tree.def (VOID_CST): New.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "target.h"
33 #include "gimplify.h"
34 #include "wide-int.h"
35
36 static bool begin_init_stmts (tree *, tree *);
37 static tree finish_init_stmts (bool, tree, tree);
38 static void construct_virtual_base (tree, tree);
39 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
40 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
41 static void perform_member_init (tree, tree);
42 static tree build_builtin_delete_call (tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_field_list (tree, tree, int *);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51
52 /* We are about to generate some complex initialization code.
53 Conceptually, it is all a single expression. However, we may want
54 to include conditionals, loops, and other such statement-level
55 constructs. Therefore, we build the initialization code inside a
56 statement-expression. This function starts such an expression.
57 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
58 pass them back to finish_init_stmts when the expression is
59 complete. */
60
61 static bool
62 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
63 {
64 bool is_global = !building_stmt_list_p ();
65
66 *stmt_expr_p = begin_stmt_expr ();
67 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
68
69 return is_global;
70 }
71
72 /* Finish out the statement-expression begun by the previous call to
73 begin_init_stmts. Returns the statement-expression itself. */
74
75 static tree
76 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
77 {
78 finish_compound_stmt (compound_stmt);
79
80 stmt_expr = finish_stmt_expr (stmt_expr, true);
81
82 gcc_assert (!building_stmt_list_p () == is_global);
83
84 return stmt_expr;
85 }
86
87 /* Constructors */
88
89 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
90 which we want to initialize the vtable pointer for, DATA is
91 TREE_LIST whose TREE_VALUE is the this ptr expression. */
92
93 static tree
94 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
95 {
96 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
97 return dfs_skip_bases;
98
99 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
100 {
101 tree base_ptr = TREE_VALUE ((tree) data);
102
103 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
104 tf_warning_or_error);
105
106 expand_virtual_init (binfo, base_ptr);
107 }
108
109 return NULL_TREE;
110 }
111
112 /* Initialize all the vtable pointers in the object pointed to by
113 ADDR. */
114
115 void
116 initialize_vtbl_ptrs (tree addr)
117 {
118 tree list;
119 tree type;
120
121 type = TREE_TYPE (TREE_TYPE (addr));
122 list = build_tree_list (type, addr);
123
124 /* Walk through the hierarchy, initializing the vptr in each base
125 class. We do these in pre-order because we can't find the virtual
126 bases for a class until we've initialized the vtbl for that
127 class. */
128 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
129 }
130
131 /* Return an expression for the zero-initialization of an object with
132 type T. This expression will either be a constant (in the case
133 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
134 aggregate), or NULL (in the case that T does not require
135 initialization). In either case, the value can be used as
136 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
137 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
138 is the number of elements in the array. If STATIC_STORAGE_P is
139 TRUE, initializers are only generated for entities for which
140 zero-initialization does not simply mean filling the storage with
141 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
142 subfields with bit positions at or above that bit size shouldn't
143 be added. Note that this only works when the result is assigned
144 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
145 expand_assignment will end up clearing the full size of TYPE. */
146
147 static tree
148 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
149 tree field_size)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialize an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (TYPE_PTR_OR_PTRMEM_P (type))
182 init = convert (type, nullptr_node);
183 else if (SCALAR_TYPE_P (type))
184 init = convert (type, integer_zero_node);
185 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
186 {
187 tree field;
188 vec<constructor_elt, va_gc> *v = NULL;
189
190 /* Iterate over the fields, building initializations. */
191 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
192 {
193 if (TREE_CODE (field) != FIELD_DECL)
194 continue;
195
196 if (TREE_TYPE (field) == error_mark_node)
197 continue;
198
199 /* Don't add virtual bases for base classes if they are beyond
200 the size of the current field, that means it is present
201 somewhere else in the object. */
202 if (field_size)
203 {
204 tree bitpos = bit_position (field);
205 if (TREE_CODE (bitpos) == INTEGER_CST
206 && !tree_int_cst_lt (bitpos, field_size))
207 continue;
208 }
209
210 /* Note that for class types there will be FIELD_DECLs
211 corresponding to base classes as well. Thus, iterating
212 over TYPE_FIELDs will result in correct initialization of
213 all of the subobjects. */
214 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
215 {
216 tree new_field_size
217 = (DECL_FIELD_IS_BASE (field)
218 && DECL_SIZE (field)
219 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
220 ? DECL_SIZE (field) : NULL_TREE;
221 tree value = build_zero_init_1 (TREE_TYPE (field),
222 /*nelts=*/NULL_TREE,
223 static_storage_p,
224 new_field_size);
225 if (value)
226 CONSTRUCTOR_APPEND_ELT(v, field, value);
227 }
228
229 /* For unions, only the first field is initialized. */
230 if (TREE_CODE (type) == UNION_TYPE)
231 break;
232 }
233
234 /* Build a constructor to contain the initializations. */
235 init = build_constructor (type, v);
236 }
237 else if (TREE_CODE (type) == ARRAY_TYPE)
238 {
239 tree max_index;
240 vec<constructor_elt, va_gc> *v = NULL;
241
242 /* Iterate over the array elements, building initializations. */
243 if (nelts)
244 max_index = fold_build2_loc (input_location,
245 MINUS_EXPR, TREE_TYPE (nelts),
246 nelts, integer_one_node);
247 else
248 max_index = array_type_nelts (type);
249
250 /* If we have an error_mark here, we should just return error mark
251 as we don't know the size of the array yet. */
252 if (max_index == error_mark_node)
253 return error_mark_node;
254 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
255
256 /* A zero-sized array, which is accepted as an extension, will
257 have an upper bound of -1. */
258 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
259 {
260 constructor_elt ce;
261
262 /* If this is a one element array, we just use a regular init. */
263 if (tree_int_cst_equal (size_zero_node, max_index))
264 ce.index = size_zero_node;
265 else
266 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
267 max_index);
268
269 ce.value = build_zero_init_1 (TREE_TYPE (type),
270 /*nelts=*/NULL_TREE,
271 static_storage_p, NULL_TREE);
272 if (ce.value)
273 {
274 vec_alloc (v, 1);
275 v->quick_push (ce);
276 }
277 }
278
279 /* Build a constructor to contain the initializations. */
280 init = build_constructor (type, v);
281 }
282 else if (TREE_CODE (type) == VECTOR_TYPE)
283 init = build_zero_cst (type);
284 else
285 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
286
287 /* In all cases, the initializer is a constant. */
288 if (init)
289 TREE_CONSTANT (init) = 1;
290
291 return init;
292 }
293
294 /* Return an expression for the zero-initialization of an object with
295 type T. This expression will either be a constant (in the case
296 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
297 aggregate), or NULL (in the case that T does not require
298 initialization). In either case, the value can be used as
299 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
300 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
301 is the number of elements in the array. If STATIC_STORAGE_P is
302 TRUE, initializers are only generated for entities for which
303 zero-initialization does not simply mean filling the storage with
304 zero bytes. */
305
306 tree
307 build_zero_init (tree type, tree nelts, bool static_storage_p)
308 {
309 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
310 }
311
312 /* Return a suitable initializer for value-initializing an object of type
313 TYPE, as described in [dcl.init]. */
314
315 tree
316 build_value_init (tree type, tsubst_flags_t complain)
317 {
318 /* [dcl.init]
319
320 To value-initialize an object of type T means:
321
322 - if T is a class type (clause 9) with either no default constructor
323 (12.1) or a default constructor that is user-provided or deleted,
324 then then the object is default-initialized;
325
326 - if T is a (possibly cv-qualified) class type without a user-provided
327 or deleted default constructor, then the object is zero-initialized
328 and the semantic constraints for default-initialization are checked,
329 and if T has a non-trivial default constructor, the object is
330 default-initialized;
331
332 - if T is an array type, then each element is value-initialized;
333
334 - otherwise, the object is zero-initialized.
335
336 A program that calls for default-initialization or
337 value-initialization of an entity of reference type is ill-formed. */
338
339 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
340 gcc_assert (!processing_template_decl
341 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
342
343 if (CLASS_TYPE_P (type)
344 && type_build_ctor_call (type))
345 {
346 tree ctor = build_aggr_init_expr
347 (type,
348 build_special_member_call (NULL_TREE, complete_ctor_identifier,
349 NULL, type, LOOKUP_NORMAL,
350 complain));
351 if (ctor == error_mark_node
352 || type_has_user_provided_default_constructor (type))
353 return ctor;
354 else if (TYPE_HAS_COMPLEX_DFLT (type))
355 {
356 /* This is a class that needs constructing, but doesn't have
357 a user-provided constructor. So we need to zero-initialize
358 the object and then call the implicitly defined ctor.
359 This will be handled in simplify_aggr_init_expr. */
360 AGGR_INIT_ZERO_FIRST (ctor) = 1;
361 return ctor;
362 }
363 }
364
365 /* Discard any access checking during subobject initialization;
366 the checks are implied by the call to the ctor which we have
367 verified is OK (cpp0x/defaulted46.C). */
368 push_deferring_access_checks (dk_deferred);
369 tree r = build_value_init_noctor (type, complain);
370 pop_deferring_access_checks ();
371 return r;
372 }
373
374 /* Like build_value_init, but don't call the constructor for TYPE. Used
375 for base initializers. */
376
377 tree
378 build_value_init_noctor (tree type, tsubst_flags_t complain)
379 {
380 if (!COMPLETE_TYPE_P (type))
381 {
382 if (complain & tf_error)
383 error ("value-initialization of incomplete type %qT", type);
384 return error_mark_node;
385 }
386 /* FIXME the class and array cases should just use digest_init once it is
387 SFINAE-enabled. */
388 if (CLASS_TYPE_P (type))
389 {
390 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
391 || errorcount != 0);
392
393 if (TREE_CODE (type) != UNION_TYPE)
394 {
395 tree field;
396 vec<constructor_elt, va_gc> *v = NULL;
397
398 /* Iterate over the fields, building initializations. */
399 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
400 {
401 tree ftype, value;
402
403 if (TREE_CODE (field) != FIELD_DECL)
404 continue;
405
406 ftype = TREE_TYPE (field);
407
408 if (ftype == error_mark_node)
409 continue;
410
411 /* We could skip vfields and fields of types with
412 user-defined constructors, but I think that won't improve
413 performance at all; it should be simpler in general just
414 to zero out the entire object than try to only zero the
415 bits that actually need it. */
416
417 /* Note that for class types there will be FIELD_DECLs
418 corresponding to base classes as well. Thus, iterating
419 over TYPE_FIELDs will result in correct initialization of
420 all of the subobjects. */
421 value = build_value_init (ftype, complain);
422
423 if (value == error_mark_node)
424 return error_mark_node;
425
426 if (value)
427 CONSTRUCTOR_APPEND_ELT(v, field, value);
428 }
429
430 /* Build a constructor to contain the zero- initializations. */
431 return build_constructor (type, v);
432 }
433 }
434 else if (TREE_CODE (type) == ARRAY_TYPE)
435 {
436 vec<constructor_elt, va_gc> *v = NULL;
437
438 /* Iterate over the array elements, building initializations. */
439 tree max_index = array_type_nelts (type);
440
441 /* If we have an error_mark here, we should just return error mark
442 as we don't know the size of the array yet. */
443 if (max_index == error_mark_node)
444 {
445 if (complain & tf_error)
446 error ("cannot value-initialize array of unknown bound %qT",
447 type);
448 return error_mark_node;
449 }
450 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
451
452 /* A zero-sized array, which is accepted as an extension, will
453 have an upper bound of -1. */
454 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
455 {
456 constructor_elt ce;
457
458 /* If this is a one element array, we just use a regular init. */
459 if (tree_int_cst_equal (size_zero_node, max_index))
460 ce.index = size_zero_node;
461 else
462 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
463
464 ce.value = build_value_init (TREE_TYPE (type), complain);
465 if (ce.value)
466 {
467 if (ce.value == error_mark_node)
468 return error_mark_node;
469
470 vec_alloc (v, 1);
471 v->quick_push (ce);
472
473 /* We shouldn't have gotten here for anything that would need
474 non-trivial initialization, and gimplify_init_ctor_preeval
475 would need to be fixed to allow it. */
476 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
477 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
478 }
479 }
480
481 /* Build a constructor to contain the initializations. */
482 return build_constructor (type, v);
483 }
484 else if (TREE_CODE (type) == FUNCTION_TYPE)
485 {
486 if (complain & tf_error)
487 error ("value-initialization of function type %qT", type);
488 return error_mark_node;
489 }
490 else if (TREE_CODE (type) == REFERENCE_TYPE)
491 {
492 if (complain & tf_error)
493 error ("value-initialization of reference type %qT", type);
494 return error_mark_node;
495 }
496
497 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
498 }
499
500 /* Initialize current class with INIT, a TREE_LIST of
501 arguments for a target constructor. If TREE_LIST is void_type_node,
502 an empty initializer list was given. */
503
504 static void
505 perform_target_ctor (tree init)
506 {
507 tree decl = current_class_ref;
508 tree type = current_class_type;
509
510 finish_expr_stmt (build_aggr_init (decl, init,
511 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
512 tf_warning_or_error));
513 if (type_build_dtor_call (type))
514 {
515 tree expr = build_delete (type, decl, sfk_complete_destructor,
516 LOOKUP_NORMAL
517 |LOOKUP_NONVIRTUAL
518 |LOOKUP_DESTRUCTOR,
519 0, tf_warning_or_error);
520 if (expr != error_mark_node
521 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
522 finish_eh_cleanup (expr);
523 }
524 }
525
526 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
527
528 tree
529 get_nsdmi (tree member, bool in_ctor)
530 {
531 tree init;
532 tree save_ccp = current_class_ptr;
533 tree save_ccr = current_class_ref;
534 if (!in_ctor)
535 inject_this_parameter (DECL_CONTEXT (member), TYPE_UNQUALIFIED);
536 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
537 {
538 /* Do deferred instantiation of the NSDMI. */
539 init = (tsubst_copy_and_build
540 (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
541 DECL_TI_ARGS (member),
542 tf_warning_or_error, member, /*function_p=*/false,
543 /*integral_constant_expression_p=*/false));
544
545 init = digest_nsdmi_init (member, init);
546 }
547 else
548 {
549 init = DECL_INITIAL (member);
550 if (init && TREE_CODE (init) == DEFAULT_ARG)
551 {
552 error ("constructor required before non-static data member "
553 "for %qD has been parsed", member);
554 DECL_INITIAL (member) = error_mark_node;
555 init = NULL_TREE;
556 }
557 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
558 so the aggregate init code below will see a CONSTRUCTOR. */
559 if (init && TREE_CODE (init) == TARGET_EXPR
560 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
561 init = TARGET_EXPR_INITIAL (init);
562 init = break_out_target_exprs (init);
563 }
564 current_class_ptr = save_ccp;
565 current_class_ref = save_ccr;
566 return init;
567 }
568
569 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
570 arguments. If TREE_LIST is void_type_node, an empty initializer
571 list was given; if NULL_TREE no initializer was given. */
572
573 static void
574 perform_member_init (tree member, tree init)
575 {
576 tree decl;
577 tree type = TREE_TYPE (member);
578
579 /* Use the non-static data member initializer if there was no
580 mem-initializer for this field. */
581 if (init == NULL_TREE)
582 init = get_nsdmi (member, /*ctor*/true);
583
584 if (init == error_mark_node)
585 return;
586
587 /* Effective C++ rule 12 requires that all data members be
588 initialized. */
589 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
590 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
591 "%qD should be initialized in the member initialization list",
592 member);
593
594 /* Get an lvalue for the data member. */
595 decl = build_class_member_access_expr (current_class_ref, member,
596 /*access_path=*/NULL_TREE,
597 /*preserve_reference=*/true,
598 tf_warning_or_error);
599 if (decl == error_mark_node)
600 return;
601
602 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
603 && TREE_CHAIN (init) == NULL_TREE)
604 {
605 tree val = TREE_VALUE (init);
606 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
607 && TREE_OPERAND (val, 0) == current_class_ref)
608 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
609 OPT_Winit_self, "%qD is initialized with itself",
610 member);
611 }
612
613 if (init == void_type_node)
614 {
615 /* mem() means value-initialization. */
616 if (TREE_CODE (type) == ARRAY_TYPE)
617 {
