSET_REF, unknown_type_node, decl, t);
1469
1470 PTRMEM_OK_P (t) = 1;
1471
1472 return t;
1473 }
1474
1475 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1476 {
1477 /* Get rid of a potential OVERLOAD around it. */
1478 t = OVL_CURRENT (t);
1479
1480 /* Unique functions are handled easily. */
1481
1482 /* For non-static member of base class, we need a special rule
1483 for access checking [class.protected]:
1484
1485 If the access is to form a pointer to member, the
1486 nested-name-specifier shall name the derived class
1487 (or any class derived from that class). */
1488 if (address_p && DECL_P (t)
1489 && DECL_NONSTATIC_MEMBER_P (t))
1490 perform_or_defer_access_check (TYPE_BINFO (type), t);
1491 else
1492 perform_or_defer_access_check (basebinfo, t);
1493
1494 mark_used (t);
1495 if (DECL_STATIC_FUNCTION_P (t))
1496 return t;
1497 member = t;
1498 }
1499 else
1500 {
1501 TREE_TYPE (fnfields) = unknown_type_node;
1502 member = fnfields;
1503 }
1504 }
1505 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1506 /* We need additional test besides the one in
1507 check_accessibility_of_qualified_id in case it is
1508 a pointer to non-static member. */
1509 perform_or_defer_access_check (TYPE_BINFO (type), member);
1510
1511 if (!address_p)
1512 {
1513 /* If MEMBER is non-static, then the program has fallen afoul of
1514 [expr.prim]:
1515
1516 An id-expression that denotes a nonstatic data member or
1517 nonstatic member function of a class can only be used:
1518
1519 -- as part of a class member access (_expr.ref_) in which the
1520 object-expression refers to the member's class or a class
1521 derived from that class, or
1522
1523 -- to form a pointer to member (_expr.unary.op_), or
1524
1525 -- in the body of a nonstatic member function of that class or
1526 of a class derived from that class (_class.mfct.nonstatic_), or
1527
1528 -- in a mem-initializer for a constructor for that class or for
1529 a class derived from that class (_class.base.init_). */
1530 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1531 {
1532 /* Build a representation of a the qualified name suitable
1533 for use as the operand to "&" -- even though the "&" is
1534 not actually present. */
1535 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1536 /* In Microsoft mode, treat a non-static member function as if
1537 it were a pointer-to-member. */
1538 if (flag_ms_extensions)
1539 {
1540 PTRMEM_OK_P (member) = 1;
1541 return build_unary_op (ADDR_EXPR, member, 0);
1542 }
1543 error ("invalid use of non-static member function %qD",
1544 TREE_OPERAND (member, 1));
1545 return member;
1546 }
1547 else if (TREE_CODE (member) == FIELD_DECL)
1548 {
1549 error ("invalid use of non-static data member %qD", member);
1550 return error_mark_node;
1551 }
1552 return member;
1553 }
1554
1555 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1556 PTRMEM_OK_P (member) = 1;
1557 return member;
1558 }
1559
1560 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1561 constant of integral or enumeration type, then return that value.
1562 These are those variables permitted in constant expressions by
1563 [5.19/1]. FIXME:If we did lazy folding, this could be localized. */
1564
1565 tree
1566 integral_constant_value (tree decl)
1567 {
1568 while ((TREE_CODE (decl) == CONST_DECL
1569 || (TREE_CODE (decl) == VAR_DECL
1570 /* And so are variables with a 'const' type -- unless they
1571 are also 'volatile'. */
1572 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))
1573 && DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)))
1574 && DECL_INITIAL (decl)
1575 && DECL_INITIAL (decl) != error_mark_node
1576 && TREE_TYPE (DECL_INITIAL (decl))
1577 && INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (DECL_INITIAL (decl))))
1578 decl = DECL_INITIAL (decl);
1579 return decl;
1580 }
1581
1582 /* A more relaxed version of integral_constant_value, for which type
1583 is not considered. This is used by the common C/C++ code, and not
1584 directly by the C++ front end. */
1585
1586 tree
1587 decl_constant_value (tree decl)
1588 {
1589 if ((TREE_CODE (decl) == CONST_DECL
1590 || (TREE_CODE (decl) == VAR_DECL
1591 /* And so are variables with a 'const' type -- unless they
1592 are also 'volatile'. */
1593 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
1594 && DECL_INITIAL (decl)
1595 && DECL_INITIAL (decl) != error_mark_node
1596 /* This is invalid if initial value is not constant. If it has
1597 either a function call, a memory reference, or a variable,
1598 then re-evaluating it could give different results. */
1599 && TREE_CONSTANT (DECL_INITIAL (decl)))
1600 return DECL_INITIAL (decl);
1601
1602 return decl;
1603 }
1604 \f
1605 /* Common subroutines of build_new and build_vec_delete. */
1606
1607 /* Call the global __builtin_delete to delete ADDR. */
1608
1609 static tree
1610 build_builtin_delete_call (tree addr)
1611 {
1612 mark_used (global_delete_fndecl);
1613 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1614 }
1615 \f
1616 /* Generate a representation for a C++ "new" expression. PLACEMENT is
1617 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
1618 NELTS is NULL, TYPE is the type of the storage to be allocated. If
1619 NELTS is not NULL, then this is an array-new allocation; TYPE is
1620 the type of the elements in the array and NELTS is the number of
1621 elements in the array. INIT, if non-NULL, is the initializer for
1622 the new object. If USE_GLOBAL_NEW is true, then the user
1623 explicitly wrote "::new" rather than just "new". */
1624
1625 tree
1626 build_new (tree placement, tree type, tree nelts, tree init,
1627 int use_global_new)
1628 {
1629 tree rval;
1630
1631 if (type == error_mark_node)
1632 return error_mark_node;
1633
1634 if (processing_template_decl)
1635 {
1636 rval = build_min (NEW_EXPR, build_pointer_type (type),
1637 placement, type, nelts, init);
1638 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1639 TREE_SIDE_EFFECTS (rval) = 1;
1640 return rval;
1641 }
1642
