re PR c++/12253 ([tree-ssa] ICE on conversion to std::string inside array initialization)
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37
38 static bool begin_init_stmts (tree *, tree *);
39 static tree finish_init_stmts (bool, tree, tree);
40 static void construct_virtual_base (tree, tree);
41 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
42 static void expand_default_init (tree, tree, tree, tree, int);
43 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
44 static void perform_member_init (tree, tree);
45 static tree build_builtin_delete_call (tree);
46 static int member_init_ok_or_else (tree, tree, tree);
47 static void expand_virtual_init (tree, tree);
48 static tree sort_mem_initializers (tree, tree);
49 static tree initializing_context (tree);
50 static void expand_cleanup_for_base (tree, tree);
51 static tree get_temp_regvar (tree, tree);
52 static tree dfs_initialize_vtbl_ptrs (tree, void *);
53 static tree build_default_init (tree, tree);
54 static tree build_new_1 (tree);
55 static tree get_cookie_size (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
59
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
68
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 {
72 bool is_global = !building_stmt_tree ();
73
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/true);
76
77 return is_global;
78 }
79
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
82
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 {
86 finish_compound_stmt (compound_stmt);
87
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
89
90 my_friendly_assert (!building_stmt_tree () == is_global, 20030726);
91
92 return stmt_expr;
93 }
94
95 /* Constructors */
96
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
100
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 {
104 if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
105 && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
106 {
107 tree base_ptr = TREE_VALUE ((tree) data);
108
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
110
111 expand_virtual_init (binfo, base_ptr);
112 }
113
114 BINFO_MARKED (binfo) = 1;
115
116 return NULL_TREE;
117 }
118
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
121
122 void
123 initialize_vtbl_ptrs (tree addr)
124 {
125 tree list;
126 tree type;
127
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
130
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
136 NULL, unmarkedp, list);
137 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
138 }
139
140 /* Return an expression for the zero-initialization of an object with
141 type T. This expression will either be a constant (in the case
142 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
143 aggregate). In either case, the value can be used as DECL_INITIAL
144 for a decl of the indicated TYPE; it is a valid static initializer.
145 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
146 number of elements in the array. If STATIC_STORAGE_P is TRUE,
147 initializers are only generated for entities for which
148 zero-initialization does not simply mean filling the storage with
149 zero bytes. */
150
151 tree
152 build_zero_init (tree type, tree nelts, bool static_storage_p)
153 {
154 tree init = NULL_TREE;
155
156 /* [dcl.init]
157
158 To zero-initialization storage for an object of type T means:
159
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
162
163 -- if T is a non-union class type, the storage for each nonstatic
164 data member and each base-class subobject is zero-initialized.
165
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
168
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
171
172 -- if T is a reference type, no initialization is performed. */
173
174 my_friendly_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST,
175 20030618);
176
177 if (type == error_mark_node)
178 ;
179 else if (static_storage_p && zero_init_p (type))
180 /* In order to save space, we do not explicitly build initializers
181 for items that do not need them. GCC's semantics are that
182 items with static storage duration that are not otherwise
183 initialized are initialized to zero. */
184 ;
185 else if (SCALAR_TYPE_P (type))
186 init = convert (type, integer_zero_node);
187 else if (CLASS_TYPE_P (type))
188 {
189 tree field;
190 tree inits;
191
192 /* Build a constructor to contain the initializations. */
193 init = build_constructor (type, NULL_TREE);
194 /* Iterate over the fields, building initializations. */
195 inits = NULL_TREE;
196 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
197 {
198 if (TREE_CODE (field) != FIELD_DECL)
199 continue;
200
201 /* Note that for class types there will be FIELD_DECLs
202 corresponding to base classes as well. Thus, iterating
203 over TYPE_FIELDs will result in correct initialization of
204 all of the subobjects. */
205 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
206 inits = tree_cons (field,
207 build_zero_init (TREE_TYPE (field),
208 /*nelts=*/NULL_TREE,
209 static_storage_p),
210 inits);
211
212 /* For unions, only the first field is initialized. */
213 if (TREE_CODE (type) == UNION_TYPE)
214 break;
215 }
216 CONSTRUCTOR_ELTS (init) = nreverse (inits);
217 }
218 else if (TREE_CODE (type) == ARRAY_TYPE)
219 {
220 tree index;
221 tree max_index;
222 tree inits;
223
224 /* Build a constructor to contain the initializations. */
225 init = build_constructor (type, NULL_TREE);
226 /* Iterate over the array elements, building initializations. */
227 inits = NULL_TREE;
228 max_index = nelts ? nelts : array_type_nelts (type);
229 my_friendly_assert (TREE_CODE (max_index) == INTEGER_CST, 20030618);
230
231 for (index = size_zero_node;
232 !tree_int_cst_lt (max_index, index);
233 index = size_binop (PLUS_EXPR, index, size_one_node))
234 inits = tree_cons (index,
235 build_zero_init (TREE_TYPE (type),
236 /*nelts=*/NULL_TREE,
237 static_storage_p),
238 inits);
239 CONSTRUCTOR_ELTS (init) = nreverse (inits);
240 }
241 else if (TREE_CODE (type) == REFERENCE_TYPE)
242 ;
243 else
244 abort ();
245
246 /* In all cases, the initializer is a constant. */
247 if (init)
248 TREE_CONSTANT (init) = 1;
249
250 return init;
251 }
252
253 /* Build an expression for the default-initialization of an object of
254 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
255 ARRAY_TYPE, NELTS is the number of elements in the array. If
256 initialization of TYPE requires calling constructors, this function
257 returns NULL_TREE; the caller is responsible for arranging for the
258 constructors to be called. */
259
260 static tree
261 build_default_init (tree type, tree nelts)
262 {
263 /* [dcl.init]:
264
265 To default-initialize an object of type T means:
266
267 --if T is a non-POD class type (clause _class_), the default construc-
268 tor for T is called (and the initialization is ill-formed if T has
269 no accessible default constructor);
270
271 --if T is an array type, each element is default-initialized;
272
273 --otherwise, the storage for the object is zero-initialized.
274
275 A program that calls for default-initialization of an entity of refer-
276 ence type is ill-formed. */
277
278 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
279 performing the initialization. This is confusing in that some
280 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
281 a class with a pointer-to-data member as a non-static data member
282 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
283 passing non-PODs to build_zero_init below, which is contrary to
284 the semantics quoted above from [dcl.init].
285
286 It happens, however, that the behavior of the constructor the
287 standard says we should have generated would be precisely the
288 same as that obtained by calling build_zero_init below, so things
289 work out OK. */
290 if (TYPE_NEEDS_CONSTRUCTING (type)
291 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
292 return NULL_TREE;
293
294 /* At this point, TYPE is either a POD class type, an array of POD
295 classes, or something even more innocuous. */
296 return build_zero_init (type, nelts, /*static_storage_p=*/false);
297 }
298
299 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
300 arguments. If TREE_LIST is void_type_node, an empty initializer
301 list was given; if NULL_TREE no initializer was given. */
302
303 static void
304 perform_member_init (tree member, tree init)
305 {
306 tree decl;
307 tree type = TREE_TYPE (member);
308 bool explicit;
309
310 explicit = (init != NULL_TREE);
311
312 /* Effective C++ rule 12 requires that all data members be
313 initialized. */
314 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
315 warning ("`%D' should be initialized in the member initialization "
316 "list",
317 member);
318
319 if (init == void_type_node)
320 init = NULL_TREE;
321
322 /* Get an lvalue for the data member. */
323 decl = build_class_member_access_expr (current_class_ref, member,
324 /*access_path=*/NULL_TREE,
325 /*preserve_reference=*/true);
326 if (decl == error_mark_node)
327 return;
328
329 /* Deal with this here, as we will get confused if we try to call the
330 assignment op for an anonymous union. This can happen in a
331 synthesized copy constructor. */
332 if (ANON_AGGR_TYPE_P (type))
333 {
334 if (init)
335 {
336 init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
337 finish_expr_stmt (init);
338 }
339 }
340 else if (TYPE_NEEDS_CONSTRUCTING (type)
341 || (init && TYPE_HAS_CONSTRUCTOR (type)))
342 {
343 if (explicit
344 && TREE_CODE (type) == ARRAY_TYPE
345 && init != NULL_TREE
346 && TREE_CHAIN (init) == NULL_TREE
347 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
348 {
349 /* Initialization of one array from another. */
350 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
351 /* from_array=*/1));
352 }
353 else
354 finish_expr_stmt (build_aggr_init (decl, init, 0));
355 }
356 else
357 {
358 if (init == NULL_TREE)
359 {
360 if (explicit)
361 {
362 init = build_default_init (type, /*nelts=*/NULL_TREE);
363 if (TREE_CODE (type) == REFERENCE_TYPE)
364 warning
365 ("default-initialization of `%#D', which has reference type",
366 member);
367 }
368 /* member traversal: note it leaves init NULL */
369 else if (TREE_CODE (type) == REFERENCE_TYPE)
370 pedwarn ("uninitialized reference member `%D'", member);
371 }
372 else if (TREE_CODE (init) == TREE_LIST)
373 /* There was an explicit member initialization. Do some work
374 in that case. */
375 init = build_x_compound_expr_from_list (init, "member initializer");
376
377 if (init)
378 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
379 }
380
381 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
382 {
383 tree expr;
384
385 expr = build_class_member_access_expr (current_class_ref, member,
386 /*access_path=*/NULL_TREE,
387 /*preserve_reference=*/false);
388 expr = build_delete (type, expr, sfk_complete_destructor,
389 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
390
391 if (expr != error_mark_node)
392 finish_eh_cleanup (expr);
393 }
394 }
395
396 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
397 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
398
399 static tree
400 build_field_list (tree t, tree list, int *uses_unions_p)
401 {
402 tree fields;
403
404 *uses_unions_p = 0;
405
406 /* Note whether or not T is a union. */
407 if (TREE_CODE (t) == UNION_TYPE)
408 *uses_unions_p = 1;
409
410 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
411 {
412 /* Skip CONST_DECLs for enumeration constants and so forth. */
413 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
414 continue;
415
416 /* Keep track of whether or not any fields are unions. */
417 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
418 *uses_unions_p = 1;
419
420 /* For an anonymous struct or union, we must recursively
421 consider the fields of the anonymous type. They can be
422 directly initialized from the constructor. */
423 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
424 {
425 /* Add this field itself. Synthesized copy constructors
426 initialize the entire aggregate. */
427 list = tree_cons (fields, NULL_TREE, list);
428 /* And now add the fields in the anonymous aggregate. */
429 list = build_field_list (TREE_TYPE (fields), list,
430 uses_unions_p);
431 }
432 /* Add this field. */
433 else if (DECL_NAME (fields))
434 list = tree_cons (fields, NULL_TREE, list);
435 }
436
437 return list;
