cp-tree.h (OVL_FIRST, OVL_NAME): New.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33
34 static bool begin_init_stmts (tree *, tree *);
35 static tree finish_init_stmts (bool, tree, tree);
36 static void construct_virtual_base (tree, tree);
37 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
38 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
39 static void perform_member_init (tree, tree);
40 static int member_init_ok_or_else (tree, tree, tree);
41 static void expand_virtual_init (tree, tree);
42 static tree sort_mem_initializers (tree, tree);
43 static tree initializing_context (tree);
44 static void expand_cleanup_for_base (tree, tree);
45 static tree dfs_initialize_vtbl_ptrs (tree, void *);
46 static tree build_field_list (tree, tree, int *);
47 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
48
49 /* We are about to generate some complex initialization code.
50 Conceptually, it is all a single expression. However, we may want
51 to include conditionals, loops, and other such statement-level
52 constructs. Therefore, we build the initialization code inside a
53 statement-expression. This function starts such an expression.
54 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
55 pass them back to finish_init_stmts when the expression is
56 complete. */
57
58 static bool
59 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
60 {
61 bool is_global = !building_stmt_list_p ();
62
63 *stmt_expr_p = begin_stmt_expr ();
64 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
65
66 return is_global;
67 }
68
69 /* Finish out the statement-expression begun by the previous call to
70 begin_init_stmts. Returns the statement-expression itself. */
71
72 static tree
73 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
74 {
75 finish_compound_stmt (compound_stmt);
76
77 stmt_expr = finish_stmt_expr (stmt_expr, true);
78
79 gcc_assert (!building_stmt_list_p () == is_global);
80
81 return stmt_expr;
82 }
83
84 /* Constructors */
85
86 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
87 which we want to initialize the vtable pointer for, DATA is
88 TREE_LIST whose TREE_VALUE is the this ptr expression. */
89
90 static tree
91 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
92 {
93 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
94 return dfs_skip_bases;
95
96 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
97 {
98 tree base_ptr = TREE_VALUE ((tree) data);
99
100 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
101 tf_warning_or_error);
102
103 expand_virtual_init (binfo, base_ptr);
104 }
105
106 return NULL_TREE;
107 }
108
109 /* Initialize all the vtable pointers in the object pointed to by
110 ADDR. */
111
112 void
113 initialize_vtbl_ptrs (tree addr)
114 {
115 tree list;
116 tree type;
117
118 type = TREE_TYPE (TREE_TYPE (addr));
119 list = build_tree_list (type, addr);
120
121 /* Walk through the hierarchy, initializing the vptr in each base
122 class. We do these in pre-order because we can't find the virtual
123 bases for a class until we've initialized the vtbl for that
124 class. */
125 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
126 }
127
128 /* Return an expression for the zero-initialization of an object with
129 type T. This expression will either be a constant (in the case
130 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
131 aggregate), or NULL (in the case that T does not require
132 initialization). In either case, the value can be used as
133 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
134 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
135 is the number of elements in the array. If STATIC_STORAGE_P is
136 TRUE, initializers are only generated for entities for which
137 zero-initialization does not simply mean filling the storage with
138 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
139 subfields with bit positions at or above that bit size shouldn't
140 be added. Note that this only works when the result is assigned
141 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
142 expand_assignment will end up clearing the full size of TYPE. */
143
144 static tree
145 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
146 tree field_size)
147 {
148 tree init = NULL_TREE;
149
150 /* [dcl.init]
151
152 To zero-initialize an object of type T means:
153
154 -- if T is a scalar type, the storage is set to the value of zero
155 converted to T.
156
157 -- if T is a non-union class type, the storage for each nonstatic
158 data member and each base-class subobject is zero-initialized.
159
160 -- if T is a union type, the storage for its first data member is
161 zero-initialized.
162
163 -- if T is an array type, the storage for each element is
164 zero-initialized.
165
166 -- if T is a reference type, no initialization is performed. */
167
168 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
169
170 if (type == error_mark_node)
171 ;
172 else if (static_storage_p && zero_init_p (type))
173 /* In order to save space, we do not explicitly build initializers
174 for items that do not need them. GCC's semantics are that
175 items with static storage duration that are not otherwise
176 initialized are initialized to zero. */
177 ;
178 else if (TYPE_PTR_OR_PTRMEM_P (type))
179 init = fold (convert (type, nullptr_node));
180 else if (SCALAR_TYPE_P (type))
181 init = fold (convert (type, integer_zero_node));
182 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
183 {
184 tree field;
185 vec<constructor_elt, va_gc> *v = NULL;
186
187 /* Iterate over the fields, building initializations. */
188 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
189 {
190 if (TREE_CODE (field) != FIELD_DECL)
191 continue;
192
193 if (TREE_TYPE (field) == error_mark_node)
194 continue;
195
196 /* Don't add virtual bases for base classes if they are beyond
197 the size of the current field, that means it is present
198 somewhere else in the object. */
199 if (field_size)
200 {
201 tree bitpos = bit_position (field);
202 if (TREE_CODE (bitpos) == INTEGER_CST
203 && !tree_int_cst_lt (bitpos, field_size))
204 continue;
205 }
206
207 /* Note that for class types there will be FIELD_DECLs
208 corresponding to base classes as well. Thus, iterating
209 over TYPE_FIELDs will result in correct initialization of
210 all of the subobjects. */
211 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
212 {
213 tree new_field_size
214 = (DECL_FIELD_IS_BASE (field)
215 && DECL_SIZE (field)
216 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
217 ? DECL_SIZE (field) : NULL_TREE;
218 tree value = build_zero_init_1 (TREE_TYPE (field),
219 /*nelts=*/NULL_TREE,
220 static_storage_p,
221 new_field_size);
222 if (value)
223 CONSTRUCTOR_APPEND_ELT(v, field, value);
224 }
225
226 /* For unions, only the first field is initialized. */
227 if (TREE_CODE (type) == UNION_TYPE)
228 break;
229 }
230
231 /* Build a constructor to contain the initializations. */
232 init = build_constructor (type, v);
233 }
234 else if (TREE_CODE (type) == ARRAY_TYPE)
235 {
236 tree max_index;
237 vec<constructor_elt, va_gc> *v = NULL;
238
239 /* Iterate over the array elements, building initializations. */
240 if (nelts)
241 max_index = fold_build2_loc (input_location,
242 MINUS_EXPR, TREE_TYPE (nelts),
243 nelts, integer_one_node);
244 else
245 max_index = array_type_nelts (type);
246
247 /* If we have an error_mark here, we should just return error mark
248 as we don't know the size of the array yet. */
249 if (max_index == error_mark_node)
250 return error_mark_node;
251 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
252
253 /* A zero-sized array, which is accepted as an extension, will
254 have an upper bound of -1. */
255 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
256 {
257 constructor_elt ce;
258
259 /* If this is a one element array, we just use a regular init. */
260 if (tree_int_cst_equal (size_zero_node, max_index))
261 ce.index = size_zero_node;
262 else
263 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
264 max_index);
265
266 ce.value = build_zero_init_1 (TREE_TYPE (type),
267 /*nelts=*/NULL_TREE,
268 static_storage_p, NULL_TREE);
269 if (ce.value)
270 {
271 vec_alloc (v, 1);
272 v->quick_push (ce);
273 }
274 }
275
276 /* Build a constructor to contain the initializations. */
277 init = build_constructor (type, v);
278 }
279 else if (VECTOR_TYPE_P (type))
280 init = build_zero_cst (type);
281 else
282 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
283
284 /* In all cases, the initializer is a constant. */
285 if (init)
286 TREE_CONSTANT (init) = 1;
287
288 return init;
289 }
290
291 /* Return an expression for the zero-initialization of an object with
292 type T. This expression will either be a constant (in the case
293 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
294 aggregate), or NULL (in the case that T does not require
295 initialization). In either case, the value can be used as
296 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
297 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
298 is the number of elements in the array. If STATIC_STORAGE_P is
299 TRUE, initializers are only generated for entities for which
300 zero-initialization does not simply mean filling the storage with
301 zero bytes. */
302
303 tree
304 build_zero_init (tree type, tree nelts, bool static_storage_p)
305 {
306 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
307 }
308
309 /* Return a suitable initializer for value-initializing an object of type
310 TYPE, as described in [dcl.init]. */
311
312 tree
313 build_value_init (tree type, tsubst_flags_t complain)
314 {
315 /* [dcl.init]
316
317 To value-initialize an object of type T means:
318
319 - if T is a class type (clause 9) with either no default constructor
320 (12.1) or a default constructor that is user-provided or deleted,
321 then the object is default-initialized;
322
323 - if T is a (possibly cv-qualified) class type without a user-provided
324 or deleted default constructor, then the object is zero-initialized
325 and the semantic constraints for default-initialization are checked,
326 and if T has a non-trivial default constructor, the object is
327 default-initialized;
328
329 - if T is an array type, then each element is value-initialized;
330
331 - otherwise, the object is zero-initialized.
332
333 A program that calls for default-initialization or
334 value-initialization of an entity of reference type is ill-formed. */
335
336 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
337 gcc_assert (!processing_template_decl
338 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
339
340 if (CLASS_TYPE_P (type)
341 && type_build_ctor_call (type))
342 {
343 tree ctor =
344 build_special_member_call (NULL_TREE, complete_ctor_identifier,
345 NULL, type, LOOKUP_NORMAL,
346 complain);
347 if (ctor == error_mark_node)
348 return ctor;
349 tree fn = NULL_TREE;
350 if (TREE_CODE (ctor) == CALL_EXPR)
351 fn = get_callee_fndecl (ctor);
352 ctor = build_aggr_init_expr (type, ctor);
353 if (fn && user_provided_p (fn))
354 return ctor;
355 else if (TYPE_HAS_COMPLEX_DFLT (type))
356 {
357 /* This is a class that needs constructing, but doesn't have
358 a user-provided constructor. So we need to zero-initialize
359 the object and then call the implicitly defined ctor.
360 This will be handled in simplify_aggr_init_expr. */
361 AGGR_INIT_ZERO_FIRST (ctor) = 1;
362 return ctor;
363 }
364 }
365
366 /* Discard any access checking during subobject initialization;
367 the checks are implied by the call to the ctor which we have
368 verified is OK (cpp0x/defaulted46.C). */
369 push_deferring_access_checks (dk_deferred);
370 tree r = build_value_init_noctor (type, complain);
371 pop_deferring_access_checks ();
372 return r;
373 }
374
375 /* Like build_value_init, but don't call the constructor for TYPE. Used
376 for base initializers. */
377
378 tree
379 build_value_init_noctor (tree type, tsubst_flags_t complain)
380 {
381 if (!COMPLETE_TYPE_P (type))
382 {
383 if (complain & tf_error)
384 error ("value-initialization of incomplete type %qT", type);
385 return error_mark_node;
386 }
387 /* FIXME the class and array cases should just use digest_init once it is
388 SFINAE-enabled. */
389 if (CLASS_TYPE_P (type))
390 {
391 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
392 || errorcount != 0);
393
394 if (TREE_CODE (type) != UNION_TYPE)
395 {
396 tree field;
397 vec<constructor_elt, va_gc> *v = NULL;
398
399 /* Iterate over the fields, building initializations. */
400 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
401 {
402 tree ftype, value;
403
404 if (TREE_CODE (field) != FIELD_DECL)
405 continue;
406
407 ftype = TREE_TYPE (field);
408
409 if (ftype == error_mark_node)
410 continue;
411
412 /* We could skip vfields and fields of types with
413 user-defined constructors, but I think that won't improve
414 performance at all; it should be simpler in general just
415 to zero out the entire object than try to only zero the
416 bits that actually need it. */
417
418 /* Note that for class types there will be FIELD_DECLs
419 corresponding to base classes as well. Thus, iterating
420 over TYPE_FIELDs will result in correct initialization of
421 all of the subobjects. */
422 value = build_value_init (ftype, complain);
423 value = maybe_constant_init (value);
424
425 if (value == error_mark_node)
426 return error_mark_node;
427
428 CONSTRUCTOR_APPEND_ELT(v, field, value);
429
430 /* We shouldn't have gotten here for anything that would need
431 non-trivial initialization, and gimplify_init_ctor_preeval
432 would need to be fixed to allow it. */
433 gcc_assert (TREE_CODE (value) != TARGET_EXPR
434 && TREE_CODE (value) != AGGR_INIT_EXPR);
435 }
436
437 /* Build a constructor to contain the zero- initializations. */
438 return build_constructor (type, v);
439 }
440 }
441 else if (TREE_CODE (type) == ARRAY_TYPE)
442 {
443 vec<constructor_elt, va_gc> *v = NULL;
444
445 /* Iterate over the array elements, building initializations. */
446 tree max_index = array_type_nelts (type);
447
448 /* If we have an error_mark here, we should just return error mark
449 as we don't know the size of the array yet. */
450 if (max_index == error_mark_node)
451 {
452 if (complain & tf_error)
453 error ("cannot value-initialize array of unknown bound %qT",
454 type);
455 return error_mark_node;
456 }
457 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
458
459 /* A zero-sized array, which is accepted as an extension, will
460 have an upper bound of -1. */
461 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
462 {
463 constructor_elt ce;
464
465 /* If this is a one element array, we just use a regular init. */
466 if (tree_int_cst_equal (size_zero_node, max_index))
467 ce.index = size_zero_node;
468 else
469 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
470
471 ce.value = build_value_init (TREE_TYPE (type), complain);
472 ce.value = maybe_constant_init (ce.value);
473 if (ce.value == error_mark_node)
474 return error_mark_node;
475
476 vec_alloc (v, 1);
477 v->quick_push (ce);
478
479 /* We shouldn't have gotten here for anything that would need
480 non-trivial initialization, and gimplify_init_ctor_preeval
481 would need to be fixed to allow it. */
482 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
483 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
484 }
485
486 /* Build a constructor to contain the initializations. */
487 return build_constructor (type, v);
488 }
489 else if (TREE_CODE (type) == FUNCTION_TYPE)
490 {
491 if (complain & tf_error)
492 error ("value-initialization of function type %qT", type);
493 return error_mark_node;
494 }
495 else if (TREE_CODE (type) == REFERENCE_TYPE)
496 {
497 if (complain & tf_error)
498 error ("value-initialization of reference type %qT", type);
499 return error_mark_node;
500 }
501
502 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
503 }
504
505 /* Initialize current class with INIT, a TREE_LIST of
506 arguments for a target constructor. If TREE_LIST is void_type_node,
507 an empty initializer list was given. */
508
509 static void
510 perform_target_ctor (tree init)
511 {
512 tree decl = current_class_ref;
513 tree type = current_class_type;
514
515 finish_expr_stmt (build_aggr_init (decl, init,
516 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
517 tf_warning_or_error));
518 if (type_build_dtor_call (type))
519 {
520 tree expr = build_delete (type, decl, sfk_complete_destructor,
521 LOOKUP_NORMAL
522 |LOOKUP_NONVIRTUAL
523 |LOOKUP_DESTRUCTOR,
524 0, tf_warning_or_error);
525 if (expr != error_mark_node
526 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
527 finish_eh_cleanup (expr);
528 }
529 }
530
531 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
532
533 tree
534 get_nsdmi (tree member, bool in_ctor)
535 {
536 tree init;
537 tree save_ccp = current_class_ptr;
538 tree save_ccr = current_class_ref;
539
540 if (!in_ctor)
541 {
542 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
543 refer to; constexpr evaluation knows what to do with it. */
544 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
545 current_class_ptr = build_address (current_class_ref);
546 }
547
548 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
549 {
550 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
551 if (TREE_CODE (init) == DEFAULT_ARG)
552 goto unparsed;
553
554 /* Check recursive instantiation. */
555 if (DECL_INSTANTIATING_NSDMI_P (member))
556 {
557 error ("recursive instantiation of non-static data member "
558 "initializer for %qD", member);
559 init = error_mark_node;
560 }
561 else
562 {
563 DECL_INSTANTIATING_NSDMI_P (member) = 1;
564
565 /* Do deferred instantiation of the NSDMI. */
566 init = (tsubst_copy_and_build
567 (init, DECL_TI_ARGS (member),
568 tf_warning_or_error, member, /*function_p=*/false,
569 /*integral_constant_expression_p=*/false));
570 init = digest_nsdmi_init (member, init);
571
572 DECL_INSTANTIATING_NSDMI_P (member) = 0;
573 }
574 }
575 else
576 {
577 init = DECL_INITIAL (member);
578 if (init && TREE_CODE (init) == DEFAULT_ARG)
579 {
580 unparsed:
581 error ("constructor required before non-static data member "
582 "for %qD has been parsed", member);
583 DECL_INITIAL (member) = error_mark_node;
584 init = error_mark_node;
585 }
586 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
587 so the aggregate init code below will see a CONSTRUCTOR. */
588 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
589 if (simple_target)
590 init = TARGET_EXPR_INITIAL (init);
591 init = break_out_target_exprs (init);
592 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
593 /* Now put it back so C++17 copy elision works. */
594 init = get_target_expr (init);
595 }
596 current_class_ptr = save_ccp;
597 current_class_ref = save_ccr;
598 return init;
599 }
600
601 /* Diagnose the flexible array MEMBER if its INITializer is non-null
602 and return true if so. Otherwise return false. */
603
604 bool
605 maybe_reject_flexarray_init (tree member, tree init)
606 {
607 tree type = TREE_TYPE (member);
608
609 if (!init
610 || TREE_CODE (type) != ARRAY_TYPE
611 || TYPE_DOMAIN (type))
612 return false;
613
614 /* Point at the flexible array member declaration if it's initialized
615 in-class, and at the ctor if it's initialized in a ctor member
616 initializer list. */
617 location_t loc;
618 if (DECL_INITIAL (member) == init
619 || !current_function_decl
620 || DECL_DEFAULTED_FN (current_function_decl))
621 loc = DECL_SOURCE_LOCATION (member);
622 else
623 loc = DECL_SOURCE_LOCATION (current_function_decl);
624
625 error_at (loc, "initializer for flexible array member %q#D", member);
626 return true;
627 }
628
629 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
630 arguments. If TREE_LIST is void_type_node, an empty initializer
631 list was given; if NULL_TREE no initializer was given. */
632
633 static void
634 perform_member_init (tree member, tree init)
635 {
636 tree decl;
637 tree type = TREE_TYPE (member);
638
639 /* Use the non-static data member initializer if there was no
640 mem-initializer for this field. */
641 if (init == NULL_TREE)
642 init = get_nsdmi (member, /*ctor*/true);
643
644 if (init == error_mark_node)
645 return;
646
647 /* Effective C++ rule 12 requires that all data members be
648 initialized. */
649 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
650 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
651 "%qD should be initialized in the member initialization list",
652 member);
653
654 /* Get an lvalue for the data member. */
655 decl = build_class_member_access_expr (current_class_ref, member,