1643 if (nelts)
1644 {
1645 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
1646 pedwarn ("size in array new must have integral type");
1647 nelts = save_expr (cp_convert (sizetype, nelts));
1648 if (nelts == integer_zero_node)
1649 warning (0, "zero size array reserves no space");
1650 }
1651
1652 /* ``A reference cannot be created by the new operator. A reference
1653 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1654 returned by new.'' ARM 5.3.3 */
1655 if (TREE_CODE (type) == REFERENCE_TYPE)
1656 {
1657 error ("new cannot be applied to a reference type");
1658 type = TREE_TYPE (type);
1659 }
1660
1661 if (TREE_CODE (type) == FUNCTION_TYPE)
1662 {
1663 error ("new cannot be applied to a function type");
1664 return error_mark_node;
1665 }
1666
1667 rval = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1668 nelts, init);
1669 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1670 TREE_SIDE_EFFECTS (rval) = 1;
1671 rval = build_new_1 (rval);
1672 if (rval == error_mark_node)
1673 return error_mark_node;
1674
1675 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1676 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1677 TREE_NO_WARNING (rval) = 1;
1678
1679 return rval;
1680 }
1681
1682 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1683
1684 tree
1685 build_java_class_ref (tree type)
1686 {
1687 tree name = NULL_TREE, class_decl;
1688 static tree CL_suffix = NULL_TREE;
1689 if (CL_suffix == NULL_TREE)
1690 CL_suffix = get_identifier("class$");
1691 if (jclass_node == NULL_TREE)
1692 {
1693 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1694 if (jclass_node == NULL_TREE)
1695 fatal_error ("call to Java constructor, while %<jclass%> undefined");
1696
1697 jclass_node = TREE_TYPE (jclass_node);
1698 }
1699
1700 /* Mangle the class$ field. */
1701 {
1702 tree field;
1703 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1704 if (DECL_NAME (field) == CL_suffix)
1705 {
1706 mangle_decl (field);
1707 name = DECL_ASSEMBLER_NAME (field);
1708 break;
1709 }
1710 if (!field)
1711 internal_error ("can't find class$");
1712 }
1713
1714 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1715 if (class_decl == NULL_TREE)
1716 {
1717 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1718 TREE_STATIC (class_decl) = 1;
1719 DECL_EXTERNAL (class_decl) = 1;
1720 TREE_PUBLIC (class_decl) = 1;
1721 DECL_ARTIFICIAL (class_decl) = 1;
1722 DECL_IGNORED_P (class_decl) = 1;
1723 pushdecl_top_level (class_decl);
1724 make_decl_rtl (class_decl);
1725 }
1726 return class_decl;
1727 }
1728
1729
1730 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1731 value is immediately handed to expand_expr. */
1732
1733 static tree
1734 build_new_1 (tree exp)
1735 {
1736 tree placement, init;
1737 tree size, rval;
1738 /* True iff this is a call to "operator new[]" instead of just
1739 "operator new". */
1740 bool array_p = false;
1741 /* True iff ARRAY_P is true and the bound of the array type is
1742 not necessarily a compile time constant. For example, VLA_P is
1743 true for "new int[f()]". */
1744 bool vla_p = false;
1745 /* The type being allocated. If ARRAY_P is true, this will be an
1746 ARRAY_TYPE. */
1747 tree full_type;
1748 /* If ARRAY_P is true, the element type of the array. This is an
1749 never ARRAY_TYPE; for something like "new int[3][4]", the
1750 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1751 FULL_TYPE. */
1752 tree elt_type;
1753 /* The type of the new-expression. (This type is always a pointer
1754 type.) */
1755 tree pointer_type;
1756 /* The type pointed to by POINTER_TYPE. This type may be different
1757 from ELT_TYPE for a multi-dimensional array; ELT_TYPE is never an
1758 ARRAY_TYPE, but TYPE may be an ARRAY_TYPE. */
1759 tree type;
1760 /* A pointer type pointing to the FULL_TYPE. */
1761 tree full_pointer_type;
1762 tree outer_nelts = NULL_TREE;
1763 tree nelts = NULL_TREE;
1764 tree alloc_call, alloc_expr;
1765 /* The address returned by the call to "operator new". This node is
1766 a VAR_DECL and is therefore reusable. */
1767 tree alloc_node;
1768 tree alloc_fn;
1769 tree cookie_expr, init_expr;
1770 int nothrow, check_new;
1771 /* Nonzero if the user wrote `::new' rather than just `new'. */
1772 int globally_qualified_p;
1773 int use_java_new = 0;
1774 /* If non-NULL, the number of extra bytes to allocate at the
1775 beginning of the storage allocated for an array-new expression in
1776 order to store the number of elements. */
1777 tree cookie_size = NULL_TREE;
1778 /* True if the function we are calling is a placement allocation
1779 function. */
1780 bool placement_allocation_fn_p;
1781 tree args = NULL_TREE;
1782 /* True if the storage must be initialized, either by a constructor
1783 or due to an explicit new-initializer. */
1784 bool is_initialized;
1785 /* The address of the thing allocated, not including any cookie. In
1786 particular, if an array cookie is in use, DATA_ADDR is the
1787 address of the first array element. This node is a VAR_DECL, and
1788 is therefore reusable. */
1789 tree data_addr;
1790 tree init_preeval_expr = NULL_TREE;
1791
1792 placement = TREE_OPERAND (exp, 0);
1793 type = TREE_OPERAND (exp, 1);
1794 nelts = TREE_OPERAND (exp, 2);
1795 init = TREE_OPERAND (exp, 3);
1796 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1797
1798 if (nelts)
1799 {
1800 tree index;
1801
1802 outer_nelts = nelts;
1803 array_p = true;
1804
1805 /* ??? The middle-end will error on us for building a VLA outside a
1806 function context. Methinks that's not it's purvey. So we'll do
1807 our own VLA layout later. */
1808 vla_p = true;
1809 full_type = build_cplus_array_type (type, NULL_TREE);
1810 index = convert (sizetype, nelts);
1811 index = size_binop (MINUS_EXPR, index, size_one_node);
1812 TYPE_DOMAIN (full_type) = build_index_type (index);
1813 }
1814 else
1815 {
1816 full_type = type;
1817 if (TREE_CODE (type) == ARRAY_TYPE)
1818 {
1819 array_p = true;
1820 nelts = array_type_nelts_top (type);
1821 outer_nelts = nelts;