438 }
439
440 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
441 a FIELD_DECL or BINFO in T that needs initialization. The
442 TREE_VALUE gives the initializer, or list of initializer arguments.
443
444 Return a TREE_LIST containing all of the initializations required
445 for T, in the order in which they should be performed. The output
446 list has the same format as the input. */
447
448 static tree
449 sort_mem_initializers (tree t, tree mem_inits)
450 {
451 tree init;
452 tree base;
453 tree sorted_inits;
454 tree next_subobject;
455 int i;
456 int uses_unions_p;
457
458 /* Build up a list of initializations. The TREE_PURPOSE of entry
459 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
460 TREE_VALUE will be the constructor arguments, or NULL if no
461 explicit initialization was provided. */
462 sorted_inits = NULL_TREE;
463 /* Process the virtual bases. */
464 for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
465 sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
466 /* Process the direct bases. */
467 for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
468 {
469 base = BINFO_BASETYPE (TYPE_BINFO (t), i);
470 if (!TREE_VIA_VIRTUAL (base))
471 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
472 }
473 /* Process the non-static data members. */
474 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
475 /* Reverse the entire list of initializations, so that they are in
476 the order that they will actually be performed. */
477 sorted_inits = nreverse (sorted_inits);
478
479 /* If the user presented the initializers in an order different from
480 that in which they will actually occur, we issue a warning. Keep
481 track of the next subobject which can be explicitly initialized
482 without issuing a warning. */
483 next_subobject = sorted_inits;
484
485 /* Go through the explicit initializers, filling in TREE_PURPOSE in
486 the SORTED_INITS. */
487 for (init = mem_inits; init; init = TREE_CHAIN (init))
488 {
489 tree subobject;
490 tree subobject_init;
491
492 subobject = TREE_PURPOSE (init);
493
494 /* If the explicit initializers are in sorted order, then
495 SUBOBJECT will be NEXT_SUBOBJECT, or something following
496 it. */
497 for (subobject_init = next_subobject;
498 subobject_init;
499 subobject_init = TREE_CHAIN (subobject_init))
500 if (TREE_PURPOSE (subobject_init) == subobject)
501 break;
502
503 /* Issue a warning if the explicit initializer order does not
504 match that which will actually occur. */
505 if (warn_reorder && !subobject_init)
506 {
507 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
508 cp_warning_at ("`%D' will be initialized after",
509 TREE_PURPOSE (next_subobject));
510 else
511 warning ("base `%T' will be initialized after",
512 TREE_PURPOSE (next_subobject));
513 if (TREE_CODE (subobject) == FIELD_DECL)
514 cp_warning_at (" `%#D'", subobject);
515 else
516 warning (" base `%T'", subobject);
517 }
518
519 /* Look again, from the beginning of the list. */
520 if (!subobject_init)
521 {
522 subobject_init = sorted_inits;
523 while (TREE_PURPOSE (subobject_init) != subobject)
524 subobject_init = TREE_CHAIN (subobject_init);
525 }
526
527 /* It is invalid to initialize the same subobject more than
528 once. */
529 if (TREE_VALUE (subobject_init))
530 {
531 if (TREE_CODE (subobject) == FIELD_DECL)
532 error ("multiple initializations given for `%D'", subobject);
533 else
534 error ("multiple initializations given for base `%T'",
535 subobject);
536 }
537
538 /* Record the initialization. */
539 TREE_VALUE (subobject_init) = TREE_VALUE (init);
540 next_subobject = subobject_init;
541 }
542
543 /* [class.base.init]
544
545 If a ctor-initializer specifies more than one mem-initializer for
546 multiple members of the same union (including members of
547 anonymous unions), the ctor-initializer is ill-formed. */
548 if (uses_unions_p)
549 {
550 tree last_field = NULL_TREE;
551 for (init = sorted_inits; init; init = TREE_CHAIN (init))
552 {
553 tree field;
554 tree field_type;
555 int done;
556
557 /* Skip uninitialized members and base classes. */
558 if (!TREE_VALUE (init)
559 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
560 continue;
561 /* See if this field is a member of a union, or a member of a
562 structure contained in a union, etc. */
563 field = TREE_PURPOSE (init);
564 for (field_type = DECL_CONTEXT (field);
565 !same_type_p (field_type, t);
566 field_type = TYPE_CONTEXT (field_type))
567 if (TREE_CODE (field_type) == UNION_TYPE)
568 break;
569 /* If this field is not a member of a union, skip it. */
570 if (TREE_CODE (field_type) != UNION_TYPE)
571 continue;
572
573 /* It's only an error if we have two initializers for the same
574 union type. */
575 if (!last_field)
576 {
577 last_field = field;
578 continue;
579 }
580
581 /* See if LAST_FIELD and the field initialized by INIT are
582 members of the same union. If so, there's a problem,
583 unless they're actually members of the same structure
584 which is itself a member of a union. For example, given:
585
586 union { struct { int i; int j; }; };
587
588 initializing both `i' and `j' makes sense. */
589 field_type = DECL_CONTEXT (field);
590 done = 0;
591 do
592 {
593 tree last_field_type;
594
595 last_field_type = DECL_CONTEXT (last_field);
596 while (1)
597 {
598 if (same_type_p (last_field_type, field_type))
599 {
600 if (TREE_CODE (field_type) == UNION_TYPE)
601 error ("initializations for multiple members of `%T'",
602 last_field_type);
603 done = 1;
604 break;
605 }
606
607 if (same_type_p (last_field_type, t))
608 break;
609
610 last_field_type = TYPE_CONTEXT (last_field_type);
611 }
612
613 /* If we've reached the outermost class, then we're
614 done. */
615 if (same_type_p (field_type, t))
616 break;
617
618 field_type = TYPE_CONTEXT (field_type);
619 }
620 while (!done);
621
622 last_field = field;
623 }
624 }
625
626 return sorted_inits;
627 }
628
629 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
630 is a TREE_LIST giving the explicit mem-initializer-list for the
631 constructor. The TREE_PURPOSE of each entry is a subobject (a
632 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
633 is a TREE_LIST giving the arguments to the constructor or
634 void_type_node for an empty list of arguments. */
635
636 void
637 emit_mem_initializers (tree mem_inits)
638 {
639 /* Sort the mem-initializers into the order in which the
640 initializations should be performed. */
641 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
642
643 in_base_initializer = 1;
644
645 /* Initialize base classes. */
646 while (mem_inits
647 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
648 {
649 tree subobject = TREE_PURPOSE (mem_inits);
650 tree arguments = TREE_VALUE (mem_inits);
651
652 /* If these initializations are taking place in a copy
653 constructor, the base class should probably be explicitly
654 initialized. */
655 if (extra_warnings && !arguments
656 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
657 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
658 warning ("base class `%#T' should be explicitly initialized in the "
659 "copy constructor",
660 BINFO_TYPE (subobject));
661
662 /* If an explicit -- but empty -- initializer list was present,
663 treat it just like default initialization at this point. */
664 if (arguments == void_type_node)
665 arguments = NULL_TREE;
666
667 /* Initialize the base. */
668 if (TREE_VIA_VIRTUAL (subobject))
669 construct_virtual_base (subobject, arguments);
670 else
671 {
672 tree base_addr;
673
674 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
675 subobject, 1);
676 expand_aggr_init_1 (subobject, NULL_TREE,
677 build_indirect_ref (base_addr, NULL),
678 arguments,
679 LOOKUP_NORMAL);
680 expand_cleanup_for_base (subobject, NULL_TREE);
681 }
682
683 mem_inits = TREE_CHAIN (mem_inits);
684 }
685 in_base_initializer = 0;
686
687 /* Initialize the vptrs. */
688 initialize_vtbl_ptrs (current_class_ptr);
689
690 /* Initialize the data members. */
691 while (mem_inits)
692 {
693 perform_member_init (TREE_PURPOSE (mem_inits),
694 TREE_VALUE (mem_inits));
695 mem_inits = TREE_CHAIN (mem_inits);
696 }
697 }
698
699 /* Returns the address of the vtable (i.e., the value that should be
700 assigned to the vptr) for BINFO. */
701
702 static tree
703 build_vtbl_address (tree binfo)
704 {
705 tree binfo_for = binfo;
706 tree vtbl;
707
708 if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
709 && BINFO_PRIMARY_P (binfo))
710 /* If this is a virtual primary base, then the vtable we want to store
711 is that for the base this is being used as the primary base of. We
712 can't simply skip the initialization, because we may be expanding the
713 inits of a subobject constructor where the virtual base layout
714 can be different. */
715 while (BINFO_PRIMARY_BASE_OF (binfo_for))
716 binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
717
718 /* Figure out what vtable BINFO's vtable is based on, and mark it as
719 used. */
720 vtbl = get_vtbl_decl_for_binfo (binfo_for);
721 assemble_external (vtbl);
722 TREE_USED (vtbl) = 1;
723
724 /* Now compute the address to use when initializing the vptr. */
725 vtbl = BINFO_VTABLE (binfo_for);
726 if (TREE_CODE (vtbl) == VAR_DECL)
727 {
728 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
729 TREE_CONSTANT (vtbl) = 1;
730 }
731
732 return vtbl;
733 }
734
735 /* This code sets up the virtual function tables appropriate for
736 the pointer DECL. It is a one-ply initialization.
737
738 BINFO is the exact type that DECL is supposed to be. In
739 multiple inheritance, this might mean "C's A" if C : A, B. */
740
741 static void
742 expand_virtual_init (tree binfo, tree decl)
743 {
744 tree vtbl, vtbl_ptr;
745 tree vtt_index;
746
747 /* Compute the initializer for vptr. */
748 vtbl = build_vtbl_address (binfo);
749
750 /* We may get this vptr from a VTT, if this is a subobject
751 constructor or subobject destructor. */
752 vtt_index = BINFO_VPTR_INDEX (binfo);
753 if (vtt_index)
754 {
755 tree vtbl2;
756 tree vtt_parm;
757
758 /* Compute the value to use, when there's a VTT. */
759 vtt_parm = current_vtt_parm;
760 vtbl2 = build (PLUS_EXPR,
761 TREE_TYPE (vtt_parm),
762 vtt_parm,
763 vtt_index);
764 vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
765
766 /* The actual initializer is the VTT value only in the subobject
767 constructor. In maybe_clone_body we'll substitute NULL for
768 the vtt_parm in the case of the non-subobject constructor. */
769 vtbl = build (COND_EXPR,
770 TREE_TYPE (vtbl),
771 build (EQ_EXPR, boolean_type_node,
772 current_in_charge_parm, integer_zero_node),
773 vtbl2,
774 vtbl);
775 }
776
777 /* Compute the location of the vtpr. */
778 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
779 TREE_TYPE (binfo));
780 my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
781
782 /* Assign the vtable to the vptr. */
783 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
784 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
785 }
786
787 /* If an exception is thrown in a constructor, those base classes already
788 constructed must be destroyed. This function creates the cleanup
789 for BINFO, which has just been constructed. If FLAG is non-NULL,
790 it is a DECL which is nonzero when this base needs to be
791 destroyed. */
792
793 static void
794 expand_cleanup_for_base (tree binfo, tree flag)
795 {
796 tree expr;
797
798 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
799 return;
800
801 /* Call the destructor. */
802 expr = build_special_member_call (current_class_ref,
803 base_dtor_identifier,
804 NULL_TREE,
805 binfo,
806 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
807 if (flag)
808 expr = fold (build (COND_EXPR, void_type_node,
809 c_common_truthvalue_conversion (flag),
810 expr, integer_zero_node));
811
812 finish_eh_cleanup (expr);
813 }
814
815 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
816 constructor. */
817
818 static void
819 construct_virtual_base (tree vbase, tree arguments)
820 {
821 tree inner_if_stmt;
822 tree compound_stmt;
823 tree exp;
824 tree flag;
825
826 /* If there are virtual base classes with destructors, we need to
827 emit cleanups to destroy them if an exception is thrown during
828 the construction process. These exception regions (i.e., the
829 period during which the cleanups must occur) begin from the time
830 the construction is complete to the end of the function. If we
831 create a conditional block in which to initialize the
832 base-classes, then the cleanup region for the virtual base begins
833 inside a block, and ends outside of that block. This situation
834 confuses the sjlj exception-handling code. Therefore, we do not
835 create a single conditional block, but one for each
836 initialization. (That way the cleanup regions always begin
837 in the outer block.) We trust the back-end to figure out
838 that the FLAG will not change across initializations, and
839 avoid doing multiple tests. */
840 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
841 inner_if_stmt = begin_if_stmt ();
842 finish_if_stmt_cond (flag, inner_if_stmt);
843 compound_stmt = begin_compound_stmt (/*has_no_scope=*/true);
844
845 /* Compute the location of the virtual base. If we're
846 constructing virtual bases, then we must be the most derived
847 class. Therefore, we don't have to look up the virtual base;
848 we already know where it is. */
849 exp = convert_to_base_statically (current_class_ref, vbase);
850
851 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
852 LOOKUP_COMPLAIN);
853 finish_compound_stmt (compound_stmt);
854 finish_then_clause (inner_if_stmt);
855 finish_if_stmt ();
856
857 expand_cleanup_for_base (vbase, flag);
858 }
859
860 /* Find the context in which this FIELD can be initialized. */
861
862 static tree
863 initializing_context (tree field)
864 {
865 tree t = DECL_CONTEXT (field);
866
867 /* Anonymous union members can be initialized in the first enclosing
868 non-anonymous union context. */
869 while (t && ANON_AGGR_TYPE_P (t))
870 t = TYPE_CONTEXT (t);
871 return t;
872 }
873
874 /* Function to give error message if member initialization specification
875 is erroneous. FIELD is the member we decided to initialize.
