call.c (check_dtor_name): Replace abort with gcc_assert or gcc_unreachable.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_new_1 (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
59
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
68
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 {
72 bool is_global = !building_stmt_tree ();
73
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
76
77 return is_global;
78 }
79
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
82
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 {
86 finish_compound_stmt (compound_stmt);
87
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
89
90 gcc_assert (!building_stmt_tree () == is_global);
91
92 return stmt_expr;
93 }
94
95 /* Constructors */
96
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
100
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 {
104 if ((!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
105 && TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
106 {
107 tree base_ptr = TREE_VALUE ((tree) data);
108
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
110
111 expand_virtual_init (binfo, base_ptr);
112 }
113
114 BINFO_MARKED (binfo) = 1;
115
116 return NULL_TREE;
117 }
118
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
121
122 void
123 initialize_vtbl_ptrs (tree addr)
124 {
125 tree list;
126 tree type;
127
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
130
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
136 NULL, unmarkedp, list);
137 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
138 }
139
140 /* Return an expression for the zero-initialization of an object with
141 type T. This expression will either be a constant (in the case
142 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
143 aggregate). In either case, the value can be used as DECL_INITIAL
144 for a decl of the indicated TYPE; it is a valid static initializer.
145 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
146 number of elements in the array. If STATIC_STORAGE_P is TRUE,
147 initializers are only generated for entities for which
148 zero-initialization does not simply mean filling the storage with
149 zero bytes. */
150
151 tree
152 build_zero_init (tree type, tree nelts, bool static_storage_p)
153 {
154 tree init = NULL_TREE;
155
156 /* [dcl.init]
157
158 To zero-initialization storage for an object of type T means:
159
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
162
163 -- if T is a non-union class type, the storage for each nonstatic
164 data member and each base-class subobject is zero-initialized.
165
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
168
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
171
172 -- if T is a reference type, no initialization is performed. */
173
174 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
175
176 if (type == error_mark_node)
177 ;
178 else if (static_storage_p && zero_init_p (type))
179 /* In order to save space, we do not explicitly build initializers
180 for items that do not need them. GCC's semantics are that
181 items with static storage duration that are not otherwise
182 initialized are initialized to zero. */
183 ;
184 else if (SCALAR_TYPE_P (type))
185 init = convert (type, integer_zero_node);
186 else if (CLASS_TYPE_P (type))
187 {
188 tree field;
189 tree inits;
190
191 /* Build a constructor to contain the initializations. */
192 init = build_constructor (type, NULL_TREE);
193 /* Iterate over the fields, building initializations. */
194 inits = NULL_TREE;
195 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
196 {
197 if (TREE_CODE (field) != FIELD_DECL)
198 continue;
199
200 /* Note that for class types there will be FIELD_DECLs
201 corresponding to base classes as well. Thus, iterating
202 over TYPE_FIELDs will result in correct initialization of
203 all of the subobjects. */
204 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
205 inits = tree_cons (field,
206 build_zero_init (TREE_TYPE (field),
207 /*nelts=*/NULL_TREE,
208 static_storage_p),
209 inits);
210
211 /* For unions, only the first field is initialized. */
212 if (TREE_CODE (type) == UNION_TYPE)
213 break;
214 }
215 CONSTRUCTOR_ELTS (init) = nreverse (inits);
216 }
217 else if (TREE_CODE (type) == ARRAY_TYPE)
218 {
219 tree index;
220 tree max_index;
221 tree inits;
222
223 /* Build a constructor to contain the initializations. */
224 init = build_constructor (type, NULL_TREE);
225 /* Iterate over the array elements, building initializations. */
226 inits = NULL_TREE;
227 max_index = nelts ? nelts : array_type_nelts (type);
228 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
229
230 /* A zero-sized array, which is accepted as an extension, will
231 have an upper bound of -1. */
232 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
233 for (index = size_zero_node;
234 !tree_int_cst_lt (max_index, index);
235 index = size_binop (PLUS_EXPR, index, size_one_node))
236 inits = tree_cons (index,
237 build_zero_init (TREE_TYPE (type),
238 /*nelts=*/NULL_TREE,
239 static_storage_p),
240 inits);
241 CONSTRUCTOR_ELTS (init) = nreverse (inits);
242 }
243 else
244 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
245
246 /* In all cases, the initializer is a constant. */
247 if (init)
248 {
249 TREE_CONSTANT (init) = 1;
250 TREE_INVARIANT (init) = 1;
251 }
252
253 return init;
254 }
255
256 /* Build an expression for the default-initialization of an object of
257 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
258 ARRAY_TYPE, NELTS is the number of elements in the array. If
259 initialization of TYPE requires calling constructors, this function
260 returns NULL_TREE; the caller is responsible for arranging for the
261 constructors to be called. */
262
263 static tree
264 build_default_init (tree type, tree nelts)
265 {
266 /* [dcl.init]:
267
268 To default-initialize an object of type T means:
269
270 --if T is a non-POD class type (clause _class_), the default construc-
271 tor for T is called (and the initialization is ill-formed if T has
272 no accessible default constructor);
273
274 --if T is an array type, each element is default-initialized;
275
276 --otherwise, the storage for the object is zero-initialized.
277
278 A program that calls for default-initialization of an entity of refer-
279 ence type is ill-formed. */
280
281 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
282 performing the initialization. This is confusing in that some
283 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
284 a class with a pointer-to-data member as a non-static data member
285 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
286 passing non-PODs to build_zero_init below, which is contrary to
287 the semantics quoted above from [dcl.init].
288
289 It happens, however, that the behavior of the constructor the
290 standard says we should have generated would be precisely the
291 same as that obtained by calling build_zero_init below, so things
292 work out OK. */
293 if (TYPE_NEEDS_CONSTRUCTING (type)
294 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
295 return NULL_TREE;
296
297 /* At this point, TYPE is either a POD class type, an array of POD
298 classes, or something even more innocuous. */
299 return build_zero_init (type, nelts, /*static_storage_p=*/false);
300 }
301
302 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
303 arguments. If TREE_LIST is void_type_node, an empty initializer
304 list was given; if NULL_TREE no initializer was given. */
305
306 static void
307 perform_member_init (tree member, tree init)
308 {
309 tree decl;
310 tree type = TREE_TYPE (member);
311 bool explicit;
312
313 explicit = (init != NULL_TREE);
314
315 /* Effective C++ rule 12 requires that all data members be
316 initialized. */
317 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
318 warning ("`%D' should be initialized in the member initialization "
319 "list",
320 member);
321
322 if (init == void_type_node)
323 init = NULL_TREE;
324
325 /* Get an lvalue for the data member. */
326 decl = build_class_member_access_expr (current_class_ref, member,
327 /*access_path=*/NULL_TREE,
328 /*preserve_reference=*/true);
329 if (decl == error_mark_node)
330 return;
331
332 /* Deal with this here, as we will get confused if we try to call the
333 assignment op for an anonymous union. This can happen in a
334 synthesized copy constructor. */
335 if (ANON_AGGR_TYPE_P (type))
336 {
337 if (init)
338 {
339 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
340 finish_expr_stmt (init);
341 }
342 }
343 else if (TYPE_NEEDS_CONSTRUCTING (type))
344 {
345 if (explicit
346 && TREE_CODE (type) == ARRAY_TYPE
347 && init != NULL_TREE
348 && TREE_CHAIN (init) == NULL_TREE
349 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
350 {
351 /* Initialization of one array from another. */
352 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
353 /* from_array=*/1));
354 }
355 else
356 finish_expr_stmt (build_aggr_init (decl, init, 0));
357 }
358 else
359 {
360 if (init == NULL_TREE)
361 {
362 if (explicit)
363 {
364 init = build_default_init (type, /*nelts=*/NULL_TREE);
365 if (TREE_CODE (type) == REFERENCE_TYPE)
366 warning
367 ("default-initialization of `%#D', which has reference type",
368 member);
369 }
370 /* member traversal: note it leaves init NULL */
371 else if (TREE_CODE (type) == REFERENCE_TYPE)
372 pedwarn ("uninitialized reference member `%D'", member);
373 else if (CP_TYPE_CONST_P (type))
374 pedwarn ("uninitialized member `%D' with `const' type `%T'",
375 member, type);
376 }
377 else if (TREE_CODE (init) == TREE_LIST)
378 /* There was an explicit member initialization. Do some work
379 in that case. */
380 init = build_x_compound_expr_from_list (init, "member initializer");
381
382 if (init)
383 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
384 }
385
386 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
387 {
388 tree expr;
389
390 expr = build_class_member_access_expr (current_class_ref, member,
391 /*access_path=*/NULL_TREE,
392 /*preserve_reference=*/false);
393 expr = build_delete (type, expr, sfk_complete_destructor,
394 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
395
396 if (expr != error_mark_node)
397 finish_eh_cleanup (expr);
398 }
399 }
400
401 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
402 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
403
404 static tree
405 build_field_list (tree t, tree list, int *uses_unions_p)
406 {
407 tree fields;
408
409 *uses_unions_p = 0;
410
411 /* Note whether or not T is a union. */
412 if (TREE_CODE (t) == UNION_TYPE)
413 *uses_unions_p = 1;
414
415 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
416 {
417 /* Skip CONST_DECLs for enumeration constants and so forth. */
418 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
419 continue;
420
421 /* Keep track of whether or not any fields are unions. */
422 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
423 *uses_unions_p = 1;
424
425 /* For an anonymous struct or union, we must recursively
426 consider the fields of the anonymous type. They can be
427 directly initialized from the constructor. */
428 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
429 {
430 /* Add this field itself. Synthesized copy constructors
431 initialize the entire aggregate. */
432 list = tree_cons (fields, NULL_TREE, list);
433 /* And now add the fields in the anonymous aggregate. */
434 list = build_field_list (TREE_TYPE (fields), list,
435 uses_unions_p);
436 }
437 /* Add this field. */
438 else if (DECL_NAME (fields))
439 list = tree_cons (fields, NULL_TREE, list);
440 }
441
442 return list;