656 /*access_path=*/NULL_TREE,
657 /*preserve_reference=*/true,
658 tf_warning_or_error);
659 if (decl == error_mark_node)
660 return;
661
662 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
663 && TREE_CHAIN (init) == NULL_TREE)
664 {
665 tree val = TREE_VALUE (init);
666 /* Handle references. */
667 if (REFERENCE_REF_P (val))
668 val = TREE_OPERAND (val, 0);
669 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
670 && TREE_OPERAND (val, 0) == current_class_ref)
671 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
672 OPT_Winit_self, "%qD is initialized with itself",
673 member);
674 }
675
676 if (init == void_type_node)
677 {
678 /* mem() means value-initialization. */
679 if (TREE_CODE (type) == ARRAY_TYPE)
680 {
681 init = build_vec_init_expr (type, init, tf_warning_or_error);
682 init = build2 (INIT_EXPR, type, decl, init);
683 finish_expr_stmt (init);
684 }
685 else
686 {
687 tree value = build_value_init (type, tf_warning_or_error);
688 if (value == error_mark_node)
689 return;
690 init = build2 (INIT_EXPR, type, decl, value);
691 finish_expr_stmt (init);
692 }
693 }
694 /* Deal with this here, as we will get confused if we try to call the
695 assignment op for an anonymous union. This can happen in a
696 synthesized copy constructor. */
697 else if (ANON_AGGR_TYPE_P (type))
698 {
699 if (init)
700 {
701 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
702 finish_expr_stmt (init);
703 }
704 }
705 else if (init
706 && (TREE_CODE (type) == REFERENCE_TYPE
707 /* Pre-digested NSDMI. */
708 || (((TREE_CODE (init) == CONSTRUCTOR
709 && TREE_TYPE (init) == type)
710 /* { } mem-initializer. */
711 || (TREE_CODE (init) == TREE_LIST
712 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
713 && (CP_AGGREGATE_TYPE_P (type)
714 || is_std_init_list (type)))))
715 {
716 /* With references and list-initialization, we need to deal with
717 extending temporary lifetimes. 12.2p5: "A temporary bound to a
718 reference member in a constructor’s ctor-initializer (12.6.2)
719 persists until the constructor exits." */
720 unsigned i; tree t;
721 vec<tree, va_gc> *cleanups = make_tree_vector ();
722 if (TREE_CODE (init) == TREE_LIST)
723 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
724 tf_warning_or_error);
725 if (TREE_TYPE (init) != type)
726 {
727 if (BRACE_ENCLOSED_INITIALIZER_P (init)
728 && CP_AGGREGATE_TYPE_P (type))
729 init = reshape_init (type, init, tf_warning_or_error);
730 init = digest_init (type, init, tf_warning_or_error);
731 }
732 if (init == error_mark_node)
733 return;
734 /* A FIELD_DECL doesn't really have a suitable lifetime, but
735 make_temporary_var_for_ref_to_temp will treat it as automatic and
736 set_up_extended_ref_temp wants to use the decl in a warning. */
737 init = extend_ref_init_temps (member, init, &cleanups);
738 if (TREE_CODE (type) == ARRAY_TYPE
739 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
740 init = build_vec_init_expr (type, init, tf_warning_or_error);
741 init = build2 (INIT_EXPR, type, decl, init);
742 finish_expr_stmt (init);
743 FOR_EACH_VEC_ELT (*cleanups, i, t)
744 push_cleanup (decl, t, false);
745 release_tree_vector (cleanups);
746 }
747 else if (type_build_ctor_call (type)
748 || (init && CLASS_TYPE_P (strip_array_types (type))))
749 {
750 if (TREE_CODE (type) == ARRAY_TYPE)
751 {
752 if (init)
753 {
754 /* Check to make sure the member initializer is valid and
755 something like a CONSTRUCTOR in: T a[] = { 1, 2 } and
756 if it isn't, return early to avoid triggering another
757 error below. */
758 if (maybe_reject_flexarray_init (member, init))
759 return;
760
761 if (TREE_CODE (init) != TREE_LIST || TREE_CHAIN (init))
762 init = error_mark_node;
763 else
764 init = TREE_VALUE (init);
765
766 if (BRACE_ENCLOSED_INITIALIZER_P (init))
767 init = digest_init (type, init, tf_warning_or_error);
768 }
769 if (init == NULL_TREE
770 || same_type_ignoring_top_level_qualifiers_p (type,
771 TREE_TYPE (init)))
772 {
773 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
774 {
775 /* Initialize the array only if it's not a flexible
776 array member (i.e., if it has an upper bound). */
777 init = build_vec_init_expr (type, init, tf_warning_or_error);
778 init = build2 (INIT_EXPR, type, decl, init);
779 finish_expr_stmt (init);
780 }
781 }
782 else
783 error ("invalid initializer for array member %q#D", member);
784 }
785 else
786 {
787 int flags = LOOKUP_NORMAL;
788 if (DECL_DEFAULTED_FN (current_function_decl))
789 flags |= LOOKUP_DEFAULTED;
790 if (CP_TYPE_CONST_P (type)
791 && init == NULL_TREE
792 && default_init_uninitialized_part (type))
793 {
794 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
795 vtable; still give this diagnostic. */
796 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
797 "uninitialized const member in %q#T", type))
798 inform (DECL_SOURCE_LOCATION (member),
799 "%q#D should be initialized", member );
800 }
801 finish_expr_stmt (build_aggr_init (decl, init, flags,
802 tf_warning_or_error));
803 }
804 }
805 else
806 {
807 if (init == NULL_TREE)
808 {
809 tree core_type;
810 /* member traversal: note it leaves init NULL */
811 if (TREE_CODE (type) == REFERENCE_TYPE)
812 {
813 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
814 "uninitialized reference member in %q#T", type))
815 inform (DECL_SOURCE_LOCATION (member),
816 "%q#D should be initialized", member);
817 }
818 else if (CP_TYPE_CONST_P (type))
819 {
820 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
821 "uninitialized const member in %q#T", type))
822 inform (DECL_SOURCE_LOCATION (member),
823 "%q#D should be initialized", member );
824 }
825
826 core_type = strip_array_types (type);
827
828 if (CLASS_TYPE_P (core_type)
829 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
830 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
831 diagnose_uninitialized_cst_or_ref_member (core_type,
832 /*using_new=*/false,
833 /*complain=*/true);
834 }
835 else if (TREE_CODE (init) == TREE_LIST)
836 /* There was an explicit member initialization. Do some work
837 in that case. */
838 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
839 tf_warning_or_error);
840
841 /* Reject a member initializer for a flexible array member. */
842 if (init && !maybe_reject_flexarray_init (member, init))
843 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
844 INIT_EXPR, init,
845 tf_warning_or_error));
846 }
847
848 if (type_build_dtor_call (type))
849 {
850 tree expr;
851
852 expr = build_class_member_access_expr (current_class_ref, member,
853 /*access_path=*/NULL_TREE,
854 /*preserve_reference=*/false,
855 tf_warning_or_error);
856 expr = build_delete (type, expr, sfk_complete_destructor,
857 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
858 tf_warning_or_error);
859
860 if (expr != error_mark_node
861 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
862 finish_eh_cleanup (expr);
863 }
864 }
865
866 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
867 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
868
869 static tree
870 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
871 {
872 tree fields;
873
874 /* Note whether or not T is a union. */
875 if (TREE_CODE (t) == UNION_TYPE)
876 *uses_unions_or_anon_p = 1;
877
878 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
879 {
880 tree fieldtype;
881
882 /* Skip CONST_DECLs for enumeration constants and so forth. */
883 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
884 continue;
885
886 fieldtype = TREE_TYPE (fields);
887
888 /* For an anonymous struct or union, we must recursively
889 consider the fields of the anonymous type. They can be
890 directly initialized from the constructor. */
891 if (ANON_AGGR_TYPE_P (fieldtype))
892 {
893 /* Add this field itself. Synthesized copy constructors
894 initialize the entire aggregate. */
895 list = tree_cons (fields, NULL_TREE, list);
896 /* And now add the fields in the anonymous aggregate. */
897 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
898 *uses_unions_or_anon_p = 1;
899 }
900 /* Add this field. */
901 else if (DECL_NAME (fields))
902 list = tree_cons (fields, NULL_TREE, list);
903 }
904
905 return list;
906 }
907
908 /* Return the innermost aggregate scope for FIELD, whether that is
909 the enclosing class or an anonymous aggregate within it. */
910
911 static tree
912 innermost_aggr_scope (tree field)
913 {
914 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
915 return TREE_TYPE (field);
916 else
917 return DECL_CONTEXT (field);
918 }
919
920 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
921 a FIELD_DECL or BINFO in T that needs initialization. The
922 TREE_VALUE gives the initializer, or list of initializer arguments.
923
924 Return a TREE_LIST containing all of the initializations required
925 for T, in the order in which they should be performed. The output
926 list has the same format as the input. */
927
928 static tree
929 sort_mem_initializers (tree t, tree mem_inits)
930 {
931 tree init;
932 tree base, binfo, base_binfo;
933 tree sorted_inits;
934 tree next_subobject;
935 vec<tree, va_gc> *vbases;
936 int i;
937 int uses_unions_or_anon_p = 0;
938
939 /* Build up a list of initializations. The TREE_PURPOSE of entry
940 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
941 TREE_VALUE will be the constructor arguments, or NULL if no
942 explicit initialization was provided. */
943 sorted_inits = NULL_TREE;
944
945 /* Process the virtual bases. */
946 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
947 vec_safe_iterate (vbases, i, &base); i++)
948 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
949
950 /* Process the direct bases. */
951 for (binfo = TYPE_BINFO (t), i = 0;
952 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
953 if (!BINFO_VIRTUAL_P (base_binfo))
954 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
955
956 /* Process the non-static data members. */
957 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
958 /* Reverse the entire list of initializations, so that they are in
959 the order that they will actually be performed. */
960 sorted_inits = nreverse (sorted_inits);
961
962 /* If the user presented the initializers in an order different from
963 that in which they will actually occur, we issue a warning. Keep
964 track of the next subobject which can be explicitly initialized
965 without issuing a warning. */
966 next_subobject = sorted_inits;
967
968 /* Go through the explicit initializers, filling in TREE_PURPOSE in
969 the SORTED_INITS. */
970 for (init = mem_inits; init; init = TREE_CHAIN (init))
971 {
972 tree subobject;
973 tree subobject_init;
974
975 subobject = TREE_PURPOSE (init);
976
977 /* If the explicit initializers are in sorted order, then
978 SUBOBJECT will be NEXT_SUBOBJECT, or something following
979 it. */
980 for (subobject_init = next_subobject;
981 subobject_init;
982 subobject_init = TREE_CHAIN (subobject_init))
983 if (TREE_PURPOSE (subobject_init) == subobject)
984 break;
985
986 /* Issue a warning if the explicit initializer order does not
987 match that which will actually occur.
988 ??? Are all these on the correct lines? */
989 if (warn_reorder && !subobject_init)
990 {
991 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
992 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
993 OPT_Wreorder, "%qD will be initialized after",
994 TREE_PURPOSE (next_subobject));
995 else
996 warning (OPT_Wreorder, "base %qT will be initialized after",
997 TREE_PURPOSE (next_subobject));
998 if (TREE_CODE (subobject) == FIELD_DECL)
999 warning_at (DECL_SOURCE_LOCATION (subobject),
1000 OPT_Wreorder, " %q#D", subobject);
1001 else
1002 warning (OPT_Wreorder, " base %qT", subobject);
1003 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1004 OPT_Wreorder, " when initialized here");
1005 }
1006
1007 /* Look again, from the beginning of the list. */
1008 if (!subobject_init)
1009 {
1010 subobject_init = sorted_inits;
1011 while (TREE_PURPOSE (subobject_init) != subobject)
1012 subobject_init = TREE_CHAIN (subobject_init);
1013 }
1014
1015 /* It is invalid to initialize the same subobject more than
1016 once. */
1017 if (TREE_VALUE (subobject_init))
1018 {
1019 if (TREE_CODE (subobject) == FIELD_DECL)
1020 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1021 "multiple initializations given for %qD",
1022 subobject);
1023 else
1024 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1025 "multiple initializations given for base %qT",
1026 subobject);
1027 }
1028
1029 /* Record the initialization. */
1030 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1031 next_subobject = subobject_init;
1032 }
1033
1034 /* [class.base.init]
1035
1036 If a ctor-initializer specifies more than one mem-initializer for
1037 multiple members of the same union (including members of
1038 anonymous unions), the ctor-initializer is ill-formed.
1039
1040 Here we also splice out uninitialized union members. */
1041 if (uses_unions_or_anon_p)
1042 {
1043 tree *last_p = NULL;
1044 tree *p;
1045 for (p = &sorted_inits; *p; )
1046 {
1047 tree field;
1048 tree ctx;
1049
1050 init = *p;
1051
1052 field = TREE_PURPOSE (init);
1053
1054 /* Skip base classes. */
1055 if (TREE_CODE (field) != FIELD_DECL)
1056 goto next;
1057
1058 /* If this is an anonymous aggregate with no explicit initializer,
1059 splice it out. */
1060 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1061 goto splice;
1062
1063 /* See if this field is a member of a union, or a member of a
1064 structure contained in a union, etc. */
1065 ctx = innermost_aggr_scope (field);
1066
1067 /* If this field is not a member of a union, skip it. */
1068 if (TREE_CODE (ctx) != UNION_TYPE
1069 && !ANON_AGGR_TYPE_P (ctx))
1070 goto next;
1071
1072 /* If this union member has no explicit initializer and no NSDMI,
1073 splice it out. */
1074 if (TREE_VALUE (init) || DECL_INITIAL (field))
1075 /* OK. */;
1076 else
1077 goto splice;
1078
1079 /* It's only an error if we have two initializers for the same
1080 union type. */
1081 if (!last_p)
1082 {
1083 last_p = p;
1084 goto next;
1085 }
1086
1087 /* See if LAST_FIELD and the field initialized by INIT are
1088 members of the same union (or the union itself). If so, there's
1089 a problem, unless they're actually members of the same structure
1090 which is itself a member of a union. For example, given:
1091
1092 union { struct { int i; int j; }; };
1093
1094 initializing both `i' and `j' makes sense. */
1095 ctx = common_enclosing_class
1096 (innermost_aggr_scope (field),
1097 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1098
1099 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1100 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1101 {
1102 /* A mem-initializer hides an NSDMI. */
1103 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1104 *last_p = TREE_CHAIN (*last_p);
1105 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1106 goto splice;
1107 else
1108 {
1109 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1110 "initializations for multiple members of %qT",
1111 ctx);
1112 goto splice;
1113 }
1114 }
1115
1116 last_p = p;
1117
1118 next:
1119 p = &TREE_CHAIN (*p);
1120 continue;
1121 splice:
1122 *p = TREE_CHAIN (*p);
1123 continue;
1124 }
1125 }
1126
1127 return sorted_inits;
1128 }
1129
1130 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */
1131
1132 static tree
1133 mark_exp_read_r (tree *tp, int *, void *)
1134 {
1135 tree t = *tp;
1136 if (TREE_CODE (t) == PARM_DECL)
1137 mark_exp_read (t);
1138 return NULL_TREE;
1139 }
1140
1141 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1142 is a TREE_LIST giving the explicit mem-initializer-list for the
1143 constructor. The TREE_PURPOSE of each entry is a subobject (a
1144 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1145 is a TREE_LIST giving the arguments to the constructor or
1146 void_type_node for an empty list of arguments. */
1147
1148 void
1149 emit_mem_initializers (tree mem_inits)
1150 {
1151 int flags = LOOKUP_NORMAL;
1152
1153 /* We will already have issued an error message about the fact that
1154 the type is incomplete. */
1155 if (!COMPLETE_TYPE_P (current_class_type))
1156 return;
1157
1158 if (mem_inits
1159 && TYPE_P (TREE_PURPOSE (mem_inits))
1160 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1161 {
1162 /* Delegating constructor. */
1163 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1164 perform_target_ctor (TREE_VALUE (mem_inits));
1165 return;
1166 }
1167
1168 if (DECL_DEFAULTED_FN (current_function_decl)
1169 && ! DECL_INHERITED_CTOR (current_function_decl))
1170 flags |= LOOKUP_DEFAULTED;
1171
1172 /* Sort the mem-initializers into the order in which the
1173 initializations should be performed. */
1174 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1175
1176 in_base_initializer = 1;
1177
1178 /* Initialize base classes. */
1179 for (; (mem_inits
1180 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1181 mem_inits = TREE_CHAIN (mem_inits))
1182 {
1183 tree subobject = TREE_PURPOSE (mem_inits);
1184 tree arguments = TREE_VALUE (mem_inits);
1185
1186 /* We already have issued an error message. */
1187 if (arguments == error_mark_node)
1188 continue;
1189
1190 /* Suppress access control when calling the inherited ctor. */
1191 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1192 && flag_new_inheriting_ctors
1193 && arguments);
1194 if (inherited_base)
1195 push_deferring_access_checks (dk_deferred);
1196
1197 if (arguments == NULL_TREE)
1198 {
1199 /* If these initializations are taking place in a copy constructor,
1200 the base class should probably be explicitly initialized if there
1201 is a user-defined constructor in the base class (other than the
1202 default constructor, which will be called anyway). */
1203 if (extra_warnings
1204 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1205 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1206 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1207 OPT_Wextra, "base class %q#T should be explicitly "
1208 "initialized in the copy constructor",
1209 BINFO_TYPE (subobject));
1210 }
1211
1212 /* Initialize the base. */
1213 if (!BINFO_VIRTUAL_P (subobject))
1214 {
1215 tree base_addr;
1216
1217 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1218 subobject, 1, tf_warning_or_error);
1219 expand_aggr_init_1 (subobject, NULL_TREE,
1220 cp_build_indirect_ref (base_addr, RO_NULL,
1221 tf_warning_or_error),
1222 arguments,
1223 flags,
1224 tf_warning_or_error);
1225 expand_cleanup_for_base (subobject, NULL_TREE);
1226 }
1227 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1228 /* C++14 DR1658 Means we do not have to construct vbases of
1229 abstract classes. */
1230 construct_virtual_base (subobject, arguments);
1231 else
1232 /* When not constructing vbases of abstract classes, at least mark
1233 the arguments expressions as read to avoid
1234 -Wunused-but-set-parameter false positives. */
1235 cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1236
1237 if (inherited_base)
1238 pop_deferring_access_checks ();
1239 }
1240 in_base_initializer = 0;
1241
1242 /* Initialize the vptrs. */
1243 initialize_vtbl_ptrs (current_class_ptr);
1244
1245 /* Initialize the data members. */
1246 while (mem_inits)
1247 {
1248 perform_member_init (TREE_PURPOSE (mem_inits),
1249 TREE_VALUE (mem_inits));
1250 mem_inits = TREE_CHAIN (mem_inits);
1251 }
1252 }
1253
1254 /* Returns the address of the vtable (i.e., the value that should be
1255 assigned to the vptr) for BINFO. */
1256
1257 tree
1258 build_vtbl_address (tree binfo)
1259 {
1260 tree binfo_for = binfo;
1261 tree vtbl;
1262
1263 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1264 /* If this is a virtual primary base, then the vtable we want to store
1265 is that for the base this is being used as the primary base of. We
1266 can't simply skip the initialization, because we may be expanding the
1267 inits of a subobject constructor where the virtual base layout
1268 can be different. */
1269 while (BINFO_PRIMARY_P (binfo_for))
1270 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1271
1272 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1273 used. */
1274 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1275 TREE_USED (vtbl) = true;
1276
1277 /* Now compute the address to use when initializing the vptr. */
1278 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1279 if (VAR_P (vtbl))
1280 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1281
1282 return vtbl;
1283 }
1284
1285 /* This code sets up the virtual function tables appropriate for
1286 the pointer DECL. It is a one-ply initialization.
