Update copyright years.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "asan.h"
36 #include "stor-layout.h"
37
38 static bool begin_init_stmts (tree *, tree *);
39 static tree finish_init_stmts (bool, tree, tree);
40 static void construct_virtual_base (tree, tree);
41 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
42 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void perform_member_init (tree, tree);
44 static int member_init_ok_or_else (tree, tree, tree);
45 static void expand_virtual_init (tree, tree);
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context (tree);
48 static void expand_cleanup_for_base (tree, tree);
49 static tree dfs_initialize_vtbl_ptrs (tree, void *);
50 static tree build_field_list (tree, tree, int *);
51 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
52
53 static GTY(()) tree fn;
54
55 /* We are about to generate some complex initialization code.
56 Conceptually, it is all a single expression. However, we may want
57 to include conditionals, loops, and other such statement-level
58 constructs. Therefore, we build the initialization code inside a
59 statement-expression. This function starts such an expression.
60 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
61 pass them back to finish_init_stmts when the expression is
62 complete. */
63
64 static bool
65 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
66 {
67 bool is_global = !building_stmt_list_p ();
68
69 *stmt_expr_p = begin_stmt_expr ();
70 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
71
72 return is_global;
73 }
74
75 /* Finish out the statement-expression begun by the previous call to
76 begin_init_stmts. Returns the statement-expression itself. */
77
78 static tree
79 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
80 {
81 finish_compound_stmt (compound_stmt);
82
83 stmt_expr = finish_stmt_expr (stmt_expr, true);
84
85 gcc_assert (!building_stmt_list_p () == is_global);
86
87 return stmt_expr;
88 }
89
90 /* Constructors */
91
92 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
93 which we want to initialize the vtable pointer for, DATA is
94 TREE_LIST whose TREE_VALUE is the this ptr expression. */
95
96 static tree
97 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
98 {
99 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
100 return dfs_skip_bases;
101
102 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
103 {
104 tree base_ptr = TREE_VALUE ((tree) data);
105
106 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
107 tf_warning_or_error);
108
109 expand_virtual_init (binfo, base_ptr);
110 }
111
112 return NULL_TREE;
113 }
114
115 /* Initialize all the vtable pointers in the object pointed to by
116 ADDR. */
117
118 void
119 initialize_vtbl_ptrs (tree addr)
120 {
121 tree list;
122 tree type;
123
124 type = TREE_TYPE (TREE_TYPE (addr));
125 list = build_tree_list (type, addr);
126
127 /* Walk through the hierarchy, initializing the vptr in each base
128 class. We do these in pre-order because we can't find the virtual
129 bases for a class until we've initialized the vtbl for that
130 class. */
131 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
132 }
133
134 /* Return an expression for the zero-initialization of an object with
135 type T. This expression will either be a constant (in the case
136 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
137 aggregate), or NULL (in the case that T does not require
138 initialization). In either case, the value can be used as
139 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
140 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
141 is the number of elements in the array. If STATIC_STORAGE_P is
142 TRUE, initializers are only generated for entities for which
143 zero-initialization does not simply mean filling the storage with
144 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
145 subfields with bit positions at or above that bit size shouldn't
146 be added. Note that this only works when the result is assigned
147 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
148 expand_assignment will end up clearing the full size of TYPE. */
149
150 static tree
151 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
152 tree field_size)
153 {
154 tree init = NULL_TREE;
155
156 /* [dcl.init]
157
158 To zero-initialize an object of type T means:
159
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
162
163 -- if T is a non-union class type, the storage for each nonstatic
164 data member and each base-class subobject is zero-initialized.
165
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
168
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
171
172 -- if T is a reference type, no initialization is performed. */
173
174 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
175
176 if (type == error_mark_node)
177 ;
178 else if (static_storage_p && zero_init_p (type))
179 /* In order to save space, we do not explicitly build initializers
180 for items that do not need them. GCC's semantics are that
181 items with static storage duration that are not otherwise
182 initialized are initialized to zero. */
183 ;
184 else if (TYPE_PTR_OR_PTRMEM_P (type))
185 init = fold (convert (type, nullptr_node));
186 else if (NULLPTR_TYPE_P (type))
187 init = build_int_cst (type, 0);
188 else if (SCALAR_TYPE_P (type))
189 init = fold (convert (type, integer_zero_node));
190 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
191 {
192 tree field;
193 vec<constructor_elt, va_gc> *v = NULL;
194
195 /* Iterate over the fields, building initializations. */
196 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
197 {
198 if (TREE_CODE (field) != FIELD_DECL)
199 continue;
200
201 if (TREE_TYPE (field) == error_mark_node)
202 continue;
203
204 /* Don't add virtual bases for base classes if they are beyond
205 the size of the current field, that means it is present
206 somewhere else in the object. */
207 if (field_size)
208 {
209 tree bitpos = bit_position (field);
210 if (TREE_CODE (bitpos) == INTEGER_CST
211 && !tree_int_cst_lt (bitpos, field_size))
212 continue;
213 }
214
215 /* Note that for class types there will be FIELD_DECLs
216 corresponding to base classes as well. Thus, iterating
217 over TYPE_FIELDs will result in correct initialization of
218 all of the subobjects. */
219 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
220 {
221 tree new_field_size
222 = (DECL_FIELD_IS_BASE (field)
223 && DECL_SIZE (field)
224 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
225 ? DECL_SIZE (field) : NULL_TREE;
226 tree value = build_zero_init_1 (TREE_TYPE (field),
227 /*nelts=*/NULL_TREE,
228 static_storage_p,
229 new_field_size);
230 if (value)
231 CONSTRUCTOR_APPEND_ELT(v, field, value);
232 }
233
234 /* For unions, only the first field is initialized. */
235 if (TREE_CODE (type) == UNION_TYPE)
236 break;
237 }
238
239 /* Build a constructor to contain the initializations. */
240 init = build_constructor (type, v);
241 }
242 else if (TREE_CODE (type) == ARRAY_TYPE)
243 {
244 tree max_index;
245 vec<constructor_elt, va_gc> *v = NULL;
246
247 /* Iterate over the array elements, building initializations. */
248 if (nelts)
249 max_index = fold_build2_loc (input_location,
250 MINUS_EXPR, TREE_TYPE (nelts),
251 nelts, integer_one_node);
252 else
253 max_index = array_type_nelts (type);
254
255 /* If we have an error_mark here, we should just return error mark
256 as we don't know the size of the array yet. */
257 if (max_index == error_mark_node)
258 return error_mark_node;
259 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
260
261 /* A zero-sized array, which is accepted as an extension, will
262 have an upper bound of -1. */
263 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
264 {
265 constructor_elt ce;
266
267 /* If this is a one element array, we just use a regular init. */
268 if (tree_int_cst_equal (size_zero_node, max_index))
269 ce.index = size_zero_node;
270 else
271 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
272 max_index);
273
274 ce.value = build_zero_init_1 (TREE_TYPE (type),
275 /*nelts=*/NULL_TREE,
276 static_storage_p, NULL_TREE);
277 if (ce.value)
278 {
279 vec_alloc (v, 1);
280 v->quick_push (ce);
281 }
282 }
283
284 /* Build a constructor to contain the initializations. */
285 init = build_constructor (type, v);
286 }
287 else if (VECTOR_TYPE_P (type))
288 init = build_zero_cst (type);
289 else
290 {
291 gcc_assert (TYPE_REF_P (type));
292 init = build_zero_cst (type);
293 }
294
295 /* In all cases, the initializer is a constant. */
296 if (init)
297 TREE_CONSTANT (init) = 1;
298
299 return init;
300 }
301
302 /* Return an expression for the zero-initialization of an object with
303 type T. This expression will either be a constant (in the case
304 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
305 aggregate), or NULL (in the case that T does not require
306 initialization). In either case, the value can be used as
307 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
308 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
309 is the number of elements in the array. If STATIC_STORAGE_P is
310 TRUE, initializers are only generated for entities for which
311 zero-initialization does not simply mean filling the storage with
312 zero bytes. */
313
314 tree
315 build_zero_init (tree type, tree nelts, bool static_storage_p)
316 {
317 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
318 }
319
320 /* Return a suitable initializer for value-initializing an object of type
321 TYPE, as described in [dcl.init]. */
322
323 tree
324 build_value_init (tree type, tsubst_flags_t complain)
325 {
326 /* [dcl.init]
327
328 To value-initialize an object of type T means:
329
330 - if T is a class type (clause 9) with either no default constructor
331 (12.1) or a default constructor that is user-provided or deleted,
332 then the object is default-initialized;
333
334 - if T is a (possibly cv-qualified) class type without a user-provided
335 or deleted default constructor, then the object is zero-initialized
336 and the semantic constraints for default-initialization are checked,
337 and if T has a non-trivial default constructor, the object is
338 default-initialized;
339
340 - if T is an array type, then each element is value-initialized;
341
342 - otherwise, the object is zero-initialized.
343
344 A program that calls for default-initialization or
345 value-initialization of an entity of reference type is ill-formed. */
346
347 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
348 gcc_assert (!processing_template_decl
349 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
350
351 if (CLASS_TYPE_P (type) && type_build_ctor_call (type))
352 {
353 tree ctor
354 = build_special_member_call (NULL_TREE, complete_ctor_identifier,
355 NULL, type, LOOKUP_NORMAL, complain);
356 if (ctor == error_mark_node || TREE_CONSTANT (ctor))
357 return ctor;
358 tree fn = NULL_TREE;
359 if (TREE_CODE (ctor) == CALL_EXPR)
360 fn = get_callee_fndecl (ctor);
361 ctor = build_aggr_init_expr (type, ctor);
362 if (fn && user_provided_p (fn))
363 return ctor;
364 else if (TYPE_HAS_COMPLEX_DFLT (type))
365 {
366 /* This is a class that needs constructing, but doesn't have
367 a user-provided constructor. So we need to zero-initialize
368 the object and then call the implicitly defined ctor.
369 This will be handled in simplify_aggr_init_expr. */
370 AGGR_INIT_ZERO_FIRST (ctor) = 1;
371 return ctor;
372 }
373 }
374
375 /* Discard any access checking during subobject initialization;
376 the checks are implied by the call to the ctor which we have
377 verified is OK (cpp0x/defaulted46.C). */
378 push_deferring_access_checks (dk_deferred);
379 tree r = build_value_init_noctor (type, complain);
380 pop_deferring_access_checks ();
381 return r;
382 }
383
384 /* Like build_value_init, but don't call the constructor for TYPE. Used
385 for base initializers. */
386
387 tree
388 build_value_init_noctor (tree type, tsubst_flags_t complain)
389 {
390 if (!COMPLETE_TYPE_P (type))
391 {
392 if (complain & tf_error)
393 error ("value-initialization of incomplete type %qT", type);
394 return error_mark_node;
395 }
396 /* FIXME the class and array cases should just use digest_init once it is
397 SFINAE-enabled. */
398 if (CLASS_TYPE_P (type))
399 {
400 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
401 || errorcount != 0);
402
403 if (TREE_CODE (type) != UNION_TYPE)
404 {
405 tree field;
406 vec<constructor_elt, va_gc> *v = NULL;
407
408 /* Iterate over the fields, building initializations. */
409 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
410 {
411 tree ftype, value;
412
413 if (TREE_CODE (field) != FIELD_DECL)
414 continue;
415
416 ftype = TREE_TYPE (field);
417
418 if (ftype == error_mark_node)
419 continue;
420
421 /* Ignore flexible array members for value initialization. */
422 if (TREE_CODE (ftype) == ARRAY_TYPE
423 && !COMPLETE_TYPE_P (ftype)
424 && !TYPE_DOMAIN (ftype)
425 && COMPLETE_TYPE_P (TREE_TYPE (ftype))
426 && (next_initializable_field (DECL_CHAIN (field))
427 == NULL_TREE))
428 continue;
429
430 /* We could skip vfields and fields of types with
431 user-defined constructors, but I think that won't improve
432 performance at all; it should be simpler in general just
433 to zero out the entire object than try to only zero the
434 bits that actually need it. */
435
436 /* Note that for class types there will be FIELD_DECLs
437 corresponding to base classes as well. Thus, iterating
438 over TYPE_FIELDs will result in correct initialization of
439 all of the subobjects. */
440 value = build_value_init (ftype, complain);
441 value = maybe_constant_init (value);
442
443 if (value == error_mark_node)
444 return error_mark_node;
445
446 CONSTRUCTOR_APPEND_ELT(v, field, value);
447
448 /* We shouldn't have gotten here for anything that would need
449 non-trivial initialization, and gimplify_init_ctor_preeval
450 would need to be fixed to allow it. */
451 gcc_assert (TREE_CODE (value) != TARGET_EXPR
452 && TREE_CODE (value) != AGGR_INIT_EXPR);
453 }
454
455 /* Build a constructor to contain the zero- initializations. */
456 return build_constructor (type, v);
457 }
458 }
459 else if (TREE_CODE (type) == ARRAY_TYPE)
460 {
461 vec<constructor_elt, va_gc> *v = NULL;
462
463 /* Iterate over the array elements, building initializations. */
464 tree max_index = array_type_nelts (type);
465
466 /* If we have an error_mark here, we should just return error mark
467 as we don't know the size of the array yet. */
468 if (max_index == error_mark_node)
469 {
470 if (complain & tf_error)
471 error ("cannot value-initialize array of unknown bound %qT",
472 type);
473 return error_mark_node;
474 }
475 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
476
477 /* A zero-sized array, which is accepted as an extension, will
478 have an upper bound of -1. */
479 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
480 {
481 constructor_elt ce;
482
483 /* If this is a one element array, we just use a regular init. */
484 if (tree_int_cst_equal (size_zero_node, max_index))
485 ce.index = size_zero_node;
486 else
487 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
488
489 ce.value = build_value_init (TREE_TYPE (type), complain);
490 ce.value = maybe_constant_init (ce.value);
491 if (ce.value == error_mark_node)
492 return error_mark_node;
493
494 vec_alloc (v, 1);
495 v->quick_push (ce);
496
497 /* We shouldn't have gotten here for anything that would need
498 non-trivial initialization, and gimplify_init_ctor_preeval
499 would need to be fixed to allow it. */
500 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
501 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
502 }
503
504 /* Build a constructor to contain the initializations. */
505 return build_constructor (type, v);
506 }
507 else if (TREE_CODE (type) == FUNCTION_TYPE)
508 {
509 if (complain & tf_error)
510 error ("value-initialization of function type %qT", type);
511 return error_mark_node;
512 }
513 else if (TYPE_REF_P (type))
514 {
515 if (complain & tf_error)
516 error ("value-initialization of reference type %qT", type);
517 return error_mark_node;
518 }
519
520 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
521 }
522
523 /* Initialize current class with INIT, a TREE_LIST of
524 arguments for a target constructor. If TREE_LIST is void_type_node,
525 an empty initializer list was given. */
526
527 static void
528 perform_target_ctor (tree init)
529 {
530 tree decl = current_class_ref;
531 tree type = current_class_type;
532
533 finish_expr_stmt (build_aggr_init (decl, init,
534 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
535 tf_warning_or_error));
536 if (type_build_dtor_call (type))
537 {
538 tree expr = build_delete (input_location,
539 type, decl, sfk_complete_destructor,
540 LOOKUP_NORMAL
541 |LOOKUP_NONVIRTUAL
542 |LOOKUP_DESTRUCTOR,
543 0, tf_warning_or_error);
544 if (expr != error_mark_node
545 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
546 finish_eh_cleanup (expr);
547 }
548 }
549
550 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
551
552 static GTY((cache)) decl_tree_cache_map *nsdmi_inst;
553
554 tree
555 get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain)
556 {
557 tree init;
558 tree save_ccp = current_class_ptr;
559 tree save_ccr = current_class_ref;
560
561 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
562 {
563 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
564 location_t expr_loc
565 = cp_expr_loc_or_loc (init, DECL_SOURCE_LOCATION (member));
566 if (TREE_CODE (init) == DEFERRED_PARSE)
567 /* Unparsed. */;
568 else if (tree *slot = hash_map_safe_get (nsdmi_inst, member))
569 init = *slot;
570 /* Check recursive instantiation. */
571 else if (DECL_INSTANTIATING_NSDMI_P (member))
572 {
573 if (complain & tf_error)
574 error_at (expr_loc, "recursive instantiation of default member "
575 "initializer for %qD", member);
576 init = error_mark_node;
577 }
578 else
579 {
580 cp_evaluated ev;
581
582 location_t sloc = input_location;
583 input_location = expr_loc;
584
585 DECL_INSTANTIATING_NSDMI_P (member) = 1;
586
587 bool pushed = false;
588 if (!currently_open_class (DECL_CONTEXT (member)))
589 {
590 push_to_top_level ();
591 push_nested_class (DECL_CONTEXT (member));
592 pushed = true;
593 }
594
595 gcc_checking_assert (!processing_template_decl);
596
597 inject_this_parameter (DECL_CONTEXT (member), TYPE_UNQUALIFIED);
598
599 start_lambda_scope (member);
600
601 /* Do deferred instantiation of the NSDMI. */
602 init = (tsubst_copy_and_build
603 (init, DECL_TI_ARGS (member),
604 complain, member, /*function_p=*/false,
605 /*integral_constant_expression_p=*/false));
606 init = digest_nsdmi_init (member, init, complain);
607
608 finish_lambda_scope ();
609
610 DECL_INSTANTIATING_NSDMI_P (member) = 0;
611
612 if (init != error_mark_node)
613 hash_map_safe_put<hm_ggc> (nsdmi_inst, member, init);
614
615 if (pushed)
616 {
617 pop_nested_class ();
618 pop_from_top_level ();
619 }
620
621 input_location = sloc;
622 }
623 }
624 else
625 init = DECL_INITIAL (member);
626
627 if (init && TREE_CODE (init) == DEFERRED_PARSE)
628 {
629 if (complain & tf_error)
630 {
631 error ("default member initializer for %qD required before the end "
632 "of its enclosing class", member);
633 inform (location_of (init), "defined here");
634 DECL_INITIAL (member) = error_mark_node;
635 }
636 init = error_mark_node;
637 }
638
639 if (in_ctor)
640 {
641 current_class_ptr = save_ccp;
642 current_class_ref = save_ccr;
643 }
644 else
645 {
646 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
647 refer to; constexpr evaluation knows what to do with it. */
648 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
649 current_class_ptr = build_address (current_class_ref);
650 }
651
652 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
653 so the aggregate init code below will see a CONSTRUCTOR. */
654 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
655 if (simple_target)
656 init = TARGET_EXPR_INITIAL (init);
657 init = break_out_target_exprs (init, /*loc*/true);
658 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
659 /* Now put it back so C++17 copy elision works. */
660 init = get_target_expr (init);
661
662 current_class_ptr = save_ccp;
663 current_class_ref = save_ccr;
664 return init;
665 }
666
667 /* Diagnose the flexible array MEMBER if its INITializer is non-null
668 and return true if so. Otherwise return false. */
669
670 bool
671 maybe_reject_flexarray_init (tree member, tree init)
672 {
673 tree type = TREE_TYPE (member);
674
675 if (!init
676 || TREE_CODE (type) != ARRAY_TYPE
677 || TYPE_DOMAIN (type))
678 return false;
679
680 /* Point at the flexible array member declaration if it's initialized
681 in-class, and at the ctor if it's initialized in a ctor member
682 initializer list. */
683 location_t loc;
684 if (DECL_INITIAL (member) == init
685 || !current_function_decl
686 || DECL_DEFAULTED_FN (current_function_decl))
687 loc = DECL_SOURCE_LOCATION (member);
688 else
689 loc = DECL_SOURCE_LOCATION (current_function_decl);
690
691 error_at (loc, "initializer for flexible array member %q#D", member);
692 return true;
693 }
694
695 /* If INIT's value can come from a call to std::initializer_list<T>::begin,
696 return that function. Otherwise, NULL_TREE. */
697
698 static tree
699 find_list_begin (tree init)
700 {
701 STRIP_NOPS (init);
702 while (TREE_CODE (init) == COMPOUND_EXPR)
703 init = TREE_OPERAND (init, 1);
704 STRIP_NOPS (init);
705 if (TREE_CODE (init) == COND_EXPR)
706 {
707 tree left = TREE_OPERAND (init, 1);
708 if (!left)
709 left = TREE_OPERAND (init, 0);
710 left = find_list_begin (left);
711 if (left)
712 return left;
713 return find_list_begin (TREE_OPERAND (init, 2));
714 }
715 if (TREE_CODE (init) == CALL_EXPR)
716 if (tree fn = get_callee_fndecl (init))
717 if (id_equal (DECL_NAME (fn), "begin")
718 && is_std_init_list (DECL_CONTEXT (fn)))
719 return fn;
720 return NULL_TREE;
721 }
722
723 /* If INIT initializing MEMBER is copying the address of the underlying array
724 of an initializer_list, warn. */
725
726 static void
727 maybe_warn_list_ctor (tree member, tree init)
728 {
729 tree memtype = TREE_TYPE (member);
730 if (!init || !TYPE_PTR_P (memtype)
731 || !is_list_ctor (current_function_decl))
732 return;
733