618 init = build_vec_init_expr (type, init, tf_warning_or_error);
619 init = build2 (INIT_EXPR, type, decl, init);
620 finish_expr_stmt (init);
621 }
622 else
623 {
624 tree value = build_value_init (type, tf_warning_or_error);
625 if (value == error_mark_node)
626 return;
627 init = build2 (INIT_EXPR, type, decl, value);
628 finish_expr_stmt (init);
629 }
630 }
631 /* Deal with this here, as we will get confused if we try to call the
632 assignment op for an anonymous union. This can happen in a
633 synthesized copy constructor. */
634 else if (ANON_AGGR_TYPE_P (type))
635 {
636 if (init)
637 {
638 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
639 finish_expr_stmt (init);
640 }
641 }
642 else if (init
643 && (TREE_CODE (type) == REFERENCE_TYPE
644 /* Pre-digested NSDMI. */
645 || (((TREE_CODE (init) == CONSTRUCTOR
646 && TREE_TYPE (init) == type)
647 /* { } mem-initializer. */
648 || (TREE_CODE (init) == TREE_LIST
649 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
650 && (CP_AGGREGATE_TYPE_P (type)
651 || is_std_init_list (type)))))
652 {
653 /* With references and list-initialization, we need to deal with
654 extending temporary lifetimes. 12.2p5: "A temporary bound to a
655 reference member in a constructor’s ctor-initializer (12.6.2)
656 persists until the constructor exits." */
657 unsigned i; tree t;
658 vec<tree, va_gc> *cleanups = make_tree_vector ();
659 if (TREE_CODE (init) == TREE_LIST)
660 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
661 tf_warning_or_error);
662 if (TREE_TYPE (init) != type)
663 {
664 if (BRACE_ENCLOSED_INITIALIZER_P (init)
665 && CP_AGGREGATE_TYPE_P (type))
666 init = reshape_init (type, init, tf_warning_or_error);
667 init = digest_init (type, init, tf_warning_or_error);
668 }
669 if (init == error_mark_node)
670 return;
671 /* A FIELD_DECL doesn't really have a suitable lifetime, but
672 make_temporary_var_for_ref_to_temp will treat it as automatic and
673 set_up_extended_ref_temp wants to use the decl in a warning. */
674 init = extend_ref_init_temps (member, init, &cleanups);
675 if (TREE_CODE (type) == ARRAY_TYPE
676 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
677 init = build_vec_init_expr (type, init, tf_warning_or_error);
678 init = build2 (INIT_EXPR, type, decl, init);
679 finish_expr_stmt (init);
680 FOR_EACH_VEC_ELT (*cleanups, i, t)
681 push_cleanup (decl, t, false);
682 release_tree_vector (cleanups);
683 }
684 else if (type_build_ctor_call (type)
685 || (init && CLASS_TYPE_P (strip_array_types (type))))
686 {
687 if (TREE_CODE (type) == ARRAY_TYPE)
688 {
689 if (init)
690 {
691 if (TREE_CHAIN (init))
692 init = error_mark_node;
693 else
694 init = TREE_VALUE (init);
695 if (BRACE_ENCLOSED_INITIALIZER_P (init))
696 init = digest_init (type, init, tf_warning_or_error);
697 }
698 if (init == NULL_TREE
699 || same_type_ignoring_top_level_qualifiers_p (type,
700 TREE_TYPE (init)))
701 {
702 init = build_vec_init_expr (type, init, tf_warning_or_error);
703 init = build2 (INIT_EXPR, type, decl, init);
704 finish_expr_stmt (init);
705 }
706 else
707 error ("invalid initializer for array member %q#D", member);
708 }
709 else
710 {
711 int flags = LOOKUP_NORMAL;
712 if (DECL_DEFAULTED_FN (current_function_decl))
713 flags |= LOOKUP_DEFAULTED;
714 if (CP_TYPE_CONST_P (type)
715 && init == NULL_TREE
716 && default_init_uninitialized_part (type))
717 {
718 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
719 vtable; still give this diagnostic. */
720 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
721 "uninitialized const member in %q#T", type))
722 inform (DECL_SOURCE_LOCATION (member),
723 "%q#D should be initialized", member );
724 }
725 finish_expr_stmt (build_aggr_init (decl, init, flags,
726 tf_warning_or_error));
727 }
728 }
729 else
730 {
731 if (init == NULL_TREE)
732 {
733 tree core_type;
734 /* member traversal: note it leaves init NULL */
735 if (TREE_CODE (type) == REFERENCE_TYPE)
736 {
737 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
738 "uninitialized reference member in %q#T", type))
739 inform (DECL_SOURCE_LOCATION (member),
740 "%q#D should be initialized", member);
741 }
742 else if (CP_TYPE_CONST_P (type))
743 {
744 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
745 "uninitialized const member in %q#T", type))
746 inform (DECL_SOURCE_LOCATION (member),
747 "%q#D should be initialized", member );
748 }
749
750 core_type = strip_array_types (type);
751
752 if (CLASS_TYPE_P (core_type)
753 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
754 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
755 diagnose_uninitialized_cst_or_ref_member (core_type,
756 /*using_new=*/false,
757 /*complain=*/true);
758 }
759 else if (TREE_CODE (init) == TREE_LIST)
760 /* There was an explicit member initialization. Do some work
761 in that case. */
762 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
763 tf_warning_or_error);
764
765 if (init)
766 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
767 tf_warning_or_error));
768 }
769
770 if (type_build_dtor_call (type))
771 {
772 tree expr;
773
774 expr = build_class_member_access_expr (current_class_ref, member,
775 /*access_path=*/NULL_TREE,
776 /*preserve_reference=*/false,
777 tf_warning_or_error);
778 expr = build_delete (type, expr, sfk_complete_destructor,
779 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
780 tf_warning_or_error);
781
782 if (expr != error_mark_node
783 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
784 finish_eh_cleanup (expr);
785 }
786 }
787
788 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
789 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
790
791 static tree
792 build_field_list (tree t, tree list, int *uses_unions_p)
793 {
794 tree fields;
795
796 /* Note whether or not T is a union. */
797 if (TREE_CODE (t) == UNION_TYPE)
798 *uses_unions_p = 1;
799
800 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
801 {
802 tree fieldtype;
803
804 /* Skip CONST_DECLs for enumeration constants and so forth. */
805 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
806 continue;
807
808 fieldtype = TREE_TYPE (fields);
809 /* Keep track of whether or not any fields are unions. */
810 if (TREE_CODE (fieldtype) == UNION_TYPE)
811 *uses_unions_p = 1;
812
813 /* For an anonymous struct or union, we must recursively
814 consider the fields of the anonymous type. They can be
815 directly initialized from the constructor. */
816 if (ANON_AGGR_TYPE_P (fieldtype))
817 {
818 /* Add this field itself. Synthesized copy constructors
819 initialize the entire aggregate. */
820 list = tree_cons (fields, NULL_TREE, list);
821 /* And now add the fields in the anonymous aggregate. */
822 list = build_field_list (fieldtype, list, uses_unions_p);
823 }
824 /* Add this field. */
825 else if (DECL_NAME (fields))
826 list = tree_cons (fields, NULL_TREE, list);
827 }
828
829 return list;
830 }
831
832 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
833 a FIELD_DECL or BINFO in T that needs initialization. The
834 TREE_VALUE gives the initializer, or list of initializer arguments.
835
836 Return a TREE_LIST containing all of the initializations required
837 for T, in the order in which they should be performed. The output
838 list has the same format as the input. */
839
840 static tree
841 sort_mem_initializers (tree t, tree mem_inits)
842 {
843 tree init;
844 tree base, binfo, base_binfo;
845 tree sorted_inits;
846 tree next_subobject;
847 vec<tree, va_gc> *vbases;
848 int i;
849 int uses_unions_p = 0;
850
851 /* Build up a list of initializations. The TREE_PURPOSE of entry
852 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
853 TREE_VALUE will be the constructor arguments, or NULL if no
854 explicit initialization was provided. */
855 sorted_inits = NULL_TREE;
856
857 /* Process the virtual bases. */
858 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
859 vec_safe_iterate (vbases, i, &base); i++)
860 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
861
862 /* Process the direct bases. */
863 for (binfo = TYPE_BINFO (t), i = 0;
864 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
865 if (!BINFO_VIRTUAL_P (base_binfo))
866 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
867
868 /* Process the non-static data members. */
869 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
870 /* Reverse the entire list of initializations, so that they are in
871 the order that they will actually be performed. */
872 sorted_inits = nreverse (sorted_inits);
873
874 /* If the user presented the initializers in an order different from
875 that in which they will actually occur, we issue a warning. Keep
876 track of the next subobject which can be explicitly initialized
877 without issuing a warning. */
878 next_subobject = sorted_inits;
879
880 /* Go through the explicit initializers, filling in TREE_PURPOSE in
881 the SORTED_INITS. */
882 for (init = mem_inits; init; init = TREE_CHAIN (init))
883 {
884 tree subobject;
885 tree subobject_init;
886
887 subobject = TREE_PURPOSE (init);
888
889 /* If the explicit initializers are in sorted order, then
890 SUBOBJECT will be NEXT_SUBOBJECT, or something following
891 it. */
892 for (subobject_init = next_subobject;
893 subobject_init;
894 subobject_init = TREE_CHAIN (subobject_init))
895 if (TREE_PURPOSE (subobject_init) == subobject)
896 break;
897
898 /* Issue a warning if the explicit initializer order does not
899 match that which will actually occur.
900 ??? Are all these on the correct lines? */
901 if (warn_reorder && !subobject_init)
902 {
903 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
904 warning (OPT_Wreorder, "%q+D will be initialized after",
905 TREE_PURPOSE (next_subobject));
906 else
907 warning (OPT_Wreorder, "base %qT will be initialized after",
908 TREE_PURPOSE (next_subobject));
909 if (TREE_CODE (subobject) == FIELD_DECL)
910 warning (OPT_Wreorder, " %q+#D", subobject);
911 else
912 warning (OPT_Wreorder, " base %qT", subobject);
913 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
914 OPT_Wreorder, " when initialized here");
915 }
916
917 /* Look again, from the beginning of the list. */
918 if (!subobject_init)
919 {
920 subobject_init = sorted_inits;
921 while (TREE_PURPOSE (subobject_init) != subobject)
922 subobject_init = TREE_CHAIN (subobject_init);
923 }
924
925 /* It is invalid to initialize the same subobject more than
926 once. */
927 if (TREE_VALUE (subobject_init))
928 {
929 if (TREE_CODE (subobject) == FIELD_DECL)
930 error_at (DECL_SOURCE_LOCATION (current_function_decl),
931 "multiple initializations given for %qD",
932 subobject);
933 else
934 error_at (DECL_SOURCE_LOCATION (current_function_decl),
935 "multiple initializations given for base %qT",
936 subobject);
937 }
938
939 /* Record the initialization. */
940 TREE_VALUE (subobject_init) = TREE_VALUE (init);
941 next_subobject = subobject_init;
942 }
943
944 /* [class.base.init]
945
946 If a ctor-initializer specifies more than one mem-initializer for
947 multiple members of the same union (including members of
948 anonymous unions), the ctor-initializer is ill-formed.
949
950 Here we also splice out uninitialized union members. */
951 if (uses_unions_p)
952 {
953 tree *last_p = NULL;
954 tree *p;
955 for (p = &sorted_inits; *p; )
956 {
957 tree field;
958 tree ctx;
959
960 init = *p;
961
962 field = TREE_PURPOSE (init);
963
964 /* Skip base classes. */
965 if (TREE_CODE (field) != FIELD_DECL)
966 goto next;
967
968 /* If this is an anonymous union with no explicit initializer,
969 splice it out. */
970 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
971 goto splice;
972
973 /* See if this field is a member of a union, or a member of a
974 structure contained in a union, etc. */
975 for (ctx = DECL_CONTEXT (field);
976 !same_type_p (ctx, t);
977 ctx = TYPE_CONTEXT (ctx))
978 if (TREE_CODE (ctx) == UNION_TYPE
979 || !ANON_AGGR_TYPE_P (ctx))
980 break;
981 /* If this field is not a member of a union, skip it. */
982 if (TREE_CODE (ctx) != UNION_TYPE)
983 goto next;
984
985 /* If this union member has no explicit initializer and no NSDMI,
986 splice it out. */
987 if (TREE_VALUE (init) || DECL_INITIAL (field))
988 /* OK. */;
989 else
990 goto splice;
991
992 /* It's only an error if we have two initializers for the same
993 union type. */
994 if (!last_p)
995 {
996 last_p = p;
997 goto next;
998 }
999
1000 /* See if LAST_FIELD and the field initialized by INIT are
1001 members of the same union. If so, there's a problem,
1002 unless they're actually members of the same structure
1003 which is itself a member of a union. For example, given:
1004
1005 union { struct { int i; int j; }; };
1006
1007 initializing both `i' and `j' makes sense. */
1008 ctx = common_enclosing_class (DECL_CONTEXT (field),
1009 DECL_CONTEXT (TREE_PURPOSE (*last_p)));
1010
1011 if (ctx && TREE_CODE (ctx) == UNION_TYPE)
1012 {
1013 /* A mem-initializer hides an NSDMI. */
1014 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1015 *last_p = TREE_CHAIN (*last_p);
1016 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1017 goto splice;
1018 else
1019 {
1020 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1021 "initializations for multiple members of %qT",
1022 ctx);
1023 goto splice;
1024 }
1025 }
1026
1027 last_p = p;
1028
1029 next:
1030 p = &TREE_CHAIN (*p);
1031 continue;
1032 splice:
1033 *p = TREE_CHAIN (*p);
1034 continue;
1035 }
1036 }
1037
1038 return sorted_inits;
1039 }
1040
1041 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1042 is a TREE_LIST giving the explicit mem-initializer-list for the
1043 constructor. The TREE_PURPOSE of each entry is a subobject (a
1044 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1045 is a TREE_LIST giving the arguments to the constructor or
1046 void_type_node for an empty list of arguments. */
1047
1048 void
1049 emit_mem_initializers (tree mem_inits)
1050 {
1051 int flags = LOOKUP_NORMAL;
1052
1053 /* We will already have issued an error message about the fact that
1054 the type is incomplete. */
1055 if (!COMPLETE_TYPE_P (current_class_type))
1056 return;
1057
1058 if (mem_inits
1059 && TYPE_P (TREE_PURPOSE (mem_inits))
1060 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1061 {
1062 /* Delegating constructor. */
1063 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1064 perform_target_ctor (TREE_VALUE (mem_inits));
1065 return;
1066 }
1067
1068 if (DECL_DEFAULTED_FN (current_function_decl)
1069 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1070 flags |= LOOKUP_DEFAULTED;
1071
1072 /* Sort the mem-initializers into the order in which the
1073 initializations should be performed. */
1074 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1075
1076 in_base_initializer = 1;
1077
1078 /* Initialize base classes. */
1079 for (; (mem_inits
1080 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1081 mem_inits = TREE_CHAIN (mem_inits))
1082 {
1083 tree subobject = TREE_PURPOSE (mem_inits);
1084 tree arguments = TREE_VALUE (mem_inits);
1085
1086 /* We already have issued an error message. */
1087 if (arguments == error_mark_node)
1088 continue;
1089
1090 if (arguments == NULL_TREE)
1091 {
1092 /* If these initializations are taking place in a copy constructor,
1093 the base class should probably be explicitly initialized if there
1094 is a user-defined constructor in the base class (other than the
1095 default constructor, which will be called anyway). */
1096 if (extra_warnings
1097 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1098 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1099 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1100 OPT_Wextra, "base class %q#T should be explicitly "
1101 "initialized in the copy constructor",
1102 BINFO_TYPE (subobject));
1103 }
1104
1105 /* Initialize the base. */
1106 if (BINFO_VIRTUAL_P (subobject))
1107 construct_virtual_base (subobject, arguments);
1108 else
1109 {
1110 tree base_addr;
1111
1112 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1113 subobject, 1, tf_warning_or_error);
1114 expand_aggr_init_1 (subobject, NULL_TREE,
1115 cp_build_indirect_ref (base_addr, RO_NULL,
1116 tf_warning_or_error),
1117 arguments,
1118 flags,
1119 tf_warning_or_error);
1120 expand_cleanup_for_base (subobject, NULL_TREE);
1121 }
1122 }
1123 in_base_initializer = 0;
1124
1125 /* Initialize the vptrs. */
1126 initialize_vtbl_ptrs (current_class_ptr);
1127
1128 /* Initialize the data members. */
1129 while (mem_inits)
1130 {
1131 perform_member_init (TREE_PURPOSE (mem_inits),
1132 TREE_VALUE (mem_inits));
1133 mem_inits = TREE_CHAIN (mem_inits);
1134 }
1135 }
1136
1137 /* Returns the address of the vtable (i.e., the value that should be
1138 assigned to the vptr) for BINFO. */
1139
1140 tree
1141 build_vtbl_address (tree binfo)
1142 {
1143 tree binfo_for = binfo;
1144 tree vtbl;
1145
1146 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1147 /* If this is a virtual primary base, then the vtable we want to store
1148 is that for the base this is being used as the primary base of. We
1149 can't simply skip the initialization, because we may be expanding the
1150 inits of a subobject constructor where the virtual base layout
1151 can be different. */
1152 while (BINFO_PRIMARY_P (binfo_for))
1153 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1154
1155 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1156 used. */
1157 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1158 if (tree dtor = CLASSTYPE_DESTRUCTORS (DECL_CONTEXT (vtbl)))
1159 if (!TREE_USED (vtbl) && DECL_VIRTUAL_P (dtor) && DECL_DEFAULTED_FN (dtor))
1160 /* Make sure the destructor gets synthesized so that it can be
1161 inlined after devirtualization even if the vtable is never
1162 emitted. */
1163 note_vague_linkage_fn (dtor);
1164 TREE_USED (vtbl) = true;
1165
1166 /* Now compute the address to use when initializing the vptr. */
1167 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1168 if (VAR_P (vtbl))
1169 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1170
1171 return vtbl;
1172 }
1173
1174 /* This code sets up the virtual function tables appropriate for
1175 the pointer DECL. It is a one-ply initialization.
