cp-tree.h (dfs_walk, [...]): Remove.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_new_1 (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
59
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
68
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 {
72 bool is_global = !building_stmt_tree ();
73
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
76
77 return is_global;
78 }
79
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
82
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 {
86 finish_compound_stmt (compound_stmt);
87
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
89
90 gcc_assert (!building_stmt_tree () == is_global);
91
92 return stmt_expr;
93 }
94
95 /* Constructors */
96
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
100
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 {
104 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
105 return dfs_skip_bases;
106
107 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
108 {
109 tree base_ptr = TREE_VALUE ((tree) data);
110
111 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
112
113 expand_virtual_init (binfo, base_ptr);
114 }
115
116 return NULL_TREE;
117 }
118
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
121
122 void
123 initialize_vtbl_ptrs (tree addr)
124 {
125 tree list;
126 tree type;
127
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
130
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
136 }
137
138 /* Return an expression for the zero-initialization of an object with
139 type T. This expression will either be a constant (in the case
140 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
141 aggregate). In either case, the value can be used as DECL_INITIAL
142 for a decl of the indicated TYPE; it is a valid static initializer.
143 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
144 number of elements in the array. If STATIC_STORAGE_P is TRUE,
145 initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
147 zero bytes. */
148
149 tree
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 {
152 tree init = NULL_TREE;
153
154 /* [dcl.init]
155
156 To zero-initialization storage for an object of type T means:
157
158 -- if T is a scalar type, the storage is set to the value of zero
159 converted to T.
160
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
163
164 -- if T is a union type, the storage for its first data member is
165 zero-initialized.
166
167 -- if T is an array type, the storage for each element is
168 zero-initialized.
169
170 -- if T is a reference type, no initialization is performed. */
171
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173
174 if (type == error_mark_node)
175 ;
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
181 ;
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
185 {
186 tree field;
187 tree inits;
188
189 /* Build a constructor to contain the initializations. */
190 init = build_constructor (type, NULL_TREE);
191 /* Iterate over the fields, building initializations. */
192 inits = NULL_TREE;
193 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
194 {
195 if (TREE_CODE (field) != FIELD_DECL)
196 continue;
197
198 /* Note that for class types there will be FIELD_DECLs
199 corresponding to base classes as well. Thus, iterating
200 over TYPE_FIELDs will result in correct initialization of
201 all of the subobjects. */
202 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
203 inits = tree_cons (field,
204 build_zero_init (TREE_TYPE (field),
205 /*nelts=*/NULL_TREE,
206 static_storage_p),
207 inits);
208
209 /* For unions, only the first field is initialized. */
210 if (TREE_CODE (type) == UNION_TYPE)
211 break;
212 }
213 CONSTRUCTOR_ELTS (init) = nreverse (inits);
214 }
215 else if (TREE_CODE (type) == ARRAY_TYPE)
216 {
217 tree index;
218 tree max_index;
219 tree inits;
220
221 /* Build a constructor to contain the initializations. */
222 init = build_constructor (type, NULL_TREE);
223 /* Iterate over the array elements, building initializations. */
224 inits = NULL_TREE;
225 max_index = nelts ? nelts : array_type_nelts (type);
226 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
227
228 /* A zero-sized array, which is accepted as an extension, will
229 have an upper bound of -1. */
230 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
231 for (index = size_zero_node;
232 !tree_int_cst_lt (max_index, index);
233 index = size_binop (PLUS_EXPR, index, size_one_node))
234 inits = tree_cons (index,
235 build_zero_init (TREE_TYPE (type),
236 /*nelts=*/NULL_TREE,
237 static_storage_p),
238 inits);
239 CONSTRUCTOR_ELTS (init) = nreverse (inits);
240 }
241 else
242 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
243
244 /* In all cases, the initializer is a constant. */
245 if (init)
246 {
247 TREE_CONSTANT (init) = 1;
248 TREE_INVARIANT (init) = 1;
249 }
250
251 return init;
252 }
253
254 /* Build an expression for the default-initialization of an object of
255 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
256 ARRAY_TYPE, NELTS is the number of elements in the array. If
257 initialization of TYPE requires calling constructors, this function
258 returns NULL_TREE; the caller is responsible for arranging for the
259 constructors to be called. */
260
261 static tree
262 build_default_init (tree type, tree nelts)
263 {
264 /* [dcl.init]:
265
266 To default-initialize an object of type T means:
267
268 --if T is a non-POD class type (clause _class_), the default construc-
269 tor for T is called (and the initialization is ill-formed if T has
270 no accessible default constructor);
271
272 --if T is an array type, each element is default-initialized;
273
274 --otherwise, the storage for the object is zero-initialized.
275
276 A program that calls for default-initialization of an entity of refer-
277 ence type is ill-formed. */
278
279 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
280 performing the initialization. This is confusing in that some
281 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
282 a class with a pointer-to-data member as a non-static data member
283 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
284 passing non-PODs to build_zero_init below, which is contrary to
285 the semantics quoted above from [dcl.init].
286
287 It happens, however, that the behavior of the constructor the
288 standard says we should have generated would be precisely the
289 same as that obtained by calling build_zero_init below, so things
290 work out OK. */
291 if (TYPE_NEEDS_CONSTRUCTING (type)
292 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
293 return NULL_TREE;
294
295 /* At this point, TYPE is either a POD class type, an array of POD
296 classes, or something even more innocuous. */
297 return build_zero_init (type, nelts, /*static_storage_p=*/false);
298 }
299
300 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
301 arguments. If TREE_LIST is void_type_node, an empty initializer
302 list was given; if NULL_TREE no initializer was given. */
303
304 static void
305 perform_member_init (tree member, tree init)
306 {
307 tree decl;
308 tree type = TREE_TYPE (member);
309 bool explicit;
310
311 explicit = (init != NULL_TREE);
312
313 /* Effective C++ rule 12 requires that all data members be
314 initialized. */
315 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
316 warning ("%J%qD should be initialized in the member initialization "
317 "list", current_function_decl, member);
318
319 if (init == void_type_node)
320 init = NULL_TREE;
321
322 /* Get an lvalue for the data member. */
323 decl = build_class_member_access_expr (current_class_ref, member,
324 /*access_path=*/NULL_TREE,
325 /*preserve_reference=*/true);
326 if (decl == error_mark_node)
327 return;
328
329 /* Deal with this here, as we will get confused if we try to call the
330 assignment op for an anonymous union. This can happen in a
331 synthesized copy constructor. */
332 if (ANON_AGGR_TYPE_P (type))
333 {
334 if (init)
335 {
336 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
337 finish_expr_stmt (init);
338 }
339 }
340 else if (TYPE_NEEDS_CONSTRUCTING (type))
341 {
342 if (explicit
343 && TREE_CODE (type) == ARRAY_TYPE
344 && init != NULL_TREE
345 && TREE_CHAIN (init) == NULL_TREE
346 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
347 {
348 /* Initialization of one array from another. */
349 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
350 /* from_array=*/1));
351 }
352 else
353 finish_expr_stmt (build_aggr_init (decl, init, 0));
354 }
355 else
356 {
357 if (init == NULL_TREE)
358 {
359 if (explicit)
360 {
361 init = build_default_init (type, /*nelts=*/NULL_TREE);
362 if (TREE_CODE (type) == REFERENCE_TYPE)
363 warning ("%Jdefault-initialization of %q#D, "
364 "which has reference type",
365 current_function_decl, member);
366 }
367 /* member traversal: note it leaves init NULL */
368 else if (TREE_CODE (type) == REFERENCE_TYPE)
369 pedwarn ("%Juninitialized reference member %qD",
370 current_function_decl, member);
371 else if (CP_TYPE_CONST_P (type))
372 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
373 current_function_decl, member, type);
374 }
375 else if (TREE_CODE (init) == TREE_LIST)
376 /* There was an explicit member initialization. Do some work
377 in that case. */
378 init = build_x_compound_expr_from_list (init, "member initializer");
379
380 if (init)
381 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
382 }
383
384 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
385 {
386 tree expr;
387
388 expr = build_class_member_access_expr (current_class_ref, member,
389 /*access_path=*/NULL_TREE,
390 /*preserve_reference=*/false);
391 expr = build_delete (type, expr, sfk_complete_destructor,
392 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
393
394 if (expr != error_mark_node)
395 finish_eh_cleanup (expr);
396 }
397 }
398
399 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
400 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
401
402 static tree
403 build_field_list (tree t, tree list, int *uses_unions_p)
404 {
405 tree fields;
406
407 *uses_unions_p = 0;
408
409 /* Note whether or not T is a union. */
410 if (TREE_CODE (t) == UNION_TYPE)
411 *uses_unions_p = 1;
412
413 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
414 {
415 /* Skip CONST_DECLs for enumeration constants and so forth. */
416 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
417 continue;
418
419 /* Keep track of whether or not any fields are unions. */
420 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
421 *uses_unions_p = 1;
422
423 /* For an anonymous struct or union, we must recursively
424 consider the fields of the anonymous type. They can be
425 directly initialized from the constructor. */
426 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
427 {
428 /* Add this field itself. Synthesized copy constructors
429 initialize the entire aggregate. */
430 list = tree_cons (fields, NULL_TREE, list);
431 /* And now add the fields in the anonymous aggregate. */
432 list = build_field_list (TREE_TYPE (fields), list,
433 uses_unions_p);
434 }
435 /* Add this field. */
436 else if (DECL_NAME (fields))
437 list = tree_cons (fields, NULL_TREE, list);
438 }
439
440 return list;
441 }
442
443 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
444 a FIELD_DECL or BINFO in T that needs initialization. The
445 TREE_VALUE gives the initializer, or list of initializer arguments.
446
447 Return a TREE_LIST containing all of the initializations required
448 for T, in the order in which they should be performed. The output
449 list has the same format as the input. */
450
451 static tree
452 sort_mem_initializers (tree t, tree mem_inits)
453 {
454 tree init;
455 tree base, binfo, base_binfo;
456 tree sorted_inits;
457 tree next_subobject;
458 VEC (tree) *vbases;
459 int i;
460 int uses_unions_p;
461
462 /* Build up a list of initializations. The TREE_PURPOSE of entry
463 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
464 TREE_VALUE will be the constructor arguments, or NULL if no
465 explicit initialization was provided. */
466 sorted_inits = NULL_TREE;
467
468 /* Process the virtual bases. */
469 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
470 VEC_iterate (tree, vbases, i, base); i++)
471 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
472
473 /* Process the direct bases. */
474 for (binfo = TYPE_BINFO (t), i = 0;
475 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
476 if (!BINFO_VIRTUAL_P (base_binfo))
477 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
478
479 /* Process the non-static data members. */
480 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
481 /* Reverse the entire list of initializations, so that they are in
482 the order that they will actually be performed. */
483 sorted_inits = nreverse (sorted_inits);
484
485 /* If the user presented the initializers in an order different from
486 that in which they will actually occur, we issue a warning. Keep
487 track of the next subobject which can be explicitly initialized
488 without issuing a warning. */
489 next_subobject = sorted_inits;
490
491 /* Go through the explicit initializers, filling in TREE_PURPOSE in
492 the SORTED_INITS. */
493 for (init = mem_inits; init; init = TREE_CHAIN (init))
494 {
495 tree subobject;
496 tree subobject_init;
497
498 subobject = TREE_PURPOSE (init);
499
500 /* If the explicit initializers are in sorted order, then
501 SUBOBJECT will be NEXT_SUBOBJECT, or something following
502 it. */
503 for (subobject_init = next_subobject;
504 subobject_init;
505 subobject_init = TREE_CHAIN (subobject_init))
506 if (TREE_PURPOSE (subobject_init) == subobject)
507 break;
508
509 /* Issue a warning if the explicit initializer order does not
510 match that which will actually occur.
