init.c (build_vec_init): Call ubsan_instrument_bounds to check whether an initializer...
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "target.h"
33 #include "gimplify.h"
34 #include "wide-int.h"
35 #include "c-family/c-ubsan.h"
36
37 static bool begin_init_stmts (tree *, tree *);
38 static tree finish_init_stmts (bool, tree, tree);
39 static void construct_virtual_base (tree, tree);
40 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
41 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
42 static void perform_member_init (tree, tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_field_list (tree, tree, int *);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51
52 /* We are about to generate some complex initialization code.
53 Conceptually, it is all a single expression. However, we may want
54 to include conditionals, loops, and other such statement-level
55 constructs. Therefore, we build the initialization code inside a
56 statement-expression. This function starts such an expression.
57 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
58 pass them back to finish_init_stmts when the expression is
59 complete. */
60
61 static bool
62 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
63 {
64 bool is_global = !building_stmt_list_p ();
65
66 *stmt_expr_p = begin_stmt_expr ();
67 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
68
69 return is_global;
70 }
71
72 /* Finish out the statement-expression begun by the previous call to
73 begin_init_stmts. Returns the statement-expression itself. */
74
75 static tree
76 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
77 {
78 finish_compound_stmt (compound_stmt);
79
80 stmt_expr = finish_stmt_expr (stmt_expr, true);
81
82 gcc_assert (!building_stmt_list_p () == is_global);
83
84 return stmt_expr;
85 }
86
87 /* Constructors */
88
89 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
90 which we want to initialize the vtable pointer for, DATA is
91 TREE_LIST whose TREE_VALUE is the this ptr expression. */
92
93 static tree
94 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
95 {
96 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
97 return dfs_skip_bases;
98
99 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
100 {
101 tree base_ptr = TREE_VALUE ((tree) data);
102
103 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
104 tf_warning_or_error);
105
106 expand_virtual_init (binfo, base_ptr);
107 }
108
109 return NULL_TREE;
110 }
111
112 /* Initialize all the vtable pointers in the object pointed to by
113 ADDR. */
114
115 void
116 initialize_vtbl_ptrs (tree addr)
117 {
118 tree list;
119 tree type;
120
121 type = TREE_TYPE (TREE_TYPE (addr));
122 list = build_tree_list (type, addr);
123
124 /* Walk through the hierarchy, initializing the vptr in each base
125 class. We do these in pre-order because we can't find the virtual
126 bases for a class until we've initialized the vtbl for that
127 class. */
128 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
129 }
130
131 /* Return an expression for the zero-initialization of an object with
132 type T. This expression will either be a constant (in the case
133 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
134 aggregate), or NULL (in the case that T does not require
135 initialization). In either case, the value can be used as
136 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
137 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
138 is the number of elements in the array. If STATIC_STORAGE_P is
139 TRUE, initializers are only generated for entities for which
140 zero-initialization does not simply mean filling the storage with
141 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
142 subfields with bit positions at or above that bit size shouldn't
143 be added. Note that this only works when the result is assigned
144 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
145 expand_assignment will end up clearing the full size of TYPE. */
146
147 static tree
148 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
149 tree field_size)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialize an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (TYPE_PTR_OR_PTRMEM_P (type))
182 init = convert (type, nullptr_node);
183 else if (SCALAR_TYPE_P (type))
184 init = convert (type, integer_zero_node);
185 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
186 {
187 tree field;
188 vec<constructor_elt, va_gc> *v = NULL;
189
190 /* Iterate over the fields, building initializations. */
191 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
192 {
193 if (TREE_CODE (field) != FIELD_DECL)
194 continue;
195
196 if (TREE_TYPE (field) == error_mark_node)
197 continue;
198
199 /* Don't add virtual bases for base classes if they are beyond
200 the size of the current field, that means it is present
201 somewhere else in the object. */
202 if (field_size)
203 {
204 tree bitpos = bit_position (field);
205 if (TREE_CODE (bitpos) == INTEGER_CST
206 && !tree_int_cst_lt (bitpos, field_size))
207 continue;
208 }
209
210 /* Note that for class types there will be FIELD_DECLs
211 corresponding to base classes as well. Thus, iterating
212 over TYPE_FIELDs will result in correct initialization of
213 all of the subobjects. */
214 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
215 {
216 tree new_field_size
217 = (DECL_FIELD_IS_BASE (field)
218 && DECL_SIZE (field)
219 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
220 ? DECL_SIZE (field) : NULL_TREE;
221 tree value = build_zero_init_1 (TREE_TYPE (field),
222 /*nelts=*/NULL_TREE,
223 static_storage_p,
224 new_field_size);
225 if (value)
226 CONSTRUCTOR_APPEND_ELT(v, field, value);
227 }
228
229 /* For unions, only the first field is initialized. */
230 if (TREE_CODE (type) == UNION_TYPE)
231 break;
232 }
233
234 /* Build a constructor to contain the initializations. */
235 init = build_constructor (type, v);
236 }
237 else if (TREE_CODE (type) == ARRAY_TYPE)
238 {
239 tree max_index;
240 vec<constructor_elt, va_gc> *v = NULL;
241
242 /* Iterate over the array elements, building initializations. */
243 if (nelts)
244 max_index = fold_build2_loc (input_location,
245 MINUS_EXPR, TREE_TYPE (nelts),
246 nelts, integer_one_node);
247 else
248 max_index = array_type_nelts (type);
249
250 /* If we have an error_mark here, we should just return error mark
251 as we don't know the size of the array yet. */
252 if (max_index == error_mark_node)
253 return error_mark_node;
254 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
255
256 /* A zero-sized array, which is accepted as an extension, will
257 have an upper bound of -1. */
258 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
259 {
260 constructor_elt ce;
261
262 /* If this is a one element array, we just use a regular init. */
263 if (tree_int_cst_equal (size_zero_node, max_index))
264 ce.index = size_zero_node;
265 else
266 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
267 max_index);
268
269 ce.value = build_zero_init_1 (TREE_TYPE (type),
270 /*nelts=*/NULL_TREE,
271 static_storage_p, NULL_TREE);
272 if (ce.value)
273 {
274 vec_alloc (v, 1);
275 v->quick_push (ce);
276 }
277 }
278
279 /* Build a constructor to contain the initializations. */
280 init = build_constructor (type, v);
281 }
282 else if (TREE_CODE (type) == VECTOR_TYPE)
283 init = build_zero_cst (type);
284 else
285 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
286
287 /* In all cases, the initializer is a constant. */
288 if (init)
289 TREE_CONSTANT (init) = 1;
290
291 return init;
292 }
293
294 /* Return an expression for the zero-initialization of an object with
295 type T. This expression will either be a constant (in the case
296 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
297 aggregate), or NULL (in the case that T does not require
298 initialization). In either case, the value can be used as
299 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
300 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
301 is the number of elements in the array. If STATIC_STORAGE_P is
302 TRUE, initializers are only generated for entities for which
303 zero-initialization does not simply mean filling the storage with
304 zero bytes. */
305
306 tree
307 build_zero_init (tree type, tree nelts, bool static_storage_p)
308 {
309 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
310 }
311
312 /* Return a suitable initializer for value-initializing an object of type
313 TYPE, as described in [dcl.init]. */
314
315 tree
316 build_value_init (tree type, tsubst_flags_t complain)
317 {
318 /* [dcl.init]
319
320 To value-initialize an object of type T means:
321
322 - if T is a class type (clause 9) with either no default constructor
323 (12.1) or a default constructor that is user-provided or deleted,
324 then then the object is default-initialized;
325
326 - if T is a (possibly cv-qualified) class type without a user-provided
327 or deleted default constructor, then the object is zero-initialized
328 and the semantic constraints for default-initialization are checked,
329 and if T has a non-trivial default constructor, the object is
330 default-initialized;
331
332 - if T is an array type, then each element is value-initialized;
333
334 - otherwise, the object is zero-initialized.
335
336 A program that calls for default-initialization or
337 value-initialization of an entity of reference type is ill-formed. */
338
339 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
340 gcc_assert (!processing_template_decl
341 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
342
343 if (CLASS_TYPE_P (type)
344 && type_build_ctor_call (type))
345 {
346 tree ctor =
347 build_special_member_call (NULL_TREE, complete_ctor_identifier,
348 NULL, type, LOOKUP_NORMAL,
349 complain);
350 if (ctor == error_mark_node)
351 return ctor;
352 tree fn = NULL_TREE;
353 if (TREE_CODE (ctor) == CALL_EXPR)
354 fn = get_callee_fndecl (ctor);
355 ctor = build_aggr_init_expr (type, ctor);
356 if (fn && user_provided_p (fn))
357 return ctor;
358 else if (TYPE_HAS_COMPLEX_DFLT (type))
359 {
360 /* This is a class that needs constructing, but doesn't have
361 a user-provided constructor. So we need to zero-initialize
362 the object and then call the implicitly defined ctor.
363 This will be handled in simplify_aggr_init_expr. */
364 AGGR_INIT_ZERO_FIRST (ctor) = 1;
365 return ctor;
366 }
367 }
368
369 /* Discard any access checking during subobject initialization;
370 the checks are implied by the call to the ctor which we have
371 verified is OK (cpp0x/defaulted46.C). */
372 push_deferring_access_checks (dk_deferred);
373 tree r = build_value_init_noctor (type, complain);
374 pop_deferring_access_checks ();
375 return r;
376 }
377
378 /* Like build_value_init, but don't call the constructor for TYPE. Used
379 for base initializers. */
380
381 tree
382 build_value_init_noctor (tree type, tsubst_flags_t complain)
383 {
384 if (!COMPLETE_TYPE_P (type))
385 {
386 if (complain & tf_error)
387 error ("value-initialization of incomplete type %qT", type);
388 return error_mark_node;
389 }
390 /* FIXME the class and array cases should just use digest_init once it is
391 SFINAE-enabled. */
392 if (CLASS_TYPE_P (type))
393 {
394 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
395 || errorcount != 0);
396
397 if (TREE_CODE (type) != UNION_TYPE)
398 {
399 tree field;
400 vec<constructor_elt, va_gc> *v = NULL;
401
402 /* Iterate over the fields, building initializations. */
403 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
404 {
405 tree ftype, value;
406
407 if (TREE_CODE (field) != FIELD_DECL)
408 continue;
409
410 ftype = TREE_TYPE (field);
411
412 if (ftype == error_mark_node)
413 continue;
414
415 /* We could skip vfields and fields of types with
416 user-defined constructors, but I think that won't improve
417 performance at all; it should be simpler in general just
418 to zero out the entire object than try to only zero the
419 bits that actually need it. */
420
421 /* Note that for class types there will be FIELD_DECLs
422 corresponding to base classes as well. Thus, iterating
423 over TYPE_FIELDs will result in correct initialization of
424 all of the subobjects. */
425 value = build_value_init (ftype, complain);
426 value = maybe_constant_init (value);
427
428 if (value == error_mark_node)
429 return error_mark_node;
430
431 CONSTRUCTOR_APPEND_ELT(v, field, value);
432
433 /* We shouldn't have gotten here for anything that would need
434 non-trivial initialization, and gimplify_init_ctor_preeval
435 would need to be fixed to allow it. */
436 gcc_assert (TREE_CODE (value) != TARGET_EXPR
437 && TREE_CODE (value) != AGGR_INIT_EXPR);
438 }
439
440 /* Build a constructor to contain the zero- initializations. */
441 return build_constructor (type, v);
442 }
443 }
444 else if (TREE_CODE (type) == ARRAY_TYPE)
445 {
446 vec<constructor_elt, va_gc> *v = NULL;
447
448 /* Iterate over the array elements, building initializations. */
449 tree max_index = array_type_nelts (type);
450
451 /* If we have an error_mark here, we should just return error mark
452 as we don't know the size of the array yet. */
453 if (max_index == error_mark_node)
454 {
455 if (complain & tf_error)
456 error ("cannot value-initialize array of unknown bound %qT",
457 type);
458 return error_mark_node;
459 }
460 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
461
462 /* A zero-sized array, which is accepted as an extension, will
463 have an upper bound of -1. */
464 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
465 {
466 constructor_elt ce;
467
468 /* If this is a one element array, we just use a regular init. */
469 if (tree_int_cst_equal (size_zero_node, max_index))
470 ce.index = size_zero_node;
471 else
472 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
473
474 ce.value = build_value_init (TREE_TYPE (type), complain);
475 ce.value = maybe_constant_init (ce.value);
476 if (ce.value == error_mark_node)
477 return error_mark_node;
478
479 vec_alloc (v, 1);
480 v->quick_push (ce);
481
482 /* We shouldn't have gotten here for anything that would need
483 non-trivial initialization, and gimplify_init_ctor_preeval
484 would need to be fixed to allow it. */
485 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
486 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
487 }
488
489 /* Build a constructor to contain the initializations. */
490 return build_constructor (type, v);
491 }
492 else if (TREE_CODE (type) == FUNCTION_TYPE)
493 {
494 if (complain & tf_error)
495 error ("value-initialization of function type %qT", type);
496 return error_mark_node;
497 }
498 else if (TREE_CODE (type) == REFERENCE_TYPE)
499 {
500 if (complain & tf_error)
501 error ("value-initialization of reference type %qT", type);
502 return error_mark_node;
503 }
504
505 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
506 }
507
508 /* Initialize current class with INIT, a TREE_LIST of
509 arguments for a target constructor. If TREE_LIST is void_type_node,
510 an empty initializer list was given. */
511
512 static void
513 perform_target_ctor (tree init)
514 {
515 tree decl = current_class_ref;
516 tree type = current_class_type;
517
518 finish_expr_stmt (build_aggr_init (decl, init,
519 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
520 tf_warning_or_error));
521 if (type_build_dtor_call (type))
522 {
523 tree expr = build_delete (type, decl, sfk_complete_destructor,
524 LOOKUP_NORMAL
525 |LOOKUP_NONVIRTUAL
526 |LOOKUP_DESTRUCTOR,
527 0, tf_warning_or_error);
528 if (expr != error_mark_node
529 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
530 finish_eh_cleanup (expr);
531 }
532 }
533
534 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
535
536 tree
537 get_nsdmi (tree member, bool in_ctor)
538 {
539 tree init;
540 tree save_ccp = current_class_ptr;
541 tree save_ccr = current_class_ref;
542 if (!in_ctor)
543 {
544 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
545 refer to; constexpr evaluation knows what to do with it. */
546 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
547 current_class_ptr = build_address (current_class_ref);
548 }
549 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
550 {
551 /* Do deferred instantiation of the NSDMI. */
552 init = (tsubst_copy_and_build
553 (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
554 DECL_TI_ARGS (member),
555 tf_warning_or_error, member, /*function_p=*/false,
556 /*integral_constant_expression_p=*/false));
557
558 init = digest_nsdmi_init (member, init);
559 }
560 else
561 {
562 init = DECL_INITIAL (member);
563 if (init && TREE_CODE (init) == DEFAULT_ARG)
564 {
565 error ("constructor required before non-static data member "
566 "for %qD has been parsed", member);
567 DECL_INITIAL (member) = error_mark_node;
568 init = error_mark_node;
569 }
570 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
571 so the aggregate init code below will see a CONSTRUCTOR. */
572 if (init && TREE_CODE (init) == TARGET_EXPR
573 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
574 init = TARGET_EXPR_INITIAL (init);
575 init = break_out_target_exprs (init);
576 }
577 current_class_ptr = save_ccp;
578 current_class_ref = save_ccr;
579 return init;
580 }
581
582 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
583 arguments. If TREE_LIST is void_type_node, an empty initializer
584 list was given; if NULL_TREE no initializer was given. */
585
586 static void
587 perform_member_init (tree member, tree init)
588 {
589 tree decl;
590 tree type = TREE_TYPE (member);
591
592 /* Use the non-static data member initializer if there was no
593 mem-initializer for this field. */
594 if (init == NULL_TREE)
595 init = get_nsdmi (member, /*ctor*/true);
596
597 if (init == error_mark_node)
598 return;
599
600 /* Effective C++ rule 12 requires that all data members be
601 initialized. */
602 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
603 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
604 "%qD should be initialized in the member initialization list",
605 member);
606
607 /* Get an lvalue for the data member. */
608 decl = build_class_member_access_expr (current_class_ref, member,
609 /*access_path=*/NULL_TREE,
610 /*preserve_reference=*/true,
611 tf_warning_or_error);
612 if (decl == error_mark_node)
613 return;
614