1176
1177 BINFO is the exact type that DECL is supposed to be. In
1178 multiple inheritance, this might mean "C's A" if C : A, B. */
1179
1180 static void
1181 expand_virtual_init (tree binfo, tree decl)
1182 {
1183 tree vtbl, vtbl_ptr;
1184 tree vtt_index;
1185
1186 /* Compute the initializer for vptr. */
1187 vtbl = build_vtbl_address (binfo);
1188
1189 /* We may get this vptr from a VTT, if this is a subobject
1190 constructor or subobject destructor. */
1191 vtt_index = BINFO_VPTR_INDEX (binfo);
1192 if (vtt_index)
1193 {
1194 tree vtbl2;
1195 tree vtt_parm;
1196
1197 /* Compute the value to use, when there's a VTT. */
1198 vtt_parm = current_vtt_parm;
1199 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1200 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1201 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1202
1203 /* The actual initializer is the VTT value only in the subobject
1204 constructor. In maybe_clone_body we'll substitute NULL for
1205 the vtt_parm in the case of the non-subobject constructor. */
1206 vtbl = build3 (COND_EXPR,
1207 TREE_TYPE (vtbl),
1208 build2 (EQ_EXPR, boolean_type_node,
1209 current_in_charge_parm, integer_zero_node),
1210 vtbl2,
1211 vtbl);
1212 }
1213
1214 /* Compute the location of the vtpr. */
1215 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1216 tf_warning_or_error),
1217 TREE_TYPE (binfo));
1218 gcc_assert (vtbl_ptr != error_mark_node);
1219
1220 /* Assign the vtable to the vptr. */
1221 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1222 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1223 tf_warning_or_error));
1224 }
1225
1226 /* If an exception is thrown in a constructor, those base classes already
1227 constructed must be destroyed. This function creates the cleanup
1228 for BINFO, which has just been constructed. If FLAG is non-NULL,
1229 it is a DECL which is nonzero when this base needs to be
1230 destroyed. */
1231
1232 static void
1233 expand_cleanup_for_base (tree binfo, tree flag)
1234 {
1235 tree expr;
1236
1237 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1238 return;
1239
1240 /* Call the destructor. */
1241 expr = build_special_member_call (current_class_ref,
1242 base_dtor_identifier,
1243 NULL,
1244 binfo,
1245 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1246 tf_warning_or_error);
1247
1248 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1249 return;
1250
1251 if (flag)
1252 expr = fold_build3_loc (input_location,
1253 COND_EXPR, void_type_node,
1254 c_common_truthvalue_conversion (input_location, flag),
1255 expr, integer_zero_node);
1256
1257 finish_eh_cleanup (expr);
1258 }
1259
1260 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1261 constructor. */
1262
1263 static void
1264 construct_virtual_base (tree vbase, tree arguments)
1265 {
1266 tree inner_if_stmt;
1267 tree exp;
1268 tree flag;
1269
1270 /* If there are virtual base classes with destructors, we need to
1271 emit cleanups to destroy them if an exception is thrown during
1272 the construction process. These exception regions (i.e., the
1273 period during which the cleanups must occur) begin from the time
1274 the construction is complete to the end of the function. If we
1275 create a conditional block in which to initialize the
1276 base-classes, then the cleanup region for the virtual base begins
1277 inside a block, and ends outside of that block. This situation
1278 confuses the sjlj exception-handling code. Therefore, we do not
1279 create a single conditional block, but one for each
1280 initialization. (That way the cleanup regions always begin
1281 in the outer block.) We trust the back end to figure out
1282 that the FLAG will not change across initializations, and
1283 avoid doing multiple tests. */
1284 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1285 inner_if_stmt = begin_if_stmt ();
1286 finish_if_stmt_cond (flag, inner_if_stmt);
1287
1288 /* Compute the location of the virtual base. If we're
1289 constructing virtual bases, then we must be the most derived
1290 class. Therefore, we don't have to look up the virtual base;
1291 we already know where it is. */
1292 exp = convert_to_base_statically (current_class_ref, vbase);
1293
1294 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1295 0, tf_warning_or_error);
1296 finish_then_clause (inner_if_stmt);
1297 finish_if_stmt (inner_if_stmt);
1298
1299 expand_cleanup_for_base (vbase, flag);
1300 }
1301
1302 /* Find the context in which this FIELD can be initialized. */
1303
1304 static tree
1305 initializing_context (tree field)
1306 {
1307 tree t = DECL_CONTEXT (field);
1308
1309 /* Anonymous union members can be initialized in the first enclosing
1310 non-anonymous union context. */
1311 while (t && ANON_AGGR_TYPE_P (t))
1312 t = TYPE_CONTEXT (t);
1313 return t;
1314 }
1315
1316 /* Function to give error message if member initialization specification
1317 is erroneous. FIELD is the member we decided to initialize.
1318 TYPE is the type for which the initialization is being performed.
1319 FIELD must be a member of TYPE.
1320
1321 MEMBER_NAME is the name of the member. */
1322
1323 static int
1324 member_init_ok_or_else (tree field, tree type, tree member_name)
1325 {
1326 if (field == error_mark_node)
1327 return 0;
1328 if (!field)
1329 {
1330 error ("class %qT does not have any field named %qD", type,
1331 member_name);
1332 return 0;
1333 }
1334 if (VAR_P (field))
1335 {
1336 error ("%q#D is a static data member; it can only be "
1337 "initialized at its definition",
1338 field);
1339 return 0;
1340 }
1341 if (TREE_CODE (field) != FIELD_DECL)
1342 {
1343 error ("%q#D is not a non-static data member of %qT",
1344 field, type);
1345 return 0;
1346 }
1347 if (initializing_context (field) != type)
1348 {
1349 error ("class %qT does not have any field named %qD", type,
1350 member_name);
1351 return 0;
1352 }
1353
1354 return 1;
1355 }
1356
1357 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1358 is a _TYPE node or TYPE_DECL which names a base for that type.
1359 Check the validity of NAME, and return either the base _TYPE, base
1360 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1361 NULL_TREE and issue a diagnostic.
1362
1363 An old style unnamed direct single base construction is permitted,
1364 where NAME is NULL. */
1365
1366 tree
1367 expand_member_init (tree name)
1368 {
1369 tree basetype;
1370 tree field;
1371
1372 if (!current_class_ref)
1373 return NULL_TREE;
1374
1375 if (!name)
1376 {
1377 /* This is an obsolete unnamed base class initializer. The
1378 parser will already have warned about its use. */
1379 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1380 {
1381 case 0:
1382 error ("unnamed initializer for %qT, which has no base classes",
1383 current_class_type);
1384 return NULL_TREE;
1385 case 1:
1386 basetype = BINFO_TYPE
1387 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1388 break;
1389 default:
1390 error ("unnamed initializer for %qT, which uses multiple inheritance",
1391 current_class_type);
1392 return NULL_TREE;
1393 }
1394 }
1395 else if (TYPE_P (name))
1396 {
1397 basetype = TYPE_MAIN_VARIANT (name);
1398 name = TYPE_NAME (name);
1399 }
1400 else if (TREE_CODE (name) == TYPE_DECL)
1401 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1402 else
1403 basetype = NULL_TREE;
1404
1405 if (basetype)
1406 {
1407 tree class_binfo;
1408 tree direct_binfo;
1409 tree virtual_binfo;
1410 int i;
1411
1412 if (current_template_parms
1413 || same_type_p (basetype, current_class_type))
1414 return basetype;
1415
1416 class_binfo = TYPE_BINFO (current_class_type);
1417 direct_binfo = NULL_TREE;
1418 virtual_binfo = NULL_TREE;
1419
1420 /* Look for a direct base. */
1421 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1422 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1423 break;
1424
1425 /* Look for a virtual base -- unless the direct base is itself
1426 virtual. */
1427 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1428 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1429
1430 /* [class.base.init]
1431
1432 If a mem-initializer-id is ambiguous because it designates
1433 both a direct non-virtual base class and an inherited virtual
1434 base class, the mem-initializer is ill-formed. */
1435 if (direct_binfo && virtual_binfo)
1436 {
1437 error ("%qD is both a direct base and an indirect virtual base",
1438 basetype);
1439 return NULL_TREE;
1440 }
1441
1442 if (!direct_binfo && !virtual_binfo)
1443 {
1444 if (CLASSTYPE_VBASECLASSES (current_class_type))
1445 error ("type %qT is not a direct or virtual base of %qT",
1446 basetype, current_class_type);
1447 else
1448 error ("type %qT is not a direct base of %qT",
1449 basetype, current_class_type);
1450 return NULL_TREE;
1451 }
1452
1453 return direct_binfo ? direct_binfo : virtual_binfo;
1454 }
1455 else
1456 {
1457 if (identifier_p (name))
1458 field = lookup_field (current_class_type, name, 1, false);
1459 else
1460 field = name;
1461
1462 if (member_init_ok_or_else (field, current_class_type, name))
1463 return field;
1464 }
1465
1466 return NULL_TREE;
1467 }
1468
1469 /* This is like `expand_member_init', only it stores one aggregate
1470 value into another.
1471
1472 INIT comes in two flavors: it is either a value which
1473 is to be stored in EXP, or it is a parameter list
1474 to go to a constructor, which will operate on EXP.
1475 If INIT is not a parameter list for a constructor, then set
1476 LOOKUP_ONLYCONVERTING.
1477 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1478 the initializer, if FLAGS is 0, then it is the (init) form.
1479 If `init' is a CONSTRUCTOR, then we emit a warning message,
1480 explaining that such initializations are invalid.
1481
1482 If INIT resolves to a CALL_EXPR which happens to return
1483 something of the type we are looking for, then we know
1484 that we can safely use that call to perform the
1485 initialization.
1486
1487 The virtual function table pointer cannot be set up here, because
1488 we do not really know its type.
1489
1490 This never calls operator=().
1491
1492 When initializing, nothing is CONST.
1493
1494 A default copy constructor may have to be used to perform the
1495 initialization.
1496
1497 A constructor or a conversion operator may have to be used to
1498 perform the initialization, but not both, as it would be ambiguous. */
1499
1500 tree
1501 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1502 {
1503 tree stmt_expr;
1504 tree compound_stmt;
1505 int destroy_temps;
1506 tree type = TREE_TYPE (exp);
1507 int was_const = TREE_READONLY (exp);
1508 int was_volatile = TREE_THIS_VOLATILE (exp);
1509 int is_global;
1510
1511 if (init == error_mark_node)
1512 return error_mark_node;
1513
1514 TREE_READONLY (exp) = 0;
1515 TREE_THIS_VOLATILE (exp) = 0;
1516
1517 if (init && init != void_type_node
1518 && TREE_CODE (init) != TREE_LIST
1519 && !(TREE_CODE (init) == TARGET_EXPR
1520 && TARGET_EXPR_DIRECT_INIT_P (init))
1521 && !DIRECT_LIST_INIT_P (init))
1522 flags |= LOOKUP_ONLYCONVERTING;
1523
1524 if (TREE_CODE (type) == ARRAY_TYPE)
1525 {
1526 tree itype;
1527
1528 /* An array may not be initialized use the parenthesized
1529 initialization form -- unless the initializer is "()". */
1530 if (init && TREE_CODE (init) == TREE_LIST)
1531 {
1532 if (complain & tf_error)
1533 error ("bad array initializer");
1534 return error_mark_node;
1535 }
1536 /* Must arrange to initialize each element of EXP
1537 from elements of INIT. */
1538 itype = init ? TREE_TYPE (init) : NULL_TREE;
1539 if (cv_qualified_p (type))
1540 TREE_TYPE (exp) = cv_unqualified (type);
1541 if (itype && cv_qualified_p (itype))
1542 TREE_TYPE (init) = cv_unqualified (itype);
1543 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1544 /*explicit_value_init_p=*/false,
1545 itype && same_type_p (TREE_TYPE (init),
1546 TREE_TYPE (exp)),
1547 complain);
1548 TREE_READONLY (exp) = was_const;
1549 TREE_THIS_VOLATILE (exp) = was_volatile;
1550 TREE_TYPE (exp) = type;
1551 /* Restore the type of init unless it was used directly. */
1552 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1553 TREE_TYPE (init) = itype;
1554 return stmt_expr;
1555 }
1556
1557 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1558 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1559 /* Just know that we've seen something for this node. */
1560 TREE_USED (exp) = 1;
1561
1562 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1563 destroy_temps = stmts_are_full_exprs_p ();
1564 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1565 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1566 init, LOOKUP_NORMAL|flags, complain);
1567 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1568 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1569 TREE_READONLY (exp) = was_const;
1570 TREE_THIS_VOLATILE (exp) = was_volatile;
1571
1572 return stmt_expr;
1573 }
1574
1575 static void
1576 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1577 tsubst_flags_t complain)
1578 {
1579 tree type = TREE_TYPE (exp);
1580 tree ctor_name;
1581
1582 /* It fails because there may not be a constructor which takes
1583 its own type as the first (or only parameter), but which does
1584 take other types via a conversion. So, if the thing initializing
1585 the expression is a unit element of type X, first try X(X&),
1586 followed by initialization by X. If neither of these work
1587 out, then look hard. */
1588 tree rval;
1589 vec<tree, va_gc> *parms;
1590
1591 /* If we have direct-initialization from an initializer list, pull
1592 it out of the TREE_LIST so the code below can see it. */
1593 if (init && TREE_CODE (init) == TREE_LIST
1594 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1595 {
1596 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1597 && TREE_CHAIN (init) == NULL_TREE);
1598 init = TREE_VALUE (init);
1599 }
1600
1601 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1602 && CP_AGGREGATE_TYPE_P (type))
1603 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1604 happen for direct-initialization, too. */
1605 init = digest_init (type, init, complain);
1606
1607 /* A CONSTRUCTOR of the target's type is a previously digested
1608 initializer, whether that happened just above or in
1609 cp_parser_late_parsing_nsdmi.