511 ??? Are all these on the correct lines? */
512 if (warn_reorder && !subobject_init)
513 {
514 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
515 cp_warning_at ("%qD will be initialized after",
516 TREE_PURPOSE (next_subobject));
517 else
518 warning ("base %qT will be initialized after",
519 TREE_PURPOSE (next_subobject));
520 if (TREE_CODE (subobject) == FIELD_DECL)
521 cp_warning_at (" %q#D", subobject);
522 else
523 warning (" base %qT", subobject);
524 warning ("%J when initialized here", current_function_decl);
525 }
526
527 /* Look again, from the beginning of the list. */
528 if (!subobject_init)
529 {
530 subobject_init = sorted_inits;
531 while (TREE_PURPOSE (subobject_init) != subobject)
532 subobject_init = TREE_CHAIN (subobject_init);
533 }
534
535 /* It is invalid to initialize the same subobject more than
536 once. */
537 if (TREE_VALUE (subobject_init))
538 {
539 if (TREE_CODE (subobject) == FIELD_DECL)
540 error ("%Jmultiple initializations given for %qD",
541 current_function_decl, subobject);
542 else
543 error ("%Jmultiple initializations given for base %qT",
544 current_function_decl, subobject);
545 }
546
547 /* Record the initialization. */
548 TREE_VALUE (subobject_init) = TREE_VALUE (init);
549 next_subobject = subobject_init;
550 }
551
552 /* [class.base.init]
553
554 If a ctor-initializer specifies more than one mem-initializer for
555 multiple members of the same union (including members of
556 anonymous unions), the ctor-initializer is ill-formed. */
557 if (uses_unions_p)
558 {
559 tree last_field = NULL_TREE;
560 for (init = sorted_inits; init; init = TREE_CHAIN (init))
561 {
562 tree field;
563 tree field_type;
564 int done;
565
566 /* Skip uninitialized members and base classes. */
567 if (!TREE_VALUE (init)
568 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
569 continue;
570 /* See if this field is a member of a union, or a member of a
571 structure contained in a union, etc. */
572 field = TREE_PURPOSE (init);
573 for (field_type = DECL_CONTEXT (field);
574 !same_type_p (field_type, t);
575 field_type = TYPE_CONTEXT (field_type))
576 if (TREE_CODE (field_type) == UNION_TYPE)
577 break;
578 /* If this field is not a member of a union, skip it. */
579 if (TREE_CODE (field_type) != UNION_TYPE)
580 continue;
581
582 /* It's only an error if we have two initializers for the same
583 union type. */
584 if (!last_field)
585 {
586 last_field = field;
587 continue;
588 }
589
590 /* See if LAST_FIELD and the field initialized by INIT are
591 members of the same union. If so, there's a problem,
592 unless they're actually members of the same structure
593 which is itself a member of a union. For example, given:
594
595 union { struct { int i; int j; }; };
596
597 initializing both `i' and `j' makes sense. */
598 field_type = DECL_CONTEXT (field);
599 done = 0;
600 do
601 {
602 tree last_field_type;
603
604 last_field_type = DECL_CONTEXT (last_field);
605 while (1)
606 {
607 if (same_type_p (last_field_type, field_type))
608 {
609 if (TREE_CODE (field_type) == UNION_TYPE)
610 error ("%Jinitializations for multiple members of %qT",
611 current_function_decl, last_field_type);
612 done = 1;
613 break;
614 }
615
616 if (same_type_p (last_field_type, t))
617 break;
618
619 last_field_type = TYPE_CONTEXT (last_field_type);
620 }
621
622 /* If we've reached the outermost class, then we're
623 done. */
624 if (same_type_p (field_type, t))
625 break;
626
627 field_type = TYPE_CONTEXT (field_type);
628 }
629 while (!done);
630
631 last_field = field;
632 }
633 }
634
635 return sorted_inits;
636 }
637
638 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
639 is a TREE_LIST giving the explicit mem-initializer-list for the
640 constructor. The TREE_PURPOSE of each entry is a subobject (a
641 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
642 is a TREE_LIST giving the arguments to the constructor or
643 void_type_node for an empty list of arguments. */
644
645 void
646 emit_mem_initializers (tree mem_inits)
647 {
648 /* Sort the mem-initializers into the order in which the
649 initializations should be performed. */
650 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
651
652 in_base_initializer = 1;
653
654 /* Initialize base classes. */
655 while (mem_inits
656 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
657 {
658 tree subobject = TREE_PURPOSE (mem_inits);
659 tree arguments = TREE_VALUE (mem_inits);
660
661 /* If these initializations are taking place in a copy
662 constructor, the base class should probably be explicitly
663 initialized. */
664 if (extra_warnings && !arguments
665 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
666 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
667 warning ("%Jbase class %q#T should be explicitly initialized in the "
668 "copy constructor",
669 current_function_decl, BINFO_TYPE (subobject));
670
671 /* If an explicit -- but empty -- initializer list was present,
672 treat it just like default initialization at this point. */
673 if (arguments == void_type_node)
674 arguments = NULL_TREE;
675
676 /* Initialize the base. */
677 if (BINFO_VIRTUAL_P (subobject))
678 construct_virtual_base (subobject, arguments);
679 else
680 {
681 tree base_addr;
682
683 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
684 subobject, 1);
685 expand_aggr_init_1 (subobject, NULL_TREE,
686 build_indirect_ref (base_addr, NULL),
687 arguments,
688 LOOKUP_NORMAL);
689 expand_cleanup_for_base (subobject, NULL_TREE);
690 }
691
692 mem_inits = TREE_CHAIN (mem_inits);
693 }
694 in_base_initializer = 0;
695
696 /* Initialize the vptrs. */
697 initialize_vtbl_ptrs (current_class_ptr);
698
699 /* Initialize the data members. */
700 while (mem_inits)
701 {
702 perform_member_init (TREE_PURPOSE (mem_inits),
703 TREE_VALUE (mem_inits));
704 mem_inits = TREE_CHAIN (mem_inits);
705 }
706 }
707
708 /* Returns the address of the vtable (i.e., the value that should be
709 assigned to the vptr) for BINFO. */
710
711 static tree
712 build_vtbl_address (tree binfo)
713 {
714 tree binfo_for = binfo;
715 tree vtbl;
716
717 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
718 /* If this is a virtual primary base, then the vtable we want to store
719 is that for the base this is being used as the primary base of. We
720 can't simply skip the initialization, because we may be expanding the
721 inits of a subobject constructor where the virtual base layout
722 can be different. */
723 while (BINFO_PRIMARY_P (binfo_for))
724 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
725
726 /* Figure out what vtable BINFO's vtable is based on, and mark it as
727 used. */
728 vtbl = get_vtbl_decl_for_binfo (binfo_for);
729 assemble_external (vtbl);
730 TREE_USED (vtbl) = 1;
731
732 /* Now compute the address to use when initializing the vptr. */
733 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
734 if (TREE_CODE (vtbl) == VAR_DECL)
735 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
736
737 return vtbl;
738 }
739
740 /* This code sets up the virtual function tables appropriate for
741 the pointer DECL. It is a one-ply initialization.
742
743 BINFO is the exact type that DECL is supposed to be. In
744 multiple inheritance, this might mean "C's A" if C : A, B. */
745
746 static void
747 expand_virtual_init (tree binfo, tree decl)
748 {
749 tree vtbl, vtbl_ptr;
750 tree vtt_index;
751
752 /* Compute the initializer for vptr. */
753 vtbl = build_vtbl_address (binfo);
754
755 /* We may get this vptr from a VTT, if this is a subobject
756 constructor or subobject destructor. */
757 vtt_index = BINFO_VPTR_INDEX (binfo);
758 if (vtt_index)
759 {
760 tree vtbl2;
761 tree vtt_parm;
762
763 /* Compute the value to use, when there's a VTT. */
764 vtt_parm = current_vtt_parm;
765 vtbl2 = build2 (PLUS_EXPR,
766 TREE_TYPE (vtt_parm),
767 vtt_parm,
768 vtt_index);
769 vtbl2 = build_indirect_ref (vtbl2, NULL);
770 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
771
772 /* The actual initializer is the VTT value only in the subobject
773 constructor. In maybe_clone_body we'll substitute NULL for
774 the vtt_parm in the case of the non-subobject constructor. */
775 vtbl = build3 (COND_EXPR,
776 TREE_TYPE (vtbl),
777 build2 (EQ_EXPR, boolean_type_node,
778 current_in_charge_parm, integer_zero_node),
779 vtbl2,
780 vtbl);
781 }
782
783 /* Compute the location of the vtpr. */
784 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
785 TREE_TYPE (binfo));
786 gcc_assert (vtbl_ptr != error_mark_node);
787
788 /* Assign the vtable to the vptr. */
789 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
790 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
791 }
792
793 /* If an exception is thrown in a constructor, those base classes already
794 constructed must be destroyed. This function creates the cleanup
795 for BINFO, which has just been constructed. If FLAG is non-NULL,
796 it is a DECL which is nonzero when this base needs to be
797 destroyed. */
798
799 static void
800 expand_cleanup_for_base (tree binfo, tree flag)
801 {
802 tree expr;
803
804 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
805 return;
806
807 /* Call the destructor. */
808 expr = build_special_member_call (current_class_ref,
809 base_dtor_identifier,
810 NULL_TREE,
811 binfo,
812 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
813 if (flag)
814 expr = fold (build3 (COND_EXPR, void_type_node,
815 c_common_truthvalue_conversion (flag),
816 expr, integer_zero_node));
817
818 finish_eh_cleanup (expr);
819 }
820
821 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
822 constructor. */
823
824 static void
825 construct_virtual_base (tree vbase, tree arguments)
826 {
827 tree inner_if_stmt;
828 tree exp;
829 tree flag;
830
831 /* If there are virtual base classes with destructors, we need to
832 emit cleanups to destroy them if an exception is thrown during
833 the construction process. These exception regions (i.e., the
834 period during which the cleanups must occur) begin from the time
835 the construction is complete to the end of the function. If we
836 create a conditional block in which to initialize the
837 base-classes, then the cleanup region for the virtual base begins
838 inside a block, and ends outside of that block. This situation
839 confuses the sjlj exception-handling code. Therefore, we do not
840 create a single conditional block, but one for each
841 initialization. (That way the cleanup regions always begin
842 in the outer block.) We trust the back-end to figure out
843 that the FLAG will not change across initializations, and
844 avoid doing multiple tests. */
845 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
846 inner_if_stmt = begin_if_stmt ();
847 finish_if_stmt_cond (flag, inner_if_stmt);
848
849 /* Compute the location of the virtual base. If we're
850 constructing virtual bases, then we must be the most derived
851 class. Therefore, we don't have to look up the virtual base;
852 we already know where it is. */
853 exp = convert_to_base_statically (current_class_ref, vbase);
854
855 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
856 LOOKUP_COMPLAIN);
857 finish_then_clause (inner_if_stmt);
858 finish_if_stmt (inner_if_stmt);
859
860 expand_cleanup_for_base (vbase, flag);
861 }
862
863 /* Find the context in which this FIELD can be initialized. */
864
865 static tree
866 initializing_context (tree field)
867 {
868 tree t = DECL_CONTEXT (field);
869
870 /* Anonymous union members can be initialized in the first enclosing
871 non-anonymous union context. */
872 while (t && ANON_AGGR_TYPE_P (t))
873 t = TYPE_CONTEXT (t);
874 return t;
875 }
876
877 /* Function to give error message if member initialization specification
878 is erroneous. FIELD is the member we decided to initialize.