443 }
444
445 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
446 a FIELD_DECL or BINFO in T that needs initialization. The
447 TREE_VALUE gives the initializer, or list of initializer arguments.
448
449 Return a TREE_LIST containing all of the initializations required
450 for T, in the order in which they should be performed. The output
451 list has the same format as the input. */
452
453 static tree
454 sort_mem_initializers (tree t, tree mem_inits)
455 {
456 tree init;
457 tree base, binfo, base_binfo;
458 tree sorted_inits;
459 tree next_subobject;
460 VEC (tree) *vbases;
461 int i;
462 int uses_unions_p;
463
464 /* Build up a list of initializations. The TREE_PURPOSE of entry
465 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
466 TREE_VALUE will be the constructor arguments, or NULL if no
467 explicit initialization was provided. */
468 sorted_inits = NULL_TREE;
469
470 /* Process the virtual bases. */
471 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
472 VEC_iterate (tree, vbases, i, base); i++)
473 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
474
475 /* Process the direct bases. */
476 for (binfo = TYPE_BINFO (t), i = 0;
477 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
478 if (!BINFO_VIRTUAL_P (base_binfo))
479 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
480
481 /* Process the non-static data members. */
482 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
483 /* Reverse the entire list of initializations, so that they are in
484 the order that they will actually be performed. */
485 sorted_inits = nreverse (sorted_inits);
486
487 /* If the user presented the initializers in an order different from
488 that in which they will actually occur, we issue a warning. Keep
489 track of the next subobject which can be explicitly initialized
490 without issuing a warning. */
491 next_subobject = sorted_inits;
492
493 /* Go through the explicit initializers, filling in TREE_PURPOSE in
494 the SORTED_INITS. */
495 for (init = mem_inits; init; init = TREE_CHAIN (init))
496 {
497 tree subobject;
498 tree subobject_init;
499
500 subobject = TREE_PURPOSE (init);
501
502 /* If the explicit initializers are in sorted order, then
503 SUBOBJECT will be NEXT_SUBOBJECT, or something following
504 it. */
505 for (subobject_init = next_subobject;
506 subobject_init;
507 subobject_init = TREE_CHAIN (subobject_init))
508 if (TREE_PURPOSE (subobject_init) == subobject)
509 break;
510
511 /* Issue a warning if the explicit initializer order does not
512 match that which will actually occur. */
513 if (warn_reorder && !subobject_init)
514 {
515 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
516 cp_warning_at ("`%D' will be initialized after",
517 TREE_PURPOSE (next_subobject));
518 else
519 warning ("base `%T' will be initialized after",
520 TREE_PURPOSE (next_subobject));
521 if (TREE_CODE (subobject) == FIELD_DECL)
522 cp_warning_at (" `%#D'", subobject);
523 else
524 warning (" base `%T'", subobject);
525 warning (" when initialized here");
526 }
527
528 /* Look again, from the beginning of the list. */
529 if (!subobject_init)
530 {
531 subobject_init = sorted_inits;
532 while (TREE_PURPOSE (subobject_init) != subobject)
533 subobject_init = TREE_CHAIN (subobject_init);
534 }
535
536 /* It is invalid to initialize the same subobject more than
537 once. */
538 if (TREE_VALUE (subobject_init))
539 {
540 if (TREE_CODE (subobject) == FIELD_DECL)
541 error ("multiple initializations given for `%D'", subobject);
542 else
543 error ("multiple initializations given for base `%T'",
544 subobject);
545 }
546
547 /* Record the initialization. */
548 TREE_VALUE (subobject_init) = TREE_VALUE (init);
549 next_subobject = subobject_init;
550 }
551
552 /* [class.base.init]
553
554 If a ctor-initializer specifies more than one mem-initializer for
555 multiple members of the same union (including members of
556 anonymous unions), the ctor-initializer is ill-formed. */
557 if (uses_unions_p)
558 {
559 tree last_field = NULL_TREE;
560 for (init = sorted_inits; init; init = TREE_CHAIN (init))
561 {
562 tree field;
563 tree field_type;
564 int done;
565
566 /* Skip uninitialized members and base classes. */
567 if (!TREE_VALUE (init)
568 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
569 continue;
570 /* See if this field is a member of a union, or a member of a
571 structure contained in a union, etc. */
572 field = TREE_PURPOSE (init);
573 for (field_type = DECL_CONTEXT (field);
574 !same_type_p (field_type, t);
575 field_type = TYPE_CONTEXT (field_type))
576 if (TREE_CODE (field_type) == UNION_TYPE)
577 break;
578 /* If this field is not a member of a union, skip it. */
579 if (TREE_CODE (field_type) != UNION_TYPE)
580 continue;
581
582 /* It's only an error if we have two initializers for the same
583 union type. */
584 if (!last_field)
585 {
586 last_field = field;
587 continue;
588 }
589
590 /* See if LAST_FIELD and the field initialized by INIT are
591 members of the same union. If so, there's a problem,
592 unless they're actually members of the same structure
593 which is itself a member of a union. For example, given:
594
595 union { struct { int i; int j; }; };
596
597 initializing both `i' and `j' makes sense. */
598 field_type = DECL_CONTEXT (field);
599 done = 0;
600 do
601 {
602 tree last_field_type;
603
604 last_field_type = DECL_CONTEXT (last_field);
605 while (1)
606 {
607 if (same_type_p (last_field_type, field_type))
608 {
609 if (TREE_CODE (field_type) == UNION_TYPE)
610 error ("initializations for multiple members of `%T'",
611 last_field_type);
612 done = 1;
613 break;
614 }
615
616 if (same_type_p (last_field_type, t))
617 break;
618
619 last_field_type = TYPE_CONTEXT (last_field_type);
620 }
621
622 /* If we've reached the outermost class, then we're
623 done. */
624 if (same_type_p (field_type, t))
625 break;
626
627 field_type = TYPE_CONTEXT (field_type);
628 }
629 while (!done);
630
631 last_field = field;
632 }
633 }
634
635 return sorted_inits;
636 }
637
638 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
639 is a TREE_LIST giving the explicit mem-initializer-list for the
640 constructor. The TREE_PURPOSE of each entry is a subobject (a
641 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
642 is a TREE_LIST giving the arguments to the constructor or
643 void_type_node for an empty list of arguments. */
644
645 void
646 emit_mem_initializers (tree mem_inits)
647 {
648 /* Sort the mem-initializers into the order in which the
649 initializations should be performed. */
650 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
651
652 in_base_initializer = 1;
653
654 /* Initialize base classes. */
655 while (mem_inits
656 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
657 {
658 tree subobject = TREE_PURPOSE (mem_inits);
659 tree arguments = TREE_VALUE (mem_inits);
660
661 /* If these initializations are taking place in a copy
662 constructor, the base class should probably be explicitly
663 initialized. */
664 if (extra_warnings && !arguments
665 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
666 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
667 warning ("base class `%#T' should be explicitly initialized in the "
668 "copy constructor",
669 BINFO_TYPE (subobject));
670
671 /* If an explicit -- but empty -- initializer list was present,
672 treat it just like default initialization at this point. */
673 if (arguments == void_type_node)
674 arguments = NULL_TREE;
675
676 /* Initialize the base. */
677 if (BINFO_VIRTUAL_P (subobject))
678 construct_virtual_base (subobject, arguments);
679 else
680 {
681 tree base_addr;
682
683 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
684 subobject, 1);
685 expand_aggr_init_1 (subobject, NULL_TREE,
686 build_indirect_ref (base_addr, NULL),
687 arguments,
688 LOOKUP_NORMAL);
689 expand_cleanup_for_base (subobject, NULL_TREE);
690 }
691
692 mem_inits = TREE_CHAIN (mem_inits);
693 }
694 in_base_initializer = 0;
695
696 /* Initialize the vptrs. */
697 initialize_vtbl_ptrs (current_class_ptr);
698
699 /* Initialize the data members. */
700 while (mem_inits)
701 {
702 perform_member_init (TREE_PURPOSE (mem_inits),
703 TREE_VALUE (mem_inits));
704 mem_inits = TREE_CHAIN (mem_inits);
705 }
706 }
707
708 /* Returns the address of the vtable (i.e., the value that should be
709 assigned to the vptr) for BINFO. */
710
711 static tree
712 build_vtbl_address (tree binfo)
713 {
714 tree binfo_for = binfo;
715 tree vtbl;
716
717 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
718 /* If this is a virtual primary base, then the vtable we want to store
719 is that for the base this is being used as the primary base of. We
720 can't simply skip the initialization, because we may be expanding the
721 inits of a subobject constructor where the virtual base layout
722 can be different. */
723 while (BINFO_PRIMARY_P (binfo_for))
724 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
725
726 /* Figure out what vtable BINFO's vtable is based on, and mark it as
727 used. */
728 vtbl = get_vtbl_decl_for_binfo (binfo_for);
729 assemble_external (vtbl);
730 TREE_USED (vtbl) = 1;
731
732 /* Now compute the address to use when initializing the vptr. */
733 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
734 if (TREE_CODE (vtbl) == VAR_DECL)
735 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
736
737 return vtbl;
738 }
739
740 /* This code sets up the virtual function tables appropriate for
741 the pointer DECL. It is a one-ply initialization.
742
743 BINFO is the exact type that DECL is supposed to be. In
744 multiple inheritance, this might mean "C's A" if C : A, B. */
745
746 static void
747 expand_virtual_init (tree binfo, tree decl)
748 {
749 tree vtbl, vtbl_ptr;
750 tree vtt_index;
751
752 /* Compute the initializer for vptr. */
753 vtbl = build_vtbl_address (binfo);
754
755 /* We may get this vptr from a VTT, if this is a subobject
756 constructor or subobject destructor. */
757 vtt_index = BINFO_VPTR_INDEX (binfo);
758 if (vtt_index)
759 {
760 tree vtbl2;
761 tree vtt_parm;
762
763 /* Compute the value to use, when there's a VTT. */
764 vtt_parm = current_vtt_parm;
765 vtbl2 = build2 (PLUS_EXPR,
766 TREE_TYPE (vtt_parm),
767 vtt_parm,
768 vtt_index);
769 vtbl2 = build_indirect_ref (vtbl2, NULL);
770 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
771
772 /* The actual initializer is the VTT value only in the subobject
773 constructor. In maybe_clone_body we'll substitute NULL for
774 the vtt_parm in the case of the non-subobject constructor. */
775 vtbl = build3 (COND_EXPR,
776 TREE_TYPE (vtbl),
777 build2 (EQ_EXPR, boolean_type_node,
778 current_in_charge_parm, integer_zero_node),
779 vtbl2,
780 vtbl);
781 }
782
783 /* Compute the location of the vtpr. */
784 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
785 TREE_TYPE (binfo));
786 gcc_assert (vtbl_ptr != error_mark_node);
787
788 /* Assign the vtable to the vptr. */
789 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
790 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
791 }
792
793 /* If an exception is thrown in a constructor, those base classes already
794 constructed must be destroyed. This function creates the cleanup
795 for BINFO, which has just been constructed. If FLAG is non-NULL,
796 it is a DECL which is nonzero when this base needs to be
797 destroyed. */
798
799 static void
800 expand_cleanup_for_base (tree binfo, tree flag)
801 {
802 tree expr;
803
804 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
805 return;
806
807 /* Call the destructor. */
808 expr = build_special_member_call (current_class_ref,
809 base_dtor_identifier,
810 NULL_TREE,
811 binfo,
812 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
813 if (flag)
814 expr = fold (build3 (COND_EXPR, void_type_node,
815 c_common_truthvalue_conversion (flag),
816 expr, integer_zero_node));
817
818 finish_eh_cleanup (expr);
819 }
820
821 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
822 constructor. */
823
824 static void
825 construct_virtual_base (tree vbase, tree arguments)
826 {
827 tree inner_if_stmt;
828 tree exp;
829 tree flag;
830
831 /* If there are virtual base classes with destructors, we need to
832 emit cleanups to destroy them if an exception is thrown during
833 the construction process. These exception regions (i.e., the
834 period during which the cleanups must occur) begin from the time
835 the construction is complete to the end of the function. If we
836 create a conditional block in which to initialize the
837 base-classes, then the cleanup region for the virtual base begins
838 inside a block, and ends outside of that block. This situation
839 confuses the sjlj exception-handling code. Therefore, we do not
840 create a single conditional block, but one for each
841 initialization. (That way the cleanup regions always begin
842 in the outer block.) We trust the back-end to figure out
843 that the FLAG will not change across initializations, and
844 avoid doing multiple tests. */
845 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
846 inner_if_stmt = begin_if_stmt ();
847 finish_if_stmt_cond (flag, inner_if_stmt);
848
849 /* Compute the location of the virtual base. If we're
850 constructing virtual bases, then we must be the most derived
851 class. Therefore, we don't have to look up the virtual base;
852 we already know where it is. */
853 exp = convert_to_base_statically (current_class_ref, vbase);
854
855 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
856 LOOKUP_COMPLAIN);
857 finish_then_clause (inner_if_stmt);
858 finish_if_stmt (inner_if_stmt);
859
860 expand_cleanup_for_base (vbase, flag);
861 }
862
863 /* Find the context in which this FIELD can be initialized. */
864
865 static tree
866 initializing_context (tree field)
867 {
868 tree t = DECL_CONTEXT (field);
869
870 /* Anonymous union members can be initialized in the first enclosing
871 non-anonymous union context. */
872 while (t && ANON_AGGR_TYPE_P (t))
873 t = TYPE_CONTEXT (t);
874 return t;
875 }
876
877 /* Function to give error message if member initialization specification
878 is erroneous. FIELD is the member we decided to initialize.