734 tree parms = FUNCTION_FIRST_USER_PARMTYPE (current_function_decl);
735 tree initlist = non_reference (TREE_VALUE (parms));
736 tree targs = CLASSTYPE_TI_ARGS (initlist);
737 tree elttype = TREE_VEC_ELT (targs, 0);
738
739 if (!same_type_ignoring_top_level_qualifiers_p
740 (TREE_TYPE (memtype), elttype))
741 return;
742
743 tree begin = find_list_begin (init);
744 if (!begin)
745 return;
746
747 location_t loc = cp_expr_loc_or_input_loc (init);
748 warning_at (loc, OPT_Winit_list_lifetime,
749 "initializing %qD from %qE does not extend the lifetime "
750 "of the underlying array", member, begin);
751 }
752
753 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
754 arguments. If TREE_LIST is void_type_node, an empty initializer
755 list was given; if NULL_TREE no initializer was given. */
756
757 static void
758 perform_member_init (tree member, tree init)
759 {
760 tree decl;
761 tree type = TREE_TYPE (member);
762
763 /* Use the non-static data member initializer if there was no
764 mem-initializer for this field. */
765 if (init == NULL_TREE)
766 init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error);
767
768 if (init == error_mark_node)
769 return;
770
771 /* Effective C++ rule 12 requires that all data members be
772 initialized. */
773 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
774 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
775 "%qD should be initialized in the member initialization list",
776 member);
777
778 /* Get an lvalue for the data member. */
779 decl = build_class_member_access_expr (current_class_ref, member,
780 /*access_path=*/NULL_TREE,
781 /*preserve_reference=*/true,
782 tf_warning_or_error);
783 if (decl == error_mark_node)
784 return;
785
786 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
787 && TREE_CHAIN (init) == NULL_TREE)
788 {
789 tree val = TREE_VALUE (init);
790 /* Handle references. */
791 if (REFERENCE_REF_P (val))
792 val = TREE_OPERAND (val, 0);
793 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
794 && TREE_OPERAND (val, 0) == current_class_ref)
795 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
796 OPT_Winit_self, "%qD is initialized with itself",
797 member);
798 }
799
800 if (init == void_type_node)
801 {
802 /* mem() means value-initialization. */
803 if (TREE_CODE (type) == ARRAY_TYPE)
804 {
805 init = build_vec_init_expr (type, init, tf_warning_or_error);
806 init = build2 (INIT_EXPR, type, decl, init);
807 finish_expr_stmt (init);
808 }
809 else
810 {
811 tree value = build_value_init (type, tf_warning_or_error);
812 if (value == error_mark_node)
813 return;
814 init = build2 (INIT_EXPR, type, decl, value);
815 finish_expr_stmt (init);
816 }
817 }
818 /* Deal with this here, as we will get confused if we try to call the
819 assignment op for an anonymous union. This can happen in a
820 synthesized copy constructor. */
821 else if (ANON_AGGR_TYPE_P (type))
822 {
823 if (init)
824 {
825 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
826 finish_expr_stmt (init);
827 }
828 }
829 else if (init
830 && (TYPE_REF_P (type)
831 /* Pre-digested NSDMI. */
832 || (((TREE_CODE (init) == CONSTRUCTOR
833 && TREE_TYPE (init) == type)
834 /* { } mem-initializer. */
835 || (TREE_CODE (init) == TREE_LIST
836 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
837 && (CP_AGGREGATE_TYPE_P (type)
838 || is_std_init_list (type)))))
839 {
840 /* With references and list-initialization, we need to deal with
841 extending temporary lifetimes. 12.2p5: "A temporary bound to a
842 reference member in a constructor’s ctor-initializer (12.6.2)
843 persists until the constructor exits." */
844 unsigned i; tree t;
845 releasing_vec cleanups;
846 if (TREE_CODE (init) == TREE_LIST)
847 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
848 tf_warning_or_error);
849 if (TREE_TYPE (init) != type)
850 {
851 if (BRACE_ENCLOSED_INITIALIZER_P (init)
852 && CP_AGGREGATE_TYPE_P (type))
853 init = reshape_init (type, init, tf_warning_or_error);
854 init = digest_init (type, init, tf_warning_or_error);
855 }
856 if (init == error_mark_node)
857 return;
858 /* A FIELD_DECL doesn't really have a suitable lifetime, but
859 make_temporary_var_for_ref_to_temp will treat it as automatic and
860 set_up_extended_ref_temp wants to use the decl in a warning. */
861 init = extend_ref_init_temps (member, init, &cleanups);
862 if (TREE_CODE (type) == ARRAY_TYPE
863 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
864 init = build_vec_init_expr (type, init, tf_warning_or_error);
865 init = build2 (INIT_EXPR, type, decl, init);
866 finish_expr_stmt (init);
867 FOR_EACH_VEC_ELT (*cleanups, i, t)
868 push_cleanup (decl, t, false);
869 }
870 else if (type_build_ctor_call (type)
871 || (init && CLASS_TYPE_P (strip_array_types (type))))
872 {
873 if (TREE_CODE (type) == ARRAY_TYPE)
874 {
875 if (init)
876 {
877 /* Check to make sure the member initializer is valid and
878 something like a CONSTRUCTOR in: T a[] = { 1, 2 } and
879 if it isn't, return early to avoid triggering another
880 error below. */
881 if (maybe_reject_flexarray_init (member, init))
882 return;
883
884 if (TREE_CODE (init) != TREE_LIST || TREE_CHAIN (init))
885 init = error_mark_node;
886 else
887 init = TREE_VALUE (init);
888
889 if (BRACE_ENCLOSED_INITIALIZER_P (init))
890 init = digest_init (type, init, tf_warning_or_error);
891 }
892 if (init == NULL_TREE
893 || same_type_ignoring_top_level_qualifiers_p (type,
894 TREE_TYPE (init)))
895 {
896 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
897 {
898 /* Initialize the array only if it's not a flexible
899 array member (i.e., if it has an upper bound). */
900 init = build_vec_init_expr (type, init, tf_warning_or_error);
901 init = build2 (INIT_EXPR, type, decl, init);
902 finish_expr_stmt (init);
903 }
904 }
905 else
906 error ("invalid initializer for array member %q#D", member);
907 }
908 else
909 {
910 int flags = LOOKUP_NORMAL;
911 if (DECL_DEFAULTED_FN (current_function_decl))
912 flags |= LOOKUP_DEFAULTED;
913 if (CP_TYPE_CONST_P (type)
914 && init == NULL_TREE
915 && default_init_uninitialized_part (type))
916 {
917 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
918 vtable; still give this diagnostic. */
919 auto_diagnostic_group d;
920 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
921 "uninitialized const member in %q#T", type))
922 inform (DECL_SOURCE_LOCATION (member),
923 "%q#D should be initialized", member );
924 }
925 finish_expr_stmt (build_aggr_init (decl, init, flags,
926 tf_warning_or_error));
927 }
928 }
929 else
930 {
931 if (init == NULL_TREE)
932 {
933 tree core_type;
934 /* member traversal: note it leaves init NULL */
935 if (TYPE_REF_P (type))
936 {
937 auto_diagnostic_group d;
938 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
939 "uninitialized reference member in %q#T", type))
940 inform (DECL_SOURCE_LOCATION (member),
941 "%q#D should be initialized", member);
942 }
943 else if (CP_TYPE_CONST_P (type))
944 {
945 auto_diagnostic_group d;
946 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
947 "uninitialized const member in %q#T", type))
948 inform (DECL_SOURCE_LOCATION (member),
949 "%q#D should be initialized", member );
950 }
951
952 core_type = strip_array_types (type);
953
954 if (CLASS_TYPE_P (core_type)
955 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
956 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
957 diagnose_uninitialized_cst_or_ref_member (core_type,
958 /*using_new=*/false,
959 /*complain=*/true);
960 }
961 else if (TREE_CODE (init) == TREE_LIST)
962 /* There was an explicit member initialization. Do some work
963 in that case. */
964 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
965 tf_warning_or_error);
966
967 maybe_warn_list_ctor (member, init);
968
969 /* Reject a member initializer for a flexible array member. */
970 if (init && !maybe_reject_flexarray_init (member, init))
971 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
972 INIT_EXPR, init,
973 tf_warning_or_error));
974 }
975
976 if (type_build_dtor_call (type))
977 {
978 tree expr;
979
980 expr = build_class_member_access_expr (current_class_ref, member,
981 /*access_path=*/NULL_TREE,
982 /*preserve_reference=*/false,
983 tf_warning_or_error);
984 expr = build_delete (input_location,
985 type, expr, sfk_complete_destructor,
986 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
987 tf_warning_or_error);
988
989 if (expr != error_mark_node
990 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
991 finish_eh_cleanup (expr);
992 }
993 }
994
995 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
996 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
997
998 static tree
999 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
1000 {
1001 tree fields;
1002
1003 /* Note whether or not T is a union. */
1004 if (TREE_CODE (t) == UNION_TYPE)
1005 *uses_unions_or_anon_p = 1;
1006
1007 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
1008 {
1009 tree fieldtype;
1010
1011 /* Skip CONST_DECLs for enumeration constants and so forth. */
1012 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
1013 continue;
1014
1015 fieldtype = TREE_TYPE (fields);
1016
1017 /* For an anonymous struct or union, we must recursively
1018 consider the fields of the anonymous type. They can be
1019 directly initialized from the constructor. */
1020 if (ANON_AGGR_TYPE_P (fieldtype))
1021 {
1022 /* Add this field itself. Synthesized copy constructors
1023 initialize the entire aggregate. */
1024 list = tree_cons (fields, NULL_TREE, list);
1025 /* And now add the fields in the anonymous aggregate. */
1026 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
1027 *uses_unions_or_anon_p = 1;
1028 }
1029 /* Add this field. */
1030 else if (DECL_NAME (fields))
1031 list = tree_cons (fields, NULL_TREE, list);
1032 }
1033
1034 return list;
1035 }
1036
1037 /* Return the innermost aggregate scope for FIELD, whether that is
1038 the enclosing class or an anonymous aggregate within it. */
1039
1040 static tree
1041 innermost_aggr_scope (tree field)
1042 {
1043 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1044 return TREE_TYPE (field);
1045 else
1046 return DECL_CONTEXT (field);
1047 }
1048
1049 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
1050 a FIELD_DECL or BINFO in T that needs initialization. The
1051 TREE_VALUE gives the initializer, or list of initializer arguments.
1052
1053 Return a TREE_LIST containing all of the initializations required
1054 for T, in the order in which they should be performed. The output
1055 list has the same format as the input. */
1056
1057 static tree
1058 sort_mem_initializers (tree t, tree mem_inits)
1059 {
1060 tree init;
1061 tree base, binfo, base_binfo;
1062 tree sorted_inits;
1063 tree next_subobject;
1064 vec<tree, va_gc> *vbases;
1065 int i;
1066 int uses_unions_or_anon_p = 0;
1067
1068 /* Build up a list of initializations. The TREE_PURPOSE of entry
1069 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
1070 TREE_VALUE will be the constructor arguments, or NULL if no
1071 explicit initialization was provided. */
1072 sorted_inits = NULL_TREE;
1073
1074 /* Process the virtual bases. */
1075 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
1076 vec_safe_iterate (vbases, i, &base); i++)
1077 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
1078
1079 /* Process the direct bases. */
1080 for (binfo = TYPE_BINFO (t), i = 0;
1081 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
1082 if (!BINFO_VIRTUAL_P (base_binfo))
1083 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
1084
1085 /* Process the non-static data members. */
1086 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
1087 /* Reverse the entire list of initializations, so that they are in
1088 the order that they will actually be performed. */
1089 sorted_inits = nreverse (sorted_inits);
1090
1091 /* If the user presented the initializers in an order different from
1092 that in which they will actually occur, we issue a warning. Keep
1093 track of the next subobject which can be explicitly initialized
1094 without issuing a warning. */
1095 next_subobject = sorted_inits;
1096
1097 /* Go through the explicit initializers, filling in TREE_PURPOSE in
1098 the SORTED_INITS. */
1099 for (init = mem_inits; init; init = TREE_CHAIN (init))
1100 {
1101 tree subobject;
1102 tree subobject_init;
1103
1104 subobject = TREE_PURPOSE (init);
1105
1106 /* If the explicit initializers are in sorted order, then
1107 SUBOBJECT will be NEXT_SUBOBJECT, or something following
1108 it. */
1109 for (subobject_init = next_subobject;
1110 subobject_init;
1111 subobject_init = TREE_CHAIN (subobject_init))
1112 if (TREE_PURPOSE (subobject_init) == subobject)
1113 break;
1114
1115 /* Issue a warning if the explicit initializer order does not
1116 match that which will actually occur.
1117 ??? Are all these on the correct lines? */
1118 if (warn_reorder && !subobject_init)
1119 {
1120 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
1121 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
1122 OPT_Wreorder, "%qD will be initialized after",
1123 TREE_PURPOSE (next_subobject));
1124 else
1125 warning (OPT_Wreorder, "base %qT will be initialized after",
1126 TREE_PURPOSE (next_subobject));
1127 if (TREE_CODE (subobject) == FIELD_DECL)
1128 warning_at (DECL_SOURCE_LOCATION (subobject),
1129 OPT_Wreorder, " %q#D", subobject);
1130 else
1131 warning (OPT_Wreorder, " base %qT", subobject);
1132 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1133 OPT_Wreorder, " when initialized here");
1134 }
1135
1136 /* Look again, from the beginning of the list. */
1137 if (!subobject_init)
1138 {
1139 subobject_init = sorted_inits;
1140 while (TREE_PURPOSE (subobject_init) != subobject)
1141 subobject_init = TREE_CHAIN (subobject_init);
1142 }
1143
1144 /* It is invalid to initialize the same subobject more than
1145 once. */
1146 if (TREE_VALUE (subobject_init))
1147 {
1148 if (TREE_CODE (subobject) == FIELD_DECL)
1149 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1150 "multiple initializations given for %qD",
1151 subobject);
1152 else
1153 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1154 "multiple initializations given for base %qT",
1155 subobject);
1156 }
1157
1158 /* Record the initialization. */
1159 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1160 next_subobject = subobject_init;
1161 }
1162
1163 /* [class.base.init]
1164
1165 If a ctor-initializer specifies more than one mem-initializer for
1166 multiple members of the same union (including members of
1167 anonymous unions), the ctor-initializer is ill-formed.
1168
1169 Here we also splice out uninitialized union members. */
1170 if (uses_unions_or_anon_p)
1171 {
1172 tree *last_p = NULL;
1173 tree *p;
1174 for (p = &sorted_inits; *p; )
1175 {
1176 tree field;
1177 tree ctx;
1178
1179 init = *p;
1180
1181 field = TREE_PURPOSE (init);
1182
1183 /* Skip base classes. */
1184 if (TREE_CODE (field) != FIELD_DECL)
1185 goto next;
1186
1187 /* If this is an anonymous aggregate with no explicit initializer,
1188 splice it out. */
1189 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1190 goto splice;
1191
1192 /* See if this field is a member of a union, or a member of a
1193 structure contained in a union, etc. */
1194 ctx = innermost_aggr_scope (field);
1195
1196 /* If this field is not a member of a union, skip it. */
1197 if (TREE_CODE (ctx) != UNION_TYPE
1198 && !ANON_AGGR_TYPE_P (ctx))
1199 goto next;
1200
1201 /* If this union member has no explicit initializer and no NSDMI,
1202 splice it out. */
1203 if (TREE_VALUE (init) || DECL_INITIAL (field))
1204 /* OK. */;
1205 else
1206 goto splice;
1207
1208 /* It's only an error if we have two initializers for the same
1209 union type. */
1210 if (!last_p)
1211 {
1212 last_p = p;
1213 goto next;
1214 }
1215
1216 /* See if LAST_FIELD and the field initialized by INIT are
1217 members of the same union (or the union itself). If so, there's
1218 a problem, unless they're actually members of the same structure
1219 which is itself a member of a union. For example, given:
1220
1221 union { struct { int i; int j; }; };
1222
1223 initializing both `i' and `j' makes sense. */
1224 ctx = common_enclosing_class
1225 (innermost_aggr_scope (field),
1226 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1227
1228 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1229 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1230 {
1231 /* A mem-initializer hides an NSDMI. */
1232 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1233 *last_p = TREE_CHAIN (*last_p);
1234 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1235 goto splice;
1236 else
1237 {
1238 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1239 "initializations for multiple members of %qT",
1240 ctx);
1241 goto splice;
1242 }
1243 }
1244
1245 last_p = p;
1246
1247 next:
1248 p = &TREE_CHAIN (*p);
1249 continue;
1250 splice:
1251 *p = TREE_CHAIN (*p);
1252 continue;
1253 }
1254 }
1255
1256 return sorted_inits;
1257 }
1258
1259 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */
1260
1261 static tree
1262 mark_exp_read_r (tree *tp, int *, void *)
1263 {
1264 tree t = *tp;
1265 if (TREE_CODE (t) == PARM_DECL)
1266 mark_exp_read (t);
1267 return NULL_TREE;
1268 }
1269
1270 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1271 is a TREE_LIST giving the explicit mem-initializer-list for the
1272 constructor. The TREE_PURPOSE of each entry is a subobject (a
1273 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1274 is a TREE_LIST giving the arguments to the constructor or
1275 void_type_node for an empty list of arguments. */
1276
1277 void
1278 emit_mem_initializers (tree mem_inits)
1279 {
1280 int flags = LOOKUP_NORMAL;
1281
1282 /* We will already have issued an error message about the fact that
1283 the type is incomplete. */
1284 if (!COMPLETE_TYPE_P (current_class_type))
1285 return;
1286
1287 if (mem_inits
1288 && TYPE_P (TREE_PURPOSE (mem_inits))
1289 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1290 {
1291 /* Delegating constructor. */
1292 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1293 perform_target_ctor (TREE_VALUE (mem_inits));
1294 return;
1295 }
1296
1297 if (DECL_DEFAULTED_FN (current_function_decl)
1298 && ! DECL_INHERITED_CTOR (current_function_decl))
1299 flags |= LOOKUP_DEFAULTED;
1300
1301 /* Sort the mem-initializers into the order in which the
1302 initializations should be performed. */
1303 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1304
1305 in_base_initializer = 1;
1306
1307 /* Initialize base classes. */
1308 for (; (mem_inits
1309 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1310 mem_inits = TREE_CHAIN (mem_inits))
1311 {
1312 tree subobject = TREE_PURPOSE (mem_inits);
1313 tree arguments = TREE_VALUE (mem_inits);
1314
1315 /* We already have issued an error message. */
1316 if (arguments == error_mark_node)
1317 continue;
1318
1319 /* Suppress access control when calling the inherited ctor. */
1320 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1321 && flag_new_inheriting_ctors
1322 && arguments);
1323 if (inherited_base)
1324 push_deferring_access_checks (dk_deferred);
1325
1326 if (arguments == NULL_TREE)
1327 {
1328 /* If these initializations are taking place in a copy constructor,
1329 the base class should probably be explicitly initialized if there
1330 is a user-defined constructor in the base class (other than the
1331 default constructor, which will be called anyway). */
1332 if (extra_warnings
1333 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1334 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1335 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1336 OPT_Wextra, "base class %q#T should be explicitly "
1337 "initialized in the copy constructor",
1338 BINFO_TYPE (subobject));
1339 }
1340
1341 /* Initialize the base. */
1342 if (!BINFO_VIRTUAL_P (subobject))
1343 {
1344 tree base_addr;
1345
1346 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1347 subobject, 1, tf_warning_or_error);
1348 expand_aggr_init_1 (subobject, NULL_TREE,
1349 cp_build_fold_indirect_ref (base_addr),
1350 arguments,
1351 flags,
1352 tf_warning_or_error);
1353 expand_cleanup_for_base (subobject, NULL_TREE);
1354 }
1355 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1356 /* C++14 DR1658 Means we do not have to construct vbases of
1357 abstract classes. */
1358 construct_virtual_base (subobject, arguments);
1359 else
1360 /* When not constructing vbases of abstract classes, at least mark
1361 the arguments expressions as read to avoid
1362 -Wunused-but-set-parameter false positives. */
1363 cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1364
1365 if (inherited_base)
1366 pop_deferring_access_checks ();
1367 }
1368 in_base_initializer = 0;
1369
1370 /* Initialize the vptrs. */
1371 initialize_vtbl_ptrs (current_class_ptr);
1372
1373 /* Initialize the data members. */
1374 while (mem_inits)
1375 {
1376 perform_member_init (TREE_PURPOSE (mem_inits),
1377 TREE_VALUE (mem_inits));
1378 mem_inits = TREE_CHAIN (mem_inits);
1379 }
1380 }
1381
1382 /* Returns the address of the vtable (i.e., the value that should be
1383 assigned to the vptr) for BINFO. */
1384
1385 tree
1386 build_vtbl_address (tree binfo)
1387 {
1388 tree binfo_for = binfo;
1389 tree vtbl;
1390
1391 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1392 /* If this is a virtual primary base, then the vtable we want to store
1393 is that for the base this is being used as the primary base of. We
1394 can't simply skip the initialization, because we may be expanding the
1395 inits of a subobject constructor where the virtual base layout
1396 can be different. */
1397 while (BINFO_PRIMARY_P (binfo_for))
1398 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1399
1400 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1401 used. */
1402 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1403 TREE_USED (vtbl) = true;
1404
1405 /* Now compute the address to use when initializing the vptr. */
1406 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1407 if (VAR_P (vtbl))
1408 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1409
1410 return vtbl;
1411 }
1412
1413 /* This code sets up the virtual function tables appropriate for
1414 the pointer DECL. It is a one-ply initialization.