1287
1288 BINFO is the exact type that DECL is supposed to be. In
1289 multiple inheritance, this might mean "C's A" if C : A, B. */
1290
1291 static void
1292 expand_virtual_init (tree binfo, tree decl)
1293 {
1294 tree vtbl, vtbl_ptr;
1295 tree vtt_index;
1296
1297 /* Compute the initializer for vptr. */
1298 vtbl = build_vtbl_address (binfo);
1299
1300 /* We may get this vptr from a VTT, if this is a subobject
1301 constructor or subobject destructor. */
1302 vtt_index = BINFO_VPTR_INDEX (binfo);
1303 if (vtt_index)
1304 {
1305 tree vtbl2;
1306 tree vtt_parm;
1307
1308 /* Compute the value to use, when there's a VTT. */
1309 vtt_parm = current_vtt_parm;
1310 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1311 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1312 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1313
1314 /* The actual initializer is the VTT value only in the subobject
1315 constructor. In maybe_clone_body we'll substitute NULL for
1316 the vtt_parm in the case of the non-subobject constructor. */
1317 vtbl = build_if_in_charge (vtbl, vtbl2);
1318 }
1319
1320 /* Compute the location of the vtpr. */
1321 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1322 tf_warning_or_error),
1323 TREE_TYPE (binfo));
1324 gcc_assert (vtbl_ptr != error_mark_node);
1325
1326 /* Assign the vtable to the vptr. */
1327 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1328 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1329 vtbl, tf_warning_or_error));
1330 }
1331
1332 /* If an exception is thrown in a constructor, those base classes already
1333 constructed must be destroyed. This function creates the cleanup
1334 for BINFO, which has just been constructed. If FLAG is non-NULL,
1335 it is a DECL which is nonzero when this base needs to be
1336 destroyed. */
1337
1338 static void
1339 expand_cleanup_for_base (tree binfo, tree flag)
1340 {
1341 tree expr;
1342
1343 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1344 return;
1345
1346 /* Call the destructor. */
1347 expr = build_special_member_call (current_class_ref,
1348 base_dtor_identifier,
1349 NULL,
1350 binfo,
1351 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1352 tf_warning_or_error);
1353
1354 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1355 return;
1356
1357 if (flag)
1358 expr = fold_build3_loc (input_location,
1359 COND_EXPR, void_type_node,
1360 c_common_truthvalue_conversion (input_location, flag),
1361 expr, integer_zero_node);
1362
1363 finish_eh_cleanup (expr);
1364 }
1365
1366 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1367 constructor. */
1368
1369 static void
1370 construct_virtual_base (tree vbase, tree arguments)
1371 {
1372 tree inner_if_stmt;
1373 tree exp;
1374 tree flag;
1375
1376 /* If there are virtual base classes with destructors, we need to
1377 emit cleanups to destroy them if an exception is thrown during
1378 the construction process. These exception regions (i.e., the
1379 period during which the cleanups must occur) begin from the time
1380 the construction is complete to the end of the function. If we
1381 create a conditional block in which to initialize the
1382 base-classes, then the cleanup region for the virtual base begins
1383 inside a block, and ends outside of that block. This situation
1384 confuses the sjlj exception-handling code. Therefore, we do not
1385 create a single conditional block, but one for each
1386 initialization. (That way the cleanup regions always begin
1387 in the outer block.) We trust the back end to figure out
1388 that the FLAG will not change across initializations, and
1389 avoid doing multiple tests. */
1390 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1391 inner_if_stmt = begin_if_stmt ();
1392 finish_if_stmt_cond (flag, inner_if_stmt);
1393
1394 /* Compute the location of the virtual base. If we're
1395 constructing virtual bases, then we must be the most derived
1396 class. Therefore, we don't have to look up the virtual base;
1397 we already know where it is. */
1398 exp = convert_to_base_statically (current_class_ref, vbase);
1399
1400 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1401 0, tf_warning_or_error);
1402 finish_then_clause (inner_if_stmt);
1403 finish_if_stmt (inner_if_stmt);
1404
1405 expand_cleanup_for_base (vbase, flag);
1406 }
1407
1408 /* Find the context in which this FIELD can be initialized. */
1409
1410 static tree
1411 initializing_context (tree field)
1412 {
1413 tree t = DECL_CONTEXT (field);
1414
1415 /* Anonymous union members can be initialized in the first enclosing
1416 non-anonymous union context. */
1417 while (t && ANON_AGGR_TYPE_P (t))
1418 t = TYPE_CONTEXT (t);
1419 return t;
1420 }
1421
1422 /* Function to give error message if member initialization specification
1423 is erroneous. FIELD is the member we decided to initialize.
1424 TYPE is the type for which the initialization is being performed.
1425 FIELD must be a member of TYPE.
1426
1427 MEMBER_NAME is the name of the member. */
1428
1429 static int
1430 member_init_ok_or_else (tree field, tree type, tree member_name)
1431 {
1432 if (field == error_mark_node)
1433 return 0;
1434 if (!field)
1435 {
1436 error ("class %qT does not have any field named %qD", type,
1437 member_name);
1438 return 0;
1439 }
1440 if (VAR_P (field))
1441 {
1442 error ("%q#D is a static data member; it can only be "
1443 "initialized at its definition",
1444 field);
1445 return 0;
1446 }
1447 if (TREE_CODE (field) != FIELD_DECL)
1448 {
1449 error ("%q#D is not a non-static data member of %qT",
1450 field, type);
1451 return 0;
1452 }
1453 if (initializing_context (field) != type)
1454 {
1455 error ("class %qT does not have any field named %qD", type,
1456 member_name);
1457 return 0;
1458 }
1459
1460 return 1;
1461 }
1462
1463 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1464 is a _TYPE node or TYPE_DECL which names a base for that type.
1465 Check the validity of NAME, and return either the base _TYPE, base
1466 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1467 NULL_TREE and issue a diagnostic.
1468
1469 An old style unnamed direct single base construction is permitted,
1470 where NAME is NULL. */
1471
1472 tree
1473 expand_member_init (tree name)
1474 {
1475 tree basetype;
1476 tree field;
1477
1478 if (!current_class_ref)
1479 return NULL_TREE;
1480
1481 if (!name)
1482 {
1483 /* This is an obsolete unnamed base class initializer. The
1484 parser will already have warned about its use. */
1485 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1486 {
1487 case 0:
1488 error ("unnamed initializer for %qT, which has no base classes",
1489 current_class_type);
1490 return NULL_TREE;
1491 case 1:
1492 basetype = BINFO_TYPE
1493 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1494 break;
1495 default:
1496 error ("unnamed initializer for %qT, which uses multiple inheritance",
1497 current_class_type);
1498 return NULL_TREE;
1499 }
1500 }
1501 else if (TYPE_P (name))
1502 {
1503 basetype = TYPE_MAIN_VARIANT (name);
1504 name = TYPE_NAME (name);
1505 }
1506 else if (TREE_CODE (name) == TYPE_DECL)
1507 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1508 else
1509 basetype = NULL_TREE;
1510
1511 if (basetype)
1512 {
1513 tree class_binfo;
1514 tree direct_binfo;
1515 tree virtual_binfo;
1516 int i;
1517
1518 if (current_template_parms
1519 || same_type_p (basetype, current_class_type))
1520 return basetype;
1521
1522 class_binfo = TYPE_BINFO (current_class_type);
1523 direct_binfo = NULL_TREE;
1524 virtual_binfo = NULL_TREE;
1525
1526 /* Look for a direct base. */
1527 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1528 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1529 break;
1530
1531 /* Look for a virtual base -- unless the direct base is itself
1532 virtual. */
1533 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1534 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1535
1536 /* [class.base.init]
1537
1538 If a mem-initializer-id is ambiguous because it designates
1539 both a direct non-virtual base class and an inherited virtual
1540 base class, the mem-initializer is ill-formed. */
1541 if (direct_binfo && virtual_binfo)
1542 {
1543 error ("%qD is both a direct base and an indirect virtual base",
1544 basetype);
1545 return NULL_TREE;
1546 }
1547
1548 if (!direct_binfo && !virtual_binfo)
1549 {
1550 if (CLASSTYPE_VBASECLASSES (current_class_type))
1551 error ("type %qT is not a direct or virtual base of %qT",
1552 basetype, current_class_type);
1553 else
1554 error ("type %qT is not a direct base of %qT",
1555 basetype, current_class_type);
1556 return NULL_TREE;
1557 }
1558
1559 return direct_binfo ? direct_binfo : virtual_binfo;
1560 }
1561 else
1562 {
1563 if (identifier_p (name))
1564 field = lookup_field (current_class_type, name, 1, false);
1565 else
1566 field = name;
1567
1568 if (member_init_ok_or_else (field, current_class_type, name))
1569 return field;
1570 }
1571
1572 return NULL_TREE;
1573 }
1574
1575 /* This is like `expand_member_init', only it stores one aggregate
1576 value into another.
1577
1578 INIT comes in two flavors: it is either a value which
1579 is to be stored in EXP, or it is a parameter list
1580 to go to a constructor, which will operate on EXP.
1581 If INIT is not a parameter list for a constructor, then set
1582 LOOKUP_ONLYCONVERTING.
1583 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1584 the initializer, if FLAGS is 0, then it is the (init) form.
1585 If `init' is a CONSTRUCTOR, then we emit a warning message,
1586 explaining that such initializations are invalid.
1587
1588 If INIT resolves to a CALL_EXPR which happens to return
1589 something of the type we are looking for, then we know
1590 that we can safely use that call to perform the
1591 initialization.
1592
1593 The virtual function table pointer cannot be set up here, because
1594 we do not really know its type.
1595
1596 This never calls operator=().
1597
1598 When initializing, nothing is CONST.
1599
1600 A default copy constructor may have to be used to perform the
1601 initialization.
1602
1603 A constructor or a conversion operator may have to be used to
1604 perform the initialization, but not both, as it would be ambiguous. */
1605
1606 tree
1607 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1608 {
1609 tree stmt_expr;
1610 tree compound_stmt;
1611 int destroy_temps;
1612 tree type = TREE_TYPE (exp);
1613 int was_const = TREE_READONLY (exp);
1614 int was_volatile = TREE_THIS_VOLATILE (exp);
1615 int is_global;
1616
1617 if (init == error_mark_node)
1618 return error_mark_node;
1619
1620 location_t init_loc = (init
1621 ? EXPR_LOC_OR_LOC (init, input_location)
1622 : location_of (exp));
1623
1624 TREE_READONLY (exp) = 0;
1625 TREE_THIS_VOLATILE (exp) = 0;
1626
1627 if (TREE_CODE (type) == ARRAY_TYPE)
1628 {
1629 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1630 int from_array = 0;
1631
1632 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1633 {
1634 from_array = 1;
1635 if (init && DECL_P (init)
1636 && !(flags & LOOKUP_ONLYCONVERTING))
1637 {
1638 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1639 recognizes it as direct-initialization. */
1640 init = build_constructor_single (init_list_type_node,
1641 NULL_TREE, init);
1642 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1643 }
1644 }
1645 else
1646 {
1647 /* An array may not be initialized use the parenthesized
1648 initialization form -- unless the initializer is "()". */
1649 if (init && TREE_CODE (init) == TREE_LIST)
1650 {
1651 if (complain & tf_error)
1652 error ("bad array initializer");
1653 return error_mark_node;
1654 }
1655 /* Must arrange to initialize each element of EXP
1656 from elements of INIT. */
1657 if (cv_qualified_p (type))
1658 TREE_TYPE (exp) = cv_unqualified (type);
1659 if (itype && cv_qualified_p (itype))
1660 TREE_TYPE (init) = cv_unqualified (itype);
1661 from_array = (itype && same_type_p (TREE_TYPE (init),
1662 TREE_TYPE (exp)));
1663
1664 if (init && !from_array
1665 && !BRACE_ENCLOSED_INITIALIZER_P (init))
1666 {
1667 if (complain & tf_error)
1668 permerror (init_loc, "array must be initialized "
1669 "with a brace-enclosed initializer");
1670 else
1671 return error_mark_node;
1672 }
1673 }
1674
1675 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1676 /*explicit_value_init_p=*/false,
1677 from_array,
1678 complain);
1679 TREE_READONLY (exp) = was_const;
1680 TREE_THIS_VOLATILE (exp) = was_volatile;
1681 TREE_TYPE (exp) = type;
1682 /* Restore the type of init unless it was used directly. */
1683 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1684 TREE_TYPE (init) = itype;
1685 return stmt_expr;
1686 }
1687
1688 if (init && init != void_type_node
1689 && TREE_CODE (init) != TREE_LIST
1690 && !(TREE_CODE (init) == TARGET_EXPR
1691 && TARGET_EXPR_DIRECT_INIT_P (init))
1692 && !DIRECT_LIST_INIT_P (init))
1693 flags |= LOOKUP_ONLYCONVERTING;
1694
1695 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1696 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1697 /* Just know that we've seen something for this node. */
1698 TREE_USED (exp) = 1;
1699
1700 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1701 destroy_temps = stmts_are_full_exprs_p ();
1702 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1703 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1704 init, LOOKUP_NORMAL|flags, complain);
1705 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1706 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1707 TREE_READONLY (exp) = was_const;
1708 TREE_THIS_VOLATILE (exp) = was_volatile;
1709
1710 return stmt_expr;
1711 }
1712
1713 static void
1714 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1715 tsubst_flags_t complain)
1716 {
1717 tree type = TREE_TYPE (exp);
1718 tree ctor_name;
1719
1720 /* It fails because there may not be a constructor which takes
1721 its own type as the first (or only parameter), but which does
1722 take other types via a conversion. So, if the thing initializing
1723 the expression is a unit element of type X, first try X(X&),
1724 followed by initialization by X. If neither of these work
1725 out, then look hard. */
1726 tree rval;
1727 vec<tree, va_gc> *parms;
1728
1729 /* If we have direct-initialization from an initializer list, pull
1730 it out of the TREE_LIST so the code below can see it. */
1731 if (init && TREE_CODE (init) == TREE_LIST
1732 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1733 {
1734 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1735 && TREE_CHAIN (init) == NULL_TREE);
1736 init = TREE_VALUE (init);
1737 /* Only call reshape_init if it has not been called earlier
1738 by the callers. */
1739 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1740 init = reshape_init (type, init, complain);
1741 }
1742
1743 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1744 && CP_AGGREGATE_TYPE_P (type))
1745 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1746 happen for direct-initialization, too. */
1747 init = digest_init (type, init, complain);
1748
1749 /* A CONSTRUCTOR of the target's type is a previously digested
1750 initializer, whether that happened just above or in
1751 cp_parser_late_parsing_nsdmi.
1752
1753 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1754 set represents the whole initialization, so we shouldn't build up
1755 another ctor call. */
1756 if (init
1757 && (TREE_CODE (init) == CONSTRUCTOR
1758 || (TREE_CODE (init) == TARGET_EXPR
1759 && (TARGET_EXPR_DIRECT_INIT_P (init)
1760 || TARGET_EXPR_LIST_INIT_P (init))))
1761 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1762 {
1763 /* Early initialization via a TARGET_EXPR only works for
1764 complete objects. */
1765 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1766
1767 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1768 TREE_SIDE_EFFECTS (init) = 1;
1769 finish_expr_stmt (init);
1770 return;
1771 }
1772
1773 if (init && TREE_CODE (init) != TREE_LIST
1774 && (flags & LOOKUP_ONLYCONVERTING))
1775 {
1776 /* Base subobjects should only get direct-initialization. */
1777 gcc_assert (true_exp == exp);
1778
1779 if (flags & DIRECT_BIND)
1780 /* Do nothing. We hit this in two cases: Reference initialization,
1781 where we aren't initializing a real variable, so we don't want
1782 to run a new constructor; and catching an exception, where we
1783 have already built up the constructor call so we could wrap it
1784 in an exception region. */;
1785 else
1786 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1787 flags, complain);
1788
1789 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1790 /* We need to protect the initialization of a catch parm with a
1791 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1792 around the TARGET_EXPR for the copy constructor. See
1793 initialize_handler_parm. */
1794 {
1795 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1796 TREE_OPERAND (init, 0));
1797 TREE_TYPE (init) = void_type_node;
1798 }
1799 else
1800 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1801 TREE_SIDE_EFFECTS (init) = 1;
1802 finish_expr_stmt (init);
1803 return;
1804 }
1805
1806 if (init == NULL_TREE)
1807 parms = NULL;
1808 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1809 {
1810 parms = make_tree_vector ();
1811 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1812 vec_safe_push (parms, TREE_VALUE (init));
1813 }
1814 else
1815 parms = make_tree_vector_single (init);
1816
1817 if (exp == current_class_ref && current_function_decl
1818 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1819 {
1820 /* Delegating constructor. */
1821 tree complete;
1822 tree base;
1823 tree elt; unsigned i;
1824
1825 /* Unshare the arguments for the second call. */
1826 vec<tree, va_gc> *parms2 = make_tree_vector ();
1827 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1828 {
1829 elt = break_out_target_exprs (elt);
1830 vec_safe_push (parms2, elt);
1831 }
1832 complete = build_special_member_call (exp, complete_ctor_identifier,
1833 &parms2, binfo, flags,
1834 complain);
1835 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1836 release_tree_vector (parms2);
1837
1838 base = build_special_member_call (exp, base_ctor_identifier,
1839 &parms, binfo, flags,
1840 complain);
1841 base = fold_build_cleanup_point_expr (void_type_node, base);
1842 rval = build_if_in_charge (complete, base);
1843 }
1844 else
1845 {
1846 if (true_exp == exp)
1847 ctor_name = complete_ctor_identifier;
1848 else
1849 ctor_name = base_ctor_identifier;
1850 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1851 complain);
1852 }
1853
1854 if (parms != NULL)
1855 release_tree_vector (parms);
1856
1857 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1858 {
1859 tree fn = get_callee_fndecl (rval);
1860 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1861 {
1862 tree e = maybe_constant_init (rval, exp);
1863 if (TREE_CONSTANT (e))
1864 rval = build2 (INIT_EXPR, type, exp, e);
1865 }
1866 }
1867
1868 /* FIXME put back convert_to_void? */
1869 if (TREE_SIDE_EFFECTS (rval))
1870 finish_expr_stmt (rval);
1871 }
1872
1873 /* This function is responsible for initializing EXP with INIT
1874 (if any).
1875
1876 BINFO is the binfo of the type for who we are performing the
1877 initialization. For example, if W is a virtual base class of A and B,
1878 and C : A, B.
1879 If we are initializing B, then W must contain B's W vtable, whereas
1880 were we initializing C, W must contain C's W vtable.
1881
1882 TRUE_EXP is nonzero if it is the true expression being initialized.
1883 In this case, it may be EXP, or may just contain EXP. The reason we
1884 need this is because if EXP is a base element of TRUE_EXP, we
1885 don't necessarily know by looking at EXP where its virtual
1886 baseclass fields should really be pointing. But we do know
1887 from TRUE_EXP. In constructors, we don't know anything about
1888 the value being initialized.
1889
1890 FLAGS is just passed to `build_new_method_call'. See that function
1891 for its description. */
1892
1893 static void
1894 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1895 tsubst_flags_t complain)
1896 {
1897 tree type = TREE_TYPE (exp);
1898
1899 gcc_assert (init != error_mark_node && type != error_mark_node);
1900 gcc_assert (building_stmt_list_p ());
1901
1902 /* Use a function returning the desired type to initialize EXP for us.