1610
1611 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1612 set represents the whole initialization, so we shouldn't build up
1613 another ctor call. */
1614 if (init
1615 && (TREE_CODE (init) == CONSTRUCTOR
1616 || (TREE_CODE (init) == TARGET_EXPR
1617 && (TARGET_EXPR_DIRECT_INIT_P (init)
1618 || TARGET_EXPR_LIST_INIT_P (init))))
1619 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1620 {
1621 /* Early initialization via a TARGET_EXPR only works for
1622 complete objects. */
1623 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1624
1625 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1626 TREE_SIDE_EFFECTS (init) = 1;
1627 finish_expr_stmt (init);
1628 return;
1629 }
1630
1631 if (init && TREE_CODE (init) != TREE_LIST
1632 && (flags & LOOKUP_ONLYCONVERTING))
1633 {
1634 /* Base subobjects should only get direct-initialization. */
1635 gcc_assert (true_exp == exp);
1636
1637 if (flags & DIRECT_BIND)
1638 /* Do nothing. We hit this in two cases: Reference initialization,
1639 where we aren't initializing a real variable, so we don't want
1640 to run a new constructor; and catching an exception, where we
1641 have already built up the constructor call so we could wrap it
1642 in an exception region. */;
1643 else
1644 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1645 flags, complain);
1646
1647 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1648 /* We need to protect the initialization of a catch parm with a
1649 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1650 around the TARGET_EXPR for the copy constructor. See
1651 initialize_handler_parm. */
1652 {
1653 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1654 TREE_OPERAND (init, 0));
1655 TREE_TYPE (init) = void_type_node;
1656 }
1657 else
1658 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1659 TREE_SIDE_EFFECTS (init) = 1;
1660 finish_expr_stmt (init);
1661 return;
1662 }
1663
1664 if (init == NULL_TREE)
1665 parms = NULL;
1666 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1667 {
1668 parms = make_tree_vector ();
1669 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1670 vec_safe_push (parms, TREE_VALUE (init));
1671 }
1672 else
1673 parms = make_tree_vector_single (init);
1674
1675 if (exp == current_class_ref && current_function_decl
1676 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1677 {
1678 /* Delegating constructor. */
1679 tree complete;
1680 tree base;
1681 tree elt; unsigned i;
1682
1683 /* Unshare the arguments for the second call. */
1684 vec<tree, va_gc> *parms2 = make_tree_vector ();
1685 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1686 {
1687 elt = break_out_target_exprs (elt);
1688 vec_safe_push (parms2, elt);
1689 }
1690 complete = build_special_member_call (exp, complete_ctor_identifier,
1691 &parms2, binfo, flags,
1692 complain);
1693 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1694 release_tree_vector (parms2);
1695
1696 base = build_special_member_call (exp, base_ctor_identifier,
1697 &parms, binfo, flags,
1698 complain);
1699 base = fold_build_cleanup_point_expr (void_type_node, base);
1700 rval = build3 (COND_EXPR, void_type_node,
1701 build2 (EQ_EXPR, boolean_type_node,
1702 current_in_charge_parm, integer_zero_node),
1703 base,
1704 complete);
1705 }
1706 else
1707 {
1708 if (true_exp == exp)
1709 ctor_name = complete_ctor_identifier;
1710 else
1711 ctor_name = base_ctor_identifier;
1712 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1713 complain);
1714 }
1715
1716 if (parms != NULL)
1717 release_tree_vector (parms);
1718
1719 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1720 {
1721 tree fn = get_callee_fndecl (rval);
1722 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1723 {
1724 tree e = maybe_constant_init (rval);
1725 if (TREE_CONSTANT (e))
1726 rval = build2 (INIT_EXPR, type, exp, e);
1727 }
1728 }
1729
1730 /* FIXME put back convert_to_void? */
1731 if (TREE_SIDE_EFFECTS (rval))
1732 finish_expr_stmt (rval);
1733 }
1734
1735 /* This function is responsible for initializing EXP with INIT
1736 (if any).
1737
1738 BINFO is the binfo of the type for who we are performing the
1739 initialization. For example, if W is a virtual base class of A and B,
1740 and C : A, B.
1741 If we are initializing B, then W must contain B's W vtable, whereas
1742 were we initializing C, W must contain C's W vtable.
1743
1744 TRUE_EXP is nonzero if it is the true expression being initialized.
1745 In this case, it may be EXP, or may just contain EXP. The reason we
1746 need this is because if EXP is a base element of TRUE_EXP, we
1747 don't necessarily know by looking at EXP where its virtual
1748 baseclass fields should really be pointing. But we do know
1749 from TRUE_EXP. In constructors, we don't know anything about
1750 the value being initialized.
1751
1752 FLAGS is just passed to `build_new_method_call'. See that function
1753 for its description. */
1754
1755 static void
1756 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1757 tsubst_flags_t complain)
1758 {
1759 tree type = TREE_TYPE (exp);
1760
1761 gcc_assert (init != error_mark_node && type != error_mark_node);
1762 gcc_assert (building_stmt_list_p ());
1763
1764 /* Use a function returning the desired type to initialize EXP for us.
1765 If the function is a constructor, and its first argument is
1766 NULL_TREE, know that it was meant for us--just slide exp on
1767 in and expand the constructor. Constructors now come
1768 as TARGET_EXPRs. */
1769
1770 if (init && VAR_P (exp)
1771 && COMPOUND_LITERAL_P (init))
1772 {
1773 vec<tree, va_gc> *cleanups = NULL;
1774 /* If store_init_value returns NULL_TREE, the INIT has been
1775 recorded as the DECL_INITIAL for EXP. That means there's
1776 nothing more we have to do. */
1777 init = store_init_value (exp, init, &cleanups, flags);
1778 if (init)
1779 finish_expr_stmt (init);
1780 gcc_assert (!cleanups);
1781 return;
1782 }
1783
1784 /* If an explicit -- but empty -- initializer list was present,
1785 that's value-initialization. */
1786 if (init == void_type_node)
1787 {
1788 /* If the type has data but no user-provided ctor, we need to zero
1789 out the object. */
1790 if (!type_has_user_provided_constructor (type)
1791 && !is_really_empty_class (type))
1792 {
1793 tree field_size = NULL_TREE;
1794 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1795 /* Don't clobber already initialized virtual bases. */
1796 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1797 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1798 field_size);
1799 init = build2 (INIT_EXPR, type, exp, init);
1800 finish_expr_stmt (init);
1801 }
1802
1803 /* If we don't need to mess with the constructor at all,
1804 then we're done. */
1805 if (! type_build_ctor_call (type))
1806 return;
1807
1808 /* Otherwise fall through and call the constructor. */
1809 init = NULL_TREE;
1810 }
1811
1812 /* We know that expand_default_init can handle everything we want
1813 at this point. */
1814 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1815 }
1816
1817 /* Report an error if TYPE is not a user-defined, class type. If
1818 OR_ELSE is nonzero, give an error message. */
1819
1820 int
1821 is_class_type (tree type, int or_else)
1822 {
1823 if (type == error_mark_node)
1824 return 0;
1825
1826 if (! CLASS_TYPE_P (type))
1827 {
1828 if (or_else)
1829 error ("%qT is not a class type", type);
1830 return 0;
1831 }
1832 return 1;
1833 }
1834
1835 tree
1836 get_type_value (tree name)
1837 {
1838 if (name == error_mark_node)
1839 return NULL_TREE;
1840
1841 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1842 return IDENTIFIER_TYPE_VALUE (name);
1843 else
1844 return NULL_TREE;
1845 }
1846
1847 /* Build a reference to a member of an aggregate. This is not a C++
1848 `&', but really something which can have its address taken, and
1849 then act as a pointer to member, for example TYPE :: FIELD can have
1850 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1851 this expression is the operand of "&".
1852
1853 @@ Prints out lousy diagnostics for operator <typename>
1854 @@ fields.
1855
1856 @@ This function should be rewritten and placed in search.c. */
1857
1858 tree
1859 build_offset_ref (tree type, tree member, bool address_p,
1860 tsubst_flags_t complain)
1861 {
1862 tree decl;
1863 tree basebinfo = NULL_TREE;
1864
1865 /* class templates can come in as TEMPLATE_DECLs here. */
1866 if (TREE_CODE (member) == TEMPLATE_DECL)
1867 return member;
1868
1869 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1870 return build_qualified_name (NULL_TREE, type, member,
1871 /*template_p=*/false);
1872
1873 gcc_assert (TYPE_P (type));
1874 if (! is_class_type (type, 1))
1875 return error_mark_node;
1876
1877 gcc_assert (DECL_P (member) || BASELINK_P (member));
1878 /* Callers should call mark_used before this point. */
1879 gcc_assert (!DECL_P (member) || TREE_USED (member));
1880
1881 type = TYPE_MAIN_VARIANT (type);
1882 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1883 {
1884 if (complain & tf_error)
1885 error ("incomplete type %qT does not have member %qD", type, member);
1886 return error_mark_node;
1887 }
1888
1889 /* Entities other than non-static members need no further
1890 processing. */
1891 if (TREE_CODE (member) == TYPE_DECL)
1892 return member;
1893 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1894 return convert_from_reference (member);
1895
1896 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1897 {
1898 if (complain & tf_error)
1899 error ("invalid pointer to bit-field %qD", member);
1900 return error_mark_node;
1901 }
1902
1903 /* Set up BASEBINFO for member lookup. */
1904 decl = maybe_dummy_object (type, &basebinfo);
1905
1906 /* A lot of this logic is now handled in lookup_member. */
1907 if (BASELINK_P (member))
1908 {
1909 /* Go from the TREE_BASELINK to the member function info. */
1910 tree t = BASELINK_FUNCTIONS (member);
1911
1912 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1913 {
1914 /* Get rid of a potential OVERLOAD around it. */
1915 t = OVL_CURRENT (t);
1916
1917 /* Unique functions are handled easily. */
1918
1919 /* For non-static member of base class, we need a special rule
1920 for access checking [class.protected]:
1921
1922 If the access is to form a pointer to member, the
1923 nested-name-specifier shall name the derived class
1924 (or any class derived from that class). */
1925 if (address_p && DECL_P (t)
1926 && DECL_NONSTATIC_MEMBER_P (t))
1927 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1928 complain);
1929 else
1930 perform_or_defer_access_check (basebinfo, t, t,
1931 complain);
1932
1933 if (DECL_STATIC_FUNCTION_P (t))
1934 return t;
1935 member = t;
1936 }
1937 else
1938 TREE_TYPE (member) = unknown_type_node;
1939 }
1940 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1941 /* We need additional test besides the one in
1942 check_accessibility_of_qualified_id in case it is
1943 a pointer to non-static member. */
1944 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1945 complain);
1946
1947 if (!address_p)
1948 {
1949 /* If MEMBER is non-static, then the program has fallen afoul of
1950 [expr.prim]:
1951
1952 An id-expression that denotes a nonstatic data member or
1953 nonstatic member function of a class can only be used:
1954
1955 -- as part of a class member access (_expr.ref_) in which the
1956 object-expression refers to the member's class or a class
1957 derived from that class, or
1958
1959 -- to form a pointer to member (_expr.unary.op_), or
1960
1961 -- in the body of a nonstatic member function of that class or
1962 of a class derived from that class (_class.mfct.nonstatic_), or
1963
1964 -- in a mem-initializer for a constructor for that class or for
1965 a class derived from that class (_class.base.init_). */
1966 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1967 {
1968 /* Build a representation of the qualified name suitable
1969 for use as the operand to "&" -- even though the "&" is
1970 not actually present. */
1971 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1972 /* In Microsoft mode, treat a non-static member function as if
1973 it were a pointer-to-member. */
1974 if (flag_ms_extensions)
1975 {
1976 PTRMEM_OK_P (member) = 1;
1977 return cp_build_addr_expr (member, complain);
1978 }
1979 if (complain & tf_error)
1980 error ("invalid use of non-static member function %qD",
1981 TREE_OPERAND (member, 1));
1982 return error_mark_node;
1983 }
1984 else if (TREE_CODE (member) == FIELD_DECL)
1985 {
1986 if (complain & tf_error)
1987 error ("invalid use of non-static data member %qD", member);
1988 return error_mark_node;
1989 }
1990 return member;
1991 }
1992
1993 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1994 PTRMEM_OK_P (member) = 1;
1995 return member;
1996 }
1997
1998 /* If DECL is a scalar enumeration constant or variable with a
1999 constant initializer, return the initializer (or, its initializers,
2000 recursively); otherwise, return DECL. If INTEGRAL_P, the
2001 initializer is only returned if DECL is an integral
2002 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2003 return an aggregate constant. */
2004
2005 static tree
2006 constant_value_1 (tree decl, bool integral_p, bool return_aggregate_cst_ok_p)
2007 {
2008 while (TREE_CODE (decl) == CONST_DECL
2009 || (integral_p
2010 ? decl_constant_var_p (decl)
2011 : (VAR_P (decl)
2012 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2013 {
2014 tree init;
2015 /* If DECL is a static data member in a template
2016 specialization, we must instantiate it here. The
2017 initializer for the static data member is not processed
2018 until needed; we need it now. */
2019 mark_used (decl);
2020 mark_rvalue_use (decl);
2021 init = DECL_INITIAL (decl);
2022 if (init == error_mark_node)
2023 {
2024 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2025 /* Treat the error as a constant to avoid cascading errors on
2026 excessively recursive template instantiation (c++/9335). */
2027 return init;
2028 else
2029 return decl;
2030 }
2031 /* Initializers in templates are generally expanded during
2032 instantiation, so before that for const int i(2)
2033 INIT is a TREE_LIST with the actual initializer as
2034 TREE_VALUE. */
2035 if (processing_template_decl
2036 && init
2037 && TREE_CODE (init) == TREE_LIST
2038 && TREE_CHAIN (init) == NULL_TREE)
2039 init = TREE_VALUE (init);
2040 if (!init
2041 || !TREE_TYPE (init)
2042 || !TREE_CONSTANT (init)
2043 || (!integral_p && !return_aggregate_cst_ok_p
2044 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2045 return an aggregate constant (of which string
2046 literals are a special case), as we do not want
2047 to make inadvertent copies of such entities, and
2048 we must be sure that their addresses are the
2049 same everywhere. */
2050 && (TREE_CODE (init) == CONSTRUCTOR
2051 || TREE_CODE (init) == STRING_CST)))
2052 break;
2053 decl = unshare_expr (init);
2054 }
2055 return decl;
2056 }
2057
2058 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
2059 constant of integral or enumeration type, then return that value.
2060 These are those variables permitted in constant expressions by
2061 [5.19/1]. */
2062
2063 tree
2064 integral_constant_value (tree decl)
2065 {
2066 return constant_value_1 (decl, /*integral_p=*/true,
2067 /*return_aggregate_cst_ok_p=*/false);
2068 }
2069
2070 /* A more relaxed version of integral_constant_value, used by the
2071 common C/C++ code. */
2072
2073 tree
2074 decl_constant_value (tree decl)
2075 {
2076 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2077 /*return_aggregate_cst_ok_p=*/true);
2078 }
2079
2080 /* A version of integral_constant_value used by the C++ front end for
2081 optimization purposes. */
2082
2083 tree
2084 decl_constant_value_safe (tree decl)
2085 {
2086 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2087 /*return_aggregate_cst_ok_p=*/false);
2088 }
2089 \f
2090 /* Common subroutines of build_new and build_vec_delete. */
2091
2092 /* Call the global __builtin_delete to delete ADDR. */
2093
2094 static tree
2095 build_builtin_delete_call (tree addr)
2096 {
2097 mark_used (global_delete_fndecl);
2098 return build_call_n (global_delete_fndecl, 1, addr);
2099 }
2100 \f
2101 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2102 the type of the object being allocated; otherwise, it's just TYPE.