876 TYPE is the type for which the initialization is being performed.
877 FIELD must be a member of TYPE.
878
879 MEMBER_NAME is the name of the member. */
880
881 static int
882 member_init_ok_or_else (tree field, tree type, tree member_name)
883 {
884 if (field == error_mark_node)
885 return 0;
886 if (!field)
887 {
888 error ("class `%T' does not have any field named `%D'", type,
889 member_name);
890 return 0;
891 }
892 if (TREE_CODE (field) == VAR_DECL)
893 {
894 error ("`%#D' is a static data member; it can only be "
895 "initialized at its definition",
896 field);
897 return 0;
898 }
899 if (TREE_CODE (field) != FIELD_DECL)
900 {
901 error ("`%#D' is not a non-static data member of `%T'",
902 field, type);
903 return 0;
904 }
905 if (initializing_context (field) != type)
906 {
907 error ("class `%T' does not have any field named `%D'", type,
908 member_name);
909 return 0;
910 }
911
912 return 1;
913 }
914
915 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
916 is a _TYPE node or TYPE_DECL which names a base for that type.
917 Check the validity of NAME, and return either the base _TYPE, base
918 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
919 NULL_TREE and issue a diagnostic.
920
921 An old style unnamed direct single base construction is permitted,
922 where NAME is NULL. */
923
924 tree
925 expand_member_init (tree name)
926 {
927 tree basetype;
928 tree field;
929
930 if (!current_class_ref)
931 return NULL_TREE;
932
933 if (!name)
934 {
935 /* This is an obsolete unnamed base class initializer. The
936 parser will already have warned about its use. */
937 switch (CLASSTYPE_N_BASECLASSES (current_class_type))
938 {
939 case 0:
940 error ("unnamed initializer for `%T', which has no base classes",
941 current_class_type);
942 return NULL_TREE;
943 case 1:
944 basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
945 break;
946 default:
947 error ("unnamed initializer for `%T', which uses multiple inheritance",
948 current_class_type);
949 return NULL_TREE;
950 }
951 }
952 else if (TYPE_P (name))
953 {
954 basetype = TYPE_MAIN_VARIANT (name);
955 name = TYPE_NAME (name);
956 }
957 else if (TREE_CODE (name) == TYPE_DECL)
958 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
959 else
960 basetype = NULL_TREE;
961
962 if (basetype)
963 {
964 tree class_binfo;
965 tree direct_binfo;
966 tree virtual_binfo;
967 int i;
968
969 if (current_template_parms)
970 return basetype;
971
972 class_binfo = TYPE_BINFO (current_class_type);
973 direct_binfo = NULL_TREE;
974 virtual_binfo = NULL_TREE;
975
976 /* Look for a direct base. */
977 for (i = 0; i < BINFO_N_BASETYPES (class_binfo); ++i)
978 if (same_type_p (basetype,
979 TYPE_BINFO_BASETYPE (current_class_type, i)))
980 {
981 direct_binfo = BINFO_BASETYPE (class_binfo, i);
982 break;
983 }
984 /* Look for a virtual base -- unless the direct base is itself
985 virtual. */
986 if (!direct_binfo || !TREE_VIA_VIRTUAL (direct_binfo))
987 {
988 virtual_binfo
989 = purpose_member (basetype,
990 CLASSTYPE_VBASECLASSES (current_class_type));
991 if (virtual_binfo)
992 virtual_binfo = TREE_VALUE (virtual_binfo);
993 }
994
995 /* [class.base.init]
996
997 If a mem-initializer-id is ambiguous because it designates
998 both a direct non-virtual base class and an inherited virtual
999 base class, the mem-initializer is ill-formed. */
1000 if (direct_binfo && virtual_binfo)
1001 {
1002 error ("'%D' is both a direct base and an indirect virtual base",
1003 basetype);
1004 return NULL_TREE;
1005 }
1006
1007 if (!direct_binfo && !virtual_binfo)
1008 {
1009 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
1010 error ("type `%D' is not a direct or virtual base of `%T'",
1011 name, current_class_type);
1012 else
1013 error ("type `%D' is not a direct base of `%T'",
1014 name, current_class_type);
1015 return NULL_TREE;
1016 }
1017
1018 return direct_binfo ? direct_binfo : virtual_binfo;
1019 }
1020 else
1021 {
1022 if (TREE_CODE (name) == IDENTIFIER_NODE)
1023 field = lookup_field (current_class_type, name, 1, false);
1024 else
1025 field = name;
1026
1027 if (member_init_ok_or_else (field, current_class_type, name))
1028 return field;
1029 }
1030
1031 return NULL_TREE;
1032 }
1033
1034 /* This is like `expand_member_init', only it stores one aggregate
1035 value into another.
1036
1037 INIT comes in two flavors: it is either a value which
1038 is to be stored in EXP, or it is a parameter list
1039 to go to a constructor, which will operate on EXP.
1040 If INIT is not a parameter list for a constructor, then set
1041 LOOKUP_ONLYCONVERTING.
1042 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1043 the initializer, if FLAGS is 0, then it is the (init) form.
1044 If `init' is a CONSTRUCTOR, then we emit a warning message,
1045 explaining that such initializations are invalid.
1046
1047 If INIT resolves to a CALL_EXPR which happens to return
1048 something of the type we are looking for, then we know
1049 that we can safely use that call to perform the
1050 initialization.
1051
1052 The virtual function table pointer cannot be set up here, because
1053 we do not really know its type.
1054
1055 This never calls operator=().
1056
1057 When initializing, nothing is CONST.
1058
1059 A default copy constructor may have to be used to perform the
1060 initialization.
1061
1062 A constructor or a conversion operator may have to be used to
1063 perform the initialization, but not both, as it would be ambiguous. */
1064
1065 tree
1066 build_aggr_init (tree exp, tree init, int flags)
1067 {
1068 tree stmt_expr;
1069 tree compound_stmt;
1070 int destroy_temps;
1071 tree type = TREE_TYPE (exp);
1072 int was_const = TREE_READONLY (exp);
1073 int was_volatile = TREE_THIS_VOLATILE (exp);
1074 int is_global;
1075
1076 if (init == error_mark_node)
1077 return error_mark_node;
1078
1079 TREE_READONLY (exp) = 0;
1080 TREE_THIS_VOLATILE (exp) = 0;
1081
1082 if (init && TREE_CODE (init) != TREE_LIST)
1083 flags |= LOOKUP_ONLYCONVERTING;
1084
1085 if (TREE_CODE (type) == ARRAY_TYPE)
1086 {
1087 /* Must arrange to initialize each element of EXP
1088 from elements of INIT. */
1089 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1090
1091 if (init && !itype)
1092 {
1093 /* Handle bad initializers like:
1094 class COMPLEX {
1095 public:
1096 double re, im;
1097 COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
1098 ~COMPLEX() {};
1099 };
1100
1101 int main(int argc, char **argv) {
1102 COMPLEX zees(1.0, 0.0)[10];
1103 }
1104 */
1105 error ("bad array initializer");
1106 return error_mark_node;
1107 }
1108 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1109 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1110 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1111 TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1112 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1113 init && same_type_p (TREE_TYPE (init),
1114 TREE_TYPE (exp)));
1115 TREE_READONLY (exp) = was_const;
1116 TREE_THIS_VOLATILE (exp) = was_volatile;
1117 TREE_TYPE (exp) = type;
1118 if (init)
1119 TREE_TYPE (init) = itype;
1120 return stmt_expr;
1121 }
1122
1123 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1124 /* just know that we've seen something for this node */
1125 TREE_USED (exp) = 1;
1126
1127 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1128 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1129 destroy_temps = stmts_are_full_exprs_p ();
1130 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1131 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1132 init, LOOKUP_NORMAL|flags);
1133 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1134 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1135 TREE_TYPE (exp) = type;
1136 TREE_READONLY (exp) = was_const;
1137 TREE_THIS_VOLATILE (exp) = was_volatile;
1138
1139 return stmt_expr;
1140 }
1141
1142 /* Like build_aggr_init, but not just for aggregates. */
1143
1144 tree
1145 build_init (tree decl, tree init, int flags)
1146 {
1147 tree expr;
1148
1149 if (IS_AGGR_TYPE (TREE_TYPE (decl))
1150 || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1151 expr = build_aggr_init (decl, init, flags);
1152 else
1153 expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
1154
1155 return expr;
1156 }
1157
1158 static void
1159 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1160 {
1161 tree type = TREE_TYPE (exp);
1162 tree ctor_name;
1163
1164 /* It fails because there may not be a constructor which takes
1165 its own type as the first (or only parameter), but which does
1166 take other types via a conversion. So, if the thing initializing
1167 the expression is a unit element of type X, first try X(X&),
1168 followed by initialization by X. If neither of these work
1169 out, then look hard. */
1170 tree rval;
1171 tree parms;
1172
1173 if (init && TREE_CODE (init) != TREE_LIST
1174 && (flags & LOOKUP_ONLYCONVERTING))
1175 {
1176 /* Base subobjects should only get direct-initialization. */
1177 if (true_exp != exp)
1178 abort ();
1179
1180 if (flags & DIRECT_BIND)
1181 /* Do nothing. We hit this in two cases: Reference initialization,
1182 where we aren't initializing a real variable, so we don't want
1183 to run a new constructor; and catching an exception, where we
1184 have already built up the constructor call so we could wrap it
1185 in an exception region. */;
1186 else if (TREE_CODE (init) == CONSTRUCTOR
1187 && TREE_HAS_CONSTRUCTOR (init))
1188 {
1189 /* A brace-enclosed initializer for an aggregate. */
1190 my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
1191 init = digest_init (type, init, (tree *)NULL);
1192 }
1193 else
1194 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1195
1196 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1197 /* We need to protect the initialization of a catch parm with a
1198 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1199 around the TARGET_EXPR for the copy constructor. See
1200 initialize_handler_parm. */
1201 {
1202 TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
1203 TREE_OPERAND (init, 0));
1204 TREE_TYPE (init) = void_type_node;
1205 }
1206 else
1207 init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
1208 TREE_SIDE_EFFECTS (init) = 1;
1209 finish_expr_stmt (init);
1210 return;
1211 }
1212
1213 if (init == NULL_TREE
1214 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1215 {
1216 parms = init;
1217 if (parms)
1218 init = TREE_VALUE (parms);
1219 }
1220 else
1221 parms = build_tree_list (NULL_TREE, init);
1222
1223 if (true_exp == exp)
1224 ctor_name = complete_ctor_identifier;
1225 else
1226 ctor_name = base_ctor_identifier;
1227
1228 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1229 if (TREE_SIDE_EFFECTS (rval))
1230 finish_expr_stmt (convert_to_void (rval, NULL));
1231 }
1232
1233 /* This function is responsible for initializing EXP with INIT
1234 (if any).
1235
1236 BINFO is the binfo of the type for who we are performing the
1237 initialization. For example, if W is a virtual base class of A and B,
1238 and C : A, B.
1239 If we are initializing B, then W must contain B's W vtable, whereas
1240 were we initializing C, W must contain C's W vtable.
1241
1242 TRUE_EXP is nonzero if it is the true expression being initialized.
1243 In this case, it may be EXP, or may just contain EXP. The reason we
1244 need this is because if EXP is a base element of TRUE_EXP, we
1245 don't necessarily know by looking at EXP where its virtual
1246 baseclass fields should really be pointing. But we do know
1247 from TRUE_EXP. In constructors, we don't know anything about
1248 the value being initialized.
1249
1250 FLAGS is just passes to `build_method_call'. See that function for
1251 its description. */
1252
1253 static void
1254 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1255 {
1256 tree type = TREE_TYPE (exp);
1257
1258 my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
1259 my_friendly_assert (building_stmt_tree (), 20021010);
1260
1261 /* Use a function returning the desired type to initialize EXP for us.