879 TYPE is the type for which the initialization is being performed.
880 FIELD must be a member of TYPE.
881
882 MEMBER_NAME is the name of the member. */
883
884 static int
885 member_init_ok_or_else (tree field, tree type, tree member_name)
886 {
887 if (field == error_mark_node)
888 return 0;
889 if (!field)
890 {
891 error ("class %qT does not have any field named %qD", type,
892 member_name);
893 return 0;
894 }
895 if (TREE_CODE (field) == VAR_DECL)
896 {
897 error ("%q#D is a static data member; it can only be "
898 "initialized at its definition",
899 field);
900 return 0;
901 }
902 if (TREE_CODE (field) != FIELD_DECL)
903 {
904 error ("%q#D is not a non-static data member of %qT",
905 field, type);
906 return 0;
907 }
908 if (initializing_context (field) != type)
909 {
910 error ("class %qT does not have any field named %qD", type,
911 member_name);
912 return 0;
913 }
914
915 return 1;
916 }
917
918 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
919 is a _TYPE node or TYPE_DECL which names a base for that type.
920 Check the validity of NAME, and return either the base _TYPE, base
921 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
922 NULL_TREE and issue a diagnostic.
923
924 An old style unnamed direct single base construction is permitted,
925 where NAME is NULL. */
926
927 tree
928 expand_member_init (tree name)
929 {
930 tree basetype;
931 tree field;
932
933 if (!current_class_ref)
934 return NULL_TREE;
935
936 if (!name)
937 {
938 /* This is an obsolete unnamed base class initializer. The
939 parser will already have warned about its use. */
940 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
941 {
942 case 0:
943 error ("unnamed initializer for %qT, which has no base classes",
944 current_class_type);
945 return NULL_TREE;
946 case 1:
947 basetype = BINFO_TYPE
948 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
949 break;
950 default:
951 error ("unnamed initializer for %qT, which uses multiple inheritance",
952 current_class_type);
953 return NULL_TREE;
954 }
955 }
956 else if (TYPE_P (name))
957 {
958 basetype = TYPE_MAIN_VARIANT (name);
959 name = TYPE_NAME (name);
960 }
961 else if (TREE_CODE (name) == TYPE_DECL)
962 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
963 else
964 basetype = NULL_TREE;
965
966 if (basetype)
967 {
968 tree class_binfo;
969 tree direct_binfo;
970 tree virtual_binfo;
971 int i;
972
973 if (current_template_parms)
974 return basetype;
975
976 class_binfo = TYPE_BINFO (current_class_type);
977 direct_binfo = NULL_TREE;
978 virtual_binfo = NULL_TREE;
979
980 /* Look for a direct base. */
981 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
982 if (same_type_p (basetype, BINFO_TYPE (direct_binfo)))
983 break;
984
985 /* Look for a virtual base -- unless the direct base is itself
986 virtual. */
987 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
988 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
989
990 /* [class.base.init]
991
992 If a mem-initializer-id is ambiguous because it designates
993 both a direct non-virtual base class and an inherited virtual
994 base class, the mem-initializer is ill-formed. */
995 if (direct_binfo && virtual_binfo)
996 {
997 error ("%qD is both a direct base and an indirect virtual base",
998 basetype);
999 return NULL_TREE;
1000 }
1001
1002 if (!direct_binfo && !virtual_binfo)
1003 {
1004 if (CLASSTYPE_VBASECLASSES (current_class_type))
1005 error ("type %qD is not a direct or virtual base of %qT",
1006 name, current_class_type);
1007 else
1008 error ("type %qD is not a direct base of %qT",
1009 name, current_class_type);
1010 return NULL_TREE;
1011 }
1012
1013 return direct_binfo ? direct_binfo : virtual_binfo;
1014 }
1015 else
1016 {
1017 if (TREE_CODE (name) == IDENTIFIER_NODE)
1018 field = lookup_field (current_class_type, name, 1, false);
1019 else
1020 field = name;
1021
1022 if (member_init_ok_or_else (field, current_class_type, name))
1023 return field;
1024 }
1025
1026 return NULL_TREE;
1027 }
1028
1029 /* This is like `expand_member_init', only it stores one aggregate
1030 value into another.
1031
1032 INIT comes in two flavors: it is either a value which
1033 is to be stored in EXP, or it is a parameter list
1034 to go to a constructor, which will operate on EXP.
1035 If INIT is not a parameter list for a constructor, then set
1036 LOOKUP_ONLYCONVERTING.
1037 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1038 the initializer, if FLAGS is 0, then it is the (init) form.
1039 If `init' is a CONSTRUCTOR, then we emit a warning message,
1040 explaining that such initializations are invalid.
1041
1042 If INIT resolves to a CALL_EXPR which happens to return
1043 something of the type we are looking for, then we know
1044 that we can safely use that call to perform the
1045 initialization.
1046
1047 The virtual function table pointer cannot be set up here, because
1048 we do not really know its type.
1049
1050 This never calls operator=().
1051
1052 When initializing, nothing is CONST.
1053
1054 A default copy constructor may have to be used to perform the
1055 initialization.
1056
1057 A constructor or a conversion operator may have to be used to
1058 perform the initialization, but not both, as it would be ambiguous. */
1059
1060 tree
1061 build_aggr_init (tree exp, tree init, int flags)
1062 {
1063 tree stmt_expr;
1064 tree compound_stmt;
1065 int destroy_temps;
1066 tree type = TREE_TYPE (exp);
1067 int was_const = TREE_READONLY (exp);
1068 int was_volatile = TREE_THIS_VOLATILE (exp);
1069 int is_global;
1070
1071 if (init == error_mark_node)
1072 return error_mark_node;
1073
1074 TREE_READONLY (exp) = 0;
1075 TREE_THIS_VOLATILE (exp) = 0;
1076
1077 if (init && TREE_CODE (init) != TREE_LIST)
1078 flags |= LOOKUP_ONLYCONVERTING;
1079
1080 if (TREE_CODE (type) == ARRAY_TYPE)
1081 {
1082 tree itype;
1083
1084 /* An array may not be initialized use the parenthesized
1085 initialization form -- unless the initializer is "()". */
1086 if (init && TREE_CODE (init) == TREE_LIST)
1087 {
1088 error ("bad array initializer");
1089 return error_mark_node;
1090 }
1091 /* Must arrange to initialize each element of EXP
1092 from elements of INIT. */
1093 itype = init ? TREE_TYPE (init) : NULL_TREE;
1094 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1095 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1096 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1097 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1098 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1099 itype && same_type_p (itype,
1100 TREE_TYPE (exp)));
1101 TREE_READONLY (exp) = was_const;
1102 TREE_THIS_VOLATILE (exp) = was_volatile;
1103 TREE_TYPE (exp) = type;
1104 if (init)
1105 TREE_TYPE (init) = itype;
1106 return stmt_expr;
1107 }
1108
1109 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1110 /* Just know that we've seen something for this node. */
1111 TREE_USED (exp) = 1;
1112
1113 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1114 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1115 destroy_temps = stmts_are_full_exprs_p ();
1116 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1117 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1118 init, LOOKUP_NORMAL|flags);
1119 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1120 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1121 TREE_TYPE (exp) = type;
1122 TREE_READONLY (exp) = was_const;
1123 TREE_THIS_VOLATILE (exp) = was_volatile;
1124
1125 return stmt_expr;
1126 }
1127
1128 /* Like build_aggr_init, but not just for aggregates. */
1129
1130 tree
1131 build_init (tree decl, tree init, int flags)
1132 {
1133 tree expr;
1134
1135 if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1136 expr = build_aggr_init (decl, init, flags);
1137 else if (CLASS_TYPE_P (TREE_TYPE (decl)))
1138 expr = build_special_member_call (decl, complete_ctor_identifier,
1139 build_tree_list (NULL_TREE, init),
1140 TREE_TYPE (decl),
1141 LOOKUP_NORMAL|flags);
1142 else
1143 expr = build2 (INIT_EXPR, TREE_TYPE (decl), decl, init);
1144
1145 return expr;
1146 }
1147
1148 static void
1149 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1150 {
1151 tree type = TREE_TYPE (exp);
1152 tree ctor_name;
1153
1154 /* It fails because there may not be a constructor which takes
1155 its own type as the first (or only parameter), but which does
1156 take other types via a conversion. So, if the thing initializing
1157 the expression is a unit element of type X, first try X(X&),
1158 followed by initialization by X. If neither of these work
1159 out, then look hard. */
1160 tree rval;
1161 tree parms;
1162
1163 if (init && TREE_CODE (init) != TREE_LIST
1164 && (flags & LOOKUP_ONLYCONVERTING))
1165 {
1166 /* Base subobjects should only get direct-initialization. */
1167 gcc_assert (true_exp == exp);
1168
1169 if (flags & DIRECT_BIND)
1170 /* Do nothing. We hit this in two cases: Reference initialization,
1171 where we aren't initializing a real variable, so we don't want
1172 to run a new constructor; and catching an exception, where we
1173 have already built up the constructor call so we could wrap it
1174 in an exception region. */;
1175 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1176 {
1177 /* A brace-enclosed initializer for an aggregate. */
1178 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1179 init = digest_init (type, init, (tree *)NULL);
1180 }
1181 else
1182 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1183
1184 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1185 /* We need to protect the initialization of a catch parm with a
1186 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1187 around the TARGET_EXPR for the copy constructor. See
1188 initialize_handler_parm. */
1189 {
1190 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1191 TREE_OPERAND (init, 0));
1192 TREE_TYPE (init) = void_type_node;
1193 }
1194 else
1195 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1196 TREE_SIDE_EFFECTS (init) = 1;
1197 finish_expr_stmt (init);
1198 return;
1199 }
1200
1201 if (init == NULL_TREE
1202 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1203 {
1204 parms = init;
1205 if (parms)
1206 init = TREE_VALUE (parms);
1207 }
1208 else
1209 parms = build_tree_list (NULL_TREE, init);
1210
1211 if (true_exp == exp)
1212 ctor_name = complete_ctor_identifier;
1213 else
1214 ctor_name = base_ctor_identifier;
1215
1216 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1217 if (TREE_SIDE_EFFECTS (rval))
1218 finish_expr_stmt (convert_to_void (rval, NULL));
1219 }
1220
1221 /* This function is responsible for initializing EXP with INIT
1222 (if any).
1223
1224 BINFO is the binfo of the type for who we are performing the
1225 initialization. For example, if W is a virtual base class of A and B,
1226 and C : A, B.
1227 If we are initializing B, then W must contain B's W vtable, whereas
1228 were we initializing C, W must contain C's W vtable.
1229
1230 TRUE_EXP is nonzero if it is the true expression being initialized.
1231 In this case, it may be EXP, or may just contain EXP. The reason we
1232 need this is because if EXP is a base element of TRUE_EXP, we
1233 don't necessarily know by looking at EXP where its virtual
1234 baseclass fields should really be pointing. But we do know
1235 from TRUE_EXP. In constructors, we don't know anything about
1236 the value being initialized.
1237
1238 FLAGS is just passed to `build_new_method_call'. See that function
1239 for its description. */
1240
1241 static void
1242 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1243 {
1244 tree type = TREE_TYPE (exp);
1245
1246 gcc_assert (init != error_mark_node && type != error_mark_node);
1247 gcc_assert (building_stmt_tree ());
1248
1249 /* Use a function returning the desired type to initialize EXP for us.