2103 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2104 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2105 a vector of arguments to be provided as arguments to a placement
2106 new operator. This routine performs no semantic checks; it just
2107 creates and returns a NEW_EXPR. */
2108
2109 static tree
2110 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2111 vec<tree, va_gc> *init, int use_global_new)
2112 {
2113 tree init_list;
2114 tree new_expr;
2115
2116 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2117 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2118 permits us to distinguish the case of a missing initializer "new
2119 int" from an empty initializer "new int()". */
2120 if (init == NULL)
2121 init_list = NULL_TREE;
2122 else if (init->is_empty ())
2123 init_list = void_node;
2124 else
2125 init_list = build_tree_list_vec (init);
2126
2127 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2128 build_tree_list_vec (placement), type, nelts,
2129 init_list);
2130 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2131 TREE_SIDE_EFFECTS (new_expr) = 1;
2132
2133 return new_expr;
2134 }
2135
2136 /* Diagnose uninitialized const members or reference members of type
2137 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2138 new expression without a new-initializer and a declaration. Returns
2139 the error count. */
2140
2141 static int
2142 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2143 bool using_new, bool complain)
2144 {
2145 tree field;
2146 int error_count = 0;
2147
2148 if (type_has_user_provided_constructor (type))
2149 return 0;
2150
2151 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2152 {
2153 tree field_type;
2154
2155 if (TREE_CODE (field) != FIELD_DECL)
2156 continue;
2157
2158 field_type = strip_array_types (TREE_TYPE (field));
2159
2160 if (type_has_user_provided_constructor (field_type))
2161 continue;
2162
2163 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2164 {
2165 ++ error_count;
2166 if (complain)
2167 {
2168 if (DECL_CONTEXT (field) == origin)
2169 {
2170 if (using_new)
2171 error ("uninitialized reference member in %q#T "
2172 "using %<new%> without new-initializer", origin);
2173 else
2174 error ("uninitialized reference member in %q#T", origin);
2175 }
2176 else
2177 {
2178 if (using_new)
2179 error ("uninitialized reference member in base %q#T "
2180 "of %q#T using %<new%> without new-initializer",
2181 DECL_CONTEXT (field), origin);
2182 else
2183 error ("uninitialized reference member in base %q#T "
2184 "of %q#T", DECL_CONTEXT (field), origin);
2185 }
2186 inform (DECL_SOURCE_LOCATION (field),
2187 "%q#D should be initialized", field);
2188 }
2189 }
2190
2191 if (CP_TYPE_CONST_P (field_type))
2192 {
2193 ++ error_count;
2194 if (complain)
2195 {
2196 if (DECL_CONTEXT (field) == origin)
2197 {
2198 if (using_new)
2199 error ("uninitialized const member in %q#T "
2200 "using %<new%> without new-initializer", origin);
2201 else
2202 error ("uninitialized const member in %q#T", origin);
2203 }
2204 else
2205 {
2206 if (using_new)
2207 error ("uninitialized const member in base %q#T "
2208 "of %q#T using %<new%> without new-initializer",
2209 DECL_CONTEXT (field), origin);
2210 else
2211 error ("uninitialized const member in base %q#T "
2212 "of %q#T", DECL_CONTEXT (field), origin);
2213 }
2214 inform (DECL_SOURCE_LOCATION (field),
2215 "%q#D should be initialized", field);
2216 }
2217 }
2218
2219 if (CLASS_TYPE_P (field_type))
2220 error_count
2221 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2222 using_new, complain);
2223 }
2224 return error_count;
2225 }
2226
2227 int
2228 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2229 {
2230 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2231 }
2232
2233 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2234 overflowed. Pretend it returns sizetype so that it plays nicely in the
2235 COND_EXPR. */
2236
2237 tree
2238 throw_bad_array_new_length (void)
2239 {
2240 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2241 if (!get_global_value_if_present (fn, &fn))
2242 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2243 NULL_TREE));
2244
2245 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2246 }
2247
2248 /* Call __cxa_bad_array_length to indicate that there were too many
2249 initializers. */
2250
2251 tree
2252 throw_bad_array_length (void)
2253 {
2254 tree fn = get_identifier ("__cxa_throw_bad_array_length");
2255 if (!get_global_value_if_present (fn, &fn))
2256 fn = push_throw_library_fn (fn, build_function_type_list (void_type_node,
2257 NULL_TREE));
2258
2259 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2260 }
2261
2262 /* Generate code for a new-expression, including calling the "operator
2263 new" function, initializing the object, and, if an exception occurs
2264 during construction, cleaning up. The arguments are as for
2265 build_raw_new_expr. This may change PLACEMENT and INIT. */
2266
2267 static tree
2268 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2269 vec<tree, va_gc> **init, bool globally_qualified_p,
2270 tsubst_flags_t complain)
2271 {
2272 tree size, rval;
2273 /* True iff this is a call to "operator new[]" instead of just
2274 "operator new". */
2275 bool array_p = false;
2276 /* If ARRAY_P is true, the element type of the array. This is never
2277 an ARRAY_TYPE; for something like "new int[3][4]", the
2278 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2279 TYPE. */
2280 tree elt_type;
2281 /* The type of the new-expression. (This type is always a pointer
2282 type.) */
2283 tree pointer_type;
2284 tree non_const_pointer_type;
2285 tree outer_nelts = NULL_TREE;
2286 /* For arrays, a bounds checks on the NELTS parameter. */
2287 tree outer_nelts_check = NULL_TREE;
2288 bool outer_nelts_from_type = false;
2289 offset_int inner_nelts_count = 1;
2290 tree alloc_call, alloc_expr;
2291 /* Size of the inner array elements. */
2292 offset_int inner_size;
2293 /* The address returned by the call to "operator new". This node is
2294 a VAR_DECL and is therefore reusable. */
2295 tree alloc_node;
2296 tree alloc_fn;
2297 tree cookie_expr, init_expr;
2298 int nothrow, check_new;
2299 int use_java_new = 0;
2300 /* If non-NULL, the number of extra bytes to allocate at the
2301 beginning of the storage allocated for an array-new expression in
2302 order to store the number of elements. */
2303 tree cookie_size = NULL_TREE;
2304 tree placement_first;
2305 tree placement_expr = NULL_TREE;
2306 /* True if the function we are calling is a placement allocation
2307 function. */
2308 bool placement_allocation_fn_p;
2309 /* True if the storage must be initialized, either by a constructor
2310 or due to an explicit new-initializer. */
2311 bool is_initialized;
2312 /* The address of the thing allocated, not including any cookie. In
2313 particular, if an array cookie is in use, DATA_ADDR is the
2314 address of the first array element. This node is a VAR_DECL, and
2315 is therefore reusable. */
2316 tree data_addr;
2317 tree init_preeval_expr = NULL_TREE;
2318 tree orig_type = type;
2319
2320 if (nelts)
2321 {
2322 outer_nelts = nelts;
2323 array_p = true;
2324 }
2325 else if (TREE_CODE (type) == ARRAY_TYPE)
2326 {
2327 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2328 extension for variable N. (This also covers new T where T is
2329 a VLA typedef.) */
2330 array_p = true;
2331 nelts = array_type_nelts_top (type);
2332 outer_nelts = nelts;
2333 type = TREE_TYPE (type);
2334 outer_nelts_from_type = true;
2335 }
2336
2337 /* If our base type is an array, then make sure we know how many elements
2338 it has. */
2339 for (elt_type = type;
2340 TREE_CODE (elt_type) == ARRAY_TYPE;
2341 elt_type = TREE_TYPE (elt_type))
2342 {
2343 tree inner_nelts = array_type_nelts_top (elt_type);
2344 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2345 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2346 {
2347 bool overflow;
2348 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2349 inner_nelts_count, SIGNED, &overflow);
2350 if (overflow)
2351 {
2352 if (complain & tf_error)
2353 error ("integer overflow in array size");
2354 nelts = error_mark_node;
2355 }
2356 inner_nelts_count = result;
2357 }
2358 else
2359 {
2360 if (complain & tf_error)
2361 {
2362 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2363 "array size in new-expression must be constant");
2364 cxx_constant_value(inner_nelts);
2365 }
2366 nelts = error_mark_node;
2367 }
2368 if (nelts != error_mark_node)
2369 nelts = cp_build_binary_op (input_location,
2370 MULT_EXPR, nelts,
2371 inner_nelts_cst,
2372 complain);
2373 }
2374
2375 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2376 {
2377 error ("variably modified type not allowed in new-expression");
2378 return error_mark_node;
2379 }
2380
2381 if (nelts == error_mark_node)
2382 return error_mark_node;
2383
2384 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2385 variable. */
2386 if (outer_nelts_from_type
2387 && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2388 {
2389 if (complain & tf_warning_or_error)
2390 {
2391 const char *msg;
2392 if (typedef_variant_p (orig_type))
2393 msg = ("non-constant array new length must be specified "
2394 "directly, not by typedef");
2395 else
2396 msg = ("non-constant array new length must be specified "
2397 "without parentheses around the type-id");
2398 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2399 OPT_Wvla, msg);
2400 }
2401 else
2402 return error_mark_node;
2403 }
2404
2405 if (VOID_TYPE_P (elt_type))
2406 {
2407 if (complain & tf_error)
2408 error ("invalid type %<void%> for new");
2409 return error_mark_node;
2410 }
2411
2412 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2413 return error_mark_node;
2414
2415 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2416
2417 if (*init == NULL && cxx_dialect < cxx11)
2418 {
2419 bool maybe_uninitialized_error = false;
2420 /* A program that calls for default-initialization [...] of an
2421 entity of reference type is ill-formed. */
2422 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2423 maybe_uninitialized_error = true;
2424
2425 /* A new-expression that creates an object of type T initializes
2426 that object as follows:
2427 - If the new-initializer is omitted:
2428 -- If T is a (possibly cv-qualified) non-POD class type
2429 (or array thereof), the object is default-initialized (8.5).
2430 [...]
2431 -- Otherwise, the object created has indeterminate
2432 value. If T is a const-qualified type, or a (possibly
2433 cv-qualified) POD class type (or array thereof)
2434 containing (directly or indirectly) a member of
2435 const-qualified type, the program is ill-formed; */
2436
2437 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2438 maybe_uninitialized_error = true;
2439
2440 if (maybe_uninitialized_error
2441 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2442 /*using_new=*/true,
2443 complain & tf_error))
2444 return error_mark_node;
2445 }
2446
2447 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2448 && default_init_uninitialized_part (elt_type))
2449 {
2450 if (complain & tf_error)
2451 error ("uninitialized const in %<new%> of %q#T", elt_type);
2452 return error_mark_node;
2453 }
2454
2455 size = size_in_bytes (elt_type);
2456 if (array_p)
2457 {
2458 /* Maximum available size in bytes. Half of the address space
2459 minus the cookie size. */
2460 offset_int max_size
2461 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2462 /* Maximum number of outer elements which can be allocated. */
2463 offset_int max_outer_nelts;
2464 tree max_outer_nelts_tree;
2465
2466 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2467 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2468 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2469 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2470 /* Unconditionally subtract the cookie size. This decreases the
2471 maximum object size and is safe even if we choose not to use
2472 a cookie after all. */
2473 max_size -= wi::to_offset (cookie_size);
2474 bool overflow;
2475 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2476 &overflow);
2477 if (overflow || wi::gtu_p (inner_size, max_size))
2478 {
2479 if (complain & tf_error)
2480 error ("size of array is too large");
2481 return error_mark_node;
2482 }
2483
2484 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2485 /* Only keep the top-most seven bits, to simplify encoding the
2486 constant in the instruction stream. */
2487 {
2488 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2489 - wi::clz (max_outer_nelts);
2490 max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
2491 shift);
2492 }
2493 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2494
2495 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2496 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2497 outer_nelts,
2498 max_outer_nelts_tree);
2499 }
2500
2501 alloc_fn = NULL_TREE;
2502
2503 /* If PLACEMENT is a single simple pointer type not passed by
2504 reference, prepare to capture it in a temporary variable. Do
2505 this now, since PLACEMENT will change in the calls below. */
2506 placement_first = NULL_TREE;
2507 if (vec_safe_length (*placement) == 1
2508 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2509 placement_first = (**placement)[0];
2510
2511 /* Allocate the object. */
2512 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2513 {
2514 tree class_addr;
2515 tree class_decl;
2516 static const char alloc_name[] = "_Jv_AllocObject";
2517
2518 if (!MAYBE_CLASS_TYPE_P (elt_type))
2519 {
2520 error ("%qT isn%'t a valid Java class type", elt_type);
2521 return error_mark_node;
2522 }
2523
2524 class_decl = build_java_class_ref (elt_type);
2525 if (class_decl == error_mark_node)
2526 return error_mark_node;
2527
2528 use_java_new = 1;
2529 if (!get_global_value_if_present (get_identifier (alloc_name),
2530 &alloc_fn))
2531 {
2532 if (complain & tf_error)
2533 error ("call to Java constructor with %qs undefined", alloc_name);
2534 return error_mark_node;
2535 }
2536 else if (really_overloaded_fn (alloc_fn))
2537 {
2538 if (complain & tf_error)
2539 error ("%qD should never be overloaded", alloc_fn);
2540 return error_mark_node;
2541 }
2542 alloc_fn = OVL_CURRENT (alloc_fn);
2543 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2544 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2545 class_addr, NULL_TREE);
2546 }
2547 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2548 {
2549 error ("Java class %q#T object allocated using placement new", elt_type);
2550 return error_mark_node;
2551 }
2552 else
2553 {
2554 tree fnname;
2555 tree fns;
2556
2557 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2558
2559 if (!globally_qualified_p
2560 && CLASS_TYPE_P (elt_type)
2561 && (array_p
2562 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2563 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2564 {
2565 /* Use a class-specific operator new. */
2566 /* If a cookie is required, add some extra space. */
2567 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2568 size = size_binop (PLUS_EXPR, size, cookie_size);
2569 else
2570 {
2571 cookie_size = NULL_TREE;
2572 /* No size arithmetic necessary, so the size check is
2573 not needed. */
2574 if (outer_nelts_check != NULL && inner_size == 1)
2575 outer_nelts_check = NULL_TREE;
2576 }
2577 /* Perform the overflow check. */
2578 tree errval = TYPE_MAX_VALUE (sizetype);
2579 if (cxx_dialect >= cxx11 && flag_exceptions)
2580 errval = throw_bad_array_new_length ();
2581 if (outer_nelts_check != NULL_TREE)
2582 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2583 size, errval);
2584 /* Create the argument list. */
2585 vec_safe_insert (*placement, 0, size);
2586 /* Do name-lookup to find the appropriate operator. */
2587 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2588 if (fns == NULL_TREE)
2589 {
2590 if (complain & tf_error)
2591 error ("no suitable %qD found in class %qT", fnname, elt_type);
2592 return error_mark_node;
2593 }
2594 if (TREE_CODE (fns) == TREE_LIST)
2595 {
2596 if (complain & tf_error)
2597 {
2598 error ("request for member %qD is ambiguous", fnname);
2599 print_candidates (fns);
2600 }
2601 return error_mark_node;
2602 }
2603 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2604 fns, placement,
2605 /*conversion_path=*/NULL_TREE,
2606 LOOKUP_NORMAL,
2607 &alloc_fn,
2608 complain);
2609 }
2610 else
2611 {
2612 /* Use a global operator new. */
2613 /* See if a cookie might be required. */
2614 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2615 {
2616 cookie_size = NULL_TREE;
2617 /* No size arithmetic necessary, so the size check is
2618 not needed. */
2619 if (outer_nelts_check != NULL && inner_size == 1)
2620 outer_nelts_check = NULL_TREE;
2621 }
2622
2623 alloc_call = build_operator_new_call (fnname, placement,
2624 &size, &cookie_size,
2625 outer_nelts_check,
2626 &alloc_fn, complain);
2627 }
2628 }
2629
2630 if (alloc_call == error_mark_node)
2631 return error_mark_node;
2632
2633 gcc_assert (alloc_fn != NULL_TREE);
2634
2635 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2636 into a temporary variable. */
2637 if (!processing_template_decl
2638 && placement_first != NULL_TREE
2639 && TREE_CODE (alloc_call) == CALL_EXPR
2640 && call_expr_nargs (alloc_call) == 2
2641 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2642 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2643 {
2644 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2645
2646 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2647 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2648 {
2649 placement_expr = get_target_expr (placement_first);
2650 CALL_EXPR_ARG (alloc_call, 1)
2651 = convert (TREE_TYPE (placement_arg), placement_expr);
2652 }
2653 }
2654
2655 /* In the simple case, we can stop now. */
2656 pointer_type = build_pointer_type (type);
2657 if (!cookie_size && !is_initialized)
2658 return build_nop (pointer_type, alloc_call);
2659
2660 /* Store the result of the allocation call in a variable so that we can
2661 use it more than once. */
2662 alloc_expr = get_target_expr (alloc_call);
2663 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2664
2665 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2666 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2667 alloc_call = TREE_OPERAND (alloc_call, 1);
2668
2669 /* Now, check to see if this function is actually a placement
2670 allocation function. This can happen even when PLACEMENT is NULL
2671 because we might have something like:
2672
2673 struct S { void* operator new (size_t, int i = 0); };
2674
2675 A call to `new S' will get this allocation function, even though
2676 there is no explicit placement argument. If there is more than
2677 one argument, or there are variable arguments, then this is a
2678 placement allocation function. */
2679 placement_allocation_fn_p
2680 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2681 || varargs_function_p (alloc_fn));
2682
2683 /* Preevaluate the placement args so that we don't reevaluate them for a
2684 placement delete. */
2685 if (placement_allocation_fn_p)
2686 {
2687 tree inits;
2688 stabilize_call (alloc_call, &inits);
2689 if (inits)
2690 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2691 alloc_expr);
2692 }
2693
2694 /* unless an allocation function is declared with an empty excep-
2695 tion-specification (_except.spec_), throw(), it indicates failure to
2696 allocate storage by throwing a bad_alloc exception (clause _except_,
2697 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2698 cation function is declared with an empty exception-specification,
2699 throw(), it returns null to indicate failure to allocate storage and a
2700 non-null pointer otherwise.