879 TYPE is the type for which the initialization is being performed.
880 FIELD must be a member of TYPE.
881
882 MEMBER_NAME is the name of the member. */
883
884 static int
885 member_init_ok_or_else (tree field, tree type, tree member_name)
886 {
887 if (field == error_mark_node)
888 return 0;
889 if (!field)
890 {
891 error ("class `%T' does not have any field named `%D'", type,
892 member_name);
893 return 0;
894 }
895 if (TREE_CODE (field) == VAR_DECL)
896 {
897 error ("`%#D' is a static data member; it can only be "
898 "initialized at its definition",
899 field);
900 return 0;
901 }
902 if (TREE_CODE (field) != FIELD_DECL)
903 {
904 error ("`%#D' is not a non-static data member of `%T'",
905 field, type);
906 return 0;
907 }
908 if (initializing_context (field) != type)
909 {
910 error ("class `%T' does not have any field named `%D'", type,
911 member_name);
912 return 0;
913 }
914
915 return 1;
916 }
917
918 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
919 is a _TYPE node or TYPE_DECL which names a base for that type.
920 Check the validity of NAME, and return either the base _TYPE, base
921 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
922 NULL_TREE and issue a diagnostic.
923
924 An old style unnamed direct single base construction is permitted,
925 where NAME is NULL. */
926
927 tree
928 expand_member_init (tree name)
929 {
930 tree basetype;
931 tree field;
932
933 if (!current_class_ref)
934 return NULL_TREE;
935
936 if (!name)
937 {
938 /* This is an obsolete unnamed base class initializer. The
939 parser will already have warned about its use. */
940 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
941 {
942 case 0:
943 error ("unnamed initializer for `%T', which has no base classes",
944 current_class_type);
945 return NULL_TREE;
946 case 1:
947 basetype = BINFO_TYPE
948 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
949 break;
950 default:
951 error ("unnamed initializer for `%T', which uses multiple inheritance",
952 current_class_type);
953 return NULL_TREE;
954 }
955 }
956 else if (TYPE_P (name))
957 {
958 basetype = TYPE_MAIN_VARIANT (name);
959 name = TYPE_NAME (name);
960 }
961 else if (TREE_CODE (name) == TYPE_DECL)
962 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
963 else
964 basetype = NULL_TREE;
965
966 if (basetype)
967 {
968 tree class_binfo;
969 tree direct_binfo;
970 tree virtual_binfo;
971 int i;
972
973 if (current_template_parms)
974 return basetype;
975
976 class_binfo = TYPE_BINFO (current_class_type);
977 direct_binfo = NULL_TREE;
978 virtual_binfo = NULL_TREE;
979
980 /* Look for a direct base. */
981 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
982 if (same_type_p (basetype, BINFO_TYPE (direct_binfo)))
983 break;
984
985 /* Look for a virtual base -- unless the direct base is itself
986 virtual. */
987 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
988 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
989
990 /* [class.base.init]
991
992 If a mem-initializer-id is ambiguous because it designates
993 both a direct non-virtual base class and an inherited virtual
994 base class, the mem-initializer is ill-formed. */
995 if (direct_binfo && virtual_binfo)
996 {
997 error ("'%D' is both a direct base and an indirect virtual base",
998 basetype);
999 return NULL_TREE;
1000 }
1001
1002 if (!direct_binfo && !virtual_binfo)
1003 {
1004 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
1005 error ("type `%D' is not a direct or virtual base of `%T'",
1006 name, current_class_type);
1007 else
1008 error ("type `%D' is not a direct base of `%T'",
1009 name, current_class_type);
1010 return NULL_TREE;
1011 }
1012
1013 return direct_binfo ? direct_binfo : virtual_binfo;
1014 }
1015 else
1016 {
1017 if (TREE_CODE (name) == IDENTIFIER_NODE)
1018 field = lookup_field (current_class_type, name, 1, false);
1019 else
1020 field = name;
1021
1022 if (member_init_ok_or_else (field, current_class_type, name))
1023 return field;
1024 }
1025
1026 return NULL_TREE;
1027 }
1028
1029 /* This is like `expand_member_init', only it stores one aggregate
1030 value into another.
1031
1032 INIT comes in two flavors: it is either a value which
1033 is to be stored in EXP, or it is a parameter list
1034 to go to a constructor, which will operate on EXP.
1035 If INIT is not a parameter list for a constructor, then set
1036 LOOKUP_ONLYCONVERTING.
1037 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1038 the initializer, if FLAGS is 0, then it is the (init) form.
1039 If `init' is a CONSTRUCTOR, then we emit a warning message,
1040 explaining that such initializations are invalid.
1041
1042 If INIT resolves to a CALL_EXPR which happens to return
1043 something of the type we are looking for, then we know
1044 that we can safely use that call to perform the
1045 initialization.
1046
1047 The virtual function table pointer cannot be set up here, because
1048 we do not really know its type.
1049
1050 This never calls operator=().
1051
1052 When initializing, nothing is CONST.
1053
1054 A default copy constructor may have to be used to perform the
1055 initialization.
1056
1057 A constructor or a conversion operator may have to be used to
1058 perform the initialization, but not both, as it would be ambiguous. */
1059
1060 tree
1061 build_aggr_init (tree exp, tree init, int flags)
1062 {
1063 tree stmt_expr;
1064 tree compound_stmt;
1065 int destroy_temps;
1066 tree type = TREE_TYPE (exp);
1067 int was_const = TREE_READONLY (exp);
1068 int was_volatile = TREE_THIS_VOLATILE (exp);
1069 int is_global;
1070
1071 if (init == error_mark_node)
1072 return error_mark_node;
1073
1074 TREE_READONLY (exp) = 0;
1075 TREE_THIS_VOLATILE (exp) = 0;
1076
1077 if (init && TREE_CODE (init) != TREE_LIST)
1078 flags |= LOOKUP_ONLYCONVERTING;
1079
1080 if (TREE_CODE (type) == ARRAY_TYPE)
1081 {
1082 tree itype;
1083
1084 /* An array may not be initialized use the parenthesized
1085 initialization form -- unless the initializer is "()". */
1086 if (init && TREE_CODE (init) == TREE_LIST)
1087 {
1088 error ("bad array initializer");
1089 return error_mark_node;
1090 }
1091 /* Must arrange to initialize each element of EXP
1092 from elements of INIT. */
1093 itype = init ? TREE_TYPE (init) : NULL_TREE;
1094 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1095 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1096 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1097 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1098 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1099 itype && same_type_p (itype,
1100 TREE_TYPE (exp)));
1101 TREE_READONLY (exp) = was_const;
1102 TREE_THIS_VOLATILE (exp) = was_volatile;
1103 TREE_TYPE (exp) = type;
1104 if (init)
1105 TREE_TYPE (init) = itype;
1106 return stmt_expr;
1107 }
1108
1109 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1110 /* Just know that we've seen something for this node. */
1111 TREE_USED (exp) = 1;
1112
1113 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1114 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1115 destroy_temps = stmts_are_full_exprs_p ();
1116 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1117 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1118 init, LOOKUP_NORMAL|flags);
1119 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1120 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1121 TREE_TYPE (exp) = type;
1122 TREE_READONLY (exp) = was_const;
1123 TREE_THIS_VOLATILE (exp) = was_volatile;
1124
1125 return stmt_expr;
1126 }
1127
1128 /* Like build_aggr_init, but not just for aggregates. */
1129
1130 tree
1131 build_init (tree decl, tree init, int flags)
1132 {
1133 tree expr;
1134
1135 if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1136 expr = build_aggr_init (decl, init, flags);
1137 else if (CLASS_TYPE_P (TREE_TYPE (decl)))
1138 expr = build_special_member_call (decl, complete_ctor_identifier,
1139 build_tree_list (NULL_TREE, init),
1140 TREE_TYPE (decl),
1141 LOOKUP_NORMAL|flags);
1142 else
1143 expr = build2 (INIT_EXPR, TREE_TYPE (decl), decl, init);
1144
1145 return expr;
1146 }
1147
1148 static void
1149 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1150 {
1151 tree type = TREE_TYPE (exp);
1152 tree ctor_name;
1153
1154 /* It fails because there may not be a constructor which takes
1155 its own type as the first (or only parameter), but which does
1156 take other types via a conversion. So, if the thing initializing
1157 the expression is a unit element of type X, first try X(X&),
1158 followed by initialization by X. If neither of these work
1159 out, then look hard. */
1160 tree rval;
1161 tree parms;
1162
1163 if (init && TREE_CODE (init) != TREE_LIST
1164 && (flags & LOOKUP_ONLYCONVERTING))
1165 {
1166 /* Base subobjects should only get direct-initialization. */
1167 gcc_assert (true_exp == exp);
1168
1169 if (flags & DIRECT_BIND)
1170 /* Do nothing. We hit this in two cases: Reference initialization,
1171 where we aren't initializing a real variable, so we don't want
1172 to run a new constructor; and catching an exception, where we
1173 have already built up the constructor call so we could wrap it
1174 in an exception region. */;
1175 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1176 {
1177 /* A brace-enclosed initializer for an aggregate. */
1178 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1179 init = digest_init (type, init, (tree *)NULL);
1180 }
1181 else
1182 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1183
1184 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1185 /* We need to protect the initialization of a catch parm with a
1186 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1187 around the TARGET_EXPR for the copy constructor. See
1188 initialize_handler_parm. */
1189 {
1190 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1191 TREE_OPERAND (init, 0));
1192 TREE_TYPE (init) = void_type_node;
1193 }
1194 else
1195 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1196 TREE_SIDE_EFFECTS (init) = 1;
1197 finish_expr_stmt (init);
1198 return;
1199 }
1200
1201 if (init == NULL_TREE
1202 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1203 {
1204 parms = init;
1205 if (parms)
1206 init = TREE_VALUE (parms);
1207 }
1208 else
1209 parms = build_tree_list (NULL_TREE, init);
1210
1211 if (true_exp == exp)
1212 ctor_name = complete_ctor_identifier;
1213 else
1214 ctor_name = base_ctor_identifier;
1215
1216 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1217 if (TREE_SIDE_EFFECTS (rval))
1218 finish_expr_stmt (convert_to_void (rval, NULL));
1219 }
1220
1221 /* This function is responsible for initializing EXP with INIT
1222 (if any).
1223
1224 BINFO is the binfo of the type for who we are performing the
1225 initialization. For example, if W is a virtual base class of A and B,
1226 and C : A, B.
1227 If we are initializing B, then W must contain B's W vtable, whereas
1228 were we initializing C, W must contain C's W vtable.
1229
1230 TRUE_EXP is nonzero if it is the true expression being initialized.
1231 In this case, it may be EXP, or may just contain EXP. The reason we
1232 need this is because if EXP is a base element of TRUE_EXP, we
1233 don't necessarily know by looking at EXP where its virtual
1234 baseclass fields should really be pointing. But we do know
1235 from TRUE_EXP. In constructors, we don't know anything about
1236 the value being initialized.