615 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
616 && TREE_CHAIN (init) == NULL_TREE)
617 {
618 tree val = TREE_VALUE (init);
619 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
620 && TREE_OPERAND (val, 0) == current_class_ref)
621 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
622 OPT_Winit_self, "%qD is initialized with itself",
623 member);
624 }
625
626 if (init == void_type_node)
627 {
628 /* mem() means value-initialization. */
629 if (TREE_CODE (type) == ARRAY_TYPE)
630 {
631 init = build_vec_init_expr (type, init, tf_warning_or_error);
632 init = build2 (INIT_EXPR, type, decl, init);
633 finish_expr_stmt (init);
634 }
635 else
636 {
637 tree value = build_value_init (type, tf_warning_or_error);
638 if (value == error_mark_node)
639 return;
640 init = build2 (INIT_EXPR, type, decl, value);
641 finish_expr_stmt (init);
642 }
643 }
644 /* Deal with this here, as we will get confused if we try to call the
645 assignment op for an anonymous union. This can happen in a
646 synthesized copy constructor. */
647 else if (ANON_AGGR_TYPE_P (type))
648 {
649 if (init)
650 {
651 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
652 finish_expr_stmt (init);
653 }
654 }
655 else if (init
656 && (TREE_CODE (type) == REFERENCE_TYPE
657 /* Pre-digested NSDMI. */
658 || (((TREE_CODE (init) == CONSTRUCTOR
659 && TREE_TYPE (init) == type)
660 /* { } mem-initializer. */
661 || (TREE_CODE (init) == TREE_LIST
662 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
663 && (CP_AGGREGATE_TYPE_P (type)
664 || is_std_init_list (type)))))
665 {
666 /* With references and list-initialization, we need to deal with
667 extending temporary lifetimes. 12.2p5: "A temporary bound to a
668 reference member in a constructor’s ctor-initializer (12.6.2)
669 persists until the constructor exits." */
670 unsigned i; tree t;
671 vec<tree, va_gc> *cleanups = make_tree_vector ();
672 if (TREE_CODE (init) == TREE_LIST)
673 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
674 tf_warning_or_error);
675 if (TREE_TYPE (init) != type)
676 {
677 if (BRACE_ENCLOSED_INITIALIZER_P (init)
678 && CP_AGGREGATE_TYPE_P (type))
679 init = reshape_init (type, init, tf_warning_or_error);
680 init = digest_init (type, init, tf_warning_or_error);
681 }
682 if (init == error_mark_node)
683 return;
684 /* A FIELD_DECL doesn't really have a suitable lifetime, but
685 make_temporary_var_for_ref_to_temp will treat it as automatic and
686 set_up_extended_ref_temp wants to use the decl in a warning. */
687 init = extend_ref_init_temps (member, init, &cleanups);
688 if (TREE_CODE (type) == ARRAY_TYPE
689 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
690 init = build_vec_init_expr (type, init, tf_warning_or_error);
691 init = build2 (INIT_EXPR, type, decl, init);
692 finish_expr_stmt (init);
693 FOR_EACH_VEC_ELT (*cleanups, i, t)
694 push_cleanup (decl, t, false);
695 release_tree_vector (cleanups);
696 }
697 else if (type_build_ctor_call (type)
698 || (init && CLASS_TYPE_P (strip_array_types (type))))
699 {
700 if (TREE_CODE (type) == ARRAY_TYPE)
701 {
702 if (init)
703 {
704 if (TREE_CHAIN (init))
705 init = error_mark_node;
706 else
707 init = TREE_VALUE (init);
708 if (BRACE_ENCLOSED_INITIALIZER_P (init))
709 init = digest_init (type, init, tf_warning_or_error);
710 }
711 if (init == NULL_TREE
712 || same_type_ignoring_top_level_qualifiers_p (type,
713 TREE_TYPE (init)))
714 {
715 init = build_vec_init_expr (type, init, tf_warning_or_error);
716 init = build2 (INIT_EXPR, type, decl, init);
717 finish_expr_stmt (init);
718 }
719 else
720 error ("invalid initializer for array member %q#D", member);
721 }
722 else
723 {
724 int flags = LOOKUP_NORMAL;
725 if (DECL_DEFAULTED_FN (current_function_decl))
726 flags |= LOOKUP_DEFAULTED;
727 if (CP_TYPE_CONST_P (type)
728 && init == NULL_TREE
729 && default_init_uninitialized_part (type))
730 {
731 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
732 vtable; still give this diagnostic. */
733 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
734 "uninitialized const member in %q#T", type))
735 inform (DECL_SOURCE_LOCATION (member),
736 "%q#D should be initialized", member );
737 }
738 finish_expr_stmt (build_aggr_init (decl, init, flags,
739 tf_warning_or_error));
740 }
741 }
742 else
743 {
744 if (init == NULL_TREE)
745 {
746 tree core_type;
747 /* member traversal: note it leaves init NULL */
748 if (TREE_CODE (type) == REFERENCE_TYPE)
749 {
750 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
751 "uninitialized reference member in %q#T", type))
752 inform (DECL_SOURCE_LOCATION (member),
753 "%q#D should be initialized", member);
754 }
755 else if (CP_TYPE_CONST_P (type))
756 {
757 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
758 "uninitialized const member in %q#T", type))
759 inform (DECL_SOURCE_LOCATION (member),
760 "%q#D should be initialized", member );
761 }
762
763 core_type = strip_array_types (type);
764
765 if (CLASS_TYPE_P (core_type)
766 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
767 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
768 diagnose_uninitialized_cst_or_ref_member (core_type,
769 /*using_new=*/false,
770 /*complain=*/true);
771 }
772 else if (TREE_CODE (init) == TREE_LIST)
773 /* There was an explicit member initialization. Do some work
774 in that case. */
775 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
776 tf_warning_or_error);
777
778 if (init)
779 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
780 tf_warning_or_error));
781 }
782
783 if (type_build_dtor_call (type))
784 {
785 tree expr;
786
787 expr = build_class_member_access_expr (current_class_ref, member,
788 /*access_path=*/NULL_TREE,
789 /*preserve_reference=*/false,
790 tf_warning_or_error);
791 expr = build_delete (type, expr, sfk_complete_destructor,
792 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
793 tf_warning_or_error);
794
795 if (expr != error_mark_node
796 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
797 finish_eh_cleanup (expr);
798 }
799 }
800
801 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
802 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
803
804 static tree
805 build_field_list (tree t, tree list, int *uses_unions_p)
806 {
807 tree fields;
808
809 /* Note whether or not T is a union. */
810 if (TREE_CODE (t) == UNION_TYPE)
811 *uses_unions_p = 1;
812
813 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
814 {
815 tree fieldtype;
816
817 /* Skip CONST_DECLs for enumeration constants and so forth. */
818 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
819 continue;
820
821 fieldtype = TREE_TYPE (fields);
822 /* Keep track of whether or not any fields are unions. */
823 if (TREE_CODE (fieldtype) == UNION_TYPE)
824 *uses_unions_p = 1;
825
826 /* For an anonymous struct or union, we must recursively
827 consider the fields of the anonymous type. They can be
828 directly initialized from the constructor. */
829 if (ANON_AGGR_TYPE_P (fieldtype))
830 {
831 /* Add this field itself. Synthesized copy constructors
832 initialize the entire aggregate. */
833 list = tree_cons (fields, NULL_TREE, list);
834 /* And now add the fields in the anonymous aggregate. */
835 list = build_field_list (fieldtype, list, uses_unions_p);
836 }
837 /* Add this field. */
838 else if (DECL_NAME (fields))
839 list = tree_cons (fields, NULL_TREE, list);
840 }
841
842 return list;
843 }
844
845 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
846 a FIELD_DECL or BINFO in T that needs initialization. The
847 TREE_VALUE gives the initializer, or list of initializer arguments.
848
849 Return a TREE_LIST containing all of the initializations required
850 for T, in the order in which they should be performed. The output
851 list has the same format as the input. */
852
853 static tree
854 sort_mem_initializers (tree t, tree mem_inits)
855 {
856 tree init;
857 tree base, binfo, base_binfo;
858 tree sorted_inits;
859 tree next_subobject;
860 vec<tree, va_gc> *vbases;
861 int i;
862 int uses_unions_p = 0;
863
864 /* Build up a list of initializations. The TREE_PURPOSE of entry
865 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
866 TREE_VALUE will be the constructor arguments, or NULL if no
867 explicit initialization was provided. */
868 sorted_inits = NULL_TREE;
869
870 /* Process the virtual bases. */
871 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
872 vec_safe_iterate (vbases, i, &base); i++)
873 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
874
875 /* Process the direct bases. */
876 for (binfo = TYPE_BINFO (t), i = 0;
877 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
878 if (!BINFO_VIRTUAL_P (base_binfo))
879 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
880
881 /* Process the non-static data members. */
882 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
883 /* Reverse the entire list of initializations, so that they are in
884 the order that they will actually be performed. */
885 sorted_inits = nreverse (sorted_inits);
886
887 /* If the user presented the initializers in an order different from
888 that in which they will actually occur, we issue a warning. Keep
889 track of the next subobject which can be explicitly initialized
890 without issuing a warning. */
891 next_subobject = sorted_inits;
892
893 /* Go through the explicit initializers, filling in TREE_PURPOSE in
894 the SORTED_INITS. */
895 for (init = mem_inits; init; init = TREE_CHAIN (init))
896 {
897 tree subobject;
898 tree subobject_init;
899
900 subobject = TREE_PURPOSE (init);
901
902 /* If the explicit initializers are in sorted order, then
903 SUBOBJECT will be NEXT_SUBOBJECT, or something following
904 it. */
905 for (subobject_init = next_subobject;
906 subobject_init;
907 subobject_init = TREE_CHAIN (subobject_init))
908 if (TREE_PURPOSE (subobject_init) == subobject)
909 break;
910
911 /* Issue a warning if the explicit initializer order does not
912 match that which will actually occur.
913 ??? Are all these on the correct lines? */
914 if (warn_reorder && !subobject_init)
915 {
916 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
917 warning (OPT_Wreorder, "%q+D will be initialized after",
918 TREE_PURPOSE (next_subobject));
919 else
920 warning (OPT_Wreorder, "base %qT will be initialized after",
921 TREE_PURPOSE (next_subobject));
922 if (TREE_CODE (subobject) == FIELD_DECL)
923 warning (OPT_Wreorder, " %q+#D", subobject);
924 else
925 warning (OPT_Wreorder, " base %qT", subobject);
926 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
927 OPT_Wreorder, " when initialized here");
928 }
929
930 /* Look again, from the beginning of the list. */
931 if (!subobject_init)
932 {
933 subobject_init = sorted_inits;
934 while (TREE_PURPOSE (subobject_init) != subobject)
935 subobject_init = TREE_CHAIN (subobject_init);
936 }
937
938 /* It is invalid to initialize the same subobject more than
939 once. */
940 if (TREE_VALUE (subobject_init))
941 {
942 if (TREE_CODE (subobject) == FIELD_DECL)
943 error_at (DECL_SOURCE_LOCATION (current_function_decl),
944 "multiple initializations given for %qD",
945 subobject);
946 else
947 error_at (DECL_SOURCE_LOCATION (current_function_decl),
948 "multiple initializations given for base %qT",
949 subobject);
950 }
951
952 /* Record the initialization. */
953 TREE_VALUE (subobject_init) = TREE_VALUE (init);
954 next_subobject = subobject_init;
955 }
956
957 /* [class.base.init]
958
959 If a ctor-initializer specifies more than one mem-initializer for
960 multiple members of the same union (including members of
961 anonymous unions), the ctor-initializer is ill-formed.
962
963 Here we also splice out uninitialized union members. */
964 if (uses_unions_p)
965 {
966 tree *last_p = NULL;
967 tree *p;
968 for (p = &sorted_inits; *p; )
969 {
970 tree field;
971 tree ctx;
972
973 init = *p;
974
975 field = TREE_PURPOSE (init);
976
977 /* Skip base classes. */
978 if (TREE_CODE (field) != FIELD_DECL)
979 goto next;
980
981 /* If this is an anonymous union with no explicit initializer,
982 splice it out. */
983 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
984 goto splice;
985
986 /* See if this field is a member of a union, or a member of a
987 structure contained in a union, etc. */
988 for (ctx = DECL_CONTEXT (field);
989 !same_type_p (ctx, t);
990 ctx = TYPE_CONTEXT (ctx))
991 if (TREE_CODE (ctx) == UNION_TYPE
992 || !ANON_AGGR_TYPE_P (ctx))
993 break;
994 /* If this field is not a member of a union, skip it. */
995 if (TREE_CODE (ctx) != UNION_TYPE)
996 goto next;
997
998 /* If this union member has no explicit initializer and no NSDMI,
999 splice it out. */
1000 if (TREE_VALUE (init) || DECL_INITIAL (field))
1001 /* OK. */;
1002 else
1003 goto splice;
1004
1005 /* It's only an error if we have two initializers for the same
1006 union type. */
1007 if (!last_p)
1008 {
1009 last_p = p;
1010 goto next;
1011 }
1012
1013 /* See if LAST_FIELD and the field initialized by INIT are
1014 members of the same union. If so, there's a problem,
1015 unless they're actually members of the same structure
1016 which is itself a member of a union. For example, given:
1017
1018 union { struct { int i; int j; }; };
1019
1020 initializing both `i' and `j' makes sense. */
1021 ctx = common_enclosing_class (DECL_CONTEXT (field),
1022 DECL_CONTEXT (TREE_PURPOSE (*last_p)));
1023
1024 if (ctx && TREE_CODE (ctx) == UNION_TYPE)
1025 {
1026 /* A mem-initializer hides an NSDMI. */
1027 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1028 *last_p = TREE_CHAIN (*last_p);
1029 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1030 goto splice;
1031 else
1032 {
1033 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1034 "initializations for multiple members of %qT",
1035 ctx);
1036 goto splice;
1037 }
1038 }
1039
1040 last_p = p;
1041
1042 next:
1043 p = &TREE_CHAIN (*p);
1044 continue;
1045 splice:
1046 *p = TREE_CHAIN (*p);
1047 continue;
1048 }
1049 }
1050
1051 return sorted_inits;
1052 }
1053
1054 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1055 is a TREE_LIST giving the explicit mem-initializer-list for the
1056 constructor. The TREE_PURPOSE of each entry is a subobject (a
1057 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1058 is a TREE_LIST giving the arguments to the constructor or
1059 void_type_node for an empty list of arguments. */
1060
1061 void
1062 emit_mem_initializers (tree mem_inits)
1063 {
1064 int flags = LOOKUP_NORMAL;
1065
1066 /* We will already have issued an error message about the fact that
1067 the type is incomplete. */
1068 if (!COMPLETE_TYPE_P (current_class_type))
1069 return;
1070
1071 if (mem_inits
1072 && TYPE_P (TREE_PURPOSE (mem_inits))
1073 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1074 {
1075 /* Delegating constructor. */
1076 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1077 perform_target_ctor (TREE_VALUE (mem_inits));
1078 return;
1079 }
1080
1081 if (DECL_DEFAULTED_FN (current_function_decl)
1082 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1083 flags |= LOOKUP_DEFAULTED;
1084
1085 /* Sort the mem-initializers into the order in which the
1086 initializations should be performed. */
1087 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1088
1089 in_base_initializer = 1;
1090
1091 /* Initialize base classes. */
1092 for (; (mem_inits
1093 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1094 mem_inits = TREE_CHAIN (mem_inits))
1095 {
1096 tree subobject = TREE_PURPOSE (mem_inits);
1097 tree arguments = TREE_VALUE (mem_inits);
1098
1099 /* We already have issued an error message. */
1100 if (arguments == error_mark_node)
1101 continue;
1102
1103 if (arguments == NULL_TREE)
1104 {
1105 /* If these initializations are taking place in a copy constructor,
1106 the base class should probably be explicitly initialized if there
1107 is a user-defined constructor in the base class (other than the
1108 default constructor, which will be called anyway). */
1109 if (extra_warnings
1110 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1111 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1112 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1113 OPT_Wextra, "base class %q#T should be explicitly "
1114 "initialized in the copy constructor",
1115 BINFO_TYPE (subobject));
1116 }
1117
1118 /* Initialize the base. */
1119 if (BINFO_VIRTUAL_P (subobject))
1120 construct_virtual_base (subobject, arguments);
1121 else
1122 {
1123 tree base_addr;
1124
1125 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1126 subobject, 1, tf_warning_or_error);
1127 expand_aggr_init_1 (subobject, NULL_TREE,
1128 cp_build_indirect_ref (base_addr, RO_NULL,
1129 tf_warning_or_error),
1130 arguments,
1131 flags,
1132 tf_warning_or_error);
1133 expand_cleanup_for_base (subobject, NULL_TREE);
1134 }
1135 }
1136 in_base_initializer = 0;
1137
1138 /* Initialize the vptrs. */
1139 initialize_vtbl_ptrs (current_class_ptr);
1140
1141 /* Initialize the data members. */
1142 while (mem_inits)
1143 {
1144 perform_member_init (TREE_PURPOSE (mem_inits),
1145 TREE_VALUE (mem_inits));
1146 mem_inits = TREE_CHAIN (mem_inits);
1147 }
1148 }
1149
1150 /* Returns the address of the vtable (i.e., the value that should be
1151 assigned to the vptr) for BINFO. */
1152
1153 tree
1154 build_vtbl_address (tree binfo)
1155 {
1156 tree binfo_for = binfo;
1157 tree vtbl;
1158
1159 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1160 /* If this is a virtual primary base, then the vtable we want to store
1161 is that for the base this is being used as the primary base of. We
1162 can't simply skip the initialization, because we may be expanding the
1163 inits of a subobject constructor where the virtual base layout
1164 can be different. */
1165 while (BINFO_PRIMARY_P (binfo_for))
1166 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1167
1168 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1169 used. */
1170 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1171 TREE_USED (vtbl) = true;
1172
1173 /* Now compute the address to use when initializing the vptr. */
1174 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1175 if (VAR_P (vtbl))
1176 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1177
1178 return vtbl;
1179 }
1180
1181 /* This code sets up the virtual function tables appropriate for
1182 the pointer DECL. It is a one-ply initialization.