1903 If the function is a constructor, and its first argument is
1904 NULL_TREE, know that it was meant for us--just slide exp on
1905 in and expand the constructor. Constructors now come
1906 as TARGET_EXPRs. */
1907
1908 if (init && VAR_P (exp)
1909 && COMPOUND_LITERAL_P (init))
1910 {
1911 vec<tree, va_gc> *cleanups = NULL;
1912 /* If store_init_value returns NULL_TREE, the INIT has been
1913 recorded as the DECL_INITIAL for EXP. That means there's
1914 nothing more we have to do. */
1915 init = store_init_value (exp, init, &cleanups, flags);
1916 if (init)
1917 finish_expr_stmt (init);
1918 gcc_assert (!cleanups);
1919 return;
1920 }
1921
1922 /* List-initialization from {} becomes value-initialization for non-aggregate
1923 classes with default constructors. Handle this here when we're
1924 initializing a base, so protected access works. */
1925 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
1926 {
1927 tree elt = TREE_VALUE (init);
1928 if (DIRECT_LIST_INIT_P (elt)
1929 && CONSTRUCTOR_ELTS (elt) == 0
1930 && CLASSTYPE_NON_AGGREGATE (type)
1931 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
1932 init = void_type_node;
1933 }
1934
1935 /* If an explicit -- but empty -- initializer list was present,
1936 that's value-initialization. */
1937 if (init == void_type_node)
1938 {
1939 /* If the type has data but no user-provided ctor, we need to zero
1940 out the object. */
1941 if (!type_has_user_provided_constructor (type)
1942 && !is_really_empty_class (type))
1943 {
1944 tree field_size = NULL_TREE;
1945 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1946 /* Don't clobber already initialized virtual bases. */
1947 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1948 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1949 field_size);
1950 init = build2 (INIT_EXPR, type, exp, init);
1951 finish_expr_stmt (init);
1952 }
1953
1954 /* If we don't need to mess with the constructor at all,
1955 then we're done. */
1956 if (! type_build_ctor_call (type))
1957 return;
1958
1959 /* Otherwise fall through and call the constructor. */
1960 init = NULL_TREE;
1961 }
1962
1963 /* We know that expand_default_init can handle everything we want
1964 at this point. */
1965 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1966 }
1967
1968 /* Report an error if TYPE is not a user-defined, class type. If
1969 OR_ELSE is nonzero, give an error message. */
1970
1971 int
1972 is_class_type (tree type, int or_else)
1973 {
1974 if (type == error_mark_node)
1975 return 0;
1976
1977 if (! CLASS_TYPE_P (type))
1978 {
1979 if (or_else)
1980 error ("%qT is not a class type", type);
1981 return 0;
1982 }
1983 return 1;
1984 }
1985
1986 tree
1987 get_type_value (tree name)
1988 {
1989 if (name == error_mark_node)
1990 return NULL_TREE;
1991
1992 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1993 return IDENTIFIER_TYPE_VALUE (name);
1994 else
1995 return NULL_TREE;
1996 }
1997
1998 /* Build a reference to a member of an aggregate. This is not a C++
1999 `&', but really something which can have its address taken, and
2000 then act as a pointer to member, for example TYPE :: FIELD can have
2001 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
2002 this expression is the operand of "&".
2003
2004 @@ Prints out lousy diagnostics for operator <typename>
2005 @@ fields.
2006
2007 @@ This function should be rewritten and placed in search.c. */
2008
2009 tree
2010 build_offset_ref (tree type, tree member, bool address_p,
2011 tsubst_flags_t complain)
2012 {
2013 tree decl;
2014 tree basebinfo = NULL_TREE;
2015
2016 /* class templates can come in as TEMPLATE_DECLs here. */
2017 if (TREE_CODE (member) == TEMPLATE_DECL)
2018 return member;
2019
2020 if (dependent_scope_p (type) || type_dependent_expression_p (member))
2021 return build_qualified_name (NULL_TREE, type, member,
2022 /*template_p=*/false);
2023
2024 gcc_assert (TYPE_P (type));
2025 if (! is_class_type (type, 1))
2026 return error_mark_node;
2027
2028 gcc_assert (DECL_P (member) || BASELINK_P (member));
2029 /* Callers should call mark_used before this point. */
2030 gcc_assert (!DECL_P (member) || TREE_USED (member));
2031
2032 type = TYPE_MAIN_VARIANT (type);
2033 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2034 {
2035 if (complain & tf_error)
2036 error ("incomplete type %qT does not have member %qD", type, member);
2037 return error_mark_node;
2038 }
2039
2040 /* Entities other than non-static members need no further
2041 processing. */
2042 if (TREE_CODE (member) == TYPE_DECL)
2043 return member;
2044 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2045 return convert_from_reference (member);
2046
2047 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2048 {
2049 if (complain & tf_error)
2050 error ("invalid pointer to bit-field %qD", member);
2051 return error_mark_node;
2052 }
2053
2054 /* Set up BASEBINFO for member lookup. */
2055 decl = maybe_dummy_object (type, &basebinfo);
2056
2057 /* A lot of this logic is now handled in lookup_member. */
2058 if (BASELINK_P (member))
2059 {
2060 /* Go from the TREE_BASELINK to the member function info. */
2061 tree t = BASELINK_FUNCTIONS (member);
2062
2063 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2064 {
2065 /* Get rid of a potential OVERLOAD around it. */
2066 t = OVL_FIRST (t);
2067
2068 /* Unique functions are handled easily. */
2069
2070 /* For non-static member of base class, we need a special rule
2071 for access checking [class.protected]:
2072
2073 If the access is to form a pointer to member, the
2074 nested-name-specifier shall name the derived class
2075 (or any class derived from that class). */
2076 bool ok;
2077 if (address_p && DECL_P (t)
2078 && DECL_NONSTATIC_MEMBER_P (t))
2079 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2080 complain);
2081 else
2082 ok = perform_or_defer_access_check (basebinfo, t, t,
2083 complain);
2084 if (!ok)
2085 return error_mark_node;
2086 if (DECL_STATIC_FUNCTION_P (t))
2087 return t;
2088 member = t;
2089 }
2090 else
2091 TREE_TYPE (member) = unknown_type_node;
2092 }
2093 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2094 {
2095 /* We need additional test besides the one in
2096 check_accessibility_of_qualified_id in case it is
2097 a pointer to non-static member. */
2098 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2099 complain))
2100 return error_mark_node;
2101 }
2102
2103 if (!address_p)
2104 {
2105 /* If MEMBER is non-static, then the program has fallen afoul of
2106 [expr.prim]:
2107
2108 An id-expression that denotes a nonstatic data member or
2109 nonstatic member function of a class can only be used:
2110
2111 -- as part of a class member access (_expr.ref_) in which the
2112 object-expression refers to the member's class or a class
2113 derived from that class, or
2114
2115 -- to form a pointer to member (_expr.unary.op_), or
2116
2117 -- in the body of a nonstatic member function of that class or
2118 of a class derived from that class (_class.mfct.nonstatic_), or
2119
2120 -- in a mem-initializer for a constructor for that class or for
2121 a class derived from that class (_class.base.init_). */
2122 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2123 {
2124 /* Build a representation of the qualified name suitable
2125 for use as the operand to "&" -- even though the "&" is
2126 not actually present. */
2127 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2128 /* In Microsoft mode, treat a non-static member function as if
2129 it were a pointer-to-member. */
2130 if (flag_ms_extensions)
2131 {
2132 PTRMEM_OK_P (member) = 1;
2133 return cp_build_addr_expr (member, complain);
2134 }
2135 if (complain & tf_error)
2136 error ("invalid use of non-static member function %qD",
2137 TREE_OPERAND (member, 1));
2138 return error_mark_node;
2139 }
2140 else if (TREE_CODE (member) == FIELD_DECL)
2141 {
2142 if (complain & tf_error)
2143 error ("invalid use of non-static data member %qD", member);
2144 return error_mark_node;
2145 }
2146 return member;
2147 }
2148
2149 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2150 PTRMEM_OK_P (member) = 1;
2151 return member;
2152 }
2153
2154 /* If DECL is a scalar enumeration constant or variable with a
2155 constant initializer, return the initializer (or, its initializers,
2156 recursively); otherwise, return DECL. If STRICT_P, the
2157 initializer is only returned if DECL is a
2158 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2159 return an aggregate constant. */
2160
2161 static tree
2162 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2163 {
2164 while (TREE_CODE (decl) == CONST_DECL
2165 || decl_constant_var_p (decl)
2166 || (!strict_p && VAR_P (decl)
2167 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2168 {
2169 tree init;
2170 /* If DECL is a static data member in a template
2171 specialization, we must instantiate it here. The
2172 initializer for the static data member is not processed
2173 until needed; we need it now. */
2174 mark_used (decl, tf_none);
2175 mark_rvalue_use (decl);
2176 init = DECL_INITIAL (decl);
2177 if (init == error_mark_node)
2178 {
2179 if (TREE_CODE (decl) == CONST_DECL
2180 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2181 /* Treat the error as a constant to avoid cascading errors on
2182 excessively recursive template instantiation (c++/9335). */
2183 return init;
2184 else
2185 return decl;
2186 }
2187 /* Initializers in templates are generally expanded during
2188 instantiation, so before that for const int i(2)
2189 INIT is a TREE_LIST with the actual initializer as
2190 TREE_VALUE. */
2191 if (processing_template_decl
2192 && init
2193 && TREE_CODE (init) == TREE_LIST
2194 && TREE_CHAIN (init) == NULL_TREE)
2195 init = TREE_VALUE (init);
2196 /* Instantiate a non-dependent initializer for user variables. We
2197 mustn't do this for the temporary for an array compound literal;
2198 trying to instatiate the initializer will keep creating new
2199 temporaries until we crash. Probably it's not useful to do it for
2200 other artificial variables, either. */
2201 if (!DECL_ARTIFICIAL (decl))
2202 init = instantiate_non_dependent_or_null (init);
2203 if (!init
2204 || !TREE_TYPE (init)
2205 || !TREE_CONSTANT (init)
2206 || (!return_aggregate_cst_ok_p
2207 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2208 return an aggregate constant (of which string
2209 literals are a special case), as we do not want
2210 to make inadvertent copies of such entities, and
2211 we must be sure that their addresses are the
2212 same everywhere. */
2213 && (TREE_CODE (init) == CONSTRUCTOR
2214 || TREE_CODE (init) == STRING_CST)))
2215 break;
2216 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2217 initialization, since it doesn't represent the entire value. */
2218 if (TREE_CODE (init) == CONSTRUCTOR
2219 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2220 break;
2221 /* If the variable has a dynamic initializer, don't use its
2222 DECL_INITIAL which doesn't reflect the real value. */
2223 if (VAR_P (decl)
2224 && TREE_STATIC (decl)
2225 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2226 && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2227 break;
2228 decl = unshare_expr (init);
2229 }
2230 return decl;
2231 }
2232
2233 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2234 of integral or enumeration type, or a constexpr variable of scalar type,
2235 then return that value. These are those variables permitted in constant
2236 expressions by [5.19/1]. */
2237
2238 tree
2239 scalar_constant_value (tree decl)
2240 {
2241 return constant_value_1 (decl, /*strict_p=*/true,
2242 /*return_aggregate_cst_ok_p=*/false);
2243 }
2244
2245 /* Like scalar_constant_value, but can also return aggregate initializers. */
2246
2247 tree
2248 decl_really_constant_value (tree decl)
2249 {
2250 return constant_value_1 (decl, /*strict_p=*/true,
2251 /*return_aggregate_cst_ok_p=*/true);
2252 }
2253
2254 /* A more relaxed version of scalar_constant_value, used by the
2255 common C/C++ code. */
2256
2257 tree
2258 decl_constant_value (tree decl)
2259 {
2260 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2261 /*return_aggregate_cst_ok_p=*/true);
2262 }
2263 \f
2264 /* Common subroutines of build_new and build_vec_delete. */
2265 \f
2266 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2267 the type of the object being allocated; otherwise, it's just TYPE.
2268 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2269 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2270 a vector of arguments to be provided as arguments to a placement
2271 new operator. This routine performs no semantic checks; it just
2272 creates and returns a NEW_EXPR. */
2273
2274 static tree
2275 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2276 vec<tree, va_gc> *init, int use_global_new)
2277 {
2278 tree init_list;
2279 tree new_expr;
2280
2281 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2282 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2283 permits us to distinguish the case of a missing initializer "new
2284 int" from an empty initializer "new int()". */
2285 if (init == NULL)
2286 init_list = NULL_TREE;
2287 else if (init->is_empty ())
2288 init_list = void_node;
2289 else
2290 init_list = build_tree_list_vec (init);
2291
2292 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2293 build_tree_list_vec (placement), type, nelts,
2294 init_list);
2295 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2296 TREE_SIDE_EFFECTS (new_expr) = 1;
2297
2298 return new_expr;
2299 }
2300
2301 /* Diagnose uninitialized const members or reference members of type
2302 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2303 new expression without a new-initializer and a declaration. Returns
2304 the error count. */
2305
2306 static int
2307 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2308 bool using_new, bool complain)
2309 {
2310 tree field;
2311 int error_count = 0;
2312
2313 if (type_has_user_provided_constructor (type))
2314 return 0;
2315
2316 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2317 {
2318 tree field_type;
2319
2320 if (TREE_CODE (field) != FIELD_DECL)
2321 continue;
2322
2323 field_type = strip_array_types (TREE_TYPE (field));
2324
2325 if (type_has_user_provided_constructor (field_type))
2326 continue;
2327
2328 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2329 {
2330 ++ error_count;
2331 if (complain)
2332 {
2333 if (DECL_CONTEXT (field) == origin)
2334 {
2335 if (using_new)
2336 error ("uninitialized reference member in %q#T "
2337 "using %<new%> without new-initializer", origin);
2338 else
2339 error ("uninitialized reference member in %q#T", origin);
2340 }
2341 else
2342 {
2343 if (using_new)
2344 error ("uninitialized reference member in base %q#T "
2345 "of %q#T using %<new%> without new-initializer",
2346 DECL_CONTEXT (field), origin);
2347 else
2348 error ("uninitialized reference member in base %q#T "
2349 "of %q#T", DECL_CONTEXT (field), origin);
2350 }
2351 inform (DECL_SOURCE_LOCATION (field),
2352 "%q#D should be initialized", field);
2353 }
2354 }
2355
2356 if (CP_TYPE_CONST_P (field_type))
2357 {
2358 ++ error_count;
2359 if (complain)
2360 {
2361 if (DECL_CONTEXT (field) == origin)
2362 {
2363 if (using_new)
2364 error ("uninitialized const member in %q#T "
2365 "using %<new%> without new-initializer", origin);
2366 else
2367 error ("uninitialized const member in %q#T", origin);
2368 }
2369 else
2370 {
2371 if (using_new)
2372 error ("uninitialized const member in base %q#T "
2373 "of %q#T using %<new%> without new-initializer",
2374 DECL_CONTEXT (field), origin);
2375 else
2376 error ("uninitialized const member in base %q#T "
2377 "of %q#T", DECL_CONTEXT (field), origin);
2378 }
2379 inform (DECL_SOURCE_LOCATION (field),
2380 "%q#D should be initialized", field);
2381 }
2382 }
2383
2384 if (CLASS_TYPE_P (field_type))
2385 error_count
2386 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2387 using_new, complain);
2388 }
2389 return error_count;
2390 }
2391
2392 int
2393 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2394 {
2395 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2396 }
2397
2398 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2399 overflowed. Pretend it returns sizetype so that it plays nicely in the
2400 COND_EXPR. */
2401
2402 tree
2403 throw_bad_array_new_length (void)
2404 {
2405 static tree fn;
2406 if (!fn)
2407 {
2408 tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2409
2410 fn = IDENTIFIER_GLOBAL_VALUE (name);
2411 if (!fn)
2412 fn = push_throw_library_fn
2413 (name, build_function_type_list (sizetype, NULL_TREE));
2414 }
2415
2416 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2417 }
2418
2419 /* Attempt to find the initializer for field T in the initializer INIT,
2420 when non-null. Returns the initializer when successful and NULL
2421 otherwise. */
2422 static tree
2423 find_field_init (tree t, tree init)
2424 {
2425 if (!init)
2426 return NULL_TREE;
2427
2428 unsigned HOST_WIDE_INT idx;
2429 tree field, elt;
2430
2431 /* Iterate over all top-level initializer elements. */
2432 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2433 {
2434 /* If the member T is found, return it. */
2435 if (field == t)
2436 return elt;
2437
2438 /* Otherwise continue and/or recurse into nested initializers. */
2439 if (TREE_CODE (elt) == CONSTRUCTOR
2440 && (init = find_field_init (t, elt)))
2441 return init;
2442 }
2443 return NULL_TREE;
2444 }
2445
2446 /* Attempt to verify that the argument, OPER, of a placement new expression
2447 refers to an object sufficiently large for an object of TYPE or an array
2448 of NELTS of such objects when NELTS is non-null, and issue a warning when
2449 it does not. SIZE specifies the size needed to construct the object or
2450 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2451 greater when the array under construction requires a cookie to store
2452 NELTS. GCC's placement new expression stores the cookie when invoking
2453 a user-defined placement new operator function but not the default one.
2454 Placement new expressions with user-defined placement new operator are
2455 not diagnosed since we don't know how they use the buffer (this could
2456 be a future extension). */
2457 static void
2458 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2459 {
2460 location_t loc = EXPR_LOC_OR_LOC (oper, input_location);
2461
2462 /* The number of bytes to add to or subtract from the size of the provided
2463 buffer based on an offset into an array or an array element reference.
2464 Although intermediate results may be negative (as in a[3] - 2) the final
2465 result cannot be. */
2466 HOST_WIDE_INT adjust = 0;
2467 /* True when the size of the entire destination object should be used
2468 to compute the possibly optimistic estimate of the available space. */
2469 bool use_obj_size = false;
2470 /* True when the reference to the destination buffer is an ADDR_EXPR. */
2471 bool addr_expr = false;
2472
2473 STRIP_NOPS (oper);
2474
2475 /* Using a function argument or a (non-array) variable as an argument
2476 to placement new is not checked since it's unknown what it might
2477 point to. */
2478 if (TREE_CODE (oper) == PARM_DECL
2479 || VAR_P (oper)
2480 || TREE_CODE (oper) == COMPONENT_REF)
2481 return;
2482
2483 /* Evaluate any constant expressions. */
2484 size = fold_non_dependent_expr (size);
2485
2486 /* Handle the common case of array + offset expression when the offset
2487 is a constant. */
2488 if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2489 {
2490 /* If the offset is comple-time constant, use it to compute a more
2491 accurate estimate of the size of the buffer. Since the operand
2492 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2493 it to signed first.