1262 If the function is a constructor, and its first argument is
1263 NULL_TREE, know that it was meant for us--just slide exp on
1264 in and expand the constructor. Constructors now come
1265 as TARGET_EXPRs. */
1266
1267 if (init && TREE_CODE (exp) == VAR_DECL
1268 && TREE_CODE (init) == CONSTRUCTOR
1269 && TREE_HAS_CONSTRUCTOR (init))
1270 {
1271 /* If store_init_value returns NULL_TREE, the INIT has been
1272 record in the DECL_INITIAL for EXP. That means there's
1273 nothing more we have to do. */
1274 if (store_init_value (exp, init))
1275 finish_expr_stmt (build (INIT_EXPR, type, exp, init));
1276 return;
1277 }
1278
1279 /* We know that expand_default_init can handle everything we want
1280 at this point. */
1281 expand_default_init (binfo, true_exp, exp, init, flags);
1282 }
1283
1284 /* Report an error if TYPE is not a user-defined, aggregate type. If
1285 OR_ELSE is nonzero, give an error message. */
1286
1287 int
1288 is_aggr_type (tree type, int or_else)
1289 {
1290 if (type == error_mark_node)
1291 return 0;
1292
1293 if (! IS_AGGR_TYPE (type)
1294 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1295 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1296 {
1297 if (or_else)
1298 error ("`%T' is not an aggregate type", type);
1299 return 0;
1300 }
1301 return 1;
1302 }
1303
1304 /* Like is_aggr_typedef, but returns typedef if successful. */
1305
1306 tree
1307 get_aggr_from_typedef (tree name, int or_else)
1308 {
1309 tree type;
1310
1311 if (name == error_mark_node)
1312 return NULL_TREE;
1313
1314 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1315 type = IDENTIFIER_TYPE_VALUE (name);
1316 else
1317 {
1318 if (or_else)
1319 error ("`%T' fails to be an aggregate typedef", name);
1320 return NULL_TREE;
1321 }
1322
1323 if (! IS_AGGR_TYPE (type)
1324 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1325 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1326 {
1327 if (or_else)
1328 error ("type `%T' is of non-aggregate type", type);
1329 return NULL_TREE;
1330 }
1331 return type;
1332 }
1333
1334 tree
1335 get_type_value (tree name)
1336 {
1337 if (name == error_mark_node)
1338 return NULL_TREE;
1339
1340 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1341 return IDENTIFIER_TYPE_VALUE (name);
1342 else
1343 return NULL_TREE;
1344 }
1345
1346 /* Build a reference to a member of an aggregate. This is not a C++
1347 `&', but really something which can have its address taken, and
1348 then act as a pointer to member, for example TYPE :: FIELD can have
1349 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1350 this expression is the operand of "&".
1351
1352 @@ Prints out lousy diagnostics for operator <typename>
1353 @@ fields.
1354
1355 @@ This function should be rewritten and placed in search.c. */
1356
1357 tree
1358 build_offset_ref (tree type, tree name, bool address_p)
1359 {
1360 tree decl;
1361 tree member;
1362 tree basebinfo = NULL_TREE;
1363 tree orig_name = name;
1364
1365 /* class templates can come in as TEMPLATE_DECLs here. */
1366 if (TREE_CODE (name) == TEMPLATE_DECL)
1367 return name;
1368
1369 if (processing_template_decl || uses_template_parms (type))
1370 return build_min_nt (SCOPE_REF, type, name);
1371
1372 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1373 {
1374 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1375 something like `a.template f<int>' or the like. For the most
1376 part, we treat this just like a.f. We do remember, however,
1377 the template-id that was used. */
1378 name = TREE_OPERAND (orig_name, 0);
1379
1380 if (DECL_P (name))
1381 name = DECL_NAME (name);
1382 else
1383 {
1384 if (TREE_CODE (name) == COMPONENT_REF)
1385 name = TREE_OPERAND (name, 1);
1386 if (TREE_CODE (name) == OVERLOAD)
1387 name = DECL_NAME (OVL_CURRENT (name));
1388 }
1389
1390 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
1391 }
1392
1393 if (type == NULL_TREE)
1394 return error_mark_node;
1395
1396 /* Handle namespace names fully here. */
1397 if (TREE_CODE (type) == NAMESPACE_DECL)
1398 {
1399 tree t = lookup_namespace_name (type, name);
1400 if (t == error_mark_node)
1401 return t;
1402 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1403 /* Reconstruct the TEMPLATE_ID_EXPR. */
1404 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1405 t, TREE_OPERAND (orig_name, 1));
1406 if (! type_unknown_p (t))
1407 {
1408 mark_used (t);
1409 t = convert_from_reference (t);
1410 }
1411 return t;
1412 }
1413
1414 if (! is_aggr_type (type, 1))
1415 return error_mark_node;
1416
1417 if (TREE_CODE (name) == BIT_NOT_EXPR)
1418 {
1419 if (! check_dtor_name (type, name))
1420 error ("qualified type `%T' does not match destructor name `~%T'",
1421 type, TREE_OPERAND (name, 0));
1422 name = dtor_identifier;
1423 }
1424
1425 if (!COMPLETE_TYPE_P (complete_type (type))
1426 && !TYPE_BEING_DEFINED (type))
1427 {
1428 error ("incomplete type `%T' does not have member `%D'", type,
1429 name);
1430 return error_mark_node;
1431 }
1432
1433 decl = maybe_dummy_object (type, &basebinfo);
1434
1435 if (BASELINK_P (name) || DECL_P (name))
1436 member = name;
1437 else
1438 {
1439 member = lookup_member (basebinfo, name, 1, 0);
1440
1441 if (member == error_mark_node)
1442 return error_mark_node;
1443 }
1444
1445 if (!member)
1446 {
1447 error ("`%D' is not a member of type `%T'", name, type);
1448 return error_mark_node;
1449 }
1450
1451 if (TREE_CODE (member) == TYPE_DECL)
1452 {
1453 TREE_USED (member) = 1;
1454 return member;
1455 }
1456 /* static class members and class-specific enum
1457 values can be returned without further ado. */
1458 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1459 {
1460 mark_used (member);
1461 return convert_from_reference (member);
1462 }
1463
1464 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1465 {
1466 error ("invalid pointer to bit-field `%D'", member);
1467 return error_mark_node;
1468 }
1469
1470 /* A lot of this logic is now handled in lookup_member. */
1471 if (BASELINK_P (member))
1472 {
1473 /* Go from the TREE_BASELINK to the member function info. */
1474 tree fnfields = member;
1475 tree t = BASELINK_FUNCTIONS (fnfields);
1476
1477 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1478 {
1479 /* The FNFIELDS are going to contain functions that aren't
1480 necessarily templates, and templates that don't
1481 necessarily match the explicit template parameters. We
1482 save all the functions, and the explicit parameters, and
1483 then figure out exactly what to instantiate with what
1484 arguments in instantiate_type. */
1485
1486 if (TREE_CODE (t) != OVERLOAD)
1487 /* The code in instantiate_type which will process this
1488 expects to encounter OVERLOADs, not raw functions. */
1489 t = ovl_cons (t, NULL_TREE);
1490
1491 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1492 TREE_OPERAND (orig_name, 1));
1493 t = build (OFFSET_REF, unknown_type_node, decl, t);
1494
1495 PTRMEM_OK_P (t) = 1;
1496
1497 return t;
1498 }
1499
1500 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1501 {
1502 /* Get rid of a potential OVERLOAD around it */
1503 t = OVL_CURRENT (t);
1504
1505 /* Unique functions are handled easily. */
1506
1507 /* For non-static member of base class, we need a special rule
1508 for access checking [class.protected]:
1509
1510 If the access is to form a pointer to member, the
1511 nested-name-specifier shall name the derived class
1512 (or any class derived from that class). */
1513 if (address_p && DECL_P (t)
1514 && DECL_NONSTATIC_MEMBER_P (t))
1515 perform_or_defer_access_check (TYPE_BINFO (type), t);
1516 else
1517 perform_or_defer_access_check (basebinfo, t);
1518
1519 mark_used (t);
1520 if (DECL_STATIC_FUNCTION_P (t))
1521 return t;
1522 member = t;
1523 }
1524 else
1525 {
1526 TREE_TYPE (fnfields) = unknown_type_node;
1527 member = fnfields;
1528 }
1529 }
1530 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1531 /* We need additional test besides the one in
1532 check_accessibility_of_qualified_id in case it is
1533 a pointer to non-static member. */
1534 perform_or_defer_access_check (TYPE_BINFO (type), member);
1535
1536 if (!address_p)
1537 {
1538 /* If MEMBER is non-static, then the program has fallen afoul of
1539 [expr.prim]:
1540
1541 An id-expression that denotes a nonstatic data member or
1542 nonstatic member function of a class can only be used:
1543
1544 -- as part of a class member access (_expr.ref_) in which the
1545 object-expression refers to the member's class or a class
1546 derived from that class, or
1547
1548 -- to form a pointer to member (_expr.unary.op_), or
1549
1550 -- in the body of a nonstatic member function of that class or
1551 of a class derived from that class (_class.mfct.nonstatic_), or
1552
1553 -- in a mem-initializer for a constructor for that class or for
1554 a class derived from that class (_class.base.init_). */
1555 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1556 {
1557 /* In Microsoft mode, treat a non-static member function as if
1558 it were a pointer-to-member. */
1559 if (flag_ms_extensions)
1560 {
1561 member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
1562 PTRMEM_OK_P (member) = 1;
1563 return build_unary_op (ADDR_EXPR, member, 0);
1564 }
1565 error ("invalid use of non-static member function `%D'", member);
1566 return error_mark_node;
1567 }
1568 else if (TREE_CODE (member) == FIELD_DECL)
1569 {
1570 error ("invalid use of non-static data member `%D'", member);
1571 return error_mark_node;
1572 }
1573 return member;
1574 }
1575
1576 /* In member functions, the form `type::name' is no longer
1577 equivalent to `this->type::name', at least not until
1578 resolve_offset_ref. */
1579 member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
1580 PTRMEM_OK_P (member) = 1;
1581 return member;
1582 }
1583
1584 /* If DECL is a `const' declaration, and its value is a known
1585 constant, then return that value. */
1586
1587 tree
1588 decl_constant_value (tree decl)
1589 {
1590 /* When we build a COND_EXPR, we don't know whether it will be used
1591 as an lvalue or as an rvalue. If it is an lvalue, it's not safe
1592 to replace the second and third operands with their
1593 initializers. So, we do that here. */
1594 if (TREE_CODE (decl) == COND_EXPR)
1595 {
1596 tree d1;
1597 tree d2;
1598
1599 d1 = decl_constant_value (TREE_OPERAND (decl, 1));
1600 d2 = decl_constant_value (TREE_OPERAND (decl, 2));
1601
1602 if (d1 != TREE_OPERAND (decl, 1) || d2 != TREE_OPERAND (decl, 2))
1603 return build (COND_EXPR,
1604 TREE_TYPE (decl),
1605 TREE_OPERAND (decl, 0), d1, d2);
1606 }
1607
1608 if (TREE_READONLY_DECL_P (decl)
1609 && ! TREE_THIS_VOLATILE (decl)
1610 && DECL_INITIAL (decl)
1611 && DECL_INITIAL (decl) != error_mark_node
1612 /* This is invalid if initial value is not constant.
1613 If it has either a function call, a memory reference,
1614 or a variable, then re-evaluating it could give different results. */
1615 && TREE_CONSTANT (DECL_INITIAL (decl))
1616 /* Check for cases where this is sub-optimal, even though valid. */
1617 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1618 return DECL_INITIAL (decl);
1619 return decl;
1620 }
1621 \f
1622 /* Common subroutines of build_new and build_vec_delete. */
1623
1624 /* Call the global __builtin_delete to delete ADDR. */
1625
1626 static tree
1627 build_builtin_delete_call (tree addr)
1628 {
1629 mark_used (global_delete_fndecl);
1630 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1631 }
1632 \f
1633 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1634 (which needs to go through some sort of groktypename) or it
1635 is the name of the class we are newing. INIT is an initialization value.
1636 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1637 If INIT is void_type_node, it means do *not* call a constructor
1638 for this instance.
1639
1640 For types with constructors, the data returned is initialized
1641 by the appropriate constructor.
1642
1643 Whether the type has a constructor or not, if it has a pointer
1644 to a virtual function table, then that pointer is set up
1645 here.