1183
1184 BINFO is the exact type that DECL is supposed to be. In
1185 multiple inheritance, this might mean "C's A" if C : A, B. */
1186
1187 static void
1188 expand_virtual_init (tree binfo, tree decl)
1189 {
1190 tree vtbl, vtbl_ptr;
1191 tree vtt_index;
1192
1193 /* Compute the initializer for vptr. */
1194 vtbl = build_vtbl_address (binfo);
1195
1196 /* We may get this vptr from a VTT, if this is a subobject
1197 constructor or subobject destructor. */
1198 vtt_index = BINFO_VPTR_INDEX (binfo);
1199 if (vtt_index)
1200 {
1201 tree vtbl2;
1202 tree vtt_parm;
1203
1204 /* Compute the value to use, when there's a VTT. */
1205 vtt_parm = current_vtt_parm;
1206 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1207 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1208 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1209
1210 /* The actual initializer is the VTT value only in the subobject
1211 constructor. In maybe_clone_body we'll substitute NULL for
1212 the vtt_parm in the case of the non-subobject constructor. */
1213 vtbl = build3 (COND_EXPR,
1214 TREE_TYPE (vtbl),
1215 build2 (EQ_EXPR, boolean_type_node,
1216 current_in_charge_parm, integer_zero_node),
1217 vtbl2,
1218 vtbl);
1219 }
1220
1221 /* Compute the location of the vtpr. */
1222 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1223 tf_warning_or_error),
1224 TREE_TYPE (binfo));
1225 gcc_assert (vtbl_ptr != error_mark_node);
1226
1227 /* Assign the vtable to the vptr. */
1228 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1229 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1230 tf_warning_or_error));
1231 }
1232
1233 /* If an exception is thrown in a constructor, those base classes already
1234 constructed must be destroyed. This function creates the cleanup
1235 for BINFO, which has just been constructed. If FLAG is non-NULL,
1236 it is a DECL which is nonzero when this base needs to be
1237 destroyed. */
1238
1239 static void
1240 expand_cleanup_for_base (tree binfo, tree flag)
1241 {
1242 tree expr;
1243
1244 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1245 return;
1246
1247 /* Call the destructor. */
1248 expr = build_special_member_call (current_class_ref,
1249 base_dtor_identifier,
1250 NULL,
1251 binfo,
1252 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1253 tf_warning_or_error);
1254
1255 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1256 return;
1257
1258 if (flag)
1259 expr = fold_build3_loc (input_location,
1260 COND_EXPR, void_type_node,
1261 c_common_truthvalue_conversion (input_location, flag),
1262 expr, integer_zero_node);
1263
1264 finish_eh_cleanup (expr);
1265 }
1266
1267 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1268 constructor. */
1269
1270 static void
1271 construct_virtual_base (tree vbase, tree arguments)
1272 {
1273 tree inner_if_stmt;
1274 tree exp;
1275 tree flag;
1276
1277 /* If there are virtual base classes with destructors, we need to
1278 emit cleanups to destroy them if an exception is thrown during
1279 the construction process. These exception regions (i.e., the
1280 period during which the cleanups must occur) begin from the time
1281 the construction is complete to the end of the function. If we
1282 create a conditional block in which to initialize the
1283 base-classes, then the cleanup region for the virtual base begins
1284 inside a block, and ends outside of that block. This situation
1285 confuses the sjlj exception-handling code. Therefore, we do not
1286 create a single conditional block, but one for each
1287 initialization. (That way the cleanup regions always begin
1288 in the outer block.) We trust the back end to figure out
1289 that the FLAG will not change across initializations, and
1290 avoid doing multiple tests. */
1291 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1292 inner_if_stmt = begin_if_stmt ();
1293 finish_if_stmt_cond (flag, inner_if_stmt);
1294
1295 /* Compute the location of the virtual base. If we're
1296 constructing virtual bases, then we must be the most derived
1297 class. Therefore, we don't have to look up the virtual base;
1298 we already know where it is. */
1299 exp = convert_to_base_statically (current_class_ref, vbase);
1300
1301 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1302 0, tf_warning_or_error);
1303 finish_then_clause (inner_if_stmt);
1304 finish_if_stmt (inner_if_stmt);
1305
1306 expand_cleanup_for_base (vbase, flag);
1307 }
1308
1309 /* Find the context in which this FIELD can be initialized. */
1310
1311 static tree
1312 initializing_context (tree field)
1313 {
1314 tree t = DECL_CONTEXT (field);
1315
1316 /* Anonymous union members can be initialized in the first enclosing
1317 non-anonymous union context. */
1318 while (t && ANON_AGGR_TYPE_P (t))
1319 t = TYPE_CONTEXT (t);
1320 return t;
1321 }
1322
1323 /* Function to give error message if member initialization specification
1324 is erroneous. FIELD is the member we decided to initialize.
1325 TYPE is the type for which the initialization is being performed.
1326 FIELD must be a member of TYPE.
1327
1328 MEMBER_NAME is the name of the member. */
1329
1330 static int
1331 member_init_ok_or_else (tree field, tree type, tree member_name)
1332 {
1333 if (field == error_mark_node)
1334 return 0;
1335 if (!field)
1336 {
1337 error ("class %qT does not have any field named %qD", type,
1338 member_name);
1339 return 0;
1340 }
1341 if (VAR_P (field))
1342 {
1343 error ("%q#D is a static data member; it can only be "
1344 "initialized at its definition",
1345 field);
1346 return 0;
1347 }
1348 if (TREE_CODE (field) != FIELD_DECL)
1349 {
1350 error ("%q#D is not a non-static data member of %qT",
1351 field, type);
1352 return 0;
1353 }
1354 if (initializing_context (field) != type)
1355 {
1356 error ("class %qT does not have any field named %qD", type,
1357 member_name);
1358 return 0;
1359 }
1360
1361 return 1;
1362 }
1363
1364 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1365 is a _TYPE node or TYPE_DECL which names a base for that type.
1366 Check the validity of NAME, and return either the base _TYPE, base
1367 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1368 NULL_TREE and issue a diagnostic.
1369
1370 An old style unnamed direct single base construction is permitted,
1371 where NAME is NULL. */
1372
1373 tree
1374 expand_member_init (tree name)
1375 {
1376 tree basetype;
1377 tree field;
1378
1379 if (!current_class_ref)
1380 return NULL_TREE;
1381
1382 if (!name)
1383 {
1384 /* This is an obsolete unnamed base class initializer. The
1385 parser will already have warned about its use. */
1386 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1387 {
1388 case 0:
1389 error ("unnamed initializer for %qT, which has no base classes",
1390 current_class_type);
1391 return NULL_TREE;
1392 case 1:
1393 basetype = BINFO_TYPE
1394 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1395 break;
1396 default:
1397 error ("unnamed initializer for %qT, which uses multiple inheritance",
1398 current_class_type);
1399 return NULL_TREE;
1400 }
1401 }
1402 else if (TYPE_P (name))
1403 {
1404 basetype = TYPE_MAIN_VARIANT (name);
1405 name = TYPE_NAME (name);
1406 }
1407 else if (TREE_CODE (name) == TYPE_DECL)
1408 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1409 else
1410 basetype = NULL_TREE;
1411
1412 if (basetype)
1413 {
1414 tree class_binfo;
1415 tree direct_binfo;
1416 tree virtual_binfo;
1417 int i;
1418
1419 if (current_template_parms
1420 || same_type_p (basetype, current_class_type))
1421 return basetype;
1422
1423 class_binfo = TYPE_BINFO (current_class_type);
1424 direct_binfo = NULL_TREE;
1425 virtual_binfo = NULL_TREE;
1426
1427 /* Look for a direct base. */
1428 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1429 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1430 break;
1431
1432 /* Look for a virtual base -- unless the direct base is itself
1433 virtual. */
1434 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1435 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1436
1437 /* [class.base.init]
1438
1439 If a mem-initializer-id is ambiguous because it designates
1440 both a direct non-virtual base class and an inherited virtual
1441 base class, the mem-initializer is ill-formed. */
1442 if (direct_binfo && virtual_binfo)
1443 {
1444 error ("%qD is both a direct base and an indirect virtual base",
1445 basetype);
1446 return NULL_TREE;
1447 }
1448
1449 if (!direct_binfo && !virtual_binfo)
1450 {
1451 if (CLASSTYPE_VBASECLASSES (current_class_type))
1452 error ("type %qT is not a direct or virtual base of %qT",
1453 basetype, current_class_type);
1454 else
1455 error ("type %qT is not a direct base of %qT",
1456 basetype, current_class_type);
1457 return NULL_TREE;
1458 }
1459
1460 return direct_binfo ? direct_binfo : virtual_binfo;
1461 }
1462 else
1463 {
1464 if (identifier_p (name))
1465 field = lookup_field (current_class_type, name, 1, false);
1466 else
1467 field = name;
1468
1469 if (member_init_ok_or_else (field, current_class_type, name))
1470 return field;
1471 }
1472
1473 return NULL_TREE;
1474 }
1475
1476 /* This is like `expand_member_init', only it stores one aggregate
1477 value into another.
1478
1479 INIT comes in two flavors: it is either a value which
1480 is to be stored in EXP, or it is a parameter list
1481 to go to a constructor, which will operate on EXP.
1482 If INIT is not a parameter list for a constructor, then set
1483 LOOKUP_ONLYCONVERTING.
1484 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1485 the initializer, if FLAGS is 0, then it is the (init) form.
1486 If `init' is a CONSTRUCTOR, then we emit a warning message,
1487 explaining that such initializations are invalid.
1488
1489 If INIT resolves to a CALL_EXPR which happens to return
1490 something of the type we are looking for, then we know
1491 that we can safely use that call to perform the
1492 initialization.
1493
1494 The virtual function table pointer cannot be set up here, because
1495 we do not really know its type.
1496
1497 This never calls operator=().
1498
1499 When initializing, nothing is CONST.
1500
1501 A default copy constructor may have to be used to perform the
1502 initialization.
1503
1504 A constructor or a conversion operator may have to be used to
1505 perform the initialization, but not both, as it would be ambiguous. */
1506
1507 tree
1508 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1509 {
1510 tree stmt_expr;
1511 tree compound_stmt;
1512 int destroy_temps;
1513 tree type = TREE_TYPE (exp);
1514 int was_const = TREE_READONLY (exp);
1515 int was_volatile = TREE_THIS_VOLATILE (exp);
1516 int is_global;
1517
1518 if (init == error_mark_node)
1519 return error_mark_node;
1520
1521 TREE_READONLY (exp) = 0;
1522 TREE_THIS_VOLATILE (exp) = 0;
1523
1524 if (init && init != void_type_node
1525 && TREE_CODE (init) != TREE_LIST
1526 && !(TREE_CODE (init) == TARGET_EXPR
1527 && TARGET_EXPR_DIRECT_INIT_P (init))
1528 && !DIRECT_LIST_INIT_P (init))
1529 flags |= LOOKUP_ONLYCONVERTING;
1530
1531 if (TREE_CODE (type) == ARRAY_TYPE)
1532 {
1533 tree itype;
1534
1535 /* An array may not be initialized use the parenthesized
1536 initialization form -- unless the initializer is "()". */
1537 if (init && TREE_CODE (init) == TREE_LIST)
1538 {
1539 if (complain & tf_error)
1540 error ("bad array initializer");
1541 return error_mark_node;
1542 }
1543 /* Must arrange to initialize each element of EXP
1544 from elements of INIT. */
1545 itype = init ? TREE_TYPE (init) : NULL_TREE;
1546 if (cv_qualified_p (type))
1547 TREE_TYPE (exp) = cv_unqualified (type);
1548 if (itype && cv_qualified_p (itype))
1549 TREE_TYPE (init) = cv_unqualified (itype);
1550 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1551 /*explicit_value_init_p=*/false,
1552 itype && same_type_p (TREE_TYPE (init),
1553 TREE_TYPE (exp)),
1554 complain);
1555 TREE_READONLY (exp) = was_const;
1556 TREE_THIS_VOLATILE (exp) = was_volatile;
1557 TREE_TYPE (exp) = type;
1558 /* Restore the type of init unless it was used directly. */
1559 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1560 TREE_TYPE (init) = itype;
1561 return stmt_expr;
1562 }
1563
1564 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1565 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1566 /* Just know that we've seen something for this node. */
1567 TREE_USED (exp) = 1;
1568
1569 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1570 destroy_temps = stmts_are_full_exprs_p ();
1571 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1572 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1573 init, LOOKUP_NORMAL|flags, complain);
1574 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1575 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1576 TREE_READONLY (exp) = was_const;
1577 TREE_THIS_VOLATILE (exp) = was_volatile;
1578
1579 return stmt_expr;
1580 }
1581
1582 static void
1583 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1584 tsubst_flags_t complain)
1585 {
1586 tree type = TREE_TYPE (exp);
1587 tree ctor_name;
1588
1589 /* It fails because there may not be a constructor which takes
1590 its own type as the first (or only parameter), but which does
1591 take other types via a conversion. So, if the thing initializing
1592 the expression is a unit element of type X, first try X(X&),
1593 followed by initialization by X. If neither of these work
1594 out, then look hard. */
1595 tree rval;
1596 vec<tree, va_gc> *parms;
1597
1598 /* If we have direct-initialization from an initializer list, pull
1599 it out of the TREE_LIST so the code below can see it. */
1600 if (init && TREE_CODE (init) == TREE_LIST
1601 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1602 {
1603 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1604 && TREE_CHAIN (init) == NULL_TREE);
1605 init = TREE_VALUE (init);
1606 }
1607
1608 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1609 && CP_AGGREGATE_TYPE_P (type))
1610 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1611 happen for direct-initialization, too. */
1612 init = digest_init (type, init, complain);
1613
1614 /* A CONSTRUCTOR of the target's type is a previously digested
1615 initializer, whether that happened just above or in
1616 cp_parser_late_parsing_nsdmi.