1415
1416 BINFO is the exact type that DECL is supposed to be. In
1417 multiple inheritance, this might mean "C's A" if C : A, B. */
1418
1419 static void
1420 expand_virtual_init (tree binfo, tree decl)
1421 {
1422 tree vtbl, vtbl_ptr;
1423 tree vtt_index;
1424
1425 /* Compute the initializer for vptr. */
1426 vtbl = build_vtbl_address (binfo);
1427
1428 /* We may get this vptr from a VTT, if this is a subobject
1429 constructor or subobject destructor. */
1430 vtt_index = BINFO_VPTR_INDEX (binfo);
1431 if (vtt_index)
1432 {
1433 tree vtbl2;
1434 tree vtt_parm;
1435
1436 /* Compute the value to use, when there's a VTT. */
1437 vtt_parm = current_vtt_parm;
1438 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1439 vtbl2 = cp_build_fold_indirect_ref (vtbl2);
1440 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1441
1442 /* The actual initializer is the VTT value only in the subobject
1443 constructor. In maybe_clone_body we'll substitute NULL for
1444 the vtt_parm in the case of the non-subobject constructor. */
1445 vtbl = build_if_in_charge (vtbl, vtbl2);
1446 }
1447
1448 /* Compute the location of the vtpr. */
1449 vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl),
1450 TREE_TYPE (binfo));
1451 gcc_assert (vtbl_ptr != error_mark_node);
1452
1453 /* Assign the vtable to the vptr. */
1454 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1455 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1456 vtbl, tf_warning_or_error));
1457 }
1458
1459 /* If an exception is thrown in a constructor, those base classes already
1460 constructed must be destroyed. This function creates the cleanup
1461 for BINFO, which has just been constructed. If FLAG is non-NULL,
1462 it is a DECL which is nonzero when this base needs to be
1463 destroyed. */
1464
1465 static void
1466 expand_cleanup_for_base (tree binfo, tree flag)
1467 {
1468 tree expr;
1469
1470 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1471 return;
1472
1473 /* Call the destructor. */
1474 expr = build_special_member_call (current_class_ref,
1475 base_dtor_identifier,
1476 NULL,
1477 binfo,
1478 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1479 tf_warning_or_error);
1480
1481 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1482 return;
1483
1484 if (flag)
1485 expr = fold_build3_loc (input_location,
1486 COND_EXPR, void_type_node,
1487 c_common_truthvalue_conversion (input_location, flag),
1488 expr, integer_zero_node);
1489
1490 finish_eh_cleanup (expr);
1491 }
1492
1493 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1494 constructor. */
1495
1496 static void
1497 construct_virtual_base (tree vbase, tree arguments)
1498 {
1499 tree inner_if_stmt;
1500 tree exp;
1501 tree flag;
1502
1503 /* If there are virtual base classes with destructors, we need to
1504 emit cleanups to destroy them if an exception is thrown during
1505 the construction process. These exception regions (i.e., the
1506 period during which the cleanups must occur) begin from the time
1507 the construction is complete to the end of the function. If we
1508 create a conditional block in which to initialize the
1509 base-classes, then the cleanup region for the virtual base begins
1510 inside a block, and ends outside of that block. This situation
1511 confuses the sjlj exception-handling code. Therefore, we do not
1512 create a single conditional block, but one for each
1513 initialization. (That way the cleanup regions always begin
1514 in the outer block.) We trust the back end to figure out
1515 that the FLAG will not change across initializations, and
1516 avoid doing multiple tests. */
1517 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1518 inner_if_stmt = begin_if_stmt ();
1519 finish_if_stmt_cond (flag, inner_if_stmt);
1520
1521 /* Compute the location of the virtual base. If we're
1522 constructing virtual bases, then we must be the most derived
1523 class. Therefore, we don't have to look up the virtual base;
1524 we already know where it is. */
1525 exp = convert_to_base_statically (current_class_ref, vbase);
1526
1527 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1528 0, tf_warning_or_error);
1529 finish_then_clause (inner_if_stmt);
1530 finish_if_stmt (inner_if_stmt);
1531
1532 expand_cleanup_for_base (vbase, flag);
1533 }
1534
1535 /* Find the context in which this FIELD can be initialized. */
1536
1537 static tree
1538 initializing_context (tree field)
1539 {
1540 tree t = DECL_CONTEXT (field);
1541
1542 /* Anonymous union members can be initialized in the first enclosing
1543 non-anonymous union context. */
1544 while (t && ANON_AGGR_TYPE_P (t))
1545 t = TYPE_CONTEXT (t);
1546 return t;
1547 }
1548
1549 /* Function to give error message if member initialization specification
1550 is erroneous. FIELD is the member we decided to initialize.
1551 TYPE is the type for which the initialization is being performed.
1552 FIELD must be a member of TYPE.
1553
1554 MEMBER_NAME is the name of the member. */
1555
1556 static int
1557 member_init_ok_or_else (tree field, tree type, tree member_name)
1558 {
1559 if (field == error_mark_node)
1560 return 0;
1561 if (!field)
1562 {
1563 error ("class %qT does not have any field named %qD", type,
1564 member_name);
1565 return 0;
1566 }
1567 if (VAR_P (field))
1568 {
1569 error ("%q#D is a static data member; it can only be "
1570 "initialized at its definition",
1571 field);
1572 return 0;
1573 }
1574 if (TREE_CODE (field) != FIELD_DECL)
1575 {
1576 error ("%q#D is not a non-static data member of %qT",
1577 field, type);
1578 return 0;
1579 }
1580 if (initializing_context (field) != type)
1581 {
1582 error ("class %qT does not have any field named %qD", type,
1583 member_name);
1584 return 0;
1585 }
1586
1587 return 1;
1588 }
1589
1590 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1591 is a _TYPE node or TYPE_DECL which names a base for that type.
1592 Check the validity of NAME, and return either the base _TYPE, base
1593 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1594 NULL_TREE and issue a diagnostic.
1595
1596 An old style unnamed direct single base construction is permitted,
1597 where NAME is NULL. */
1598
1599 tree
1600 expand_member_init (tree name)
1601 {
1602 tree basetype;
1603 tree field;
1604
1605 if (!current_class_ref)
1606 return NULL_TREE;
1607
1608 if (!name)
1609 {
1610 /* This is an obsolete unnamed base class initializer. The
1611 parser will already have warned about its use. */
1612 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1613 {
1614 case 0:
1615 error ("unnamed initializer for %qT, which has no base classes",
1616 current_class_type);
1617 return NULL_TREE;
1618 case 1:
1619 basetype = BINFO_TYPE
1620 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1621 break;
1622 default:
1623 error ("unnamed initializer for %qT, which uses multiple inheritance",
1624 current_class_type);
1625 return NULL_TREE;
1626 }
1627 }
1628 else if (TYPE_P (name))
1629 {
1630 basetype = TYPE_MAIN_VARIANT (name);
1631 name = TYPE_NAME (name);
1632 }
1633 else if (TREE_CODE (name) == TYPE_DECL)
1634 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1635 else
1636 basetype = NULL_TREE;
1637
1638 if (basetype)
1639 {
1640 tree class_binfo;
1641 tree direct_binfo;
1642 tree virtual_binfo;
1643 int i;
1644
1645 if (current_template_parms
1646 || same_type_p (basetype, current_class_type))
1647 return basetype;
1648
1649 class_binfo = TYPE_BINFO (current_class_type);
1650 direct_binfo = NULL_TREE;
1651 virtual_binfo = NULL_TREE;
1652
1653 /* Look for a direct base. */
1654 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1655 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1656 break;
1657
1658 /* Look for a virtual base -- unless the direct base is itself
1659 virtual. */
1660 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1661 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1662
1663 /* [class.base.init]
1664
1665 If a mem-initializer-id is ambiguous because it designates
1666 both a direct non-virtual base class and an inherited virtual
1667 base class, the mem-initializer is ill-formed. */
1668 if (direct_binfo && virtual_binfo)
1669 {
1670 error ("%qD is both a direct base and an indirect virtual base",
1671 basetype);
1672 return NULL_TREE;
1673 }
1674
1675 if (!direct_binfo && !virtual_binfo)
1676 {
1677 if (CLASSTYPE_VBASECLASSES (current_class_type))
1678 error ("type %qT is not a direct or virtual base of %qT",
1679 basetype, current_class_type);
1680 else
1681 error ("type %qT is not a direct base of %qT",
1682 basetype, current_class_type);
1683 return NULL_TREE;
1684 }
1685
1686 return direct_binfo ? direct_binfo : virtual_binfo;
1687 }
1688 else
1689 {
1690 if (identifier_p (name))
1691 field = lookup_field (current_class_type, name, 1, false);
1692 else
1693 field = name;
1694
1695 if (member_init_ok_or_else (field, current_class_type, name))
1696 return field;
1697 }
1698
1699 return NULL_TREE;
1700 }
1701
1702 /* This is like `expand_member_init', only it stores one aggregate
1703 value into another.
1704
1705 INIT comes in two flavors: it is either a value which
1706 is to be stored in EXP, or it is a parameter list
1707 to go to a constructor, which will operate on EXP.
1708 If INIT is not a parameter list for a constructor, then set
1709 LOOKUP_ONLYCONVERTING.
1710 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1711 the initializer, if FLAGS is 0, then it is the (init) form.
1712 If `init' is a CONSTRUCTOR, then we emit a warning message,
1713 explaining that such initializations are invalid.
1714
1715 If INIT resolves to a CALL_EXPR which happens to return
1716 something of the type we are looking for, then we know
1717 that we can safely use that call to perform the
1718 initialization.
1719
1720 The virtual function table pointer cannot be set up here, because
1721 we do not really know its type.
1722
1723 This never calls operator=().
1724
1725 When initializing, nothing is CONST.
1726
1727 A default copy constructor may have to be used to perform the
1728 initialization.
1729
1730 A constructor or a conversion operator may have to be used to
1731 perform the initialization, but not both, as it would be ambiguous. */
1732
1733 tree
1734 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1735 {
1736 tree stmt_expr;
1737 tree compound_stmt;
1738 int destroy_temps;
1739 tree type = TREE_TYPE (exp);
1740 int was_const = TREE_READONLY (exp);
1741 int was_volatile = TREE_THIS_VOLATILE (exp);
1742 int is_global;
1743
1744 if (init == error_mark_node)
1745 return error_mark_node;
1746
1747 location_t init_loc = (init
1748 ? cp_expr_loc_or_input_loc (init)
1749 : location_of (exp));
1750
1751 TREE_READONLY (exp) = 0;
1752 TREE_THIS_VOLATILE (exp) = 0;
1753
1754 if (TREE_CODE (type) == ARRAY_TYPE)
1755 {
1756 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1757 int from_array = 0;
1758
1759 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1760 {
1761 from_array = 1;
1762 init = mark_rvalue_use (init);
1763 if (init
1764 && DECL_P (tree_strip_any_location_wrapper (init))
1765 && !(flags & LOOKUP_ONLYCONVERTING))
1766 {
1767 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1768 recognizes it as direct-initialization. */
1769 init = build_constructor_single (init_list_type_node,
1770 NULL_TREE, init);
1771 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1772 }
1773 }
1774 else
1775 {
1776 /* Must arrange to initialize each element of EXP
1777 from elements of INIT. */
1778 if (cv_qualified_p (type))
1779 TREE_TYPE (exp) = cv_unqualified (type);
1780 if (itype && cv_qualified_p (itype))
1781 TREE_TYPE (init) = cv_unqualified (itype);
1782 from_array = (itype && same_type_p (TREE_TYPE (init),
1783 TREE_TYPE (exp)));
1784
1785 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)
1786 && (!from_array
1787 || (TREE_CODE (init) != CONSTRUCTOR
1788 /* Can happen, eg, handling the compound-literals
1789 extension (ext/complit12.C). */
1790 && TREE_CODE (init) != TARGET_EXPR)))
1791 {
1792 if (complain & tf_error)
1793 error_at (init_loc, "array must be initialized "
1794 "with a brace-enclosed initializer");
1795 return error_mark_node;
1796 }
1797 }
1798
1799 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1800 /*explicit_value_init_p=*/false,
1801 from_array,
1802 complain);
1803 TREE_READONLY (exp) = was_const;
1804 TREE_THIS_VOLATILE (exp) = was_volatile;
1805 TREE_TYPE (exp) = type;
1806 /* Restore the type of init unless it was used directly. */
1807 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1808 TREE_TYPE (init) = itype;
1809 return stmt_expr;
1810 }
1811
1812 if (init && init != void_type_node
1813 && TREE_CODE (init) != TREE_LIST
1814 && !(TREE_CODE (init) == TARGET_EXPR
1815 && TARGET_EXPR_DIRECT_INIT_P (init))
1816 && !DIRECT_LIST_INIT_P (init))
1817 flags |= LOOKUP_ONLYCONVERTING;
1818
1819 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1820 destroy_temps = stmts_are_full_exprs_p ();
1821 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1822 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1823 init, LOOKUP_NORMAL|flags, complain);
1824 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1825 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1826 TREE_READONLY (exp) = was_const;
1827 TREE_THIS_VOLATILE (exp) = was_volatile;
1828
1829 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1830 && TREE_SIDE_EFFECTS (stmt_expr)
1831 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1832 /* Just know that we've seen something for this node. */
1833 TREE_USED (exp) = 1;
1834
1835 return stmt_expr;
1836 }
1837
1838 static void
1839 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1840 tsubst_flags_t complain)
1841 {
1842 tree type = TREE_TYPE (exp);
1843
1844 /* It fails because there may not be a constructor which takes
1845 its own type as the first (or only parameter), but which does
1846 take other types via a conversion. So, if the thing initializing
1847 the expression is a unit element of type X, first try X(X&),
1848 followed by initialization by X. If neither of these work
1849 out, then look hard. */
1850 tree rval;
1851 vec<tree, va_gc> *parms;
1852
1853 /* If we have direct-initialization from an initializer list, pull
1854 it out of the TREE_LIST so the code below can see it. */
1855 if (init && TREE_CODE (init) == TREE_LIST
1856 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1857 {
1858 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1859 && TREE_CHAIN (init) == NULL_TREE);
1860 init = TREE_VALUE (init);
1861 /* Only call reshape_init if it has not been called earlier
1862 by the callers. */
1863 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1864 init = reshape_init (type, init, complain);
1865 }
1866
1867 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1868 && CP_AGGREGATE_TYPE_P (type))
1869 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1870 happen for direct-initialization, too. */
1871 init = digest_init (type, init, complain);
1872
1873 /* A CONSTRUCTOR of the target's type is a previously digested
1874 initializer, whether that happened just above or in
1875 cp_parser_late_parsing_nsdmi.
1876
1877 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1878 set represents the whole initialization, so we shouldn't build up
1879 another ctor call. */
1880 if (init
1881 && (TREE_CODE (init) == CONSTRUCTOR
1882 || (TREE_CODE (init) == TARGET_EXPR
1883 && (TARGET_EXPR_DIRECT_INIT_P (init)
1884 || TARGET_EXPR_LIST_INIT_P (init))))
1885 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1886 {
1887 /* Early initialization via a TARGET_EXPR only works for
1888 complete objects. */
1889 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1890
1891 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1892 TREE_SIDE_EFFECTS (init) = 1;
1893 finish_expr_stmt (init);
1894 return;
1895 }
1896
1897 if (init && TREE_CODE (init) != TREE_LIST
1898 && (flags & LOOKUP_ONLYCONVERTING))
1899 {
1900 /* Base subobjects should only get direct-initialization. */
1901 gcc_assert (true_exp == exp);
1902
1903 if (flags & DIRECT_BIND)
1904 /* Do nothing. We hit this in two cases: Reference initialization,
1905 where we aren't initializing a real variable, so we don't want
1906 to run a new constructor; and catching an exception, where we
1907 have already built up the constructor call so we could wrap it
1908 in an exception region. */;
1909 else
1910 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1911 flags, complain);
1912
1913 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1914 /* We need to protect the initialization of a catch parm with a
1915 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1916 around the TARGET_EXPR for the copy constructor. See
1917 initialize_handler_parm. */
1918 {
1919 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1920 TREE_OPERAND (init, 0));
1921 TREE_TYPE (init) = void_type_node;
1922 }
1923 else
1924 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1925 TREE_SIDE_EFFECTS (init) = 1;
1926 finish_expr_stmt (init);
1927 return;
1928 }
1929
1930 if (init == NULL_TREE)
1931 parms = NULL;
1932 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1933 {
1934 parms = make_tree_vector ();
1935 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1936 vec_safe_push (parms, TREE_VALUE (init));
1937 }
1938 else
1939 parms = make_tree_vector_single (init);
1940
1941 if (exp == current_class_ref && current_function_decl
1942 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1943 {
1944 /* Delegating constructor. */
1945 tree complete;
1946 tree base;
1947 tree elt; unsigned i;
1948
1949 /* Unshare the arguments for the second call. */
1950 releasing_vec parms2;
1951 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1952 {
1953 elt = break_out_target_exprs (elt);
1954 vec_safe_push (parms2, elt);
1955 }
1956 complete = build_special_member_call (exp, complete_ctor_identifier,
1957 &parms2, binfo, flags,
1958 complain);
1959 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1960
1961 base = build_special_member_call (exp, base_ctor_identifier,
1962 &parms, binfo, flags,
1963 complain);
1964 base = fold_build_cleanup_point_expr (void_type_node, base);
1965 rval = build_if_in_charge (complete, base);
1966 }
1967 else
1968 {
1969 tree ctor_name = (true_exp == exp
1970 ? complete_ctor_identifier : base_ctor_identifier);
1971
1972 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1973 complain);
1974 }
1975
1976 if (parms != NULL)
1977 release_tree_vector (parms);
1978
1979 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1980 {
1981 tree fn = get_callee_fndecl (rval);
1982 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1983 {
1984 tree e = maybe_constant_init (rval, exp);
1985 if (TREE_CONSTANT (e))
1986 rval = build2 (INIT_EXPR, type, exp, e);
1987 }
1988 }
1989
1990 /* FIXME put back convert_to_void? */
1991 if (TREE_SIDE_EFFECTS (rval))
1992 finish_expr_stmt (rval);
1993 }
1994
1995 /* This function is responsible for initializing EXP with INIT
1996 (if any).
1997
1998 BINFO is the binfo of the type for who we are performing the
1999 initialization. For example, if W is a virtual base class of A and B,
2000 and C : A, B.
2001 If we are initializing B, then W must contain B's W vtable, whereas
2002 were we initializing C, W must contain C's W vtable.
2003
2004 TRUE_EXP is nonzero if it is the true expression being initialized.
2005 In this case, it may be EXP, or may just contain EXP. The reason we
2006 need this is because if EXP is a base element of TRUE_EXP, we
2007 don't necessarily know by looking at EXP where its virtual
2008 baseclass fields should really be pointing. But we do know
2009 from TRUE_EXP. In constructors, we don't know anything about
2010 the value being initialized.
2011
2012 FLAGS is just passed to `build_new_method_call'. See that function
2013 for its description. */
2014
2015 static void
2016 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
2017 tsubst_flags_t complain)
2018 {
2019 tree type = TREE_TYPE (exp);
2020
2021 gcc_assert (init != error_mark_node && type != error_mark_node);
2022 gcc_assert (building_stmt_list_p ());
2023
2024 /* Use a function returning the desired type to initialize EXP for us.