1250 If the function is a constructor, and its first argument is
1251 NULL_TREE, know that it was meant for us--just slide exp on
1252 in and expand the constructor. Constructors now come
1253 as TARGET_EXPRs. */
1254
1255 if (init && TREE_CODE (exp) == VAR_DECL
1256 && TREE_CODE (init) == CONSTRUCTOR
1257 && TREE_HAS_CONSTRUCTOR (init))
1258 {
1259 /* If store_init_value returns NULL_TREE, the INIT has been
1260 record in the DECL_INITIAL for EXP. That means there's
1261 nothing more we have to do. */
1262 init = store_init_value (exp, init);
1263 if (init)
1264 finish_expr_stmt (init);
1265 return;
1266 }
1267
1268 /* We know that expand_default_init can handle everything we want
1269 at this point. */
1270 expand_default_init (binfo, true_exp, exp, init, flags);
1271 }
1272
1273 /* Report an error if TYPE is not a user-defined, aggregate type. If
1274 OR_ELSE is nonzero, give an error message. */
1275
1276 int
1277 is_aggr_type (tree type, int or_else)
1278 {
1279 if (type == error_mark_node)
1280 return 0;
1281
1282 if (! IS_AGGR_TYPE (type)
1283 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1284 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1285 {
1286 if (or_else)
1287 error ("%qT is not an aggregate type", type);
1288 return 0;
1289 }
1290 return 1;
1291 }
1292
1293 tree
1294 get_type_value (tree name)
1295 {
1296 if (name == error_mark_node)
1297 return NULL_TREE;
1298
1299 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1300 return IDENTIFIER_TYPE_VALUE (name);
1301 else
1302 return NULL_TREE;
1303 }
1304
1305 /* Build a reference to a member of an aggregate. This is not a C++
1306 `&', but really something which can have its address taken, and
1307 then act as a pointer to member, for example TYPE :: FIELD can have
1308 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1309 this expression is the operand of "&".
1310
1311 @@ Prints out lousy diagnostics for operator <typename>
1312 @@ fields.
1313
1314 @@ This function should be rewritten and placed in search.c. */
1315
1316 tree
1317 build_offset_ref (tree type, tree name, bool address_p)
1318 {
1319 tree decl;
1320 tree member;
1321 tree basebinfo = NULL_TREE;
1322 tree orig_name = name;
1323
1324 /* class templates can come in as TEMPLATE_DECLs here. */
1325 if (TREE_CODE (name) == TEMPLATE_DECL)
1326 return name;
1327
1328 if (dependent_type_p (type) || type_dependent_expression_p (name))
1329 return build_min_nt (SCOPE_REF, type, name);
1330
1331 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1332 {
1333 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1334 something like `a.template f<int>' or the like. For the most
1335 part, we treat this just like a.f. We do remember, however,
1336 the template-id that was used. */
1337 name = TREE_OPERAND (orig_name, 0);
1338
1339 if (DECL_P (name))
1340 name = DECL_NAME (name);
1341 else
1342 {
1343 if (TREE_CODE (name) == COMPONENT_REF)
1344 name = TREE_OPERAND (name, 1);
1345 if (TREE_CODE (name) == OVERLOAD)
1346 name = DECL_NAME (OVL_CURRENT (name));
1347 }
1348
1349 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1350 }
1351
1352 if (type == NULL_TREE)
1353 return error_mark_node;
1354
1355 /* Handle namespace names fully here. */
1356 if (TREE_CODE (type) == NAMESPACE_DECL)
1357 {
1358 tree t = lookup_namespace_name (type, name);
1359 if (t == error_mark_node)
1360 return t;
1361 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1362 /* Reconstruct the TEMPLATE_ID_EXPR. */
1363 t = build2 (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1364 t, TREE_OPERAND (orig_name, 1));
1365 if (! type_unknown_p (t))
1366 {
1367 mark_used (t);
1368 t = convert_from_reference (t);
1369 }
1370 return t;
1371 }
1372
1373 if (! is_aggr_type (type, 1))
1374 return error_mark_node;
1375
1376 if (TREE_CODE (name) == BIT_NOT_EXPR)
1377 {
1378 if (! check_dtor_name (type, name))
1379 error ("qualified type %qT does not match destructor name %<~%T%>",
1380 type, TREE_OPERAND (name, 0));
1381 name = dtor_identifier;
1382 }
1383
1384 if (!COMPLETE_TYPE_P (complete_type (type))
1385 && !TYPE_BEING_DEFINED (type))
1386 {
1387 error ("incomplete type %qT does not have member %qD", type, name);
1388 return error_mark_node;
1389 }
1390
1391 /* Set up BASEBINFO for member lookup. */
1392 decl = maybe_dummy_object (type, &basebinfo);
1393
1394 if (BASELINK_P (name) || DECL_P (name))
1395 member = name;
1396 else
1397 {
1398 member = lookup_member (basebinfo, name, 1, 0);
1399
1400 if (member == error_mark_node)
1401 return error_mark_node;
1402 }
1403
1404 if (!member)
1405 {
1406 error ("%qD is not a member of type %qT", name, type);
1407 return error_mark_node;
1408 }
1409
1410 if (processing_template_decl)
1411 {
1412 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1413 return build_min (SCOPE_REF, TREE_TYPE (member), type, orig_name);
1414 else
1415 return build_min (SCOPE_REF, TREE_TYPE (member), type, name);
1416 }
1417
1418 if (TREE_CODE (member) == TYPE_DECL)
1419 {
1420 TREE_USED (member) = 1;
1421 return member;
1422 }
1423 /* static class members and class-specific enum
1424 values can be returned without further ado. */
1425 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1426 {
1427 mark_used (member);
1428 return convert_from_reference (member);
1429 }
1430
1431 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1432 {
1433 error ("invalid pointer to bit-field %qD", member);
1434 return error_mark_node;
1435 }
1436
1437 /* A lot of this logic is now handled in lookup_member. */
1438 if (BASELINK_P (member))
1439 {
1440 /* Go from the TREE_BASELINK to the member function info. */
1441 tree fnfields = member;
1442 tree t = BASELINK_FUNCTIONS (fnfields);
1443
1444 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1445 {
1446 /* The FNFIELDS are going to contain functions that aren't
1447 necessarily templates, and templates that don't
1448 necessarily match the explicit template parameters. We
1449 save all the functions, and the explicit parameters, and
1450 then figure out exactly what to instantiate with what
1451 arguments in instantiate_type. */
1452
1453 if (TREE_CODE (t) != OVERLOAD)
1454 /* The code in instantiate_type which will process this
1455 expects to encounter OVERLOADs, not raw functions. */
1456 t = ovl_cons (t, NULL_TREE);
1457
1458 t = build2 (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1459 TREE_OPERAND (orig_name, 1));
1460 t = build2 (OFFSET_REF, unknown_type_node, decl, t);
1461
1462 PTRMEM_OK_P (t) = 1;
1463
1464 return t;
1465 }
1466
1467 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1468 {
1469 /* Get rid of a potential OVERLOAD around it. */
1470 t = OVL_CURRENT (t);
1471
1472 /* Unique functions are handled easily. */
1473
1474 /* For non-static member of base class, we need a special rule
1475 for access checking [class.protected]:
1476
1477 If the access is to form a pointer to member, the
1478 nested-name-specifier shall name the derived class
1479 (or any class derived from that class). */
1480 if (address_p && DECL_P (t)
1481 && DECL_NONSTATIC_MEMBER_P (t))
1482 perform_or_defer_access_check (TYPE_BINFO (type), t);
1483 else
1484 perform_or_defer_access_check (basebinfo, t);
1485
1486 mark_used (t);
1487 if (DECL_STATIC_FUNCTION_P (t))
1488 return t;
1489 member = t;
1490 }
1491 else
1492 {
1493 TREE_TYPE (fnfields) = unknown_type_node;
1494 member = fnfields;
1495 }
1496 }
1497 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1498 /* We need additional test besides the one in
1499 check_accessibility_of_qualified_id in case it is
1500 a pointer to non-static member. */
1501 perform_or_defer_access_check (TYPE_BINFO (type), member);
1502
1503 if (!address_p)
1504 {
1505 /* If MEMBER is non-static, then the program has fallen afoul of
1506 [expr.prim]:
1507
1508 An id-expression that denotes a nonstatic data member or
1509 nonstatic member function of a class can only be used:
1510
1511 -- as part of a class member access (_expr.ref_) in which the
1512 object-expression refers to the member's class or a class
1513 derived from that class, or
1514
1515 -- to form a pointer to member (_expr.unary.op_), or
1516
1517 -- in the body of a nonstatic member function of that class or
1518 of a class derived from that class (_class.mfct.nonstatic_), or
1519
1520 -- in a mem-initializer for a constructor for that class or for
1521 a class derived from that class (_class.base.init_). */
1522 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1523 {
1524 /* Build a representation of a the qualified name suitable
1525 for use as the operand to "&" -- even though the "&" is
1526 not actually present. */
1527 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1528 /* In Microsoft mode, treat a non-static member function as if
1529 it were a pointer-to-member. */
1530 if (flag_ms_extensions)
1531 {
1532 PTRMEM_OK_P (member) = 1;
1533 return build_unary_op (ADDR_EXPR, member, 0);
1534 }
1535 error ("invalid use of non-static member function %qD",
1536 TREE_OPERAND (member, 1));
1537 return member;
1538 }
1539 else if (TREE_CODE (member) == FIELD_DECL)
1540 {
1541 error ("invalid use of non-static data member %qD", member);
1542 return error_mark_node;
1543 }
1544 return member;
1545 }
1546
1547 /* In member functions, the form `type::name' is no longer
1548 equivalent to `this->type::name', at least not until
1549 resolve_offset_ref. */
1550 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1551 PTRMEM_OK_P (member) = 1;
1552 return member;
1553 }
1554
1555 /* If DECL is a `const' declaration, and its value is a known
1556 constant, then return that value. */
1557
1558 tree
1559 decl_constant_value (tree decl)
1560 {
1561 /* When we build a COND_EXPR, we don't know whether it will be used
1562 as an lvalue or as an rvalue. If it is an lvalue, it's not safe
1563 to replace the second and third operands with their
1564 initializers. So, we do that here. */
1565 if (TREE_CODE (decl) == COND_EXPR)
1566 {
1567 tree d1;
1568 tree d2;
1569
1570 d1 = decl_constant_value (TREE_OPERAND (decl, 1));
1571 d2 = decl_constant_value (TREE_OPERAND (decl, 2));
1572
1573 if (d1 != TREE_OPERAND (decl, 1) || d2 != TREE_OPERAND (decl, 2))
1574 return build3 (COND_EXPR,
1575 TREE_TYPE (decl),
1576 TREE_OPERAND (decl, 0), d1, d2);
1577 }
1578
1579 if (DECL_P (decl)
1580 && (/* Enumeration constants are constant. */
1581 TREE_CODE (decl) == CONST_DECL
1582 /* And so are variables with a 'const' type -- unless they
1583 are also 'volatile'. */
1584 || CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))
1585 && TREE_CODE (decl) != PARM_DECL
1586 && DECL_INITIAL (decl)
1587 && DECL_INITIAL (decl) != error_mark_node
1588 /* This is invalid if initial value is not constant.