1617
1618 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1619 set represents the whole initialization, so we shouldn't build up
1620 another ctor call. */
1621 if (init
1622 && (TREE_CODE (init) == CONSTRUCTOR
1623 || (TREE_CODE (init) == TARGET_EXPR
1624 && (TARGET_EXPR_DIRECT_INIT_P (init)
1625 || TARGET_EXPR_LIST_INIT_P (init))))
1626 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1627 {
1628 /* Early initialization via a TARGET_EXPR only works for
1629 complete objects. */
1630 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1631
1632 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1633 TREE_SIDE_EFFECTS (init) = 1;
1634 finish_expr_stmt (init);
1635 return;
1636 }
1637
1638 if (init && TREE_CODE (init) != TREE_LIST
1639 && (flags & LOOKUP_ONLYCONVERTING))
1640 {
1641 /* Base subobjects should only get direct-initialization. */
1642 gcc_assert (true_exp == exp);
1643
1644 if (flags & DIRECT_BIND)
1645 /* Do nothing. We hit this in two cases: Reference initialization,
1646 where we aren't initializing a real variable, so we don't want
1647 to run a new constructor; and catching an exception, where we
1648 have already built up the constructor call so we could wrap it
1649 in an exception region. */;
1650 else
1651 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1652 flags, complain);
1653
1654 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1655 /* We need to protect the initialization of a catch parm with a
1656 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1657 around the TARGET_EXPR for the copy constructor. See
1658 initialize_handler_parm. */
1659 {
1660 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1661 TREE_OPERAND (init, 0));
1662 TREE_TYPE (init) = void_type_node;
1663 }
1664 else
1665 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1666 TREE_SIDE_EFFECTS (init) = 1;
1667 finish_expr_stmt (init);
1668 return;
1669 }
1670
1671 if (init == NULL_TREE)
1672 parms = NULL;
1673 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1674 {
1675 parms = make_tree_vector ();
1676 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1677 vec_safe_push (parms, TREE_VALUE (init));
1678 }
1679 else
1680 parms = make_tree_vector_single (init);
1681
1682 if (exp == current_class_ref && current_function_decl
1683 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1684 {
1685 /* Delegating constructor. */
1686 tree complete;
1687 tree base;
1688 tree elt; unsigned i;
1689
1690 /* Unshare the arguments for the second call. */
1691 vec<tree, va_gc> *parms2 = make_tree_vector ();
1692 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1693 {
1694 elt = break_out_target_exprs (elt);
1695 vec_safe_push (parms2, elt);
1696 }
1697 complete = build_special_member_call (exp, complete_ctor_identifier,
1698 &parms2, binfo, flags,
1699 complain);
1700 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1701 release_tree_vector (parms2);
1702
1703 base = build_special_member_call (exp, base_ctor_identifier,
1704 &parms, binfo, flags,
1705 complain);
1706 base = fold_build_cleanup_point_expr (void_type_node, base);
1707 rval = build3 (COND_EXPR, void_type_node,
1708 build2 (EQ_EXPR, boolean_type_node,
1709 current_in_charge_parm, integer_zero_node),
1710 base,
1711 complete);
1712 }
1713 else
1714 {
1715 if (true_exp == exp)
1716 ctor_name = complete_ctor_identifier;
1717 else
1718 ctor_name = base_ctor_identifier;
1719 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1720 complain);
1721 }
1722
1723 if (parms != NULL)
1724 release_tree_vector (parms);
1725
1726 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1727 {
1728 tree fn = get_callee_fndecl (rval);
1729 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1730 {
1731 tree e = maybe_constant_init (rval, exp);
1732 if (TREE_CONSTANT (e))
1733 rval = build2 (INIT_EXPR, type, exp, e);
1734 }
1735 }
1736
1737 /* FIXME put back convert_to_void? */
1738 if (TREE_SIDE_EFFECTS (rval))
1739 finish_expr_stmt (rval);
1740 }
1741
1742 /* This function is responsible for initializing EXP with INIT
1743 (if any).
1744
1745 BINFO is the binfo of the type for who we are performing the
1746 initialization. For example, if W is a virtual base class of A and B,
1747 and C : A, B.
1748 If we are initializing B, then W must contain B's W vtable, whereas
1749 were we initializing C, W must contain C's W vtable.
1750
1751 TRUE_EXP is nonzero if it is the true expression being initialized.
1752 In this case, it may be EXP, or may just contain EXP. The reason we
1753 need this is because if EXP is a base element of TRUE_EXP, we
1754 don't necessarily know by looking at EXP where its virtual
1755 baseclass fields should really be pointing. But we do know
1756 from TRUE_EXP. In constructors, we don't know anything about
1757 the value being initialized.
1758
1759 FLAGS is just passed to `build_new_method_call'. See that function
1760 for its description. */
1761
1762 static void
1763 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1764 tsubst_flags_t complain)
1765 {
1766 tree type = TREE_TYPE (exp);
1767
1768 gcc_assert (init != error_mark_node && type != error_mark_node);
1769 gcc_assert (building_stmt_list_p ());
1770
1771 /* Use a function returning the desired type to initialize EXP for us.
1772 If the function is a constructor, and its first argument is
1773 NULL_TREE, know that it was meant for us--just slide exp on
1774 in and expand the constructor. Constructors now come
1775 as TARGET_EXPRs. */
1776
1777 if (init && VAR_P (exp)
1778 && COMPOUND_LITERAL_P (init))
1779 {
1780 vec<tree, va_gc> *cleanups = NULL;
1781 /* If store_init_value returns NULL_TREE, the INIT has been
1782 recorded as the DECL_INITIAL for EXP. That means there's
1783 nothing more we have to do. */
1784 init = store_init_value (exp, init, &cleanups, flags);
1785 if (init)
1786 finish_expr_stmt (init);
1787 gcc_assert (!cleanups);
1788 return;
1789 }
1790
1791 /* If an explicit -- but empty -- initializer list was present,
1792 that's value-initialization. */
1793 if (init == void_type_node)
1794 {
1795 /* If the type has data but no user-provided ctor, we need to zero
1796 out the object. */
1797 if (!type_has_user_provided_constructor (type)
1798 && !is_really_empty_class (type))
1799 {
1800 tree field_size = NULL_TREE;
1801 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1802 /* Don't clobber already initialized virtual bases. */
1803 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1804 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1805 field_size);
1806 init = build2 (INIT_EXPR, type, exp, init);
1807 finish_expr_stmt (init);
1808 }
1809
1810 /* If we don't need to mess with the constructor at all,
1811 then we're done. */
1812 if (! type_build_ctor_call (type))
1813 return;
1814
1815 /* Otherwise fall through and call the constructor. */
1816 init = NULL_TREE;
1817 }
1818
1819 /* We know that expand_default_init can handle everything we want
1820 at this point. */
1821 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1822 }
1823
1824 /* Report an error if TYPE is not a user-defined, class type. If
1825 OR_ELSE is nonzero, give an error message. */
1826
1827 int
1828 is_class_type (tree type, int or_else)
1829 {
1830 if (type == error_mark_node)
1831 return 0;
1832
1833 if (! CLASS_TYPE_P (type))
1834 {
1835 if (or_else)
1836 error ("%qT is not a class type", type);
1837 return 0;
1838 }
1839 return 1;
1840 }
1841
1842 tree
1843 get_type_value (tree name)
1844 {
1845 if (name == error_mark_node)
1846 return NULL_TREE;
1847
1848 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1849 return IDENTIFIER_TYPE_VALUE (name);
1850 else
1851 return NULL_TREE;
1852 }
1853
1854 /* Build a reference to a member of an aggregate. This is not a C++
1855 `&', but really something which can have its address taken, and
1856 then act as a pointer to member, for example TYPE :: FIELD can have
1857 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1858 this expression is the operand of "&".
1859
1860 @@ Prints out lousy diagnostics for operator <typename>
1861 @@ fields.
1862
1863 @@ This function should be rewritten and placed in search.c. */
1864
1865 tree
1866 build_offset_ref (tree type, tree member, bool address_p,
1867 tsubst_flags_t complain)
1868 {
1869 tree decl;
1870 tree basebinfo = NULL_TREE;
1871
1872 /* class templates can come in as TEMPLATE_DECLs here. */
1873 if (TREE_CODE (member) == TEMPLATE_DECL)
1874 return member;
1875
1876 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1877 return build_qualified_name (NULL_TREE, type, member,
1878 /*template_p=*/false);
1879
1880 gcc_assert (TYPE_P (type));
1881 if (! is_class_type (type, 1))
1882 return error_mark_node;
1883
1884 gcc_assert (DECL_P (member) || BASELINK_P (member));
1885 /* Callers should call mark_used before this point. */
1886 gcc_assert (!DECL_P (member) || TREE_USED (member));
1887
1888 type = TYPE_MAIN_VARIANT (type);
1889 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1890 {
1891 if (complain & tf_error)
1892 error ("incomplete type %qT does not have member %qD", type, member);
1893 return error_mark_node;
1894 }
1895
1896 /* Entities other than non-static members need no further
1897 processing. */
1898 if (TREE_CODE (member) == TYPE_DECL)
1899 return member;
1900 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1901 return convert_from_reference (member);
1902
1903 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1904 {
1905 if (complain & tf_error)
1906 error ("invalid pointer to bit-field %qD", member);
1907 return error_mark_node;
1908 }
1909
1910 /* Set up BASEBINFO for member lookup. */
1911 decl = maybe_dummy_object (type, &basebinfo);
1912
1913 /* A lot of this logic is now handled in lookup_member. */
1914 if (BASELINK_P (member))
1915 {
1916 /* Go from the TREE_BASELINK to the member function info. */
1917 tree t = BASELINK_FUNCTIONS (member);
1918
1919 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1920 {
1921 /* Get rid of a potential OVERLOAD around it. */
1922 t = OVL_CURRENT (t);
1923
1924 /* Unique functions are handled easily. */
1925
1926 /* For non-static member of base class, we need a special rule
1927 for access checking [class.protected]:
1928
1929 If the access is to form a pointer to member, the
1930 nested-name-specifier shall name the derived class
1931 (or any class derived from that class). */
1932 if (address_p && DECL_P (t)
1933 && DECL_NONSTATIC_MEMBER_P (t))
1934 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1935 complain);
1936 else
1937 perform_or_defer_access_check (basebinfo, t, t,
1938 complain);
1939
1940 if (DECL_STATIC_FUNCTION_P (t))
1941 return t;
1942 member = t;
1943 }
1944 else
1945 TREE_TYPE (member) = unknown_type_node;
1946 }
1947 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1948 /* We need additional test besides the one in
1949 check_accessibility_of_qualified_id in case it is
1950 a pointer to non-static member. */
1951 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1952 complain);
1953
1954 if (!address_p)
1955 {
1956 /* If MEMBER is non-static, then the program has fallen afoul of
1957 [expr.prim]:
1958
1959 An id-expression that denotes a nonstatic data member or
1960 nonstatic member function of a class can only be used:
1961
1962 -- as part of a class member access (_expr.ref_) in which the
1963 object-expression refers to the member's class or a class
1964 derived from that class, or
1965
1966 -- to form a pointer to member (_expr.unary.op_), or
1967
1968 -- in the body of a nonstatic member function of that class or
1969 of a class derived from that class (_class.mfct.nonstatic_), or
1970
1971 -- in a mem-initializer for a constructor for that class or for
1972 a class derived from that class (_class.base.init_). */
1973 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1974 {
1975 /* Build a representation of the qualified name suitable
1976 for use as the operand to "&" -- even though the "&" is
1977 not actually present. */
1978 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1979 /* In Microsoft mode, treat a non-static member function as if
1980 it were a pointer-to-member. */
1981 if (flag_ms_extensions)
1982 {
1983 PTRMEM_OK_P (member) = 1;
1984 return cp_build_addr_expr (member, complain);
1985 }
1986 if (complain & tf_error)
1987 error ("invalid use of non-static member function %qD",
1988 TREE_OPERAND (member, 1));
1989 return error_mark_node;
1990 }
1991 else if (TREE_CODE (member) == FIELD_DECL)
1992 {
1993 if (complain & tf_error)
1994 error ("invalid use of non-static data member %qD", member);
1995 return error_mark_node;
1996 }
1997 return member;
1998 }
1999
2000 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2001 PTRMEM_OK_P (member) = 1;
2002 return member;
2003 }
2004
2005 /* If DECL is a scalar enumeration constant or variable with a
2006 constant initializer, return the initializer (or, its initializers,
2007 recursively); otherwise, return DECL. If STRICT_P, the
2008 initializer is only returned if DECL is a
2009 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2010 return an aggregate constant. */
2011
2012 static tree
2013 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2014 {
2015 while (TREE_CODE (decl) == CONST_DECL
2016 || (strict_p
2017 ? decl_constant_var_p (decl)
2018 : (VAR_P (decl)
2019 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2020 {
2021 tree init;
2022 /* If DECL is a static data member in a template
2023 specialization, we must instantiate it here. The
2024 initializer for the static data member is not processed
2025 until needed; we need it now. */
2026 mark_used (decl);
2027 mark_rvalue_use (decl);
2028 init = DECL_INITIAL (decl);
2029 if (init == error_mark_node)
2030 {
2031 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2032 /* Treat the error as a constant to avoid cascading errors on
2033 excessively recursive template instantiation (c++/9335). */
2034 return init;
2035 else
2036 return decl;
2037 }
2038 /* Initializers in templates are generally expanded during
2039 instantiation, so before that for const int i(2)
2040 INIT is a TREE_LIST with the actual initializer as
2041 TREE_VALUE. */
2042 if (processing_template_decl
2043 && init
2044 && TREE_CODE (init) == TREE_LIST
2045 && TREE_CHAIN (init) == NULL_TREE)
2046 init = TREE_VALUE (init);
2047 if (!init
2048 || !TREE_TYPE (init)
2049 || !TREE_CONSTANT (init)
2050 || (!return_aggregate_cst_ok_p
2051 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2052 return an aggregate constant (of which string
2053 literals are a special case), as we do not want
2054 to make inadvertent copies of such entities, and
2055 we must be sure that their addresses are the
2056 same everywhere. */
2057 && (TREE_CODE (init) == CONSTRUCTOR
2058 || TREE_CODE (init) == STRING_CST)))
2059 break;
2060 decl = unshare_expr (init);
2061 }
2062 return decl;
2063 }
2064
2065 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2066 of integral or enumeration type, or a constexpr variable of scalar type,
2067 then return that value. These are those variables permitted in constant
2068 expressions by [5.19/1]. */
2069
2070 tree
2071 scalar_constant_value (tree decl)
2072 {
2073 return constant_value_1 (decl, /*strict_p=*/true,
2074 /*return_aggregate_cst_ok_p=*/false);
2075 }
2076
2077 /* Like scalar_constant_value, but can also return aggregate initializers. */
2078
2079 tree
2080 decl_really_constant_value (tree decl)
2081 {
2082 return constant_value_1 (decl, /*strict_p=*/true,
2083 /*return_aggregate_cst_ok_p=*/true);
2084 }
2085
2086 /* A more relaxed version of scalar_constant_value, used by the
2087 common C/C++ code. */
2088
2089 tree
2090 decl_constant_value (tree decl)
2091 {
2092 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2093 /*return_aggregate_cst_ok_p=*/true);
2094 }
2095 \f
2096 /* Common subroutines of build_new and build_vec_delete. */
2097 \f
2098 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2099 the type of the object being allocated; otherwise, it's just TYPE.