2494 Otherwise, use the size of the entire array as an optimistic
2495 estimate (this may lead to false negatives). */
2496 tree adj = TREE_OPERAND (oper, 1);
2497 if (CONSTANT_CLASS_P (adj))
2498 adjust += tree_to_shwi (convert (ssizetype, adj));
2499 else
2500 use_obj_size = true;
2501
2502 oper = TREE_OPERAND (oper, 0);
2503
2504 STRIP_NOPS (oper);
2505 }
2506
2507 if (TREE_CODE (oper) == TARGET_EXPR)
2508 oper = TREE_OPERAND (oper, 1);
2509 else if (TREE_CODE (oper) == ADDR_EXPR)
2510 {
2511 addr_expr = true;
2512 oper = TREE_OPERAND (oper, 0);
2513 }
2514
2515 STRIP_NOPS (oper);
2516
2517 if (TREE_CODE (oper) == ARRAY_REF
2518 && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2519 {
2520 /* Similar to the offset computed above, see if the array index
2521 is a compile-time constant. If so, and unless the offset was
2522 not a compile-time constant, use the index to determine the
2523 size of the buffer. Otherwise, use the entire array as
2524 an optimistic estimate of the size. */
2525 const_tree adj = TREE_OPERAND (oper, 1);
2526 if (!use_obj_size && CONSTANT_CLASS_P (adj))
2527 adjust += tree_to_shwi (adj);
2528 else
2529 {
2530 use_obj_size = true;
2531 adjust = 0;
2532 }
2533
2534 oper = TREE_OPERAND (oper, 0);
2535 }
2536
2537 /* Refers to the declared object that constains the subobject referenced
2538 by OPER. When the object is initialized, makes it possible to determine
2539 the actual size of a flexible array member used as the buffer passed
2540 as OPER to placement new. */
2541 tree var_decl = NULL_TREE;
2542 /* True when operand is a COMPONENT_REF, to distinguish flexible array
2543 members from arrays of unspecified size. */
2544 bool compref = TREE_CODE (oper) == COMPONENT_REF;
2545
2546 /* Descend into a struct or union to find the member whose address
2547 is being used as the argument. */
2548 if (TREE_CODE (oper) == COMPONENT_REF)
2549 {
2550 tree op0 = oper;
2551 while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2552 if (VAR_P (op0))
2553 var_decl = op0;
2554 oper = TREE_OPERAND (oper, 1);
2555 }
2556
2557 if ((addr_expr || !POINTER_TYPE_P (TREE_TYPE (oper)))
2558 && (VAR_P (oper)
2559 || TREE_CODE (oper) == FIELD_DECL
2560 || TREE_CODE (oper) == PARM_DECL))
2561 {
2562 /* A possibly optimistic estimate of the number of bytes available
2563 in the destination buffer. */
2564 unsigned HOST_WIDE_INT bytes_avail = 0;
2565 /* True when the estimate above is in fact the exact size
2566 of the destination buffer rather than an estimate. */
2567 bool exact_size = true;
2568
2569 /* Treat members of unions and members of structs uniformly, even
2570 though the size of a member of a union may be viewed as extending
2571 to the end of the union itself (it is by __builtin_object_size). */
2572 if ((VAR_P (oper) || use_obj_size)
2573 && DECL_SIZE_UNIT (oper)
2574 && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2575 {
2576 /* Use the size of the entire array object when the expression
2577 refers to a variable or its size depends on an expression
2578 that's not a compile-time constant. */
2579 bytes_avail = tree_to_uhwi (DECL_SIZE_UNIT (oper));
2580 exact_size = !use_obj_size;
2581 }
2582 else if (TYPE_SIZE_UNIT (TREE_TYPE (oper))
2583 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (oper))))
2584 {
2585 /* Use the size of the type of the destination buffer object
2586 as the optimistic estimate of the available space in it. */
2587 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (oper)));
2588 }
2589 else if (var_decl)
2590 {
2591 /* Constructing into a buffer provided by the flexible array
2592 member of a declared object (which is permitted as a G++
2593 extension). If the array member has been initialized,
2594 determine its size from the initializer. Otherwise,
2595 the array size is zero. */
2596 bytes_avail = 0;
2597
2598 if (tree init = find_field_init (oper, DECL_INITIAL (var_decl)))
2599 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2600 }
2601 else
2602 {
2603 /* Bail if neither the size of the object nor its type is known. */
2604 return;
2605 }
2606
2607 tree_code oper_code = TREE_CODE (TREE_TYPE (oper));
2608
2609 if (compref && oper_code == ARRAY_TYPE)
2610 {
2611 /* Avoid diagnosing flexible array members (which are accepted
2612 as an extension and diagnosed with -Wpedantic) and zero-length
2613 arrays (also an extension).
2614 Overflowing construction in one-element arrays is diagnosed
2615 only at level 2. */
2616 if (bytes_avail == 0 && !var_decl)
2617 return;
2618
2619 tree nelts = array_type_nelts_top (TREE_TYPE (oper));
2620 tree nelts_cst = maybe_constant_value (nelts);
2621 if (TREE_CODE (nelts_cst) == INTEGER_CST
2622 && integer_onep (nelts_cst)
2623 && !var_decl
2624 && warn_placement_new < 2)
2625 return;
2626 }
2627
2628 /* The size of the buffer can only be adjusted down but not up. */
2629 gcc_checking_assert (0 <= adjust);
2630
2631 /* Reduce the size of the buffer by the adjustment computed above
2632 from the offset and/or the index into the array. */
2633 if (bytes_avail < static_cast<unsigned HOST_WIDE_INT>(adjust))
2634 bytes_avail = 0;
2635 else
2636 bytes_avail -= adjust;
2637
2638 /* The minimum amount of space needed for the allocation. This
2639 is an optimistic estimate that makes it possible to detect
2640 placement new invocation for some undersize buffers but not
2641 others. */
2642 unsigned HOST_WIDE_INT bytes_need;
2643
2644 if (CONSTANT_CLASS_P (size))
2645 bytes_need = tree_to_uhwi (size);
2646 else if (nelts && CONSTANT_CLASS_P (nelts))
2647 bytes_need = tree_to_uhwi (nelts)
2648 * tree_to_uhwi (TYPE_SIZE_UNIT (type));
2649 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2650 bytes_need = tree_to_uhwi (TYPE_SIZE_UNIT (type));
2651 else
2652 {
2653 /* The type is a VLA. */
2654 return;
2655 }
2656
2657 if (bytes_avail < bytes_need)
2658 {
2659 if (nelts)
2660 if (CONSTANT_CLASS_P (nelts))
2661 warning_at (loc, OPT_Wplacement_new_,
2662 exact_size ?
2663 "placement new constructing an object of type "
2664 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2665 "and size %qwi"
2666 : "placement new constructing an object of type "
2667 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2668 "and size at most %qwu",
2669 type, tree_to_uhwi (nelts), bytes_need,
2670 TREE_TYPE (oper),
2671 bytes_avail);
2672 else
2673 warning_at (loc, OPT_Wplacement_new_,
2674 exact_size ?
2675 "placement new constructing an array of objects "
2676 "of type %qT and size %qwu in a region of type %qT "
2677 "and size %qwi"
2678 : "placement new constructing an array of objects "
2679 "of type %qT and size %qwu in a region of type %qT "
2680 "and size at most %qwu",
2681 type, bytes_need, TREE_TYPE (oper),
2682 bytes_avail);
2683 else
2684 warning_at (loc, OPT_Wplacement_new_,
2685 exact_size ?
2686 "placement new constructing an object of type %qT "
2687 "and size %qwu in a region of type %qT and size %qwi"
2688 : "placement new constructing an object of type %qT "
2689 "and size %qwu in a region of type %qT and size "
2690 "at most %qwu",
2691 type, bytes_need, TREE_TYPE (oper),
2692 bytes_avail);
2693 }
2694 }
2695 }
2696
2697 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2698
2699 bool
2700 type_has_new_extended_alignment (tree t)
2701 {
2702 return (aligned_new_threshold
2703 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2704 }
2705
2706 /* Return the alignment we expect malloc to guarantee. This should just be
2707 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2708 reason, so don't let the threshold be smaller than max_align_t_align. */
2709
2710 unsigned
2711 malloc_alignment ()
2712 {
2713 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2714 }
2715
2716 /* Determine whether an allocation function is a namespace-scope
2717 non-replaceable placement new function. See DR 1748.
2718 TODO: Enable in all standard modes. */
2719 static bool
2720 std_placement_new_fn_p (tree alloc_fn)
2721 {
2722 if ((cxx_dialect > cxx14) && DECL_NAMESPACE_SCOPE_P (alloc_fn))
2723 {
2724 tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2725 if ((TREE_VALUE (first_arg) == ptr_type_node)
2726 && TREE_CHAIN (first_arg) == void_list_node)
2727 return true;
2728 }
2729 return false;
2730 }
2731
2732 /* Generate code for a new-expression, including calling the "operator
2733 new" function, initializing the object, and, if an exception occurs
2734 during construction, cleaning up. The arguments are as for
2735 build_raw_new_expr. This may change PLACEMENT and INIT.
2736 TYPE is the type of the object being constructed, possibly an array
2737 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2738 be an array of the form U[inner], with the whole expression being
2739 "new U[NELTS][inner]"). */
2740
2741 static tree
2742 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2743 vec<tree, va_gc> **init, bool globally_qualified_p,
2744 tsubst_flags_t complain)
2745 {
2746 tree size, rval;
2747 /* True iff this is a call to "operator new[]" instead of just
2748 "operator new". */
2749 bool array_p = false;
2750 /* If ARRAY_P is true, the element type of the array. This is never
2751 an ARRAY_TYPE; for something like "new int[3][4]", the
2752 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2753 TYPE. */
2754 tree elt_type;
2755 /* The type of the new-expression. (This type is always a pointer
2756 type.) */
2757 tree pointer_type;
2758 tree non_const_pointer_type;
2759 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2760 tree outer_nelts = NULL_TREE;
2761 /* For arrays with a non-constant number of elements, a bounds checks
2762 on the NELTS parameter to avoid integer overflow at runtime. */
2763 tree outer_nelts_check = NULL_TREE;
2764 bool outer_nelts_from_type = false;
2765 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2766 offset_int inner_nelts_count = 1;
2767 tree alloc_call, alloc_expr;
2768 /* Size of the inner array elements (those with constant dimensions). */
2769 offset_int inner_size;
2770 /* The address returned by the call to "operator new". This node is
2771 a VAR_DECL and is therefore reusable. */
2772 tree alloc_node;
2773 tree alloc_fn;
2774 tree cookie_expr, init_expr;
2775 int nothrow, check_new;
2776 /* If non-NULL, the number of extra bytes to allocate at the
2777 beginning of the storage allocated for an array-new expression in
2778 order to store the number of elements. */
2779 tree cookie_size = NULL_TREE;
2780 tree placement_first;
2781 tree placement_expr = NULL_TREE;
2782 /* True if the function we are calling is a placement allocation
2783 function. */
2784 bool placement_allocation_fn_p;
2785 /* True if the storage must be initialized, either by a constructor
2786 or due to an explicit new-initializer. */
2787 bool is_initialized;
2788 /* The address of the thing allocated, not including any cookie. In
2789 particular, if an array cookie is in use, DATA_ADDR is the
2790 address of the first array element. This node is a VAR_DECL, and
2791 is therefore reusable. */
2792 tree data_addr;
2793 tree init_preeval_expr = NULL_TREE;
2794 tree orig_type = type;
2795
2796 if (nelts)
2797 {
2798 outer_nelts = nelts;
2799 array_p = true;
2800 }
2801 else if (TREE_CODE (type) == ARRAY_TYPE)
2802 {
2803 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2804 extension for variable N. (This also covers new T where T is
2805 a VLA typedef.) */
2806 array_p = true;
2807 nelts = array_type_nelts_top (type);
2808 outer_nelts = nelts;
2809 type = TREE_TYPE (type);
2810 outer_nelts_from_type = true;
2811 }
2812
2813 /* Lots of logic below. depends on whether we have a constant number of
2814 elements, so go ahead and fold it now. */
2815 if (outer_nelts)
2816 outer_nelts = maybe_constant_value (outer_nelts);
2817
2818 /* If our base type is an array, then make sure we know how many elements
2819 it has. */
2820 for (elt_type = type;
2821 TREE_CODE (elt_type) == ARRAY_TYPE;
2822 elt_type = TREE_TYPE (elt_type))
2823 {
2824 tree inner_nelts = array_type_nelts_top (elt_type);
2825 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2826 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2827 {
2828 bool overflow;
2829 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2830 inner_nelts_count, SIGNED, &overflow);
2831 if (overflow)
2832 {
2833 if (complain & tf_error)
2834 error ("integer overflow in array size");
2835 nelts = error_mark_node;
2836 }
2837 inner_nelts_count = result;
2838 }
2839 else
2840 {
2841 if (complain & tf_error)
2842 {
2843 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2844 "array size in new-expression must be constant");
2845 cxx_constant_value(inner_nelts);
2846 }
2847 nelts = error_mark_node;
2848 }
2849 if (nelts != error_mark_node)
2850 nelts = cp_build_binary_op (input_location,
2851 MULT_EXPR, nelts,
2852 inner_nelts_cst,
2853 complain);
2854 }
2855
2856 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2857 {
2858 error ("variably modified type not allowed in new-expression");
2859 return error_mark_node;
2860 }
2861
2862 if (nelts == error_mark_node)
2863 return error_mark_node;
2864
2865 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2866 variable. */
2867 if (outer_nelts_from_type
2868 && !TREE_CONSTANT (outer_nelts))
2869 {
2870 if (complain & tf_warning_or_error)
2871 {
2872 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location), OPT_Wvla,
2873 typedef_variant_p (orig_type)
2874 ? G_("non-constant array new length must be specified "
2875 "directly, not by typedef")
2876 : G_("non-constant array new length must be specified "
2877 "without parentheses around the type-id"));
2878 }
2879 else
2880 return error_mark_node;
2881 }
2882
2883 if (VOID_TYPE_P (elt_type))
2884 {
2885 if (complain & tf_error)
2886 error ("invalid type %<void%> for new");
2887 return error_mark_node;
2888 }
2889
2890 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2891 return error_mark_node;
2892
2893 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2894
2895 if (*init == NULL && cxx_dialect < cxx11)
2896 {
2897 bool maybe_uninitialized_error = false;
2898 /* A program that calls for default-initialization [...] of an
2899 entity of reference type is ill-formed. */
2900 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2901 maybe_uninitialized_error = true;
2902
2903 /* A new-expression that creates an object of type T initializes
2904 that object as follows:
2905 - If the new-initializer is omitted:
2906 -- If T is a (possibly cv-qualified) non-POD class type
2907 (or array thereof), the object is default-initialized (8.5).
2908 [...]
2909 -- Otherwise, the object created has indeterminate
2910 value. If T is a const-qualified type, or a (possibly
2911 cv-qualified) POD class type (or array thereof)
2912 containing (directly or indirectly) a member of
2913 const-qualified type, the program is ill-formed; */
2914
2915 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2916 maybe_uninitialized_error = true;
2917
2918 if (maybe_uninitialized_error
2919 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2920 /*using_new=*/true,
2921 complain & tf_error))
2922 return error_mark_node;
2923 }
2924
2925 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2926 && default_init_uninitialized_part (elt_type))
2927 {
2928 if (complain & tf_error)
2929 error ("uninitialized const in %<new%> of %q#T", elt_type);
2930 return error_mark_node;
2931 }
2932
2933 size = size_in_bytes (elt_type);
2934 if (array_p)
2935 {
2936 /* Maximum available size in bytes. Half of the address space
2937 minus the cookie size. */
2938 offset_int max_size
2939 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2940 /* Maximum number of outer elements which can be allocated. */
2941 offset_int max_outer_nelts;
2942 tree max_outer_nelts_tree;
2943
2944 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2945 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2946 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2947 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2948 /* Unconditionally subtract the cookie size. This decreases the
2949 maximum object size and is safe even if we choose not to use
2950 a cookie after all. */
2951 max_size -= wi::to_offset (cookie_size);
2952 bool overflow;
2953 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2954 &overflow);
2955 if (overflow || wi::gtu_p (inner_size, max_size))
2956 {
2957 if (complain & tf_error)
2958 error ("size of array is too large");
2959 return error_mark_node;
2960 }
2961
2962 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2963 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2964
2965 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
2966
2967 if (INTEGER_CST == TREE_CODE (outer_nelts))
2968 {
2969 if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts))
2970 {
2971 /* When the array size is constant, check it at compile time
2972 to make sure it doesn't exceed the implementation-defined
2973 maximum, as required by C++ 14 (in C++ 11 this requirement
2974 isn't explicitly stated but it's enforced anyway -- see
2975 grokdeclarator in cp/decl.c). */
2976 if (complain & tf_error)
2977 error ("size of array is too large");
2978 return error_mark_node;
2979 }
2980 }
2981 else
2982 {
2983 /* When a runtime check is necessary because the array size
2984 isn't constant, keep only the top-most seven bits (starting
2985 with the most significant non-zero bit) of the maximum size
2986 to compare the array size against, to simplify encoding the
2987 constant maximum size in the instruction stream. */
2988
2989 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2990 - wi::clz (max_outer_nelts);
2991 max_outer_nelts = (max_outer_nelts >> shift) << shift;
2992
2993 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2994 outer_nelts,
2995 max_outer_nelts_tree);
2996 }
2997 }
2998
2999 tree align_arg = NULL_TREE;
3000 if (type_has_new_extended_alignment (elt_type))
3001 align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
3002
3003 alloc_fn = NULL_TREE;
3004
3005 /* If PLACEMENT is a single simple pointer type not passed by
3006 reference, prepare to capture it in a temporary variable. Do
3007 this now, since PLACEMENT will change in the calls below. */
3008 placement_first = NULL_TREE;
3009 if (vec_safe_length (*placement) == 1
3010 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3011 placement_first = (**placement)[0];
3012
3013 bool member_new_p = false;
3014
3015 /* Allocate the object. */
3016 tree fnname;
3017 tree fns;
3018
3019 fnname = cp_operator_id (array_p ? VEC_NEW_EXPR : NEW_EXPR);
3020
3021 member_new_p = !globally_qualified_p
3022 && CLASS_TYPE_P (elt_type)
3023 && (array_p
3024 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3025 : TYPE_HAS_NEW_OPERATOR (elt_type));
3026
3027 if (member_new_p)
3028 {
3029 /* Use a class-specific operator new. */
3030 /* If a cookie is required, add some extra space. */
3031 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3032 size = size_binop (PLUS_EXPR, size, cookie_size);
3033 else
3034 {
3035 cookie_size = NULL_TREE;
3036 /* No size arithmetic necessary, so the size check is
3037 not needed. */
3038 if (outer_nelts_check != NULL && inner_size == 1)
3039 outer_nelts_check = NULL_TREE;
3040 }
3041 /* Perform the overflow check. */
3042 tree errval = TYPE_MAX_VALUE (sizetype);
3043 if (cxx_dialect >= cxx11 && flag_exceptions)
3044 errval = throw_bad_array_new_length ();
3045 if (outer_nelts_check != NULL_TREE)
3046 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3047 size, errval);
3048 /* Create the argument list. */
3049 vec_safe_insert (*placement, 0, size);
3050 /* Do name-lookup to find the appropriate operator. */
3051 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
3052 if (fns == NULL_TREE)
3053 {
3054 if (complain & tf_error)
3055 error ("no suitable %qD found in class %qT", fnname, elt_type);
3056 return error_mark_node;
3057 }
3058 if (TREE_CODE (fns) == TREE_LIST)
3059 {
3060 if (complain & tf_error)
3061 {
3062 error ("request for member %qD is ambiguous", fnname);
3063 print_candidates (fns);
3064 }
3065 return error_mark_node;
3066 }
3067 tree dummy = build_dummy_object (elt_type);
3068 alloc_call = NULL_TREE;
3069 if (align_arg)
3070 {
3071 vec<tree, va_gc> *align_args
3072 = vec_copy_and_insert (*placement, align_arg, 1);
3073 alloc_call
3074 = build_new_method_call (dummy, fns, &align_args,
3075 /*conversion_path=*/NULL_TREE,
3076 LOOKUP_NORMAL, &alloc_fn, tf_none);
3077 /* If no matching function is found and the allocated object type
3078 has new-extended alignment, the alignment argument is removed
3079 from the argument list, and overload resolution is performed
3080 again. */
3081 if (alloc_call == error_mark_node)
3082 alloc_call = NULL_TREE;
3083 }
3084 if (!alloc_call)
3085 alloc_call = build_new_method_call (dummy, fns, placement,
3086 /*conversion_path=*/NULL_TREE,
3087 LOOKUP_NORMAL,
3088 &alloc_fn, complain);
3089 }
3090 else
3091 {
3092 /* Use a global operator new. */
3093 /* See if a cookie might be required. */
3094 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3095 {
3096 cookie_size = NULL_TREE;
3097 /* No size arithmetic necessary, so the size check is
3098 not needed. */
3099 if (outer_nelts_check != NULL && inner_size == 1)
3100 outer_nelts_check = NULL_TREE;
3101 }
3102
3103 alloc_call = build_operator_new_call (fnname, placement,
3104 &size, &cookie_size,
3105 align_arg, outer_nelts_check,
3106 &alloc_fn, complain);
3107 }
3108
3109 if (alloc_call == error_mark_node)
3110 return error_mark_node;
3111
3112 gcc_assert (alloc_fn != NULL_TREE);
3113
3114 /* Now, check to see if this function is actually a placement
3115 allocation function. This can happen even when PLACEMENT is NULL
3116 because we might have something like:
3117
3118 struct S { void* operator new (size_t, int i = 0); };
3119
3120 A call to `new S' will get this allocation function, even though
3121 there is no explicit placement argument. If there is more than
3122 one argument, or there are variable arguments, then this is a
3123 placement allocation function. */
3124 placement_allocation_fn_p
3125 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3126 || varargs_function_p (alloc_fn));
3127
3128 if (warn_aligned_new
3129 && !placement_allocation_fn_p
3130 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3131 && (warn_aligned_new > 1
3132 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3133 && !aligned_allocation_fn_p (alloc_fn))
3134 {
3135 if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3136 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3137 {
3138 inform (input_location, "uses %qD, which does not have an alignment "
3139 "parameter", alloc_fn);
3140 if (!aligned_new_threshold)
3141 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3142 "over-aligned new support");
3143 }
3144 }
3145
3146 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3147 into a temporary variable. */
3148 if (!processing_template_decl
3149 && TREE_CODE (alloc_call) == CALL_EXPR
3150 && call_expr_nargs (alloc_call) == 2
3151 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3152 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3153 {
3154 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3155
3156 if (placement_first != NULL_TREE
3157 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3158 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3159 {
3160 placement_expr = get_target_expr (placement_first);
3161 CALL_EXPR_ARG (alloc_call, 1)
3162 = fold_convert (TREE_TYPE (placement), placement_expr);
3163 }
3164
3165 if (!member_new_p
3166 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3167 {
3168 /* Attempt to make the warning point at the operator new argument. */
3169 if (placement_first)
3170 placement = placement_first;
3171
3172 warn_placement_new_too_small (orig_type, nelts, size, placement);
3173 }
3174 }
3175
3176 /* In the simple case, we can stop now. */
3177 pointer_type = build_pointer_type (type);
3178 if (!cookie_size && !is_initialized)
3179 return build_nop (pointer_type, alloc_call);
3180
3181 /* Store the result of the allocation call in a variable so that we can
3182 use it more than once. */
3183 alloc_expr = get_target_expr (alloc_call);
3184 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3185
3186 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3187 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3188 alloc_call = TREE_OPERAND (alloc_call, 1);
3189
3190 /* Preevaluate the placement args so that we don't reevaluate them for a
3191 placement delete. */
3192 if (placement_allocation_fn_p)
3193 {
3194 tree inits;
3195 stabilize_call (alloc_call, &inits);
3196 if (inits)
3197 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3198 alloc_expr);
3199 }
3200
3201 /* unless an allocation function is declared with an empty excep-
3202 tion-specification (_except.spec_), throw(), it indicates failure to
3203 allocate storage by throwing a bad_alloc exception (clause _except_,
3204 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3205 cation function is declared with an empty exception-specification,
3206 throw(), it returns null to indicate failure to allocate storage and a
3207 non-null pointer otherwise.