1646
1647 Unless I am mistaken, a call to new () will return initialized
1648 data regardless of whether the constructor itself is private or
1649 not. NOPE; new fails if the constructor is private (jcm).
1650
1651 Note that build_new does nothing to assure that any special
1652 alignment requirements of the type are met. Rather, it leaves
1653 it up to malloc to do the right thing. Otherwise, folding to
1654 the right alignment cal cause problems if the user tries to later
1655 free the memory returned by `new'.
1656
1657 PLACEMENT is the `placement' list for user-defined operator new (). */
1658
1659 tree
1660 build_new (tree placement, tree decl, tree init, int use_global_new)
1661 {
1662 tree type, rval;
1663 tree nelts = NULL_TREE, t;
1664 int has_array = 0;
1665
1666 if (decl == error_mark_node)
1667 return error_mark_node;
1668
1669 if (TREE_CODE (decl) == TREE_LIST)
1670 {
1671 tree absdcl = TREE_VALUE (decl);
1672 tree last_absdcl = NULL_TREE;
1673
1674 if (current_function_decl
1675 && DECL_CONSTRUCTOR_P (current_function_decl))
1676 my_friendly_assert (immediate_size_expand == 0, 19990926);
1677
1678 nelts = integer_one_node;
1679
1680 if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
1681 abort ();
1682 while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
1683 {
1684 last_absdcl = absdcl;
1685 absdcl = TREE_OPERAND (absdcl, 0);
1686 }
1687
1688 if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
1689 {
1690 /* probably meant to be a vec new */
1691 tree this_nelts;
1692
1693 while (TREE_OPERAND (absdcl, 0)
1694 && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
1695 {
1696 last_absdcl = absdcl;
1697 absdcl = TREE_OPERAND (absdcl, 0);
1698 }
1699
1700 has_array = 1;
1701 this_nelts = TREE_OPERAND (absdcl, 1);
1702 if (this_nelts != error_mark_node)
1703 {
1704 if (this_nelts == NULL_TREE)
1705 error ("new of array type fails to specify size");
1706 else if (processing_template_decl)
1707 {
1708 nelts = this_nelts;
1709 absdcl = TREE_OPERAND (absdcl, 0);
1710 }
1711 else
1712 {
1713 if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
1714 this_nelts, false)
1715 == NULL_TREE)
1716 pedwarn ("size in array new must have integral type");
1717
1718 this_nelts = save_expr (cp_convert (sizetype, this_nelts));
1719 absdcl = TREE_OPERAND (absdcl, 0);
1720 if (this_nelts == integer_zero_node)
1721 {
1722 warning ("zero size array reserves no space");
1723 nelts = integer_zero_node;
1724 }
1725 else
1726 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1727 }
1728 }
1729 else
1730 nelts = integer_zero_node;
1731 }
1732
1733 if (last_absdcl)
1734 TREE_OPERAND (last_absdcl, 0) = absdcl;
1735 else
1736 TREE_VALUE (decl) = absdcl;
1737
1738 type = groktypename (decl);
1739 if (! type || type == error_mark_node)
1740 return error_mark_node;
1741 }
1742 else if (TREE_CODE (decl) == IDENTIFIER_NODE)
1743 {
1744 if (IDENTIFIER_HAS_TYPE_VALUE (decl))
1745 {
1746 /* An aggregate type. */
1747 type = IDENTIFIER_TYPE_VALUE (decl);
1748 decl = TYPE_MAIN_DECL (type);
1749 }
1750 else
1751 {
1752 /* A builtin type. */
1753 decl = lookup_name (decl, 1);
1754 my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
1755 type = TREE_TYPE (decl);
1756 }
1757 }
1758 else if (TREE_CODE (decl) == TYPE_DECL)
1759 {
1760 type = TREE_TYPE (decl);
1761 }
1762 else
1763 {
1764 type = decl;
1765 decl = TYPE_MAIN_DECL (type);
1766 }
1767
1768 if (processing_template_decl)
1769 {
1770 if (has_array)
1771 t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
1772 build_min_nt (ARRAY_REF, NULL_TREE, nelts),
1773 NULL_TREE);
1774 else
1775 t = type;
1776
1777 rval = build_min (NEW_EXPR, build_pointer_type (type),
1778 placement, t, init);
1779 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1780 return rval;
1781 }
1782
1783 /* ``A reference cannot be created by the new operator. A reference
1784 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1785 returned by new.'' ARM 5.3.3 */
1786 if (TREE_CODE (type) == REFERENCE_TYPE)
1787 {
1788 error ("new cannot be applied to a reference type");
1789 type = TREE_TYPE (type);
1790 }
1791
1792 if (TREE_CODE (type) == FUNCTION_TYPE)
1793 {
1794 error ("new cannot be applied to a function type");
1795 return error_mark_node;
1796 }
1797
1798 /* When the object being created is an array, the new-expression yields a
1799 pointer to the initial element (if any) of the array. For example,
1800 both new int and new int[10] return an int*. 5.3.4. */
1801 if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
1802 {
1803 nelts = array_type_nelts_top (type);
1804 has_array = 1;
1805 type = TREE_TYPE (type);
1806 }
1807
1808 if (has_array)
1809 t = build_nt (ARRAY_REF, type, nelts);
1810 else
1811 t = type;
1812
1813 rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
1814 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1815 TREE_SIDE_EFFECTS (rval) = 1;
1816 rval = build_new_1 (rval);
1817 if (rval == error_mark_node)
1818 return error_mark_node;
1819
1820 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1821 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1822 TREE_NO_UNUSED_WARNING (rval) = 1;
1823
1824 return rval;
1825 }
1826
1827 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1828
1829 tree
1830 build_java_class_ref (tree type)
1831 {
1832 tree name = NULL_TREE, class_decl;
1833 static tree CL_suffix = NULL_TREE;
1834 if (CL_suffix == NULL_TREE)
1835 CL_suffix = get_identifier("class$");
1836 if (jclass_node == NULL_TREE)
1837 {
1838 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1839 if (jclass_node == NULL_TREE)
1840 fatal_error ("call to Java constructor, while `jclass' undefined");
1841
1842 jclass_node = TREE_TYPE (jclass_node);
1843 }
1844
1845 /* Mangle the class$ field */
1846 {
1847 tree field;
1848 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1849 if (DECL_NAME (field) == CL_suffix)
1850 {
1851 mangle_decl (field);
1852 name = DECL_ASSEMBLER_NAME (field);
1853 break;
1854 }
1855 if (!field)
1856 internal_error ("can't find class$");
1857 }
1858
1859 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1860 if (class_decl == NULL_TREE)
1861 {
1862 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1863 TREE_STATIC (class_decl) = 1;
1864 DECL_EXTERNAL (class_decl) = 1;
1865 TREE_PUBLIC (class_decl) = 1;
1866 DECL_ARTIFICIAL (class_decl) = 1;
1867 DECL_IGNORED_P (class_decl) = 1;
1868 pushdecl_top_level (class_decl);
1869 make_decl_rtl (class_decl, NULL);
1870 }
1871 return class_decl;
1872 }
1873
1874 /* Returns the size of the cookie to use when allocating an array
1875 whose elements have the indicated TYPE. Assumes that it is already
1876 known that a cookie is needed. */
1877
1878 static tree
1879 get_cookie_size (tree type)
1880 {
1881 tree cookie_size;
1882
1883 /* We need to allocate an additional max (sizeof (size_t), alignof
1884 (true_type)) bytes. */
1885 tree sizetype_size;
1886 tree type_align;
1887
1888 sizetype_size = size_in_bytes (sizetype);
1889 type_align = size_int (TYPE_ALIGN_UNIT (type));
1890 if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
1891 cookie_size = sizetype_size;
1892 else
1893 cookie_size = type_align;
1894
1895 return cookie_size;
1896 }
1897
1898 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1899 value is immediately handed to expand_expr. */
1900
1901 static tree
1902 build_new_1 (tree exp)
1903 {
1904 tree placement, init;
1905 tree true_type, size, rval, t;
1906 /* The type of the new-expression. (This type is always a pointer
1907 type.) */
1908 tree pointer_type;
1909 /* The type pointed to by POINTER_TYPE. */
1910 tree type;
1911 /* The type being allocated. For "new T[...]" this will be an
1912 ARRAY_TYPE. */
1913 tree full_type;
1914 /* A pointer type pointing to to the FULL_TYPE. */
1915 tree full_pointer_type;
1916 tree outer_nelts = NULL_TREE;
1917 tree nelts = NULL_TREE;
1918 tree alloc_call, alloc_expr;
1919 /* The address returned by the call to "operator new". This node is
1920 a VAR_DECL and is therefore reusable. */
1921 tree alloc_node;
1922 tree alloc_fn;
1923 tree cookie_expr, init_expr;
1924 int has_array = 0;
1925 enum tree_code code;
1926 int nothrow, check_new;
1927 /* Nonzero if the user wrote `::new' rather than just `new'. */
1928 int globally_qualified_p;
1929 int use_java_new = 0;
1930 /* If non-NULL, the number of extra bytes to allocate at the
1931 beginning of the storage allocated for an array-new expression in
1932 order to store the number of elements. */
1933 tree cookie_size = NULL_TREE;
1934 /* True if the function we are calling is a placement allocation
1935 function. */
1936 bool placement_allocation_fn_p;
1937 tree args = NULL_TREE;
1938 /* True if the storage must be initialized, either by a constructor
1939 or due to an explicit new-initializer. */
1940 bool is_initialized;
1941 /* The address of the thing allocated, not including any cookie. In
1942 particular, if an array cookie is in use, DATA_ADDR is the
1943 address of the first array element. This node is a VAR_DECL, and
1944 is therefore reusable. */
1945 tree data_addr;
1946
1947 placement = TREE_OPERAND (exp, 0);
1948 type = TREE_OPERAND (exp, 1);
1949 init = TREE_OPERAND (exp, 2);
1950 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1951
1952 if (TREE_CODE (type) == ARRAY_REF)
1953 {
1954 has_array = 1;
1955 nelts = outer_nelts = TREE_OPERAND (type, 1);
1956 type = TREE_OPERAND (type, 0);
1957
1958 /* Use an incomplete array type to avoid VLA headaches. */
1959 full_type = build_cplus_array_type (type, NULL_TREE);
1960 }
1961 else
1962 full_type = type;
1963
1964 true_type = type;
1965
1966 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
1967
1968 /* If our base type is an array, then make sure we know how many elements
1969 it has. */
1970 while (TREE_CODE (true_type) == ARRAY_TYPE)
1971 {
1972 tree this_nelts = array_type_nelts_top (true_type);
1973 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1974 true_type = TREE_TYPE (true_type);
1975 }
1976
1977 if (!complete_type_or_else (true_type, exp))
1978 return error_mark_node;
1979
1980 if (TREE_CODE (true_type) == VOID_TYPE)
1981 {
1982 error ("invalid type `void' for new");
1983 return error_mark_node;
1984 }
1985
1986 if (abstract_virtuals_error (NULL_TREE, true_type))
1987 return error_mark_node;
1988
1989 is_initialized = (TYPE_NEEDS_CONSTRUCTING (type) || init);
1990 if (CP_TYPE_CONST_P (true_type) && !is_initialized)
1991 {
1992 error ("uninitialized const in `new' of `%#T'", true_type);
1993 return error_mark_node;
1994 }
1995
1996 size = size_in_bytes (true_type);
1997 if (has_array)
1998 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1999
2000 /* Allocate the object. */
2001 if (! placement && TYPE_FOR_JAVA (true_type))
2002 {
2003 tree class_addr, alloc_decl;
2004 tree class_decl = build_java_class_ref (true_type);
2005 tree class_size = size_in_bytes (true_type);
2006 static const char alloc_name[] = "_Jv_AllocObject";
2007 use_java_new = 1;
2008 if (!get_global_value_if_present (get_identifier (alloc_name),
2009 &alloc_decl))
2010 {
2011 error ("call to Java constructor with `%s' undefined", alloc_name);
2012 return error_mark_node;
2013 }
2014 else if (really_overloaded_fn (alloc_decl))
2015 {
2016 error ("`%D' should never be overloaded", alloc_decl);