1237
1238 FLAGS is just passed to `build_new_method_call'. See that function
1239 for its description. */
1240
1241 static void
1242 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1243 {
1244 tree type = TREE_TYPE (exp);
1245
1246 gcc_assert (init != error_mark_node && type != error_mark_node);
1247 gcc_assert (building_stmt_tree ());
1248
1249 /* Use a function returning the desired type to initialize EXP for us.
1250 If the function is a constructor, and its first argument is
1251 NULL_TREE, know that it was meant for us--just slide exp on
1252 in and expand the constructor. Constructors now come
1253 as TARGET_EXPRs. */
1254
1255 if (init && TREE_CODE (exp) == VAR_DECL
1256 && TREE_CODE (init) == CONSTRUCTOR
1257 && TREE_HAS_CONSTRUCTOR (init))
1258 {
1259 /* If store_init_value returns NULL_TREE, the INIT has been
1260 record in the DECL_INITIAL for EXP. That means there's
1261 nothing more we have to do. */
1262 init = store_init_value (exp, init);
1263 if (init)
1264 finish_expr_stmt (init);
1265 return;
1266 }
1267
1268 /* We know that expand_default_init can handle everything we want
1269 at this point. */
1270 expand_default_init (binfo, true_exp, exp, init, flags);
1271 }
1272
1273 /* Report an error if TYPE is not a user-defined, aggregate type. If
1274 OR_ELSE is nonzero, give an error message. */
1275
1276 int
1277 is_aggr_type (tree type, int or_else)
1278 {
1279 if (type == error_mark_node)
1280 return 0;
1281
1282 if (! IS_AGGR_TYPE (type)
1283 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1284 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1285 {
1286 if (or_else)
1287 error ("`%T' is not an aggregate type", type);
1288 return 0;
1289 }
1290 return 1;
1291 }
1292
1293 tree
1294 get_type_value (tree name)
1295 {
1296 if (name == error_mark_node)
1297 return NULL_TREE;
1298
1299 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1300 return IDENTIFIER_TYPE_VALUE (name);
1301 else
1302 return NULL_TREE;
1303 }
1304
1305 /* Build a reference to a member of an aggregate. This is not a C++
1306 `&', but really something which can have its address taken, and
1307 then act as a pointer to member, for example TYPE :: FIELD can have
1308 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1309 this expression is the operand of "&".
1310
1311 @@ Prints out lousy diagnostics for operator <typename>
1312 @@ fields.
1313
1314 @@ This function should be rewritten and placed in search.c. */
1315
1316 tree
1317 build_offset_ref (tree type, tree name, bool address_p)
1318 {
1319 tree decl;
1320 tree member;
1321 tree basebinfo = NULL_TREE;
1322 tree orig_name = name;
1323
1324 /* class templates can come in as TEMPLATE_DECLs here. */
1325 if (TREE_CODE (name) == TEMPLATE_DECL)
1326 return name;
1327
1328 if (dependent_type_p (type) || type_dependent_expression_p (name))
1329 return build_min_nt (SCOPE_REF, type, name);
1330
1331 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1332 {
1333 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1334 something like `a.template f<int>' or the like. For the most
1335 part, we treat this just like a.f. We do remember, however,
1336 the template-id that was used. */
1337 name = TREE_OPERAND (orig_name, 0);
1338
1339 if (DECL_P (name))
1340 name = DECL_NAME (name);
1341 else
1342 {
1343 if (TREE_CODE (name) == COMPONENT_REF)
1344 name = TREE_OPERAND (name, 1);
1345 if (TREE_CODE (name) == OVERLOAD)
1346 name = DECL_NAME (OVL_CURRENT (name));
1347 }
1348
1349 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1350 }
1351
1352 if (type == NULL_TREE)
1353 return error_mark_node;
1354
1355 /* Handle namespace names fully here. */
1356 if (TREE_CODE (type) == NAMESPACE_DECL)
1357 {
1358 tree t = lookup_namespace_name (type, name);
1359 if (t == error_mark_node)
1360 return t;
1361 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1362 /* Reconstruct the TEMPLATE_ID_EXPR. */
1363 t = build2 (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1364 t, TREE_OPERAND (orig_name, 1));
1365 if (! type_unknown_p (t))
1366 {
1367 mark_used (t);
1368 t = convert_from_reference (t);
1369 }
1370 return t;
1371 }
1372
1373 if (! is_aggr_type (type, 1))
1374 return error_mark_node;
1375
1376 if (TREE_CODE (name) == BIT_NOT_EXPR)
1377 {
1378 if (! check_dtor_name (type, name))
1379 error ("qualified type `%T' does not match destructor name `~%T'",
1380 type, TREE_OPERAND (name, 0));
1381 name = dtor_identifier;
1382 }
1383
1384 if (!COMPLETE_TYPE_P (complete_type (type))
1385 && !TYPE_BEING_DEFINED (type))
1386 {
1387 error ("incomplete type `%T' does not have member `%D'", type,
1388 name);
1389 return error_mark_node;
1390 }
1391
1392 /* Set up BASEBINFO for member lookup. */
1393 decl = maybe_dummy_object (type, &basebinfo);
1394
1395 if (BASELINK_P (name) || DECL_P (name))
1396 member = name;
1397 else
1398 {
1399 member = lookup_member (basebinfo, name, 1, 0);
1400
1401 if (member == error_mark_node)
1402 return error_mark_node;
1403 }
1404
1405 if (!member)
1406 {
1407 error ("`%D' is not a member of type `%T'", name, type);
1408 return error_mark_node;
1409 }
1410
1411 if (processing_template_decl)
1412 {
1413 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1414 return build_min (SCOPE_REF, TREE_TYPE (member), type, orig_name);
1415 else
1416 return build_min (SCOPE_REF, TREE_TYPE (member), type, name);
1417 }
1418
1419 if (TREE_CODE (member) == TYPE_DECL)
1420 {
1421 TREE_USED (member) = 1;
1422 return member;
1423 }
1424 /* static class members and class-specific enum
1425 values can be returned without further ado. */
1426 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1427 {
1428 mark_used (member);
1429 return convert_from_reference (member);
1430 }
1431
1432 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1433 {
1434 error ("invalid pointer to bit-field `%D'", member);
1435 return error_mark_node;
1436 }
1437
1438 /* A lot of this logic is now handled in lookup_member. */
1439 if (BASELINK_P (member))
1440 {
1441 /* Go from the TREE_BASELINK to the member function info. */
1442 tree fnfields = member;
1443 tree t = BASELINK_FUNCTIONS (fnfields);
1444
1445 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1446 {
1447 /* The FNFIELDS are going to contain functions that aren't
1448 necessarily templates, and templates that don't
1449 necessarily match the explicit template parameters. We
1450 save all the functions, and the explicit parameters, and
1451 then figure out exactly what to instantiate with what
1452 arguments in instantiate_type. */
1453
1454 if (TREE_CODE (t) != OVERLOAD)
1455 /* The code in instantiate_type which will process this
1456 expects to encounter OVERLOADs, not raw functions. */
1457 t = ovl_cons (t, NULL_TREE);
1458
1459 t = build2 (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1460 TREE_OPERAND (orig_name, 1));
1461 t = build2 (OFFSET_REF, unknown_type_node, decl, t);
1462
1463 PTRMEM_OK_P (t) = 1;
1464
1465 return t;
1466 }
1467
1468 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1469 {
1470 /* Get rid of a potential OVERLOAD around it. */
1471 t = OVL_CURRENT (t);
1472
1473 /* Unique functions are handled easily. */
1474
1475 /* For non-static member of base class, we need a special rule
1476 for access checking [class.protected]:
1477
1478 If the access is to form a pointer to member, the
1479 nested-name-specifier shall name the derived class
1480 (or any class derived from that class). */
1481 if (address_p && DECL_P (t)
1482 && DECL_NONSTATIC_MEMBER_P (t))
1483 perform_or_defer_access_check (TYPE_BINFO (type), t);
1484 else
1485 perform_or_defer_access_check (basebinfo, t);
1486
1487 mark_used (t);
1488 if (DECL_STATIC_FUNCTION_P (t))
1489 return t;
1490 member = t;
1491 }
1492 else
1493 {
1494 TREE_TYPE (fnfields) = unknown_type_node;
1495 member = fnfields;
1496 }
1497 }
1498 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1499 /* We need additional test besides the one in
1500 check_accessibility_of_qualified_id in case it is
1501 a pointer to non-static member. */
1502 perform_or_defer_access_check (TYPE_BINFO (type), member);
1503
1504 if (!address_p)
1505 {
1506 /* If MEMBER is non-static, then the program has fallen afoul of
1507 [expr.prim]:
1508
1509 An id-expression that denotes a nonstatic data member or
1510 nonstatic member function of a class can only be used:
1511
1512 -- as part of a class member access (_expr.ref_) in which the
1513 object-expression refers to the member's class or a class
1514 derived from that class, or
1515
1516 -- to form a pointer to member (_expr.unary.op_), or
1517
1518 -- in the body of a nonstatic member function of that class or
1519 of a class derived from that class (_class.mfct.nonstatic_), or
1520
1521 -- in a mem-initializer for a constructor for that class or for
1522 a class derived from that class (_class.base.init_). */
1523 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1524 {
1525 /* Build a representation of a the qualified name suitable
1526 for use as the operand to "&" -- even though the "&" is
1527 not actually present. */
1528 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1529 /* In Microsoft mode, treat a non-static member function as if
1530 it were a pointer-to-member. */
1531 if (flag_ms_extensions)
1532 {
1533 PTRMEM_OK_P (member) = 1;
1534 return build_unary_op (ADDR_EXPR, member, 0);
1535 }
1536 error ("invalid use of non-static member function `%D'",
1537 TREE_OPERAND (member, 1));
1538 return member;
1539 }
1540 else if (TREE_CODE (member) == FIELD_DECL)
1541 {
1542 error ("invalid use of non-static data member `%D'", member);
1543 return error_mark_node;
1544 }
1545 return member;
1546 }
1547
1548 /* In member functions, the form `type::name' is no longer
1549 equivalent to `this->type::name', at least not until
1550 resolve_offset_ref. */
1551 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1552 PTRMEM_OK_P (member) = 1;
1553 return member;
1554 }
1555
1556 /* If DECL is a `const' declaration, and its value is a known
1557 constant, then return that value. */
1558
1559 tree
1560 decl_constant_value (tree decl)
1561 {
1562 /* When we build a COND_EXPR, we don't know whether it will be used
1563 as an lvalue or as an rvalue. If it is an lvalue, it's not safe
1564 to replace the second and third operands with their
1565 initializers. So, we do that here. */
1566 if (TREE_CODE (decl) == COND_EXPR)
1567 {
1568 tree d1;
1569 tree d2;
1570
1571 d1 = decl_constant_value (TREE_OPERAND (decl, 1));
1572 d2 = decl_constant_value (TREE_OPERAND (decl, 2));
1573
1574 if (d1 != TREE_OPERAND (decl, 1) || d2 != TREE_OPERAND (decl, 2))
1575 return build3 (COND_EXPR,
1576 TREE_TYPE (decl),
1577 TREE_OPERAND (decl, 0), d1, d2);
1578 }
1579
1580 if (DECL_P (decl)
1581 && (/* Enumeration constants are constant. */
1582 TREE_CODE (decl) == CONST_DECL
1583 /* And so are variables with a 'const' type -- unless they
1584 are also 'volatile'. */
1585 || CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))
1586 && TREE_CODE (decl) != PARM_DECL
1587 && DECL_INITIAL (decl)
1588 && DECL_INITIAL (decl) != error_mark_node
1589 /* This is invalid if initial value is not constant.
