Remove N3639 "array of runtime length" from -std=c++14.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "target.h"
33 #include "gimplify.h"
34 #include "wide-int.h"
35
36 static bool begin_init_stmts (tree *, tree *);
37 static tree finish_init_stmts (bool, tree, tree);
38 static void construct_virtual_base (tree, tree);
39 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
40 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
41 static void perform_member_init (tree, tree);
42 static tree build_builtin_delete_call (tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_field_list (tree, tree, int *);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51
52 /* We are about to generate some complex initialization code.
53 Conceptually, it is all a single expression. However, we may want
54 to include conditionals, loops, and other such statement-level
55 constructs. Therefore, we build the initialization code inside a
56 statement-expression. This function starts such an expression.
57 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
58 pass them back to finish_init_stmts when the expression is
59 complete. */
60
61 static bool
62 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
63 {
64 bool is_global = !building_stmt_list_p ();
65
66 *stmt_expr_p = begin_stmt_expr ();
67 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
68
69 return is_global;
70 }
71
72 /* Finish out the statement-expression begun by the previous call to
73 begin_init_stmts. Returns the statement-expression itself. */
74
75 static tree
76 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
77 {
78 finish_compound_stmt (compound_stmt);
79
80 stmt_expr = finish_stmt_expr (stmt_expr, true);
81
82 gcc_assert (!building_stmt_list_p () == is_global);
83
84 return stmt_expr;
85 }
86
87 /* Constructors */
88
89 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
90 which we want to initialize the vtable pointer for, DATA is
91 TREE_LIST whose TREE_VALUE is the this ptr expression. */
92
93 static tree
94 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
95 {
96 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
97 return dfs_skip_bases;
98
99 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
100 {
101 tree base_ptr = TREE_VALUE ((tree) data);
102
103 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
104 tf_warning_or_error);
105
106 expand_virtual_init (binfo, base_ptr);
107 }
108
109 return NULL_TREE;
110 }
111
112 /* Initialize all the vtable pointers in the object pointed to by
113 ADDR. */
114
115 void
116 initialize_vtbl_ptrs (tree addr)
117 {
118 tree list;
119 tree type;
120
121 type = TREE_TYPE (TREE_TYPE (addr));
122 list = build_tree_list (type, addr);
123
124 /* Walk through the hierarchy, initializing the vptr in each base
125 class. We do these in pre-order because we can't find the virtual
126 bases for a class until we've initialized the vtbl for that
127 class. */
128 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
129 }
130
131 /* Return an expression for the zero-initialization of an object with
132 type T. This expression will either be a constant (in the case
133 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
134 aggregate), or NULL (in the case that T does not require
135 initialization). In either case, the value can be used as
136 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
137 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
138 is the number of elements in the array. If STATIC_STORAGE_P is
139 TRUE, initializers are only generated for entities for which
140 zero-initialization does not simply mean filling the storage with
141 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
142 subfields with bit positions at or above that bit size shouldn't
143 be added. Note that this only works when the result is assigned
144 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
145 expand_assignment will end up clearing the full size of TYPE. */
146
147 static tree
148 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
149 tree field_size)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialize an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (TYPE_PTR_OR_PTRMEM_P (type))
182 init = convert (type, nullptr_node);
183 else if (SCALAR_TYPE_P (type))
184 init = convert (type, integer_zero_node);
185 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
186 {
187 tree field;
188 vec<constructor_elt, va_gc> *v = NULL;
189
190 /* Iterate over the fields, building initializations. */
191 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
192 {
193 if (TREE_CODE (field) != FIELD_DECL)
194 continue;
195
196 if (TREE_TYPE (field) == error_mark_node)
197 continue;
198
199 /* Don't add virtual bases for base classes if they are beyond
200 the size of the current field, that means it is present
201 somewhere else in the object. */
202 if (field_size)
203 {
204 tree bitpos = bit_position (field);
205 if (TREE_CODE (bitpos) == INTEGER_CST
206 && !tree_int_cst_lt (bitpos, field_size))
207 continue;
208 }
209
210 /* Note that for class types there will be FIELD_DECLs