2100 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2101 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2102 a vector of arguments to be provided as arguments to a placement
2103 new operator. This routine performs no semantic checks; it just
2104 creates and returns a NEW_EXPR. */
2105
2106 static tree
2107 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2108 vec<tree, va_gc> *init, int use_global_new)
2109 {
2110 tree init_list;
2111 tree new_expr;
2112
2113 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2114 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2115 permits us to distinguish the case of a missing initializer "new
2116 int" from an empty initializer "new int()". */
2117 if (init == NULL)
2118 init_list = NULL_TREE;
2119 else if (init->is_empty ())
2120 init_list = void_node;
2121 else
2122 init_list = build_tree_list_vec (init);
2123
2124 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2125 build_tree_list_vec (placement), type, nelts,
2126 init_list);
2127 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2128 TREE_SIDE_EFFECTS (new_expr) = 1;
2129
2130 return new_expr;
2131 }
2132
2133 /* Diagnose uninitialized const members or reference members of type
2134 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2135 new expression without a new-initializer and a declaration. Returns
2136 the error count. */
2137
2138 static int
2139 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2140 bool using_new, bool complain)
2141 {
2142 tree field;
2143 int error_count = 0;
2144
2145 if (type_has_user_provided_constructor (type))
2146 return 0;
2147
2148 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2149 {
2150 tree field_type;
2151
2152 if (TREE_CODE (field) != FIELD_DECL)
2153 continue;
2154
2155 field_type = strip_array_types (TREE_TYPE (field));
2156
2157 if (type_has_user_provided_constructor (field_type))
2158 continue;
2159
2160 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2161 {
2162 ++ error_count;
2163 if (complain)
2164 {
2165 if (DECL_CONTEXT (field) == origin)
2166 {
2167 if (using_new)
2168 error ("uninitialized reference member in %q#T "
2169 "using %<new%> without new-initializer", origin);
2170 else
2171 error ("uninitialized reference member in %q#T", origin);
2172 }
2173 else
2174 {
2175 if (using_new)
2176 error ("uninitialized reference member in base %q#T "
2177 "of %q#T using %<new%> without new-initializer",
2178 DECL_CONTEXT (field), origin);
2179 else
2180 error ("uninitialized reference member in base %q#T "
2181 "of %q#T", DECL_CONTEXT (field), origin);
2182 }
2183 inform (DECL_SOURCE_LOCATION (field),
2184 "%q#D should be initialized", field);
2185 }
2186 }
2187
2188 if (CP_TYPE_CONST_P (field_type))
2189 {
2190 ++ error_count;
2191 if (complain)
2192 {
2193 if (DECL_CONTEXT (field) == origin)
2194 {
2195 if (using_new)
2196 error ("uninitialized const member in %q#T "
2197 "using %<new%> without new-initializer", origin);
2198 else
2199 error ("uninitialized const member in %q#T", origin);
2200 }
2201 else
2202 {
2203 if (using_new)
2204 error ("uninitialized const member in base %q#T "
2205 "of %q#T using %<new%> without new-initializer",
2206 DECL_CONTEXT (field), origin);
2207 else
2208 error ("uninitialized const member in base %q#T "
2209 "of %q#T", DECL_CONTEXT (field), origin);
2210 }
2211 inform (DECL_SOURCE_LOCATION (field),
2212 "%q#D should be initialized", field);
2213 }
2214 }
2215
2216 if (CLASS_TYPE_P (field_type))
2217 error_count
2218 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2219 using_new, complain);
2220 }
2221 return error_count;
2222 }
2223
2224 int
2225 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2226 {
2227 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2228 }
2229
2230 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2231 overflowed. Pretend it returns sizetype so that it plays nicely in the
2232 COND_EXPR. */
2233
2234 tree
2235 throw_bad_array_new_length (void)
2236 {
2237 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2238 if (!get_global_value_if_present (fn, &fn))
2239 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2240 NULL_TREE));
2241
2242 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2243 }
2244
2245 /* Generate code for a new-expression, including calling the "operator
2246 new" function, initializing the object, and, if an exception occurs
2247 during construction, cleaning up. The arguments are as for
2248 build_raw_new_expr. This may change PLACEMENT and INIT. */
2249
2250 static tree
2251 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2252 vec<tree, va_gc> **init, bool globally_qualified_p,
2253 tsubst_flags_t complain)
2254 {
2255 tree size, rval;
2256 /* True iff this is a call to "operator new[]" instead of just
2257 "operator new". */
2258 bool array_p = false;
2259 /* If ARRAY_P is true, the element type of the array. This is never
2260 an ARRAY_TYPE; for something like "new int[3][4]", the
2261 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2262 TYPE. */
2263 tree elt_type;
2264 /* The type of the new-expression. (This type is always a pointer
2265 type.) */
2266 tree pointer_type;
2267 tree non_const_pointer_type;
2268 tree outer_nelts = NULL_TREE;
2269 /* For arrays, a bounds checks on the NELTS parameter. */
2270 tree outer_nelts_check = NULL_TREE;
2271 bool outer_nelts_from_type = false;
2272 offset_int inner_nelts_count = 1;
2273 tree alloc_call, alloc_expr;
2274 /* Size of the inner array elements. */
2275 offset_int inner_size;
2276 /* The address returned by the call to "operator new". This node is
2277 a VAR_DECL and is therefore reusable. */
2278 tree alloc_node;
2279 tree alloc_fn;
2280 tree cookie_expr, init_expr;
2281 int nothrow, check_new;
2282 int use_java_new = 0;
2283 /* If non-NULL, the number of extra bytes to allocate at the
2284 beginning of the storage allocated for an array-new expression in
2285 order to store the number of elements. */
2286 tree cookie_size = NULL_TREE;
2287 tree placement_first;
2288 tree placement_expr = NULL_TREE;
2289 /* True if the function we are calling is a placement allocation
2290 function. */
2291 bool placement_allocation_fn_p;
2292 /* True if the storage must be initialized, either by a constructor
2293 or due to an explicit new-initializer. */
2294 bool is_initialized;
2295 /* The address of the thing allocated, not including any cookie. In
2296 particular, if an array cookie is in use, DATA_ADDR is the
2297 address of the first array element. This node is a VAR_DECL, and
2298 is therefore reusable. */
2299 tree data_addr;
2300 tree init_preeval_expr = NULL_TREE;
2301 tree orig_type = type;
2302
2303 if (nelts)
2304 {
2305 outer_nelts = nelts;
2306 array_p = true;
2307 }
2308 else if (TREE_CODE (type) == ARRAY_TYPE)
2309 {
2310 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2311 extension for variable N. (This also covers new T where T is
2312 a VLA typedef.) */
2313 array_p = true;
2314 nelts = array_type_nelts_top (type);
2315 outer_nelts = nelts;
2316 type = TREE_TYPE (type);
2317 outer_nelts_from_type = true;
2318 }
2319
2320 /* If our base type is an array, then make sure we know how many elements
2321 it has. */
2322 for (elt_type = type;
2323 TREE_CODE (elt_type) == ARRAY_TYPE;
2324 elt_type = TREE_TYPE (elt_type))
2325 {
2326 tree inner_nelts = array_type_nelts_top (elt_type);
2327 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2328 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2329 {
2330 bool overflow;
2331 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2332 inner_nelts_count, SIGNED, &overflow);
2333 if (overflow)
2334 {
2335 if (complain & tf_error)
2336 error ("integer overflow in array size");
2337 nelts = error_mark_node;
2338 }
2339 inner_nelts_count = result;
2340 }
2341 else
2342 {
2343 if (complain & tf_error)
2344 {
2345 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2346 "array size in new-expression must be constant");
2347 cxx_constant_value(inner_nelts);
2348 }
2349 nelts = error_mark_node;
2350 }
2351 if (nelts != error_mark_node)
2352 nelts = cp_build_binary_op (input_location,
2353 MULT_EXPR, nelts,
2354 inner_nelts_cst,
2355 complain);
2356 }
2357
2358 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2359 {
2360 error ("variably modified type not allowed in new-expression");
2361 return error_mark_node;
2362 }
2363
2364 if (nelts == error_mark_node)
2365 return error_mark_node;
2366
2367 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2368 variable. */
2369 if (outer_nelts_from_type
2370 && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2371 {
2372 if (complain & tf_warning_or_error)
2373 {
2374 const char *msg;
2375 if (typedef_variant_p (orig_type))
2376 msg = ("non-constant array new length must be specified "
2377 "directly, not by typedef");
2378 else
2379 msg = ("non-constant array new length must be specified "
2380 "without parentheses around the type-id");
2381 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2382 OPT_Wvla, msg);
2383 }
2384 else
2385 return error_mark_node;
2386 }
2387
2388 if (VOID_TYPE_P (elt_type))
2389 {
2390 if (complain & tf_error)
2391 error ("invalid type %<void%> for new");
2392 return error_mark_node;
2393 }
2394
2395 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2396 return error_mark_node;
2397
2398 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2399
2400 if (*init == NULL && cxx_dialect < cxx11)
2401 {
2402 bool maybe_uninitialized_error = false;
2403 /* A program that calls for default-initialization [...] of an
2404 entity of reference type is ill-formed. */
2405 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2406 maybe_uninitialized_error = true;
2407
2408 /* A new-expression that creates an object of type T initializes
2409 that object as follows:
2410 - If the new-initializer is omitted:
2411 -- If T is a (possibly cv-qualified) non-POD class type
2412 (or array thereof), the object is default-initialized (8.5).
2413 [...]
2414 -- Otherwise, the object created has indeterminate
2415 value. If T is a const-qualified type, or a (possibly
2416 cv-qualified) POD class type (or array thereof)
2417 containing (directly or indirectly) a member of
2418 const-qualified type, the program is ill-formed; */
2419
2420 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2421 maybe_uninitialized_error = true;
2422
2423 if (maybe_uninitialized_error
2424 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2425 /*using_new=*/true,
2426 complain & tf_error))
2427 return error_mark_node;
2428 }
2429
2430 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2431 && default_init_uninitialized_part (elt_type))
2432 {
2433 if (complain & tf_error)
2434 error ("uninitialized const in %<new%> of %q#T", elt_type);
2435 return error_mark_node;
2436 }
2437
2438 size = size_in_bytes (elt_type);
2439 if (array_p)
2440 {
2441 /* Maximum available size in bytes. Half of the address space
2442 minus the cookie size. */
2443 offset_int max_size
2444 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2445 /* Maximum number of outer elements which can be allocated. */
2446 offset_int max_outer_nelts;
2447 tree max_outer_nelts_tree;
2448
2449 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2450 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2451 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2452 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2453 /* Unconditionally subtract the cookie size. This decreases the
2454 maximum object size and is safe even if we choose not to use
2455 a cookie after all. */
2456 max_size -= wi::to_offset (cookie_size);
2457 bool overflow;
2458 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2459 &overflow);
2460 if (overflow || wi::gtu_p (inner_size, max_size))
2461 {
2462 if (complain & tf_error)
2463 error ("size of array is too large");
2464 return error_mark_node;
2465 }
2466
2467 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2468 /* Only keep the top-most seven bits, to simplify encoding the
2469 constant in the instruction stream. */
2470 {
2471 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2472 - wi::clz (max_outer_nelts);
2473 max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
2474 shift);
2475 }
2476 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2477
2478 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2479 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2480 outer_nelts,
2481 max_outer_nelts_tree);
2482 }
2483
2484 alloc_fn = NULL_TREE;
2485
2486 /* If PLACEMENT is a single simple pointer type not passed by
2487 reference, prepare to capture it in a temporary variable. Do
2488 this now, since PLACEMENT will change in the calls below. */
2489 placement_first = NULL_TREE;
2490 if (vec_safe_length (*placement) == 1
2491 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2492 placement_first = (**placement)[0];
2493
2494 /* Allocate the object. */
2495 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2496 {
2497 tree class_addr;
2498 tree class_decl;
2499 static const char alloc_name[] = "_Jv_AllocObject";
2500
2501 if (!MAYBE_CLASS_TYPE_P (elt_type))
2502 {
2503 error ("%qT isn%'t a valid Java class type", elt_type);
2504 return error_mark_node;
2505 }
2506
2507 class_decl = build_java_class_ref (elt_type);
2508 if (class_decl == error_mark_node)
2509 return error_mark_node;
2510
2511 use_java_new = 1;
2512 if (!get_global_value_if_present (get_identifier (alloc_name),
2513 &alloc_fn))
2514 {
2515 if (complain & tf_error)
2516 error ("call to Java constructor with %qs undefined", alloc_name);
2517 return error_mark_node;
2518 }
2519 else if (really_overloaded_fn (alloc_fn))
2520 {
2521 if (complain & tf_error)
2522 error ("%qD should never be overloaded", alloc_fn);
2523 return error_mark_node;
2524 }
2525 alloc_fn = OVL_CURRENT (alloc_fn);
2526 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2527 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2528 class_addr, NULL_TREE);
2529 }
2530 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2531 {
2532 error ("Java class %q#T object allocated using placement new", elt_type);
2533 return error_mark_node;
2534 }
2535 else
2536 {
2537 tree fnname;
2538 tree fns;
2539
2540 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2541
2542 if (!globally_qualified_p
2543 && CLASS_TYPE_P (elt_type)
2544 && (array_p
2545 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2546 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2547 {
2548 /* Use a class-specific operator new. */
2549 /* If a cookie is required, add some extra space. */
2550 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2551 size = size_binop (PLUS_EXPR, size, cookie_size);
2552 else
2553 {
2554 cookie_size = NULL_TREE;
2555 /* No size arithmetic necessary, so the size check is
2556 not needed. */
2557 if (outer_nelts_check != NULL && inner_size == 1)
2558 outer_nelts_check = NULL_TREE;
2559 }
2560 /* Perform the overflow check. */
2561 tree errval = TYPE_MAX_VALUE (sizetype);
2562 if (cxx_dialect >= cxx11 && flag_exceptions)
2563 errval = throw_bad_array_new_length ();
2564 if (outer_nelts_check != NULL_TREE)
2565 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2566 size, errval);
2567 /* Create the argument list. */
2568 vec_safe_insert (*placement, 0, size);
2569 /* Do name-lookup to find the appropriate operator. */
2570 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2571 if (fns == NULL_TREE)
2572 {
2573 if (complain & tf_error)
2574 error ("no suitable %qD found in class %qT", fnname, elt_type);
2575 return error_mark_node;
2576 }
2577 if (TREE_CODE (fns) == TREE_LIST)
2578 {
2579 if (complain & tf_error)
2580 {
2581 error ("request for member %qD is ambiguous", fnname);
2582 print_candidates (fns);
2583 }
2584 return error_mark_node;
2585 }
2586 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2587 fns, placement,
2588 /*conversion_path=*/NULL_TREE,
2589 LOOKUP_NORMAL,
2590 &alloc_fn,
2591 complain);
2592 }
2593 else
2594 {
2595 /* Use a global operator new. */
2596 /* See if a cookie might be required. */
2597 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2598 {
2599 cookie_size = NULL_TREE;
2600 /* No size arithmetic necessary, so the size check is
2601 not needed. */
2602 if (outer_nelts_check != NULL && inner_size == 1)
2603 outer_nelts_check = NULL_TREE;
2604 }
2605
2606 alloc_call = build_operator_new_call (fnname, placement,
2607 &size, &cookie_size,
2608 outer_nelts_check,
2609 &alloc_fn, complain);
2610 }
2611 }
2612
2613 if (alloc_call == error_mark_node)
2614 return error_mark_node;
2615
2616 gcc_assert (alloc_fn != NULL_TREE);
2617
2618 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2619 into a temporary variable. */
2620 if (!processing_template_decl
2621 && placement_first != NULL_TREE
2622 && TREE_CODE (alloc_call) == CALL_EXPR
2623 && call_expr_nargs (alloc_call) == 2
2624 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2625 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2626 {
2627 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2628
2629 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2630 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2631 {
2632 placement_expr = get_target_expr (placement_first);
2633 CALL_EXPR_ARG (alloc_call, 1)
2634 = convert (TREE_TYPE (placement_arg), placement_expr);
2635 }
2636 }
2637
2638 /* In the simple case, we can stop now. */
2639 pointer_type = build_pointer_type (type);
2640 if (!cookie_size && !is_initialized)
2641 return build_nop (pointer_type, alloc_call);
2642
2643 /* Store the result of the allocation call in a variable so that we can
2644 use it more than once. */
2645 alloc_expr = get_target_expr (alloc_call);
2646 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2647
2648 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2649 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2650 alloc_call = TREE_OPERAND (alloc_call, 1);
2651
2652 /* Now, check to see if this function is actually a placement
2653 allocation function. This can happen even when PLACEMENT is NULL
2654 because we might have something like:
2655
2656 struct S { void* operator new (size_t, int i = 0); };
2657
2658 A call to `new S' will get this allocation function, even though
2659 there is no explicit placement argument. If there is more than
2660 one argument, or there are variable arguments, then this is a
2661 placement allocation function. */
2662 placement_allocation_fn_p
2663 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2664 || varargs_function_p (alloc_fn));
2665
2666 /* Preevaluate the placement args so that we don't reevaluate them for a
2667 placement delete. */
2668 if (placement_allocation_fn_p)
2669 {
2670 tree inits;
2671 stabilize_call (alloc_call, &inits);
2672 if (inits)
2673 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2674 alloc_expr);
2675 }
2676
2677 /* unless an allocation function is declared with an empty excep-
2678 tion-specification (_except.spec_), throw(), it indicates failure to
2679 allocate storage by throwing a bad_alloc exception (clause _except_,
2680 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2681 cation function is declared with an empty exception-specification,
2682 throw(), it returns null to indicate failure to allocate storage and a
2683 non-null pointer otherwise.