3208
3209 So check for a null exception spec on the op new we just called. */
3210
3211 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3212 check_new
3213 = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3214
3215 if (cookie_size)
3216 {
3217 tree cookie;
3218 tree cookie_ptr;
3219 tree size_ptr_type;
3220
3221 /* Adjust so we're pointing to the start of the object. */
3222 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3223
3224 /* Store the number of bytes allocated so that we can know how
3225 many elements to destroy later. We use the last sizeof
3226 (size_t) bytes to store the number of elements. */
3227 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3228 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3229 alloc_node, cookie_ptr);
3230 size_ptr_type = build_pointer_type (sizetype);
3231 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3232 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3233
3234 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3235
3236 if (targetm.cxx.cookie_has_size ())
3237 {
3238 /* Also store the element size. */
3239 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3240 fold_build1_loc (input_location,
3241 NEGATE_EXPR, sizetype,
3242 size_in_bytes (sizetype)));
3243
3244 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3245 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3246 size_in_bytes (elt_type));
3247 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3248 cookie, cookie_expr);
3249 }
3250 }
3251 else
3252 {
3253 cookie_expr = NULL_TREE;
3254 data_addr = alloc_node;
3255 }
3256
3257 /* Now use a pointer to the type we've actually allocated. */
3258
3259 /* But we want to operate on a non-const version to start with,
3260 since we'll be modifying the elements. */
3261 non_const_pointer_type = build_pointer_type
3262 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3263
3264 data_addr = fold_convert (non_const_pointer_type, data_addr);
3265 /* Any further uses of alloc_node will want this type, too. */
3266 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3267
3268 /* Now initialize the allocated object. Note that we preevaluate the
3269 initialization expression, apart from the actual constructor call or
3270 assignment--we do this because we want to delay the allocation as long
3271 as possible in order to minimize the size of the exception region for
3272 placement delete. */
3273 if (is_initialized)
3274 {
3275 bool stable;
3276 bool explicit_value_init_p = false;
3277
3278 if (*init != NULL && (*init)->is_empty ())
3279 {
3280 *init = NULL;
3281 explicit_value_init_p = true;
3282 }
3283
3284 if (processing_template_decl && explicit_value_init_p)
3285 {
3286 /* build_value_init doesn't work in templates, and we don't need
3287 the initializer anyway since we're going to throw it away and
3288 rebuild it at instantiation time, so just build up a single
3289 constructor call to get any appropriate diagnostics. */
3290 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3291 if (type_build_ctor_call (elt_type))
3292 init_expr = build_special_member_call (init_expr,
3293 complete_ctor_identifier,
3294 init, elt_type,
3295 LOOKUP_NORMAL,
3296 complain);
3297 stable = stabilize_init (init_expr, &init_preeval_expr);
3298 }
3299 else if (array_p)
3300 {
3301 tree vecinit = NULL_TREE;
3302 if (vec_safe_length (*init) == 1
3303 && DIRECT_LIST_INIT_P ((**init)[0]))
3304 {
3305 vecinit = (**init)[0];
3306 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3307 /* List-value-initialization, leave it alone. */;
3308 else
3309 {
3310 tree arraytype, domain;
3311 if (TREE_CONSTANT (nelts))
3312 domain = compute_array_index_type (NULL_TREE, nelts,
3313 complain);
3314 else
3315 /* We'll check the length at runtime. */
3316 domain = NULL_TREE;
3317 arraytype = build_cplus_array_type (type, domain);
3318 vecinit = digest_init (arraytype, vecinit, complain);
3319 }
3320 }
3321 else if (*init)
3322 {
3323 if (complain & tf_error)
3324 permerror (input_location,
3325 "parenthesized initializer in array new");
3326 else
3327 return error_mark_node;
3328 vecinit = build_tree_list_vec (*init);
3329 }
3330 init_expr
3331 = build_vec_init (data_addr,
3332 cp_build_binary_op (input_location,
3333 MINUS_EXPR, outer_nelts,
3334 integer_one_node,
3335 complain),
3336 vecinit,
3337 explicit_value_init_p,
3338 /*from_array=*/0,
3339 complain);
3340
3341 /* An array initialization is stable because the initialization
3342 of each element is a full-expression, so the temporaries don't
3343 leak out. */
3344 stable = true;
3345 }
3346 else
3347 {
3348 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3349
3350 if (type_build_ctor_call (type) && !explicit_value_init_p)
3351 {
3352 init_expr = build_special_member_call (init_expr,
3353 complete_ctor_identifier,
3354 init, elt_type,
3355 LOOKUP_NORMAL,
3356 complain);
3357 }
3358 else if (explicit_value_init_p)
3359 {
3360 /* Something like `new int()'. NO_CLEANUP is needed so
3361 we don't try and build a (possibly ill-formed)
3362 destructor. */
3363 tree val = build_value_init (type, complain | tf_no_cleanup);
3364 if (val == error_mark_node)
3365 return error_mark_node;
3366 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3367 }
3368 else
3369 {
3370 tree ie;
3371
3372 /* We are processing something like `new int (10)', which
3373 means allocate an int, and initialize it with 10. */
3374
3375 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3376 complain);
3377 init_expr = cp_build_modify_expr (input_location, init_expr,
3378 INIT_EXPR, ie, complain);
3379 }
3380 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3381 object being initialized, replace them now and don't try to
3382 preevaluate. */
3383 bool had_placeholder = false;
3384 if (!processing_template_decl
3385 && TREE_CODE (init_expr) == INIT_EXPR)
3386 TREE_OPERAND (init_expr, 1)
3387 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3388 TREE_OPERAND (init_expr, 0),
3389 &had_placeholder);
3390 stable = (!had_placeholder
3391 && stabilize_init (init_expr, &init_preeval_expr));
3392 }
3393
3394 if (init_expr == error_mark_node)
3395 return error_mark_node;
3396
3397 /* If any part of the object initialization terminates by throwing an
3398 exception and a suitable deallocation function can be found, the
3399 deallocation function is called to free the memory in which the
3400 object was being constructed, after which the exception continues
3401 to propagate in the context of the new-expression. If no
3402 unambiguous matching deallocation function can be found,
3403 propagating the exception does not cause the object's memory to be
3404 freed. */
3405 if (flag_exceptions)
3406 {
3407 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3408 tree cleanup;
3409
3410 /* The Standard is unclear here, but the right thing to do
3411 is to use the same method for finding deallocation
3412 functions that we use for finding allocation functions. */
3413 cleanup = (build_op_delete_call
3414 (dcode,
3415 alloc_node,
3416 size,
3417 globally_qualified_p,
3418 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3419 alloc_fn,
3420 complain));
3421
3422 if (!cleanup)
3423 /* We're done. */;
3424 else if (stable)
3425 /* This is much simpler if we were able to preevaluate all of
3426 the arguments to the constructor call. */
3427 {
3428 /* CLEANUP is compiler-generated, so no diagnostics. */
3429 TREE_NO_WARNING (cleanup) = true;
3430 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3431 init_expr, cleanup);
3432 /* Likewise, this try-catch is compiler-generated. */
3433 TREE_NO_WARNING (init_expr) = true;
3434 }
3435 else
3436 /* Ack! First we allocate the memory. Then we set our sentry
3437 variable to true, and expand a cleanup that deletes the
3438 memory if sentry is true. Then we run the constructor, and
3439 finally clear the sentry.
3440
3441 We need to do this because we allocate the space first, so
3442 if there are any temporaries with cleanups in the
3443 constructor args and we weren't able to preevaluate them, we
3444 need this EH region to extend until end of full-expression
3445 to preserve nesting. */
3446 {
3447 tree end, sentry, begin;
3448
3449 begin = get_target_expr (boolean_true_node);
3450 CLEANUP_EH_ONLY (begin) = 1;
3451
3452 sentry = TARGET_EXPR_SLOT (begin);
3453
3454 /* CLEANUP is compiler-generated, so no diagnostics. */
3455 TREE_NO_WARNING (cleanup) = true;
3456
3457 TARGET_EXPR_CLEANUP (begin)
3458 = build3 (COND_EXPR, void_type_node, sentry,
3459 cleanup, void_node);
3460
3461 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3462 sentry, boolean_false_node);
3463
3464 init_expr
3465 = build2 (COMPOUND_EXPR, void_type_node, begin,
3466 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3467 end));
3468 /* Likewise, this is compiler-generated. */
3469 TREE_NO_WARNING (init_expr) = true;
3470 }
3471 }
3472 }
3473 else
3474 init_expr = NULL_TREE;
3475
3476 /* Now build up the return value in reverse order. */
3477
3478 rval = data_addr;
3479
3480 if (init_expr)
3481 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3482 if (cookie_expr)
3483 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3484
3485 if (rval == data_addr)
3486 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3487 and return the call (which doesn't need to be adjusted). */
3488 rval = TARGET_EXPR_INITIAL (alloc_expr);
3489 else
3490 {
3491 if (check_new)
3492 {
3493 tree ifexp = cp_build_binary_op (input_location,
3494 NE_EXPR, alloc_node,
3495 nullptr_node,
3496 complain);
3497 rval = build_conditional_expr (input_location, ifexp, rval,
3498 alloc_node, complain);
3499 }
3500
3501 /* Perform the allocation before anything else, so that ALLOC_NODE
3502 has been initialized before we start using it. */
3503 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3504 }
3505
3506 if (init_preeval_expr)
3507 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3508
3509 /* A new-expression is never an lvalue. */
3510 gcc_assert (!obvalue_p (rval));
3511
3512 return convert (pointer_type, rval);
3513 }
3514
3515 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3516 is a vector of placement-new arguments (or NULL if none). If NELTS
3517 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3518 is not NULL, then this is an array-new allocation; TYPE is the type
3519 of the elements in the array and NELTS is the number of elements in
3520 the array. *INIT, if non-NULL, is the initializer for the new
3521 object, or an empty vector to indicate an initializer of "()". If
3522 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3523 rather than just "new". This may change PLACEMENT and INIT. */
3524
3525 tree
3526 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3527 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3528 {
3529 tree rval;
3530 vec<tree, va_gc> *orig_placement = NULL;
3531 tree orig_nelts = NULL_TREE;
3532 vec<tree, va_gc> *orig_init = NULL;
3533
3534 if (type == error_mark_node)
3535 return error_mark_node;
3536
3537 if (nelts == NULL_TREE
3538 /* Don't do auto deduction where it might affect mangling. */
3539 && (!processing_template_decl || at_function_scope_p ()))
3540 {
3541 tree auto_node = type_uses_auto (type);
3542 if (auto_node)
3543 {
3544 tree d_init = NULL_TREE;
3545 if (vec_safe_length (*init) == 1)
3546 {
3547 d_init = (**init)[0];
3548 d_init = resolve_nondeduced_context (d_init, complain);
3549 }
3550 type = do_auto_deduction (type, d_init, auto_node);
3551 }
3552 }
3553
3554 if (processing_template_decl)
3555 {
3556 if (dependent_type_p (type)
3557 || any_type_dependent_arguments_p (*placement)
3558 || (nelts && type_dependent_expression_p (nelts))
3559 || (nelts && *init)
3560 || any_type_dependent_arguments_p (*init))
3561 return build_raw_new_expr (*placement, type, nelts, *init,
3562 use_global_new);
3563
3564 orig_placement = make_tree_vector_copy (*placement);
3565 orig_nelts = nelts;
3566 if (*init)
3567 {
3568 orig_init = make_tree_vector_copy (*init);
3569 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3570 digest_init clobber them in place. */
3571 for (unsigned i = 0; i < orig_init->length(); ++i)
3572 {
3573 tree e = (**init)[i];
3574 if (TREE_CODE (e) == CONSTRUCTOR)
3575 (**init)[i] = copy_node (e);
3576 }
3577 }
3578
3579 make_args_non_dependent (*placement);
3580 if (nelts)
3581 nelts = build_non_dependent_expr (nelts);
3582 make_args_non_dependent (*init);
3583 }
3584
3585 if (nelts)
3586 {
3587 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3588 {
3589 if (complain & tf_error)
3590 permerror (input_location, "size in array new must have integral type");
3591 else
3592 return error_mark_node;
3593 }
3594
3595 /* Try to determine the constant value only for the purposes
3596 of the diagnostic below but continue to use the original
3597 value and handle const folding later. */
3598 const_tree cst_nelts = maybe_constant_value (nelts);
3599
3600 /* The expression in a noptr-new-declarator is erroneous if it's of
3601 non-class type and its value before converting to std::size_t is
3602 less than zero. ... If the expression is a constant expression,
3603 the program is ill-fomed. */
3604 if (INTEGER_CST == TREE_CODE (cst_nelts)
3605 && tree_int_cst_sgn (cst_nelts) == -1)
3606 {
3607 if (complain & tf_error)
3608 error ("size of array is negative");
3609 return error_mark_node;
3610 }
3611
3612 nelts = mark_rvalue_use (nelts);
3613 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3614 }
3615
3616 /* ``A reference cannot be created by the new operator. A reference
3617 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3618 returned by new.'' ARM 5.3.3 */
3619 if (TREE_CODE (type) == REFERENCE_TYPE)
3620 {
3621 if (complain & tf_error)
3622 error ("new cannot be applied to a reference type");
3623 else
3624 return error_mark_node;
3625 type = TREE_TYPE (type);
3626 }
3627
3628 if (TREE_CODE (type) == FUNCTION_TYPE)
3629 {
3630 if (complain & tf_error)
3631 error ("new cannot be applied to a function type");
3632 return error_mark_node;
3633 }
3634
3635 /* The type allocated must be complete. If the new-type-id was
3636 "T[N]" then we are just checking that "T" is complete here, but
3637 that is equivalent, since the value of "N" doesn't matter. */
3638 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3639 return error_mark_node;
3640
3641 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3642 if (rval == error_mark_node)
3643 return error_mark_node;
3644
3645 if (processing_template_decl)
3646 {
3647 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3648 orig_init, use_global_new);
3649 release_tree_vector (orig_placement);
3650 release_tree_vector (orig_init);
3651 return ret;
3652 }
3653
3654 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3655 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3656 TREE_NO_WARNING (rval) = 1;
3657
3658 return rval;
3659 }
3660 \f
3661 static tree
3662 build_vec_delete_1 (tree base, tree maxindex, tree type,
3663 special_function_kind auto_delete_vec,
3664 int use_global_delete, tsubst_flags_t complain)
3665 {
3666 tree virtual_size;
3667 tree ptype = build_pointer_type (type = complete_type (type));
3668 tree size_exp;
3669
3670 /* Temporary variables used by the loop. */
3671 tree tbase, tbase_init;
3672
3673 /* This is the body of the loop that implements the deletion of a
3674 single element, and moves temp variables to next elements. */
3675 tree body;
3676
3677 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3678 tree loop = 0;
3679
3680 /* This is the thing that governs what to do after the loop has run. */
3681 tree deallocate_expr = 0;
3682
3683 /* This is the BIND_EXPR which holds the outermost iterator of the
3684 loop. It is convenient to set this variable up and test it before
3685 executing any other code in the loop.