1822 type = TREE_TYPE (type);
1823 }
1824 }
1825
1826 /* If our base type is an array, then make sure we know how many elements
1827 it has. */
1828 for (elt_type = type;
1829 TREE_CODE (elt_type) == ARRAY_TYPE;
1830 elt_type = TREE_TYPE (elt_type))
1831 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1832 array_type_nelts_top (elt_type));
1833
1834 if (!complete_type_or_else (elt_type, exp))
1835 return error_mark_node;
1836
1837 if (TREE_CODE (elt_type) == VOID_TYPE)
1838 {
1839 error ("invalid type %<void%> for new");
1840 return error_mark_node;
1841 }
1842
1843 if (abstract_virtuals_error (NULL_TREE, elt_type))
1844 return error_mark_node;
1845
1846 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1847 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1848 {
1849 error ("uninitialized const in %<new%> of %q#T", elt_type);
1850 return error_mark_node;
1851 }
1852
1853 size = size_in_bytes (elt_type);
1854 if (array_p)
1855 {
1856 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1857 if (vla_p)
1858 {
1859 tree n, bitsize;
1860
1861 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1862 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1863 ...>> to be valid. */
1864 TYPE_SIZE_UNIT (full_type) = size;
1865 n = convert (bitsizetype, nelts);
1866 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1867 TYPE_SIZE (full_type) = bitsize;
1868 }
1869 }
1870
1871 /* Allocate the object. */
1872 if (! placement && TYPE_FOR_JAVA (elt_type))
1873 {
1874 tree class_addr, alloc_decl;
1875 tree class_decl = build_java_class_ref (elt_type);
1876 static const char alloc_name[] = "_Jv_AllocObject";
1877
1878 use_java_new = 1;
1879 alloc_decl = NULL;
1880 if (!get_global_value_if_present (get_identifier (alloc_name),
1881 &alloc_decl))
1882 {
1883 error ("call to Java constructor with %qs undefined", alloc_name);
1884 return error_mark_node;
1885 }
1886 else if (really_overloaded_fn (alloc_decl))
1887 {
1888 error ("%qD should never be overloaded", alloc_decl);
1889 return error_mark_node;
1890 }
1891 alloc_decl = OVL_CURRENT (alloc_decl);
1892 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1893 alloc_call = (build_function_call
1894 (alloc_decl,
1895 build_tree_list (NULL_TREE, class_addr)));
1896 }
1897 else
1898 {
1899 tree fnname;
1900 tree fns;
1901
1902 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1903
1904 if (!globally_qualified_p
1905 && CLASS_TYPE_P (elt_type)
1906 && (array_p
1907 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1908 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1909 {
1910 /* Use a class-specific operator new. */
1911 /* If a cookie is required, add some extra space. */
1912 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1913 {
1914 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1915 size = size_binop (PLUS_EXPR, size, cookie_size);
1916 }
1917 /* Create the argument list. */
1918 args = tree_cons (NULL_TREE, size, placement);
1919 /* Do name-lookup to find the appropriate operator. */
1920 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1921 if (TREE_CODE (fns) == TREE_LIST)
1922 {
1923 error ("request for member %qD is ambiguous", fnname);
1924 print_candidates (fns);
1925 return error_mark_node;
1926 }
1927 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1928 fns, args,
1929 /*conversion_path=*/NULL_TREE,
1930 LOOKUP_NORMAL);
1931 }
1932 else
1933 {
1934 /* Use a global operator new. */
1935 /* See if a cookie might be required. */
1936 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1937 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1938 else
1939 cookie_size = NULL_TREE;
1940
1941 alloc_call = build_operator_new_call (fnname, placement,
1942 &size, &cookie_size);
1943 }
1944 }
1945
1946 if (alloc_call == error_mark_node)
1947 return error_mark_node;
1948
1949 /* In the simple case, we can stop now. */
1950 pointer_type = build_pointer_type (type);
1951 if (!cookie_size && !is_initialized)
1952 return build_nop (pointer_type, alloc_call);
1953
1954 /* While we're working, use a pointer to the type we've actually
1955 allocated. Store the result of the call in a variable so that we
1956 can use it more than once. */
1957 full_pointer_type = build_pointer_type (full_type);
1958 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1959 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1960
1961 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1962 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1963 alloc_call = TREE_OPERAND (alloc_call, 1);
1964 alloc_fn = get_callee_fndecl (alloc_call);
1965 gcc_assert (alloc_fn != NULL_TREE);
1966
1967 /* Now, check to see if this function is actually a placement
1968 allocation function. This can happen even when PLACEMENT is NULL
1969 because we might have something like:
1970
1971 struct S { void* operator new (size_t, int i = 0); };
1972
1973 A call to `new S' will get this allocation function, even though
1974 there is no explicit placement argument. If there is more than
1975 one argument, or there are variable arguments, then this is a
1976 placement allocation function. */
1977 placement_allocation_fn_p
1978 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1979 || varargs_function_p (alloc_fn));
1980
1981 /* Preevaluate the placement args so that we don't reevaluate them for a
1982 placement delete. */
1983 if (placement_allocation_fn_p)
1984 {
1985 tree inits;
1986 stabilize_call (alloc_call, &inits);
1987 if (inits)
1988 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1989 alloc_expr);
1990 }
1991
1992 /* unless an allocation function is declared with an empty excep-
1993 tion-specification (_except.spec_), throw(), it indicates failure to
1994 allocate storage by throwing a bad_alloc exception (clause _except_,
1995 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1996 cation function is declared with an empty exception-specification,
1997 throw(), it returns null to indicate failure to allocate storage and a
1998 non-null pointer otherwise.