2017 return error_mark_node;
2018 }
2019 alloc_decl = OVL_CURRENT (alloc_decl);
2020 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2021 alloc_call = (build_function_call
2022 (alloc_decl,
2023 tree_cons (NULL_TREE, class_addr,
2024 build_tree_list (NULL_TREE, class_size))));
2025 }
2026 else
2027 {
2028 tree fnname;
2029
2030 fnname = ansi_opname (code);
2031
2032 if (!globally_qualified_p
2033 && CLASS_TYPE_P (true_type)
2034 && (has_array
2035 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
2036 : TYPE_HAS_NEW_OPERATOR (true_type)))
2037 {
2038 /* Use a class-specific operator new. */
2039 /* If a cookie is required, add some extra space. */
2040 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2041 {
2042 cookie_size = get_cookie_size (true_type);
2043 size = size_binop (PLUS_EXPR, size, cookie_size);
2044 }
2045 /* Create the argument list. */
2046 args = tree_cons (NULL_TREE, size, placement);
2047 /* Call the function. */
2048 alloc_call = build_method_call (build_dummy_object (true_type),
2049 fnname, args,
2050 TYPE_BINFO (true_type),
2051 LOOKUP_NORMAL);
2052 }
2053 else
2054 {
2055 /* Use a global operator new. */
2056 /* See if a cookie might be required. */
2057 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2058 cookie_size = get_cookie_size (true_type);
2059 else
2060 cookie_size = NULL_TREE;
2061
2062 alloc_call = build_operator_new_call (fnname, placement,
2063 &size, &cookie_size);
2064 }
2065 }
2066
2067 if (alloc_call == error_mark_node)
2068 return error_mark_node;
2069
2070 /* In the simple case, we can stop now. */
2071 pointer_type = build_pointer_type (type);
2072 if (!cookie_size && !is_initialized)
2073 return build_nop (pointer_type, alloc_call);
2074
2075 /* While we're working, use a pointer to the type we've actually
2076 allocated. Store the result of the call in a variable so that we
2077 can use it more than once. */
2078 full_pointer_type = build_pointer_type (full_type);
2079 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
2080 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2081
2082 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2083 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2084 alloc_call = TREE_OPERAND (alloc_call, 1);
2085 alloc_fn = get_callee_fndecl (alloc_call);
2086 my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
2087
2088 /* Now, check to see if this function is actually a placement
2089 allocation function. This can happen even when PLACEMENT is NULL
2090 because we might have something like:
2091
2092 struct S { void* operator new (size_t, int i = 0); };
2093
2094 A call to `new S' will get this allocation function, even though
2095 there is no explicit placement argument. If there is more than
2096 one argument, or there are variable arguments, then this is a
2097 placement allocation function. */
2098 placement_allocation_fn_p
2099 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2100 || varargs_function_p (alloc_fn));
2101
2102 /* Preevaluate the placement args so that we don't reevaluate them for a
2103 placement delete. */
2104 if (placement_allocation_fn_p)
2105 {
2106 tree inits = NULL_TREE;
2107 t = TREE_CHAIN (TREE_OPERAND (alloc_call, 1));
2108 for (; t; t = TREE_CHAIN (t))
2109 if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
2110 {
2111 tree init;
2112 TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
2113 if (inits)
2114 inits = build (COMPOUND_EXPR, void_type_node, inits, init);
2115 else
2116 inits = init;
2117 }
2118 if (inits)
2119 alloc_expr = build (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2120 alloc_expr);
2121 }
2122
2123 /* unless an allocation function is declared with an empty excep-
2124 tion-specification (_except.spec_), throw(), it indicates failure to
2125 allocate storage by throwing a bad_alloc exception (clause _except_,
2126 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2127 cation function is declared with an empty exception-specification,
2128 throw(), it returns null to indicate failure to allocate storage and a
2129 non-null pointer otherwise.
2130
2131 So check for a null exception spec on the op new we just called. */
2132
2133 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2134 check_new = (flag_check_new || nothrow) && ! use_java_new;
2135
2136 if (cookie_size)
2137 {
2138 tree cookie;
2139
2140 /* Adjust so we're pointing to the start of the object. */
2141 data_addr = get_target_expr (build (PLUS_EXPR, full_pointer_type,
2142 alloc_node, cookie_size));
2143
2144 /* Store the number of bytes allocated so that we can know how
2145 many elements to destroy later. We use the last sizeof
2146 (size_t) bytes to store the number of elements. */
2147 cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2148 data_addr, size_in_bytes (sizetype));
2149 cookie = build_indirect_ref (cookie, NULL);
2150
2151 cookie_expr = build (MODIFY_EXPR, sizetype, cookie, nelts);
2152 data_addr = TARGET_EXPR_SLOT (data_addr);
2153 }
2154 else
2155 {
2156 cookie_expr = NULL_TREE;
2157 data_addr = alloc_node;
2158 }
2159
2160 /* Now initialize the allocated object. */
2161 if (is_initialized)
2162 {
2163 init_expr = build_indirect_ref (data_addr, NULL);
2164
2165 if (init == void_zero_node)
2166 init = build_default_init (full_type, nelts);
2167 else if (init && pedantic && has_array)
2168 pedwarn ("ISO C++ forbids initialization in array new");
2169
2170 if (has_array)
2171 init_expr
2172 = build_vec_init (init_expr,
2173 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2174 integer_one_node),
2175 init, /*from_array=*/0);
2176 else if (TYPE_NEEDS_CONSTRUCTING (type))
2177 init_expr = build_special_member_call (init_expr,
2178 complete_ctor_identifier,
2179 init, TYPE_BINFO (true_type),
2180 LOOKUP_NORMAL);
2181 else
2182 {
2183 /* We are processing something like `new int (10)', which
2184 means allocate an int, and initialize it with 10. */
2185
2186 if (TREE_CODE (init) == TREE_LIST)
2187 init = build_x_compound_expr_from_list (init, "new initializer");
2188
2189 else if (TREE_CODE (init) == CONSTRUCTOR
2190 && TREE_TYPE (init) == NULL_TREE)
2191 {
2192 pedwarn ("ISO C++ forbids aggregate initializer to new");
2193 init = digest_init (type, init, 0);
2194 }
2195
2196 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2197 }
2198
2199 if (init_expr == error_mark_node)
2200 return error_mark_node;
2201
2202 /* If any part of the object initialization terminates by throwing an
2203 exception and a suitable deallocation function can be found, the
2204 deallocation function is called to free the memory in which the
2205 object was being constructed, after which the exception continues
2206 to propagate in the context of the new-expression. If no
2207 unambiguous matching deallocation function can be found,
2208 propagating the exception does not cause the object's memory to be
2209 freed. */
2210 if (flag_exceptions && ! use_java_new)
2211 {
2212 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2213 tree cleanup;
2214 int flags = (LOOKUP_NORMAL
2215 | (globally_qualified_p * LOOKUP_GLOBAL));
2216
2217 /* The Standard is unclear here, but the right thing to do
2218 is to use the same method for finding deallocation
2219 functions that we use for finding allocation functions. */
2220 flags |= LOOKUP_SPECULATIVELY;
2221
2222 cleanup = build_op_delete_call (dcode, alloc_node, size, flags,
2223 (placement_allocation_fn_p
2224 ? alloc_call : NULL_TREE));
2225
2226 /* Ack! First we allocate the memory. Then we set our sentry
2227 variable to true, and expand a cleanup that deletes the memory
2228 if sentry is true. Then we run the constructor, and finally
2229 clear the sentry.
2230
2231 It would be nice to be able to handle this without the sentry
2232 variable, perhaps with a TRY_CATCH_EXPR, but this doesn't
2233 work. We allocate the space first, so if there are any
2234 temporaries with cleanups in the constructor args we need this
2235 EH region to extend until end of full-expression to preserve
2236 nesting.
2237
2238 If the backend had some mechanism so that we could force the
2239 allocation to be expanded after all the other args to the
2240 constructor, that would fix the nesting problem and we could
2241 do away with this complexity. But that would complicate other
2242 things; in particular, it would make it difficult to bail out
2243 if the allocation function returns null. Er, no, it wouldn't;
2244 we just don't run the constructor. The standard says it's
2245 unspecified whether or not the args are evaluated.
2246
2247 FIXME FIXME FIXME inline invisible refs as refs. That way we
2248 can preevaluate value parameters. */
2249
2250 if (cleanup)
2251 {
2252 tree end, sentry, begin;
2253
2254 begin = get_target_expr (boolean_true_node);
2255 CLEANUP_EH_ONLY (begin) = 1;
2256
2257 sentry = TARGET_EXPR_SLOT (begin);
2258
2259 TARGET_EXPR_CLEANUP (begin)
2260 = build (COND_EXPR, void_type_node, sentry,
2261 cleanup, void_zero_node);
2262
2263 end = build (MODIFY_EXPR, TREE_TYPE (sentry),
2264 sentry, boolean_false_node);
2265
2266 init_expr
2267 = build (COMPOUND_EXPR, void_type_node, begin,
2268 build (COMPOUND_EXPR, void_type_node, init_expr,
2269 end));
2270 }
2271 }
2272 }
2273 else
2274 init_expr = NULL_TREE;
2275
2276 /* Now build up the return value in reverse order. */
2277
2278 rval = data_addr;
2279
2280 if (init_expr)
2281 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2282 if (cookie_expr)
2283 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2284
2285 if (rval == alloc_node)
2286 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2287 and return the call (which doesn't need to be adjusted). */
2288 rval = TARGET_EXPR_INITIAL (alloc_expr);
2289 else
2290 {
2291 if (check_new)
2292 {
2293 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2294 integer_zero_node);
2295 rval = build_conditional_expr (ifexp, rval, alloc_node);
2296 }
2297
2298 /* Perform the allocation before anything else, so that ALLOC_NODE
2299 has been initialized before we start using it. */
2300 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2301 }
2302
2303 /* Convert to the final type. */
2304 rval = build_nop (pointer_type, rval);
2305
2306 /* A new-expression is never an lvalue. */
2307 if (real_lvalue_p (rval))
2308 rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
2309
2310 return rval;
2311 }
2312 \f
2313 static tree
2314 build_vec_delete_1 (tree base, tree maxindex, tree type,
2315 special_function_kind auto_delete_vec, int use_global_delete)
2316 {
2317 tree virtual_size;
2318 tree ptype = build_pointer_type (type = complete_type (type));
2319 tree size_exp = size_in_bytes (type);
2320
2321 /* Temporary variables used by the loop. */
2322 tree tbase, tbase_init;
2323
2324 /* This is the body of the loop that implements the deletion of a
2325 single element, and moves temp variables to next elements. */
2326 tree body;
2327
2328 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2329 tree loop = 0;
2330
2331 /* This is the thing that governs what to do after the loop has run. */
2332 tree deallocate_expr = 0;
2333
2334 /* This is the BIND_EXPR which holds the outermost iterator of the
2335 loop. It is convenient to set this variable up and test it before
2336 executing any other code in the loop.