1589 If it has either a function call, a memory reference,
1590 or a variable, then re-evaluating it could give different results. */
1591 && TREE_CONSTANT (DECL_INITIAL (decl))
1592 /* Check for cases where this is sub-optimal, even though valid. */
1593 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1594 return DECL_INITIAL (decl);
1595 return decl;
1596 }
1597 \f
1598 /* Common subroutines of build_new and build_vec_delete. */
1599
1600 /* Call the global __builtin_delete to delete ADDR. */
1601
1602 static tree
1603 build_builtin_delete_call (tree addr)
1604 {
1605 mark_used (global_delete_fndecl);
1606 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1607 }
1608 \f
1609 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1610 (which needs to go through some sort of groktypename) or it
1611 is the name of the class we are newing. INIT is an initialization value.
1612 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1613 If INIT is void_type_node, it means do *not* call a constructor
1614 for this instance.
1615
1616 For types with constructors, the data returned is initialized
1617 by the appropriate constructor.
1618
1619 Whether the type has a constructor or not, if it has a pointer
1620 to a virtual function table, then that pointer is set up
1621 here.
1622
1623 Unless I am mistaken, a call to new () will return initialized
1624 data regardless of whether the constructor itself is private or
1625 not. NOPE; new fails if the constructor is private (jcm).
1626
1627 Note that build_new does nothing to assure that any special
1628 alignment requirements of the type are met. Rather, it leaves
1629 it up to malloc to do the right thing. Otherwise, folding to
1630 the right alignment cal cause problems if the user tries to later
1631 free the memory returned by `new'.
1632
1633 PLACEMENT is the `placement' list for user-defined operator new (). */
1634
1635 tree
1636 build_new (tree placement, tree type, tree nelts, tree init,
1637 int use_global_new)
1638 {
1639 tree rval;
1640
1641 if (type == error_mark_node)
1642 return error_mark_node;
1643
1644 if (processing_template_decl)
1645 {
1646 rval = build_min (NEW_EXPR, build_pointer_type (type),
1647 placement, type, nelts, init);
1648 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1649 TREE_SIDE_EFFECTS (rval) = 1;
1650 return rval;
1651 }
1652
1653 /* ``A reference cannot be created by the new operator. A reference
1654 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1655 returned by new.'' ARM 5.3.3 */
1656 if (TREE_CODE (type) == REFERENCE_TYPE)
1657 {
1658 error ("new cannot be applied to a reference type");
1659 type = TREE_TYPE (type);
1660 }
1661
1662 if (TREE_CODE (type) == FUNCTION_TYPE)
1663 {
1664 error ("new cannot be applied to a function type");
1665 return error_mark_node;
1666 }
1667
1668 rval = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1669 nelts, init);
1670 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1671 TREE_SIDE_EFFECTS (rval) = 1;
1672 rval = build_new_1 (rval);
1673 if (rval == error_mark_node)
1674 return error_mark_node;
1675
1676 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1677 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1678 TREE_NO_WARNING (rval) = 1;
1679
1680 return rval;
1681 }
1682
1683 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1684
1685 tree
1686 build_java_class_ref (tree type)
1687 {
1688 tree name = NULL_TREE, class_decl;
1689 static tree CL_suffix = NULL_TREE;
1690 if (CL_suffix == NULL_TREE)
1691 CL_suffix = get_identifier("class$");
1692 if (jclass_node == NULL_TREE)
1693 {
1694 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1695 if (jclass_node == NULL_TREE)
1696 fatal_error ("call to Java constructor, while %<jclass%> undefined");
1697
1698 jclass_node = TREE_TYPE (jclass_node);
1699 }
1700
1701 /* Mangle the class$ field. */
1702 {
1703 tree field;
1704 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1705 if (DECL_NAME (field) == CL_suffix)
1706 {
1707 mangle_decl (field);
1708 name = DECL_ASSEMBLER_NAME (field);
1709 break;
1710 }
1711 if (!field)
1712 internal_error ("can't find class$");
1713 }
1714
1715 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1716 if (class_decl == NULL_TREE)
1717 {
1718 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1719 TREE_STATIC (class_decl) = 1;
1720 DECL_EXTERNAL (class_decl) = 1;
1721 TREE_PUBLIC (class_decl) = 1;
1722 DECL_ARTIFICIAL (class_decl) = 1;
1723 DECL_IGNORED_P (class_decl) = 1;
1724 pushdecl_top_level (class_decl);
1725 make_decl_rtl (class_decl);
1726 }
1727 return class_decl;
1728 }
1729
1730
1731 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1732 value is immediately handed to expand_expr. */
1733
1734 static tree
1735 build_new_1 (tree exp)
1736 {
1737 tree placement, init;
1738 tree true_type, size, rval;
1739 /* The type of the new-expression. (This type is always a pointer
1740 type.) */
1741 tree pointer_type;
1742 /* The type pointed to by POINTER_TYPE. */
1743 tree type;
1744 /* The type being allocated. For "new T[...]" this will be an
1745 ARRAY_TYPE. */
1746 tree full_type;
1747 /* A pointer type pointing to to the FULL_TYPE. */
1748 tree full_pointer_type;
1749 tree outer_nelts = NULL_TREE;
1750 tree nelts = NULL_TREE;
1751 tree alloc_call, alloc_expr;
1752 /* The address returned by the call to "operator new". This node is
1753 a VAR_DECL and is therefore reusable. */
1754 tree alloc_node;
1755 tree alloc_fn;
1756 tree cookie_expr, init_expr;
1757 int has_array = 0;
1758 enum tree_code code;
1759 int nothrow, check_new;
1760 /* Nonzero if the user wrote `::new' rather than just `new'. */
1761 int globally_qualified_p;
1762 int use_java_new = 0;
1763 /* If non-NULL, the number of extra bytes to allocate at the
1764 beginning of the storage allocated for an array-new expression in
1765 order to store the number of elements. */
1766 tree cookie_size = NULL_TREE;
1767 /* True if the function we are calling is a placement allocation
1768 function. */
1769 bool placement_allocation_fn_p;
1770 tree args = NULL_TREE;
1771 /* True if the storage must be initialized, either by a constructor
1772 or due to an explicit new-initializer. */
1773 bool is_initialized;
1774 /* The address of the thing allocated, not including any cookie. In
1775 particular, if an array cookie is in use, DATA_ADDR is the
1776 address of the first array element. This node is a VAR_DECL, and
1777 is therefore reusable. */
1778 tree data_addr;
1779 tree init_preeval_expr = NULL_TREE;
1780
1781 placement = TREE_OPERAND (exp, 0);
1782 type = TREE_OPERAND (exp, 1);
1783 nelts = TREE_OPERAND (exp, 2);
1784 init = TREE_OPERAND (exp, 3);
1785 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1786
1787 if (nelts)
1788 {
1789 tree index;
1790
1791 has_array = 1;
1792 outer_nelts = nelts;
1793
1794 /* ??? The middle-end will error on us for building a VLA outside a
1795 function context. Methinks that's not it's purvey. So we'll do
1796 our own VLA layout later. */
1797
1798 full_type = build_cplus_array_type (type, NULL_TREE);
1799
1800 index = convert (sizetype, nelts);
1801 index = size_binop (MINUS_EXPR, index, size_one_node);
1802 TYPE_DOMAIN (full_type) = build_index_type (index);
1803 }
1804 else
1805 full_type = type;
1806
1807 true_type = type;
1808
1809 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
1810
1811 /* If our base type is an array, then make sure we know how many elements
1812 it has. */
1813 while (TREE_CODE (true_type) == ARRAY_TYPE)
1814 {
1815 tree this_nelts = array_type_nelts_top (true_type);
1816 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1817 true_type = TREE_TYPE (true_type);
1818 }
1819
1820 if (!complete_type_or_else (true_type, exp))
1821 return error_mark_node;
1822
1823 if (TREE_CODE (true_type) == VOID_TYPE)
1824 {
1825 error ("invalid type %<void%> for new");
1826 return error_mark_node;
1827 }
1828
1829 if (abstract_virtuals_error (NULL_TREE, true_type))
1830 return error_mark_node;
1831
1832 is_initialized = (TYPE_NEEDS_CONSTRUCTING (type) || init);
1833 if (CP_TYPE_CONST_P (true_type) && !is_initialized)
1834 {
1835 error ("uninitialized const in %<new%> of %q#T", true_type);
1836 return error_mark_node;
1837 }
1838
1839 size = size_in_bytes (true_type);
1840 if (has_array)
1841 {
1842 tree n, bitsize;
1843
1844 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is necessary in
1845 order for the <INIT_EXPR <*foo> <CONSTRUCTOR ...>> to be valid. */
1846
1847 n = convert (sizetype, nelts);
1848 size = size_binop (MULT_EXPR, size, n);
1849 TYPE_SIZE_UNIT (full_type) = size;
1850
1851 n = convert (bitsizetype, nelts);
1852 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (true_type), n);
1853 TYPE_SIZE (full_type) = bitsize;
1854 }
1855
1856 /* Allocate the object. */
1857 if (! placement && TYPE_FOR_JAVA (true_type))
1858 {
1859 tree class_addr, alloc_decl;
1860 tree class_decl = build_java_class_ref (true_type);
1861 static const char alloc_name[] = "_Jv_AllocObject";
1862
1863 use_java_new = 1;
1864 alloc_decl = NULL;
1865 if (!get_global_value_if_present (get_identifier (alloc_name),
1866 &alloc_decl))
1867 {
1868 error ("call to Java constructor with %qs undefined", alloc_name);
1869 return error_mark_node;
1870 }
1871 else if (really_overloaded_fn (alloc_decl))
1872 {
1873 error ("%qD should never be overloaded", alloc_decl);
1874 return error_mark_node;
1875 }
1876 alloc_decl = OVL_CURRENT (alloc_decl);
1877 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1878 alloc_call = (build_function_call
1879 (alloc_decl,
1880 build_tree_list (NULL_TREE, class_addr)));
1881 }
1882 else
1883 {
1884 tree fnname;
1885 tree fns;
1886
1887 fnname = ansi_opname (code);
1888
1889 if (!globally_qualified_p
1890 && CLASS_TYPE_P (true_type)
1891 && (has_array
1892 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
1893 : TYPE_HAS_NEW_OPERATOR (true_type)))
1894 {
1895 /* Use a class-specific operator new. */
1896 /* If a cookie is required, add some extra space. */
1897 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
1898 {
1899 cookie_size = targetm.cxx.get_cookie_size (true_type);
1900 size = size_binop (PLUS_EXPR, size, cookie_size);
1901 }
1902 /* Create the argument list. */
1903 args = tree_cons (NULL_TREE, size, placement);
1904 /* Do name-lookup to find the appropriate operator. */
1905 fns = lookup_fnfields (true_type, fnname, /*protect=*/2);
1906 if (TREE_CODE (fns) == TREE_LIST)
1907 {
1908 error ("request for member %qD is ambiguous", fnname);
1909 print_candidates (fns);
1910 return error_mark_node;
1911 }
1912 alloc_call = build_new_method_call (build_dummy_object (true_type),
1913 fns, args,
1914 /*conversion_path=*/NULL_TREE,
1915 LOOKUP_NORMAL);
1916 }
1917 else
1918 {
1919 /* Use a global operator new. */
1920 /* See if a cookie might be required. */
1921 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
1922 cookie_size = targetm.cxx.get_cookie_size (true_type);
1923 else
1924 cookie_size = NULL_TREE;
1925
1926 alloc_call = build_operator_new_call (fnname, placement,
1927 &size, &cookie_size);
1928 }
1929 }
1930
1931 if (alloc_call == error_mark_node)
1932 return error_mark_node;
1933
1934 /* In the simple case, we can stop now. */
1935 pointer_type = build_pointer_type (type);
1936 if (!cookie_size && !is_initialized)
1937 return build_nop (pointer_type, alloc_call);
1938
1939 /* While we're working, use a pointer to the type we've actually
1940 allocated. Store the result of the call in a variable so that we
1941 can use it more than once. */
1942 full_pointer_type = build_pointer_type (full_type);
1943 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1944 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1945
1946 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1947 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1948 alloc_call = TREE_OPERAND (alloc_call, 1);
1949 alloc_fn = get_callee_fndecl (alloc_call);
1950 gcc_assert (alloc_fn != NULL_TREE);
1951
1952 /* Now, check to see if this function is actually a placement
1953 allocation function. This can happen even when PLACEMENT is NULL
1954 because we might have something like:
1955
1956 struct S { void* operator new (size_t, int i = 0); };
1957
1958 A call to `new S' will get this allocation function, even though
1959 there is no explicit placement argument. If there is more than
1960 one argument, or there are variable arguments, then this is a
1961 placement allocation function. */
1962 placement_allocation_fn_p
1963 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1964 || varargs_function_p (alloc_fn));
1965
1966 /* Preevaluate the placement args so that we don't reevaluate them for a
1967 placement delete. */
1968 if (placement_allocation_fn_p)
1969 {
1970 tree inits;
1971 stabilize_call (alloc_call, &inits);
1972 if (inits)
1973 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1974 alloc_expr);
1975 }
1976
1977 /* unless an allocation function is declared with an empty excep-
1978 tion-specification (_except.spec_), throw(), it indicates failure to
1979 allocate storage by throwing a bad_alloc exception (clause _except_,
1980 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1981 cation function is declared with an empty exception-specification,
1982 throw(), it returns null to indicate failure to allocate storage and a
1983 non-null pointer otherwise.