1590 If it has either a function call, a memory reference,
1591 or a variable, then re-evaluating it could give different results. */
1592 && TREE_CONSTANT (DECL_INITIAL (decl))
1593 /* Check for cases where this is sub-optimal, even though valid. */
1594 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1595 return DECL_INITIAL (decl);
1596 return decl;
1597 }
1598 \f
1599 /* Common subroutines of build_new and build_vec_delete. */
1600
1601 /* Call the global __builtin_delete to delete ADDR. */
1602
1603 static tree
1604 build_builtin_delete_call (tree addr)
1605 {
1606 mark_used (global_delete_fndecl);
1607 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1608 }
1609 \f
1610 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1611 (which needs to go through some sort of groktypename) or it
1612 is the name of the class we are newing. INIT is an initialization value.
1613 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1614 If INIT is void_type_node, it means do *not* call a constructor
1615 for this instance.
1616
1617 For types with constructors, the data returned is initialized
1618 by the appropriate constructor.
1619
1620 Whether the type has a constructor or not, if it has a pointer
1621 to a virtual function table, then that pointer is set up
1622 here.
1623
1624 Unless I am mistaken, a call to new () will return initialized
1625 data regardless of whether the constructor itself is private or
1626 not. NOPE; new fails if the constructor is private (jcm).
1627
1628 Note that build_new does nothing to assure that any special
1629 alignment requirements of the type are met. Rather, it leaves
1630 it up to malloc to do the right thing. Otherwise, folding to
1631 the right alignment cal cause problems if the user tries to later
1632 free the memory returned by `new'.
1633
1634 PLACEMENT is the `placement' list for user-defined operator new (). */
1635
1636 tree
1637 build_new (tree placement, tree type, tree nelts, tree init,
1638 int use_global_new)
1639 {
1640 tree rval;
1641
1642 if (type == error_mark_node)
1643 return error_mark_node;
1644
1645 if (processing_template_decl)
1646 {
1647 rval = build_min (NEW_EXPR, build_pointer_type (type),
1648 placement, type, nelts, init);
1649 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1650 TREE_SIDE_EFFECTS (rval) = 1;
1651 return rval;
1652 }
1653
1654 /* ``A reference cannot be created by the new operator. A reference
1655 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1656 returned by new.'' ARM 5.3.3 */
1657 if (TREE_CODE (type) == REFERENCE_TYPE)
1658 {
1659 error ("new cannot be applied to a reference type");
1660 type = TREE_TYPE (type);
1661 }
1662
1663 if (TREE_CODE (type) == FUNCTION_TYPE)
1664 {
1665 error ("new cannot be applied to a function type");
1666 return error_mark_node;
1667 }
1668
1669 rval = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1670 nelts, init);
1671 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1672 TREE_SIDE_EFFECTS (rval) = 1;
1673 rval = build_new_1 (rval);
1674 if (rval == error_mark_node)
1675 return error_mark_node;
1676
1677 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1678 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1679 TREE_NO_WARNING (rval) = 1;
1680
1681 return rval;
1682 }
1683
1684 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1685
1686 tree
1687 build_java_class_ref (tree type)
1688 {
1689 tree name = NULL_TREE, class_decl;
1690 static tree CL_suffix = NULL_TREE;
1691 if (CL_suffix == NULL_TREE)
1692 CL_suffix = get_identifier("class$");
1693 if (jclass_node == NULL_TREE)
1694 {
1695 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1696 if (jclass_node == NULL_TREE)
1697 fatal_error ("call to Java constructor, while `jclass' undefined");
1698
1699 jclass_node = TREE_TYPE (jclass_node);
1700 }
1701
1702 /* Mangle the class$ field. */
1703 {
1704 tree field;
1705 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1706 if (DECL_NAME (field) == CL_suffix)
1707 {
1708 mangle_decl (field);
1709 name = DECL_ASSEMBLER_NAME (field);
1710 break;
1711 }
1712 if (!field)
1713 internal_error ("can't find class$");
1714 }
1715
1716 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1717 if (class_decl == NULL_TREE)
1718 {
1719 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1720 TREE_STATIC (class_decl) = 1;
1721 DECL_EXTERNAL (class_decl) = 1;
1722 TREE_PUBLIC (class_decl) = 1;
1723 DECL_ARTIFICIAL (class_decl) = 1;
1724 DECL_IGNORED_P (class_decl) = 1;
1725 pushdecl_top_level (class_decl);
1726 make_decl_rtl (class_decl);
1727 }
1728 return class_decl;
1729 }
1730
1731
1732 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1733 value is immediately handed to expand_expr. */
1734
1735 static tree
1736 build_new_1 (tree exp)
1737 {
1738 tree placement, init;
1739 tree true_type, size, rval;
1740 /* The type of the new-expression. (This type is always a pointer
1741 type.) */
1742 tree pointer_type;
1743 /* The type pointed to by POINTER_TYPE. */
1744 tree type;
1745 /* The type being allocated. For "new T[...]" this will be an
1746 ARRAY_TYPE. */
1747 tree full_type;
1748 /* A pointer type pointing to to the FULL_TYPE. */
1749 tree full_pointer_type;
1750 tree outer_nelts = NULL_TREE;
1751 tree nelts = NULL_TREE;
1752 tree alloc_call, alloc_expr;
1753 /* The address returned by the call to "operator new". This node is
1754 a VAR_DECL and is therefore reusable. */
1755 tree alloc_node;
1756 tree alloc_fn;
1757 tree cookie_expr, init_expr;
1758 int has_array = 0;
1759 enum tree_code code;
1760 int nothrow, check_new;
1761 /* Nonzero if the user wrote `::new' rather than just `new'. */
1762 int globally_qualified_p;
1763 int use_java_new = 0;
1764 /* If non-NULL, the number of extra bytes to allocate at the
1765 beginning of the storage allocated for an array-new expression in
1766 order to store the number of elements. */
1767 tree cookie_size = NULL_TREE;
1768 /* True if the function we are calling is a placement allocation
1769 function. */
1770 bool placement_allocation_fn_p;
1771 tree args = NULL_TREE;
1772 /* True if the storage must be initialized, either by a constructor
1773 or due to an explicit new-initializer. */
1774 bool is_initialized;
1775 /* The address of the thing allocated, not including any cookie. In
1776 particular, if an array cookie is in use, DATA_ADDR is the
1777 address of the first array element. This node is a VAR_DECL, and
1778 is therefore reusable. */
1779 tree data_addr;
1780 tree init_preeval_expr = NULL_TREE;
1781
1782 placement = TREE_OPERAND (exp, 0);
1783 type = TREE_OPERAND (exp, 1);
1784 nelts = TREE_OPERAND (exp, 2);
1785 init = TREE_OPERAND (exp, 3);
1786 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1787
1788 if (nelts)
1789 {
1790 tree index;
1791
1792 has_array = 1;
1793 outer_nelts = nelts;
1794
1795 /* ??? The middle-end will error on us for building a VLA outside a
1796 function context. Methinks that's not it's purvey. So we'll do
1797 our own VLA layout later. */
1798
1799 full_type = build_cplus_array_type (type, NULL_TREE);
1800
1801 index = convert (sizetype, nelts);
1802 index = size_binop (MINUS_EXPR, index, size_one_node);
1803 TYPE_DOMAIN (full_type) = build_index_type (index);
1804 }
1805 else
1806 full_type = type;
1807
1808 true_type = type;
1809
1810 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
1811
1812 /* If our base type is an array, then make sure we know how many elements
1813 it has. */
1814 while (TREE_CODE (true_type) == ARRAY_TYPE)
1815 {
1816 tree this_nelts = array_type_nelts_top (true_type);
1817 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1818 true_type = TREE_TYPE (true_type);
1819 }
1820
1821 if (!complete_type_or_else (true_type, exp))
1822 return error_mark_node;
1823
1824 if (TREE_CODE (true_type) == VOID_TYPE)
1825 {
1826 error ("invalid type `void' for new");
1827 return error_mark_node;
1828 }
1829
1830 if (abstract_virtuals_error (NULL_TREE, true_type))
1831 return error_mark_node;
1832
1833 is_initialized = (TYPE_NEEDS_CONSTRUCTING (type) || init);
1834 if (CP_TYPE_CONST_P (true_type) && !is_initialized)
1835 {
1836 error ("uninitialized const in `new' of `%#T'", true_type);
1837 return error_mark_node;
1838 }
1839
1840 size = size_in_bytes (true_type);
1841 if (has_array)
1842 {
1843 tree n, bitsize;
1844
1845 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is necessary in
1846 order for the <INIT_EXPR <*foo> <CONSTRUCTOR ...>> to be valid. */
1847
1848 n = convert (sizetype, nelts);
1849 size = size_binop (MULT_EXPR, size, n);
1850 TYPE_SIZE_UNIT (full_type) = size;
1851
1852 n = convert (bitsizetype, nelts);
1853 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (true_type), n);
1854 TYPE_SIZE (full_type) = bitsize;
1855 }
1856
1857 /* Allocate the object. */
1858 if (! placement && TYPE_FOR_JAVA (true_type))
1859 {
1860 tree class_addr, alloc_decl;
1861 tree class_decl = build_java_class_ref (true_type);
1862 static const char alloc_name[] = "_Jv_AllocObject";
1863
1864 use_java_new = 1;
1865 alloc_decl = NULL;
1866 if (!get_global_value_if_present (get_identifier (alloc_name),
1867 &alloc_decl))
1868 {
1869 error ("call to Java constructor with `%s' undefined", alloc_name);
1870 return error_mark_node;
1871 }
1872 else if (really_overloaded_fn (alloc_decl))
1873 {
1874 error ("`%D' should never be overloaded", alloc_decl);
1875 return error_mark_node;
1876 }
1877 alloc_decl = OVL_CURRENT (alloc_decl);
1878 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1879 alloc_call = (build_function_call
1880 (alloc_decl,
1881 build_tree_list (NULL_TREE, class_addr)));
1882 }
1883 else
1884 {
1885 tree fnname;
1886 tree fns;
1887
1888 fnname = ansi_opname (code);
1889
1890 if (!globally_qualified_p
1891 && CLASS_TYPE_P (true_type)
1892 && (has_array
1893 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
1894 : TYPE_HAS_NEW_OPERATOR (true_type)))
1895 {
1896 /* Use a class-specific operator new. */
1897 /* If a cookie is required, add some extra space. */
1898 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
1899 {
1900 cookie_size = targetm.cxx.get_cookie_size (true_type);
1901 size = size_binop (PLUS_EXPR, size, cookie_size);
1902 }
1903 /* Create the argument list. */
1904 args = tree_cons (NULL_TREE, size, placement);
1905 /* Do name-lookup to find the appropriate operator. */
1906 fns = lookup_fnfields (true_type, fnname, /*protect=*/2);
1907 if (TREE_CODE (fns) == TREE_LIST)
1908 {
1909 error ("request for member `%D' is ambiguous", fnname);
1910 print_candidates (fns);
1911 return error_mark_node;
1912 }
1913 alloc_call = build_new_method_call (build_dummy_object (true_type),
1914 fns, args,
1915 /*conversion_path=*/NULL_TREE,
1916 LOOKUP_NORMAL);
1917 }
1918 else
1919 {
1920 /* Use a global operator new. */
1921 /* See if a cookie might be required. */
1922 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
1923 cookie_size = targetm.cxx.get_cookie_size (true_type);
1924 else
1925 cookie_size = NULL_TREE;
1926
1927 alloc_call = build_operator_new_call (fnname, placement,
1928 &size, &cookie_size);
1929 }
1930 }
1931
1932 if (alloc_call == error_mark_node)
1933 return error_mark_node;
1934
1935 /* In the simple case, we can stop now. */
1936 pointer_type = build_pointer_type (type);
1937 if (!cookie_size && !is_initialized)
1938 return build_nop (pointer_type, alloc_call);
1939
1940 /* While we're working, use a pointer to the type we've actually
1941 allocated. Store the result of the call in a variable so that we
1942 can use it more than once. */
1943 full_pointer_type = build_pointer_type (full_type);
1944 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1945 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1946
1947 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1948 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1949 alloc_call = TREE_OPERAND (alloc_call, 1);
1950 alloc_fn = get_callee_fndecl (alloc_call);
1951 gcc_assert (alloc_fn != NULL_TREE);
1952
1953 /* Now, check to see if this function is actually a placement
1954 allocation function. This can happen even when PLACEMENT is NULL
1955 because we might have something like:
1956
1957 struct S { void* operator new (size_t, int i = 0); };
1958
1959 A call to `new S' will get this allocation function, even though
1960 there is no explicit placement argument. If there is more than
1961 one argument, or there are variable arguments, then this is a
1962 placement allocation function. */
1963 placement_allocation_fn_p
1964 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1965 || varargs_function_p (alloc_fn));
1966
1967 /* Preevaluate the placement args so that we don't reevaluate them for a
1968 placement delete. */
1969 if (placement_allocation_fn_p)
1970 {
1971 tree inits;
1972 stabilize_call (alloc_call, &inits);
1973 if (inits)
1974 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1975 alloc_expr);
1976 }
1977
1978 /* unless an allocation function is declared with an empty excep-
1979 tion-specification (_except.spec_), throw(), it indicates failure to
1980 allocate storage by throwing a bad_alloc exception (clause _except_,
1981 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1982 cation function is declared with an empty exception-specification,
1983 throw(), it returns null to indicate failure to allocate storage and a
1984 non-null pointer otherwise.