2025 If the function is a constructor, and its first argument is
2026 NULL_TREE, know that it was meant for us--just slide exp on
2027 in and expand the constructor. Constructors now come
2028 as TARGET_EXPRs. */
2029
2030 if (init && VAR_P (exp)
2031 && COMPOUND_LITERAL_P (init))
2032 {
2033 vec<tree, va_gc> *cleanups = NULL;
2034 /* If store_init_value returns NULL_TREE, the INIT has been
2035 recorded as the DECL_INITIAL for EXP. That means there's
2036 nothing more we have to do. */
2037 init = store_init_value (exp, init, &cleanups, flags);
2038 if (init)
2039 finish_expr_stmt (init);
2040 gcc_assert (!cleanups);
2041 return;
2042 }
2043
2044 /* List-initialization from {} becomes value-initialization for non-aggregate
2045 classes with default constructors. Handle this here when we're
2046 initializing a base, so protected access works. */
2047 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
2048 {
2049 tree elt = TREE_VALUE (init);
2050 if (DIRECT_LIST_INIT_P (elt)
2051 && CONSTRUCTOR_ELTS (elt) == 0
2052 && CLASSTYPE_NON_AGGREGATE (type)
2053 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2054 init = void_type_node;
2055 }
2056
2057 /* If an explicit -- but empty -- initializer list was present,
2058 that's value-initialization. */
2059 if (init == void_type_node)
2060 {
2061 /* If the type has data but no user-provided ctor, we need to zero
2062 out the object. */
2063 if (!type_has_user_provided_constructor (type)
2064 && !is_really_empty_class (type, /*ignore_vptr*/true))
2065 {
2066 tree field_size = NULL_TREE;
2067 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
2068 /* Don't clobber already initialized virtual bases. */
2069 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
2070 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
2071 field_size);
2072 init = build2 (INIT_EXPR, type, exp, init);
2073 finish_expr_stmt (init);
2074 }
2075
2076 /* If we don't need to mess with the constructor at all,
2077 then we're done. */
2078 if (! type_build_ctor_call (type))
2079 return;
2080
2081 /* Otherwise fall through and call the constructor. */
2082 init = NULL_TREE;
2083 }
2084
2085 /* We know that expand_default_init can handle everything we want
2086 at this point. */
2087 expand_default_init (binfo, true_exp, exp, init, flags, complain);
2088 }
2089
2090 /* Report an error if TYPE is not a user-defined, class type. If
2091 OR_ELSE is nonzero, give an error message. */
2092
2093 int
2094 is_class_type (tree type, int or_else)
2095 {
2096 if (type == error_mark_node)
2097 return 0;
2098
2099 if (! CLASS_TYPE_P (type))
2100 {
2101 if (or_else)
2102 error ("%qT is not a class type", type);
2103 return 0;
2104 }
2105 return 1;
2106 }
2107
2108 tree
2109 get_type_value (tree name)
2110 {
2111 if (name == error_mark_node)
2112 return NULL_TREE;
2113
2114 if (IDENTIFIER_HAS_TYPE_VALUE (name))
2115 return IDENTIFIER_TYPE_VALUE (name);
2116 else
2117 return NULL_TREE;
2118 }
2119
2120 /* Build a reference to a member of an aggregate. This is not a C++
2121 `&', but really something which can have its address taken, and
2122 then act as a pointer to member, for example TYPE :: FIELD can have
2123 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
2124 this expression is the operand of "&".
2125
2126 @@ Prints out lousy diagnostics for operator <typename>
2127 @@ fields.
2128
2129 @@ This function should be rewritten and placed in search.c. */
2130
2131 tree
2132 build_offset_ref (tree type, tree member, bool address_p,
2133 tsubst_flags_t complain)
2134 {
2135 tree decl;
2136 tree basebinfo = NULL_TREE;
2137
2138 /* class templates can come in as TEMPLATE_DECLs here. */
2139 if (TREE_CODE (member) == TEMPLATE_DECL)
2140 return member;
2141
2142 if (dependent_scope_p (type) || type_dependent_expression_p (member))
2143 return build_qualified_name (NULL_TREE, type, member,
2144 /*template_p=*/false);
2145
2146 gcc_assert (TYPE_P (type));
2147 if (! is_class_type (type, 1))
2148 return error_mark_node;
2149
2150 gcc_assert (DECL_P (member) || BASELINK_P (member));
2151 /* Callers should call mark_used before this point. */
2152 gcc_assert (!DECL_P (member) || TREE_USED (member));
2153
2154 type = TYPE_MAIN_VARIANT (type);
2155 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2156 {
2157 if (complain & tf_error)
2158 error ("incomplete type %qT does not have member %qD", type, member);
2159 return error_mark_node;
2160 }
2161
2162 /* Entities other than non-static members need no further
2163 processing. */
2164 if (TREE_CODE (member) == TYPE_DECL)
2165 return member;
2166 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2167 return convert_from_reference (member);
2168
2169 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2170 {
2171 if (complain & tf_error)
2172 error ("invalid pointer to bit-field %qD", member);
2173 return error_mark_node;
2174 }
2175
2176 /* Set up BASEBINFO for member lookup. */
2177 decl = maybe_dummy_object (type, &basebinfo);
2178
2179 /* A lot of this logic is now handled in lookup_member. */
2180 if (BASELINK_P (member))
2181 {
2182 /* Go from the TREE_BASELINK to the member function info. */
2183 tree t = BASELINK_FUNCTIONS (member);
2184
2185 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2186 {
2187 /* Get rid of a potential OVERLOAD around it. */
2188 t = OVL_FIRST (t);
2189
2190 /* Unique functions are handled easily. */
2191
2192 /* For non-static member of base class, we need a special rule
2193 for access checking [class.protected]:
2194
2195 If the access is to form a pointer to member, the
2196 nested-name-specifier shall name the derived class
2197 (or any class derived from that class). */
2198 bool ok;
2199 if (address_p && DECL_P (t)
2200 && DECL_NONSTATIC_MEMBER_P (t))
2201 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2202 complain);
2203 else
2204 ok = perform_or_defer_access_check (basebinfo, t, t,
2205 complain);
2206 if (!ok)
2207 return error_mark_node;
2208 if (DECL_STATIC_FUNCTION_P (t))
2209 return t;
2210 member = t;
2211 }
2212 else
2213 TREE_TYPE (member) = unknown_type_node;
2214 }
2215 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2216 {
2217 /* We need additional test besides the one in
2218 check_accessibility_of_qualified_id in case it is
2219 a pointer to non-static member. */
2220 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2221 complain))
2222 return error_mark_node;
2223 }
2224
2225 if (!address_p)
2226 {
2227 /* If MEMBER is non-static, then the program has fallen afoul of
2228 [expr.prim]:
2229
2230 An id-expression that denotes a nonstatic data member or
2231 nonstatic member function of a class can only be used:
2232
2233 -- as part of a class member access (_expr.ref_) in which the
2234 object-expression refers to the member's class or a class
2235 derived from that class, or
2236
2237 -- to form a pointer to member (_expr.unary.op_), or
2238
2239 -- in the body of a nonstatic member function of that class or
2240 of a class derived from that class (_class.mfct.nonstatic_), or
2241
2242 -- in a mem-initializer for a constructor for that class or for
2243 a class derived from that class (_class.base.init_). */
2244 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2245 {
2246 /* Build a representation of the qualified name suitable
2247 for use as the operand to "&" -- even though the "&" is
2248 not actually present. */
2249 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2250 /* In Microsoft mode, treat a non-static member function as if
2251 it were a pointer-to-member. */
2252 if (flag_ms_extensions)
2253 {
2254 PTRMEM_OK_P (member) = 1;
2255 return cp_build_addr_expr (member, complain);
2256 }
2257 if (complain & tf_error)
2258 error ("invalid use of non-static member function %qD",
2259 TREE_OPERAND (member, 1));
2260 return error_mark_node;
2261 }
2262 else if (TREE_CODE (member) == FIELD_DECL)
2263 {
2264 if (complain & tf_error)
2265 error ("invalid use of non-static data member %qD", member);
2266 return error_mark_node;
2267 }
2268 return member;
2269 }
2270
2271 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2272 PTRMEM_OK_P (member) = 1;
2273 return member;
2274 }
2275
2276 /* If DECL is a scalar enumeration constant or variable with a
2277 constant initializer, return the initializer (or, its initializers,
2278 recursively); otherwise, return DECL. If STRICT_P, the
2279 initializer is only returned if DECL is a
2280 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2281 return an aggregate constant. */
2282
2283 static tree
2284 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2285 {
2286 while (TREE_CODE (decl) == CONST_DECL
2287 || decl_constant_var_p (decl)
2288 || (!strict_p && VAR_P (decl)
2289 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2290 {
2291 tree init;
2292 /* If DECL is a static data member in a template
2293 specialization, we must instantiate it here. The
2294 initializer for the static data member is not processed
2295 until needed; we need it now. */
2296 mark_used (decl, tf_none);
2297 init = DECL_INITIAL (decl);
2298 if (init == error_mark_node)
2299 {
2300 if (TREE_CODE (decl) == CONST_DECL
2301 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2302 /* Treat the error as a constant to avoid cascading errors on
2303 excessively recursive template instantiation (c++/9335). */
2304 return init;
2305 else
2306 return decl;
2307 }
2308 /* Initializers in templates are generally expanded during
2309 instantiation, so before that for const int i(2)
2310 INIT is a TREE_LIST with the actual initializer as
2311 TREE_VALUE. */
2312 if (processing_template_decl
2313 && init
2314 && TREE_CODE (init) == TREE_LIST
2315 && TREE_CHAIN (init) == NULL_TREE)
2316 init = TREE_VALUE (init);
2317 /* Instantiate a non-dependent initializer for user variables. We
2318 mustn't do this for the temporary for an array compound literal;
2319 trying to instatiate the initializer will keep creating new
2320 temporaries until we crash. Probably it's not useful to do it for
2321 other artificial variables, either. */
2322 if (!DECL_ARTIFICIAL (decl))
2323 init = instantiate_non_dependent_or_null (init);
2324 if (!init
2325 || !TREE_TYPE (init)
2326 || !TREE_CONSTANT (init)
2327 || (!return_aggregate_cst_ok_p
2328 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2329 return an aggregate constant (of which string
2330 literals are a special case), as we do not want
2331 to make inadvertent copies of such entities, and
2332 we must be sure that their addresses are the
2333 same everywhere. */
2334 && (TREE_CODE (init) == CONSTRUCTOR
2335 || TREE_CODE (init) == STRING_CST)))
2336 break;
2337 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2338 initialization, since it doesn't represent the entire value.
2339 Similarly for VECTOR_CSTs created by cp_folding those
2340 CONSTRUCTORs. */
2341 if ((TREE_CODE (init) == CONSTRUCTOR
2342 || TREE_CODE (init) == VECTOR_CST)
2343 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2344 break;
2345 /* If the variable has a dynamic initializer, don't use its
2346 DECL_INITIAL which doesn't reflect the real value. */
2347 if (VAR_P (decl)
2348 && TREE_STATIC (decl)
2349 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2350 && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2351 break;
2352 decl = unshare_expr (init);
2353 }
2354 return decl;
2355 }
2356
2357 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2358 of integral or enumeration type, or a constexpr variable of scalar type,
2359 then return that value. These are those variables permitted in constant
2360 expressions by [5.19/1]. */
2361
2362 tree
2363 scalar_constant_value (tree decl)
2364 {
2365 return constant_value_1 (decl, /*strict_p=*/true,
2366 /*return_aggregate_cst_ok_p=*/false);
2367 }
2368
2369 /* Like scalar_constant_value, but can also return aggregate initializers. */
2370
2371 tree
2372 decl_really_constant_value (tree decl)
2373 {
2374 return constant_value_1 (decl, /*strict_p=*/true,
2375 /*return_aggregate_cst_ok_p=*/true);
2376 }
2377
2378 /* A more relaxed version of scalar_constant_value, used by the
2379 common C/C++ code. */
2380
2381 tree
2382 decl_constant_value (tree decl)
2383 {
2384 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2385 /*return_aggregate_cst_ok_p=*/true);
2386 }
2387 \f
2388 /* Common subroutines of build_new and build_vec_delete. */
2389 \f
2390 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2391 the type of the object being allocated; otherwise, it's just TYPE.
2392 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2393 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2394 a vector of arguments to be provided as arguments to a placement
2395 new operator. This routine performs no semantic checks; it just
2396 creates and returns a NEW_EXPR. */
2397
2398 static tree
2399 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2400 vec<tree, va_gc> *init, int use_global_new)
2401 {
2402 tree init_list;
2403 tree new_expr;
2404
2405 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2406 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2407 permits us to distinguish the case of a missing initializer "new
2408 int" from an empty initializer "new int()". */
2409 if (init == NULL)
2410 init_list = NULL_TREE;
2411 else if (init->is_empty ())
2412 init_list = void_node;
2413 else
2414 init_list = build_tree_list_vec (init);
2415
2416 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2417 build_tree_list_vec (placement), type, nelts,
2418 init_list);
2419 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2420 TREE_SIDE_EFFECTS (new_expr) = 1;
2421
2422 return new_expr;
2423 }
2424
2425 /* Diagnose uninitialized const members or reference members of type
2426 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2427 new expression without a new-initializer and a declaration. Returns
2428 the error count. */
2429
2430 static int
2431 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2432 bool using_new, bool complain)
2433 {
2434 tree field;
2435 int error_count = 0;
2436
2437 if (type_has_user_provided_constructor (type))
2438 return 0;
2439
2440 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2441 {
2442 tree field_type;
2443
2444 if (TREE_CODE (field) != FIELD_DECL)
2445 continue;
2446
2447 field_type = strip_array_types (TREE_TYPE (field));
2448
2449 if (type_has_user_provided_constructor (field_type))
2450 continue;
2451
2452 if (TYPE_REF_P (field_type))
2453 {
2454 ++ error_count;
2455 if (complain)
2456 {
2457 if (DECL_CONTEXT (field) == origin)
2458 {
2459 if (using_new)
2460 error ("uninitialized reference member in %q#T "
2461 "using %<new%> without new-initializer", origin);
2462 else
2463 error ("uninitialized reference member in %q#T", origin);
2464 }
2465 else
2466 {
2467 if (using_new)
2468 error ("uninitialized reference member in base %q#T "
2469 "of %q#T using %<new%> without new-initializer",
2470 DECL_CONTEXT (field), origin);
2471 else
2472 error ("uninitialized reference member in base %q#T "
2473 "of %q#T", DECL_CONTEXT (field), origin);
2474 }
2475 inform (DECL_SOURCE_LOCATION (field),
2476 "%q#D should be initialized", field);
2477 }
2478 }
2479
2480 if (CP_TYPE_CONST_P (field_type))
2481 {
2482 ++ error_count;
2483 if (complain)
2484 {
2485 if (DECL_CONTEXT (field) == origin)
2486 {
2487 if (using_new)
2488 error ("uninitialized const member in %q#T "
2489 "using %<new%> without new-initializer", origin);
2490 else
2491 error ("uninitialized const member in %q#T", origin);
2492 }
2493 else
2494 {
2495 if (using_new)
2496 error ("uninitialized const member in base %q#T "
2497 "of %q#T using %<new%> without new-initializer",
2498 DECL_CONTEXT (field), origin);
2499 else
2500 error ("uninitialized const member in base %q#T "
2501 "of %q#T", DECL_CONTEXT (field), origin);
2502 }
2503 inform (DECL_SOURCE_LOCATION (field),
2504 "%q#D should be initialized", field);
2505 }
2506 }
2507
2508 if (CLASS_TYPE_P (field_type))
2509 error_count
2510 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2511 using_new, complain);
2512 }
2513 return error_count;
2514 }
2515
2516 int
2517 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2518 {
2519 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2520 }
2521
2522 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2523 overflowed. Pretend it returns sizetype so that it plays nicely in the
2524 COND_EXPR. */
2525
2526 tree
2527 throw_bad_array_new_length (void)
2528 {
2529 if (!fn)
2530 {
2531 tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2532
2533 fn = get_global_binding (name);
2534 if (!fn)
2535 fn = push_throw_library_fn
2536 (name, build_function_type_list (sizetype, NULL_TREE));
2537 }
2538
2539 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2540 }
2541
2542 /* Attempt to find the initializer for flexible array field T in the
2543 initializer INIT, when non-null. Returns the initializer when
2544 successful and NULL otherwise. */
2545 static tree
2546 find_flexarray_init (tree t, tree init)
2547 {
2548 if (!init || init == error_mark_node)
2549 return NULL_TREE;
2550
2551 unsigned HOST_WIDE_INT idx;
2552 tree field, elt;
2553
2554 /* Iterate over all top-level initializer elements. */
2555 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2556 /* If the member T is found, return it. */
2557 if (field == t)
2558 return elt;
2559
2560 return NULL_TREE;
2561 }
2562
2563 /* Attempt to verify that the argument, OPER, of a placement new expression
2564 refers to an object sufficiently large for an object of TYPE or an array
2565 of NELTS of such objects when NELTS is non-null, and issue a warning when
2566 it does not. SIZE specifies the size needed to construct the object or
2567 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2568 greater when the array under construction requires a cookie to store
2569 NELTS. GCC's placement new expression stores the cookie when invoking
2570 a user-defined placement new operator function but not the default one.
2571 Placement new expressions with user-defined placement new operator are
2572 not diagnosed since we don't know how they use the buffer (this could
2573 be a future extension). */
2574 static void
2575 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2576 {
2577 location_t loc = cp_expr_loc_or_input_loc (oper);
2578
2579 /* The number of bytes to add to or subtract from the size of the provided
2580 buffer based on an offset into an array or an array element reference.
2581 Although intermediate results may be negative (as in a[3] - 2) a valid
2582 final result cannot be. */
2583 offset_int adjust = 0;
2584 /* True when the size of the entire destination object should be used
2585 to compute the possibly optimistic estimate of the available space. */
2586 bool use_obj_size = false;
2587 /* True when the reference to the destination buffer is an ADDR_EXPR. */
2588 bool addr_expr = false;
2589
2590 STRIP_NOPS (oper);
2591
2592 /* Using a function argument or a (non-array) variable as an argument
2593 to placement new is not checked since it's unknown what it might
2594 point to. */
2595 if (TREE_CODE (oper) == PARM_DECL
2596 || VAR_P (oper)
2597 || TREE_CODE (oper) == COMPONENT_REF)
2598 return;
2599
2600 /* Evaluate any constant expressions. */
2601 size = fold_non_dependent_expr (size);
2602
2603 /* Handle the common case of array + offset expression when the offset
2604 is a constant. */
2605 if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2606 {
2607 /* If the offset is compile-time constant, use it to compute a more
2608 accurate estimate of the size of the buffer. Since the operand
2609 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2610 it to signed first.
2611 Otherwise, use the size of the entire array as an optimistic
2612 estimate (this may lead to false negatives). */
2613 tree adj = TREE_OPERAND (oper, 1);
2614 adj = fold_for_warn (adj);
2615 if (CONSTANT_CLASS_P (adj))
2616 adjust += wi::to_offset (convert (ssizetype, adj));
2617 else
2618 use_obj_size = true;
2619
2620 oper = TREE_OPERAND (oper, 0);
2621
2622 STRIP_NOPS (oper);
2623 }
2624
2625 if (TREE_CODE (oper) == TARGET_EXPR)
2626 oper = TREE_OPERAND (oper, 1);
2627 else if (TREE_CODE (oper) == ADDR_EXPR)
2628 {
2629 addr_expr = true;
2630 oper = TREE_OPERAND (oper, 0);
2631 }
2632
2633 STRIP_NOPS (oper);
2634
2635 if (TREE_CODE (oper) == ARRAY_REF
2636 && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2637 {
2638 /* Similar to the offset computed above, see if the array index
2639 is a compile-time constant. If so, and unless the offset was
2640 not a compile-time constant, use the index to determine the
2641 size of the buffer. Otherwise, use the entire array as
2642 an optimistic estimate of the size. */
2643 const_tree adj = fold_non_dependent_expr (TREE_OPERAND (oper, 1));
2644 if (!use_obj_size && CONSTANT_CLASS_P (adj))
2645 adjust += wi::to_offset (adj);
2646 else
2647 {
2648 use_obj_size = true;
2649 adjust = 0;
2650 }
2651
2652 oper = TREE_OPERAND (oper, 0);
2653 }
2654
2655 /* Refers to the declared object that constains the subobject referenced
2656 by OPER. When the object is initialized, makes it possible to determine
2657 the actual size of a flexible array member used as the buffer passed
2658 as OPER to placement new. */
2659 tree var_decl = NULL_TREE;
2660 /* True when operand is a COMPONENT_REF, to distinguish flexible array
2661 members from arrays of unspecified size. */
2662 bool compref = TREE_CODE (oper) == COMPONENT_REF;
2663
2664 /* For COMPONENT_REF (i.e., a struct member) the size of the entire
2665 enclosing struct. Used to validate the adjustment (offset) into
2666 an array at the end of a struct. */
2667 offset_int compsize = 0;
2668
2669 /* Descend into a struct or union to find the member whose address
2670 is being used as the argument. */
2671 if (TREE_CODE (oper) == COMPONENT_REF)
2672 {
2673 tree comptype = TREE_TYPE (TREE_OPERAND (oper, 0));
2674 compsize = wi::to_offset (TYPE_SIZE_UNIT (comptype));
2675
2676 tree op0 = oper;
2677 while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2678 STRIP_ANY_LOCATION_WRAPPER (op0);
2679 if (VAR_P (op0))
2680 var_decl = op0;
2681 oper = TREE_OPERAND (oper, 1);
2682 }
2683
2684 STRIP_ANY_LOCATION_WRAPPER (oper);
2685 tree opertype = TREE_TYPE (oper);
2686 if ((addr_expr || !INDIRECT_TYPE_P (opertype))
2687 && (VAR_P (oper)
2688 || TREE_CODE (oper) == FIELD_DECL
2689 || TREE_CODE (oper) == PARM_DECL))
2690 {
2691 /* A possibly optimistic estimate of the number of bytes available
2692 in the destination buffer. */
2693 offset_int bytes_avail = 0;
2694 /* True when the estimate above is in fact the exact size
2695 of the destination buffer rather than an estimate. */
2696 bool exact_size = true;
2697
2698 /* Treat members of unions and members of structs uniformly, even
2699 though the size of a member of a union may be viewed as extending
2700 to the end of the union itself (it is by __builtin_object_size). */
2701 if ((VAR_P (oper) || use_obj_size)
2702 && DECL_SIZE_UNIT (oper)
2703 && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2704 {
2705 /* Use the size of the entire array object when the expression
2706 refers to a variable or its size depends on an expression
2707 that's not a compile-time constant. */
2708 bytes_avail = wi::to_offset (DECL_SIZE_UNIT (oper));
2709 exact_size = !use_obj_size;
2710 }
2711 else if (tree opersize = TYPE_SIZE_UNIT (opertype))
2712 {
2713 /* Use the size of the type of the destination buffer object
2714 as the optimistic estimate of the available space in it.