2337 This is also the containing expression returned by this function. */
2338 tree controller = NULL_TREE;
2339
2340 /* We should only have 1-D arrays here. */
2341 if (TREE_CODE (type) == ARRAY_TYPE)
2342 abort ();
2343
2344 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2345 goto no_destructor;
2346
2347 /* The below is short by the cookie size. */
2348 virtual_size = size_binop (MULT_EXPR, size_exp,
2349 convert (sizetype, maxindex));
2350
2351 tbase = create_temporary_var (ptype);
2352 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2353 fold (build (PLUS_EXPR, ptype,
2354 base,
2355 virtual_size)));
2356 DECL_REGISTER (tbase) = 1;
2357 controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
2358 TREE_SIDE_EFFECTS (controller) = 1;
2359
2360 body = build (EXIT_EXPR, void_type_node,
2361 build (EQ_EXPR, boolean_type_node, base, tbase));
2362 body = build_compound_expr
2363 (body, build_modify_expr (tbase, NOP_EXPR,
2364 build (MINUS_EXPR, ptype, tbase, size_exp)));
2365 body = build_compound_expr
2366 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2367 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2368
2369 loop = build (LOOP_EXPR, void_type_node, body);
2370 loop = build_compound_expr (tbase_init, loop);
2371
2372 no_destructor:
2373 /* If the delete flag is one, or anything else with the low bit set,
2374 delete the storage. */
2375 if (auto_delete_vec != sfk_base_destructor)
2376 {
2377 tree base_tbd;
2378
2379 /* The below is short by the cookie size. */
2380 virtual_size = size_binop (MULT_EXPR, size_exp,
2381 convert (sizetype, maxindex));
2382
2383 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2384 /* no header */
2385 base_tbd = base;
2386 else
2387 {
2388 tree cookie_size;
2389
2390 cookie_size = get_cookie_size (type);
2391 base_tbd
2392 = cp_convert (ptype,
2393 cp_build_binary_op (MINUS_EXPR,
2394 cp_convert (string_type_node,
2395 base),
2396 cookie_size));
2397 /* True size with header. */
2398 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2399 }
2400
2401 if (auto_delete_vec == sfk_deleting_destructor)
2402 deallocate_expr = build_x_delete (base_tbd,
2403 2 | use_global_delete,
2404 virtual_size);
2405 }
2406
2407 body = loop;
2408 if (!deallocate_expr)
2409 ;
2410 else if (!body)
2411 body = deallocate_expr;
2412 else
2413 body = build_compound_expr (body, deallocate_expr);
2414
2415 if (!body)
2416 body = integer_zero_node;
2417
2418 /* Outermost wrapper: If pointer is null, punt. */
2419 body = fold (build (COND_EXPR, void_type_node,
2420 fold (build (NE_EXPR, boolean_type_node, base,
2421 integer_zero_node)),
2422 body, integer_zero_node));
2423 body = build1 (NOP_EXPR, void_type_node, body);
2424
2425 if (controller)
2426 {
2427 TREE_OPERAND (controller, 1) = body;
2428 body = controller;
2429 }
2430
2431 if (TREE_CODE (base) == SAVE_EXPR)
2432 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2433 body = build (COMPOUND_EXPR, void_type_node, base, body);
2434
2435 return convert_to_void (body, /*implicit=*/NULL);
2436 }
2437
2438 /* Create an unnamed variable of the indicated TYPE. */
2439
2440 tree
2441 create_temporary_var (tree type)
2442 {
2443 tree decl;
2444
2445 decl = build_decl (VAR_DECL, NULL_TREE, type);
2446 TREE_USED (decl) = 1;
2447 DECL_ARTIFICIAL (decl) = 1;
2448 DECL_SOURCE_LOCATION (decl) = input_location;
2449 DECL_IGNORED_P (decl) = 1;
2450 DECL_CONTEXT (decl) = current_function_decl;
2451
2452 return decl;
2453 }
2454
2455 /* Create a new temporary variable of the indicated TYPE, initialized
2456 to INIT.
2457
2458 It is not entered into current_binding_level, because that breaks
2459 things when it comes time to do final cleanups (which take place
2460 "outside" the binding contour of the function). */
2461
2462 static tree
2463 get_temp_regvar (tree type, tree init)
2464 {
2465 tree decl;
2466
2467 decl = create_temporary_var (type);
2468 add_decl_stmt (decl);
2469
2470 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2471
2472 return decl;
2473 }
2474
2475 /* `build_vec_init' returns tree structure that performs
2476 initialization of a vector of aggregate types.
2477
2478 BASE is a reference to the vector, of ARRAY_TYPE.
2479 MAXINDEX is the maximum index of the array (one less than the
2480 number of elements). It is only used if
2481 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2482 INIT is the (possibly NULL) initializer.
2483
2484 FROM_ARRAY is 0 if we should init everything with INIT
2485 (i.e., every element initialized from INIT).
2486 FROM_ARRAY is 1 if we should index into INIT in parallel
2487 with initialization of DECL.
2488 FROM_ARRAY is 2 if we should index into INIT in parallel,
2489 but use assignment instead of initialization. */
2490
2491 tree
2492 build_vec_init (tree base, tree maxindex, tree init, int from_array)
2493 {
2494 tree rval;
2495 tree base2 = NULL_TREE;
2496 tree size;
2497 tree itype = NULL_TREE;
2498 tree iterator;
2499 /* The type of the array. */
2500 tree atype = TREE_TYPE (base);
2501 /* The type of an element in the array. */
2502 tree type = TREE_TYPE (atype);
2503 /* The type of a pointer to an element in the array. */
2504 tree ptype;
2505 tree stmt_expr;
2506 tree compound_stmt;
2507 int destroy_temps;
2508 tree try_block = NULL_TREE;
2509 tree try_body = NULL_TREE;
2510 int num_initialized_elts = 0;
2511 bool is_global;
2512
2513 if (TYPE_DOMAIN (atype))
2514 maxindex = array_type_nelts (atype);
2515
2516 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2517 return error_mark_node;
2518
2519 if (init
2520 && (from_array == 2
2521 ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2522 : !TYPE_NEEDS_CONSTRUCTING (type))
2523 && ((TREE_CODE (init) == CONSTRUCTOR
2524 /* Don't do this if the CONSTRUCTOR might contain something
2525 that might throw and require us to clean up. */
2526 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2527 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2528 || from_array))
2529 {
2530 /* Do non-default initialization of POD arrays resulting from
2531 brace-enclosed initializers. In this case, digest_init and
2532 store_constructor will handle the semantics for us. */
2533
2534 stmt_expr = build (INIT_EXPR, atype, base, init);
2535 return stmt_expr;
2536 }
2537
2538 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2539 ptype = build_pointer_type (type);
2540 size = size_in_bytes (type);
2541 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2542 base = cp_convert (ptype, decay_conversion (base));
2543
2544 /* The code we are generating looks like:
2545 ({
2546 T* t1 = (T*) base;
2547 T* rval = t1;
2548 ptrdiff_t iterator = maxindex;
2549 try {
2550 for (; iterator != -1; --iterator) {
2551 ... initialize *t1 ...
2552 ++t1;
2553 }
2554 } catch (...) {
2555 ... destroy elements that were constructed ...
2556 }
2557 rval;
2558 })
2559
2560 We can omit the try and catch blocks if we know that the
2561 initialization will never throw an exception, or if the array
2562 elements do not have destructors. We can omit the loop completely if
2563 the elements of the array do not have constructors.
2564
2565 We actually wrap the entire body of the above in a STMT_EXPR, for
2566 tidiness.
2567
2568 When copying from array to another, when the array elements have
2569 only trivial copy constructors, we should use __builtin_memcpy
2570 rather than generating a loop. That way, we could take advantage
2571 of whatever cleverness the back-end has for dealing with copies
2572 of blocks of memory. */
2573
2574 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2575 destroy_temps = stmts_are_full_exprs_p ();
2576 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2577 rval = get_temp_regvar (ptype, base);
2578 base = get_temp_regvar (ptype, rval);
2579 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2580
2581 /* Protect the entire array initialization so that we can destroy
2582 the partially constructed array if an exception is thrown.
2583 But don't do this if we're assigning. */
2584 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2585 && from_array != 2)
2586 {
2587 try_block = begin_try_block ();
2588 try_body = begin_compound_stmt (/*has_no_scope=*/true);
2589 }
2590
2591 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2592 {
2593 /* Do non-default initialization of non-POD arrays resulting from
2594 brace-enclosed initializers. */
2595
2596 tree elts;
2597 from_array = 0;
2598
2599 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2600 {
2601 tree elt = TREE_VALUE (elts);
2602 tree baseref = build1 (INDIRECT_REF, type, base);
2603
2604 num_initialized_elts++;
2605
2606 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2607 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2608 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2609 else
2610 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2611 elt));
2612 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2613
2614 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2615 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2616 }
2617
2618 /* Clear out INIT so that we don't get confused below. */
2619 init = NULL_TREE;
2620 }
2621 else if (from_array)
2622 {
2623 /* If initializing one array from another, initialize element by
2624 element. We rely upon the below calls the do argument
2625 checking. */
2626 if (init)
2627 {
2628 base2 = decay_conversion (init);
2629 itype = TREE_TYPE (base2);
2630 base2 = get_temp_regvar (itype, base2);
2631 itype = TREE_TYPE (itype);
2632 }
2633 else if (TYPE_LANG_SPECIFIC (type)
2634 && TYPE_NEEDS_CONSTRUCTING (type)
2635 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2636 {
2637 error ("initializer ends prematurely");
2638 return error_mark_node;
2639 }
2640 }
2641
2642 /* Now, default-initialize any remaining elements. We don't need to
2643 do that if a) the type does not need constructing, or b) we've
2644 already initialized all the elements.
2645
2646 We do need to keep going if we're copying an array. */
2647
2648 if (from_array
2649 || (TYPE_NEEDS_CONSTRUCTING (type)
2650 && ! (host_integerp (maxindex, 0)
2651 && (num_initialized_elts
2652 == tree_low_cst (maxindex, 0) + 1))))
2653 {
2654 /* If the ITERATOR is equal to -1, then we don't have to loop;
2655 we've already initialized all the elements. */
2656 tree for_stmt;
2657 tree for_body;
2658 tree elt_init;
2659
2660 for_stmt = begin_for_stmt ();
2661 finish_for_init_stmt (for_stmt);
2662 finish_for_cond (build (NE_EXPR, boolean_type_node,
2663 iterator, integer_minus_one_node),
2664 for_stmt);
2665 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2666 for_stmt);
2667
2668 /* Otherwise, loop through the elements. */
2669 for_body = begin_compound_stmt (/*has_no_scope=*/true);
2670
2671 if (from_array)
2672 {
2673 tree to = build1 (INDIRECT_REF, type, base);
2674 tree from;
2675
2676 if (base2)
2677 from = build1 (INDIRECT_REF, itype, base2);
2678 else
2679 from = NULL_TREE;
2680
2681 if (from_array == 2)
2682 elt_init = build_modify_expr (to, NOP_EXPR, from);
2683 else if (TYPE_NEEDS_CONSTRUCTING (type))
2684 elt_init = build_aggr_init (to, from, 0);
2685 else if (from)
2686 elt_init = build_modify_expr (to, NOP_EXPR, from);
2687 else
2688 abort ();
2689 }
2690 else if (TREE_CODE (type) == ARRAY_TYPE)
2691 {
2692 if (init != 0)
2693 sorry
2694 ("cannot initialize multi-dimensional array with initializer");
2695 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2696 0, 0, 0);
2697 }
2698 else
2699 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2700 init, 0);
2701
2702 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2703 finish_expr_stmt (elt_init);
2704 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2705
2706 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2707 if (base2)
2708 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2709
2710 finish_compound_stmt (for_body);
2711 finish_for_stmt (for_stmt);
2712 }
2713
2714 /* Make sure to cleanup any partially constructed elements. */
2715 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2716 && from_array != 2)
2717 {
2718 tree e;
2719 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2720
2721 /* Flatten multi-dimensional array since build_vec_delete only
2722 expects one-dimensional array. */
2723 if (TREE_CODE (type) == ARRAY_TYPE)
2724 {
2725 m = cp_build_binary_op (MULT_EXPR, m,
2726 array_type_nelts_total (type));
2727 type = strip_array_types (type);
2728 }
2729
2730 finish_compound_stmt (try_body);
2731 finish_cleanup_try_block (try_block);
2732 e = build_vec_delete_1 (rval, m, type, sfk_base_destructor,
2733 /*use_global_delete=*/0);
2734 finish_cleanup (e, try_block);
2735 }
2736
2737 /* The value of the array initialization is the array itself, RVAL
2738 is a pointer to the first element. */
2739 finish_stmt_expr_expr (rval);
2740
2741 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2742
2743 /* Now convert make the result have the correct type. */
2744 atype = build_pointer_type (atype);
2745 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2746 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2747
2748 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2749 return stmt_expr;
2750 }
2751
2752 /* Free up storage of type TYPE, at address ADDR.
2753
2754 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2755 of pointer.
2756
2757 VIRTUAL_SIZE is the amount of storage that was allocated, and is
2758 used as the second argument to operator delete. It can include
2759 things like padding and magic size cookies. It has virtual in it,
2760 because if you have a base pointer and you delete through a virtual
2761 destructor, it should be the size of the dynamic object, not the
2762 static object, see Free Store 12.5 ISO C++.