2701
2702 So check for a null exception spec on the op new we just called. */
2703
2704 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2705 check_new = (flag_check_new || nothrow) && ! use_java_new;
2706
2707 if (cookie_size)
2708 {
2709 tree cookie;
2710 tree cookie_ptr;
2711 tree size_ptr_type;
2712
2713 /* Adjust so we're pointing to the start of the object. */
2714 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2715
2716 /* Store the number of bytes allocated so that we can know how
2717 many elements to destroy later. We use the last sizeof
2718 (size_t) bytes to store the number of elements. */
2719 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2720 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2721 alloc_node, cookie_ptr);
2722 size_ptr_type = build_pointer_type (sizetype);
2723 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2724 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2725
2726 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2727
2728 if (targetm.cxx.cookie_has_size ())
2729 {
2730 /* Also store the element size. */
2731 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2732 fold_build1_loc (input_location,
2733 NEGATE_EXPR, sizetype,
2734 size_in_bytes (sizetype)));
2735
2736 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2737 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2738 size_in_bytes (elt_type));
2739 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2740 cookie, cookie_expr);
2741 }
2742 }
2743 else
2744 {
2745 cookie_expr = NULL_TREE;
2746 data_addr = alloc_node;
2747 }
2748
2749 /* Now use a pointer to the type we've actually allocated. */
2750
2751 /* But we want to operate on a non-const version to start with,
2752 since we'll be modifying the elements. */
2753 non_const_pointer_type = build_pointer_type
2754 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2755
2756 data_addr = fold_convert (non_const_pointer_type, data_addr);
2757 /* Any further uses of alloc_node will want this type, too. */
2758 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2759
2760 /* Now initialize the allocated object. Note that we preevaluate the
2761 initialization expression, apart from the actual constructor call or
2762 assignment--we do this because we want to delay the allocation as long
2763 as possible in order to minimize the size of the exception region for
2764 placement delete. */
2765 if (is_initialized)
2766 {
2767 bool stable;
2768 bool explicit_value_init_p = false;
2769
2770 if (*init != NULL && (*init)->is_empty ())
2771 {
2772 *init = NULL;
2773 explicit_value_init_p = true;
2774 }
2775
2776 if (processing_template_decl && explicit_value_init_p)
2777 {
2778 /* build_value_init doesn't work in templates, and we don't need
2779 the initializer anyway since we're going to throw it away and
2780 rebuild it at instantiation time, so just build up a single
2781 constructor call to get any appropriate diagnostics. */
2782 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2783 if (type_build_ctor_call (elt_type))
2784 init_expr = build_special_member_call (init_expr,
2785 complete_ctor_identifier,
2786 init, elt_type,
2787 LOOKUP_NORMAL,
2788 complain);
2789 stable = stabilize_init (init_expr, &init_preeval_expr);
2790 }
2791 else if (array_p)
2792 {
2793 tree vecinit = NULL_TREE;
2794 if (vec_safe_length (*init) == 1
2795 && DIRECT_LIST_INIT_P ((**init)[0]))
2796 {
2797 vecinit = (**init)[0];
2798 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2799 /* List-value-initialization, leave it alone. */;
2800 else
2801 {
2802 tree arraytype, domain;
2803 if (TREE_CONSTANT (nelts))
2804 domain = compute_array_index_type (NULL_TREE, nelts,
2805 complain);
2806 else
2807 /* We'll check the length at runtime. */
2808 domain = NULL_TREE;
2809 arraytype = build_cplus_array_type (type, domain);
2810 vecinit = digest_init (arraytype, vecinit, complain);
2811 }
2812 }
2813 else if (*init)
2814 {
2815 if (complain & tf_error)
2816 permerror (input_location,
2817 "parenthesized initializer in array new");
2818 else
2819 return error_mark_node;
2820 vecinit = build_tree_list_vec (*init);
2821 }
2822 init_expr
2823 = build_vec_init (data_addr,
2824 cp_build_binary_op (input_location,
2825 MINUS_EXPR, outer_nelts,
2826 integer_one_node,
2827 complain),
2828 vecinit,
2829 explicit_value_init_p,
2830 /*from_array=*/0,
2831 complain);
2832
2833 /* An array initialization is stable because the initialization
2834 of each element is a full-expression, so the temporaries don't
2835 leak out. */
2836 stable = true;
2837 }
2838 else
2839 {
2840 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2841
2842 if (type_build_ctor_call (type) && !explicit_value_init_p)
2843 {
2844 init_expr = build_special_member_call (init_expr,
2845 complete_ctor_identifier,
2846 init, elt_type,
2847 LOOKUP_NORMAL,
2848 complain);
2849 }
2850 else if (explicit_value_init_p)
2851 {
2852 /* Something like `new int()'. */
2853 tree val = build_value_init (type, complain);
2854 if (val == error_mark_node)
2855 return error_mark_node;
2856 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2857 }
2858 else
2859 {
2860 tree ie;
2861
2862 /* We are processing something like `new int (10)', which
2863 means allocate an int, and initialize it with 10. */
2864
2865 ie = build_x_compound_expr_from_vec (*init, "new initializer",
2866 complain);
2867 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2868 complain);
2869 }
2870 stable = stabilize_init (init_expr, &init_preeval_expr);
2871 }
2872
2873 if (init_expr == error_mark_node)
2874 return error_mark_node;
2875
2876 /* If any part of the object initialization terminates by throwing an
2877 exception and a suitable deallocation function can be found, the
2878 deallocation function is called to free the memory in which the
2879 object was being constructed, after which the exception continues
2880 to propagate in the context of the new-expression. If no
2881 unambiguous matching deallocation function can be found,
2882 propagating the exception does not cause the object's memory to be
2883 freed. */
2884 if (flag_exceptions && ! use_java_new)
2885 {
2886 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2887 tree cleanup;
2888
2889 /* The Standard is unclear here, but the right thing to do
2890 is to use the same method for finding deallocation
2891 functions that we use for finding allocation functions. */
2892 cleanup = (build_op_delete_call
2893 (dcode,
2894 alloc_node,
2895 size,
2896 globally_qualified_p,
2897 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2898 alloc_fn,
2899 complain));
2900
2901 if (!cleanup)
2902 /* We're done. */;
2903 else if (stable)
2904 /* This is much simpler if we were able to preevaluate all of
2905 the arguments to the constructor call. */
2906 {
2907 /* CLEANUP is compiler-generated, so no diagnostics. */
2908 TREE_NO_WARNING (cleanup) = true;
2909 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2910 init_expr, cleanup);
2911 /* Likewise, this try-catch is compiler-generated. */
2912 TREE_NO_WARNING (init_expr) = true;
2913 }
2914 else
2915 /* Ack! First we allocate the memory. Then we set our sentry
2916 variable to true, and expand a cleanup that deletes the
2917 memory if sentry is true. Then we run the constructor, and
2918 finally clear the sentry.
2919
2920 We need to do this because we allocate the space first, so
2921 if there are any temporaries with cleanups in the
2922 constructor args and we weren't able to preevaluate them, we
2923 need this EH region to extend until end of full-expression
2924 to preserve nesting. */
2925 {
2926 tree end, sentry, begin;
2927
2928 begin = get_target_expr (boolean_true_node);
2929 CLEANUP_EH_ONLY (begin) = 1;
2930
2931 sentry = TARGET_EXPR_SLOT (begin);
2932
2933 /* CLEANUP is compiler-generated, so no diagnostics. */
2934 TREE_NO_WARNING (cleanup) = true;
2935
2936 TARGET_EXPR_CLEANUP (begin)
2937 = build3 (COND_EXPR, void_type_node, sentry,
2938 cleanup, void_node);
2939
2940 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2941 sentry, boolean_false_node);
2942
2943 init_expr
2944 = build2 (COMPOUND_EXPR, void_type_node, begin,
2945 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2946 end));
2947 /* Likewise, this is compiler-generated. */
2948 TREE_NO_WARNING (init_expr) = true;
2949 }
2950 }
2951 }
2952 else
2953 init_expr = NULL_TREE;
2954
2955 /* Now build up the return value in reverse order. */
2956
2957 rval = data_addr;
2958
2959 if (init_expr)
2960 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2961 if (cookie_expr)
2962 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2963
2964 if (rval == data_addr)
2965 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2966 and return the call (which doesn't need to be adjusted). */
2967 rval = TARGET_EXPR_INITIAL (alloc_expr);
2968 else
2969 {
2970 if (check_new)
2971 {
2972 tree ifexp = cp_build_binary_op (input_location,
2973 NE_EXPR, alloc_node,
2974 nullptr_node,
2975 complain);
2976 rval = build_conditional_expr (input_location, ifexp, rval,
2977 alloc_node, complain);
2978 }
2979
2980 /* Perform the allocation before anything else, so that ALLOC_NODE
2981 has been initialized before we start using it. */
2982 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2983 }
2984
2985 if (init_preeval_expr)
2986 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2987
2988 /* A new-expression is never an lvalue. */
2989 gcc_assert (!lvalue_p (rval));
2990
2991 return convert (pointer_type, rval);
2992 }
2993
2994 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2995 is a vector of placement-new arguments (or NULL if none). If NELTS
2996 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2997 is not NULL, then this is an array-new allocation; TYPE is the type
2998 of the elements in the array and NELTS is the number of elements in
2999 the array. *INIT, if non-NULL, is the initializer for the new
3000 object, or an empty vector to indicate an initializer of "()". If
3001 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3002 rather than just "new". This may change PLACEMENT and INIT. */
3003
3004 tree
3005 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3006 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3007 {
3008 tree rval;
3009 vec<tree, va_gc> *orig_placement = NULL;
3010 tree orig_nelts = NULL_TREE;
3011 vec<tree, va_gc> *orig_init = NULL;
3012
3013 if (type == error_mark_node)
3014 return error_mark_node;
3015
3016 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3017 /* Don't do auto deduction where it might affect mangling. */
3018 && (!processing_template_decl || at_function_scope_p ()))
3019 {
3020 tree auto_node = type_uses_auto (type);
3021 if (auto_node)
3022 {
3023 tree d_init = (**init)[0];
3024 d_init = resolve_nondeduced_context (d_init);
3025 type = do_auto_deduction (type, d_init, auto_node);
3026 }
3027 }
3028
3029 if (processing_template_decl)
3030 {
3031 if (dependent_type_p (type)
3032 || any_type_dependent_arguments_p (*placement)
3033 || (nelts && type_dependent_expression_p (nelts))
3034 || (nelts && *init)
3035 || any_type_dependent_arguments_p (*init))
3036 return build_raw_new_expr (*placement, type, nelts, *init,
3037 use_global_new);
3038
3039 orig_placement = make_tree_vector_copy (*placement);
3040 orig_nelts = nelts;
3041 if (*init)
3042 orig_init = make_tree_vector_copy (*init);
3043
3044 make_args_non_dependent (*placement);
3045 if (nelts)
3046 nelts = build_non_dependent_expr (nelts);
3047 make_args_non_dependent (*init);
3048 }
3049
3050 if (nelts)
3051 {
3052 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3053 {
3054 if (complain & tf_error)
3055 permerror (input_location, "size in array new must have integral type");
3056 else
3057 return error_mark_node;
3058 }
3059 nelts = mark_rvalue_use (nelts);
3060 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3061 }
3062
3063 /* ``A reference cannot be created by the new operator. A reference
3064 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3065 returned by new.'' ARM 5.3.3 */
3066 if (TREE_CODE (type) == REFERENCE_TYPE)
3067 {
3068 if (complain & tf_error)
3069 error ("new cannot be applied to a reference type");
3070 else
3071 return error_mark_node;
3072 type = TREE_TYPE (type);
3073 }
3074
3075 if (TREE_CODE (type) == FUNCTION_TYPE)
3076 {
3077 if (complain & tf_error)
3078 error ("new cannot be applied to a function type");
3079 return error_mark_node;
3080 }
3081
3082 /* The type allocated must be complete. If the new-type-id was
3083 "T[N]" then we are just checking that "T" is complete here, but
3084 that is equivalent, since the value of "N" doesn't matter. */
3085 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3086 return error_mark_node;
3087
3088 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3089 if (rval == error_mark_node)
3090 return error_mark_node;
3091
3092 if (processing_template_decl)
3093 {
3094 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3095 orig_init, use_global_new);
3096 release_tree_vector (orig_placement);
3097 release_tree_vector (orig_init);
3098 return ret;
3099 }
3100
3101 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3102 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3103 TREE_NO_WARNING (rval) = 1;
3104
3105 return rval;
3106 }
3107
3108 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3109
3110 tree
3111 build_java_class_ref (tree type)
3112 {
3113 tree name = NULL_TREE, class_decl;
3114 static tree CL_suffix = NULL_TREE;
3115 if (CL_suffix == NULL_TREE)
3116 CL_suffix = get_identifier("class$");
3117 if (jclass_node == NULL_TREE)
3118 {
3119 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3120 if (jclass_node == NULL_TREE)
3121 {
3122 error ("call to Java constructor, while %<jclass%> undefined");
3123 return error_mark_node;
3124 }
3125 jclass_node = TREE_TYPE (jclass_node);
3126 }
3127
3128 /* Mangle the class$ field. */
3129 {
3130 tree field;
3131 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3132 if (DECL_NAME (field) == CL_suffix)
3133 {
3134 mangle_decl (field);
3135 name = DECL_ASSEMBLER_NAME (field);
3136 break;
3137 }
3138 if (!field)
3139 {
3140 error ("can%'t find %<class$%> in %qT", type);
3141 return error_mark_node;
3142 }
3143 }
3144
3145 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3146 if (class_decl == NULL_TREE)
3147 {
3148 class_decl = build_decl (input_location,
3149 VAR_DECL, name, TREE_TYPE (jclass_node));
3150 TREE_STATIC (class_decl) = 1;
3151 DECL_EXTERNAL (class_decl) = 1;
3152 TREE_PUBLIC (class_decl) = 1;
3153 DECL_ARTIFICIAL (class_decl) = 1;
3154 DECL_IGNORED_P (class_decl) = 1;
3155 pushdecl_top_level (class_decl);
3156 make_decl_rtl (class_decl);
3157 }
3158 return class_decl;
3159 }
3160 \f
3161 static tree
3162 build_vec_delete_1 (tree base, tree maxindex, tree type,
3163 special_function_kind auto_delete_vec,
3164 int use_global_delete, tsubst_flags_t complain)
3165 {
3166 tree virtual_size;
3167 tree ptype = build_pointer_type (type = complete_type (type));
3168 tree size_exp;
3169
3170 /* Temporary variables used by the loop. */
3171 tree tbase, tbase_init;
3172
3173 /* This is the body of the loop that implements the deletion of a
3174 single element, and moves temp variables to next elements. */
3175 tree body;
3176
3177 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3178 tree loop = 0;
3179
3180 /* This is the thing that governs what to do after the loop has run. */
3181 tree deallocate_expr = 0;
3182
3183 /* This is the BIND_EXPR which holds the outermost iterator of the
3184 loop. It is convenient to set this variable up and test it before
3185 executing any other code in the loop.