2715 Use the maximum possible size for zero-size arrays and
2716 flexible array members (except of initialized objects
2717 thereof). */
2718 if (TREE_CODE (opersize) == INTEGER_CST)
2719 bytes_avail = wi::to_offset (opersize);
2720 }
2721
2722 if (bytes_avail == 0)
2723 {
2724 if (var_decl)
2725 {
2726 /* Constructing into a buffer provided by the flexible array
2727 member of a declared object (which is permitted as a G++
2728 extension). If the array member has been initialized,
2729 determine its size from the initializer. Otherwise,
2730 the array size is zero. */
2731 if (tree init = find_flexarray_init (oper,
2732 DECL_INITIAL (var_decl)))
2733 bytes_avail = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2734 }
2735 else
2736 bytes_avail = (wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node))
2737 - compsize);
2738 }
2739
2740 tree_code oper_code = TREE_CODE (opertype);
2741
2742 if (compref && oper_code == ARRAY_TYPE)
2743 {
2744 tree nelts = array_type_nelts_top (opertype);
2745 tree nelts_cst = maybe_constant_value (nelts);
2746 if (TREE_CODE (nelts_cst) == INTEGER_CST
2747 && integer_onep (nelts_cst)
2748 && !var_decl
2749 && warn_placement_new < 2)
2750 return;
2751 }
2752
2753 /* Reduce the size of the buffer by the adjustment computed above
2754 from the offset and/or the index into the array. */
2755 if (bytes_avail < adjust || adjust < 0)
2756 bytes_avail = 0;
2757 else
2758 {
2759 tree elttype = (TREE_CODE (opertype) == ARRAY_TYPE
2760 ? TREE_TYPE (opertype) : opertype);
2761 if (tree eltsize = TYPE_SIZE_UNIT (elttype))
2762 {
2763 bytes_avail -= adjust * wi::to_offset (eltsize);
2764 if (bytes_avail < 0)
2765 bytes_avail = 0;
2766 }
2767 }
2768
2769 /* The minimum amount of space needed for the allocation. This
2770 is an optimistic estimate that makes it possible to detect
2771 placement new invocation for some undersize buffers but not
2772 others. */
2773 offset_int bytes_need;
2774
2775 if (nelts)
2776 nelts = fold_for_warn (nelts);
2777
2778 if (CONSTANT_CLASS_P (size))
2779 bytes_need = wi::to_offset (size);
2780 else if (nelts && CONSTANT_CLASS_P (nelts))
2781 bytes_need = (wi::to_offset (nelts)
2782 * wi::to_offset (TYPE_SIZE_UNIT (type)));
2783 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2784 bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type));
2785 else
2786 {
2787 /* The type is a VLA. */
2788 return;
2789 }
2790
2791 if (bytes_avail < bytes_need)
2792 {
2793 if (nelts)
2794 if (CONSTANT_CLASS_P (nelts))
2795 warning_at (loc, OPT_Wplacement_new_,
2796 exact_size ?
2797 "placement new constructing an object of type "
2798 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2799 "and size %qwi"
2800 : "placement new constructing an object of type "
2801 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2802 "and size at most %qwu",
2803 type, tree_to_uhwi (nelts), bytes_need.to_uhwi (),
2804 opertype, bytes_avail.to_uhwi ());
2805 else
2806 warning_at (loc, OPT_Wplacement_new_,
2807 exact_size ?
2808 "placement new constructing an array of objects "
2809 "of type %qT and size %qwu in a region of type %qT "
2810 "and size %qwi"
2811 : "placement new constructing an array of objects "
2812 "of type %qT and size %qwu in a region of type %qT "
2813 "and size at most %qwu",
2814 type, bytes_need.to_uhwi (), opertype,
2815 bytes_avail.to_uhwi ());
2816 else
2817 warning_at (loc, OPT_Wplacement_new_,
2818 exact_size ?
2819 "placement new constructing an object of type %qT "
2820 "and size %qwu in a region of type %qT and size %qwi"
2821 : "placement new constructing an object of type %qT "
2822 "and size %qwu in a region of type %qT and size "
2823 "at most %qwu",
2824 type, bytes_need.to_uhwi (), opertype,
2825 bytes_avail.to_uhwi ());
2826 }
2827 }
2828 }
2829
2830 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2831
2832 bool
2833 type_has_new_extended_alignment (tree t)
2834 {
2835 return (aligned_new_threshold
2836 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2837 }
2838
2839 /* Return the alignment we expect malloc to guarantee. This should just be
2840 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2841 reason, so don't let the threshold be smaller than max_align_t_align. */
2842
2843 unsigned
2844 malloc_alignment ()
2845 {
2846 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2847 }
2848
2849 /* Determine whether an allocation function is a namespace-scope
2850 non-replaceable placement new function. See DR 1748. */
2851 static bool
2852 std_placement_new_fn_p (tree alloc_fn)
2853 {
2854 if (DECL_NAMESPACE_SCOPE_P (alloc_fn))
2855 {
2856 tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2857 if ((TREE_VALUE (first_arg) == ptr_type_node)
2858 && TREE_CHAIN (first_arg) == void_list_node)
2859 return true;
2860 }
2861 return false;
2862 }
2863
2864 /* For element type ELT_TYPE, return the appropriate type of the heap object
2865 containing such element(s). COOKIE_SIZE is NULL or the size of cookie
2866 in bytes. FULL_SIZE is NULL if it is unknown how big the heap allocation
2867 will be, otherwise size of the heap object. If COOKIE_SIZE is NULL,
2868 return array type ELT_TYPE[FULL_SIZE / sizeof(ELT_TYPE)], otherwise return
2869 struct { size_t[COOKIE_SIZE/sizeof(size_t)]; ELT_TYPE[N]; }
2870 where N is nothing (flexible array member) if FULL_SIZE is NULL, otherwise
2871 it is computed such that the size of the struct fits into FULL_SIZE. */
2872
2873 tree
2874 build_new_constexpr_heap_type (tree elt_type, tree cookie_size, tree full_size)
2875 {
2876 gcc_assert (cookie_size == NULL_TREE || tree_fits_uhwi_p (cookie_size));
2877 gcc_assert (full_size == NULL_TREE || tree_fits_uhwi_p (full_size));
2878 unsigned HOST_WIDE_INT csz = cookie_size ? tree_to_uhwi (cookie_size) : 0;
2879 tree itype2 = NULL_TREE;
2880 if (full_size)
2881 {
2882 unsigned HOST_WIDE_INT fsz = tree_to_uhwi (full_size);
2883 gcc_assert (fsz >= csz);
2884 fsz -= csz;
2885 fsz /= int_size_in_bytes (elt_type);
2886 itype2 = build_index_type (size_int (fsz - 1));
2887 if (!cookie_size)
2888 return build_cplus_array_type (elt_type, itype2);
2889 }
2890 else
2891 gcc_assert (cookie_size);
2892 csz /= int_size_in_bytes (sizetype);
2893 tree itype1 = build_index_type (size_int (csz - 1));
2894 tree atype1 = build_cplus_array_type (sizetype, itype1);
2895 tree atype2 = build_cplus_array_type (elt_type, itype2);
2896 tree rtype = cxx_make_type (RECORD_TYPE);
2897 TYPE_NAME (rtype) = heap_identifier;
2898 tree fld1 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype1);
2899 tree fld2 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype2);
2900 DECL_FIELD_CONTEXT (fld1) = rtype;
2901 DECL_FIELD_CONTEXT (fld2) = rtype;
2902 DECL_ARTIFICIAL (fld1) = true;
2903 DECL_ARTIFICIAL (fld2) = true;
2904 TYPE_FIELDS (rtype) = fld1;
2905 DECL_CHAIN (fld1) = fld2;
2906 layout_type (rtype);
2907 return rtype;
2908 }
2909
2910 /* Help the constexpr code to find the right type for the heap variable
2911 by adding a NOP_EXPR around ALLOC_CALL if needed for cookie_size.
2912 Return ALLOC_CALL or ALLOC_CALL cast to a pointer to
2913 struct { size_t[cookie_size/sizeof(size_t)]; elt_type[]; }. */
2914
2915 static tree
2916 maybe_wrap_new_for_constexpr (tree alloc_call, tree elt_type, tree cookie_size)
2917 {
2918 if (cxx_dialect < cxx2a)
2919 return alloc_call;
2920
2921 if (current_function_decl != NULL_TREE
2922 && !DECL_DECLARED_CONSTEXPR_P (current_function_decl))
2923 return alloc_call;
2924
2925 tree call_expr = extract_call_expr (alloc_call);
2926 if (call_expr == error_mark_node)
2927 return alloc_call;
2928
2929 tree alloc_call_fndecl = cp_get_callee_fndecl_nofold (call_expr);
2930 if (alloc_call_fndecl == NULL_TREE
2931 || !IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_call_fndecl))
2932 || CP_DECL_CONTEXT (alloc_call_fndecl) != global_namespace)
2933 return alloc_call;
2934
2935 tree rtype = build_new_constexpr_heap_type (elt_type, cookie_size,
2936 NULL_TREE);
2937 return build_nop (build_pointer_type (rtype), alloc_call);
2938 }
2939
2940 /* Generate code for a new-expression, including calling the "operator
2941 new" function, initializing the object, and, if an exception occurs
2942 during construction, cleaning up. The arguments are as for
2943 build_raw_new_expr. This may change PLACEMENT and INIT.
2944 TYPE is the type of the object being constructed, possibly an array
2945 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2946 be an array of the form U[inner], with the whole expression being
2947 "new U[NELTS][inner]"). */
2948
2949 static tree
2950 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2951 vec<tree, va_gc> **init, bool globally_qualified_p,
2952 tsubst_flags_t complain)
2953 {
2954 tree size, rval;
2955 /* True iff this is a call to "operator new[]" instead of just
2956 "operator new". */
2957 bool array_p = false;
2958 /* If ARRAY_P is true, the element type of the array. This is never
2959 an ARRAY_TYPE; for something like "new int[3][4]", the
2960 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2961 TYPE. */
2962 tree elt_type;
2963 /* The type of the new-expression. (This type is always a pointer
2964 type.) */
2965 tree pointer_type;
2966 tree non_const_pointer_type;
2967 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2968 tree outer_nelts = NULL_TREE;
2969 /* For arrays with a non-constant number of elements, a bounds checks
2970 on the NELTS parameter to avoid integer overflow at runtime. */
2971 tree outer_nelts_check = NULL_TREE;
2972 bool outer_nelts_from_type = false;
2973 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2974 offset_int inner_nelts_count = 1;
2975 tree alloc_call, alloc_expr;
2976 /* Size of the inner array elements (those with constant dimensions). */
2977 offset_int inner_size;
2978 /* The address returned by the call to "operator new". This node is
2979 a VAR_DECL and is therefore reusable. */
2980 tree alloc_node;
2981 tree alloc_fn;
2982 tree cookie_expr, init_expr;
2983 int nothrow, check_new;
2984 /* If non-NULL, the number of extra bytes to allocate at the
2985 beginning of the storage allocated for an array-new expression in
2986 order to store the number of elements. */
2987 tree cookie_size = NULL_TREE;
2988 tree placement_first;
2989 tree placement_expr = NULL_TREE;
2990 /* True if the function we are calling is a placement allocation
2991 function. */
2992 bool placement_allocation_fn_p;
2993 /* True if the storage must be initialized, either by a constructor
2994 or due to an explicit new-initializer. */
2995 bool is_initialized;
2996 /* The address of the thing allocated, not including any cookie. In
2997 particular, if an array cookie is in use, DATA_ADDR is the
2998 address of the first array element. This node is a VAR_DECL, and
2999 is therefore reusable. */
3000 tree data_addr;
3001 tree init_preeval_expr = NULL_TREE;
3002 tree orig_type = type;
3003
3004 if (nelts)
3005 {
3006 outer_nelts = nelts;
3007 array_p = true;
3008 }
3009 else if (TREE_CODE (type) == ARRAY_TYPE)
3010 {
3011 /* Transforms new (T[N]) to new T[N]. The former is a GNU
3012 extension for variable N. (This also covers new T where T is
3013 a VLA typedef.) */
3014 array_p = true;
3015 nelts = array_type_nelts_top (type);
3016 outer_nelts = nelts;
3017 type = TREE_TYPE (type);
3018 outer_nelts_from_type = true;
3019 }
3020
3021 /* Lots of logic below depends on whether we have a constant number of
3022 elements, so go ahead and fold it now. */
3023 const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts, complain);
3024
3025 /* If our base type is an array, then make sure we know how many elements
3026 it has. */
3027 for (elt_type = type;
3028 TREE_CODE (elt_type) == ARRAY_TYPE;
3029 elt_type = TREE_TYPE (elt_type))
3030 {
3031 tree inner_nelts = array_type_nelts_top (elt_type);
3032 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
3033 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
3034 {
3035 wi::overflow_type overflow;
3036 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
3037 inner_nelts_count, SIGNED, &overflow);
3038 if (overflow)
3039 {
3040 if (complain & tf_error)
3041 error ("integer overflow in array size");
3042 nelts = error_mark_node;
3043 }
3044 inner_nelts_count = result;
3045 }
3046 else
3047 {
3048 if (complain & tf_error)
3049 {
3050 error_at (cp_expr_loc_or_input_loc (inner_nelts),
3051 "array size in new-expression must be constant");
3052 cxx_constant_value(inner_nelts);
3053 }
3054 nelts = error_mark_node;
3055 }
3056 if (nelts != error_mark_node)
3057 nelts = cp_build_binary_op (input_location,
3058 MULT_EXPR, nelts,
3059 inner_nelts_cst,
3060 complain);
3061 }
3062
3063 if (!verify_type_context (input_location, TCTX_ALLOCATION, elt_type,
3064 !(complain & tf_error)))
3065 return error_mark_node;
3066
3067 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
3068 {
3069 error ("variably modified type not allowed in new-expression");
3070 return error_mark_node;
3071 }
3072
3073 if (nelts == error_mark_node)
3074 return error_mark_node;
3075
3076 /* Warn if we performed the (T[N]) to T[N] transformation and N is
3077 variable. */
3078 if (outer_nelts_from_type
3079 && !TREE_CONSTANT (cst_outer_nelts))
3080 {
3081 if (complain & tf_warning_or_error)
3082 {
3083 pedwarn (cp_expr_loc_or_input_loc (outer_nelts), OPT_Wvla,
3084 typedef_variant_p (orig_type)
3085 ? G_("non-constant array new length must be specified "
3086 "directly, not by %<typedef%>")
3087 : G_("non-constant array new length must be specified "
3088 "without parentheses around the type-id"));
3089 }
3090 else
3091 return error_mark_node;
3092 }
3093
3094 if (VOID_TYPE_P (elt_type))
3095 {
3096 if (complain & tf_error)
3097 error ("invalid type %<void%> for %<new%>");
3098 return error_mark_node;
3099 }
3100
3101 if (is_std_init_list (elt_type))
3102 warning (OPT_Winit_list_lifetime,
3103 "%<new%> of %<initializer_list%> does not "
3104 "extend the lifetime of the underlying array");
3105
3106 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
3107 return error_mark_node;
3108
3109 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
3110
3111 if (*init == NULL && cxx_dialect < cxx11)
3112 {
3113 bool maybe_uninitialized_error = false;
3114 /* A program that calls for default-initialization [...] of an
3115 entity of reference type is ill-formed. */
3116 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
3117 maybe_uninitialized_error = true;
3118
3119 /* A new-expression that creates an object of type T initializes
3120 that object as follows:
3121 - If the new-initializer is omitted:
3122 -- If T is a (possibly cv-qualified) non-POD class type
3123 (or array thereof), the object is default-initialized (8.5).
3124 [...]