1985
1986 So check for a null exception spec on the op new we just called. */
1987
1988 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1989 check_new = (flag_check_new || nothrow) && ! use_java_new;
1990
1991 if (cookie_size)
1992 {
1993 tree cookie;
1994 tree cookie_ptr;
1995
1996 /* Adjust so we're pointing to the start of the object. */
1997 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
1998 alloc_node, cookie_size));
1999
2000 /* Store the number of bytes allocated so that we can know how
2001 many elements to destroy later. We use the last sizeof
2002 (size_t) bytes to store the number of elements. */
2003 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
2004 data_addr, size_in_bytes (sizetype));
2005 cookie = build_indirect_ref (cookie_ptr, NULL);
2006
2007 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2008
2009 if (targetm.cxx.cookie_has_size ())
2010 {
2011 /* Also store the element size. */
2012 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
2013 cookie_ptr, size_in_bytes (sizetype));
2014 cookie = build_indirect_ref (cookie_ptr, NULL);
2015 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2016 size_in_bytes(true_type));
2017 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2018 cookie, cookie_expr);
2019 }
2020 data_addr = TARGET_EXPR_SLOT (data_addr);
2021 }
2022 else
2023 {
2024 cookie_expr = NULL_TREE;
2025 data_addr = alloc_node;
2026 }
2027
2028 /* Now initialize the allocated object. Note that we preevaluate the
2029 initialization expression, apart from the actual constructor call or
2030 assignment--we do this because we want to delay the allocation as long
2031 as possible in order to minimize the size of the exception region for
2032 placement delete. */
2033 if (is_initialized)
2034 {
2035 bool stable;
2036
2037 init_expr = build_indirect_ref (data_addr, NULL);
2038
2039 if (init == void_zero_node)
2040 init = build_default_init (full_type, nelts);
2041 else if (init && has_array)
2042 pedwarn ("ISO C++ forbids initialization in array new");
2043
2044 if (has_array)
2045 {
2046 init_expr
2047 = build_vec_init (init_expr,
2048 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2049 integer_one_node),
2050 init, /*from_array=*/0);
2051
2052 /* An array initialization is stable because the initialization
2053 of each element is a full-expression, so the temporaries don't
2054 leak out. */
2055 stable = true;
2056 }
2057 else if (TYPE_NEEDS_CONSTRUCTING (type))
2058 {
2059 init_expr = build_special_member_call (init_expr,
2060 complete_ctor_identifier,
2061 init, true_type,
2062 LOOKUP_NORMAL);
2063 stable = stabilize_init (init_expr, &init_preeval_expr);
2064 }
2065 else
2066 {
2067 /* We are processing something like `new int (10)', which
2068 means allocate an int, and initialize it with 10. */
2069
2070 if (TREE_CODE (init) == TREE_LIST)
2071 init = build_x_compound_expr_from_list (init, "new initializer");
2072
2073 else
2074 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2075 || TREE_TYPE (init) != NULL_TREE);
2076
2077 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2078 stable = stabilize_init (init_expr, &init_preeval_expr);
2079 }
2080
2081 if (init_expr == error_mark_node)
2082 return error_mark_node;
2083
2084 /* If any part of the object initialization terminates by throwing an
2085 exception and a suitable deallocation function can be found, the
2086 deallocation function is called to free the memory in which the
2087 object was being constructed, after which the exception continues
2088 to propagate in the context of the new-expression. If no
2089 unambiguous matching deallocation function can be found,
2090 propagating the exception does not cause the object's memory to be
2091 freed. */
2092 if (flag_exceptions && ! use_java_new)
2093 {
2094 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2095 tree cleanup;
2096
2097 /* The Standard is unclear here, but the right thing to do
2098 is to use the same method for finding deallocation
2099 functions that we use for finding allocation functions. */
2100 cleanup = build_op_delete_call (dcode, alloc_node, size,
2101 globally_qualified_p,
2102 (placement_allocation_fn_p
2103 ? alloc_call : NULL_TREE));
2104
2105 if (!cleanup)
2106 /* We're done. */;
2107 else if (stable)
2108 /* This is much simpler if we were able to preevaluate all of
2109 the arguments to the constructor call. */
2110 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2111 init_expr, cleanup);
2112 else
2113 /* Ack! First we allocate the memory. Then we set our sentry
2114 variable to true, and expand a cleanup that deletes the
2115 memory if sentry is true. Then we run the constructor, and
2116 finally clear the sentry.
2117
2118 We need to do this because we allocate the space first, so
2119 if there are any temporaries with cleanups in the
2120 constructor args and we weren't able to preevaluate them, we
2121 need this EH region to extend until end of full-expression
2122 to preserve nesting. */
2123 {
2124 tree end, sentry, begin;
2125
2126 begin = get_target_expr (boolean_true_node);
2127 CLEANUP_EH_ONLY (begin) = 1;
2128
2129 sentry = TARGET_EXPR_SLOT (begin);
2130
2131 TARGET_EXPR_CLEANUP (begin)
2132 = build3 (COND_EXPR, void_type_node, sentry,
2133 cleanup, void_zero_node);
2134
2135 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2136 sentry, boolean_false_node);
2137
2138 init_expr
2139 = build2 (COMPOUND_EXPR, void_type_node, begin,
2140 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2141 end));
2142 }
2143
2144 }
2145 }
2146 else
2147 init_expr = NULL_TREE;
2148
2149 /* Now build up the return value in reverse order. */
2150
2151 rval = data_addr;
2152
2153 if (init_expr)
2154 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2155 if (cookie_expr)
2156 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2157
2158 if (rval == alloc_node)
2159 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2160 and return the call (which doesn't need to be adjusted). */
2161 rval = TARGET_EXPR_INITIAL (alloc_expr);
2162 else
2163 {
2164 if (check_new)
2165 {
2166 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2167 integer_zero_node);
2168 rval = build_conditional_expr (ifexp, rval, alloc_node);
2169 }
2170
2171 /* Perform the allocation before anything else, so that ALLOC_NODE
2172 has been initialized before we start using it. */
2173 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2174 }
2175
2176 if (init_preeval_expr)
2177 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2178
2179 /* Convert to the final type. */
2180 rval = build_nop (pointer_type, rval);
2181
2182 /* A new-expression is never an lvalue. */
2183 if (real_lvalue_p (rval))
2184 rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
2185
2186 return rval;
2187 }
2188 \f
2189 static tree
2190 build_vec_delete_1 (tree base, tree maxindex, tree type,
2191 special_function_kind auto_delete_vec, int use_global_delete)
2192 {
2193 tree virtual_size;
2194 tree ptype = build_pointer_type (type = complete_type (type));
2195 tree size_exp = size_in_bytes (type);
2196
2197 /* Temporary variables used by the loop. */
2198 tree tbase, tbase_init;
2199
2200 /* This is the body of the loop that implements the deletion of a
2201 single element, and moves temp variables to next elements. */
2202 tree body;
2203
2204 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2205 tree loop = 0;
2206
2207 /* This is the thing that governs what to do after the loop has run. */
2208 tree deallocate_expr = 0;
2209
2210 /* This is the BIND_EXPR which holds the outermost iterator of the
2211 loop. It is convenient to set this variable up and test it before
2212 executing any other code in the loop.
2213 This is also the containing expression returned by this function. */
2214 tree controller = NULL_TREE;
2215
2216 /* We should only have 1-D arrays here. */
2217 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2218
2219 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2220 goto no_destructor;
2221
2222 /* The below is short by the cookie size. */
2223 virtual_size = size_binop (MULT_EXPR, size_exp,
2224 convert (sizetype, maxindex));
2225
2226 tbase = create_temporary_var (ptype);
2227 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2228 fold (build2 (PLUS_EXPR, ptype,
2229 base,
2230 virtual_size)));
2231 DECL_REGISTER (tbase) = 1;
2232 controller = build3 (BIND_EXPR, void_type_node, tbase,
2233 NULL_TREE, NULL_TREE);
2234 TREE_SIDE_EFFECTS (controller) = 1;
2235
2236 body = build1 (EXIT_EXPR, void_type_node,
2237 build2 (EQ_EXPR, boolean_type_node, base, tbase));
2238 body = build_compound_expr
2239 (body, build_modify_expr (tbase, NOP_EXPR,
2240 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2241 body = build_compound_expr
2242 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2243 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2244
2245 loop = build1 (LOOP_EXPR, void_type_node, body);
2246 loop = build_compound_expr (tbase_init, loop);
2247
2248 no_destructor:
2249 /* If the delete flag is one, or anything else with the low bit set,
2250 delete the storage. */
2251 if (auto_delete_vec != sfk_base_destructor)
2252 {
2253 tree base_tbd;
2254
2255 /* The below is short by the cookie size. */
2256 virtual_size = size_binop (MULT_EXPR, size_exp,
2257 convert (sizetype, maxindex));
2258
2259 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2260 /* no header */
2261 base_tbd = base;
2262 else
2263 {
2264 tree cookie_size;
2265
2266 cookie_size = targetm.cxx.get_cookie_size (type);
2267 base_tbd
2268 = cp_convert (ptype,
2269 cp_build_binary_op (MINUS_EXPR,
2270 cp_convert (string_type_node,
2271 base),
2272 cookie_size));
2273 /* True size with header. */
2274 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2275 }
2276
2277 if (auto_delete_vec == sfk_deleting_destructor)
2278 deallocate_expr = build_x_delete (base_tbd,
2279 2 | use_global_delete,
2280 virtual_size);
2281 }
2282
2283 body = loop;
2284 if (!deallocate_expr)
2285 ;
2286 else if (!body)
2287 body = deallocate_expr;
2288 else
2289 body = build_compound_expr (body, deallocate_expr);
2290
2291 if (!body)
2292 body = integer_zero_node;
2293
2294 /* Outermost wrapper: If pointer is null, punt. */
2295 body = fold (build3 (COND_EXPR, void_type_node,
2296 fold (build2 (NE_EXPR, boolean_type_node, base,
2297 convert (TREE_TYPE (base),
2298 integer_zero_node))),
2299 body, integer_zero_node));
2300 body = build1 (NOP_EXPR, void_type_node, body);
2301
2302 if (controller)
2303 {
2304 TREE_OPERAND (controller, 1) = body;
2305 body = controller;
2306 }
2307
2308 if (TREE_CODE (base) == SAVE_EXPR)
2309 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2310 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2311
2312 return convert_to_void (body, /*implicit=*/NULL);
2313 }
2314
2315 /* Create an unnamed variable of the indicated TYPE. */
2316
2317 tree
2318 create_temporary_var (tree type)
2319 {
2320 tree decl;
2321
2322 decl = build_decl (VAR_DECL, NULL_TREE, type);
2323 TREE_USED (decl) = 1;
2324 DECL_ARTIFICIAL (decl) = 1;
2325 DECL_SOURCE_LOCATION (decl) = input_location;
2326 DECL_IGNORED_P (decl) = 1;
2327 DECL_CONTEXT (decl) = current_function_decl;
2328
2329 return decl;
2330 }
2331
2332 /* Create a new temporary variable of the indicated TYPE, initialized
2333 to INIT.