2684
2685 So check for a null exception spec on the op new we just called. */
2686
2687 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2688 check_new = (flag_check_new || nothrow) && ! use_java_new;
2689
2690 if (cookie_size)
2691 {
2692 tree cookie;
2693 tree cookie_ptr;
2694 tree size_ptr_type;
2695
2696 /* Adjust so we're pointing to the start of the object. */
2697 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2698
2699 /* Store the number of bytes allocated so that we can know how
2700 many elements to destroy later. We use the last sizeof
2701 (size_t) bytes to store the number of elements. */
2702 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2703 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2704 alloc_node, cookie_ptr);
2705 size_ptr_type = build_pointer_type (sizetype);
2706 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2707 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2708
2709 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2710
2711 if (targetm.cxx.cookie_has_size ())
2712 {
2713 /* Also store the element size. */
2714 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2715 fold_build1_loc (input_location,
2716 NEGATE_EXPR, sizetype,
2717 size_in_bytes (sizetype)));
2718
2719 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2720 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2721 size_in_bytes (elt_type));
2722 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2723 cookie, cookie_expr);
2724 }
2725 }
2726 else
2727 {
2728 cookie_expr = NULL_TREE;
2729 data_addr = alloc_node;
2730 }
2731
2732 /* Now use a pointer to the type we've actually allocated. */
2733
2734 /* But we want to operate on a non-const version to start with,
2735 since we'll be modifying the elements. */
2736 non_const_pointer_type = build_pointer_type
2737 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2738
2739 data_addr = fold_convert (non_const_pointer_type, data_addr);
2740 /* Any further uses of alloc_node will want this type, too. */
2741 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2742
2743 /* Now initialize the allocated object. Note that we preevaluate the
2744 initialization expression, apart from the actual constructor call or
2745 assignment--we do this because we want to delay the allocation as long
2746 as possible in order to minimize the size of the exception region for
2747 placement delete. */
2748 if (is_initialized)
2749 {
2750 bool stable;
2751 bool explicit_value_init_p = false;
2752
2753 if (*init != NULL && (*init)->is_empty ())
2754 {
2755 *init = NULL;
2756 explicit_value_init_p = true;
2757 }
2758
2759 if (processing_template_decl && explicit_value_init_p)
2760 {
2761 /* build_value_init doesn't work in templates, and we don't need
2762 the initializer anyway since we're going to throw it away and
2763 rebuild it at instantiation time, so just build up a single
2764 constructor call to get any appropriate diagnostics. */
2765 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2766 if (type_build_ctor_call (elt_type))
2767 init_expr = build_special_member_call (init_expr,
2768 complete_ctor_identifier,
2769 init, elt_type,
2770 LOOKUP_NORMAL,
2771 complain);
2772 stable = stabilize_init (init_expr, &init_preeval_expr);
2773 }
2774 else if (array_p)
2775 {
2776 tree vecinit = NULL_TREE;
2777 if (vec_safe_length (*init) == 1
2778 && DIRECT_LIST_INIT_P ((**init)[0]))
2779 {
2780 vecinit = (**init)[0];
2781 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2782 /* List-value-initialization, leave it alone. */;
2783 else
2784 {
2785 tree arraytype, domain;
2786 if (TREE_CONSTANT (nelts))
2787 domain = compute_array_index_type (NULL_TREE, nelts,
2788 complain);
2789 else
2790 /* We'll check the length at runtime. */
2791 domain = NULL_TREE;
2792 arraytype = build_cplus_array_type (type, domain);
2793 vecinit = digest_init (arraytype, vecinit, complain);
2794 }
2795 }
2796 else if (*init)
2797 {
2798 if (complain & tf_error)
2799 permerror (input_location,
2800 "parenthesized initializer in array new");
2801 else
2802 return error_mark_node;
2803 vecinit = build_tree_list_vec (*init);
2804 }
2805 init_expr
2806 = build_vec_init (data_addr,
2807 cp_build_binary_op (input_location,
2808 MINUS_EXPR, outer_nelts,
2809 integer_one_node,
2810 complain),
2811 vecinit,
2812 explicit_value_init_p,
2813 /*from_array=*/0,
2814 complain);
2815
2816 /* An array initialization is stable because the initialization
2817 of each element is a full-expression, so the temporaries don't
2818 leak out. */
2819 stable = true;
2820 }
2821 else
2822 {
2823 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2824
2825 if (type_build_ctor_call (type) && !explicit_value_init_p)
2826 {
2827 init_expr = build_special_member_call (init_expr,
2828 complete_ctor_identifier,
2829 init, elt_type,
2830 LOOKUP_NORMAL,
2831 complain);
2832 }
2833 else if (explicit_value_init_p)
2834 {
2835 /* Something like `new int()'. */
2836 tree val = build_value_init (type, complain);
2837 if (val == error_mark_node)
2838 return error_mark_node;
2839 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2840 }
2841 else
2842 {
2843 tree ie;
2844
2845 /* We are processing something like `new int (10)', which
2846 means allocate an int, and initialize it with 10. */
2847
2848 ie = build_x_compound_expr_from_vec (*init, "new initializer",
2849 complain);
2850 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2851 complain);
2852 }
2853 stable = stabilize_init (init_expr, &init_preeval_expr);
2854 }
2855
2856 if (init_expr == error_mark_node)
2857 return error_mark_node;
2858
2859 /* If any part of the object initialization terminates by throwing an
2860 exception and a suitable deallocation function can be found, the
2861 deallocation function is called to free the memory in which the
2862 object was being constructed, after which the exception continues
2863 to propagate in the context of the new-expression. If no
2864 unambiguous matching deallocation function can be found,
2865 propagating the exception does not cause the object's memory to be
2866 freed. */
2867 if (flag_exceptions && ! use_java_new)
2868 {
2869 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2870 tree cleanup;
2871
2872 /* The Standard is unclear here, but the right thing to do
2873 is to use the same method for finding deallocation
2874 functions that we use for finding allocation functions. */
2875 cleanup = (build_op_delete_call
2876 (dcode,
2877 alloc_node,
2878 size,
2879 globally_qualified_p,
2880 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2881 alloc_fn,
2882 complain));
2883
2884 if (!cleanup)
2885 /* We're done. */;
2886 else if (stable)
2887 /* This is much simpler if we were able to preevaluate all of
2888 the arguments to the constructor call. */
2889 {
2890 /* CLEANUP is compiler-generated, so no diagnostics. */
2891 TREE_NO_WARNING (cleanup) = true;
2892 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2893 init_expr, cleanup);
2894 /* Likewise, this try-catch is compiler-generated. */
2895 TREE_NO_WARNING (init_expr) = true;
2896 }
2897 else
2898 /* Ack! First we allocate the memory. Then we set our sentry
2899 variable to true, and expand a cleanup that deletes the
2900 memory if sentry is true. Then we run the constructor, and
2901 finally clear the sentry.
2902
2903 We need to do this because we allocate the space first, so
2904 if there are any temporaries with cleanups in the
2905 constructor args and we weren't able to preevaluate them, we
2906 need this EH region to extend until end of full-expression
2907 to preserve nesting. */
2908 {
2909 tree end, sentry, begin;
2910
2911 begin = get_target_expr (boolean_true_node);
2912 CLEANUP_EH_ONLY (begin) = 1;
2913
2914 sentry = TARGET_EXPR_SLOT (begin);
2915
2916 /* CLEANUP is compiler-generated, so no diagnostics. */
2917 TREE_NO_WARNING (cleanup) = true;
2918
2919 TARGET_EXPR_CLEANUP (begin)
2920 = build3 (COND_EXPR, void_type_node, sentry,
2921 cleanup, void_node);
2922
2923 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2924 sentry, boolean_false_node);
2925
2926 init_expr
2927 = build2 (COMPOUND_EXPR, void_type_node, begin,
2928 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2929 end));
2930 /* Likewise, this is compiler-generated. */
2931 TREE_NO_WARNING (init_expr) = true;
2932 }
2933 }
2934 }
2935 else
2936 init_expr = NULL_TREE;
2937
2938 /* Now build up the return value in reverse order. */
2939
2940 rval = data_addr;
2941
2942 if (init_expr)
2943 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2944 if (cookie_expr)
2945 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2946
2947 if (rval == data_addr)
2948 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2949 and return the call (which doesn't need to be adjusted). */
2950 rval = TARGET_EXPR_INITIAL (alloc_expr);
2951 else
2952 {
2953 if (check_new)
2954 {
2955 tree ifexp = cp_build_binary_op (input_location,
2956 NE_EXPR, alloc_node,
2957 nullptr_node,
2958 complain);
2959 rval = build_conditional_expr (input_location, ifexp, rval,
2960 alloc_node, complain);
2961 }
2962
2963 /* Perform the allocation before anything else, so that ALLOC_NODE
2964 has been initialized before we start using it. */
2965 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2966 }
2967
2968 if (init_preeval_expr)
2969 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2970
2971 /* A new-expression is never an lvalue. */
2972 gcc_assert (!lvalue_p (rval));
2973
2974 return convert (pointer_type, rval);
2975 }
2976
2977 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2978 is a vector of placement-new arguments (or NULL if none). If NELTS
2979 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2980 is not NULL, then this is an array-new allocation; TYPE is the type
2981 of the elements in the array and NELTS is the number of elements in
2982 the array. *INIT, if non-NULL, is the initializer for the new
2983 object, or an empty vector to indicate an initializer of "()". If
2984 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2985 rather than just "new". This may change PLACEMENT and INIT. */
2986
2987 tree
2988 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
2989 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
2990 {
2991 tree rval;
2992 vec<tree, va_gc> *orig_placement = NULL;
2993 tree orig_nelts = NULL_TREE;
2994 vec<tree, va_gc> *orig_init = NULL;
2995
2996 if (type == error_mark_node)
2997 return error_mark_node;
2998
2999 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3000 /* Don't do auto deduction where it might affect mangling. */
3001 && (!processing_template_decl || at_function_scope_p ()))
3002 {
3003 tree auto_node = type_uses_auto (type);
3004 if (auto_node)
3005 {
3006 tree d_init = (**init)[0];
3007 d_init = resolve_nondeduced_context (d_init);
3008 type = do_auto_deduction (type, d_init, auto_node);
3009 }
3010 }
3011
3012 if (processing_template_decl)
3013 {
3014 if (dependent_type_p (type)
3015 || any_type_dependent_arguments_p (*placement)
3016 || (nelts && type_dependent_expression_p (nelts))
3017 || (nelts && *init)
3018 || any_type_dependent_arguments_p (*init))
3019 return build_raw_new_expr (*placement, type, nelts, *init,
3020 use_global_new);
3021
3022 orig_placement = make_tree_vector_copy (*placement);
3023 orig_nelts = nelts;
3024 if (*init)
3025 orig_init = make_tree_vector_copy (*init);
3026
3027 make_args_non_dependent (*placement);
3028 if (nelts)
3029 nelts = build_non_dependent_expr (nelts);
3030 make_args_non_dependent (*init);
3031 }
3032
3033 if (nelts)
3034 {
3035 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3036 {
3037 if (complain & tf_error)
3038 permerror (input_location, "size in array new must have integral type");
3039 else
3040 return error_mark_node;
3041 }
3042 nelts = mark_rvalue_use (nelts);
3043 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3044 }
3045
3046 /* ``A reference cannot be created by the new operator. A reference
3047 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3048 returned by new.'' ARM 5.3.3 */
3049 if (TREE_CODE (type) == REFERENCE_TYPE)
3050 {
3051 if (complain & tf_error)
3052 error ("new cannot be applied to a reference type");
3053 else
3054 return error_mark_node;
3055 type = TREE_TYPE (type);
3056 }
3057
3058 if (TREE_CODE (type) == FUNCTION_TYPE)
3059 {
3060 if (complain & tf_error)
3061 error ("new cannot be applied to a function type");
3062 return error_mark_node;
3063 }
3064
3065 /* The type allocated must be complete. If the new-type-id was
3066 "T[N]" then we are just checking that "T" is complete here, but
3067 that is equivalent, since the value of "N" doesn't matter. */
3068 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3069 return error_mark_node;
3070
3071 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3072 if (rval == error_mark_node)
3073 return error_mark_node;
3074
3075 if (processing_template_decl)
3076 {
3077 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3078 orig_init, use_global_new);
3079 release_tree_vector (orig_placement);
3080 release_tree_vector (orig_init);
3081 return ret;
3082 }
3083
3084 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3085 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3086 TREE_NO_WARNING (rval) = 1;
3087
3088 return rval;
3089 }
3090
3091 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3092
3093 tree
3094 build_java_class_ref (tree type)
3095 {
3096 tree name = NULL_TREE, class_decl;
3097 static tree CL_suffix = NULL_TREE;
3098 if (CL_suffix == NULL_TREE)
3099 CL_suffix = get_identifier("class$");
3100 if (jclass_node == NULL_TREE)
3101 {
3102 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3103 if (jclass_node == NULL_TREE)
3104 {
3105 error ("call to Java constructor, while %<jclass%> undefined");
3106 return error_mark_node;
3107 }
3108 jclass_node = TREE_TYPE (jclass_node);
3109 }
3110
3111 /* Mangle the class$ field. */
3112 {
3113 tree field;
3114 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3115 if (DECL_NAME (field) == CL_suffix)
3116 {
3117 mangle_decl (field);
3118 name = DECL_ASSEMBLER_NAME (field);
3119 break;
3120 }
3121 if (!field)
3122 {
3123 error ("can%'t find %<class$%> in %qT", type);
3124 return error_mark_node;
3125 }
3126 }
3127
3128 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3129 if (class_decl == NULL_TREE)
3130 {
3131 class_decl = build_decl (input_location,
3132 VAR_DECL, name, TREE_TYPE (jclass_node));
3133 TREE_STATIC (class_decl) = 1;
3134 DECL_EXTERNAL (class_decl) = 1;
3135 TREE_PUBLIC (class_decl) = 1;
3136 DECL_ARTIFICIAL (class_decl) = 1;
3137 DECL_IGNORED_P (class_decl) = 1;
3138 pushdecl_top_level (class_decl);
3139 make_decl_rtl (class_decl);
3140 }
3141 return class_decl;
3142 }
3143 \f
3144 static tree
3145 build_vec_delete_1 (tree base, tree maxindex, tree type,
3146 special_function_kind auto_delete_vec,
3147 int use_global_delete, tsubst_flags_t complain)
3148 {
3149 tree virtual_size;
3150 tree ptype = build_pointer_type (type = complete_type (type));
3151 tree size_exp;
3152
3153 /* Temporary variables used by the loop. */
3154 tree tbase, tbase_init;
3155
3156 /* This is the body of the loop that implements the deletion of a
3157 single element, and moves temp variables to next elements. */
3158 tree body;
3159
3160 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3161 tree loop = 0;
3162
3163 /* This is the thing that governs what to do after the loop has run. */
3164 tree deallocate_expr = 0;
3165
3166 /* This is the BIND_EXPR which holds the outermost iterator of the
3167 loop. It is convenient to set this variable up and test it before
3168 executing any other code in the loop.