1999
2000 So check for a null exception spec on the op new we just called. */
2001
2002 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2003 check_new = (flag_check_new || nothrow) && ! use_java_new;
2004
2005 if (cookie_size)
2006 {
2007 tree cookie;
2008 tree cookie_ptr;
2009
2010 /* Adjust so we're pointing to the start of the object. */
2011 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
2012 alloc_node, cookie_size));
2013
2014 /* Store the number of bytes allocated so that we can know how
2015 many elements to destroy later. We use the last sizeof
2016 (size_t) bytes to store the number of elements. */
2017 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
2018 data_addr, size_in_bytes (sizetype));
2019 cookie = build_indirect_ref (cookie_ptr, NULL);
2020
2021 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2022
2023 if (targetm.cxx.cookie_has_size ())
2024 {
2025 /* Also store the element size. */
2026 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
2027 cookie_ptr, size_in_bytes (sizetype));
2028 cookie = build_indirect_ref (cookie_ptr, NULL);
2029 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2030 size_in_bytes(elt_type));
2031 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2032 cookie, cookie_expr);
2033 }
2034 data_addr = TARGET_EXPR_SLOT (data_addr);
2035 }
2036 else
2037 {
2038 cookie_expr = NULL_TREE;
2039 data_addr = alloc_node;
2040 }
2041
2042 /* Now initialize the allocated object. Note that we preevaluate the
2043 initialization expression, apart from the actual constructor call or
2044 assignment--we do this because we want to delay the allocation as long
2045 as possible in order to minimize the size of the exception region for
2046 placement delete. */
2047 if (is_initialized)
2048 {
2049 bool stable;
2050
2051 init_expr = build_indirect_ref (data_addr, NULL);
2052
2053 if (init == void_zero_node)
2054 init = build_default_init (full_type, nelts);
2055 else if (init && array_p)
2056 pedwarn ("ISO C++ forbids initialization in array new");
2057
2058 if (array_p)
2059 {
2060 init_expr
2061 = build_vec_init (init_expr,
2062 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2063 integer_one_node),
2064 init, /*from_array=*/0);
2065
2066 /* An array initialization is stable because the initialization
2067 of each element is a full-expression, so the temporaries don't
2068 leak out. */
2069 stable = true;
2070 }
2071 else if (TYPE_NEEDS_CONSTRUCTING (type))
2072 {
2073 init_expr = build_special_member_call (init_expr,
2074 complete_ctor_identifier,
2075 init, elt_type,
2076 LOOKUP_NORMAL);
2077 stable = stabilize_init (init_expr, &init_preeval_expr);
2078 }
2079 else
2080 {
2081 /* We are processing something like `new int (10)', which
2082 means allocate an int, and initialize it with 10. */
2083
2084 if (TREE_CODE (init) == TREE_LIST)
2085 init = build_x_compound_expr_from_list (init, "new initializer");
2086
2087 else
2088 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2089 || TREE_TYPE (init) != NULL_TREE);
2090
2091 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2092 stable = stabilize_init (init_expr, &init_preeval_expr);
2093 }
2094
2095 if (init_expr == error_mark_node)
2096 return error_mark_node;
2097
2098 /* If any part of the object initialization terminates by throwing an
2099 exception and a suitable deallocation function can be found, the
2100 deallocation function is called to free the memory in which the
2101 object was being constructed, after which the exception continues
2102 to propagate in the context of the new-expression. If no
2103 unambiguous matching deallocation function can be found,
2104 propagating the exception does not cause the object's memory to be
2105 freed. */
2106 if (flag_exceptions && ! use_java_new)
2107 {
2108 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2109 tree cleanup;
2110
2111 /* The Standard is unclear here, but the right thing to do
2112 is to use the same method for finding deallocation
2113 functions that we use for finding allocation functions. */
2114 cleanup = build_op_delete_call (dcode, alloc_node, size,
2115 globally_qualified_p,
2116 (placement_allocation_fn_p
2117 ? alloc_call : NULL_TREE));
2118
2119 if (!cleanup)
2120 /* We're done. */;
2121 else if (stable)
2122 /* This is much simpler if we were able to preevaluate all of
2123 the arguments to the constructor call. */
2124 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2125 init_expr, cleanup);
2126 else
2127 /* Ack! First we allocate the memory. Then we set our sentry
2128 variable to true, and expand a cleanup that deletes the
2129 memory if sentry is true. Then we run the constructor, and
2130 finally clear the sentry.
2131
2132 We need to do this because we allocate the space first, so
2133 if there are any temporaries with cleanups in the
2134 constructor args and we weren't able to preevaluate them, we
2135 need this EH region to extend until end of full-expression
2136 to preserve nesting. */
2137 {
2138 tree end, sentry, begin;
2139
2140 begin = get_target_expr (boolean_true_node);
2141 CLEANUP_EH_ONLY (begin) = 1;
2142
2143 sentry = TARGET_EXPR_SLOT (begin);
2144
2145 TARGET_EXPR_CLEANUP (begin)
2146 = build3 (COND_EXPR, void_type_node, sentry,
2147 cleanup, void_zero_node);
2148
2149 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2150 sentry, boolean_false_node);
2151
2152 init_expr
2153 = build2 (COMPOUND_EXPR, void_type_node, begin,
2154 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2155 end));
2156 }
2157
2158 }
2159 }
2160 else
2161 init_expr = NULL_TREE;
2162
2163 /* Now build up the return value in reverse order. */
2164
2165 rval = data_addr;
2166
2167 if (init_expr)
2168 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2169 if (cookie_expr)
2170 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2171
2172 if (rval == alloc_node)
2173 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2174 and return the call (which doesn't need to be adjusted). */
2175 rval = TARGET_EXPR_INITIAL (alloc_expr);
2176 else
2177 {
2178 if (check_new)
2179 {
2180 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2181 integer_zero_node);
2182 rval = build_conditional_expr (ifexp, rval, alloc_node);
2183 }
2184
2185 /* Perform the allocation before anything else, so that ALLOC_NODE
2186 has been initialized before we start using it. */
2187 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2188 }
2189
2190 if (init_preeval_expr)
2191 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2192
2193 /* Convert to the final type. */
2194 rval = build_nop (pointer_type, rval);
2195
2196 /* A new-expression is never an lvalue. */
2197 if (real_lvalue_p (rval))
2198 rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
2199
2200 return rval;
2201 }
2202 \f
2203 static tree
2204 build_vec_delete_1 (tree base, tree maxindex, tree type,
2205 special_function_kind auto_delete_vec, int use_global_delete)
2206 {
2207 tree virtual_size;
2208 tree ptype = build_pointer_type (type = complete_type (type));
2209 tree size_exp = size_in_bytes (type);
2210
2211 /* Temporary variables used by the loop. */
2212 tree tbase, tbase_init;
2213
2214 /* This is the body of the loop that implements the deletion of a
2215 single element, and moves temp variables to next elements. */
2216 tree body;
2217
2218 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2219 tree loop = 0;
2220
2221 /* This is the thing that governs what to do after the loop has run. */
2222 tree deallocate_expr = 0;
2223
2224 /* This is the BIND_EXPR which holds the outermost iterator of the
2225 loop. It is convenient to set this variable up and test it before
2226 executing any other code in the loop.