211 corresponding to base classes as well. Thus, iterating
212 over TYPE_FIELDs will result in correct initialization of
213 all of the subobjects. */
214 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
215 {
216 tree new_field_size
217 = (DECL_FIELD_IS_BASE (field)
218 && DECL_SIZE (field)
219 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
220 ? DECL_SIZE (field) : NULL_TREE;
221 tree value = build_zero_init_1 (TREE_TYPE (field),
222 /*nelts=*/NULL_TREE,
223 static_storage_p,
224 new_field_size);
225 if (value)
226 CONSTRUCTOR_APPEND_ELT(v, field, value);
227 }
228
229 /* For unions, only the first field is initialized. */
230 if (TREE_CODE (type) == UNION_TYPE)
231 break;
232 }
233
234 /* Build a constructor to contain the initializations. */
235 init = build_constructor (type, v);
236 }
237 else if (TREE_CODE (type) == ARRAY_TYPE)
238 {
239 tree max_index;
240 vec<constructor_elt, va_gc> *v = NULL;
241
242 /* Iterate over the array elements, building initializations. */
243 if (nelts)
244 max_index = fold_build2_loc (input_location,
245 MINUS_EXPR, TREE_TYPE (nelts),
246 nelts, integer_one_node);
247 else
248 max_index = array_type_nelts (type);
249
250 /* If we have an error_mark here, we should just return error mark
251 as we don't know the size of the array yet. */
252 if (max_index == error_mark_node)
253 return error_mark_node;
254 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
255
256 /* A zero-sized array, which is accepted as an extension, will
257 have an upper bound of -1. */
258 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
259 {
260 constructor_elt ce;
261
262 /* If this is a one element array, we just use a regular init. */
263 if (tree_int_cst_equal (size_zero_node, max_index))
264 ce.index = size_zero_node;
265 else
266 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
267 max_index);
268
269 ce.value = build_zero_init_1 (TREE_TYPE (type),
270 /*nelts=*/NULL_TREE,
271 static_storage_p, NULL_TREE);
272 if (ce.value)
273 {
274 vec_alloc (v, 1);
275 v->quick_push (ce);
276 }
277 }
278
279 /* Build a constructor to contain the initializations. */
280 init = build_constructor (type, v);
281 }
282 else if (TREE_CODE (type) == VECTOR_TYPE)
283 init = build_zero_cst (type);
284 else
285 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
286
287 /* In all cases, the initializer is a constant. */
288 if (init)
289 TREE_CONSTANT (init) = 1;
290
291 return init;
292 }
293
294 /* Return an expression for the zero-initialization of an object with
295 type T. This expression will either be a constant (in the case
296 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
297 aggregate), or NULL (in the case that T does not require
298 initialization). In either case, the value can be used as
299 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
300 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
301 is the number of elements in the array. If STATIC_STORAGE_P is
302 TRUE, initializers are only generated for entities for which
303 zero-initialization does not simply mean filling the storage with
304 zero bytes. */
305
306 tree
307 build_zero_init (tree type, tree nelts, bool static_storage_p)
308 {
309 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
310 }
311
312 /* Return a suitable initializer for value-initializing an object of type
313 TYPE, as described in [dcl.init]. */
314
315 tree
316 build_value_init (tree type, tsubst_flags_t complain)
317 {
318 /* [dcl.init]
319
320 To value-initialize an object of type T means:
321
322 - if T is a class type (clause 9) with either no default constructor
323 (12.1) or a default constructor that is user-provided or deleted,
324 then then the object is default-initialized;
325
326 - if T is a (possibly cv-qualified) class type without a user-provided
327 or deleted default constructor, then the object is zero-initialized
328 and the semantic constraints for default-initialization are checked,
329 and if T has a non-trivial default constructor, the object is
330 default-initialized;
331
332 - if T is an array type, then each element is value-initialized;
333
334 - otherwise, the object is zero-initialized.
335
336 A program that calls for default-initialization or
337 value-initialization of an entity of reference type is ill-formed. */
338
339 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
340 gcc_assert (!processing_template_decl
341 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
342
343 if (CLASS_TYPE_P (type)
344 && type_build_ctor_call (type))
345 {
346 tree ctor =
347 build_special_member_call (NULL_TREE, complete_ctor_identifier,
348 NULL, type, LOOKUP_NORMAL,
349 complain);
350 if (ctor == error_mark_node)
351 return ctor;
352 tree fn = NULL_TREE;
353 if (TREE_CODE (ctor) == CALL_EXPR)
354 fn = get_callee_fndecl (ctor);
355 ctor = build_aggr_init_expr (type, ctor);
356 if (fn && user_provided_p (fn))
357 return ctor;
358 else if (TYPE_HAS_COMPLEX_DFLT (type))
359 {
360 /* This is a class that needs constructing, but doesn't have
361 a user-provided constructor. So we need to zero-initialize
362 the object and then call the implicitly defined ctor.