3169 This is also the containing expression returned by this function. */
3170 tree controller = NULL_TREE;
3171 tree tmp;
3172
3173 /* We should only have 1-D arrays here. */
3174 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3175
3176 if (base == error_mark_node || maxindex == error_mark_node)
3177 return error_mark_node;
3178
3179 if (!COMPLETE_TYPE_P (type))
3180 {
3181 if ((complain & tf_warning)
3182 && warning (OPT_Wdelete_incomplete,
3183 "possible problem detected in invocation of "
3184 "delete [] operator:"))
3185 {
3186 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3187 inform (input_location, "neither the destructor nor the "
3188 "class-specific operator delete [] will be called, "
3189 "even if they are declared when the class is defined");
3190 }
3191 /* This size won't actually be used. */
3192 size_exp = size_one_node;
3193 goto no_destructor;
3194 }
3195
3196 size_exp = size_in_bytes (type);
3197
3198 if (! MAYBE_CLASS_TYPE_P (type))
3199 goto no_destructor;
3200 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3201 {
3202 /* Make sure the destructor is callable. */
3203 if (type_build_dtor_call (type))
3204 {
3205 tmp = build_delete (ptype, base, sfk_complete_destructor,
3206 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3207 complain);
3208 if (tmp == error_mark_node)
3209 return error_mark_node;
3210 }
3211 goto no_destructor;
3212 }
3213
3214 /* The below is short by the cookie size. */
3215 virtual_size = size_binop (MULT_EXPR, size_exp,
3216 convert (sizetype, maxindex));
3217
3218 tbase = create_temporary_var (ptype);
3219 tbase_init
3220 = cp_build_modify_expr (tbase, NOP_EXPR,
3221 fold_build_pointer_plus_loc (input_location,
3222 fold_convert (ptype,
3223 base),
3224 virtual_size),
3225 complain);
3226 if (tbase_init == error_mark_node)
3227 return error_mark_node;
3228 controller = build3 (BIND_EXPR, void_type_node, tbase,
3229 NULL_TREE, NULL_TREE);
3230 TREE_SIDE_EFFECTS (controller) = 1;
3231
3232 body = build1 (EXIT_EXPR, void_type_node,
3233 build2 (EQ_EXPR, boolean_type_node, tbase,
3234 fold_convert (ptype, base)));
3235 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3236 tmp = fold_build_pointer_plus (tbase, tmp);
3237 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3238 if (tmp == error_mark_node)
3239 return error_mark_node;
3240 body = build_compound_expr (input_location, body, tmp);
3241 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3242 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3243 complain);
3244 if (tmp == error_mark_node)
3245 return error_mark_node;
3246 body = build_compound_expr (input_location, body, tmp);
3247
3248 loop = build1 (LOOP_EXPR, void_type_node, body);
3249 loop = build_compound_expr (input_location, tbase_init, loop);
3250
3251 no_destructor:
3252 /* Delete the storage if appropriate. */
3253 if (auto_delete_vec == sfk_deleting_destructor)
3254 {
3255 tree base_tbd;
3256
3257 /* The below is short by the cookie size. */
3258 virtual_size = size_binop (MULT_EXPR, size_exp,
3259 convert (sizetype, maxindex));
3260
3261 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3262 /* no header */
3263 base_tbd = base;
3264 else
3265 {
3266 tree cookie_size;
3267
3268 cookie_size = targetm.cxx.get_cookie_size (type);
3269 base_tbd = cp_build_binary_op (input_location,
3270 MINUS_EXPR,
3271 cp_convert (string_type_node,
3272 base, complain),
3273 cookie_size,
3274 complain);
3275 if (base_tbd == error_mark_node)
3276 return error_mark_node;
3277 base_tbd = cp_convert (ptype, base_tbd, complain);
3278 /* True size with header. */
3279 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3280 }
3281
3282 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3283 base_tbd, virtual_size,
3284 use_global_delete & 1,
3285 /*placement=*/NULL_TREE,
3286 /*alloc_fn=*/NULL_TREE,
3287 complain);
3288 }
3289
3290 body = loop;
3291 if (!deallocate_expr)
3292 ;
3293 else if (!body)
3294 body = deallocate_expr;
3295 else
3296 body = build_compound_expr (input_location, body, deallocate_expr);
3297
3298 if (!body)
3299 body = integer_zero_node;
3300
3301 /* Outermost wrapper: If pointer is null, punt. */
3302 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3303 fold_build2_loc (input_location,
3304 NE_EXPR, boolean_type_node, base,
3305 convert (TREE_TYPE (base),
3306 nullptr_node)),
3307 body, integer_zero_node);
3308 body = build1 (NOP_EXPR, void_type_node, body);
3309
3310 if (controller)
3311 {
3312 TREE_OPERAND (controller, 1) = body;
3313 body = controller;
3314 }
3315
3316 if (TREE_CODE (base) == SAVE_EXPR)
3317 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3318 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3319
3320 return convert_to_void (body, ICV_CAST, complain);
3321 }
3322
3323 /* Create an unnamed variable of the indicated TYPE. */
3324
3325 tree
3326 create_temporary_var (tree type)
3327 {
3328 tree decl;
3329
3330 decl = build_decl (input_location,
3331 VAR_DECL, NULL_TREE, type);
3332 TREE_USED (decl) = 1;
3333 DECL_ARTIFICIAL (decl) = 1;
3334 DECL_IGNORED_P (decl) = 1;
3335 DECL_CONTEXT (decl) = current_function_decl;
3336
3337 return decl;
3338 }
3339
3340 /* Create a new temporary variable of the indicated TYPE, initialized
3341 to INIT.
3342
3343 It is not entered into current_binding_level, because that breaks
3344 things when it comes time to do final cleanups (which take place
3345 "outside" the binding contour of the function). */
3346
3347 tree
3348 get_temp_regvar (tree type, tree init)
3349 {
3350 tree decl;
3351
3352 decl = create_temporary_var (type);
3353 add_decl_expr (decl);
3354
3355 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3356 tf_warning_or_error));
3357
3358 return decl;
3359 }
3360
3361 /* `build_vec_init' returns tree structure that performs
3362 initialization of a vector of aggregate types.
3363
3364 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3365 to the first element, of POINTER_TYPE.
3366 MAXINDEX is the maximum index of the array (one less than the
3367 number of elements). It is only used if BASE is a pointer or
3368 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3369
3370 INIT is the (possibly NULL) initializer.
3371
3372 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3373 elements in the array are value-initialized.
3374
3375 FROM_ARRAY is 0 if we should init everything with INIT
3376 (i.e., every element initialized from INIT).
3377 FROM_ARRAY is 1 if we should index into INIT in parallel
3378 with initialization of DECL.
3379 FROM_ARRAY is 2 if we should index into INIT in parallel,
3380 but use assignment instead of initialization. */
3381
3382 tree
3383 build_vec_init (tree base, tree maxindex, tree init,
3384 bool explicit_value_init_p,
3385 int from_array, tsubst_flags_t complain)
3386 {
3387 tree rval;
3388 tree base2 = NULL_TREE;
3389 tree itype = NULL_TREE;
3390 tree iterator;
3391 /* The type of BASE. */
3392 tree atype = TREE_TYPE (base);
3393 /* The type of an element in the array. */
3394 tree type = TREE_TYPE (atype);
3395 /* The element type reached after removing all outer array
3396 types. */
3397 tree inner_elt_type;
3398 /* The type of a pointer to an element in the array. */
3399 tree ptype;
3400 tree stmt_expr;
3401 tree compound_stmt;
3402 int destroy_temps;
3403 tree try_block = NULL_TREE;
3404 int num_initialized_elts = 0;
3405 bool is_global;
3406 tree obase = base;
3407 bool xvalue = false;
3408 bool errors = false;
3409
3410 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3411 maxindex = array_type_nelts (atype);
3412
3413 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3414 return error_mark_node;
3415
3416 if (explicit_value_init_p)
3417 gcc_assert (!init);
3418
3419 inner_elt_type = strip_array_types (type);
3420
3421 /* Look through the TARGET_EXPR around a compound literal. */
3422 if (init && TREE_CODE (init) == TARGET_EXPR
3423 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3424 && from_array != 2)
3425 init = TARGET_EXPR_INITIAL (init);
3426
3427 /* If we have a braced-init-list, make sure that the array
3428 is big enough for all the initializers. */
3429 bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
3430 && CONSTRUCTOR_NELTS (init) > 0
3431 && !TREE_CONSTANT (maxindex));
3432
3433 if (init
3434 && TREE_CODE (atype) == ARRAY_TYPE
3435 && TREE_CONSTANT (maxindex)
3436 && (from_array == 2
3437 ? (!CLASS_TYPE_P (inner_elt_type)
3438 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3439 : !TYPE_NEEDS_CONSTRUCTING (type))
3440 && ((TREE_CODE (init) == CONSTRUCTOR
3441 /* Don't do this if the CONSTRUCTOR might contain something
3442 that might throw and require us to clean up. */
3443 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3444 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3445 || from_array))
3446 {
3447 /* Do non-default initialization of trivial arrays resulting from
3448 brace-enclosed initializers. In this case, digest_init and
3449 store_constructor will handle the semantics for us. */
3450
3451 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3452 init = digest_init (atype, init, complain);
3453 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3454 return stmt_expr;
3455 }
3456
3457 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3458 if (TREE_CODE (atype) == ARRAY_TYPE)
3459 {
3460 ptype = build_pointer_type (type);
3461 base = decay_conversion (base, complain);
3462 if (base == error_mark_node)
3463 return error_mark_node;
3464 base = cp_convert (ptype, base, complain);
3465 }
3466 else
3467 ptype = atype;
3468
3469 /* The code we are generating looks like:
3470 ({
3471 T* t1 = (T*) base;
3472 T* rval = t1;
3473 ptrdiff_t iterator = maxindex;
3474 try {
3475 for (; iterator != -1; --iterator) {
3476 ... initialize *t1 ...
3477 ++t1;
3478 }
3479 } catch (...) {
3480 ... destroy elements that were constructed ...
3481 }
3482 rval;
3483 })
3484
3485 We can omit the try and catch blocks if we know that the
3486 initialization will never throw an exception, or if the array
3487 elements do not have destructors. We can omit the loop completely if
3488 the elements of the array do not have constructors.
3489
3490 We actually wrap the entire body of the above in a STMT_EXPR, for
3491 tidiness.
3492
3493 When copying from array to another, when the array elements have
3494 only trivial copy constructors, we should use __builtin_memcpy
3495 rather than generating a loop. That way, we could take advantage
3496 of whatever cleverness the back end has for dealing with copies
3497 of blocks of memory. */
3498
3499 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3500 destroy_temps = stmts_are_full_exprs_p ();
3501 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3502 rval = get_temp_regvar (ptype, base);
3503 base = get_temp_regvar (ptype, rval);
3504 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3505
3506 /* If initializing one array from another, initialize element by
3507 element. We rely upon the below calls to do the argument
3508 checking. Evaluate the initializer before entering the try block. */
3509 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3510 {
3511 if (lvalue_kind (init) & clk_rvalueref)
3512 xvalue = true;
3513 base2 = decay_conversion (init, complain);
3514 if (base2 == error_mark_node)
3515 return error_mark_node;
3516 itype = TREE_TYPE (base2);
3517 base2 = get_temp_regvar (itype, base2);
3518 itype = TREE_TYPE (itype);
3519 }
3520
3521 /* Protect the entire array initialization so that we can destroy
3522 the partially constructed array if an exception is thrown.
3523 But don't do this if we're assigning. */
3524 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3525 && from_array != 2)
3526 {
3527 try_block = begin_try_block ();
3528 }
3529
3530 /* Should we try to create a constant initializer? */
3531 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3532 && TREE_CONSTANT (maxindex)
3533 && init && TREE_CODE (init) == CONSTRUCTOR
3534 && (literal_type_p (inner_elt_type)
3535 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3536 vec<constructor_elt, va_gc> *const_vec = NULL;
3537 bool saw_non_const = false;
3538 /* If we're initializing a static array, we want to do static
3539 initialization of any elements with constant initializers even if
3540 some are non-constant. */
3541 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3542
3543 bool empty_list = false;
3544 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3545 && CONSTRUCTOR_NELTS (init) == 0)
3546 /* Skip over the handling of non-empty init lists. */
3547 empty_list = true;
3548
3549 /* Maybe pull out constant value when from_array? */
3550
3551 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3552 {
3553 /* Do non-default initialization of non-trivial arrays resulting from
3554 brace-enclosed initializers. */
3555 unsigned HOST_WIDE_INT idx;
3556 tree field, elt;
3557 /* If the constructor already has the array type, it's been through
3558 digest_init, so we shouldn't try to do anything more. */
3559 bool digested = same_type_p (atype, TREE_TYPE (init));
3560 from_array = 0;
3561
3562 if (length_check)
3563 {
3564 tree nelts = size_int (CONSTRUCTOR_NELTS (init) - 1);
3565 if (TREE_CODE (atype) != ARRAY_TYPE)
3566 {
3567 if (flag_exceptions)
3568 {
3569 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3570 nelts);
3571 c = build3 (COND_EXPR, void_type_node, c,
3572 throw_bad_array_new_length (), void_node);
3573 finish_expr_stmt (c);
3574 }
3575 /* Don't check an array new when -fno-exceptions. */
3576 }
3577 else if (flag_sanitize & SANITIZE_BOUNDS
3578 && current_function_decl
3579 && !lookup_attribute ("no_sanitize_undefined",
3580 DECL_ATTRIBUTES
3581 (current_function_decl)))
3582 {
3583 /* Make sure the last element of the initializer is in bounds. */
3584 finish_expr_stmt
3585 (ubsan_instrument_bounds
3586 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3587 }
3588 }
3589
3590 if (try_const)
3591 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
3592
3593 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3594 {
3595 tree baseref = build1 (INDIRECT_REF, type, base);
3596 tree one_init;
3597
3598 num_initialized_elts++;
3599
3600 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3601 if (digested)
3602 one_init = build2 (INIT_EXPR, type, baseref, elt);
3603 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3604 one_init = build_aggr_init (baseref, elt, 0, complain);
3605 else
3606 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3607 elt, complain);
3608 if (one_init == error_mark_node)
3609 errors = true;
3610 if (try_const)
3611 {
3612 tree e = maybe_constant_init (one_init);
3613 if (reduced_constant_expression_p (e))
3614 {
3615 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3616 if (do_static_init)
3617 one_init = NULL_TREE;
3618 else
3619 one_init = build2 (INIT_EXPR, type, baseref, e);
3620 }
3621 else
3622 {
3623 if (do_static_init)
3624 {
3625 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3626 true);
3627 if (value)
3628 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
3629 }
3630 saw_non_const = true;
3631 }
3632 }
3633
3634 if (one_init)
3635 finish_expr_stmt (one_init);
3636 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3637
3638 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3639 if (one_init == error_mark_node)
3640 errors = true;
3641 else
3642 finish_expr_stmt (one_init);
3643
3644 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3645 complain);
3646 if (one_init == error_mark_node)
3647 errors = true;
3648 else
3649 finish_expr_stmt (one_init);
3650 }
3651
3652 /* Any elements without explicit initializers get T{}. */
3653 empty_list = true;
3654 }
3655 else if (from_array)
3656 {
3657 if (init)
3658 /* OK, we set base2 above. */;
3659 else if (CLASS_TYPE_P (type)
3660 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3661 {
3662 if (complain & tf_error)
3663 error ("initializer ends prematurely");
3664 errors = true;
3665 }
3666 }
3667
3668 /* Now, default-initialize any remaining elements. We don't need to
3669 do that if a) the type does not need constructing, or b) we've
3670 already initialized all the elements.
3671
3672 We do need to keep going if we're copying an array. */
3673
3674 if (from_array
3675 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3676 && ! (tree_fits_shwi_p (maxindex)
3677 && (num_initialized_elts
3678 == tree_to_shwi (maxindex) + 1))))
3679 {
3680 /* If the ITERATOR is equal to -1, then we don't have to loop;
3681 we've already initialized all the elements. */
3682 tree for_stmt;
3683 tree elt_init;
3684 tree to;
3685
3686 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3687 finish_for_init_stmt (for_stmt);
3688 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3689 build_int_cst (TREE_TYPE (iterator), -1)),
3690 for_stmt, false);
3691 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3692 complain);
3693 if (elt_init == error_mark_node)
3694 errors = true;
3695 finish_for_expr (elt_init, for_stmt);
3696
3697 to = build1 (INDIRECT_REF, type, base);
3698
3699 /* If the initializer is {}, then all elements are initialized from T{}.