3125 -- Otherwise, the object created has indeterminate
3126 value. If T is a const-qualified type, or a (possibly
3127 cv-qualified) POD class type (or array thereof)
3128 containing (directly or indirectly) a member of
3129 const-qualified type, the program is ill-formed; */
3130
3131 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
3132 maybe_uninitialized_error = true;
3133
3134 if (maybe_uninitialized_error
3135 && diagnose_uninitialized_cst_or_ref_member (elt_type,
3136 /*using_new=*/true,
3137 complain & tf_error))
3138 return error_mark_node;
3139 }
3140
3141 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
3142 && default_init_uninitialized_part (elt_type))
3143 {
3144 if (complain & tf_error)
3145 error ("uninitialized const in %<new%> of %q#T", elt_type);
3146 return error_mark_node;
3147 }
3148
3149 size = size_in_bytes (elt_type);
3150 if (array_p)
3151 {
3152 /* Maximum available size in bytes. Half of the address space
3153 minus the cookie size. */
3154 offset_int max_size
3155 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
3156 /* Maximum number of outer elements which can be allocated. */
3157 offset_int max_outer_nelts;
3158 tree max_outer_nelts_tree;
3159
3160 gcc_assert (TREE_CODE (size) == INTEGER_CST);
3161 cookie_size = targetm.cxx.get_cookie_size (elt_type);
3162 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
3163 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
3164 /* Unconditionally subtract the cookie size. This decreases the
3165 maximum object size and is safe even if we choose not to use
3166 a cookie after all. */
3167 max_size -= wi::to_offset (cookie_size);
3168 wi::overflow_type overflow;
3169 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
3170 &overflow);
3171 if (overflow || wi::gtu_p (inner_size, max_size))
3172 {
3173 if (complain & tf_error)
3174 {
3175 cst_size_error error;
3176 if (overflow)
3177 error = cst_size_overflow;
3178 else
3179 {
3180 error = cst_size_too_big;
3181 size = size_binop (MULT_EXPR, size,
3182 wide_int_to_tree (sizetype,
3183 inner_nelts_count));
3184 size = cp_fully_fold (size);
3185 }
3186 invalid_array_size_error (input_location, error, size,
3187 /*name=*/NULL_TREE);
3188 }
3189 return error_mark_node;
3190 }
3191
3192 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
3193 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
3194
3195 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
3196
3197 if (TREE_CODE (cst_outer_nelts) == INTEGER_CST)
3198 {
3199 if (tree_int_cst_lt (max_outer_nelts_tree, cst_outer_nelts))
3200 {
3201 /* When the array size is constant, check it at compile time
3202 to make sure it doesn't exceed the implementation-defined
3203 maximum, as required by C++ 14 (in C++ 11 this requirement
3204 isn't explicitly stated but it's enforced anyway -- see
3205 grokdeclarator in cp/decl.c). */
3206 if (complain & tf_error)
3207 {
3208 size = cp_fully_fold (size);
3209 invalid_array_size_error (input_location, cst_size_too_big,
3210 size, NULL_TREE);
3211 }
3212 return error_mark_node;
3213 }
3214 }
3215 else
3216 {
3217 /* When a runtime check is necessary because the array size
3218 isn't constant, keep only the top-most seven bits (starting
3219 with the most significant non-zero bit) of the maximum size
3220 to compare the array size against, to simplify encoding the
3221 constant maximum size in the instruction stream. */
3222
3223 unsigned shift = (max_outer_nelts.get_precision ()) - 7
3224 - wi::clz (max_outer_nelts);
3225 max_outer_nelts = (max_outer_nelts >> shift) << shift;
3226
3227 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
3228 outer_nelts,
3229 max_outer_nelts_tree);
3230 }
3231 }
3232
3233 tree align_arg = NULL_TREE;
3234 if (type_has_new_extended_alignment (elt_type))
3235 align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
3236
3237 alloc_fn = NULL_TREE;
3238
3239 /* If PLACEMENT is a single simple pointer type not passed by
3240 reference, prepare to capture it in a temporary variable. Do
3241 this now, since PLACEMENT will change in the calls below. */
3242 placement_first = NULL_TREE;
3243 if (vec_safe_length (*placement) == 1
3244 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3245 placement_first = (**placement)[0];
3246
3247 bool member_new_p = false;
3248
3249 /* Allocate the object. */
3250 tree fnname;
3251 tree fns;
3252
3253 fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR);
3254
3255 member_new_p = !globally_qualified_p
3256 && CLASS_TYPE_P (elt_type)
3257 && (array_p
3258 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3259 : TYPE_HAS_NEW_OPERATOR (elt_type));
3260
3261 if (member_new_p)
3262 {
3263 /* Use a class-specific operator new. */
3264 /* If a cookie is required, add some extra space. */
3265 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3266 size = size_binop (PLUS_EXPR, size, cookie_size);
3267 else
3268 {
3269 cookie_size = NULL_TREE;
3270 /* No size arithmetic necessary, so the size check is
3271 not needed. */
3272 if (outer_nelts_check != NULL && inner_size == 1)
3273 outer_nelts_check = NULL_TREE;
3274 }
3275 /* Perform the overflow check. */
3276 tree errval = TYPE_MAX_VALUE (sizetype);
3277 if (cxx_dialect >= cxx11 && flag_exceptions)
3278 errval = throw_bad_array_new_length ();
3279 if (outer_nelts_check != NULL_TREE)
3280 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3281 size, errval);
3282 /* Create the argument list. */
3283 vec_safe_insert (*placement, 0, size);
3284 /* Do name-lookup to find the appropriate operator. */
3285 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
3286 if (fns == NULL_TREE)
3287 {
3288 if (complain & tf_error)
3289 error ("no suitable %qD found in class %qT", fnname, elt_type);
3290 return error_mark_node;
3291 }
3292 if (TREE_CODE (fns) == TREE_LIST)
3293 {
3294 if (complain & tf_error)
3295 {
3296 error ("request for member %qD is ambiguous", fnname);
3297 print_candidates (fns);
3298 }
3299 return error_mark_node;
3300 }
3301 tree dummy = build_dummy_object (elt_type);
3302 alloc_call = NULL_TREE;
3303 if (align_arg)
3304 {
3305 vec<tree, va_gc> *align_args
3306 = vec_copy_and_insert (*placement, align_arg, 1);
3307 alloc_call
3308 = build_new_method_call (dummy, fns, &align_args,
3309 /*conversion_path=*/NULL_TREE,
3310 LOOKUP_NORMAL, &alloc_fn, tf_none);
3311 /* If no matching function is found and the allocated object type
3312 has new-extended alignment, the alignment argument is removed
3313 from the argument list, and overload resolution is performed
3314 again. */
3315 if (alloc_call == error_mark_node)
3316 alloc_call = NULL_TREE;
3317 }
3318 if (!alloc_call)
3319 alloc_call = build_new_method_call (dummy, fns, placement,
3320 /*conversion_path=*/NULL_TREE,
3321 LOOKUP_NORMAL,
3322 &alloc_fn, complain);
3323 }
3324 else
3325 {
3326 /* Use a global operator new. */
3327 /* See if a cookie might be required. */
3328 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3329 {
3330 cookie_size = NULL_TREE;
3331 /* No size arithmetic necessary, so the size check is
3332 not needed. */
3333 if (outer_nelts_check != NULL && inner_size == 1)
3334 outer_nelts_check = NULL_TREE;
3335 }
3336
3337 alloc_call = build_operator_new_call (fnname, placement,
3338 &size, &cookie_size,
3339 align_arg, outer_nelts_check,
3340 &alloc_fn, complain);
3341 }
3342
3343 if (alloc_call == error_mark_node)
3344 return error_mark_node;
3345
3346 gcc_assert (alloc_fn != NULL_TREE);
3347
3348 /* Now, check to see if this function is actually a placement
3349 allocation function. This can happen even when PLACEMENT is NULL
3350 because we might have something like:
3351
3352 struct S { void* operator new (size_t, int i = 0); };
3353
3354 A call to `new S' will get this allocation function, even though
3355 there is no explicit placement argument. If there is more than
3356 one argument, or there are variable arguments, then this is a
3357 placement allocation function. */
3358 placement_allocation_fn_p
3359 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3360 || varargs_function_p (alloc_fn));
3361
3362 if (warn_aligned_new
3363 && !placement_allocation_fn_p
3364 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3365 && (warn_aligned_new > 1
3366 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3367 && !aligned_allocation_fn_p (alloc_fn))
3368 {
3369 auto_diagnostic_group d;
3370 if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3371 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3372 {
3373 inform (input_location, "uses %qD, which does not have an alignment "
3374 "parameter", alloc_fn);
3375 if (!aligned_new_threshold)
3376 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3377 "over-aligned new support");
3378 }
3379 }
3380
3381 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3382 into a temporary variable. */
3383 if (!processing_template_decl
3384 && TREE_CODE (alloc_call) == CALL_EXPR
3385 && call_expr_nargs (alloc_call) == 2
3386 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3387 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3388 {
3389 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3390
3391 if (placement_first != NULL_TREE
3392 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3393 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3394 {
3395 placement_expr = get_target_expr (placement_first);
3396 CALL_EXPR_ARG (alloc_call, 1)
3397 = fold_convert (TREE_TYPE (placement), placement_expr);
3398 }
3399
3400 if (!member_new_p
3401 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3402 {
3403 /* Attempt to make the warning point at the operator new argument. */
3404 if (placement_first)
3405 placement = placement_first;
3406
3407 warn_placement_new_too_small (orig_type, nelts, size, placement);
3408 }
3409 }
3410
3411 tree alloc_call_expr = extract_call_expr (alloc_call);
3412 if (TREE_CODE (alloc_call_expr) == CALL_EXPR)
3413 CALL_FROM_NEW_OR_DELETE_P (alloc_call_expr) = 1;
3414
3415 if (cookie_size)
3416 alloc_call = maybe_wrap_new_for_constexpr (alloc_call, elt_type,
3417 cookie_size);
3418
3419 /* In the simple case, we can stop now. */
3420 pointer_type = build_pointer_type (type);
3421 if (!cookie_size && !is_initialized)
3422 return build_nop (pointer_type, alloc_call);
3423
3424 /* Store the result of the allocation call in a variable so that we can
3425 use it more than once. */
3426 alloc_expr = get_target_expr (alloc_call);
3427 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3428
3429 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3430 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3431 alloc_call = TREE_OPERAND (alloc_call, 1);
3432
3433 /* Preevaluate the placement args so that we don't reevaluate them for a
3434 placement delete. */
3435 if (placement_allocation_fn_p)
3436 {
3437 tree inits;
3438 stabilize_call (alloc_call, &inits);
3439 if (inits)
3440 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3441 alloc_expr);
3442 }
3443
3444 /* unless an allocation function is declared with an empty excep-
3445 tion-specification (_except.spec_), throw(), it indicates failure to
3446 allocate storage by throwing a bad_alloc exception (clause _except_,
3447 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3448 cation function is declared with an empty exception-specification,
3449 throw(), it returns null to indicate failure to allocate storage and a
3450 non-null pointer otherwise.
3451
3452 So check for a null exception spec on the op new we just called. */
3453
3454 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3455 check_new
3456 = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3457
3458 if (cookie_size)
3459 {
3460 tree cookie;
3461 tree cookie_ptr;
3462 tree size_ptr_type;
3463
3464 /* Adjust so we're pointing to the start of the object. */
3465 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3466
3467 /* Store the number of bytes allocated so that we can know how
3468 many elements to destroy later. We use the last sizeof
3469 (size_t) bytes to store the number of elements. */
3470 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3471 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3472 alloc_node, cookie_ptr);
3473 size_ptr_type = build_pointer_type (sizetype);
3474 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3475 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3476
3477 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3478
3479 if (targetm.cxx.cookie_has_size ())
3480 {
3481 /* Also store the element size. */
3482 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3483 fold_build1_loc (input_location,
3484 NEGATE_EXPR, sizetype,
3485 size_in_bytes (sizetype)));
3486
3487 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3488 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3489 size_in_bytes (elt_type));
3490 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3491 cookie, cookie_expr);
3492 }
3493 }
3494 else
3495 {
3496 cookie_expr = NULL_TREE;
3497 data_addr = alloc_node;
3498 }
3499
3500 /* Now use a pointer to the type we've actually allocated. */
3501
3502 /* But we want to operate on a non-const version to start with,
3503 since we'll be modifying the elements. */
3504 non_const_pointer_type = build_pointer_type
3505 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3506
3507 data_addr = fold_convert (non_const_pointer_type, data_addr);
3508 /* Any further uses of alloc_node will want this type, too. */
3509 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3510
3511 /* Now initialize the allocated object. Note that we preevaluate the
3512 initialization expression, apart from the actual constructor call or
3513 assignment--we do this because we want to delay the allocation as long
3514 as possible in order to minimize the size of the exception region for
3515 placement delete. */
3516 if (is_initialized)
3517 {
3518 bool stable;
3519 bool explicit_value_init_p = false;
3520
3521 if (*init != NULL && (*init)->is_empty ())
3522 {
3523 *init = NULL;
3524 explicit_value_init_p = true;
3525 }
3526
3527 if (processing_template_decl && explicit_value_init_p)
3528 {
3529 /* build_value_init doesn't work in templates, and we don't need
3530 the initializer anyway since we're going to throw it away and
3531 rebuild it at instantiation time, so just build up a single
3532 constructor call to get any appropriate diagnostics. */
3533 init_expr = cp_build_fold_indirect_ref (data_addr);
3534 if (type_build_ctor_call (elt_type))
3535 init_expr = build_special_member_call (init_expr,
3536 complete_ctor_identifier,
3537 init, elt_type,
3538 LOOKUP_NORMAL,
3539 complain);
3540 stable = stabilize_init (init_expr, &init_preeval_expr);
3541 }
3542 else if (array_p)
3543 {
3544 tree vecinit = NULL_TREE;
3545 if (vec_safe_length (*init) == 1
3546 && DIRECT_LIST_INIT_P ((**init)[0]))
3547 {
3548 vecinit = (**init)[0];
3549 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3550 /* List-value-initialization, leave it alone. */;
3551 else
3552 {
3553 tree arraytype, domain;
3554 if (TREE_CONSTANT (nelts))
3555 domain = compute_array_index_type (NULL_TREE, nelts,
3556 complain);
3557 else
3558 /* We'll check the length at runtime. */
3559 domain = NULL_TREE;
3560 arraytype = build_cplus_array_type (type, domain);
3561 vecinit = digest_init (arraytype, vecinit, complain);
3562 }
3563 }
3564 else if (*init)
3565 {
3566 if (complain & tf_error)
3567 error ("parenthesized initializer in array new");
3568 return error_mark_node;
3569 }
3570 init_expr
3571 = build_vec_init (data_addr,
3572 cp_build_binary_op (input_location,
3573 MINUS_EXPR, outer_nelts,
3574 integer_one_node,
3575 complain),
3576 vecinit,
3577 explicit_value_init_p,
3578 /*from_array=*/0,
3579 complain);
3580
3581 /* An array initialization is stable because the initialization
3582 of each element is a full-expression, so the temporaries don't
3583 leak out. */
3584 stable = true;
3585 }
3586 else
3587 {
3588 init_expr = cp_build_fold_indirect_ref (data_addr);
3589
3590 if (type_build_ctor_call (type) && !explicit_value_init_p)
3591 {
3592 init_expr = build_special_member_call (init_expr,
3593 complete_ctor_identifier,
3594 init, elt_type,
3595 LOOKUP_NORMAL,
3596 complain|tf_no_cleanup);
3597 }
3598 else if (explicit_value_init_p)
3599 {
3600 /* Something like `new int()'. NO_CLEANUP is needed so
3601 we don't try and build a (possibly ill-formed)
3602 destructor. */
3603 tree val = build_value_init (type, complain | tf_no_cleanup);
3604 if (val == error_mark_node)
3605 return error_mark_node;
3606 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3607 }
3608 else
3609 {
3610 tree ie;
3611
3612 /* We are processing something like `new int (10)', which
3613 means allocate an int, and initialize it with 10.
3614
3615 In C++20, also handle `new A(1, 2)'. */
3616 if (cxx_dialect >= cxx2a
3617 && AGGREGATE_TYPE_P (type)
3618 && (*init)->length () > 1)
3619 {
3620 ie = build_tree_list_vec (*init);
3621 ie = build_constructor_from_list (init_list_type_node, ie);
3622 CONSTRUCTOR_IS_DIRECT_INIT (ie) = true;
3623 CONSTRUCTOR_IS_PAREN_INIT (ie) = true;
3624 ie = digest_init (type, ie, complain);
3625 }
3626 else
3627 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3628 complain);
3629 init_expr = cp_build_modify_expr (input_location, init_expr,
3630 INIT_EXPR, ie, complain);
3631 }
3632 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3633 object being initialized, replace them now and don't try to
3634 preevaluate. */
3635 bool had_placeholder = false;
3636 if (!processing_template_decl
3637 && TREE_CODE (init_expr) == INIT_EXPR)
3638 TREE_OPERAND (init_expr, 1)
3639 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3640 TREE_OPERAND (init_expr, 0),
3641 &had_placeholder);
3642 stable = (!had_placeholder
3643 && stabilize_init (init_expr, &init_preeval_expr));
3644 }
3645
3646 if (init_expr == error_mark_node)
3647 return error_mark_node;
3648
3649 /* If any part of the object initialization terminates by throwing an
3650 exception and a suitable deallocation function can be found, the
3651 deallocation function is called to free the memory in which the
3652 object was being constructed, after which the exception continues
3653 to propagate in the context of the new-expression. If no
3654 unambiguous matching deallocation function can be found,
3655 propagating the exception does not cause the object's memory to be
3656 freed. */
3657 if (flag_exceptions)
3658 {
3659 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3660 tree cleanup;
3661
3662 /* The Standard is unclear here, but the right thing to do
3663 is to use the same method for finding deallocation
3664 functions that we use for finding allocation functions. */
3665 cleanup = (build_op_delete_call
3666 (dcode,
3667 alloc_node,
3668 size,
3669 globally_qualified_p,
3670 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3671 alloc_fn,
3672 complain));
3673
3674 if (!cleanup)
3675 /* We're done. */;
3676 else if (stable)
3677 /* This is much simpler if we were able to preevaluate all of
3678 the arguments to the constructor call. */
3679 {
3680 /* CLEANUP is compiler-generated, so no diagnostics. */
3681 TREE_NO_WARNING (cleanup) = true;
3682 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3683 init_expr, cleanup);
3684 /* Likewise, this try-catch is compiler-generated. */
3685 TREE_NO_WARNING (init_expr) = true;
3686 }
3687 else
3688 /* Ack! First we allocate the memory. Then we set our sentry
3689 variable to true, and expand a cleanup that deletes the
3690 memory if sentry is true. Then we run the constructor, and
3691 finally clear the sentry.
3692
3693 We need to do this because we allocate the space first, so
3694 if there are any temporaries with cleanups in the
3695 constructor args and we weren't able to preevaluate them, we
3696 need this EH region to extend until end of full-expression
3697 to preserve nesting. */
3698 {
3699 tree end, sentry, begin;
3700
3701 begin = get_target_expr (boolean_true_node);
3702 CLEANUP_EH_ONLY (begin) = 1;
3703
3704 sentry = TARGET_EXPR_SLOT (begin);
3705
3706 /* CLEANUP is compiler-generated, so no diagnostics. */
3707 TREE_NO_WARNING (cleanup) = true;
3708
3709 TARGET_EXPR_CLEANUP (begin)
3710 = build3 (COND_EXPR, void_type_node, sentry,
3711 cleanup, void_node);
3712
3713 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3714 sentry, boolean_false_node);
3715
3716 init_expr
3717 = build2 (COMPOUND_EXPR, void_type_node, begin,
3718 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3719 end));
3720 /* Likewise, this is compiler-generated. */
3721 TREE_NO_WARNING (init_expr) = true;
3722 }
3723 }
3724 }
3725 else
3726 init_expr = NULL_TREE;
3727
3728 /* Now build up the return value in reverse order. */
3729
3730 rval = data_addr;
3731
3732 if (init_expr)
3733 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3734 if (cookie_expr)
3735 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3736
3737 if (rval == data_addr)
3738 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3739 and return the call (which doesn't need to be adjusted). */
3740 rval = TARGET_EXPR_INITIAL (alloc_expr);
3741 else
3742 {
3743 if (check_new)
3744 {
3745 tree ifexp = cp_build_binary_op (input_location,
3746 NE_EXPR, alloc_node,
3747 nullptr_node,
3748 complain);
3749 rval = build_conditional_expr (input_location, ifexp, rval,
3750 alloc_node, complain);
3751 }
3752
3753 /* Perform the allocation before anything else, so that ALLOC_NODE
3754 has been initialized before we start using it. */
3755 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3756 }
3757
3758 if (init_preeval_expr)
3759 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3760
3761 /* A new-expression is never an lvalue. */
3762 gcc_assert (!obvalue_p (rval));
3763
3764 return convert (pointer_type, rval);
3765 }
3766
3767 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3768 is a vector of placement-new arguments (or NULL if none). If NELTS
3769 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3770 is not NULL, then this is an array-new allocation; TYPE is the type
3771 of the elements in the array and NELTS is the number of elements in
3772 the array. *INIT, if non-NULL, is the initializer for the new
3773 object, or an empty vector to indicate an initializer of "()". If
3774 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3775 rather than just "new". This may change PLACEMENT and INIT. */
3776
3777 tree
3778 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3779 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3780 {
3781 tree rval;
3782 vec<tree, va_gc> *orig_placement = NULL;
3783 tree orig_nelts = NULL_TREE;
3784 vec<tree, va_gc> *orig_init = NULL;
3785
3786 if (type == error_mark_node)
3787 return error_mark_node;
3788
3789 if (nelts == NULL_TREE
3790 /* Don't do auto deduction where it might affect mangling. */
3791 && (!processing_template_decl || at_function_scope_p ()))
3792 {
3793 tree auto_node = type_uses_auto (type);
3794 if (auto_node)
3795 {
3796 tree d_init = NULL_TREE;
3797 const size_t len = vec_safe_length (*init);
3798 /* E.g. new auto(x) must have exactly one element, or
3799 a {} initializer will have one element. */
3800 if (len == 1)
3801 {
3802 d_init = (**init)[0];
3803 d_init = resolve_nondeduced_context (d_init, complain);
3804 }
3805 /* For the rest, e.g. new A(1, 2, 3), create a list. */
3806 else if (len > 1)
3807 {
3808 unsigned int n;
3809 tree t;
3810 tree *pp = &d_init;
3811 FOR_EACH_VEC_ELT (**init, n, t)
3812 {
3813 t = resolve_nondeduced_context (t, complain);
3814 *pp = build_tree_list (NULL_TREE, t);
3815 pp = &TREE_CHAIN (*pp);
3816 }
3817 }
3818 type = do_auto_deduction (type, d_init, auto_node, complain);
3819 }
3820 }
3821
3822 if (processing_template_decl)
3823 {
3824 if (dependent_type_p (type)
3825 || any_type_dependent_arguments_p (*placement)
3826 || (nelts && type_dependent_expression_p (nelts))
3827 || (nelts && *init)
3828 || any_type_dependent_arguments_p (*init))
3829 return build_raw_new_expr (*placement, type, nelts, *init,
3830 use_global_new);
3831
3832 orig_placement = make_tree_vector_copy (*placement);
3833 orig_nelts = nelts;
3834 if (*init)
3835 {
3836 orig_init = make_tree_vector_copy (*init);
3837 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3838 digest_init clobber them in place. */
3839 for (unsigned i = 0; i < orig_init->length(); ++i)
3840 {
3841 tree e = (**init)[i];
3842 if (TREE_CODE (e) == CONSTRUCTOR)
3843 (**init)[i] = copy_node (e);
3844 }
3845 }
3846
3847 make_args_non_dependent (*placement);
3848 if (nelts)
3849 nelts = build_non_dependent_expr (nelts);
3850 make_args_non_dependent (*init);
3851 }
3852
3853 if (nelts)
3854 {
3855 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3856 {
3857 if (complain & tf_error)
3858 permerror (cp_expr_loc_or_input_loc (nelts),
3859 "size in array new must have integral type");
3860 else
3861 return error_mark_node;
3862 }
3863
3864 /* Try to determine the constant value only for the purposes
3865 of the diagnostic below but continue to use the original
3866 value and handle const folding later. */
3867 const_tree cst_nelts = fold_non_dependent_expr (nelts, complain);
3868
3869 /* The expression in a noptr-new-declarator is erroneous if it's of
3870 non-class type and its value before converting to std::size_t is
3871 less than zero. ... If the expression is a constant expression,
3872 the program is ill-fomed. */
3873 if (TREE_CODE (cst_nelts) == INTEGER_CST
3874 && !valid_array_size_p (cp_expr_loc_or_input_loc (nelts),
3875 cst_nelts, NULL_TREE,
3876 complain & tf_error))
3877 return error_mark_node;
3878
3879 nelts = mark_rvalue_use (nelts);
3880 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3881 }
3882
3883 /* ``A reference cannot be created by the new operator. A reference
3884 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3885 returned by new.'' ARM 5.3.3 */
3886 if (TYPE_REF_P (type))
3887 {
3888 if (complain & tf_error)
3889 error ("new cannot be applied to a reference type");
3890 else
3891 return error_mark_node;
3892 type = TREE_TYPE (type);
3893 }
3894
3895 if (TREE_CODE (type) == FUNCTION_TYPE)
3896 {
3897 if (complain & tf_error)
3898 error ("new cannot be applied to a function type");
3899 return error_mark_node;
3900 }
3901
3902 /* The type allocated must be complete. If the new-type-id was
3903 "T[N]" then we are just checking that "T" is complete here, but
3904 that is equivalent, since the value of "N" doesn't matter. */
3905 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3906 return error_mark_node;
3907
3908 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3909 if (rval == error_mark_node)
3910 return error_mark_node;
3911
3912 if (processing_template_decl)
3913 {
3914 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3915 orig_init, use_global_new);
3916 release_tree_vector (orig_placement);
3917 release_tree_vector (orig_init);
3918 return ret;
3919 }
3920
3921 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3922 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3923 TREE_NO_WARNING (rval) = 1;
3924
3925 return rval;
3926 }
3927 \f
3928 static tree
3929 build_vec_delete_1 (location_t loc, tree base, tree maxindex, tree type,
3930 special_function_kind auto_delete_vec,
3931 int use_global_delete, tsubst_flags_t complain)
3932 {
3933 tree virtual_size;
3934 tree ptype = build_pointer_type (type = complete_type (type));
3935 tree size_exp;
3936
3937 /* Temporary variables used by the loop. */
3938 tree tbase, tbase_init;
3939
3940 /* This is the body of the loop that implements the deletion of a
3941 single element, and moves temp variables to next elements. */
3942 tree body;
3943
3944 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3945 tree loop = 0;
3946
3947 /* This is the thing that governs what to do after the loop has run. */
3948 tree deallocate_expr = 0;
3949
3950 /* This is the BIND_EXPR which holds the outermost iterator of the
3951 loop. It is convenient to set this variable up and test it before
3952 executing any other code in the loop.