1984
1985 So check for a null exception spec on the op new we just called. */
1986
1987 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1988 check_new = (flag_check_new || nothrow) && ! use_java_new;
1989
1990 if (cookie_size)
1991 {
1992 tree cookie;
1993 tree cookie_ptr;
1994
1995 /* Adjust so we're pointing to the start of the object. */
1996 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
1997 alloc_node, cookie_size));
1998
1999 /* Store the number of bytes allocated so that we can know how
2000 many elements to destroy later. We use the last sizeof
2001 (size_t) bytes to store the number of elements. */
2002 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
2003 data_addr, size_in_bytes (sizetype));
2004 cookie = build_indirect_ref (cookie_ptr, NULL);
2005
2006 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2007
2008 if (targetm.cxx.cookie_has_size ())
2009 {
2010 /* Also store the element size. */
2011 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
2012 cookie_ptr, size_in_bytes (sizetype));
2013 cookie = build_indirect_ref (cookie_ptr, NULL);
2014 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2015 size_in_bytes(true_type));
2016 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2017 cookie, cookie_expr);
2018 }
2019 data_addr = TARGET_EXPR_SLOT (data_addr);
2020 }
2021 else
2022 {
2023 cookie_expr = NULL_TREE;
2024 data_addr = alloc_node;
2025 }
2026
2027 /* Now initialize the allocated object. Note that we preevaluate the
2028 initialization expression, apart from the actual constructor call or
2029 assignment--we do this because we want to delay the allocation as long
2030 as possible in order to minimize the size of the exception region for
2031 placement delete. */
2032 if (is_initialized)
2033 {
2034 bool stable;
2035
2036 init_expr = build_indirect_ref (data_addr, NULL);
2037
2038 if (init == void_zero_node)
2039 init = build_default_init (full_type, nelts);
2040 else if (init && has_array)
2041 pedwarn ("ISO C++ forbids initialization in array new");
2042
2043 if (has_array)
2044 {
2045 init_expr
2046 = build_vec_init (init_expr,
2047 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2048 integer_one_node),
2049 init, /*from_array=*/0);
2050
2051 /* An array initialization is stable because the initialization
2052 of each element is a full-expression, so the temporaries don't
2053 leak out. */
2054 stable = true;
2055 }
2056 else if (TYPE_NEEDS_CONSTRUCTING (type))
2057 {
2058 init_expr = build_special_member_call (init_expr,
2059 complete_ctor_identifier,
2060 init, true_type,
2061 LOOKUP_NORMAL);
2062 stable = stabilize_init (init_expr, &init_preeval_expr);
2063 }
2064 else
2065 {
2066 /* We are processing something like `new int (10)', which
2067 means allocate an int, and initialize it with 10. */
2068
2069 if (TREE_CODE (init) == TREE_LIST)
2070 init = build_x_compound_expr_from_list (init, "new initializer");
2071
2072 else
2073 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2074 || TREE_TYPE (init) != NULL_TREE);
2075
2076 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2077 stable = stabilize_init (init_expr, &init_preeval_expr);
2078 }
2079
2080 if (init_expr == error_mark_node)
2081 return error_mark_node;
2082
2083 /* If any part of the object initialization terminates by throwing an
2084 exception and a suitable deallocation function can be found, the
2085 deallocation function is called to free the memory in which the
2086 object was being constructed, after which the exception continues
2087 to propagate in the context of the new-expression. If no
2088 unambiguous matching deallocation function can be found,
2089 propagating the exception does not cause the object's memory to be
2090 freed. */
2091 if (flag_exceptions && ! use_java_new)
2092 {
2093 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2094 tree cleanup;
2095
2096 /* The Standard is unclear here, but the right thing to do
2097 is to use the same method for finding deallocation
2098 functions that we use for finding allocation functions. */
2099 cleanup = build_op_delete_call (dcode, alloc_node, size,
2100 globally_qualified_p,
2101 (placement_allocation_fn_p
2102 ? alloc_call : NULL_TREE));
2103
2104 if (!cleanup)
2105 /* We're done. */;
2106 else if (stable)
2107 /* This is much simpler if we were able to preevaluate all of
2108 the arguments to the constructor call. */
2109 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2110 init_expr, cleanup);
2111 else
2112 /* Ack! First we allocate the memory. Then we set our sentry
2113 variable to true, and expand a cleanup that deletes the
2114 memory if sentry is true. Then we run the constructor, and
2115 finally clear the sentry.
2116
2117 We need to do this because we allocate the space first, so
2118 if there are any temporaries with cleanups in the
2119 constructor args and we weren't able to preevaluate them, we
2120 need this EH region to extend until end of full-expression
2121 to preserve nesting. */
2122 {
2123 tree end, sentry, begin;
2124
2125 begin = get_target_expr (boolean_true_node);
2126 CLEANUP_EH_ONLY (begin) = 1;
2127
2128 sentry = TARGET_EXPR_SLOT (begin);
2129
2130 TARGET_EXPR_CLEANUP (begin)
2131 = build3 (COND_EXPR, void_type_node, sentry,
2132 cleanup, void_zero_node);
2133
2134 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2135 sentry, boolean_false_node);
2136
2137 init_expr
2138 = build2 (COMPOUND_EXPR, void_type_node, begin,
2139 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2140 end));
2141 }
2142
2143 }
2144 }
2145 else
2146 init_expr = NULL_TREE;
2147
2148 /* Now build up the return value in reverse order. */
2149
2150 rval = data_addr;
2151
2152 if (init_expr)
2153 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2154 if (cookie_expr)
2155 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2156
2157 if (rval == alloc_node)
2158 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2159 and return the call (which doesn't need to be adjusted). */
2160 rval = TARGET_EXPR_INITIAL (alloc_expr);
2161 else
2162 {
2163 if (check_new)
2164 {
2165 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2166 integer_zero_node);
2167 rval = build_conditional_expr (ifexp, rval, alloc_node);
2168 }
2169
2170 /* Perform the allocation before anything else, so that ALLOC_NODE
2171 has been initialized before we start using it. */
2172 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2173 }
2174
2175 if (init_preeval_expr)
2176 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2177
2178 /* Convert to the final type. */
2179 rval = build_nop (pointer_type, rval);
2180
2181 /* A new-expression is never an lvalue. */
2182 if (real_lvalue_p (rval))
2183 rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
2184
2185 return rval;
2186 }
2187 \f
2188 static tree
2189 build_vec_delete_1 (tree base, tree maxindex, tree type,
2190 special_function_kind auto_delete_vec, int use_global_delete)
2191 {
2192 tree virtual_size;
2193 tree ptype = build_pointer_type (type = complete_type (type));
2194 tree size_exp = size_in_bytes (type);
2195
2196 /* Temporary variables used by the loop. */
2197 tree tbase, tbase_init;
2198
2199 /* This is the body of the loop that implements the deletion of a
2200 single element, and moves temp variables to next elements. */
2201 tree body;
2202
2203 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2204 tree loop = 0;
2205
2206 /* This is the thing that governs what to do after the loop has run. */
2207 tree deallocate_expr = 0;
2208
2209 /* This is the BIND_EXPR which holds the outermost iterator of the
2210 loop. It is convenient to set this variable up and test it before
2211 executing any other code in the loop.
2212 This is also the containing expression returned by this function. */
2213 tree controller = NULL_TREE;
2214
2215 /* We should only have 1-D arrays here. */
2216 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2217
2218 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2219 goto no_destructor;
2220
2221 /* The below is short by the cookie size. */
2222 virtual_size = size_binop (MULT_EXPR, size_exp,
2223 convert (sizetype, maxindex));
2224
2225 tbase = create_temporary_var (ptype);
2226 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2227 fold (build2 (PLUS_EXPR, ptype,
2228 base,
2229 virtual_size)));
2230 DECL_REGISTER (tbase) = 1;
2231 controller = build3 (BIND_EXPR, void_type_node, tbase,
2232 NULL_TREE, NULL_TREE);
2233 TREE_SIDE_EFFECTS (controller) = 1;
2234
2235 body = build1 (EXIT_EXPR, void_type_node,
2236 build2 (EQ_EXPR, boolean_type_node, base, tbase));
2237 body = build_compound_expr
2238 (body, build_modify_expr (tbase, NOP_EXPR,
2239 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2240 body = build_compound_expr
2241 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2242 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2243
2244 loop = build1 (LOOP_EXPR, void_type_node, body);
2245 loop = build_compound_expr (tbase_init, loop);
2246
2247 no_destructor:
2248 /* If the delete flag is one, or anything else with the low bit set,
2249 delete the storage. */
2250 if (auto_delete_vec != sfk_base_destructor)
2251 {
2252 tree base_tbd;
2253
2254 /* The below is short by the cookie size. */
2255 virtual_size = size_binop (MULT_EXPR, size_exp,
2256 convert (sizetype, maxindex));
2257
2258 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2259 /* no header */
2260 base_tbd = base;
2261 else
2262 {
2263 tree cookie_size;
2264
2265 cookie_size = targetm.cxx.get_cookie_size (type);
2266 base_tbd
2267 = cp_convert (ptype,
2268 cp_build_binary_op (MINUS_EXPR,
2269 cp_convert (string_type_node,
2270 base),
2271 cookie_size));
2272 /* True size with header. */
2273 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2274 }
2275
2276 if (auto_delete_vec == sfk_deleting_destructor)
2277 deallocate_expr = build_x_delete (base_tbd,
2278 2 | use_global_delete,
2279 virtual_size);
2280 }
2281
2282 body = loop;
2283 if (!deallocate_expr)
2284 ;
2285 else if (!body)
2286 body = deallocate_expr;
2287 else
2288 body = build_compound_expr (body, deallocate_expr);
2289
2290 if (!body)
2291 body = integer_zero_node;
2292
2293 /* Outermost wrapper: If pointer is null, punt. */
2294 body = fold (build3 (COND_EXPR, void_type_node,
2295 fold (build2 (NE_EXPR, boolean_type_node, base,
2296 convert (TREE_TYPE (base),
2297 integer_zero_node))),
2298 body, integer_zero_node));
2299 body = build1 (NOP_EXPR, void_type_node, body);
2300
2301 if (controller)
2302 {
2303 TREE_OPERAND (controller, 1) = body;
2304 body = controller;
2305 }
2306
2307 if (TREE_CODE (base) == SAVE_EXPR)
2308 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2309 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2310
2311 return convert_to_void (body, /*implicit=*/NULL);
2312 }
2313
2314 /* Create an unnamed variable of the indicated TYPE. */
2315
2316 tree
2317 create_temporary_var (tree type)
2318 {
2319 tree decl;
2320
2321 decl = build_decl (VAR_DECL, NULL_TREE, type);
2322 TREE_USED (decl) = 1;
2323 DECL_ARTIFICIAL (decl) = 1;
2324 DECL_SOURCE_LOCATION (decl) = input_location;
2325 DECL_IGNORED_P (decl) = 1;
2326 DECL_CONTEXT (decl) = current_function_decl;
2327
2328 return decl;
2329 }
2330
2331 /* Create a new temporary variable of the indicated TYPE, initialized
2332 to INIT.