2334
2335 It is not entered into current_binding_level, because that breaks
2336 things when it comes time to do final cleanups (which take place
2337 "outside" the binding contour of the function). */
2338
2339 static tree
2340 get_temp_regvar (tree type, tree init)
2341 {
2342 tree decl;
2343
2344 decl = create_temporary_var (type);
2345 add_decl_expr (decl);
2346
2347 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2348
2349 return decl;
2350 }
2351
2352 /* `build_vec_init' returns tree structure that performs
2353 initialization of a vector of aggregate types.
2354
2355 BASE is a reference to the vector, of ARRAY_TYPE.
2356 MAXINDEX is the maximum index of the array (one less than the
2357 number of elements). It is only used if
2358 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2359 INIT is the (possibly NULL) initializer.
2360
2361 FROM_ARRAY is 0 if we should init everything with INIT
2362 (i.e., every element initialized from INIT).
2363 FROM_ARRAY is 1 if we should index into INIT in parallel
2364 with initialization of DECL.
2365 FROM_ARRAY is 2 if we should index into INIT in parallel,
2366 but use assignment instead of initialization. */
2367
2368 tree
2369 build_vec_init (tree base, tree maxindex, tree init, int from_array)
2370 {
2371 tree rval;
2372 tree base2 = NULL_TREE;
2373 tree size;
2374 tree itype = NULL_TREE;
2375 tree iterator;
2376 /* The type of the array. */
2377 tree atype = TREE_TYPE (base);
2378 /* The type of an element in the array. */
2379 tree type = TREE_TYPE (atype);
2380 /* The type of a pointer to an element in the array. */
2381 tree ptype;
2382 tree stmt_expr;
2383 tree compound_stmt;
2384 int destroy_temps;
2385 tree try_block = NULL_TREE;
2386 int num_initialized_elts = 0;
2387 bool is_global;
2388
2389 if (TYPE_DOMAIN (atype))
2390 maxindex = array_type_nelts (atype);
2391
2392 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2393 return error_mark_node;
2394
2395 if (init
2396 && (from_array == 2
2397 ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2398 : !TYPE_NEEDS_CONSTRUCTING (type))
2399 && ((TREE_CODE (init) == CONSTRUCTOR
2400 /* Don't do this if the CONSTRUCTOR might contain something
2401 that might throw and require us to clean up. */
2402 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2403 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2404 || from_array))
2405 {
2406 /* Do non-default initialization of POD arrays resulting from
2407 brace-enclosed initializers. In this case, digest_init and
2408 store_constructor will handle the semantics for us. */
2409
2410 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2411 return stmt_expr;
2412 }
2413
2414 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2415 ptype = build_pointer_type (type);
2416 size = size_in_bytes (type);
2417 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2418 base = cp_convert (ptype, decay_conversion (base));
2419
2420 /* The code we are generating looks like:
2421 ({
2422 T* t1 = (T*) base;
2423 T* rval = t1;
2424 ptrdiff_t iterator = maxindex;
2425 try {
2426 for (; iterator != -1; --iterator) {
2427 ... initialize *t1 ...
2428 ++t1;
2429 }
2430 } catch (...) {
2431 ... destroy elements that were constructed ...
2432 }
2433 rval;
2434 })
2435
2436 We can omit the try and catch blocks if we know that the
2437 initialization will never throw an exception, or if the array
2438 elements do not have destructors. We can omit the loop completely if
2439 the elements of the array do not have constructors.
2440
2441 We actually wrap the entire body of the above in a STMT_EXPR, for
2442 tidiness.
2443
2444 When copying from array to another, when the array elements have
2445 only trivial copy constructors, we should use __builtin_memcpy
2446 rather than generating a loop. That way, we could take advantage
2447 of whatever cleverness the back-end has for dealing with copies
2448 of blocks of memory. */
2449
2450 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2451 destroy_temps = stmts_are_full_exprs_p ();
2452 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2453 rval = get_temp_regvar (ptype, base);
2454 base = get_temp_regvar (ptype, rval);
2455 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2456
2457 /* Protect the entire array initialization so that we can destroy
2458 the partially constructed array if an exception is thrown.
2459 But don't do this if we're assigning. */
2460 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2461 && from_array != 2)
2462 {
2463 try_block = begin_try_block ();
2464 }
2465
2466 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2467 {
2468 /* Do non-default initialization of non-POD arrays resulting from
2469 brace-enclosed initializers. */
2470
2471 tree elts;
2472 from_array = 0;
2473
2474 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2475 {
2476 tree elt = TREE_VALUE (elts);
2477 tree baseref = build1 (INDIRECT_REF, type, base);
2478
2479 num_initialized_elts++;
2480
2481 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2482 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2483 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2484 else
2485 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2486 elt));
2487 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2488
2489 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2490 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2491 }
2492
2493 /* Clear out INIT so that we don't get confused below. */
2494 init = NULL_TREE;
2495 }
2496 else if (from_array)
2497 {
2498 /* If initializing one array from another, initialize element by
2499 element. We rely upon the below calls the do argument
2500 checking. */
2501 if (init)
2502 {
2503 base2 = decay_conversion (init);
2504 itype = TREE_TYPE (base2);
2505 base2 = get_temp_regvar (itype, base2);
2506 itype = TREE_TYPE (itype);
2507 }
2508 else if (TYPE_LANG_SPECIFIC (type)
2509 && TYPE_NEEDS_CONSTRUCTING (type)
2510 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2511 {
2512 error ("initializer ends prematurely");
2513 return error_mark_node;
2514 }
2515 }
2516
2517 /* Now, default-initialize any remaining elements. We don't need to
2518 do that if a) the type does not need constructing, or b) we've
2519 already initialized all the elements.
2520
2521 We do need to keep going if we're copying an array. */
2522
2523 if (from_array
2524 || (TYPE_NEEDS_CONSTRUCTING (type)
2525 && ! (host_integerp (maxindex, 0)
2526 && (num_initialized_elts
2527 == tree_low_cst (maxindex, 0) + 1))))
2528 {
2529 /* If the ITERATOR is equal to -1, then we don't have to loop;
2530 we've already initialized all the elements. */
2531 tree for_stmt;
2532 tree elt_init;
2533
2534 for_stmt = begin_for_stmt ();
2535 finish_for_init_stmt (for_stmt);
2536 finish_for_cond (build2 (NE_EXPR, boolean_type_node,
2537 iterator, integer_minus_one_node),
2538 for_stmt);
2539 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2540 for_stmt);
2541
2542 if (from_array)
2543 {
2544 tree to = build1 (INDIRECT_REF, type, base);
2545 tree from;
2546
2547 if (base2)
2548 from = build1 (INDIRECT_REF, itype, base2);
2549 else
2550 from = NULL_TREE;
2551
2552 if (from_array == 2)
2553 elt_init = build_modify_expr (to, NOP_EXPR, from);
2554 else if (TYPE_NEEDS_CONSTRUCTING (type))
2555 elt_init = build_aggr_init (to, from, 0);
2556 else if (from)
2557 elt_init = build_modify_expr (to, NOP_EXPR, from);
2558 else
2559 gcc_unreachable ();
2560 }
2561 else if (TREE_CODE (type) == ARRAY_TYPE)
2562 {
2563 if (init != 0)
2564 sorry
2565 ("cannot initialize multi-dimensional array with initializer");
2566 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2567 0, 0, 0);
2568 }
2569 else
2570 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2571 init, 0);
2572
2573 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2574 finish_expr_stmt (elt_init);
2575 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2576
2577 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2578 if (base2)
2579 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2580
2581 finish_for_stmt (for_stmt);
2582 }
2583
2584 /* Make sure to cleanup any partially constructed elements. */
2585 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2586 && from_array != 2)
2587 {
2588 tree e;
2589 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2590
2591 /* Flatten multi-dimensional array since build_vec_delete only
2592 expects one-dimensional array. */
2593 if (TREE_CODE (type) == ARRAY_TYPE)
2594 {
2595 m = cp_build_binary_op (MULT_EXPR, m,
2596 array_type_nelts_total (type));
2597 type = strip_array_types (type);
2598 }
2599
2600 finish_cleanup_try_block (try_block);
2601 e = build_vec_delete_1 (rval, m, type, sfk_base_destructor,
2602 /*use_global_delete=*/0);
2603 finish_cleanup (e, try_block);
2604 }
2605
2606 /* The value of the array initialization is the array itself, RVAL
2607 is a pointer to the first element. */
2608 finish_stmt_expr_expr (rval, stmt_expr);
2609
2610 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2611
2612 /* Now convert make the result have the correct type. */
2613 atype = build_pointer_type (atype);
2614 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2615 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2616
2617 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2618 return stmt_expr;
2619 }
2620
2621 /* Free up storage of type TYPE, at address ADDR.
2622
2623 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2624 of pointer.
2625
2626 VIRTUAL_SIZE is the amount of storage that was allocated, and is
2627 used as the second argument to operator delete. It can include
2628 things like padding and magic size cookies. It has virtual in it,
2629 because if you have a base pointer and you delete through a virtual
2630 destructor, it should be the size of the dynamic object, not the
2631 static object, see Free Store 12.5 ISO C++.
2632
2633 This does not call any destructors. */
2634
2635 tree
2636 build_x_delete (tree addr, int which_delete, tree virtual_size)
2637 {
2638 int use_global_delete = which_delete & 1;
2639 int use_vec_delete = !!(which_delete & 2);
2640 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
2641
2642 return build_op_delete_call (code, addr, virtual_size, use_global_delete,
2643 NULL_TREE);
2644 }
2645
2646 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2647 build_delete. */
2648
2649 static tree
2650 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2651 {
2652 tree name;
2653 tree fn;
2654 switch (dtor_kind)
2655 {
2656 case sfk_complete_destructor:
2657 name = complete_dtor_identifier;
2658 break;
2659
2660 case sfk_base_destructor:
2661 name = base_dtor_identifier;
2662 break;
2663
2664 case sfk_deleting_destructor:
2665 name = deleting_dtor_identifier;
2666 break;
2667
2668 default:
2669 gcc_unreachable ();
2670 }
2671
2672 exp = convert_from_reference (exp);
2673 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2674 return build_new_method_call (exp, fn,
2675 /*args=*/NULL_TREE,
2676 /*conversion_path=*/NULL_TREE,
2677 flags);
2678 }
2679
2680 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2681 ADDR is an expression which yields the store to be destroyed.