3953 This is also the containing expression returned by this function. */
3954 tree controller = NULL_TREE;
3955 tree tmp;
3956
3957 /* We should only have 1-D arrays here. */
3958 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3959
3960 if (base == error_mark_node || maxindex == error_mark_node)
3961 return error_mark_node;
3962
3963 if (!verify_type_context (loc, TCTX_DEALLOCATION, type,
3964 !(complain & tf_error)))
3965 return error_mark_node;
3966
3967 if (!COMPLETE_TYPE_P (type))
3968 {
3969 if (complain & tf_warning)
3970 {
3971 auto_diagnostic_group d;
3972 if (warning_at (loc, OPT_Wdelete_incomplete,
3973 "possible problem detected in invocation of "
3974 "operator %<delete []%>"))
3975 {
3976 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3977 inform (loc, "neither the destructor nor the "
3978 "class-specific operator %<delete []%> will be called, "
3979 "even if they are declared when the class is defined");
3980 }
3981 }
3982 /* This size won't actually be used. */
3983 size_exp = size_one_node;
3984 goto no_destructor;
3985 }
3986
3987 size_exp = size_in_bytes (type);
3988
3989 if (! MAYBE_CLASS_TYPE_P (type))
3990 goto no_destructor;
3991 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3992 {
3993 /* Make sure the destructor is callable. */
3994 if (type_build_dtor_call (type))
3995 {
3996 tmp = build_delete (loc, ptype, base, sfk_complete_destructor,
3997 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3998 complain);
3999 if (tmp == error_mark_node)
4000 return error_mark_node;
4001 }
4002 goto no_destructor;
4003 }
4004
4005 /* The below is short by the cookie size. */
4006 virtual_size = size_binop (MULT_EXPR, size_exp,
4007 fold_convert (sizetype, maxindex));
4008
4009 tbase = create_temporary_var (ptype);
4010 DECL_INITIAL (tbase)
4011 = fold_build_pointer_plus_loc (loc, fold_convert (ptype, base),
4012 virtual_size);
4013 tbase_init = build_stmt (loc, DECL_EXPR, tbase);
4014 controller = build3 (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
4015 TREE_SIDE_EFFECTS (controller) = 1;
4016
4017 body = build1 (EXIT_EXPR, void_type_node,
4018 build2 (EQ_EXPR, boolean_type_node, tbase,
4019 fold_convert (ptype, base)));
4020 tmp = fold_build1_loc (loc, NEGATE_EXPR, sizetype, size_exp);
4021 tmp = fold_build_pointer_plus (tbase, tmp);
4022 tmp = cp_build_modify_expr (loc, tbase, NOP_EXPR, tmp, complain);
4023 if (tmp == error_mark_node)
4024 return error_mark_node;
4025 body = build_compound_expr (loc, body, tmp);
4026 tmp = build_delete (loc, ptype, tbase, sfk_complete_destructor,
4027 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
4028 complain);
4029 if (tmp == error_mark_node)
4030 return error_mark_node;
4031 body = build_compound_expr (loc, body, tmp);
4032
4033 loop = build1 (LOOP_EXPR, void_type_node, body);
4034 loop = build_compound_expr (loc, tbase_init, loop);
4035
4036 no_destructor:
4037 /* Delete the storage if appropriate. */
4038 if (auto_delete_vec == sfk_deleting_destructor)
4039 {
4040 tree base_tbd;
4041
4042 /* The below is short by the cookie size. */
4043 virtual_size = size_binop (MULT_EXPR, size_exp,
4044 fold_convert (sizetype, maxindex));
4045
4046 if (! TYPE_VEC_NEW_USES_COOKIE (type))
4047 /* no header */
4048 base_tbd = base;
4049 else
4050 {
4051 tree cookie_size;
4052
4053 cookie_size = targetm.cxx.get_cookie_size (type);
4054 base_tbd = cp_build_binary_op (loc,
4055 MINUS_EXPR,
4056 cp_convert (string_type_node,
4057 base, complain),
4058 cookie_size,
4059 complain);
4060 if (base_tbd == error_mark_node)
4061 return error_mark_node;
4062 base_tbd = cp_convert (ptype, base_tbd, complain);
4063 /* True size with header. */
4064 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
4065 }
4066
4067 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
4068 base_tbd, virtual_size,
4069 use_global_delete & 1,
4070 /*placement=*/NULL_TREE,
4071 /*alloc_fn=*/NULL_TREE,
4072 complain);
4073
4074 tree deallocate_call_expr = extract_call_expr (deallocate_expr);
4075 if (TREE_CODE (deallocate_call_expr) == CALL_EXPR)
4076 CALL_FROM_NEW_OR_DELETE_P (deallocate_call_expr) = 1;
4077 }
4078
4079 body = loop;
4080 if (!deallocate_expr)
4081 ;
4082 else if (!body)
4083 body = deallocate_expr;
4084 else
4085 /* The delete operator must be called, even if a destructor
4086 throws. */
4087 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
4088
4089 if (!body)
4090 body = integer_zero_node;
4091
4092 /* Outermost wrapper: If pointer is null, punt. */
4093 tree cond = build2_loc (loc, NE_EXPR, boolean_type_node, base,
4094 fold_convert (TREE_TYPE (base), nullptr_node));
4095 /* This is a compiler generated comparison, don't emit
4096 e.g. -Wnonnull-compare warning for it. */
4097 TREE_NO_WARNING (cond) = 1;
4098 body = build3_loc (loc, COND_EXPR, void_type_node,
4099 cond, body, integer_zero_node);
4100 COND_EXPR_IS_VEC_DELETE (body) = true;
4101 body = build1 (NOP_EXPR, void_type_node, body);
4102
4103 if (controller)
4104 {
4105 TREE_OPERAND (controller, 1) = body;
4106 body = controller;
4107 }
4108
4109 if (TREE_CODE (base) == SAVE_EXPR)
4110 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
4111 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
4112
4113 return convert_to_void (body, ICV_CAST, complain);
4114 }
4115
4116 /* Create an unnamed variable of the indicated TYPE. */
4117
4118 tree
4119 create_temporary_var (tree type)
4120 {
4121 tree decl;
4122
4123 decl = build_decl (input_location,
4124 VAR_DECL, NULL_TREE, type);
4125 TREE_USED (decl) = 1;
4126 DECL_ARTIFICIAL (decl) = 1;
4127 DECL_IGNORED_P (decl) = 1;
4128 DECL_CONTEXT (decl) = current_function_decl;
4129
4130 return decl;
4131 }
4132
4133 /* Create a new temporary variable of the indicated TYPE, initialized
4134 to INIT.
4135
4136 It is not entered into current_binding_level, because that breaks
4137 things when it comes time to do final cleanups (which take place
4138 "outside" the binding contour of the function). */
4139
4140 tree
4141 get_temp_regvar (tree type, tree init)
4142 {
4143 tree decl;
4144
4145 decl = create_temporary_var (type);
4146 add_decl_expr (decl);
4147
4148 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
4149 init, tf_warning_or_error));
4150
4151 return decl;
4152 }
4153
4154 /* Subroutine of build_vec_init. Returns true if assigning to an array of
4155 INNER_ELT_TYPE from INIT is trivial. */
4156
4157 static bool
4158 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
4159 {
4160 tree fromtype = inner_elt_type;
4161 if (lvalue_p (init))
4162 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
4163 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
4164 }
4165
4166 /* Subroutine of build_vec_init: Check that the array has at least N
4167 elements. Other parameters are local variables in build_vec_init. */
4168
4169 void
4170 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
4171 {
4172 tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
4173 if (TREE_CODE (atype) != ARRAY_TYPE)
4174 {
4175 if (flag_exceptions)
4176 {
4177 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
4178 nelts);
4179 c = build3 (COND_EXPR, void_type_node, c,
4180 throw_bad_array_new_length (), void_node);
4181 finish_expr_stmt (c);
4182 }
4183 /* Don't check an array new when -fno-exceptions. */
4184 }
4185 else if (sanitize_flags_p (SANITIZE_BOUNDS)
4186 && current_function_decl != NULL_TREE)
4187 {
4188 /* Make sure the last element of the initializer is in bounds. */
4189 finish_expr_stmt
4190 (ubsan_instrument_bounds
4191 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
4192 }
4193 }
4194
4195 /* `build_vec_init' returns tree structure that performs
4196 initialization of a vector of aggregate types.
4197
4198 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
4199 to the first element, of POINTER_TYPE.
4200 MAXINDEX is the maximum index of the array (one less than the
4201 number of elements). It is only used if BASE is a pointer or
4202 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
4203
4204 INIT is the (possibly NULL) initializer.
4205
4206 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
4207 elements in the array are value-initialized.
4208
4209 FROM_ARRAY is 0 if we should init everything with INIT
4210 (i.e., every element initialized from INIT).
4211 FROM_ARRAY is 1 if we should index into INIT in parallel
4212 with initialization of DECL.
4213 FROM_ARRAY is 2 if we should index into INIT in parallel,
4214 but use assignment instead of initialization. */
4215
4216 tree
4217 build_vec_init (tree base, tree maxindex, tree init,
4218 bool explicit_value_init_p,
4219 int from_array, tsubst_flags_t complain)
4220 {
4221 tree rval;
4222 tree base2 = NULL_TREE;
4223 tree itype = NULL_TREE;
4224 tree iterator;
4225 /* The type of BASE. */
4226 tree atype = TREE_TYPE (base);
4227 /* The type of an element in the array. */
4228 tree type = TREE_TYPE (atype);
4229 /* The element type reached after removing all outer array
4230 types. */
4231 tree inner_elt_type;
4232 /* The type of a pointer to an element in the array. */
4233 tree ptype;
4234 tree stmt_expr;
4235 tree compound_stmt;
4236 int destroy_temps;
4237 tree try_block = NULL_TREE;
4238 HOST_WIDE_INT num_initialized_elts = 0;
4239 bool is_global;
4240 tree obase = base;
4241 bool xvalue = false;
4242 bool errors = false;
4243 location_t loc = (init ? cp_expr_loc_or_input_loc (init)
4244 : location_of (base));
4245
4246 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
4247 maxindex = array_type_nelts (atype);
4248
4249 if (maxindex == NULL_TREE || maxindex == error_mark_node)
4250 return error_mark_node;
4251
4252 maxindex = maybe_constant_value (maxindex);
4253 if (explicit_value_init_p)
4254 gcc_assert (!init);
4255
4256 inner_elt_type = strip_array_types (type);
4257
4258 /* Look through the TARGET_EXPR around a compound literal. */
4259 if (init && TREE_CODE (init) == TARGET_EXPR
4260 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
4261 && from_array != 2)
4262 init = TARGET_EXPR_INITIAL (init);
4263
4264 bool direct_init = false;
4265 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
4266 && CONSTRUCTOR_NELTS (init) == 1)
4267 {
4268 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
4269 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
4270 {
4271 direct_init = DIRECT_LIST_INIT_P (init);
4272 init = elt;
4273 }
4274 }
4275
4276 /* If we have a braced-init-list or string constant, make sure that the array
4277 is big enough for all the initializers. */
4278 bool length_check = (init
4279 && (TREE_CODE (init) == STRING_CST
4280 || (TREE_CODE (init) == CONSTRUCTOR
4281 && CONSTRUCTOR_NELTS (init) > 0))
4282 && !TREE_CONSTANT (maxindex));
4283
4284 if (init
4285 && TREE_CODE (atype) == ARRAY_TYPE
4286 && TREE_CONSTANT (maxindex)
4287 && (from_array == 2
4288 ? vec_copy_assign_is_trivial (inner_elt_type, init)
4289 : !TYPE_NEEDS_CONSTRUCTING (type))
4290 && ((TREE_CODE (init) == CONSTRUCTOR
4291 && (BRACE_ENCLOSED_INITIALIZER_P (init)
4292 || (same_type_ignoring_top_level_qualifiers_p
4293 (atype, TREE_TYPE (init))))
4294 /* Don't do this if the CONSTRUCTOR might contain something
4295 that might throw and require us to clean up. */
4296 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4297 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4298 || from_array))
4299 {
4300 /* Do non-default initialization of trivial arrays resulting from
4301 brace-enclosed initializers. In this case, digest_init and
4302 store_constructor will handle the semantics for us. */
4303
4304 if (BRACE_ENCLOSED_INITIALIZER_P (init))
4305 init = digest_init (atype, init, complain);
4306 stmt_expr = build2 (INIT_EXPR, atype, base, init);
4307 return stmt_expr;
4308 }
4309
4310 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4311 maxindex = fold_simple (maxindex);
4312
4313 if (TREE_CODE (atype) == ARRAY_TYPE)
4314 {
4315 ptype = build_pointer_type (type);
4316 base = decay_conversion (base, complain);
4317 if (base == error_mark_node)
4318 return error_mark_node;
4319 base = cp_convert (ptype, base, complain);
4320 }
4321 else
4322 ptype = atype;
4323
4324 /* The code we are generating looks like:
4325 ({
4326 T* t1 = (T*) base;
4327 T* rval = t1;
4328 ptrdiff_t iterator = maxindex;
4329 try {
4330 for (; iterator != -1; --iterator) {
4331 ... initialize *t1 ...
4332 ++t1;
4333 }
4334 } catch (...) {
4335 ... destroy elements that were constructed ...
4336 }
4337 rval;
4338 })
4339
4340 We can omit the try and catch blocks if we know that the
4341 initialization will never throw an exception, or if the array
4342 elements do not have destructors. We can omit the loop completely if
4343 the elements of the array do not have constructors.
4344
4345 We actually wrap the entire body of the above in a STMT_EXPR, for
4346 tidiness.
4347
4348 When copying from array to another, when the array elements have
4349 only trivial copy constructors, we should use __builtin_memcpy
4350 rather than generating a loop. That way, we could take advantage
4351 of whatever cleverness the back end has for dealing with copies
4352 of blocks of memory. */
4353
4354 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4355 destroy_temps = stmts_are_full_exprs_p ();
4356 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4357 rval = get_temp_regvar (ptype, base);
4358 base = get_temp_regvar (ptype, rval);
4359 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
4360
4361 /* If initializing one array from another, initialize element by
4362 element. We rely upon the below calls to do the argument
4363 checking. Evaluate the initializer before entering the try block. */
4364 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4365 {
4366 if (lvalue_kind (init) & clk_rvalueref)
4367 xvalue = true;
4368 base2 = decay_conversion (init, complain);
4369 if (base2 == error_mark_node)
4370 return error_mark_node;
4371 itype = TREE_TYPE (base2);
4372 base2 = get_temp_regvar (itype, base2);
4373 itype = TREE_TYPE (itype);
4374 }
4375
4376 /* Protect the entire array initialization so that we can destroy
4377 the partially constructed array if an exception is thrown.
4378 But don't do this if we're assigning. */
4379 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4380 && from_array != 2)
4381 {
4382 try_block = begin_try_block ();
4383 }
4384
4385 /* Should we try to create a constant initializer? */
4386 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4387 && TREE_CONSTANT (maxindex)
4388 && (init ? TREE_CODE (init) == CONSTRUCTOR
4389 : (type_has_constexpr_default_constructor
4390 (inner_elt_type)))
4391 && (literal_type_p (inner_elt_type)
4392 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4393 vec<constructor_elt, va_gc> *const_vec = NULL;
4394 bool saw_non_const = false;
4395 /* If we're initializing a static array, we want to do static
4396 initialization of any elements with constant initializers even if
4397 some are non-constant. */
4398 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4399
4400 bool empty_list = false;
4401 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4402 && CONSTRUCTOR_NELTS (init) == 0)
4403 /* Skip over the handling of non-empty init lists. */
4404 empty_list = true;
4405
4406 /* Maybe pull out constant value when from_array? */
4407
4408 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4409 {
4410 /* Do non-default initialization of non-trivial arrays resulting from
4411 brace-enclosed initializers. */
4412 unsigned HOST_WIDE_INT idx;
4413 tree field, elt;
4414 /* If the constructor already has the array type, it's been through
4415 digest_init, so we shouldn't try to do anything more. */
4416 bool digested = same_type_p (atype, TREE_TYPE (init));
4417 from_array = 0;
4418
4419 if (length_check)
4420 finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4421
4422 if (try_const)
4423 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4424
4425 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4426 {
4427 tree baseref = build1 (INDIRECT_REF, type, base);
4428 tree one_init;
4429
4430 num_initialized_elts++;
4431
4432 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4433 if (digested)
4434 one_init = build2 (INIT_EXPR, type, baseref, elt);
4435 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4436 one_init = build_aggr_init (baseref, elt, 0, complain);
4437 else
4438 one_init = cp_build_modify_expr (input_location, baseref,
4439 NOP_EXPR, elt, complain);
4440 if (one_init == error_mark_node)
4441 errors = true;
4442 if (try_const)
4443 {
4444 tree e = maybe_constant_init (one_init);
4445 if (reduced_constant_expression_p (e))
4446 {
4447 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4448 if (do_static_init)
4449 one_init = NULL_TREE;
4450 else
4451 one_init = build2 (INIT_EXPR, type, baseref, e);
4452 }
4453 else
4454 {
4455 if (do_static_init)
4456 {
4457 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4458 true);
4459 if (value)
4460 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4461 }
4462 saw_non_const = true;
4463 }
4464 }
4465
4466 if (one_init)
4467 finish_expr_stmt (one_init);
4468 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4469
4470 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4471 complain);
4472 if (one_init == error_mark_node)
4473 errors = true;
4474 else
4475 finish_expr_stmt (one_init);
4476
4477 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4478 complain);
4479 if (one_init == error_mark_node)
4480 errors = true;
4481 else
4482 finish_expr_stmt (one_init);
4483 }
4484
4485 /* Any elements without explicit initializers get T{}. */
4486 empty_list = true;
4487 }
4488 else if (init && TREE_CODE (init) == STRING_CST)
4489 {
4490 /* Check that the array is at least as long as the string. */
4491 if (length_check)
4492 finish_length_check (atype, iterator, obase,
4493 TREE_STRING_LENGTH (init));
4494 tree length = build_int_cst (ptrdiff_type_node,
4495 TREE_STRING_LENGTH (init));
4496
4497 /* Copy the string to the first part of the array. */
4498 tree alias_set = build_int_cst (build_pointer_type (type), 0);
4499 tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4500 tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4501 finish_expr_stmt (stmt);
4502
4503 /* Adjust the counter and pointer. */
4504 stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4505 stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4506 finish_expr_stmt (stmt);
4507
4508 stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4509 stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4510 finish_expr_stmt (stmt);
4511
4512 /* And set the rest of the array to NUL. */
4513 from_array = 0;
4514 explicit_value_init_p = true;
4515 }
4516 else if (from_array)
4517 {
4518 if (init)
4519 /* OK, we set base2 above. */;
4520 else if (CLASS_TYPE_P (type)
4521 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4522 {
4523 if (complain & tf_error)
4524 error ("initializer ends prematurely");
4525 errors = true;
4526 }
4527 }
4528
4529 /* Now, default-initialize any remaining elements. We don't need to
4530 do that if a) the type does not need constructing, or b) we've
4531 already initialized all the elements.
4532
4533 We do need to keep going if we're copying an array. */
4534
4535 if (try_const && !init)
4536 /* With a constexpr default constructor, which we checked for when
4537 setting try_const above, default-initialization is equivalent to
4538 value-initialization, and build_value_init gives us something more
4539 friendly to maybe_constant_init. */
4540 explicit_value_init_p = true;
4541 if (from_array
4542 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4543 && ! (tree_fits_shwi_p (maxindex)
4544 && (num_initialized_elts
4545 == tree_to_shwi (maxindex) + 1))))
4546 {
4547 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4548 we've already initialized all the elements. */
4549 tree for_stmt;
4550 tree elt_init;
4551 tree to;
4552
4553 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4554 finish_init_stmt (for_stmt);
4555 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4556 build_int_cst (TREE_TYPE (iterator), -1)),
4557 for_stmt, false, 0);
4558 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4559 complain);
4560 if (elt_init == error_mark_node)
4561 errors = true;
4562 finish_for_expr (elt_init, for_stmt);
4563
4564 to = build1 (INDIRECT_REF, type, base);
4565
4566 /* If the initializer is {}, then all elements are initialized from T{}.