2227 This is also the containing expression returned by this function. */
2228 tree controller = NULL_TREE;
2229
2230 /* We should only have 1-D arrays here. */
2231 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2232
2233 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2234 goto no_destructor;
2235
2236 /* The below is short by the cookie size. */
2237 virtual_size = size_binop (MULT_EXPR, size_exp,
2238 convert (sizetype, maxindex));
2239
2240 tbase = create_temporary_var (ptype);
2241 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2242 fold_build2 (PLUS_EXPR, ptype,
2243 base,
2244 virtual_size));
2245 DECL_REGISTER (tbase) = 1;
2246 controller = build3 (BIND_EXPR, void_type_node, tbase,
2247 NULL_TREE, NULL_TREE);
2248 TREE_SIDE_EFFECTS (controller) = 1;
2249
2250 body = build1 (EXIT_EXPR, void_type_node,
2251 build2 (EQ_EXPR, boolean_type_node, base, tbase));
2252 body = build_compound_expr
2253 (body, build_modify_expr (tbase, NOP_EXPR,
2254 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2255 body = build_compound_expr
2256 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2257 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2258
2259 loop = build1 (LOOP_EXPR, void_type_node, body);
2260 loop = build_compound_expr (tbase_init, loop);
2261
2262 no_destructor:
2263 /* If the delete flag is one, or anything else with the low bit set,
2264 delete the storage. */
2265 if (auto_delete_vec != sfk_base_destructor)
2266 {
2267 tree base_tbd;
2268
2269 /* The below is short by the cookie size. */
2270 virtual_size = size_binop (MULT_EXPR, size_exp,
2271 convert (sizetype, maxindex));
2272
2273 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2274 /* no header */
2275 base_tbd = base;
2276 else
2277 {
2278 tree cookie_size;
2279
2280 cookie_size = targetm.cxx.get_cookie_size (type);
2281 base_tbd
2282 = cp_convert (ptype,
2283 cp_build_binary_op (MINUS_EXPR,
2284 cp_convert (string_type_node,
2285 base),
2286 cookie_size));
2287 /* True size with header. */
2288 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2289 }
2290
2291 if (auto_delete_vec == sfk_deleting_destructor)
2292 deallocate_expr = build_x_delete (base_tbd,
2293 2 | use_global_delete,
2294 virtual_size);
2295 }
2296
2297 body = loop;
2298 if (!deallocate_expr)
2299 ;
2300 else if (!body)
2301 body = deallocate_expr;
2302 else
2303 body = build_compound_expr (body, deallocate_expr);
2304
2305 if (!body)
2306 body = integer_zero_node;
2307
2308 /* Outermost wrapper: If pointer is null, punt. */
2309 body = fold_build3 (COND_EXPR, void_type_node,
2310 fold_build2 (NE_EXPR, boolean_type_node, base,
2311 convert (TREE_TYPE (base),
2312 integer_zero_node)),
2313 body, integer_zero_node);
2314 body = build1 (NOP_EXPR, void_type_node, body);
2315
2316 if (controller)
2317 {
2318 TREE_OPERAND (controller, 1) = body;
2319 body = controller;
2320 }
2321
2322 if (TREE_CODE (base) == SAVE_EXPR)
2323 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2324 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2325
2326 return convert_to_void (body, /*implicit=*/NULL);
2327 }
2328
2329 /* Create an unnamed variable of the indicated TYPE. */
2330
2331 tree
2332 create_temporary_var (tree type)
2333 {
2334 tree decl;
2335
2336 decl = build_decl (VAR_DECL, NULL_TREE, type);
2337 TREE_USED (decl) = 1;
2338 DECL_ARTIFICIAL (decl) = 1;
2339 DECL_IGNORED_P (decl) = 1;
2340 DECL_SOURCE_LOCATION (decl) = input_location;
2341 DECL_CONTEXT (decl) = current_function_decl;
2342
2343 return decl;
2344 }
2345
2346 /* Create a new temporary variable of the indicated TYPE, initialized
2347 to INIT.
2348
2349 It is not entered into current_binding_level, because that breaks
2350 things when it comes time to do final cleanups (which take place
2351 "outside" the binding contour of the function). */
2352
2353 static tree
2354 get_temp_regvar (tree type, tree init)
2355 {
2356 tree decl;
2357
2358 decl = create_temporary_var (type);
2359 add_decl_expr (decl);
2360
2361 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2362
2363 return decl;
2364 }
2365
2366 /* `build_vec_init' returns tree structure that performs
2367 initialization of a vector of aggregate types.
2368
2369 BASE is a reference to the vector, of ARRAY_TYPE.
2370 MAXINDEX is the maximum index of the array (one less than the
2371 number of elements). It is only used if
2372 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2373 INIT is the (possibly NULL) initializer.
2374
2375 FROM_ARRAY is 0 if we should init everything with INIT
2376 (i.e., every element initialized from INIT).
2377 FROM_ARRAY is 1 if we should index into INIT in parallel
2378 with initialization of DECL.
2379 FROM_ARRAY is 2 if we should index into INIT in parallel,
2380 but use assignment instead of initialization. */
2381
2382 tree
2383 build_vec_init (tree base, tree maxindex, tree init, int from_array)
2384 {
2385 tree rval;
2386 tree base2 = NULL_TREE;
2387 tree size;
2388 tree itype = NULL_TREE;
2389 tree iterator;
2390 /* The type of the array. */
2391 tree atype = TREE_TYPE (base);
2392 /* The type of an element in the array. */
2393 tree type = TREE_TYPE (atype);
2394 /* The element type reached after removing all outer array
2395 types. */
2396 tree inner_elt_type;
2397 /* The type of a pointer to an element in the array. */
2398 tree ptype;
2399 tree stmt_expr;
2400 tree compound_stmt;
2401 int destroy_temps;
2402 tree try_block = NULL_TREE;
2403 int num_initialized_elts = 0;
2404 bool is_global;
2405
2406 if (TYPE_DOMAIN (atype))
2407 maxindex = array_type_nelts (atype);
2408
2409 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2410 return error_mark_node;
2411
2412 inner_elt_type = strip_array_types (atype);
2413 if (init
2414 && (from_array == 2
2415 ? (!CLASS_TYPE_P (inner_elt_type)
2416 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2417 : !TYPE_NEEDS_CONSTRUCTING (type))
2418 && ((TREE_CODE (init) == CONSTRUCTOR
2419 /* Don't do this if the CONSTRUCTOR might contain something
2420 that might throw and require us to clean up. */
2421 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2422 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2423 || from_array))
2424 {
2425 /* Do non-default initialization of POD arrays resulting from
2426 brace-enclosed initializers. In this case, digest_init and
2427 store_constructor will handle the semantics for us. */
2428
2429 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2430 return stmt_expr;
2431 }
2432
2433 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2434 ptype = build_pointer_type (type);
2435 size = size_in_bytes (type);
2436 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2437 base = cp_convert (ptype, decay_conversion (base));
2438
2439 /* The code we are generating looks like:
2440 ({
2441 T* t1 = (T*) base;
2442 T* rval = t1;
2443 ptrdiff_t iterator = maxindex;
2444 try {
2445 for (; iterator != -1; --iterator) {
2446 ... initialize *t1 ...