2763
2764 This does not call any destructors. */
2765
2766 tree
2767 build_x_delete (tree addr, int which_delete, tree virtual_size)
2768 {
2769 int use_global_delete = which_delete & 1;
2770 int use_vec_delete = !!(which_delete & 2);
2771 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
2772 int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
2773
2774 return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
2775 }
2776
2777 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2778 build_delete. */
2779
2780 static tree
2781 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2782 {
2783 tree name;
2784 tree fn;
2785 switch (dtor_kind)
2786 {
2787 case sfk_complete_destructor:
2788 name = complete_dtor_identifier;
2789 break;
2790
2791 case sfk_base_destructor:
2792 name = base_dtor_identifier;
2793 break;
2794
2795 case sfk_deleting_destructor:
2796 name = deleting_dtor_identifier;
2797 break;
2798
2799 default:
2800 abort ();
2801 }
2802
2803 exp = convert_from_reference (exp);
2804 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2805 return build_new_method_call (exp, fn,
2806 /*args=*/NULL_TREE,
2807 /*conversion_path=*/NULL_TREE,
2808 flags);
2809 }
2810
2811 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2812 ADDR is an expression which yields the store to be destroyed.
2813 AUTO_DELETE is the name of the destructor to call, i.e., either
2814 sfk_complete_destructor, sfk_base_destructor, or
2815 sfk_deleting_destructor.
2816
2817 FLAGS is the logical disjunction of zero or more LOOKUP_
2818 flags. See cp-tree.h for more info. */
2819
2820 tree
2821 build_delete (tree type, tree addr, special_function_kind auto_delete,
2822 int flags, int use_global_delete)
2823 {
2824 tree expr;
2825
2826 if (addr == error_mark_node)
2827 return error_mark_node;
2828
2829 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2830 set to `error_mark_node' before it gets properly cleaned up. */
2831 if (type == error_mark_node)
2832 return error_mark_node;
2833
2834 type = TYPE_MAIN_VARIANT (type);
2835
2836 if (TREE_CODE (type) == POINTER_TYPE)
2837 {
2838 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2839 if (TREE_CODE (type) == ARRAY_TYPE)
2840 goto handle_array;
2841
2842 if (VOID_TYPE_P (type)
2843 /* We don't want to warn about delete of void*, only other
2844 incomplete types. Deleting other incomplete types
2845 invokes undefined behavior, but it is not ill-formed, so
2846 compile to something that would even do The Right Thing
2847 (TM) should the type have a trivial dtor and no delete
2848 operator. */
2849 || !complete_type_or_diagnostic (type, addr, 1)
2850 || !IS_AGGR_TYPE (type))
2851 {
2852 /* Call the builtin operator delete. */
2853 return build_builtin_delete_call (addr);
2854 }
2855 if (TREE_SIDE_EFFECTS (addr))
2856 addr = save_expr (addr);
2857
2858 /* throw away const and volatile on target type of addr */
2859 addr = convert_force (build_pointer_type (type), addr, 0);
2860 }
2861 else if (TREE_CODE (type) == ARRAY_TYPE)
2862 {
2863 handle_array:
2864
2865 if (TYPE_DOMAIN (type) == NULL_TREE)
2866 {
2867 error ("unknown array size in delete");
2868 return error_mark_node;
2869 }
2870 return build_vec_delete (addr, array_type_nelts (type),
2871 auto_delete, use_global_delete);
2872 }
2873 else
2874 {
2875 /* Don't check PROTECT here; leave that decision to the
2876 destructor. If the destructor is accessible, call it,
2877 else report error. */
2878 addr = build_unary_op (ADDR_EXPR, addr, 0);
2879 if (TREE_SIDE_EFFECTS (addr))
2880 addr = save_expr (addr);
2881
2882 addr = convert_force (build_pointer_type (type), addr, 0);
2883 }
2884
2885 my_friendly_assert (IS_AGGR_TYPE (type), 220);
2886
2887 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2888 {
2889 if (auto_delete != sfk_deleting_destructor)
2890 return void_zero_node;
2891
2892 return build_op_delete_call
2893 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2894 LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
2895 NULL_TREE);
2896 }
2897 else
2898 {
2899 tree do_delete = NULL_TREE;
2900 tree ifexp;
2901
2902 my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
2903
2904 /* For `::delete x', we must not use the deleting destructor
2905 since then we would not be sure to get the global `operator
2906 delete'. */
2907 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2908 {
2909 /* We will use ADDR multiple times so we must save it. */
2910 addr = save_expr (addr);
2911 /* Delete the object. */
2912 do_delete = build_builtin_delete_call (addr);
2913 /* Otherwise, treat this like a complete object destructor
2914 call. */
2915 auto_delete = sfk_complete_destructor;
2916 }
2917 /* If the destructor is non-virtual, there is no deleting
2918 variant. Instead, we must explicitly call the appropriate
2919 `operator delete' here. */
2920 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2921 && auto_delete == sfk_deleting_destructor)
2922 {
2923 /* We will use ADDR multiple times so we must save it. */
2924 addr = save_expr (addr);
2925 /* Build the call. */
2926 do_delete = build_op_delete_call (DELETE_EXPR,
2927 addr,
2928 cxx_sizeof_nowarn (type),
2929 LOOKUP_NORMAL,
2930 NULL_TREE);
2931 /* Call the complete object destructor. */
2932 auto_delete = sfk_complete_destructor;
2933 }
2934 else if (auto_delete == sfk_deleting_destructor
2935 && TYPE_GETS_REG_DELETE (type))
2936 {
2937 /* Make sure we have access to the member op delete, even though
2938 we'll actually be calling it from the destructor. */
2939 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2940 LOOKUP_NORMAL, NULL_TREE);
2941 }
2942
2943 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2944 auto_delete, flags);
2945 if (do_delete)
2946 expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
2947
2948 if (flags & LOOKUP_DESTRUCTOR)
2949 /* Explicit destructor call; don't check for null pointer. */
2950 ifexp = integer_one_node;
2951 else
2952 /* Handle deleting a null pointer. */
2953 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2954
2955 if (ifexp != integer_one_node)
2956 expr = build (COND_EXPR, void_type_node,
2957 ifexp, expr, void_zero_node);
2958
2959 return expr;
2960 }
2961 }
2962
2963 /* At the beginning of a destructor, push cleanups that will call the
2964 destructors for our base classes and members.
2965
2966 Called from begin_destructor_body. */
2967
2968 void
2969 push_base_cleanups (void)
2970 {
2971 tree binfos;
2972 int i, n_baseclasses;
2973 tree member;
2974 tree expr;
2975
2976 /* Run destructors for all virtual baseclasses. */
2977 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
2978 {
2979 tree vbases;
2980 tree cond = (condition_conversion
2981 (build (BIT_AND_EXPR, integer_type_node,
2982 current_in_charge_parm,
2983 integer_two_node)));
2984
2985 vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2986 /* The CLASSTYPE_VBASECLASSES list is in initialization
2987 order, which is also the right order for pushing cleanups. */
2988 for (; vbases;
2989 vbases = TREE_CHAIN (vbases))
2990 {
2991 tree vbase = TREE_VALUE (vbases);
2992 tree base_type = BINFO_TYPE (vbase);
2993
2994 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
2995 {
2996 expr = build_special_member_call (current_class_ref,
2997 base_dtor_identifier,
2998 NULL_TREE,
2999 vbase,
3000 (LOOKUP_NORMAL
3001 | LOOKUP_NONVIRTUAL));
3002 expr = build (COND_EXPR, void_type_node, cond,
3003 expr, void_zero_node);
3004 finish_decl_cleanup (NULL_TREE, expr);
3005 }
3006 }
3007 }
3008
3009 binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
3010 n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
3011
3012 /* Take care of the remaining baseclasses. */
3013 for (i = 0; i < n_baseclasses; i++)
3014 {
3015 tree base_binfo = TREE_VEC_ELT (binfos, i);
3016 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3017 || TREE_VIA_VIRTUAL (base_binfo))
3018 continue;
3019
3020 expr = build_special_member_call (current_class_ref,
3021 base_dtor_identifier,
3022 NULL_TREE, base_binfo,
3023 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
3024 finish_decl_cleanup (NULL_TREE, expr);
3025 }
3026
3027 for (member = TYPE_FIELDS (current_class_type); member;
3028 member = TREE_CHAIN (member))
3029 {
3030 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
3031 continue;
3032 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3033 {
3034 tree this_member = (build_class_member_access_expr
3035 (current_class_ref, member,
3036 /*access_path=*/NULL_TREE,
3037 /*preserve_reference=*/false));
3038 tree this_type = TREE_TYPE (member);
3039 expr = build_delete (this_type, this_member,
3040 sfk_complete_destructor,
3041 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3042 0);
3043 finish_decl_cleanup (NULL_TREE, expr);
3044 }
3045 }
3046 }
3047
3048 /* For type TYPE, delete the virtual baseclass objects of DECL. */
3049
3050 tree
3051 build_vbase_delete (tree type, tree decl)
3052 {
3053 tree vbases = CLASSTYPE_VBASECLASSES (type);
3054 tree result;
3055 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
3056
3057 my_friendly_assert (addr != error_mark_node, 222);
3058
3059 for (result = convert_to_void (integer_zero_node, NULL);
3060 vbases; vbases = TREE_CHAIN (vbases))
3061 {
3062 tree base_addr = convert_force
3063 (build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))), addr, 0);
3064 tree base_delete = build_delete
3065 (TREE_TYPE (base_addr), base_addr, sfk_base_destructor,
3066 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
3067
3068 result = build_compound_expr (result, base_delete);
3069 }
3070 return result;
3071 }
3072
3073 /* Build a C++ vector delete expression.
3074 MAXINDEX is the number of elements to be deleted.
3075 ELT_SIZE is the nominal size of each element in the vector.
3076 BASE is the expression that should yield the store to be deleted.
3077 This function expands (or synthesizes) these calls itself.
3078 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3079
3080 This also calls delete for virtual baseclasses of elements of the vector.
3081
3082 Update: MAXINDEX is no longer needed. The size can be extracted from the
3083 start of the vector for pointers, and from the type for arrays. We still
3084 use MAXINDEX for arrays because it happens to already have one of the
3085 values we'd have to extract. (We could use MAXINDEX with pointers to
3086 confirm the size, and trap if the numbers differ; not clear that it'd
3087 be worth bothering.) */
3088
3089 tree
3090 build_vec_delete (tree base, tree maxindex,
3091 special_function_kind auto_delete_vec, int use_global_delete)
3092 {
3093 tree type;
3094 tree rval;
3095 tree base_init = NULL_TREE;
3096
3097 type = TREE_TYPE (base);
3098
3099 if (TREE_CODE (type) == POINTER_TYPE)
3100 {
3101 /* Step back one from start of vector, and read dimension. */
3102 tree cookie_addr;
3103
3104 if (TREE_SIDE_EFFECTS (base))
3105 {
3106 base_init = get_target_expr (base);
3107 base = TARGET_EXPR_SLOT (base_init);
3108 }
3109 type = strip_array_types (TREE_TYPE (type));
3110 cookie_addr = build (MINUS_EXPR,
3111 build_pointer_type (sizetype),
3112 base,
3113 TYPE_SIZE_UNIT (sizetype));
3114 maxindex = build_indirect_ref (cookie_addr, NULL);
3115 }
3116 else if (TREE_CODE (type) == ARRAY_TYPE)
3117 {
3118 /* get the total number of things in the array, maxindex is a bad name */
3119 maxindex = array_type_nelts_total (type);
3120 type = strip_array_types (type);
3121 base = build_unary_op (ADDR_EXPR, base, 1);
3122 if (TREE_SIDE_EFFECTS (base))
3123 {
3124 base_init = get_target_expr (base);
3125 base = TARGET_EXPR_SLOT (base_init);
3126 }
3127 }
3128 else
3129 {
3130 if (base != error_mark_node)
3131 error ("type to vector delete is neither pointer or array type");
3132 return error_mark_node;
3133 }
3134
3135 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3136 use_global_delete);
3137 if (base_init)
3138 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3139
3140 return rval;
3141 }