3686 This is also the containing expression returned by this function. */
3687 tree controller = NULL_TREE;
3688 tree tmp;
3689
3690 /* We should only have 1-D arrays here. */
3691 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3692
3693 if (base == error_mark_node || maxindex == error_mark_node)
3694 return error_mark_node;
3695
3696 if (!COMPLETE_TYPE_P (type))
3697 {
3698 if ((complain & tf_warning)
3699 && warning (OPT_Wdelete_incomplete,
3700 "possible problem detected in invocation of "
3701 "delete [] operator:"))
3702 {
3703 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3704 inform (input_location, "neither the destructor nor the "
3705 "class-specific operator delete [] will be called, "
3706 "even if they are declared when the class is defined");
3707 }
3708 /* This size won't actually be used. */
3709 size_exp = size_one_node;
3710 goto no_destructor;
3711 }
3712
3713 size_exp = size_in_bytes (type);
3714
3715 if (! MAYBE_CLASS_TYPE_P (type))
3716 goto no_destructor;
3717 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3718 {
3719 /* Make sure the destructor is callable. */
3720 if (type_build_dtor_call (type))
3721 {
3722 tmp = build_delete (ptype, base, sfk_complete_destructor,
3723 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3724 complain);
3725 if (tmp == error_mark_node)
3726 return error_mark_node;
3727 }
3728 goto no_destructor;
3729 }
3730
3731 /* The below is short by the cookie size. */
3732 virtual_size = size_binop (MULT_EXPR, size_exp,
3733 fold_convert (sizetype, maxindex));
3734
3735 tbase = create_temporary_var (ptype);
3736 tbase_init
3737 = cp_build_modify_expr (input_location, tbase, NOP_EXPR,
3738 fold_build_pointer_plus_loc (input_location,
3739 fold_convert (ptype,
3740 base),
3741 virtual_size),
3742 complain);
3743 if (tbase_init == error_mark_node)
3744 return error_mark_node;
3745 controller = build3 (BIND_EXPR, void_type_node, tbase,
3746 NULL_TREE, NULL_TREE);
3747 TREE_SIDE_EFFECTS (controller) = 1;
3748
3749 body = build1 (EXIT_EXPR, void_type_node,
3750 build2 (EQ_EXPR, boolean_type_node, tbase,
3751 fold_convert (ptype, base)));
3752 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3753 tmp = fold_build_pointer_plus (tbase, tmp);
3754 tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain);
3755 if (tmp == error_mark_node)
3756 return error_mark_node;
3757 body = build_compound_expr (input_location, body, tmp);
3758 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3759 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3760 complain);
3761 if (tmp == error_mark_node)
3762 return error_mark_node;
3763 body = build_compound_expr (input_location, body, tmp);
3764
3765 loop = build1 (LOOP_EXPR, void_type_node, body);
3766 loop = build_compound_expr (input_location, tbase_init, loop);
3767
3768 no_destructor:
3769 /* Delete the storage if appropriate. */
3770 if (auto_delete_vec == sfk_deleting_destructor)
3771 {
3772 tree base_tbd;
3773
3774 /* The below is short by the cookie size. */
3775 virtual_size = size_binop (MULT_EXPR, size_exp,
3776 fold_convert (sizetype, maxindex));
3777
3778 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3779 /* no header */
3780 base_tbd = base;
3781 else
3782 {
3783 tree cookie_size;
3784
3785 cookie_size = targetm.cxx.get_cookie_size (type);
3786 base_tbd = cp_build_binary_op (input_location,
3787 MINUS_EXPR,
3788 cp_convert (string_type_node,
3789 base, complain),
3790 cookie_size,
3791 complain);
3792 if (base_tbd == error_mark_node)
3793 return error_mark_node;
3794 base_tbd = cp_convert (ptype, base_tbd, complain);
3795 /* True size with header. */
3796 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3797 }
3798
3799 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3800 base_tbd, virtual_size,
3801 use_global_delete & 1,
3802 /*placement=*/NULL_TREE,
3803 /*alloc_fn=*/NULL_TREE,
3804 complain);
3805 }
3806
3807 body = loop;
3808 if (!deallocate_expr)
3809 ;
3810 else if (!body)
3811 body = deallocate_expr;
3812 else
3813 /* The delete operator mist be called, even if a destructor
3814 throws. */
3815 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3816
3817 if (!body)
3818 body = integer_zero_node;
3819
3820 /* Outermost wrapper: If pointer is null, punt. */
3821 tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base,
3822 fold_convert (TREE_TYPE (base), nullptr_node));
3823 /* This is a compiler generated comparison, don't emit
3824 e.g. -Wnonnull-compare warning for it. */
3825 TREE_NO_WARNING (cond) = 1;
3826 body = build3_loc (input_location, COND_EXPR, void_type_node,
3827 cond, body, integer_zero_node);
3828 COND_EXPR_IS_VEC_DELETE (body) = true;
3829 body = build1 (NOP_EXPR, void_type_node, body);
3830
3831 if (controller)
3832 {
3833 TREE_OPERAND (controller, 1) = body;
3834 body = controller;
3835 }
3836
3837 if (TREE_CODE (base) == SAVE_EXPR)
3838 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3839 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3840
3841 return convert_to_void (body, ICV_CAST, complain);
3842 }
3843
3844 /* Create an unnamed variable of the indicated TYPE. */
3845
3846 tree
3847 create_temporary_var (tree type)
3848 {
3849 tree decl;
3850
3851 decl = build_decl (input_location,
3852 VAR_DECL, NULL_TREE, type);
3853 TREE_USED (decl) = 1;
3854 DECL_ARTIFICIAL (decl) = 1;
3855 DECL_IGNORED_P (decl) = 1;
3856 DECL_CONTEXT (decl) = current_function_decl;
3857
3858 return decl;
3859 }
3860
3861 /* Create a new temporary variable of the indicated TYPE, initialized
3862 to INIT.
3863
3864 It is not entered into current_binding_level, because that breaks
3865 things when it comes time to do final cleanups (which take place
3866 "outside" the binding contour of the function). */
3867
3868 tree
3869 get_temp_regvar (tree type, tree init)
3870 {
3871 tree decl;
3872
3873 decl = create_temporary_var (type);
3874 add_decl_expr (decl);
3875
3876 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
3877 init, tf_warning_or_error));
3878
3879 return decl;
3880 }
3881
3882 /* Subroutine of build_vec_init. Returns true if assigning to an array of
3883 INNER_ELT_TYPE from INIT is trivial. */
3884
3885 static bool
3886 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3887 {
3888 tree fromtype = inner_elt_type;
3889 if (lvalue_p (init))
3890 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3891 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3892 }
3893
3894 /* Subroutine of build_vec_init: Check that the array has at least N
3895 elements. Other parameters are local variables in build_vec_init. */
3896
3897 void
3898 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
3899 {
3900 tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
3901 if (TREE_CODE (atype) != ARRAY_TYPE)
3902 {
3903 if (flag_exceptions)
3904 {
3905 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3906 nelts);
3907 c = build3 (COND_EXPR, void_type_node, c,
3908 throw_bad_array_new_length (), void_node);
3909 finish_expr_stmt (c);
3910 }
3911 /* Don't check an array new when -fno-exceptions. */
3912 }
3913 else if (flag_sanitize & SANITIZE_BOUNDS
3914 && do_ubsan_in_current_function ())
3915 {
3916 /* Make sure the last element of the initializer is in bounds. */
3917 finish_expr_stmt
3918 (ubsan_instrument_bounds
3919 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3920 }
3921 }
3922
3923 /* `build_vec_init' returns tree structure that performs
3924 initialization of a vector of aggregate types.
3925
3926 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3927 to the first element, of POINTER_TYPE.
3928 MAXINDEX is the maximum index of the array (one less than the
3929 number of elements). It is only used if BASE is a pointer or
3930 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3931
3932 INIT is the (possibly NULL) initializer.
3933
3934 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3935 elements in the array are value-initialized.
3936
3937 FROM_ARRAY is 0 if we should init everything with INIT
3938 (i.e., every element initialized from INIT).
3939 FROM_ARRAY is 1 if we should index into INIT in parallel
3940 with initialization of DECL.
3941 FROM_ARRAY is 2 if we should index into INIT in parallel,
3942 but use assignment instead of initialization. */
3943
3944 tree
3945 build_vec_init (tree base, tree maxindex, tree init,
3946 bool explicit_value_init_p,
3947 int from_array, tsubst_flags_t complain)
3948 {
3949 tree rval;
3950 tree base2 = NULL_TREE;
3951 tree itype = NULL_TREE;
3952 tree iterator;
3953 /* The type of BASE. */
3954 tree atype = TREE_TYPE (base);
3955 /* The type of an element in the array. */
3956 tree type = TREE_TYPE (atype);
3957 /* The element type reached after removing all outer array
3958 types. */
3959 tree inner_elt_type;
3960 /* The type of a pointer to an element in the array. */
3961 tree ptype;
3962 tree stmt_expr;
3963 tree compound_stmt;
3964 int destroy_temps;
3965 tree try_block = NULL_TREE;
3966 int num_initialized_elts = 0;
3967 bool is_global;
3968 tree obase = base;
3969 bool xvalue = false;
3970 bool errors = false;
3971 location_t loc = (init ? EXPR_LOC_OR_LOC (init, input_location)
3972 : location_of (base));
3973
3974 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3975 maxindex = array_type_nelts (atype);
3976
3977 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3978 return error_mark_node;
3979
3980 maxindex = maybe_constant_value (maxindex);
3981 if (explicit_value_init_p)
3982 gcc_assert (!init);
3983
3984 inner_elt_type = strip_array_types (type);
3985
3986 /* Look through the TARGET_EXPR around a compound literal. */
3987 if (init && TREE_CODE (init) == TARGET_EXPR
3988 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3989 && from_array != 2)
3990 init = TARGET_EXPR_INITIAL (init);
3991
3992 bool direct_init = false;
3993 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
3994 && CONSTRUCTOR_NELTS (init) == 1)
3995 {
3996 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
3997 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
3998 {
3999 direct_init = DIRECT_LIST_INIT_P (init);
4000 init = elt;
4001 }
4002 }
4003
4004 /* If we have a braced-init-list or string constant, make sure that the array
4005 is big enough for all the initializers. */
4006 bool length_check = (init
4007 && (TREE_CODE (init) == STRING_CST
4008 || (TREE_CODE (init) == CONSTRUCTOR
4009 && CONSTRUCTOR_NELTS (init) > 0))
4010 && !TREE_CONSTANT (maxindex));
4011
4012 if (init
4013 && TREE_CODE (atype) == ARRAY_TYPE
4014 && TREE_CONSTANT (maxindex)
4015 && (from_array == 2
4016 ? vec_copy_assign_is_trivial (inner_elt_type, init)
4017 : !TYPE_NEEDS_CONSTRUCTING (type))
4018 && ((TREE_CODE (init) == CONSTRUCTOR
4019 && (BRACE_ENCLOSED_INITIALIZER_P (init)
4020 || (same_type_ignoring_top_level_qualifiers_p
4021 (atype, TREE_TYPE (init))))
4022 /* Don't do this if the CONSTRUCTOR might contain something
4023 that might throw and require us to clean up. */
4024 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4025 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4026 || from_array))
4027 {
4028 /* Do non-default initialization of trivial arrays resulting from
4029 brace-enclosed initializers. In this case, digest_init and
4030 store_constructor will handle the semantics for us. */
4031
4032 if (BRACE_ENCLOSED_INITIALIZER_P (init))
4033 init = digest_init (atype, init, complain);
4034 stmt_expr = build2 (INIT_EXPR, atype, base, init);
4035 return stmt_expr;
4036 }
4037
4038 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4039 maxindex = fold_simple (maxindex);
4040
4041 if (TREE_CODE (atype) == ARRAY_TYPE)
4042 {
4043 ptype = build_pointer_type (type);
4044 base = decay_conversion (base, complain);
4045 if (base == error_mark_node)
4046 return error_mark_node;
4047 base = cp_convert (ptype, base, complain);
4048 }
4049 else
4050 ptype = atype;
4051
4052 /* The code we are generating looks like:
4053 ({
4054 T* t1 = (T*) base;
4055 T* rval = t1;
4056 ptrdiff_t iterator = maxindex;
4057 try {
4058 for (; iterator != -1; --iterator) {
4059 ... initialize *t1 ...
4060 ++t1;
4061 }
4062 } catch (...) {
4063 ... destroy elements that were constructed ...
4064 }
4065 rval;
4066 })
4067
4068 We can omit the try and catch blocks if we know that the
4069 initialization will never throw an exception, or if the array
4070 elements do not have destructors. We can omit the loop completely if
4071 the elements of the array do not have constructors.
4072
4073 We actually wrap the entire body of the above in a STMT_EXPR, for
4074 tidiness.
4075
4076 When copying from array to another, when the array elements have
4077 only trivial copy constructors, we should use __builtin_memcpy
4078 rather than generating a loop. That way, we could take advantage
4079 of whatever cleverness the back end has for dealing with copies
4080 of blocks of memory. */
4081
4082 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4083 destroy_temps = stmts_are_full_exprs_p ();
4084 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4085 rval = get_temp_regvar (ptype, base);
4086 base = get_temp_regvar (ptype, rval);
4087 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
4088
4089 /* If initializing one array from another, initialize element by
4090 element. We rely upon the below calls to do the argument
4091 checking. Evaluate the initializer before entering the try block. */
4092 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4093 {
4094 if (lvalue_kind (init) & clk_rvalueref)
4095 xvalue = true;
4096 base2 = decay_conversion (init, complain);
4097 if (base2 == error_mark_node)
4098 return error_mark_node;
4099 itype = TREE_TYPE (base2);
4100 base2 = get_temp_regvar (itype, base2);
4101 itype = TREE_TYPE (itype);
4102 }
4103
4104 /* Protect the entire array initialization so that we can destroy
4105 the partially constructed array if an exception is thrown.
4106 But don't do this if we're assigning. */
4107 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4108 && from_array != 2)
4109 {
4110 try_block = begin_try_block ();
4111 }
4112
4113 /* Should we try to create a constant initializer? */
4114 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4115 && TREE_CONSTANT (maxindex)
4116 && (init ? TREE_CODE (init) == CONSTRUCTOR
4117 : (type_has_constexpr_default_constructor
4118 (inner_elt_type)))
4119 && (literal_type_p (inner_elt_type)
4120 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4121 vec<constructor_elt, va_gc> *const_vec = NULL;
4122 bool saw_non_const = false;
4123 /* If we're initializing a static array, we want to do static
4124 initialization of any elements with constant initializers even if
4125 some are non-constant. */
4126 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4127
4128 bool empty_list = false;
4129 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4130 && CONSTRUCTOR_NELTS (init) == 0)
4131 /* Skip over the handling of non-empty init lists. */
4132 empty_list = true;
4133
4134 /* Maybe pull out constant value when from_array? */
4135
4136 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4137 {
4138 /* Do non-default initialization of non-trivial arrays resulting from
4139 brace-enclosed initializers. */
4140 unsigned HOST_WIDE_INT idx;
4141 tree field, elt;
4142 /* If the constructor already has the array type, it's been through
4143 digest_init, so we shouldn't try to do anything more. */
4144 bool digested = same_type_p (atype, TREE_TYPE (init));
4145 from_array = 0;
4146
4147 if (length_check)
4148 finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4149
4150 if (try_const)
4151 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4152
4153 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4154 {
4155 tree baseref = build1 (INDIRECT_REF, type, base);
4156 tree one_init;
4157
4158 num_initialized_elts++;
4159
4160 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4161 if (digested)
4162 one_init = build2 (INIT_EXPR, type, baseref, elt);
4163 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4164 one_init = build_aggr_init (baseref, elt, 0, complain);
4165 else
4166 one_init = cp_build_modify_expr (input_location, baseref,
4167 NOP_EXPR, elt, complain);
4168 if (one_init == error_mark_node)
4169 errors = true;
4170 if (try_const)
4171 {
4172 tree e = maybe_constant_init (one_init);
4173 if (reduced_constant_expression_p (e))
4174 {
4175 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4176 if (do_static_init)
4177 one_init = NULL_TREE;
4178 else
4179 one_init = build2 (INIT_EXPR, type, baseref, e);
4180 }
4181 else
4182 {
4183 if (do_static_init)
4184 {
4185 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4186 true);
4187 if (value)
4188 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4189 }
4190 saw_non_const = true;
4191 }
4192 }
4193
4194 if (one_init)
4195 finish_expr_stmt (one_init);
4196 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4197
4198 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4199 complain);
4200 if (one_init == error_mark_node)
4201 errors = true;
4202 else
4203 finish_expr_stmt (one_init);
4204
4205 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4206 complain);
4207 if (one_init == error_mark_node)
4208 errors = true;
4209 else
4210 finish_expr_stmt (one_init);
4211 }
4212
4213 /* Any elements without explicit initializers get T{}. */
4214 empty_list = true;
4215 }
4216 else if (init && TREE_CODE (init) == STRING_CST)
4217 {
4218 /* Check that the array is at least as long as the string. */
4219 if (length_check)
4220 finish_length_check (atype, iterator, obase,
4221 TREE_STRING_LENGTH (init));
4222 tree length = build_int_cst (ptrdiff_type_node,
4223 TREE_STRING_LENGTH (init));
4224
4225 /* Copy the string to the first part of the array. */
4226 tree alias_set = build_int_cst (build_pointer_type (type), 0);
4227 tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4228 tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4229 finish_expr_stmt (stmt);
4230
4231 /* Adjust the counter and pointer. */
4232 stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4233 stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4234 finish_expr_stmt (stmt);
4235
4236 stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4237 stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4238 finish_expr_stmt (stmt);
4239
4240 /* And set the rest of the array to NUL. */
4241 from_array = 0;
4242 explicit_value_init_p = true;
4243 }
4244 else if (from_array)
4245 {
4246 if (init)
4247 /* OK, we set base2 above. */;
4248 else if (CLASS_TYPE_P (type)
4249 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4250 {
4251 if (complain & tf_error)
4252 error ("initializer ends prematurely");
4253 errors = true;
4254 }
4255 }
4256
4257 /* Now, default-initialize any remaining elements. We don't need to
4258 do that if a) the type does not need constructing, or b) we've
4259 already initialized all the elements.
4260
4261 We do need to keep going if we're copying an array. */
4262
4263 if (try_const && !init)
4264 /* With a constexpr default constructor, which we checked for when
4265 setting try_const above, default-initialization is equivalent to
4266 value-initialization, and build_value_init gives us something more
4267 friendly to maybe_constant_init. */
4268 explicit_value_init_p = true;
4269 if (from_array
4270 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4271 && ! (tree_fits_shwi_p (maxindex)
4272 && (num_initialized_elts
4273 == tree_to_shwi (maxindex) + 1))))
4274 {
4275 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4276 we've already initialized all the elements. */
4277 tree for_stmt;
4278 tree elt_init;
4279 tree to;
4280
4281 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4282 finish_init_stmt (for_stmt);
4283 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4284 build_int_cst (TREE_TYPE (iterator), -1)),
4285 for_stmt, false);
4286 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4287 complain);
4288 if (elt_init == error_mark_node)
4289 errors = true;
4290 finish_for_expr (elt_init, for_stmt);
4291
4292 to = build1 (INDIRECT_REF, type, base);
4293
4294 /* If the initializer is {}, then all elements are initialized from T{}.