2333
2334 It is not entered into current_binding_level, because that breaks
2335 things when it comes time to do final cleanups (which take place
2336 "outside" the binding contour of the function). */
2337
2338 static tree
2339 get_temp_regvar (tree type, tree init)
2340 {
2341 tree decl;
2342
2343 decl = create_temporary_var (type);
2344 add_decl_expr (decl);
2345
2346 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2347
2348 return decl;
2349 }
2350
2351 /* `build_vec_init' returns tree structure that performs
2352 initialization of a vector of aggregate types.
2353
2354 BASE is a reference to the vector, of ARRAY_TYPE.
2355 MAXINDEX is the maximum index of the array (one less than the
2356 number of elements). It is only used if
2357 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2358 INIT is the (possibly NULL) initializer.
2359
2360 FROM_ARRAY is 0 if we should init everything with INIT
2361 (i.e., every element initialized from INIT).
2362 FROM_ARRAY is 1 if we should index into INIT in parallel
2363 with initialization of DECL.
2364 FROM_ARRAY is 2 if we should index into INIT in parallel,
2365 but use assignment instead of initialization. */
2366
2367 tree
2368 build_vec_init (tree base, tree maxindex, tree init, int from_array)
2369 {
2370 tree rval;
2371 tree base2 = NULL_TREE;
2372 tree size;
2373 tree itype = NULL_TREE;
2374 tree iterator;
2375 /* The type of the array. */
2376 tree atype = TREE_TYPE (base);
2377 /* The type of an element in the array. */
2378 tree type = TREE_TYPE (atype);
2379 /* The type of a pointer to an element in the array. */
2380 tree ptype;
2381 tree stmt_expr;
2382 tree compound_stmt;
2383 int destroy_temps;
2384 tree try_block = NULL_TREE;
2385 int num_initialized_elts = 0;
2386 bool is_global;
2387
2388 if (TYPE_DOMAIN (atype))
2389 maxindex = array_type_nelts (atype);
2390
2391 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2392 return error_mark_node;
2393
2394 if (init
2395 && (from_array == 2
2396 ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2397 : !TYPE_NEEDS_CONSTRUCTING (type))
2398 && ((TREE_CODE (init) == CONSTRUCTOR
2399 /* Don't do this if the CONSTRUCTOR might contain something
2400 that might throw and require us to clean up. */
2401 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2402 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2403 || from_array))
2404 {
2405 /* Do non-default initialization of POD arrays resulting from
2406 brace-enclosed initializers. In this case, digest_init and
2407 store_constructor will handle the semantics for us. */
2408
2409 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2410 return stmt_expr;
2411 }
2412
2413 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2414 ptype = build_pointer_type (type);
2415 size = size_in_bytes (type);
2416 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2417 base = cp_convert (ptype, decay_conversion (base));
2418
2419 /* The code we are generating looks like:
2420 ({
2421 T* t1 = (T*) base;
2422 T* rval = t1;
2423 ptrdiff_t iterator = maxindex;
2424 try {
2425 for (; iterator != -1; --iterator) {
2426 ... initialize *t1 ...
2427 ++t1;
2428 }
2429 } catch (...) {
2430 ... destroy elements that were constructed ...
2431 }
2432 rval;
2433 })
2434
2435 We can omit the try and catch blocks if we know that the
2436 initialization will never throw an exception, or if the array
2437 elements do not have destructors. We can omit the loop completely if
2438 the elements of the array do not have constructors.
2439
2440 We actually wrap the entire body of the above in a STMT_EXPR, for
2441 tidiness.
2442
2443 When copying from array to another, when the array elements have
2444 only trivial copy constructors, we should use __builtin_memcpy
2445 rather than generating a loop. That way, we could take advantage
2446 of whatever cleverness the back-end has for dealing with copies
2447 of blocks of memory. */
2448
2449 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2450 destroy_temps = stmts_are_full_exprs_p ();
2451 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2452 rval = get_temp_regvar (ptype, base);
2453 base = get_temp_regvar (ptype, rval);
2454 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2455
2456 /* Protect the entire array initialization so that we can destroy
2457 the partially constructed array if an exception is thrown.
2458 But don't do this if we're assigning. */
2459 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2460 && from_array != 2)
2461 {
2462 try_block = begin_try_block ();
2463 }
2464
2465 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2466 {
2467 /* Do non-default initialization of non-POD arrays resulting from
2468 brace-enclosed initializers. */
2469
2470 tree elts;
2471 from_array = 0;
2472
2473 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2474 {
2475 tree elt = TREE_VALUE (elts);
2476 tree baseref = build1 (INDIRECT_REF, type, base);
2477
2478 num_initialized_elts++;
2479
2480 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2481 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2482 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2483 else
2484 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2485 elt));
2486 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2487
2488 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2489 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2490 }
2491
2492 /* Clear out INIT so that we don't get confused below. */
2493 init = NULL_TREE;
2494 }
2495 else if (from_array)
2496 {
2497 /* If initializing one array from another, initialize element by
2498 element. We rely upon the below calls the do argument
2499 checking. */
2500 if (init)
2501 {
2502 base2 = decay_conversion (init);
2503 itype = TREE_TYPE (base2);
2504 base2 = get_temp_regvar (itype, base2);
2505 itype = TREE_TYPE (itype);
2506 }
2507 else if (TYPE_LANG_SPECIFIC (type)
2508 && TYPE_NEEDS_CONSTRUCTING (type)
2509 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2510 {
2511 error ("initializer ends prematurely");
2512 return error_mark_node;
2513 }
2514 }
2515
2516 /* Now, default-initialize any remaining elements. We don't need to
2517 do that if a) the type does not need constructing, or b) we've
2518 already initialized all the elements.
2519
2520 We do need to keep going if we're copying an array. */
2521
2522 if (from_array
2523 || (TYPE_NEEDS_CONSTRUCTING (type)
2524 && ! (host_integerp (maxindex, 0)
2525 && (num_initialized_elts
2526 == tree_low_cst (maxindex, 0) + 1))))
2527 {
2528 /* If the ITERATOR is equal to -1, then we don't have to loop;
2529 we've already initialized all the elements. */
2530 tree for_stmt;
2531 tree elt_init;
2532
2533 for_stmt = begin_for_stmt ();
2534 finish_for_init_stmt (for_stmt);
2535 finish_for_cond (build2 (NE_EXPR, boolean_type_node,
2536 iterator, integer_minus_one_node),
2537 for_stmt);
2538 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2539 for_stmt);
2540
2541 if (from_array)
2542 {
2543 tree to = build1 (INDIRECT_REF, type, base);
2544 tree from;
2545
2546 if (base2)
2547 from = build1 (INDIRECT_REF, itype, base2);
2548 else
2549 from = NULL_TREE;
2550
2551 if (from_array == 2)
2552 elt_init = build_modify_expr (to, NOP_EXPR, from);
2553 else if (TYPE_NEEDS_CONSTRUCTING (type))
2554 elt_init = build_aggr_init (to, from, 0);
2555 else if (from)
2556 elt_init = build_modify_expr (to, NOP_EXPR, from);
2557 else
2558 gcc_unreachable ();
2559 }
2560 else if (TREE_CODE (type) == ARRAY_TYPE)
2561 {
2562 if (init != 0)
2563 sorry
2564 ("cannot initialize multi-dimensional array with initializer");
2565 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2566 0, 0, 0);
2567 }
2568 else
2569 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2570 init, 0);
2571
2572 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2573 finish_expr_stmt (elt_init);
2574 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2575
2576 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2577 if (base2)
2578 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2579
2580 finish_for_stmt (for_stmt);
2581 }
2582
2583 /* Make sure to cleanup any partially constructed elements. */
2584 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2585 && from_array != 2)
2586 {
2587 tree e;
2588 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2589
2590 /* Flatten multi-dimensional array since build_vec_delete only
2591 expects one-dimensional array. */
2592 if (TREE_CODE (type) == ARRAY_TYPE)
2593 {
2594 m = cp_build_binary_op (MULT_EXPR, m,
2595 array_type_nelts_total (type));
2596 type = strip_array_types (type);
2597 }
2598
2599 finish_cleanup_try_block (try_block);
2600 e = build_vec_delete_1 (rval, m, type, sfk_base_destructor,
2601 /*use_global_delete=*/0);
2602 finish_cleanup (e, try_block);
2603 }
2604
2605 /* The value of the array initialization is the array itself, RVAL
2606 is a pointer to the first element. */
2607 finish_stmt_expr_expr (rval, stmt_expr);
2608
2609 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2610
2611 /* Now convert make the result have the correct type. */
2612 atype = build_pointer_type (atype);
2613 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2614 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2615
2616 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2617 return stmt_expr;
2618 }
2619
2620 /* Free up storage of type TYPE, at address ADDR.
2621
2622 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2623 of pointer.
2624
2625 VIRTUAL_SIZE is the amount of storage that was allocated, and is
2626 used as the second argument to operator delete. It can include
2627 things like padding and magic size cookies. It has virtual in it,
2628 because if you have a base pointer and you delete through a virtual
2629 destructor, it should be the size of the dynamic object, not the
2630 static object, see Free Store 12.5 ISO C++.
2631
2632 This does not call any destructors. */
2633
2634 tree
2635 build_x_delete (tree addr, int which_delete, tree virtual_size)
2636 {
2637 int use_global_delete = which_delete & 1;
2638 int use_vec_delete = !!(which_delete & 2);
2639 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
2640
2641 return build_op_delete_call (code, addr, virtual_size, use_global_delete,
2642 NULL_TREE);
2643 }
2644
2645 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2646 build_delete. */
2647
2648 static tree
2649 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2650 {
2651 tree name;
2652 tree fn;
2653 switch (dtor_kind)
2654 {
2655 case sfk_complete_destructor:
2656 name = complete_dtor_identifier;
2657 break;
2658
2659 case sfk_base_destructor:
2660 name = base_dtor_identifier;
2661 break;
2662
2663 case sfk_deleting_destructor:
2664 name = deleting_dtor_identifier;
2665 break;
2666
2667 default:
2668 gcc_unreachable ();
2669 }
2670
2671 exp = convert_from_reference (exp);
2672 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2673 return build_new_method_call (exp, fn,
2674 /*args=*/NULL_TREE,
2675 /*conversion_path=*/NULL_TREE,
2676 flags);
2677 }
2678
2679 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2680 ADDR is an expression which yields the store to be destroyed.