4567 But for non-classes, that's the same as value-initialization. */
4568 if (empty_list)
4569 {
4570 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4571 {
4572 init = build_constructor (init_list_type_node, NULL);
4573 }
4574 else
4575 {
4576 init = NULL_TREE;
4577 explicit_value_init_p = true;
4578 }
4579 }
4580
4581 if (from_array)
4582 {
4583 tree from;
4584
4585 if (base2)
4586 {
4587 from = build1 (INDIRECT_REF, itype, base2);
4588 if (xvalue)
4589 from = move (from);
4590 if (direct_init)
4591 from = build_tree_list (NULL_TREE, from);
4592 }
4593 else
4594 from = NULL_TREE;
4595
4596 if (TREE_CODE (type) == ARRAY_TYPE)
4597 elt_init = build_vec_init (to, NULL_TREE, from, /*val_init*/false,
4598 from_array, complain);
4599 else if (from_array == 2)
4600 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4601 from, complain);
4602 else if (type_build_ctor_call (type))
4603 elt_init = build_aggr_init (to, from, 0, complain);
4604 else if (from)
4605 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4606 complain);
4607 else
4608 gcc_unreachable ();
4609 }
4610 else if (TREE_CODE (type) == ARRAY_TYPE)
4611 {
4612 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4613 {
4614 if ((complain & tf_error))
4615 error_at (loc, "array must be initialized "
4616 "with a brace-enclosed initializer");
4617 elt_init = error_mark_node;
4618 }
4619 else
4620 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4621 0, init,
4622 explicit_value_init_p,
4623 0, complain);
4624 }
4625 else if (explicit_value_init_p)
4626 {
4627 elt_init = build_value_init (type, complain);
4628 if (elt_init != error_mark_node)
4629 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4630 }
4631 else
4632 {
4633 gcc_assert (type_build_ctor_call (type) || init);
4634 if (CLASS_TYPE_P (type))
4635 elt_init = build_aggr_init (to, init, 0, complain);
4636 else
4637 {
4638 if (TREE_CODE (init) == TREE_LIST)
4639 init = build_x_compound_expr_from_list (init, ELK_INIT,
4640 complain);
4641 elt_init = (init == error_mark_node
4642 ? error_mark_node
4643 : build2 (INIT_EXPR, type, to, init));
4644 }
4645 }
4646
4647 if (elt_init == error_mark_node)
4648 errors = true;
4649
4650 if (try_const)
4651 {
4652 /* FIXME refs to earlier elts */
4653 tree e = maybe_constant_init (elt_init);
4654 if (reduced_constant_expression_p (e))
4655 {
4656 if (initializer_zerop (e))
4657 /* Don't fill the CONSTRUCTOR with zeros. */
4658 e = NULL_TREE;
4659 if (do_static_init)
4660 elt_init = NULL_TREE;
4661 }
4662 else
4663 {
4664 saw_non_const = true;
4665 if (do_static_init)
4666 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4667 else
4668 e = NULL_TREE;
4669 }
4670
4671 if (e)
4672 {
4673 HOST_WIDE_INT last = tree_to_shwi (maxindex);
4674 if (num_initialized_elts <= last)
4675 {
4676 tree field = size_int (num_initialized_elts);
4677 if (num_initialized_elts != last)
4678 field = build2 (RANGE_EXPR, sizetype, field,
4679 size_int (last));
4680 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4681 }
4682 }
4683 }
4684
4685 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4686 if (elt_init && !errors)
4687 finish_expr_stmt (elt_init);
4688 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4689
4690 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4691 complain));
4692 if (base2)
4693 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4694 complain));
4695
4696 finish_for_stmt (for_stmt);
4697 }
4698
4699 /* Make sure to cleanup any partially constructed elements. */
4700 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4701 && from_array != 2)
4702 {
4703 tree e;
4704 tree m = cp_build_binary_op (input_location,
4705 MINUS_EXPR, maxindex, iterator,
4706 complain);
4707
4708 /* Flatten multi-dimensional array since build_vec_delete only
4709 expects one-dimensional array. */
4710 if (TREE_CODE (type) == ARRAY_TYPE)
4711 m = cp_build_binary_op (input_location,
4712 MULT_EXPR, m,
4713 /* Avoid mixing signed and unsigned. */
4714 convert (TREE_TYPE (m),
4715 array_type_nelts_total (type)),
4716 complain);
4717
4718 finish_cleanup_try_block (try_block);
4719 e = build_vec_delete_1 (input_location, rval, m,
4720 inner_elt_type, sfk_complete_destructor,
4721 /*use_global_delete=*/0, complain);
4722 if (e == error_mark_node)
4723 errors = true;
4724 finish_cleanup (e, try_block);
4725 }
4726
4727 /* The value of the array initialization is the array itself, RVAL
4728 is a pointer to the first element. */
4729 finish_stmt_expr_expr (rval, stmt_expr);
4730
4731 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4732
4733 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4734
4735 if (errors)
4736 return error_mark_node;
4737
4738 if (try_const)
4739 {
4740 if (!saw_non_const)
4741 {
4742 tree const_init = build_constructor (atype, const_vec);
4743 return build2 (INIT_EXPR, atype, obase, const_init);
4744 }
4745 else if (do_static_init && !vec_safe_is_empty (const_vec))
4746 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4747 else
4748 vec_free (const_vec);
4749 }
4750
4751 /* Now make the result have the correct type. */
4752 if (TREE_CODE (atype) == ARRAY_TYPE)
4753 {
4754 atype = build_pointer_type (atype);
4755 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4756 stmt_expr = cp_build_fold_indirect_ref (stmt_expr);
4757 TREE_NO_WARNING (stmt_expr) = 1;
4758 }
4759
4760 return stmt_expr;
4761 }
4762
4763 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4764 build_delete. */
4765
4766 static tree
4767 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4768 tsubst_flags_t complain)
4769 {
4770 tree name;
4771 switch (dtor_kind)
4772 {
4773 case sfk_complete_destructor:
4774 name = complete_dtor_identifier;
4775 break;
4776
4777 case sfk_base_destructor:
4778 name = base_dtor_identifier;
4779 break;
4780
4781 case sfk_deleting_destructor:
4782 name = deleting_dtor_identifier;
4783 break;
4784
4785 default:
4786 gcc_unreachable ();
4787 }
4788
4789 return build_special_member_call (exp, name,
4790 /*args=*/NULL,
4791 /*binfo=*/TREE_TYPE (exp),
4792 flags,
4793 complain);
4794 }
4795
4796 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4797 ADDR is an expression which yields the store to be destroyed.
4798 AUTO_DELETE is the name of the destructor to call, i.e., either
4799 sfk_complete_destructor, sfk_base_destructor, or
4800 sfk_deleting_destructor.
4801
4802 FLAGS is the logical disjunction of zero or more LOOKUP_
4803 flags. See cp-tree.h for more info. */
4804
4805 tree
4806 build_delete (location_t loc, tree otype, tree addr,
4807 special_function_kind auto_delete,
4808 int flags, int use_global_delete, tsubst_flags_t complain)
4809 {
4810 tree expr;
4811
4812 if (addr == error_mark_node)
4813 return error_mark_node;
4814
4815 tree type = TYPE_MAIN_VARIANT (otype);
4816
4817 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4818 set to `error_mark_node' before it gets properly cleaned up. */
4819 if (type == error_mark_node)
4820 return error_mark_node;
4821
4822 if (TYPE_PTR_P (type))
4823 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4824
4825 if (TREE_CODE (type) == ARRAY_TYPE)
4826 {
4827 if (TYPE_DOMAIN (type) == NULL_TREE)
4828 {
4829 if (complain & tf_error)
4830 error_at (loc, "unknown array size in delete");
4831 return error_mark_node;
4832 }
4833 return build_vec_delete (loc, addr, array_type_nelts (type),
4834 auto_delete, use_global_delete, complain);
4835 }
4836
4837 bool deleting = (auto_delete == sfk_deleting_destructor);
4838 gcc_assert (deleting == !(flags & LOOKUP_DESTRUCTOR));
4839
4840 if (TYPE_PTR_P (otype))
4841 {
4842 addr = mark_rvalue_use (addr);
4843
4844 /* We don't want to warn about delete of void*, only other
4845 incomplete types. Deleting other incomplete types
4846 invokes undefined behavior, but it is not ill-formed, so
4847 compile to something that would even do The Right Thing
4848 (TM) should the type have a trivial dtor and no delete
4849 operator. */
4850 if (!VOID_TYPE_P (type))
4851 {
4852 complete_type (type);
4853 if (deleting
4854 && !verify_type_context (loc, TCTX_DEALLOCATION, type,
4855 !(complain & tf_error)))
4856 return error_mark_node;
4857
4858 if (!COMPLETE_TYPE_P (type))
4859 {
4860 if (complain & tf_warning)
4861 {
4862 auto_diagnostic_group d;
4863 if (warning_at (loc, OPT_Wdelete_incomplete,
4864 "possible problem detected in invocation of "
4865 "%<operator delete%>"))
4866 {
4867 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4868 inform (loc,
4869 "neither the destructor nor the class-specific "
4870 "%<operator delete%> will be called, even if "
4871 "they are declared when the class is defined");
4872 }
4873 }
4874 }
4875 else if (deleting && warn_delnonvdtor
4876 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4877 && TYPE_POLYMORPHIC_P (type))
4878 {
4879 tree dtor = CLASSTYPE_DESTRUCTOR (type);
4880 if (!dtor || !DECL_VINDEX (dtor))
4881 {
4882 if (CLASSTYPE_PURE_VIRTUALS (type))
4883 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
4884 "deleting object of abstract class type %qT"
4885 " which has non-virtual destructor"
4886 " will cause undefined behavior", type);
4887 else
4888 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
4889 "deleting object of polymorphic class type %qT"
4890 " which has non-virtual destructor"
4891 " might cause undefined behavior", type);
4892 }
4893 }
4894 }
4895
4896 /* Throw away const and volatile on target type of addr. */
4897 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4898 }
4899 else
4900 {
4901 /* Don't check PROTECT here; leave that decision to the
4902 destructor. If the destructor is accessible, call it,
4903 else report error. */
4904 addr = cp_build_addr_expr (addr, complain);
4905 if (addr == error_mark_node)
4906 return error_mark_node;
4907
4908 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4909 }
4910
4911 if (deleting)
4912 /* We will use ADDR multiple times so we must save it. */
4913 addr = save_expr (addr);
4914
4915 bool virtual_p = false;
4916 if (type_build_dtor_call (type))
4917 {
4918 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4919 lazily_declare_fn (sfk_destructor, type);
4920 virtual_p = DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type));
4921 }
4922
4923 tree head = NULL_TREE;
4924 tree do_delete = NULL_TREE;
4925 bool destroying_delete = false;
4926
4927 if (!deleting)
4928 {
4929 /* Leave do_delete null. */
4930 }
4931 /* For `::delete x', we must not use the deleting destructor
4932 since then we would not be sure to get the global `operator
4933 delete'. */
4934 else if (use_global_delete)
4935 {
4936 head = get_target_expr (build_headof (addr));
4937 /* Delete the object. */
4938 do_delete = build_op_delete_call (DELETE_EXPR,
4939 head,
4940 cxx_sizeof_nowarn (type),
4941 /*global_p=*/true,
4942 /*placement=*/NULL_TREE,
4943 /*alloc_fn=*/NULL_TREE,
4944 complain);
4945 /* Otherwise, treat this like a complete object destructor
4946 call. */
4947 auto_delete = sfk_complete_destructor;
4948 }
4949 /* If the destructor is non-virtual, there is no deleting
4950 variant. Instead, we must explicitly call the appropriate
4951 `operator delete' here. */
4952 else if (!virtual_p)
4953 {
4954 /* Build the call. */
4955 do_delete = build_op_delete_call (DELETE_EXPR,
4956 addr,
4957 cxx_sizeof_nowarn (type),
4958 /*global_p=*/false,
4959 /*placement=*/NULL_TREE,
4960 /*alloc_fn=*/NULL_TREE,
4961 complain);
4962 /* Call the complete object destructor. */
4963 auto_delete = sfk_complete_destructor;
4964 if (do_delete != error_mark_node)
4965 {
4966 tree fn = get_callee_fndecl (do_delete);
4967 destroying_delete = destroying_delete_p (fn);
4968 }
4969 }
4970 else if (TYPE_GETS_REG_DELETE (type))
4971 {
4972 /* Make sure we have access to the member op delete, even though
4973 we'll actually be calling it from the destructor. */
4974 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4975 /*global_p=*/false,
4976 /*placement=*/NULL_TREE,
4977 /*alloc_fn=*/NULL_TREE,
4978 complain);
4979 }
4980
4981 if (!destroying_delete && type_build_dtor_call (type))
4982 expr = build_dtor_call (cp_build_fold_indirect_ref (addr),
4983 auto_delete, flags, complain);
4984 else
4985 expr = build_trivial_dtor_call (addr);
4986 if (expr == error_mark_node)
4987 return error_mark_node;
4988
4989 if (!deleting)
4990 {
4991 protected_set_expr_location (expr, loc);
4992 return expr;
4993 }
4994
4995 if (do_delete)
4996 {
4997 tree do_delete_call_expr = extract_call_expr (do_delete);
4998 if (TREE_CODE (do_delete_call_expr) == CALL_EXPR)
4999 CALL_FROM_NEW_OR_DELETE_P (do_delete_call_expr) = 1;
5000 }
5001
5002 if (do_delete && !TREE_SIDE_EFFECTS (expr))
5003 expr = do_delete;
5004 else if (do_delete)
5005 /* The delete operator must be called, regardless of whether
5006 the destructor throws.
5007
5008 [expr.delete]/7 The deallocation function is called
5009 regardless of whether the destructor for the object or some
5010 element of the array throws an exception. */
5011 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
5012
5013 /* We need to calculate this before the dtor changes the vptr. */
5014 if (head)
5015 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
5016
5017 /* Handle deleting a null pointer. */
5018 warning_sentinel s (warn_address);
5019 tree ifexp = cp_build_binary_op (loc, NE_EXPR, addr,
5020 nullptr_node, complain);
5021 ifexp = cp_fully_fold (ifexp);
5022
5023 if (ifexp == error_mark_node)
5024 return error_mark_node;
5025 /* This is a compiler generated comparison, don't emit
5026 e.g. -Wnonnull-compare warning for it. */
5027 else if (TREE_CODE (ifexp) == NE_EXPR)
5028 TREE_NO_WARNING (ifexp) = 1;
5029
5030 if (!integer_nonzerop (ifexp))
5031 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
5032
5033 protected_set_expr_location (expr, loc);
5034 return expr;
5035 }
5036
5037 /* At the beginning of a destructor, push cleanups that will call the
5038 destructors for our base classes and members.
5039
5040 Called from begin_destructor_body. */
5041
5042 void
5043 push_base_cleanups (void)
5044 {
5045 tree binfo, base_binfo;
5046 int i;
5047 tree member;
5048 tree expr;
5049 vec<tree, va_gc> *vbases;
5050
5051 /* Run destructors for all virtual baseclasses. */
5052 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
5053 && CLASSTYPE_VBASECLASSES (current_class_type))
5054 {
5055 tree cond = (condition_conversion
5056 (build2 (BIT_AND_EXPR, integer_type_node,
5057 current_in_charge_parm,
5058 integer_two_node)));
5059
5060 /* The CLASSTYPE_VBASECLASSES vector is in initialization
5061 order, which is also the right order for pushing cleanups. */
5062 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
5063 vec_safe_iterate (vbases, i, &base_binfo); i++)
5064 {
5065 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
5066 {
5067 expr = build_special_member_call (current_class_ref,
5068 base_dtor_identifier,
5069 NULL,
5070 base_binfo,
5071 (LOOKUP_NORMAL
5072 | LOOKUP_NONVIRTUAL),
5073 tf_warning_or_error);
5074 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5075 {
5076 expr = build3 (COND_EXPR, void_type_node, cond,
5077 expr, void_node);
5078 finish_decl_cleanup (NULL_TREE, expr);
5079 }
5080 }
5081 }
5082 }
5083
5084 /* Take care of the remaining baseclasses. */
5085 for (binfo = TYPE_BINFO (current_class_type), i = 0;
5086 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5087 {
5088 if (BINFO_VIRTUAL_P (base_binfo)
5089 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
5090 continue;
5091
5092 expr = build_special_member_call (current_class_ref,
5093 base_dtor_identifier,
5094 NULL, base_binfo,
5095 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
5096 tf_warning_or_error);
5097 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5098 finish_decl_cleanup (NULL_TREE, expr);
5099 }
5100
5101 /* Don't automatically destroy union members. */
5102 if (TREE_CODE (current_class_type) == UNION_TYPE)
5103 return;
5104
5105 for (member = TYPE_FIELDS (current_class_type); member;
5106 member = DECL_CHAIN (member))
5107 {
5108 tree this_type = TREE_TYPE (member);
5109 if (this_type == error_mark_node
5110 || TREE_CODE (member) != FIELD_DECL
5111 || DECL_ARTIFICIAL (member))
5112 continue;
5113 if (ANON_AGGR_TYPE_P (this_type))
5114 continue;
5115 if (type_build_dtor_call (this_type))
5116 {
5117 tree this_member = (build_class_member_access_expr
5118 (current_class_ref, member,
5119 /*access_path=*/NULL_TREE,
5120 /*preserve_reference=*/false,
5121 tf_warning_or_error));
5122 expr = build_delete (input_location, this_type, this_member,
5123 sfk_complete_destructor,
5124 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
5125 0, tf_warning_or_error);
5126 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
5127 finish_decl_cleanup (NULL_TREE, expr);
5128 }
5129 }
5130 }
5131
5132 /* Build a C++ vector delete expression.
5133 MAXINDEX is the number of elements to be deleted.
5134 ELT_SIZE is the nominal size of each element in the vector.
5135 BASE is the expression that should yield the store to be deleted.
5136 This function expands (or synthesizes) these calls itself.
5137 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
5138
5139 This also calls delete for virtual baseclasses of elements of the vector.
5140
5141 Update: MAXINDEX is no longer needed. The size can be extracted from the
5142 start of the vector for pointers, and from the type for arrays. We still
5143 use MAXINDEX for arrays because it happens to already have one of the
5144 values we'd have to extract. (We could use MAXINDEX with pointers to
5145 confirm the size, and trap if the numbers differ; not clear that it'd
5146 be worth bothering.) */
5147
5148 tree
5149 build_vec_delete (location_t loc, tree base, tree maxindex,
5150 special_function_kind auto_delete_vec,
5151 int use_global_delete, tsubst_flags_t complain)
5152 {
5153 tree type;
5154 tree rval;
5155 tree base_init = NULL_TREE;
5156
5157 type = TREE_TYPE (base);
5158
5159 if (TYPE_PTR_P (type))
5160 {
5161 /* Step back one from start of vector, and read dimension. */
5162 tree cookie_addr;
5163 tree size_ptr_type = build_pointer_type (sizetype);
5164
5165 base = mark_rvalue_use (base);
5166 if (TREE_SIDE_EFFECTS (base))
5167 {
5168 base_init = get_target_expr (base);
5169 base = TARGET_EXPR_SLOT (base_init);
5170 }
5171 type = strip_array_types (TREE_TYPE (type));
5172 cookie_addr = fold_build1_loc (loc, NEGATE_EXPR,
5173 sizetype, TYPE_SIZE_UNIT (sizetype));
5174 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
5175 cookie_addr);
5176 maxindex = cp_build_fold_indirect_ref (cookie_addr);
5177 }
5178 else if (TREE_CODE (type) == ARRAY_TYPE)
5179 {
5180 /* Get the total number of things in the array, maxindex is a
5181 bad name. */
5182 maxindex = array_type_nelts_total (type);
5183 type = strip_array_types (type);
5184 base = decay_conversion (base, complain);
5185 if (base == error_mark_node)
5186 return error_mark_node;
5187 if (TREE_SIDE_EFFECTS (base))
5188 {
5189 base_init = get_target_expr (base);
5190 base = TARGET_EXPR_SLOT (base_init);
5191 }
5192 }
5193 else
5194 {
5195 if (base != error_mark_node && !(complain & tf_error))
5196 error_at (loc,
5197 "type to vector delete is neither pointer or array type");
5198 return error_mark_node;
5199 }
5200
5201 rval = build_vec_delete_1 (loc, base, maxindex, type, auto_delete_vec,
5202 use_global_delete, complain);
5203 if (base_init && rval != error_mark_node)
5204 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
5205
5206 protected_set_expr_location (rval, loc);
5207 return rval;
5208 }
5209
5210 #include "gt-cp-init.h"