2682 AUTO_DELETE is the name of the destructor to call, i.e., either
2683 sfk_complete_destructor, sfk_base_destructor, or
2684 sfk_deleting_destructor.
2685
2686 FLAGS is the logical disjunction of zero or more LOOKUP_
2687 flags. See cp-tree.h for more info. */
2688
2689 tree
2690 build_delete (tree type, tree addr, special_function_kind auto_delete,
2691 int flags, int use_global_delete)
2692 {
2693 tree expr;
2694
2695 if (addr == error_mark_node)
2696 return error_mark_node;
2697
2698 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2699 set to `error_mark_node' before it gets properly cleaned up. */
2700 if (type == error_mark_node)
2701 return error_mark_node;
2702
2703 type = TYPE_MAIN_VARIANT (type);
2704
2705 if (TREE_CODE (type) == POINTER_TYPE)
2706 {
2707 bool complete_p = true;
2708
2709 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2710 if (TREE_CODE (type) == ARRAY_TYPE)
2711 goto handle_array;
2712
2713 /* We don't want to warn about delete of void*, only other
2714 incomplete types. Deleting other incomplete types
2715 invokes undefined behavior, but it is not ill-formed, so
2716 compile to something that would even do The Right Thing
2717 (TM) should the type have a trivial dtor and no delete
2718 operator. */
2719 if (!VOID_TYPE_P (type))
2720 {
2721 complete_type (type);
2722 if (!COMPLETE_TYPE_P (type))
2723 {
2724 warning ("possible problem detected in invocation of "
2725 "delete operator:");
2726 cxx_incomplete_type_diagnostic (addr, type, 1);
2727 inform ("neither the destructor nor the class-specific "
2728 "operator delete will be called, even if they are "
2729 "declared when the class is defined.");
2730 complete_p = false;
2731 }
2732 }
2733 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2734 /* Call the builtin operator delete. */
2735 return build_builtin_delete_call (addr);
2736 if (TREE_SIDE_EFFECTS (addr))
2737 addr = save_expr (addr);
2738
2739 /* Throw away const and volatile on target type of addr. */
2740 addr = convert_force (build_pointer_type (type), addr, 0);
2741 }
2742 else if (TREE_CODE (type) == ARRAY_TYPE)
2743 {
2744 handle_array:
2745
2746 if (TYPE_DOMAIN (type) == NULL_TREE)
2747 {
2748 error ("unknown array size in delete");
2749 return error_mark_node;
2750 }
2751 return build_vec_delete (addr, array_type_nelts (type),
2752 auto_delete, use_global_delete);
2753 }
2754 else
2755 {
2756 /* Don't check PROTECT here; leave that decision to the
2757 destructor. If the destructor is accessible, call it,
2758 else report error. */
2759 addr = build_unary_op (ADDR_EXPR, addr, 0);
2760 if (TREE_SIDE_EFFECTS (addr))
2761 addr = save_expr (addr);
2762
2763 addr = convert_force (build_pointer_type (type), addr, 0);
2764 }
2765
2766 gcc_assert (IS_AGGR_TYPE (type));
2767
2768 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2769 {
2770 if (auto_delete != sfk_deleting_destructor)
2771 return void_zero_node;
2772
2773 return build_op_delete_call
2774 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), use_global_delete,
2775 NULL_TREE);
2776 }
2777 else
2778 {
2779 tree do_delete = NULL_TREE;
2780 tree ifexp;
2781
2782 gcc_assert (TYPE_HAS_DESTRUCTOR (type));
2783
2784 /* For `::delete x', we must not use the deleting destructor
2785 since then we would not be sure to get the global `operator
2786 delete'. */
2787 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2788 {
2789 /* We will use ADDR multiple times so we must save it. */
2790 addr = save_expr (addr);
2791 /* Delete the object. */
2792 do_delete = build_builtin_delete_call (addr);
2793 /* Otherwise, treat this like a complete object destructor
2794 call. */
2795 auto_delete = sfk_complete_destructor;
2796 }
2797 /* If the destructor is non-virtual, there is no deleting
2798 variant. Instead, we must explicitly call the appropriate
2799 `operator delete' here. */
2800 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2801 && auto_delete == sfk_deleting_destructor)
2802 {
2803 /* We will use ADDR multiple times so we must save it. */
2804 addr = save_expr (addr);
2805 /* Build the call. */
2806 do_delete = build_op_delete_call (DELETE_EXPR,
2807 addr,
2808 cxx_sizeof_nowarn (type),
2809 /*global_p=*/false,
2810 NULL_TREE);
2811 /* Call the complete object destructor. */
2812 auto_delete = sfk_complete_destructor;
2813 }
2814 else if (auto_delete == sfk_deleting_destructor
2815 && TYPE_GETS_REG_DELETE (type))
2816 {
2817 /* Make sure we have access to the member op delete, even though
2818 we'll actually be calling it from the destructor. */
2819 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2820 /*global_p=*/false, NULL_TREE);
2821 }
2822
2823 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2824 auto_delete, flags);
2825 if (do_delete)
2826 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2827
2828 if (flags & LOOKUP_DESTRUCTOR)
2829 /* Explicit destructor call; don't check for null pointer. */
2830 ifexp = integer_one_node;
2831 else
2832 /* Handle deleting a null pointer. */
2833 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2834
2835 if (ifexp != integer_one_node)
2836 expr = build3 (COND_EXPR, void_type_node,
2837 ifexp, expr, void_zero_node);
2838
2839 return expr;
2840 }
2841 }
2842
2843 /* At the beginning of a destructor, push cleanups that will call the
2844 destructors for our base classes and members.
2845
2846 Called from begin_destructor_body. */
2847
2848 void
2849 push_base_cleanups (void)
2850 {
2851 tree binfo, base_binfo;
2852 int i;
2853 tree member;
2854 tree expr;
2855 VEC (tree) *vbases;
2856
2857 /* Run destructors for all virtual baseclasses. */
2858 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
2859 {
2860 tree cond = (condition_conversion
2861 (build2 (BIT_AND_EXPR, integer_type_node,
2862 current_in_charge_parm,
2863 integer_two_node)));
2864
2865 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2866 order, which is also the right order for pushing cleanups. */
2867 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2868 VEC_iterate (tree, vbases, i, base_binfo); i++)
2869 {
2870 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2871 {
2872 expr = build_special_member_call (current_class_ref,
2873 base_dtor_identifier,
2874 NULL_TREE,
2875 base_binfo,
2876 (LOOKUP_NORMAL
2877 | LOOKUP_NONVIRTUAL));
2878 expr = build3 (COND_EXPR, void_type_node, cond,
2879 expr, void_zero_node);
2880 finish_decl_cleanup (NULL_TREE, expr);
2881 }
2882 }
2883 }
2884
2885 /* Take care of the remaining baseclasses. */
2886 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2887 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2888 {
2889 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2890 || BINFO_VIRTUAL_P (base_binfo))
2891 continue;
2892
2893 expr = build_special_member_call (current_class_ref,
2894 base_dtor_identifier,
2895 NULL_TREE, base_binfo,
2896 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2897 finish_decl_cleanup (NULL_TREE, expr);
2898 }
2899
2900 for (member = TYPE_FIELDS (current_class_type); member;
2901 member = TREE_CHAIN (member))
2902 {
2903 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
2904 continue;
2905 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2906 {
2907 tree this_member = (build_class_member_access_expr
2908 (current_class_ref, member,
2909 /*access_path=*/NULL_TREE,
2910 /*preserve_reference=*/false));
2911 tree this_type = TREE_TYPE (member);
2912 expr = build_delete (this_type, this_member,
2913 sfk_complete_destructor,
2914 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2915 0);
2916 finish_decl_cleanup (NULL_TREE, expr);
2917 }
2918 }
2919 }
2920
2921 /* For type TYPE, delete the virtual baseclass objects of DECL. */
2922
2923 tree
2924 build_vbase_delete (tree type, tree decl)
2925 {
2926 unsigned ix;
2927 tree binfo;
2928 tree result;
2929 VEC (tree) *vbases;
2930 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
2931
2932 gcc_assert (addr != error_mark_node);
2933
2934 result = convert_to_void (integer_zero_node, NULL);
2935 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
2936 VEC_iterate (tree, vbases, ix, binfo); ix++)
2937 {
2938 tree base_addr = convert_force
2939 (build_pointer_type (BINFO_TYPE (binfo)), addr, 0);
2940 tree base_delete = build_delete
2941 (TREE_TYPE (base_addr), base_addr, sfk_base_destructor,
2942 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
2943
2944 result = build_compound_expr (result, base_delete);
2945 }
2946 return result;
2947 }
2948
2949 /* Build a C++ vector delete expression.
2950 MAXINDEX is the number of elements to be deleted.
2951 ELT_SIZE is the nominal size of each element in the vector.
2952 BASE is the expression that should yield the store to be deleted.
2953 This function expands (or synthesizes) these calls itself.
2954 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2955
2956 This also calls delete for virtual baseclasses of elements of the vector.
2957
2958 Update: MAXINDEX is no longer needed. The size can be extracted from the
2959 start of the vector for pointers, and from the type for arrays. We still
2960 use MAXINDEX for arrays because it happens to already have one of the
2961 values we'd have to extract. (We could use MAXINDEX with pointers to
2962 confirm the size, and trap if the numbers differ; not clear that it'd
2963 be worth bothering.) */
2964
2965 tree
2966 build_vec_delete (tree base, tree maxindex,
2967 special_function_kind auto_delete_vec, int use_global_delete)
2968 {
2969 tree type;
2970 tree rval;
2971 tree base_init = NULL_TREE;
2972
2973 type = TREE_TYPE (base);
2974
2975 if (TREE_CODE (type) == POINTER_TYPE)
2976 {
2977 /* Step back one from start of vector, and read dimension. */
2978 tree cookie_addr;
2979
2980 if (TREE_SIDE_EFFECTS (base))
2981 {
2982 base_init = get_target_expr (base);
2983 base = TARGET_EXPR_SLOT (base_init);
2984 }
2985 type = strip_array_types (TREE_TYPE (type));
2986 cookie_addr = build2 (MINUS_EXPR,
2987 build_pointer_type (sizetype),
2988 base,
2989 TYPE_SIZE_UNIT (sizetype));
2990 maxindex = build_indirect_ref (cookie_addr, NULL);
2991 }
2992 else if (TREE_CODE (type) == ARRAY_TYPE)
2993 {
2994 /* Get the total number of things in the array, maxindex is a
2995 bad name. */
2996 maxindex = array_type_nelts_total (type);
2997 type = strip_array_types (type);
2998 base = build_unary_op (ADDR_EXPR, base, 1);
2999 if (TREE_SIDE_EFFECTS (base))
3000 {
3001 base_init = get_target_expr (base);
3002 base = TARGET_EXPR_SLOT (base_init);
3003 }
3004 }
3005 else
3006 {
3007 if (base != error_mark_node)
3008 error ("type to vector delete is neither pointer or array type");
3009 return error_mark_node;
3010 }
3011
3012 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3013 use_global_delete);
3014 if (base_init)
3015 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3016
3017 return rval;
3018 }