3186 This is also the containing expression returned by this function. */
3187 tree controller = NULL_TREE;
3188 tree tmp;
3189
3190 /* We should only have 1-D arrays here. */
3191 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3192
3193 if (base == error_mark_node || maxindex == error_mark_node)
3194 return error_mark_node;
3195
3196 if (!COMPLETE_TYPE_P (type))
3197 {
3198 if ((complain & tf_warning)
3199 && warning (OPT_Wdelete_incomplete,
3200 "possible problem detected in invocation of "
3201 "delete [] operator:"))
3202 {
3203 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3204 inform (input_location, "neither the destructor nor the "
3205 "class-specific operator delete [] will be called, "
3206 "even if they are declared when the class is defined");
3207 }
3208 return build_builtin_delete_call (base);
3209 }
3210
3211 size_exp = size_in_bytes (type);
3212
3213 if (! MAYBE_CLASS_TYPE_P (type))
3214 goto no_destructor;
3215 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3216 {
3217 /* Make sure the destructor is callable. */
3218 if (type_build_dtor_call (type))
3219 {
3220 tmp = build_delete (ptype, base, sfk_complete_destructor,
3221 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3222 complain);
3223 if (tmp == error_mark_node)
3224 return error_mark_node;
3225 }
3226 goto no_destructor;
3227 }
3228
3229 /* The below is short by the cookie size. */
3230 virtual_size = size_binop (MULT_EXPR, size_exp,
3231 convert (sizetype, maxindex));
3232
3233 tbase = create_temporary_var (ptype);
3234 tbase_init
3235 = cp_build_modify_expr (tbase, NOP_EXPR,
3236 fold_build_pointer_plus_loc (input_location,
3237 fold_convert (ptype,
3238 base),
3239 virtual_size),
3240 complain);
3241 if (tbase_init == error_mark_node)
3242 return error_mark_node;
3243 controller = build3 (BIND_EXPR, void_type_node, tbase,
3244 NULL_TREE, NULL_TREE);
3245 TREE_SIDE_EFFECTS (controller) = 1;
3246
3247 body = build1 (EXIT_EXPR, void_type_node,
3248 build2 (EQ_EXPR, boolean_type_node, tbase,
3249 fold_convert (ptype, base)));
3250 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3251 tmp = fold_build_pointer_plus (tbase, tmp);
3252 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3253 if (tmp == error_mark_node)
3254 return error_mark_node;
3255 body = build_compound_expr (input_location, body, tmp);
3256 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3257 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3258 complain);
3259 if (tmp == error_mark_node)
3260 return error_mark_node;
3261 body = build_compound_expr (input_location, body, tmp);
3262
3263 loop = build1 (LOOP_EXPR, void_type_node, body);
3264 loop = build_compound_expr (input_location, tbase_init, loop);
3265
3266 no_destructor:
3267 /* Delete the storage if appropriate. */
3268 if (auto_delete_vec == sfk_deleting_destructor)
3269 {
3270 tree base_tbd;
3271
3272 /* The below is short by the cookie size. */
3273 virtual_size = size_binop (MULT_EXPR, size_exp,
3274 convert (sizetype, maxindex));
3275
3276 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3277 /* no header */
3278 base_tbd = base;
3279 else
3280 {
3281 tree cookie_size;
3282
3283 cookie_size = targetm.cxx.get_cookie_size (type);
3284 base_tbd = cp_build_binary_op (input_location,
3285 MINUS_EXPR,
3286 cp_convert (string_type_node,
3287 base, complain),
3288 cookie_size,
3289 complain);
3290 if (base_tbd == error_mark_node)
3291 return error_mark_node;
3292 base_tbd = cp_convert (ptype, base_tbd, complain);
3293 /* True size with header. */
3294 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3295 }
3296
3297 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3298 base_tbd, virtual_size,
3299 use_global_delete & 1,
3300 /*placement=*/NULL_TREE,
3301 /*alloc_fn=*/NULL_TREE,
3302 complain);
3303 }
3304
3305 body = loop;
3306 if (!deallocate_expr)
3307 ;
3308 else if (!body)
3309 body = deallocate_expr;
3310 else
3311 body = build_compound_expr (input_location, body, deallocate_expr);
3312
3313 if (!body)
3314 body = integer_zero_node;
3315
3316 /* Outermost wrapper: If pointer is null, punt. */
3317 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3318 fold_build2_loc (input_location,
3319 NE_EXPR, boolean_type_node, base,
3320 convert (TREE_TYPE (base),
3321 nullptr_node)),
3322 body, integer_zero_node);
3323 body = build1 (NOP_EXPR, void_type_node, body);
3324
3325 if (controller)
3326 {
3327 TREE_OPERAND (controller, 1) = body;
3328 body = controller;
3329 }
3330
3331 if (TREE_CODE (base) == SAVE_EXPR)
3332 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3333 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3334
3335 return convert_to_void (body, ICV_CAST, complain);
3336 }
3337
3338 /* Create an unnamed variable of the indicated TYPE. */
3339
3340 tree
3341 create_temporary_var (tree type)
3342 {
3343 tree decl;
3344
3345 decl = build_decl (input_location,
3346 VAR_DECL, NULL_TREE, type);
3347 TREE_USED (decl) = 1;
3348 DECL_ARTIFICIAL (decl) = 1;
3349 DECL_IGNORED_P (decl) = 1;
3350 DECL_CONTEXT (decl) = current_function_decl;
3351
3352 return decl;
3353 }
3354
3355 /* Create a new temporary variable of the indicated TYPE, initialized
3356 to INIT.
3357
3358 It is not entered into current_binding_level, because that breaks
3359 things when it comes time to do final cleanups (which take place
3360 "outside" the binding contour of the function). */
3361
3362 tree
3363 get_temp_regvar (tree type, tree init)
3364 {
3365 tree decl;
3366
3367 decl = create_temporary_var (type);
3368 add_decl_expr (decl);
3369
3370 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3371 tf_warning_or_error));
3372
3373 return decl;
3374 }
3375
3376 /* `build_vec_init' returns tree structure that performs
3377 initialization of a vector of aggregate types.
3378
3379 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3380 to the first element, of POINTER_TYPE.
3381 MAXINDEX is the maximum index of the array (one less than the
3382 number of elements). It is only used if BASE is a pointer or
3383 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3384
3385 INIT is the (possibly NULL) initializer.
3386
3387 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3388 elements in the array are value-initialized.
3389
3390 FROM_ARRAY is 0 if we should init everything with INIT
3391 (i.e., every element initialized from INIT).
3392 FROM_ARRAY is 1 if we should index into INIT in parallel
3393 with initialization of DECL.
3394 FROM_ARRAY is 2 if we should index into INIT in parallel,
3395 but use assignment instead of initialization. */
3396
3397 tree
3398 build_vec_init (tree base, tree maxindex, tree init,
3399 bool explicit_value_init_p,
3400 int from_array, tsubst_flags_t complain)
3401 {
3402 tree rval;
3403 tree base2 = NULL_TREE;
3404 tree itype = NULL_TREE;
3405 tree iterator;
3406 /* The type of BASE. */
3407 tree atype = TREE_TYPE (base);
3408 /* The type of an element in the array. */
3409 tree type = TREE_TYPE (atype);
3410 /* The element type reached after removing all outer array
3411 types. */
3412 tree inner_elt_type;
3413 /* The type of a pointer to an element in the array. */
3414 tree ptype;
3415 tree stmt_expr;
3416 tree compound_stmt;
3417 int destroy_temps;
3418 tree try_block = NULL_TREE;
3419 int num_initialized_elts = 0;
3420 bool is_global;
3421 tree const_init = NULL_TREE;
3422 tree obase = base;
3423 bool xvalue = false;
3424 bool errors = false;
3425 tree length_check = NULL_TREE;
3426
3427 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3428 maxindex = array_type_nelts (atype);
3429
3430 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3431 return error_mark_node;
3432
3433 if (explicit_value_init_p)
3434 gcc_assert (!init);
3435
3436 inner_elt_type = strip_array_types (type);
3437
3438 /* Look through the TARGET_EXPR around a compound literal. */
3439 if (init && TREE_CODE (init) == TARGET_EXPR
3440 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3441 && from_array != 2)
3442 init = TARGET_EXPR_INITIAL (init);
3443
3444 /* If we have a braced-init-list, make sure that the array
3445 is big enough for all the initializers. */
3446 if (init && TREE_CODE (init) == CONSTRUCTOR
3447 && CONSTRUCTOR_NELTS (init) > 0
3448 && !TREE_CONSTANT (maxindex)
3449 && flag_exceptions)
3450 length_check = fold_build2 (LT_EXPR, boolean_type_node, maxindex,
3451 size_int (CONSTRUCTOR_NELTS (init) - 1));
3452
3453 if (init
3454 && TREE_CODE (atype) == ARRAY_TYPE
3455 && TREE_CONSTANT (maxindex)
3456 && (from_array == 2
3457 ? (!CLASS_TYPE_P (inner_elt_type)
3458 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3459 : !TYPE_NEEDS_CONSTRUCTING (type))
3460 && ((TREE_CODE (init) == CONSTRUCTOR
3461 /* Don't do this if the CONSTRUCTOR might contain something
3462 that might throw and require us to clean up. */
3463 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3464 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3465 || from_array))
3466 {
3467 /* Do non-default initialization of trivial arrays resulting from
3468 brace-enclosed initializers. In this case, digest_init and
3469 store_constructor will handle the semantics for us. */
3470
3471 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3472 init = digest_init (atype, init, complain);
3473 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3474 if (length_check)
3475 stmt_expr = build3 (COND_EXPR, atype, length_check,
3476 throw_bad_array_length (),
3477 stmt_expr);
3478 return stmt_expr;
3479 }
3480
3481 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3482 if (TREE_CODE (atype) == ARRAY_TYPE)
3483 {
3484 ptype = build_pointer_type (type);
3485 base = decay_conversion (base, complain);
3486 if (base == error_mark_node)
3487 return error_mark_node;
3488 base = cp_convert (ptype, base, complain);
3489 }
3490 else
3491 ptype = atype;
3492
3493 /* The code we are generating looks like:
3494 ({
3495 T* t1 = (T*) base;
3496 T* rval = t1;
3497 ptrdiff_t iterator = maxindex;
3498 try {
3499 for (; iterator != -1; --iterator) {
3500 ... initialize *t1 ...
3501 ++t1;
3502 }
3503 } catch (...) {
3504 ... destroy elements that were constructed ...
3505 }
3506 rval;
3507 })
3508
3509 We can omit the try and catch blocks if we know that the
3510 initialization will never throw an exception, or if the array
3511 elements do not have destructors. We can omit the loop completely if
3512 the elements of the array do not have constructors.
3513
3514 We actually wrap the entire body of the above in a STMT_EXPR, for
3515 tidiness.
3516
3517 When copying from array to another, when the array elements have
3518 only trivial copy constructors, we should use __builtin_memcpy
3519 rather than generating a loop. That way, we could take advantage
3520 of whatever cleverness the back end has for dealing with copies
3521 of blocks of memory. */
3522
3523 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3524 destroy_temps = stmts_are_full_exprs_p ();
3525 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3526 rval = get_temp_regvar (ptype, base);
3527 base = get_temp_regvar (ptype, rval);
3528 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3529
3530 /* If initializing one array from another, initialize element by
3531 element. We rely upon the below calls to do the argument
3532 checking. Evaluate the initializer before entering the try block. */
3533 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3534 {
3535 if (lvalue_kind (init) & clk_rvalueref)
3536 xvalue = true;
3537 base2 = decay_conversion (init, complain);
3538 if (base2 == error_mark_node)
3539 return error_mark_node;
3540 itype = TREE_TYPE (base2);
3541 base2 = get_temp_regvar (itype, base2);
3542 itype = TREE_TYPE (itype);
3543 }
3544
3545 /* Protect the entire array initialization so that we can destroy
3546 the partially constructed array if an exception is thrown.
3547 But don't do this if we're assigning. */
3548 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3549 && from_array != 2)
3550 {
3551 try_block = begin_try_block ();
3552 }
3553
3554 /* If the initializer is {}, then all elements are initialized from {}.
3555 But for non-classes, that's the same as value-initialization. */
3556 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3557 && CONSTRUCTOR_NELTS (init) == 0)
3558 {
3559 if (CLASS_TYPE_P (type))
3560 /* Leave init alone. */;
3561 else
3562 {
3563 init = NULL_TREE;
3564 explicit_value_init_p = true;
3565 }
3566 }
3567
3568 /* Maybe pull out constant value when from_array? */
3569
3570 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3571 {
3572 /* Do non-default initialization of non-trivial arrays resulting from
3573 brace-enclosed initializers. */
3574 unsigned HOST_WIDE_INT idx;
3575 tree field, elt;
3576 /* Should we try to create a constant initializer? */
3577 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3578 && TREE_CONSTANT (maxindex)
3579 && (literal_type_p (inner_elt_type)
3580 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3581 /* If the constructor already has the array type, it's been through
3582 digest_init, so we shouldn't try to do anything more. */
3583 bool digested = same_type_p (atype, TREE_TYPE (init));
3584 bool saw_non_const = false;
3585 bool saw_const = false;
3586 /* If we're initializing a static array, we want to do static
3587 initialization of any elements with constant initializers even if
3588 some are non-constant. */
3589 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3590 vec<constructor_elt, va_gc> *new_vec;
3591 from_array = 0;
3592
3593 if (length_check)
3594 {
3595 tree throw_call;
3596 if (array_of_runtime_bound_p (atype))
3597 throw_call = throw_bad_array_length ();
3598 else
3599 throw_call = throw_bad_array_new_length ();
3600 length_check = build3 (COND_EXPR, void_type_node, length_check,
3601 throw_call, void_node);
3602 finish_expr_stmt (length_check);
3603 }
3604
3605 if (try_const)
3606 vec_alloc (new_vec, CONSTRUCTOR_NELTS (init));
3607 else
3608 new_vec = NULL;
3609
3610 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3611 {
3612 tree baseref = build1 (INDIRECT_REF, type, base);
3613 tree one_init;
3614
3615 num_initialized_elts++;
3616
3617 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3618 if (digested)
3619 one_init = build2 (INIT_EXPR, type, baseref, elt);
3620 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3621 one_init = build_aggr_init (baseref, elt, 0, complain);
3622 else
3623 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3624 elt, complain);
3625 if (one_init == error_mark_node)
3626 errors = true;
3627 if (try_const)
3628 {
3629 tree e = one_init;
3630 if (TREE_CODE (e) == EXPR_STMT)
3631 e = TREE_OPERAND (e, 0);
3632 if (TREE_CODE (e) == CONVERT_EXPR
3633 && VOID_TYPE_P (TREE_TYPE (e)))
3634 e = TREE_OPERAND (e, 0);
3635 e = maybe_constant_init (e);
3636 if (reduced_constant_expression_p (e))
3637 {
3638 CONSTRUCTOR_APPEND_ELT (new_vec, field, e);
3639 if (do_static_init)
3640 one_init = NULL_TREE;
3641 else
3642 one_init = build2 (INIT_EXPR, type, baseref, e);
3643 saw_const = true;
3644 }
3645 else
3646 {
3647 if (do_static_init)
3648 {
3649 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3650 true);
3651 if (value)
3652 CONSTRUCTOR_APPEND_ELT (new_vec, field, value);
3653 }
3654 saw_non_const = true;
3655 }
3656 }
3657
3658 if (one_init)
3659 finish_expr_stmt (one_init);
3660 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3661
3662 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3663 if (one_init == error_mark_node)
3664 errors = true;
3665 else
3666 finish_expr_stmt (one_init);
3667
3668 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3669 complain);
3670 if (one_init == error_mark_node)
3671 errors = true;
3672 else
3673 finish_expr_stmt (one_init);
3674 }
3675
3676 if (try_const)
3677 {
3678 if (!saw_non_const)
3679 const_init = build_constructor (atype, new_vec);
3680 else if (do_static_init && saw_const)
3681 DECL_INITIAL (obase) = build_constructor (atype, new_vec);
3682 else
3683 vec_free (new_vec);
3684 }
3685
3686 /* Any elements without explicit initializers get {}. */
3687 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3688 init = build_constructor (init_list_type_node, NULL);
3689 else
3690 {
3691 init = NULL_TREE;
3692 explicit_value_init_p = true;
3693 }
3694 }
3695 else if (from_array)
3696 {
3697 if (init)
3698 /* OK, we set base2 above. */;
3699 else if (CLASS_TYPE_P (type)
3700 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3701 {
3702 if (complain & tf_error)
3703 error ("initializer ends prematurely");
3704 errors = true;
3705 }
3706 }
3707
3708 /* Now, default-initialize any remaining elements. We don't need to
3709 do that if a) the type does not need constructing, or b) we've
3710 already initialized all the elements.