2447 ++t1;
2448 }
2449 } catch (...) {
2450 ... destroy elements that were constructed ...
2451 }
2452 rval;
2453 })
2454
2455 We can omit the try and catch blocks if we know that the
2456 initialization will never throw an exception, or if the array
2457 elements do not have destructors. We can omit the loop completely if
2458 the elements of the array do not have constructors.
2459
2460 We actually wrap the entire body of the above in a STMT_EXPR, for
2461 tidiness.
2462
2463 When copying from array to another, when the array elements have
2464 only trivial copy constructors, we should use __builtin_memcpy
2465 rather than generating a loop. That way, we could take advantage
2466 of whatever cleverness the back-end has for dealing with copies
2467 of blocks of memory. */
2468
2469 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2470 destroy_temps = stmts_are_full_exprs_p ();
2471 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2472 rval = get_temp_regvar (ptype, base);
2473 base = get_temp_regvar (ptype, rval);
2474 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2475
2476 /* Protect the entire array initialization so that we can destroy
2477 the partially constructed array if an exception is thrown.
2478 But don't do this if we're assigning. */
2479 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2480 && from_array != 2)
2481 {
2482 try_block = begin_try_block ();
2483 }
2484
2485 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2486 {
2487 /* Do non-default initialization of non-POD arrays resulting from
2488 brace-enclosed initializers. */
2489 unsigned HOST_WIDE_INT idx;
2490 tree elt;
2491 from_array = 0;
2492
2493 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2494 {
2495 tree baseref = build1 (INDIRECT_REF, type, base);
2496
2497 num_initialized_elts++;
2498
2499 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2500 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2501 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2502 else
2503 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2504 elt));
2505 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2506
2507 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2508 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2509 }
2510
2511 /* Clear out INIT so that we don't get confused below. */
2512 init = NULL_TREE;
2513 }
2514 else if (from_array)
2515 {
2516 /* If initializing one array from another, initialize element by
2517 element. We rely upon the below calls the do argument
2518 checking. */
2519 if (init)
2520 {
2521 base2 = decay_conversion (init);
2522 itype = TREE_TYPE (base2);
2523 base2 = get_temp_regvar (itype, base2);
2524 itype = TREE_TYPE (itype);
2525 }
2526 else if (TYPE_LANG_SPECIFIC (type)
2527 && TYPE_NEEDS_CONSTRUCTING (type)
2528 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2529 {
2530 error ("initializer ends prematurely");
2531 return error_mark_node;
2532 }
2533 }
2534
2535 /* Now, default-initialize any remaining elements. We don't need to
2536 do that if a) the type does not need constructing, or b) we've
2537 already initialized all the elements.
2538
2539 We do need to keep going if we're copying an array. */
2540
2541 if (from_array
2542 || (TYPE_NEEDS_CONSTRUCTING (type)
2543 && ! (host_integerp (maxindex, 0)
2544 && (num_initialized_elts
2545 == tree_low_cst (maxindex, 0) + 1))))
2546 {
2547 /* If the ITERATOR is equal to -1, then we don't have to loop;
2548 we've already initialized all the elements. */
2549 tree for_stmt;
2550 tree elt_init;
2551
2552 for_stmt = begin_for_stmt ();
2553 finish_for_init_stmt (for_stmt);
2554 finish_for_cond (build2 (NE_EXPR, boolean_type_node,
2555 iterator, integer_minus_one_node),
2556 for_stmt);
2557 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2558 for_stmt);
2559
2560 if (from_array)
2561 {
2562 tree to = build1 (INDIRECT_REF, type, base);
2563 tree from;
2564
2565 if (base2)
2566 from = build1 (INDIRECT_REF, itype, base2);
2567 else
2568 from = NULL_TREE;
2569
2570 if (from_array == 2)
2571 elt_init = build_modify_expr (to, NOP_EXPR, from);
2572 else if (TYPE_NEEDS_CONSTRUCTING (type))
2573 elt_init = build_aggr_init (to, from, 0);
2574 else if (from)
2575 elt_init = build_modify_expr (to, NOP_EXPR, from);
2576 else
2577 gcc_unreachable ();
2578 }
2579 else if (TREE_CODE (type) == ARRAY_TYPE)
2580 {
2581 if (init != 0)
2582 sorry
2583 ("cannot initialize multi-dimensional array with initializer");
2584 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2585 0, 0, 0);
2586 }
2587 else
2588 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2589 init, 0);
2590
2591 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2592 finish_expr_stmt (elt_init);
2593 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2594
2595 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2596 if (base2)
2597 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2598
2599 finish_for_stmt (for_stmt);
2600 }
2601
2602 /* Make sure to cleanup any partially constructed elements. */
2603 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2604 && from_array != 2)
2605 {
2606 tree e;
2607 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2608
2609 /* Flatten multi-dimensional array since build_vec_delete only
2610 expects one-dimensional array. */
2611 if (TREE_CODE (type) == ARRAY_TYPE)
2612 m = cp_build_binary_op (MULT_EXPR, m,
2613 array_type_nelts_total (type));
2614
2615 finish_cleanup_try_block (try_block);
2616 e = build_vec_delete_1 (rval, m,
2617 inner_elt_type, sfk_base_destructor,
2618 /*use_global_delete=*/0);
2619 finish_cleanup (e, try_block);
2620 }
2621
2622 /* The value of the array initialization is the array itself, RVAL
2623 is a pointer to the first element. */
2624 finish_stmt_expr_expr (rval, stmt_expr);
2625
2626 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2627
2628 /* Now convert make the result have the correct type. */
2629 atype = build_pointer_type (atype);
2630 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2631 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2632
2633 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2634 return stmt_expr;
2635 }
2636
2637 /* Free up storage of type TYPE, at address ADDR.