2681 AUTO_DELETE is the name of the destructor to call, i.e., either
2682 sfk_complete_destructor, sfk_base_destructor, or
2683 sfk_deleting_destructor.
2684
2685 FLAGS is the logical disjunction of zero or more LOOKUP_
2686 flags. See cp-tree.h for more info. */
2687
2688 tree
2689 build_delete (tree type, tree addr, special_function_kind auto_delete,
2690 int flags, int use_global_delete)
2691 {
2692 tree expr;
2693
2694 if (addr == error_mark_node)
2695 return error_mark_node;
2696
2697 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2698 set to `error_mark_node' before it gets properly cleaned up. */
2699 if (type == error_mark_node)
2700 return error_mark_node;
2701
2702 type = TYPE_MAIN_VARIANT (type);
2703
2704 if (TREE_CODE (type) == POINTER_TYPE)
2705 {
2706 bool complete_p = true;
2707
2708 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2709 if (TREE_CODE (type) == ARRAY_TYPE)
2710 goto handle_array;
2711
2712 /* We don't want to warn about delete of void*, only other
2713 incomplete types. Deleting other incomplete types
2714 invokes undefined behavior, but it is not ill-formed, so
2715 compile to something that would even do The Right Thing
2716 (TM) should the type have a trivial dtor and no delete
2717 operator. */
2718 if (!VOID_TYPE_P (type))
2719 {
2720 complete_type (type);
2721 if (!COMPLETE_TYPE_P (type))
2722 {
2723 warning ("possible problem detected in invocation of "
2724 "delete operator:");
2725 cxx_incomplete_type_diagnostic (addr, type, 1);
2726 inform ("neither the destructor nor the class-specific "
2727 "operator delete will be called, even if they are "
2728 "declared when the class is defined.");
2729 complete_p = false;
2730 }
2731 }
2732 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2733 /* Call the builtin operator delete. */
2734 return build_builtin_delete_call (addr);
2735 if (TREE_SIDE_EFFECTS (addr))
2736 addr = save_expr (addr);
2737
2738 /* Throw away const and volatile on target type of addr. */
2739 addr = convert_force (build_pointer_type (type), addr, 0);
2740 }
2741 else if (TREE_CODE (type) == ARRAY_TYPE)
2742 {
2743 handle_array:
2744
2745 if (TYPE_DOMAIN (type) == NULL_TREE)
2746 {
2747 error ("unknown array size in delete");
2748 return error_mark_node;
2749 }
2750 return build_vec_delete (addr, array_type_nelts (type),
2751 auto_delete, use_global_delete);
2752 }
2753 else
2754 {
2755 /* Don't check PROTECT here; leave that decision to the
2756 destructor. If the destructor is accessible, call it,
2757 else report error. */
2758 addr = build_unary_op (ADDR_EXPR, addr, 0);
2759 if (TREE_SIDE_EFFECTS (addr))
2760 addr = save_expr (addr);
2761
2762 addr = convert_force (build_pointer_type (type), addr, 0);
2763 }
2764
2765 gcc_assert (IS_AGGR_TYPE (type));
2766
2767 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2768 {
2769 if (auto_delete != sfk_deleting_destructor)
2770 return void_zero_node;
2771
2772 return build_op_delete_call
2773 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), use_global_delete,
2774 NULL_TREE);
2775 }
2776 else
2777 {
2778 tree do_delete = NULL_TREE;
2779 tree ifexp;
2780
2781 gcc_assert (TYPE_HAS_DESTRUCTOR (type));
2782
2783 /* For `::delete x', we must not use the deleting destructor
2784 since then we would not be sure to get the global `operator
2785 delete'. */
2786 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2787 {
2788 /* We will use ADDR multiple times so we must save it. */
2789 addr = save_expr (addr);
2790 /* Delete the object. */
2791 do_delete = build_builtin_delete_call (addr);
2792 /* Otherwise, treat this like a complete object destructor
2793 call. */
2794 auto_delete = sfk_complete_destructor;
2795 }
2796 /* If the destructor is non-virtual, there is no deleting
2797 variant. Instead, we must explicitly call the appropriate
2798 `operator delete' here. */
2799 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2800 && auto_delete == sfk_deleting_destructor)
2801 {
2802 /* We will use ADDR multiple times so we must save it. */
2803 addr = save_expr (addr);
2804 /* Build the call. */
2805 do_delete = build_op_delete_call (DELETE_EXPR,
2806 addr,
2807 cxx_sizeof_nowarn (type),
2808 /*global_p=*/false,
2809 NULL_TREE);
2810 /* Call the complete object destructor. */
2811 auto_delete = sfk_complete_destructor;
2812 }
2813 else if (auto_delete == sfk_deleting_destructor
2814 && TYPE_GETS_REG_DELETE (type))
2815 {
2816 /* Make sure we have access to the member op delete, even though
2817 we'll actually be calling it from the destructor. */
2818 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2819 /*global_p=*/false, NULL_TREE);
2820 }
2821
2822 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2823 auto_delete, flags);
2824 if (do_delete)
2825 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2826
2827 if (flags & LOOKUP_DESTRUCTOR)
2828 /* Explicit destructor call; don't check for null pointer. */
2829 ifexp = integer_one_node;
2830 else
2831 /* Handle deleting a null pointer. */
2832 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2833
2834 if (ifexp != integer_one_node)
2835 expr = build3 (COND_EXPR, void_type_node,
2836 ifexp, expr, void_zero_node);
2837
2838 return expr;
2839 }
2840 }
2841
2842 /* At the beginning of a destructor, push cleanups that will call the
2843 destructors for our base classes and members.
2844
2845 Called from begin_destructor_body. */
2846
2847 void
2848 push_base_cleanups (void)
2849 {
2850 tree binfo, base_binfo;
2851 int i;
2852 tree member;
2853 tree expr;
2854 VEC (tree) *vbases;
2855
2856 /* Run destructors for all virtual baseclasses. */
2857 if (CLASSTYPE_VBASECLASSES (current_class_type))
2858 {
2859 tree cond = (condition_conversion
2860 (build2 (BIT_AND_EXPR, integer_type_node,
2861 current_in_charge_parm,
2862 integer_two_node)));
2863
2864 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2865 order, which is also the right order for pushing cleanups. */
2866 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2867 VEC_iterate (tree, vbases, i, base_binfo); i++)
2868 {
2869 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2870 {
2871 expr = build_special_member_call (current_class_ref,
2872 base_dtor_identifier,
2873 NULL_TREE,
2874 base_binfo,
2875 (LOOKUP_NORMAL
2876 | LOOKUP_NONVIRTUAL));
2877 expr = build3 (COND_EXPR, void_type_node, cond,
2878 expr, void_zero_node);
2879 finish_decl_cleanup (NULL_TREE, expr);
2880 }
2881 }
2882 }
2883
2884 /* Take care of the remaining baseclasses. */
2885 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2886 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2887 {
2888 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2889 || BINFO_VIRTUAL_P (base_binfo))
2890 continue;
2891
2892 expr = build_special_member_call (current_class_ref,
2893 base_dtor_identifier,
2894 NULL_TREE, base_binfo,
2895 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2896 finish_decl_cleanup (NULL_TREE, expr);
2897 }
2898
2899 for (member = TYPE_FIELDS (current_class_type); member;
2900 member = TREE_CHAIN (member))
2901 {
2902 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
2903 continue;
2904 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2905 {
2906 tree this_member = (build_class_member_access_expr
2907 (current_class_ref, member,
2908 /*access_path=*/NULL_TREE,
2909 /*preserve_reference=*/false));
2910 tree this_type = TREE_TYPE (member);
2911 expr = build_delete (this_type, this_member,
2912 sfk_complete_destructor,
2913 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2914 0);
2915 finish_decl_cleanup (NULL_TREE, expr);
2916 }
2917 }
2918 }
2919
2920 /* For type TYPE, delete the virtual baseclass objects of DECL. */
2921
2922 tree
2923 build_vbase_delete (tree type, tree decl)
2924 {
2925 unsigned ix;
2926 tree binfo;
2927 tree result;
2928 VEC (tree) *vbases;
2929 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
2930
2931 gcc_assert (addr != error_mark_node);
2932
2933 result = convert_to_void (integer_zero_node, NULL);
2934 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
2935 VEC_iterate (tree, vbases, ix, binfo); ix++)
2936 {
2937 tree base_addr = convert_force
2938 (build_pointer_type (BINFO_TYPE (binfo)), addr, 0);
2939 tree base_delete = build_delete
2940 (TREE_TYPE (base_addr), base_addr, sfk_base_destructor,
2941 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
2942
2943 result = build_compound_expr (result, base_delete);
2944 }
2945 return result;
2946 }
2947
2948 /* Build a C++ vector delete expression.
2949 MAXINDEX is the number of elements to be deleted.
2950 ELT_SIZE is the nominal size of each element in the vector.
2951 BASE is the expression that should yield the store to be deleted.
2952 This function expands (or synthesizes) these calls itself.
2953 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2954
2955 This also calls delete for virtual baseclasses of elements of the vector.
2956
2957 Update: MAXINDEX is no longer needed. The size can be extracted from the
2958 start of the vector for pointers, and from the type for arrays. We still
2959 use MAXINDEX for arrays because it happens to already have one of the
2960 values we'd have to extract. (We could use MAXINDEX with pointers to
2961 confirm the size, and trap if the numbers differ; not clear that it'd
2962 be worth bothering.) */
2963
2964 tree
2965 build_vec_delete (tree base, tree maxindex,
2966 special_function_kind auto_delete_vec, int use_global_delete)
2967 {
2968 tree type;
2969 tree rval;
2970 tree base_init = NULL_TREE;
2971
2972 type = TREE_TYPE (base);
2973
2974 if (TREE_CODE (type) == POINTER_TYPE)
2975 {
2976 /* Step back one from start of vector, and read dimension. */
2977 tree cookie_addr;
2978
2979 if (TREE_SIDE_EFFECTS (base))
2980 {
2981 base_init = get_target_expr (base);
2982 base = TARGET_EXPR_SLOT (base_init);
2983 }
2984 type = strip_array_types (TREE_TYPE (type));
2985 cookie_addr = build2 (MINUS_EXPR,
2986 build_pointer_type (sizetype),
2987 base,
2988 TYPE_SIZE_UNIT (sizetype));
2989 maxindex = build_indirect_ref (cookie_addr, NULL);
2990 }
2991 else if (TREE_CODE (type) == ARRAY_TYPE)
2992 {
2993 /* Get the total number of things in the array, maxindex is a
2994 bad name. */
2995 maxindex = array_type_nelts_total (type);
2996 type = strip_array_types (type);
2997 base = build_unary_op (ADDR_EXPR, base, 1);
2998 if (TREE_SIDE_EFFECTS (base))
2999 {
3000 base_init = get_target_expr (base);
3001 base = TARGET_EXPR_SLOT (base_init);
3002 }
3003 }
3004 else
3005 {
3006 if (base != error_mark_node)
3007 error ("type to vector delete is neither pointer or array type");
3008 return error_mark_node;
3009 }
3010
3011 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3012 use_global_delete);
3013 if (base_init)
3014 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3015
3016 return rval;
3017 }