3711
3712 We do need to keep going if we're copying an array. */
3713
3714 if (from_array
3715 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3716 && ! (tree_fits_shwi_p (maxindex)
3717 && (num_initialized_elts
3718 == tree_to_shwi (maxindex) + 1))))
3719 {
3720 /* If the ITERATOR is equal to -1, then we don't have to loop;
3721 we've already initialized all the elements. */
3722 tree for_stmt;
3723 tree elt_init;
3724 tree to;
3725
3726 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3727 finish_for_init_stmt (for_stmt);
3728 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3729 build_int_cst (TREE_TYPE (iterator), -1)),
3730 for_stmt, false);
3731 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3732 complain);
3733 if (elt_init == error_mark_node)
3734 errors = true;
3735 finish_for_expr (elt_init, for_stmt);
3736
3737 to = build1 (INDIRECT_REF, type, base);
3738
3739 if (from_array)
3740 {
3741 tree from;
3742
3743 if (base2)
3744 {
3745 from = build1 (INDIRECT_REF, itype, base2);
3746 if (xvalue)
3747 from = move (from);
3748 }
3749 else
3750 from = NULL_TREE;
3751
3752 if (from_array == 2)
3753 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3754 complain);
3755 else if (type_build_ctor_call (type))
3756 elt_init = build_aggr_init (to, from, 0, complain);
3757 else if (from)
3758 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3759 complain);
3760 else
3761 gcc_unreachable ();
3762 }
3763 else if (TREE_CODE (type) == ARRAY_TYPE)
3764 {
3765 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3766 sorry
3767 ("cannot initialize multi-dimensional array with initializer");
3768 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3769 0, init,
3770 explicit_value_init_p,
3771 0, complain);
3772 }
3773 else if (explicit_value_init_p)
3774 {
3775 elt_init = build_value_init (type, complain);
3776 if (elt_init != error_mark_node)
3777 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3778 }
3779 else
3780 {
3781 gcc_assert (type_build_ctor_call (type) || init);
3782 if (CLASS_TYPE_P (type))
3783 elt_init = build_aggr_init (to, init, 0, complain);
3784 else
3785 {
3786 if (TREE_CODE (init) == TREE_LIST)
3787 init = build_x_compound_expr_from_list (init, ELK_INIT,
3788 complain);
3789 elt_init = build2 (INIT_EXPR, type, to, init);
3790 }
3791 }
3792
3793 if (elt_init == error_mark_node)
3794 errors = true;
3795
3796 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3797 finish_expr_stmt (elt_init);
3798 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3799
3800 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3801 complain));
3802 if (base2)
3803 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3804 complain));
3805
3806 finish_for_stmt (for_stmt);
3807 }
3808
3809 /* Make sure to cleanup any partially constructed elements. */
3810 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3811 && from_array != 2)
3812 {
3813 tree e;
3814 tree m = cp_build_binary_op (input_location,
3815 MINUS_EXPR, maxindex, iterator,
3816 complain);
3817
3818 /* Flatten multi-dimensional array since build_vec_delete only
3819 expects one-dimensional array. */
3820 if (TREE_CODE (type) == ARRAY_TYPE)
3821 m = cp_build_binary_op (input_location,
3822 MULT_EXPR, m,
3823 /* Avoid mixing signed and unsigned. */
3824 convert (TREE_TYPE (m),
3825 array_type_nelts_total (type)),
3826 complain);
3827
3828 finish_cleanup_try_block (try_block);
3829 e = build_vec_delete_1 (rval, m,
3830 inner_elt_type, sfk_complete_destructor,
3831 /*use_global_delete=*/0, complain);
3832 if (e == error_mark_node)
3833 errors = true;
3834 finish_cleanup (e, try_block);
3835 }
3836
3837 /* The value of the array initialization is the array itself, RVAL
3838 is a pointer to the first element. */
3839 finish_stmt_expr_expr (rval, stmt_expr);
3840
3841 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3842
3843 /* Now make the result have the correct type. */
3844 if (TREE_CODE (atype) == ARRAY_TYPE)
3845 {
3846 atype = build_pointer_type (atype);
3847 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3848 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3849 TREE_NO_WARNING (stmt_expr) = 1;
3850 }
3851
3852 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3853
3854 if (const_init)
3855 return build2 (INIT_EXPR, atype, obase, const_init);
3856 if (errors)
3857 return error_mark_node;
3858 return stmt_expr;
3859 }
3860
3861 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3862 build_delete. */
3863
3864 static tree
3865 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3866 tsubst_flags_t complain)
3867 {
3868 tree name;
3869 tree fn;
3870 switch (dtor_kind)
3871 {
3872 case sfk_complete_destructor:
3873 name = complete_dtor_identifier;
3874 break;
3875
3876 case sfk_base_destructor:
3877 name = base_dtor_identifier;
3878 break;
3879
3880 case sfk_deleting_destructor:
3881 name = deleting_dtor_identifier;
3882 break;
3883
3884 default:
3885 gcc_unreachable ();
3886 }
3887 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3888 return build_new_method_call (exp, fn,
3889 /*args=*/NULL,
3890 /*conversion_path=*/NULL_TREE,
3891 flags,
3892 /*fn_p=*/NULL,
3893 complain);
3894 }
3895
3896 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3897 ADDR is an expression which yields the store to be destroyed.
3898 AUTO_DELETE is the name of the destructor to call, i.e., either
3899 sfk_complete_destructor, sfk_base_destructor, or
3900 sfk_deleting_destructor.
3901
3902 FLAGS is the logical disjunction of zero or more LOOKUP_
3903 flags. See cp-tree.h for more info. */
3904
3905 tree
3906 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3907 int flags, int use_global_delete, tsubst_flags_t complain)
3908 {
3909 tree expr;
3910
3911 if (addr == error_mark_node)
3912 return error_mark_node;
3913
3914 tree type = TYPE_MAIN_VARIANT (otype);
3915
3916 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3917 set to `error_mark_node' before it gets properly cleaned up. */
3918 if (type == error_mark_node)
3919 return error_mark_node;
3920
3921 if (TREE_CODE (type) == POINTER_TYPE)
3922 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3923
3924 if (TREE_CODE (type) == ARRAY_TYPE)
3925 {
3926 if (TYPE_DOMAIN (type) == NULL_TREE)
3927 {
3928 if (complain & tf_error)
3929 error ("unknown array size in delete");
3930 return error_mark_node;
3931 }
3932 return build_vec_delete (addr, array_type_nelts (type),
3933 auto_delete, use_global_delete, complain);
3934 }
3935
3936 if (TYPE_PTR_P (otype))
3937 {
3938 bool complete_p = true;
3939
3940 addr = mark_rvalue_use (addr);
3941
3942 /* We don't want to warn about delete of void*, only other
3943 incomplete types. Deleting other incomplete types
3944 invokes undefined behavior, but it is not ill-formed, so
3945 compile to something that would even do The Right Thing
3946 (TM) should the type have a trivial dtor and no delete
3947 operator. */
3948 if (!VOID_TYPE_P (type))
3949 {
3950 complete_type (type);
3951 if (!COMPLETE_TYPE_P (type))
3952 {
3953 if ((complain & tf_warning)
3954 && warning (OPT_Wdelete_incomplete,
3955 "possible problem detected in invocation of "
3956 "delete operator:"))
3957 {
3958 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3959 inform (input_location,
3960 "neither the destructor nor the class-specific "
3961 "operator delete will be called, even if they are "
3962 "declared when the class is defined");
3963 }
3964 complete_p = false;
3965 }
3966 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3967 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
3968 && TYPE_POLYMORPHIC_P (type))
3969 {
3970 tree dtor;
3971 dtor = CLASSTYPE_DESTRUCTORS (type);
3972 if (!dtor || !DECL_VINDEX (dtor))
3973 {
3974 if (CLASSTYPE_PURE_VIRTUALS (type))
3975 warning (OPT_Wdelete_non_virtual_dtor,
3976 "deleting object of abstract class type %qT"
3977 " which has non-virtual destructor"
3978 " will cause undefined behaviour", type);
3979 else
3980 warning (OPT_Wdelete_non_virtual_dtor,
3981 "deleting object of polymorphic class type %qT"
3982 " which has non-virtual destructor"
3983 " might cause undefined behaviour", type);
3984 }
3985 }
3986 }
3987 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3988 /* Call the builtin operator delete. */
3989 return build_builtin_delete_call (addr);
3990 if (TREE_SIDE_EFFECTS (addr))
3991 addr = save_expr (addr);
3992
3993 /* Throw away const and volatile on target type of addr. */
3994 addr = convert_force (build_pointer_type (type), addr, 0, complain);
3995 }
3996 else
3997 {
3998 /* Don't check PROTECT here; leave that decision to the
3999 destructor. If the destructor is accessible, call it,
4000 else report error. */
4001 addr = cp_build_addr_expr (addr, complain);
4002 if (addr == error_mark_node)
4003 return error_mark_node;
4004 if (TREE_SIDE_EFFECTS (addr))
4005 addr = save_expr (addr);
4006
4007 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4008 }
4009
4010 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4011 {
4012 /* Make sure the destructor is callable. */
4013 if (type_build_dtor_call (type))
4014 {
4015 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4016 complain),
4017 sfk_complete_destructor, flags, complain);
4018 if (expr == error_mark_node)
4019 return error_mark_node;
4020 }
4021
4022 if (auto_delete != sfk_deleting_destructor)
4023 return void_node;
4024
4025 return build_op_delete_call (DELETE_EXPR, addr,
4026 cxx_sizeof_nowarn (type),
4027 use_global_delete,
4028 /*placement=*/NULL_TREE,
4029 /*alloc_fn=*/NULL_TREE,
4030 complain);
4031 }
4032 else
4033 {
4034 tree head = NULL_TREE;
4035 tree do_delete = NULL_TREE;
4036 tree ifexp;
4037
4038 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4039 lazily_declare_fn (sfk_destructor, type);
4040
4041 /* For `::delete x', we must not use the deleting destructor
4042 since then we would not be sure to get the global `operator
4043 delete'. */
4044 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4045 {
4046 /* We will use ADDR multiple times so we must save it. */
4047 addr = save_expr (addr);
4048 head = get_target_expr (build_headof (addr));
4049 /* Delete the object. */
4050 do_delete = build_builtin_delete_call (head);
4051 /* Otherwise, treat this like a complete object destructor
4052 call. */
4053 auto_delete = sfk_complete_destructor;
4054 }
4055 /* If the destructor is non-virtual, there is no deleting
4056 variant. Instead, we must explicitly call the appropriate
4057 `operator delete' here. */
4058 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4059 && auto_delete == sfk_deleting_destructor)
4060 {
4061 /* We will use ADDR multiple times so we must save it. */
4062 addr = save_expr (addr);
4063 /* Build the call. */
4064 do_delete = build_op_delete_call (DELETE_EXPR,
4065 addr,
4066 cxx_sizeof_nowarn (type),
4067 /*global_p=*/false,
4068 /*placement=*/NULL_TREE,
4069 /*alloc_fn=*/NULL_TREE,
4070 complain);
4071 /* Call the complete object destructor. */
4072 auto_delete = sfk_complete_destructor;
4073 }
4074 else if (auto_delete == sfk_deleting_destructor
4075 && TYPE_GETS_REG_DELETE (type))
4076 {
4077 /* Make sure we have access to the member op delete, even though
4078 we'll actually be calling it from the destructor. */
4079 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4080 /*global_p=*/false,
4081 /*placement=*/NULL_TREE,
4082 /*alloc_fn=*/NULL_TREE,
4083 complain);
4084 }
4085
4086 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4087 auto_delete, flags, complain);
4088 if (expr == error_mark_node)
4089 return error_mark_node;
4090 if (do_delete)
4091 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4092
4093 /* We need to calculate this before the dtor changes the vptr. */
4094 if (head)
4095 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4096
4097 if (flags & LOOKUP_DESTRUCTOR)
4098 /* Explicit destructor call; don't check for null pointer. */
4099 ifexp = integer_one_node;
4100 else
4101 {
4102 /* Handle deleting a null pointer. */
4103 ifexp = fold (cp_build_binary_op (input_location,
4104 NE_EXPR, addr, nullptr_node,
4105 complain));
4106 if (ifexp == error_mark_node)
4107 return error_mark_node;
4108 }
4109
4110 if (ifexp != integer_one_node)
4111 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4112
4113 return expr;
4114 }
4115 }
4116
4117 /* At the beginning of a destructor, push cleanups that will call the
4118 destructors for our base classes and members.
4119
4120 Called from begin_destructor_body. */
4121
4122 void
4123 push_base_cleanups (void)
4124 {
4125 tree binfo, base_binfo;
4126 int i;
4127 tree member;
4128 tree expr;
4129 vec<tree, va_gc> *vbases;
4130
4131 /* Run destructors for all virtual baseclasses. */
4132 if (CLASSTYPE_VBASECLASSES (current_class_type))
4133 {
4134 tree cond = (condition_conversion
4135 (build2 (BIT_AND_EXPR, integer_type_node,
4136 current_in_charge_parm,
4137 integer_two_node)));
4138
4139 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4140 order, which is also the right order for pushing cleanups. */
4141 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4142 vec_safe_iterate (vbases, i, &base_binfo); i++)
4143 {
4144 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4145 {
4146 expr = build_special_member_call (current_class_ref,
4147 base_dtor_identifier,
4148 NULL,
4149 base_binfo,
4150 (LOOKUP_NORMAL
4151 | LOOKUP_NONVIRTUAL),
4152 tf_warning_or_error);
4153 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4154 {
4155 expr = build3 (COND_EXPR, void_type_node, cond,
4156 expr, void_node);
4157 finish_decl_cleanup (NULL_TREE, expr);
4158 }
4159 }
4160 }
4161 }
4162
4163 /* Take care of the remaining baseclasses. */
4164 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4165 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4166 {
4167 if (BINFO_VIRTUAL_P (base_binfo)
4168 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4169 continue;
4170
4171 expr = build_special_member_call (current_class_ref,
4172 base_dtor_identifier,
4173 NULL, base_binfo,
4174 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4175 tf_warning_or_error);
4176 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4177 finish_decl_cleanup (NULL_TREE, expr);
4178 }
4179
4180 /* Don't automatically destroy union members. */
4181 if (TREE_CODE (current_class_type) == UNION_TYPE)
4182 return;
4183
4184 for (member = TYPE_FIELDS (current_class_type); member;
4185 member = DECL_CHAIN (member))
4186 {
4187 tree this_type = TREE_TYPE (member);
4188 if (this_type == error_mark_node
4189 || TREE_CODE (member) != FIELD_DECL
4190 || DECL_ARTIFICIAL (member))
4191 continue;
4192 if (ANON_AGGR_TYPE_P (this_type))
4193 continue;
4194 if (type_build_dtor_call (this_type))
4195 {
4196 tree this_member = (build_class_member_access_expr
4197 (current_class_ref, member,
4198 /*access_path=*/NULL_TREE,
4199 /*preserve_reference=*/false,
4200 tf_warning_or_error));
4201 expr = build_delete (this_type, this_member,
4202 sfk_complete_destructor,
4203 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4204 0, tf_warning_or_error);
4205 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4206 finish_decl_cleanup (NULL_TREE, expr);
4207 }
4208 }
4209 }
4210
4211 /* Build a C++ vector delete expression.
4212 MAXINDEX is the number of elements to be deleted.
4213 ELT_SIZE is the nominal size of each element in the vector.
4214 BASE is the expression that should yield the store to be deleted.
4215 This function expands (or synthesizes) these calls itself.
4216 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4217
4218 This also calls delete for virtual baseclasses of elements of the vector.
4219
4220 Update: MAXINDEX is no longer needed. The size can be extracted from the
4221 start of the vector for pointers, and from the type for arrays. We still
4222 use MAXINDEX for arrays because it happens to already have one of the
4223 values we'd have to extract. (We could use MAXINDEX with pointers to
4224 confirm the size, and trap if the numbers differ; not clear that it'd
4225 be worth bothering.) */
4226
4227 tree
4228 build_vec_delete (tree base, tree maxindex,
4229 special_function_kind auto_delete_vec,
4230 int use_global_delete, tsubst_flags_t complain)
4231 {
4232 tree type;
4233 tree rval;
4234 tree base_init = NULL_TREE;
4235
4236 type = TREE_TYPE (base);
4237
4238 if (TYPE_PTR_P (type))
4239 {
4240 /* Step back one from start of vector, and read dimension. */
4241 tree cookie_addr;
4242 tree size_ptr_type = build_pointer_type (sizetype);
4243
4244 base = mark_rvalue_use (base);
4245 if (TREE_SIDE_EFFECTS (base))
4246 {
4247 base_init = get_target_expr (base);
4248 base = TARGET_EXPR_SLOT (base_init);
4249 }
4250 type = strip_array_types (TREE_TYPE (type));
4251 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4252 sizetype, TYPE_SIZE_UNIT (sizetype));
4253 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4254 cookie_addr);
4255 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4256 }
4257 else if (TREE_CODE (type) == ARRAY_TYPE)
4258 {
4259 /* Get the total number of things in the array, maxindex is a
4260 bad name. */
4261 maxindex = array_type_nelts_total (type);
4262 type = strip_array_types (type);
4263 base = decay_conversion (base, complain);
4264 if (base == error_mark_node)
4265 return error_mark_node;
4266 if (TREE_SIDE_EFFECTS (base))
4267 {
4268 base_init = get_target_expr (base);
4269 base = TARGET_EXPR_SLOT (base_init);
4270 }
4271 }
4272 else
4273 {
4274 if (base != error_mark_node && !(complain & tf_error))
4275 error ("type to vector delete is neither pointer or array type");
4276 return error_mark_node;
4277 }
4278
4279 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4280 use_global_delete, complain);
4281 if (base_init && rval != error_mark_node)
4282 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4283
4284 return rval;
4285 }