2638
2639 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2640 of pointer.
2641
2642 VIRTUAL_SIZE is the amount of storage that was allocated, and is
2643 used as the second argument to operator delete. It can include
2644 things like padding and magic size cookies. It has virtual in it,
2645 because if you have a base pointer and you delete through a virtual
2646 destructor, it should be the size of the dynamic object, not the
2647 static object, see Free Store 12.5 ISO C++.
2648
2649 This does not call any destructors. */
2650
2651 tree
2652 build_x_delete (tree addr, int which_delete, tree virtual_size)
2653 {
2654 int use_global_delete = which_delete & 1;
2655 int use_vec_delete = !!(which_delete & 2);
2656 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
2657
2658 return build_op_delete_call (code, addr, virtual_size, use_global_delete,
2659 NULL_TREE);
2660 }
2661
2662 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2663 build_delete. */
2664
2665 static tree
2666 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2667 {
2668 tree name;
2669 tree fn;
2670 switch (dtor_kind)
2671 {
2672 case sfk_complete_destructor:
2673 name = complete_dtor_identifier;
2674 break;
2675
2676 case sfk_base_destructor:
2677 name = base_dtor_identifier;
2678 break;
2679
2680 case sfk_deleting_destructor:
2681 name = deleting_dtor_identifier;
2682 break;
2683
2684 default:
2685 gcc_unreachable ();
2686 }
2687 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2688 return build_new_method_call (exp, fn,
2689 /*args=*/NULL_TREE,
2690 /*conversion_path=*/NULL_TREE,
2691 flags);
2692 }
2693
2694 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2695 ADDR is an expression which yields the store to be destroyed.
2696 AUTO_DELETE is the name of the destructor to call, i.e., either
2697 sfk_complete_destructor, sfk_base_destructor, or
2698 sfk_deleting_destructor.
2699
2700 FLAGS is the logical disjunction of zero or more LOOKUP_
2701 flags. See cp-tree.h for more info. */
2702
2703 tree
2704 build_delete (tree type, tree addr, special_function_kind auto_delete,
2705 int flags, int use_global_delete)
2706 {
2707 tree expr;
2708
2709 if (addr == error_mark_node)
2710 return error_mark_node;
2711
2712 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2713 set to `error_mark_node' before it gets properly cleaned up. */
2714 if (type == error_mark_node)
2715 return error_mark_node;
2716
2717 type = TYPE_MAIN_VARIANT (type);
2718
2719 if (TREE_CODE (type) == POINTER_TYPE)
2720 {
2721 bool complete_p = true;
2722
2723 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2724 if (TREE_CODE (type) == ARRAY_TYPE)
2725 goto handle_array;
2726
2727 /* We don't want to warn about delete of void*, only other
2728 incomplete types. Deleting other incomplete types
2729 invokes undefined behavior, but it is not ill-formed, so
2730 compile to something that would even do The Right Thing
2731 (TM) should the type have a trivial dtor and no delete
2732 operator. */
2733 if (!VOID_TYPE_P (type))
2734 {
2735 complete_type (type);
2736 if (!COMPLETE_TYPE_P (type))
2737 {
2738 warning (0, "possible problem detected in invocation of "
2739 "delete operator:");
2740 cxx_incomplete_type_diagnostic (addr, type, 1);
2741 inform ("neither the destructor nor the class-specific "
2742 "operator delete will be called, even if they are "
2743 "declared when the class is defined.");
2744 complete_p = false;
2745 }
2746 }
2747 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2748 /* Call the builtin operator delete. */
2749 return build_builtin_delete_call (addr);
2750 if (TREE_SIDE_EFFECTS (addr))
2751 addr = save_expr (addr);
2752
2753 /* Throw away const and volatile on target type of addr. */
2754 addr = convert_force (build_pointer_type (type), addr, 0);
2755 }
2756 else if (TREE_CODE (type) == ARRAY_TYPE)
2757 {
2758 handle_array:
2759
2760 if (TYPE_DOMAIN (type) == NULL_TREE)
2761 {
2762 error ("unknown array size in delete");
2763 return error_mark_node;
2764 }
2765 return build_vec_delete (addr, array_type_nelts (type),
2766 auto_delete, use_global_delete);
2767 }
2768 else
2769 {
2770 /* Don't check PROTECT here; leave that decision to the
2771 destructor. If the destructor is accessible, call it,
2772 else report error. */
2773 addr = build_unary_op (ADDR_EXPR, addr, 0);
2774 if (TREE_SIDE_EFFECTS (addr))
2775 addr = save_expr (addr);
2776
2777 addr = convert_force (build_pointer_type (type), addr, 0);
2778 }
2779
2780 gcc_assert (IS_AGGR_TYPE (type));
2781
2782 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2783 {
2784 if (auto_delete != sfk_deleting_destructor)
2785 return void_zero_node;
2786
2787 return build_op_delete_call
2788 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), use_global_delete,
2789 NULL_TREE);
2790 }
2791 else
2792 {
2793 tree do_delete = NULL_TREE;
2794 tree ifexp;
2795
2796 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2797 lazily_declare_fn (sfk_destructor, type);
2798
2799 /* For `::delete x', we must not use the deleting destructor
2800 since then we would not be sure to get the global `operator
2801 delete'. */
2802 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2803 {
2804 /* We will use ADDR multiple times so we must save it. */
2805 addr = save_expr (addr);
2806 /* Delete the object. */
2807 do_delete = build_builtin_delete_call (addr);
2808 /* Otherwise, treat this like a complete object destructor
2809 call. */
2810 auto_delete = sfk_complete_destructor;
2811 }
2812 /* If the destructor is non-virtual, there is no deleting
2813 variant. Instead, we must explicitly call the appropriate
2814 `operator delete' here. */
2815 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2816 && auto_delete == sfk_deleting_destructor)
2817 {
2818 /* We will use ADDR multiple times so we must save it. */
2819 addr = save_expr (addr);
2820 /* Build the call. */
2821 do_delete = build_op_delete_call (DELETE_EXPR,
2822 addr,
2823 cxx_sizeof_nowarn (type),
2824 /*global_p=*/false,
2825 NULL_TREE);
2826 /* Call the complete object destructor. */
2827 auto_delete = sfk_complete_destructor;
2828 }
2829 else if (auto_delete == sfk_deleting_destructor
2830 && TYPE_GETS_REG_DELETE (type))
2831 {
2832 /* Make sure we have access to the member op delete, even though
2833 we'll actually be calling it from the destructor. */
2834 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2835 /*global_p=*/false, NULL_TREE);
2836 }
2837
2838 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2839 auto_delete, flags);
2840 if (do_delete)
2841 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2842
2843 if (flags & LOOKUP_DESTRUCTOR)
2844 /* Explicit destructor call; don't check for null pointer. */
2845 ifexp = integer_one_node;
2846 else
2847 /* Handle deleting a null pointer. */
2848 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2849
2850 if (ifexp != integer_one_node)
2851 expr = build3 (COND_EXPR, void_type_node,
2852 ifexp, expr, void_zero_node);
2853
2854 return expr;
2855 }
2856 }
2857
2858 /* At the beginning of a destructor, push cleanups that will call the
2859 destructors for our base classes and members.