4295 But for non-classes, that's the same as value-initialization. */
4296 if (empty_list)
4297 {
4298 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4299 {
4300 init = build_constructor (init_list_type_node, NULL);
4301 }
4302 else
4303 {
4304 init = NULL_TREE;
4305 explicit_value_init_p = true;
4306 }
4307 }
4308
4309 if (from_array)
4310 {
4311 tree from;
4312
4313 if (base2)
4314 {
4315 from = build1 (INDIRECT_REF, itype, base2);
4316 if (xvalue)
4317 from = move (from);
4318 if (direct_init)
4319 from = build_tree_list (NULL_TREE, from);
4320 }
4321 else
4322 from = NULL_TREE;
4323
4324 if (from_array == 2)
4325 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4326 from, complain);
4327 else if (type_build_ctor_call (type))
4328 elt_init = build_aggr_init (to, from, 0, complain);
4329 else if (from)
4330 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4331 complain);
4332 else
4333 gcc_unreachable ();
4334 }
4335 else if (TREE_CODE (type) == ARRAY_TYPE)
4336 {
4337 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4338 sorry
4339 ("cannot initialize multi-dimensional array with initializer");
4340 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4341 0, init,
4342 explicit_value_init_p,
4343 0, complain);
4344 }
4345 else if (explicit_value_init_p)
4346 {
4347 elt_init = build_value_init (type, complain);
4348 if (elt_init != error_mark_node)
4349 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4350 }
4351 else
4352 {
4353 gcc_assert (type_build_ctor_call (type) || init);
4354 if (CLASS_TYPE_P (type))
4355 elt_init = build_aggr_init (to, init, 0, complain);
4356 else
4357 {
4358 if (TREE_CODE (init) == TREE_LIST)
4359 init = build_x_compound_expr_from_list (init, ELK_INIT,
4360 complain);
4361 elt_init = build2 (INIT_EXPR, type, to, init);
4362 }
4363 }
4364
4365 if (elt_init == error_mark_node)
4366 errors = true;
4367
4368 if (try_const)
4369 {
4370 /* FIXME refs to earlier elts */
4371 tree e = maybe_constant_init (elt_init);
4372 if (reduced_constant_expression_p (e))
4373 {
4374 if (initializer_zerop (e))
4375 /* Don't fill the CONSTRUCTOR with zeros. */
4376 e = NULL_TREE;
4377 if (do_static_init)
4378 elt_init = NULL_TREE;
4379 }
4380 else
4381 {
4382 saw_non_const = true;
4383 if (do_static_init)
4384 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4385 else
4386 e = NULL_TREE;
4387 }
4388
4389 if (e)
4390 {
4391 int max = tree_to_shwi (maxindex)+1;
4392 for (; num_initialized_elts < max; ++num_initialized_elts)
4393 {
4394 tree field = size_int (num_initialized_elts);
4395 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4396 }
4397 }
4398 }
4399
4400 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4401 if (elt_init)
4402 finish_expr_stmt (elt_init);
4403 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4404
4405 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4406 complain));
4407 if (base2)
4408 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4409 complain));
4410
4411 finish_for_stmt (for_stmt);
4412 }
4413
4414 /* Make sure to cleanup any partially constructed elements. */
4415 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4416 && from_array != 2)
4417 {
4418 tree e;
4419 tree m = cp_build_binary_op (input_location,
4420 MINUS_EXPR, maxindex, iterator,
4421 complain);
4422
4423 /* Flatten multi-dimensional array since build_vec_delete only
4424 expects one-dimensional array. */
4425 if (TREE_CODE (type) == ARRAY_TYPE)
4426 m = cp_build_binary_op (input_location,
4427 MULT_EXPR, m,
4428 /* Avoid mixing signed and unsigned. */
4429 convert (TREE_TYPE (m),
4430 array_type_nelts_total (type)),
4431 complain);
4432
4433 finish_cleanup_try_block (try_block);
4434 e = build_vec_delete_1 (rval, m,
4435 inner_elt_type, sfk_complete_destructor,
4436 /*use_global_delete=*/0, complain);
4437 if (e == error_mark_node)
4438 errors = true;
4439 finish_cleanup (e, try_block);
4440 }
4441
4442 /* The value of the array initialization is the array itself, RVAL
4443 is a pointer to the first element. */
4444 finish_stmt_expr_expr (rval, stmt_expr);
4445
4446 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4447
4448 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4449
4450 if (errors)
4451 return error_mark_node;
4452
4453 if (try_const)
4454 {
4455 if (!saw_non_const)
4456 {
4457 tree const_init = build_constructor (atype, const_vec);
4458 return build2 (INIT_EXPR, atype, obase, const_init);
4459 }
4460 else if (do_static_init && !vec_safe_is_empty (const_vec))
4461 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4462 else
4463 vec_free (const_vec);
4464 }
4465
4466 /* Now make the result have the correct type. */
4467 if (TREE_CODE (atype) == ARRAY_TYPE)
4468 {
4469 atype = build_pointer_type (atype);
4470 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4471 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
4472 TREE_NO_WARNING (stmt_expr) = 1;
4473 }
4474
4475 return stmt_expr;
4476 }
4477
4478 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4479 build_delete. */
4480
4481 static tree
4482 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4483 tsubst_flags_t complain)
4484 {
4485 tree name;
4486 tree fn;
4487 switch (dtor_kind)
4488 {
4489 case sfk_complete_destructor:
4490 name = complete_dtor_identifier;
4491 break;
4492
4493 case sfk_base_destructor:
4494 name = base_dtor_identifier;
4495 break;
4496
4497 case sfk_deleting_destructor:
4498 name = deleting_dtor_identifier;
4499 break;
4500
4501 default:
4502 gcc_unreachable ();
4503 }
4504 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
4505 return build_new_method_call (exp, fn,
4506 /*args=*/NULL,
4507 /*conversion_path=*/NULL_TREE,
4508 flags,
4509 /*fn_p=*/NULL,
4510 complain);
4511 }
4512
4513 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4514 ADDR is an expression which yields the store to be destroyed.
4515 AUTO_DELETE is the name of the destructor to call, i.e., either
4516 sfk_complete_destructor, sfk_base_destructor, or
4517 sfk_deleting_destructor.
4518
4519 FLAGS is the logical disjunction of zero or more LOOKUP_
4520 flags. See cp-tree.h for more info. */
4521
4522 tree
4523 build_delete (tree otype, tree addr, special_function_kind auto_delete,
4524 int flags, int use_global_delete, tsubst_flags_t complain)
4525 {
4526 tree expr;
4527
4528 if (addr == error_mark_node)
4529 return error_mark_node;
4530
4531 tree type = TYPE_MAIN_VARIANT (otype);
4532
4533 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4534 set to `error_mark_node' before it gets properly cleaned up. */
4535 if (type == error_mark_node)
4536 return error_mark_node;
4537
4538 if (TREE_CODE (type) == POINTER_TYPE)
4539 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4540
4541 if (TREE_CODE (type) == ARRAY_TYPE)
4542 {
4543 if (TYPE_DOMAIN (type) == NULL_TREE)
4544 {
4545 if (complain & tf_error)
4546 error ("unknown array size in delete");
4547 return error_mark_node;
4548 }
4549 return build_vec_delete (addr, array_type_nelts (type),
4550 auto_delete, use_global_delete, complain);
4551 }
4552
4553 if (TYPE_PTR_P (otype))
4554 {
4555 addr = mark_rvalue_use (addr);
4556
4557 /* We don't want to warn about delete of void*, only other
4558 incomplete types. Deleting other incomplete types
4559 invokes undefined behavior, but it is not ill-formed, so
4560 compile to something that would even do The Right Thing
4561 (TM) should the type have a trivial dtor and no delete
4562 operator. */
4563 if (!VOID_TYPE_P (type))
4564 {
4565 complete_type (type);
4566 if (!COMPLETE_TYPE_P (type))
4567 {
4568 if ((complain & tf_warning)
4569 && warning (OPT_Wdelete_incomplete,
4570 "possible problem detected in invocation of "
4571 "delete operator:"))
4572 {
4573 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4574 inform (input_location,
4575 "neither the destructor nor the class-specific "
4576 "operator delete will be called, even if they are "
4577 "declared when the class is defined");
4578 }
4579 }
4580 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4581 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4582 && TYPE_POLYMORPHIC_P (type))
4583 {
4584 tree dtor;
4585 dtor = CLASSTYPE_DESTRUCTORS (type);
4586 if (!dtor || !DECL_VINDEX (dtor))
4587 {
4588 if (CLASSTYPE_PURE_VIRTUALS (type))
4589 warning (OPT_Wdelete_non_virtual_dtor,
4590 "deleting object of abstract class type %qT"
4591 " which has non-virtual destructor"
4592 " will cause undefined behavior", type);
4593 else
4594 warning (OPT_Wdelete_non_virtual_dtor,
4595 "deleting object of polymorphic class type %qT"
4596 " which has non-virtual destructor"
4597 " might cause undefined behavior", type);
4598 }
4599 }
4600 }
4601 if (TREE_SIDE_EFFECTS (addr))
4602 addr = save_expr (addr);
4603
4604 /* Throw away const and volatile on target type of addr. */
4605 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4606 }
4607 else
4608 {
4609 /* Don't check PROTECT here; leave that decision to the
4610 destructor. If the destructor is accessible, call it,
4611 else report error. */
4612 addr = cp_build_addr_expr (addr, complain);
4613 if (addr == error_mark_node)
4614 return error_mark_node;
4615 if (TREE_SIDE_EFFECTS (addr))
4616 addr = save_expr (addr);
4617
4618 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4619 }
4620
4621 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4622 {
4623 /* Make sure the destructor is callable. */
4624 if (type_build_dtor_call (type))
4625 {
4626 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4627 complain),
4628 sfk_complete_destructor, flags, complain);
4629 if (expr == error_mark_node)
4630 return error_mark_node;
4631 }
4632
4633 if (auto_delete != sfk_deleting_destructor)
4634 return void_node;
4635
4636 return build_op_delete_call (DELETE_EXPR, addr,
4637 cxx_sizeof_nowarn (type),
4638 use_global_delete,
4639 /*placement=*/NULL_TREE,
4640 /*alloc_fn=*/NULL_TREE,
4641 complain);
4642 }
4643 else
4644 {
4645 tree head = NULL_TREE;
4646 tree do_delete = NULL_TREE;
4647 tree ifexp;
4648
4649 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4650 lazily_declare_fn (sfk_destructor, type);
4651
4652 /* For `::delete x', we must not use the deleting destructor
4653 since then we would not be sure to get the global `operator
4654 delete'. */
4655 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4656 {
4657 /* We will use ADDR multiple times so we must save it. */
4658 addr = save_expr (addr);
4659 head = get_target_expr (build_headof (addr));
4660 /* Delete the object. */
4661 do_delete = build_op_delete_call (DELETE_EXPR,
4662 head,
4663 cxx_sizeof_nowarn (type),
4664 /*global_p=*/true,
4665 /*placement=*/NULL_TREE,
4666 /*alloc_fn=*/NULL_TREE,
4667 complain);
4668 /* Otherwise, treat this like a complete object destructor
4669 call. */
4670 auto_delete = sfk_complete_destructor;
4671 }
4672 /* If the destructor is non-virtual, there is no deleting
4673 variant. Instead, we must explicitly call the appropriate
4674 `operator delete' here. */
4675 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4676 && auto_delete == sfk_deleting_destructor)
4677 {
4678 /* We will use ADDR multiple times so we must save it. */
4679 addr = save_expr (addr);
4680 /* Build the call. */
4681 do_delete = build_op_delete_call (DELETE_EXPR,
4682 addr,
4683 cxx_sizeof_nowarn (type),
4684 /*global_p=*/false,
4685 /*placement=*/NULL_TREE,
4686 /*alloc_fn=*/NULL_TREE,
4687 complain);
4688 /* Call the complete object destructor. */
4689 auto_delete = sfk_complete_destructor;
4690 }
4691 else if (auto_delete == sfk_deleting_destructor
4692 && TYPE_GETS_REG_DELETE (type))
4693 {
4694 /* Make sure we have access to the member op delete, even though
4695 we'll actually be calling it from the destructor. */
4696 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4697 /*global_p=*/false,
4698 /*placement=*/NULL_TREE,
4699 /*alloc_fn=*/NULL_TREE,
4700 complain);
4701 }
4702
4703 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4704 auto_delete, flags, complain);
4705 if (expr == error_mark_node)
4706 return error_mark_node;
4707 if (do_delete)
4708 /* The delete operator must be called, regardless of whether
4709 the destructor throws.
4710
4711 [expr.delete]/7 The deallocation function is called
4712 regardless of whether the destructor for the object or some
4713 element of the array throws an exception. */
4714 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4715
4716 /* We need to calculate this before the dtor changes the vptr. */
4717 if (head)
4718 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4719
4720 if (flags & LOOKUP_DESTRUCTOR)
4721 /* Explicit destructor call; don't check for null pointer. */
4722 ifexp = integer_one_node;
4723 else
4724 {
4725 /* Handle deleting a null pointer. */
4726 warning_sentinel s (warn_address);
4727 ifexp = cp_build_binary_op (input_location, NE_EXPR, addr,
4728 nullptr_node, complain);
4729 if (ifexp == error_mark_node)
4730 return error_mark_node;
4731 /* This is a compiler generated comparison, don't emit
4732 e.g. -Wnonnull-compare warning for it. */
4733 else if (TREE_CODE (ifexp) == NE_EXPR)
4734 TREE_NO_WARNING (ifexp) = 1;
4735 }
4736
4737 if (ifexp != integer_one_node)
4738 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4739
4740 return expr;
4741 }
4742 }
4743
4744 /* At the beginning of a destructor, push cleanups that will call the
4745 destructors for our base classes and members.
4746
4747 Called from begin_destructor_body. */
4748
4749 void
4750 push_base_cleanups (void)
4751 {
4752 tree binfo, base_binfo;
4753 int i;
4754 tree member;
4755 tree expr;
4756 vec<tree, va_gc> *vbases;
4757
4758 /* Run destructors for all virtual baseclasses. */
4759 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
4760 && CLASSTYPE_VBASECLASSES (current_class_type))
4761 {
4762 tree cond = (condition_conversion
4763 (build2 (BIT_AND_EXPR, integer_type_node,
4764 current_in_charge_parm,
4765 integer_two_node)));
4766
4767 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4768 order, which is also the right order for pushing cleanups. */
4769 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4770 vec_safe_iterate (vbases, i, &base_binfo); i++)
4771 {
4772 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4773 {
4774 expr = build_special_member_call (current_class_ref,
4775 base_dtor_identifier,
4776 NULL,
4777 base_binfo,
4778 (LOOKUP_NORMAL
4779 | LOOKUP_NONVIRTUAL),
4780 tf_warning_or_error);
4781 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4782 {
4783 expr = build3 (COND_EXPR, void_type_node, cond,
4784 expr, void_node);
4785 finish_decl_cleanup (NULL_TREE, expr);
4786 }
4787 }
4788 }
4789 }
4790
4791 /* Take care of the remaining baseclasses. */
4792 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4793 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4794 {
4795 if (BINFO_VIRTUAL_P (base_binfo)
4796 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4797 continue;
4798
4799 expr = build_special_member_call (current_class_ref,
4800 base_dtor_identifier,
4801 NULL, base_binfo,
4802 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4803 tf_warning_or_error);
4804 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4805 finish_decl_cleanup (NULL_TREE, expr);
4806 }
4807
4808 /* Don't automatically destroy union members. */
4809 if (TREE_CODE (current_class_type) == UNION_TYPE)
4810 return;
4811
4812 for (member = TYPE_FIELDS (current_class_type); member;
4813 member = DECL_CHAIN (member))
4814 {
4815 tree this_type = TREE_TYPE (member);
4816 if (this_type == error_mark_node
4817 || TREE_CODE (member) != FIELD_DECL
4818 || DECL_ARTIFICIAL (member))
4819 continue;
4820 if (ANON_AGGR_TYPE_P (this_type))
4821 continue;
4822 if (type_build_dtor_call (this_type))
4823 {
4824 tree this_member = (build_class_member_access_expr
4825 (current_class_ref, member,
4826 /*access_path=*/NULL_TREE,
4827 /*preserve_reference=*/false,
4828 tf_warning_or_error));
4829 expr = build_delete (this_type, this_member,
4830 sfk_complete_destructor,
4831 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4832 0, tf_warning_or_error);
4833 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4834 finish_decl_cleanup (NULL_TREE, expr);
4835 }
4836 }
4837 }
4838
4839 /* Build a C++ vector delete expression.
4840 MAXINDEX is the number of elements to be deleted.
4841 ELT_SIZE is the nominal size of each element in the vector.
4842 BASE is the expression that should yield the store to be deleted.
4843 This function expands (or synthesizes) these calls itself.
4844 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4845
4846 This also calls delete for virtual baseclasses of elements of the vector.
4847
4848 Update: MAXINDEX is no longer needed. The size can be extracted from the
4849 start of the vector for pointers, and from the type for arrays. We still
4850 use MAXINDEX for arrays because it happens to already have one of the
4851 values we'd have to extract. (We could use MAXINDEX with pointers to
4852 confirm the size, and trap if the numbers differ; not clear that it'd
4853 be worth bothering.) */
4854
4855 tree
4856 build_vec_delete (tree base, tree maxindex,
4857 special_function_kind auto_delete_vec,
4858 int use_global_delete, tsubst_flags_t complain)
4859 {
4860 tree type;
4861 tree rval;
4862 tree base_init = NULL_TREE;
4863
4864 type = TREE_TYPE (base);
4865
4866 if (TYPE_PTR_P (type))
4867 {
4868 /* Step back one from start of vector, and read dimension. */
4869 tree cookie_addr;
4870 tree size_ptr_type = build_pointer_type (sizetype);
4871
4872 base = mark_rvalue_use (base);
4873 if (TREE_SIDE_EFFECTS (base))
4874 {
4875 base_init = get_target_expr (base);
4876 base = TARGET_EXPR_SLOT (base_init);
4877 }
4878 type = strip_array_types (TREE_TYPE (type));
4879 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4880 sizetype, TYPE_SIZE_UNIT (sizetype));
4881 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4882 cookie_addr);
4883 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4884 }
4885 else if (TREE_CODE (type) == ARRAY_TYPE)
4886 {
4887 /* Get the total number of things in the array, maxindex is a
4888 bad name. */
4889 maxindex = array_type_nelts_total (type);
4890 type = strip_array_types (type);
4891 base = decay_conversion (base, complain);
4892 if (base == error_mark_node)
4893 return error_mark_node;
4894 if (TREE_SIDE_EFFECTS (base))
4895 {
4896 base_init = get_target_expr (base);
4897 base = TARGET_EXPR_SLOT (base_init);
4898 }
4899 }
4900 else
4901 {
4902 if (base != error_mark_node && !(complain & tf_error))
4903 error ("type to vector delete is neither pointer or array type");
4904 return error_mark_node;
4905 }
4906
4907 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4908 use_global_delete, complain);
4909 if (base_init && rval != error_mark_node)
4910 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4911
4912 return rval;
4913 }