3700 But for non-classes, that's the same as value-initialization. */
3701 if (empty_list)
3702 {
3703 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3704 {
3705 if (BRACE_ENCLOSED_INITIALIZER_P (init)
3706 && CONSTRUCTOR_NELTS (init) == 0)
3707 /* Reuse it. */;
3708 else
3709 init = build_constructor (init_list_type_node, NULL);
3710 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
3711 }
3712 else
3713 {
3714 init = NULL_TREE;
3715 explicit_value_init_p = true;
3716 }
3717 }
3718
3719 if (from_array)
3720 {
3721 tree from;
3722
3723 if (base2)
3724 {
3725 from = build1 (INDIRECT_REF, itype, base2);
3726 if (xvalue)
3727 from = move (from);
3728 }
3729 else
3730 from = NULL_TREE;
3731
3732 if (from_array == 2)
3733 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3734 complain);
3735 else if (type_build_ctor_call (type))
3736 elt_init = build_aggr_init (to, from, 0, complain);
3737 else if (from)
3738 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3739 complain);
3740 else
3741 gcc_unreachable ();
3742 }
3743 else if (TREE_CODE (type) == ARRAY_TYPE)
3744 {
3745 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3746 sorry
3747 ("cannot initialize multi-dimensional array with initializer");
3748 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3749 0, init,
3750 explicit_value_init_p,
3751 0, complain);
3752 }
3753 else if (explicit_value_init_p)
3754 {
3755 elt_init = build_value_init (type, complain);
3756 if (elt_init != error_mark_node)
3757 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3758 }
3759 else
3760 {
3761 gcc_assert (type_build_ctor_call (type) || init);
3762 if (CLASS_TYPE_P (type))
3763 elt_init = build_aggr_init (to, init, 0, complain);
3764 else
3765 {
3766 if (TREE_CODE (init) == TREE_LIST)
3767 init = build_x_compound_expr_from_list (init, ELK_INIT,
3768 complain);
3769 elt_init = build2 (INIT_EXPR, type, to, init);
3770 }
3771 }
3772
3773 if (elt_init == error_mark_node)
3774 errors = true;
3775
3776 if (try_const)
3777 {
3778 tree e = maybe_constant_init (elt_init);
3779 if (reduced_constant_expression_p (e))
3780 {
3781 if (initializer_zerop (e))
3782 /* Don't fill the CONSTRUCTOR with zeros. */
3783 e = NULL_TREE;
3784 if (do_static_init)
3785 elt_init = NULL_TREE;
3786 }
3787 else
3788 {
3789 saw_non_const = true;
3790 if (do_static_init)
3791 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
3792 }
3793
3794 if (e)
3795 {
3796 int max = tree_to_shwi (maxindex)+1;
3797 for (; num_initialized_elts < max; ++num_initialized_elts)
3798 {
3799 tree field = size_int (num_initialized_elts);
3800 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3801 }
3802 }
3803 }
3804
3805 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3806 if (elt_init)
3807 finish_expr_stmt (elt_init);
3808 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3809
3810 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3811 complain));
3812 if (base2)
3813 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3814 complain));
3815
3816 finish_for_stmt (for_stmt);
3817 }
3818
3819 /* Make sure to cleanup any partially constructed elements. */
3820 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3821 && from_array != 2)
3822 {
3823 tree e;
3824 tree m = cp_build_binary_op (input_location,
3825 MINUS_EXPR, maxindex, iterator,
3826 complain);
3827
3828 /* Flatten multi-dimensional array since build_vec_delete only
3829 expects one-dimensional array. */
3830 if (TREE_CODE (type) == ARRAY_TYPE)
3831 m = cp_build_binary_op (input_location,
3832 MULT_EXPR, m,
3833 /* Avoid mixing signed and unsigned. */
3834 convert (TREE_TYPE (m),
3835 array_type_nelts_total (type)),
3836 complain);
3837
3838 finish_cleanup_try_block (try_block);
3839 e = build_vec_delete_1 (rval, m,
3840 inner_elt_type, sfk_complete_destructor,
3841 /*use_global_delete=*/0, complain);
3842 if (e == error_mark_node)
3843 errors = true;
3844 finish_cleanup (e, try_block);
3845 }
3846
3847 /* The value of the array initialization is the array itself, RVAL
3848 is a pointer to the first element. */
3849 finish_stmt_expr_expr (rval, stmt_expr);
3850
3851 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3852
3853 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3854
3855 if (errors)
3856 return error_mark_node;
3857
3858 if (try_const)
3859 {
3860 if (!saw_non_const)
3861 {
3862 tree const_init = build_constructor (atype, const_vec);
3863 return build2 (INIT_EXPR, atype, obase, const_init);
3864 }
3865 else if (do_static_init && !vec_safe_is_empty (const_vec))
3866 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
3867 else
3868 vec_free (const_vec);
3869 }
3870
3871 /* Now make the result have the correct type. */
3872 if (TREE_CODE (atype) == ARRAY_TYPE)
3873 {
3874 atype = build_pointer_type (atype);
3875 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3876 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3877 TREE_NO_WARNING (stmt_expr) = 1;
3878 }
3879
3880 return stmt_expr;
3881 }
3882
3883 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3884 build_delete. */
3885
3886 static tree
3887 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3888 tsubst_flags_t complain)
3889 {
3890 tree name;
3891 tree fn;
3892 switch (dtor_kind)
3893 {
3894 case sfk_complete_destructor:
3895 name = complete_dtor_identifier;
3896 break;
3897
3898 case sfk_base_destructor:
3899 name = base_dtor_identifier;
3900 break;
3901
3902 case sfk_deleting_destructor:
3903 name = deleting_dtor_identifier;
3904 break;
3905
3906 default:
3907 gcc_unreachable ();
3908 }
3909 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3910 return build_new_method_call (exp, fn,
3911 /*args=*/NULL,
3912 /*conversion_path=*/NULL_TREE,
3913 flags,
3914 /*fn_p=*/NULL,
3915 complain);
3916 }
3917
3918 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3919 ADDR is an expression which yields the store to be destroyed.
3920 AUTO_DELETE is the name of the destructor to call, i.e., either
3921 sfk_complete_destructor, sfk_base_destructor, or
3922 sfk_deleting_destructor.
3923
3924 FLAGS is the logical disjunction of zero or more LOOKUP_
3925 flags. See cp-tree.h for more info. */
3926
3927 tree
3928 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3929 int flags, int use_global_delete, tsubst_flags_t complain)
3930 {
3931 tree expr;
3932
3933 if (addr == error_mark_node)
3934 return error_mark_node;
3935
3936 tree type = TYPE_MAIN_VARIANT (otype);
3937
3938 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3939 set to `error_mark_node' before it gets properly cleaned up. */
3940 if (type == error_mark_node)
3941 return error_mark_node;
3942
3943 if (TREE_CODE (type) == POINTER_TYPE)
3944 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3945
3946 if (TREE_CODE (type) == ARRAY_TYPE)
3947 {
3948 if (TYPE_DOMAIN (type) == NULL_TREE)
3949 {
3950 if (complain & tf_error)
3951 error ("unknown array size in delete");
3952 return error_mark_node;
3953 }
3954 return build_vec_delete (addr, array_type_nelts (type),
3955 auto_delete, use_global_delete, complain);
3956 }
3957
3958 if (TYPE_PTR_P (otype))
3959 {
3960 addr = mark_rvalue_use (addr);
3961
3962 /* We don't want to warn about delete of void*, only other
3963 incomplete types. Deleting other incomplete types
3964 invokes undefined behavior, but it is not ill-formed, so
3965 compile to something that would even do The Right Thing
3966 (TM) should the type have a trivial dtor and no delete
3967 operator. */
3968 if (!VOID_TYPE_P (type))
3969 {
3970 complete_type (type);
3971 if (!COMPLETE_TYPE_P (type))
3972 {
3973 if ((complain & tf_warning)
3974 && warning (OPT_Wdelete_incomplete,
3975 "possible problem detected in invocation of "
3976 "delete operator:"))
3977 {
3978 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3979 inform (input_location,
3980 "neither the destructor nor the class-specific "
3981 "operator delete will be called, even if they are "
3982 "declared when the class is defined");
3983 }
3984 }
3985 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3986 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
3987 && TYPE_POLYMORPHIC_P (type))
3988 {
3989 tree dtor;
3990 dtor = CLASSTYPE_DESTRUCTORS (type);
3991 if (!dtor || !DECL_VINDEX (dtor))
3992 {
3993 if (CLASSTYPE_PURE_VIRTUALS (type))
3994 warning (OPT_Wdelete_non_virtual_dtor,
3995 "deleting object of abstract class type %qT"
3996 " which has non-virtual destructor"
3997 " will cause undefined behaviour", type);
3998 else
3999 warning (OPT_Wdelete_non_virtual_dtor,
4000 "deleting object of polymorphic class type %qT"
4001 " which has non-virtual destructor"
4002 " might cause undefined behaviour", type);
4003 }
4004 }
4005 }
4006 if (TREE_SIDE_EFFECTS (addr))
4007 addr = save_expr (addr);
4008
4009 /* Throw away const and volatile on target type of addr. */
4010 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4011 }
4012 else
4013 {
4014 /* Don't check PROTECT here; leave that decision to the
4015 destructor. If the destructor is accessible, call it,
4016 else report error. */
4017 addr = cp_build_addr_expr (addr, complain);
4018 if (addr == error_mark_node)
4019 return error_mark_node;
4020 if (TREE_SIDE_EFFECTS (addr))
4021 addr = save_expr (addr);
4022
4023 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4024 }
4025
4026 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4027 {
4028 /* Make sure the destructor is callable. */
4029 if (type_build_dtor_call (type))
4030 {
4031 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4032 complain),
4033 sfk_complete_destructor, flags, complain);
4034 if (expr == error_mark_node)
4035 return error_mark_node;
4036 }
4037
4038 if (auto_delete != sfk_deleting_destructor)
4039 return void_node;
4040
4041 return build_op_delete_call (DELETE_EXPR, addr,
4042 cxx_sizeof_nowarn (type),
4043 use_global_delete,
4044 /*placement=*/NULL_TREE,
4045 /*alloc_fn=*/NULL_TREE,
4046 complain);
4047 }
4048 else
4049 {
4050 tree head = NULL_TREE;
4051 tree do_delete = NULL_TREE;
4052 tree ifexp;
4053
4054 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4055 lazily_declare_fn (sfk_destructor, type);
4056
4057 /* For `::delete x', we must not use the deleting destructor
4058 since then we would not be sure to get the global `operator
4059 delete'. */
4060 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4061 {
4062 /* We will use ADDR multiple times so we must save it. */
4063 addr = save_expr (addr);
4064 head = get_target_expr (build_headof (addr));
4065 /* Delete the object. */
4066 do_delete = build_op_delete_call (DELETE_EXPR,
4067 head,
4068 cxx_sizeof_nowarn (type),
4069 /*global_p=*/true,
4070 /*placement=*/NULL_TREE,
4071 /*alloc_fn=*/NULL_TREE,
4072 complain);
4073 /* Otherwise, treat this like a complete object destructor
4074 call. */
4075 auto_delete = sfk_complete_destructor;
4076 }
4077 /* If the destructor is non-virtual, there is no deleting
4078 variant. Instead, we must explicitly call the appropriate
4079 `operator delete' here. */
4080 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4081 && auto_delete == sfk_deleting_destructor)
4082 {
4083 /* We will use ADDR multiple times so we must save it. */
4084 addr = save_expr (addr);
4085 /* Build the call. */
4086 do_delete = build_op_delete_call (DELETE_EXPR,
4087 addr,
4088 cxx_sizeof_nowarn (type),
4089 /*global_p=*/false,
4090 /*placement=*/NULL_TREE,
4091 /*alloc_fn=*/NULL_TREE,
4092 complain);
4093 /* Call the complete object destructor. */
4094 auto_delete = sfk_complete_destructor;
4095 }
4096 else if (auto_delete == sfk_deleting_destructor
4097 && TYPE_GETS_REG_DELETE (type))
4098 {
4099 /* Make sure we have access to the member op delete, even though
4100 we'll actually be calling it from the destructor. */
4101 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4102 /*global_p=*/false,
4103 /*placement=*/NULL_TREE,
4104 /*alloc_fn=*/NULL_TREE,
4105 complain);
4106 }
4107
4108 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4109 auto_delete, flags, complain);
4110 if (expr == error_mark_node)
4111 return error_mark_node;
4112 if (do_delete)
4113 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4114
4115 /* We need to calculate this before the dtor changes the vptr. */
4116 if (head)
4117 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4118
4119 if (flags & LOOKUP_DESTRUCTOR)
4120 /* Explicit destructor call; don't check for null pointer. */
4121 ifexp = integer_one_node;
4122 else
4123 {
4124 /* Handle deleting a null pointer. */
4125 ifexp = fold (cp_build_binary_op (input_location,
4126 NE_EXPR, addr, nullptr_node,
4127 complain));
4128 if (ifexp == error_mark_node)
4129 return error_mark_node;
4130 }
4131
4132 if (ifexp != integer_one_node)
4133 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4134
4135 return expr;
4136 }
4137 }
4138
4139 /* At the beginning of a destructor, push cleanups that will call the
4140 destructors for our base classes and members.
4141
4142 Called from begin_destructor_body. */
4143
4144 void
4145 push_base_cleanups (void)
4146 {
4147 tree binfo, base_binfo;
4148 int i;
4149 tree member;
4150 tree expr;
4151 vec<tree, va_gc> *vbases;
4152
4153 /* Run destructors for all virtual baseclasses. */
4154 if (CLASSTYPE_VBASECLASSES (current_class_type))
4155 {
4156 tree cond = (condition_conversion
4157 (build2 (BIT_AND_EXPR, integer_type_node,
4158 current_in_charge_parm,
4159 integer_two_node)));
4160
4161 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4162 order, which is also the right order for pushing cleanups. */
4163 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4164 vec_safe_iterate (vbases, i, &base_binfo); i++)
4165 {
4166 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4167 {
4168 expr = build_special_member_call (current_class_ref,
4169 base_dtor_identifier,
4170 NULL,
4171 base_binfo,
4172 (LOOKUP_NORMAL
4173 | LOOKUP_NONVIRTUAL),
4174 tf_warning_or_error);
4175 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4176 {
4177 expr = build3 (COND_EXPR, void_type_node, cond,
4178 expr, void_node);
4179 finish_decl_cleanup (NULL_TREE, expr);
4180 }
4181 }
4182 }
4183 }
4184
4185 /* Take care of the remaining baseclasses. */
4186 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4187 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4188 {
4189 if (BINFO_VIRTUAL_P (base_binfo)
4190 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4191 continue;
4192
4193 expr = build_special_member_call (current_class_ref,
4194 base_dtor_identifier,
4195 NULL, base_binfo,
4196 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4197 tf_warning_or_error);
4198 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4199 finish_decl_cleanup (NULL_TREE, expr);
4200 }
4201
4202 /* Don't automatically destroy union members. */
4203 if (TREE_CODE (current_class_type) == UNION_TYPE)
4204 return;
4205
4206 for (member = TYPE_FIELDS (current_class_type); member;
4207 member = DECL_CHAIN (member))
4208 {
4209 tree this_type = TREE_TYPE (member);
4210 if (this_type == error_mark_node
4211 || TREE_CODE (member) != FIELD_DECL
4212 || DECL_ARTIFICIAL (member))
4213 continue;
4214 if (ANON_AGGR_TYPE_P (this_type))
4215 continue;
4216 if (type_build_dtor_call (this_type))
4217 {
4218 tree this_member = (build_class_member_access_expr
4219 (current_class_ref, member,
4220 /*access_path=*/NULL_TREE,
4221 /*preserve_reference=*/false,
4222 tf_warning_or_error));
4223 expr = build_delete (this_type, this_member,
4224 sfk_complete_destructor,
4225 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4226 0, tf_warning_or_error);
4227 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4228 finish_decl_cleanup (NULL_TREE, expr);
4229 }
4230 }
4231 }
4232
4233 /* Build a C++ vector delete expression.
4234 MAXINDEX is the number of elements to be deleted.
4235 ELT_SIZE is the nominal size of each element in the vector.
4236 BASE is the expression that should yield the store to be deleted.
4237 This function expands (or synthesizes) these calls itself.
4238 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4239
4240 This also calls delete for virtual baseclasses of elements of the vector.
4241
4242 Update: MAXINDEX is no longer needed. The size can be extracted from the
4243 start of the vector for pointers, and from the type for arrays. We still
4244 use MAXINDEX for arrays because it happens to already have one of the
4245 values we'd have to extract. (We could use MAXINDEX with pointers to
4246 confirm the size, and trap if the numbers differ; not clear that it'd
4247 be worth bothering.) */
4248
4249 tree
4250 build_vec_delete (tree base, tree maxindex,
4251 special_function_kind auto_delete_vec,
4252 int use_global_delete, tsubst_flags_t complain)
4253 {
4254 tree type;
4255 tree rval;
4256 tree base_init = NULL_TREE;
4257
4258 type = TREE_TYPE (base);
4259
4260 if (TYPE_PTR_P (type))
4261 {
4262 /* Step back one from start of vector, and read dimension. */
4263 tree cookie_addr;
4264 tree size_ptr_type = build_pointer_type (sizetype);
4265
4266 base = mark_rvalue_use (base);
4267 if (TREE_SIDE_EFFECTS (base))
4268 {
4269 base_init = get_target_expr (base);
4270 base = TARGET_EXPR_SLOT (base_init);
4271 }
4272 type = strip_array_types (TREE_TYPE (type));
4273 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4274 sizetype, TYPE_SIZE_UNIT (sizetype));
4275 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4276 cookie_addr);
4277 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4278 }
4279 else if (TREE_CODE (type) == ARRAY_TYPE)
4280 {
4281 /* Get the total number of things in the array, maxindex is a
4282 bad name. */
4283 maxindex = array_type_nelts_total (type);
4284 type = strip_array_types (type);
4285 base = decay_conversion (base, complain);
4286 if (base == error_mark_node)
4287 return error_mark_node;
4288 if (TREE_SIDE_EFFECTS (base))
4289 {
4290 base_init = get_target_expr (base);
4291 base = TARGET_EXPR_SLOT (base_init);
4292 }
4293 }
4294 else
4295 {
4296 if (base != error_mark_node && !(complain & tf_error))
4297 error ("type to vector delete is neither pointer or array type");
4298 return error_mark_node;
4299 }
4300
4301 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4302 use_global_delete, complain);
4303 if (base_init && rval != error_mark_node)
4304 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4305
4306 return rval;
4307 }