2860
2861 Called from begin_destructor_body. */
2862
2863 void
2864 push_base_cleanups (void)
2865 {
2866 tree binfo, base_binfo;
2867 int i;
2868 tree member;
2869 tree expr;
2870 VEC(tree,gc) *vbases;
2871
2872 /* Run destructors for all virtual baseclasses. */
2873 if (CLASSTYPE_VBASECLASSES (current_class_type))
2874 {
2875 tree cond = (condition_conversion
2876 (build2 (BIT_AND_EXPR, integer_type_node,
2877 current_in_charge_parm,
2878 integer_two_node)));
2879
2880 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2881 order, which is also the right order for pushing cleanups. */
2882 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2883 VEC_iterate (tree, vbases, i, base_binfo); i++)
2884 {
2885 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2886 {
2887 expr = build_special_member_call (current_class_ref,
2888 base_dtor_identifier,
2889 NULL_TREE,
2890 base_binfo,
2891 (LOOKUP_NORMAL
2892 | LOOKUP_NONVIRTUAL));
2893 expr = build3 (COND_EXPR, void_type_node, cond,
2894 expr, void_zero_node);
2895 finish_decl_cleanup (NULL_TREE, expr);
2896 }
2897 }
2898 }
2899
2900 /* Take care of the remaining baseclasses. */
2901 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2902 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2903 {
2904 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2905 || BINFO_VIRTUAL_P (base_binfo))
2906 continue;
2907
2908 expr = build_special_member_call (current_class_ref,
2909 base_dtor_identifier,
2910 NULL_TREE, base_binfo,
2911 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2912 finish_decl_cleanup (NULL_TREE, expr);
2913 }
2914
2915 for (member = TYPE_FIELDS (current_class_type); member;
2916 member = TREE_CHAIN (member))
2917 {
2918 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
2919 continue;
2920 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2921 {
2922 tree this_member = (build_class_member_access_expr
2923 (current_class_ref, member,
2924 /*access_path=*/NULL_TREE,
2925 /*preserve_reference=*/false));
2926 tree this_type = TREE_TYPE (member);
2927 expr = build_delete (this_type, this_member,
2928 sfk_complete_destructor,
2929 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2930 0);
2931 finish_decl_cleanup (NULL_TREE, expr);
2932 }
2933 }
2934 }
2935
2936 /* Build a C++ vector delete expression.
2937 MAXINDEX is the number of elements to be deleted.
2938 ELT_SIZE is the nominal size of each element in the vector.
2939 BASE is the expression that should yield the store to be deleted.
2940 This function expands (or synthesizes) these calls itself.
2941 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2942
2943 This also calls delete for virtual baseclasses of elements of the vector.
2944
2945 Update: MAXINDEX is no longer needed. The size can be extracted from the
2946 start of the vector for pointers, and from the type for arrays. We still
2947 use MAXINDEX for arrays because it happens to already have one of the
2948 values we'd have to extract. (We could use MAXINDEX with pointers to
2949 confirm the size, and trap if the numbers differ; not clear that it'd
2950 be worth bothering.) */
2951
2952 tree
2953 build_vec_delete (tree base, tree maxindex,
2954 special_function_kind auto_delete_vec, int use_global_delete)
2955 {
2956 tree type;
2957 tree rval;
2958 tree base_init = NULL_TREE;
2959
2960 type = TREE_TYPE (base);
2961
2962 if (TREE_CODE (type) == POINTER_TYPE)
2963 {
2964 /* Step back one from start of vector, and read dimension. */
2965 tree cookie_addr;
2966
2967 if (TREE_SIDE_EFFECTS (base))
2968 {
2969 base_init = get_target_expr (base);
2970 base = TARGET_EXPR_SLOT (base_init);
2971 }
2972 type = strip_array_types (TREE_TYPE (type));
2973 cookie_addr = build2 (MINUS_EXPR,
2974 build_pointer_type (sizetype),
2975 base,
2976 TYPE_SIZE_UNIT (sizetype));
2977 maxindex = build_indirect_ref (cookie_addr, NULL);
2978 }
2979 else if (TREE_CODE (type) == ARRAY_TYPE)
2980 {
2981 /* Get the total number of things in the array, maxindex is a
2982 bad name. */
2983 maxindex = array_type_nelts_total (type);
2984 type = strip_array_types (type);
2985 base = build_unary_op (ADDR_EXPR, base, 1);
2986 if (TREE_SIDE_EFFECTS (base))
2987 {
2988 base_init = get_target_expr (base);
2989 base = TARGET_EXPR_SLOT (base_init);
2990 }
2991 }
2992 else
2993 {
2994 if (base != error_mark_node)
2995 error ("type to vector delete is neither pointer or array type");
2996 return error_mark_node;
2997 }
2998
2999 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3000 use_global_delete);
3001 if (base_init)
3002 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3003
3004 return rval;
3005 }