363 This will be handled in simplify_aggr_init_expr. */
364 AGGR_INIT_ZERO_FIRST (ctor) = 1;
365 return ctor;
366 }
367 }
368
369 /* Discard any access checking during subobject initialization;
370 the checks are implied by the call to the ctor which we have
371 verified is OK (cpp0x/defaulted46.C). */
372 push_deferring_access_checks (dk_deferred);
373 tree r = build_value_init_noctor (type, complain);
374 pop_deferring_access_checks ();
375 return r;
376 }
377
378 /* Like build_value_init, but don't call the constructor for TYPE. Used
379 for base initializers. */
380
381 tree
382 build_value_init_noctor (tree type, tsubst_flags_t complain)
383 {
384 if (!COMPLETE_TYPE_P (type))
385 {
386 if (complain & tf_error)
387 error ("value-initialization of incomplete type %qT", type);
388 return error_mark_node;
389 }
390 /* FIXME the class and array cases should just use digest_init once it is
391 SFINAE-enabled. */
392 if (CLASS_TYPE_P (type))
393 {
394 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
395 || errorcount != 0);
396
397 if (TREE_CODE (type) != UNION_TYPE)
398 {
399 tree field;
400 vec<constructor_elt, va_gc> *v = NULL;
401
402 /* Iterate over the fields, building initializations. */
403 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
404 {
405 tree ftype, value;
406
407 if (TREE_CODE (field) != FIELD_DECL)
408 continue;
409
410 ftype = TREE_TYPE (field);
411
412 if (ftype == error_mark_node)
413 continue;
414
415 /* We could skip vfields and fields of types with
416 user-defined constructors, but I think that won't improve
417 performance at all; it should be simpler in general just
418 to zero out the entire object than try to only zero the
419 bits that actually need it. */
420
421 /* Note that for class types there will be FIELD_DECLs
422 corresponding to base classes as well. Thus, iterating
423 over TYPE_FIELDs will result in correct initialization of
424 all of the subobjects. */
425 value = build_value_init (ftype, complain);
426 value = maybe_constant_init (value);
427
428 if (value == error_mark_node)
429 return error_mark_node;
430
431 CONSTRUCTOR_APPEND_ELT(v, field, value);
432
433 /* We shouldn't have gotten here for anything that would need
434 non-trivial initialization, and gimplify_init_ctor_preeval
435 would need to be fixed to allow it. */
436 gcc_assert (TREE_CODE (value) != TARGET_EXPR
437 && TREE_CODE (value) != AGGR_INIT_EXPR);
438 }
439
440 /* Build a constructor to contain the zero- initializations. */
441 return build_constructor (type, v);
442 }
443 }
444 else if (TREE_CODE (type) == ARRAY_TYPE)
445 {
446 vec<constructor_elt, va_gc> *v = NULL;
447
448 /* Iterate over the array elements, building initializations. */
449 tree max_index = array_type_nelts (type);
450
451 /* If we have an error_mark here, we should just return error mark
452 as we don't know the size of the array yet. */
453 if (max_index == error_mark_node)
454 {
455 if (complain & tf_error)
456 error ("cannot value-initialize array of unknown bound %qT",
457 type);
458 return error_mark_node;
459 }
460 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
461
462 /* A zero-sized array, which is accepted as an extension, will
463 have an upper bound of -1. */
464 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
465 {
466 constructor_elt ce;
467
468 /* If this is a one element array, we just use a regular init. */
469 if (tree_int_cst_equal (size_zero_node, max_index))
470 ce.index = size_zero_node;
471 else
472 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
473
474 ce.value = build_value_init (TREE_TYPE (type), complain);
475 ce.value = maybe_constant_init (ce.value);
476 if (ce.value == error_mark_node)
477 return error_mark_node;
478
479 vec_alloc (v, 1);
480 v->quick_push (ce);
481
482 /* We shouldn't have gotten here for anything that would need
483 non-trivial initialization, and gimplify_init_ctor_preeval
484 would need to be fixed to allow it. */
485 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
486 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
487 }
488
489 /* Build a constructor to contain the initializations. */
490 return build_constructor (type, v);
491 }
492 else if (TREE_CODE (type) == FUNCTION_TYPE)
493 {
494 if (complain & tf_error)
495 error ("value-initialization of function type %qT", type);
496 return error_mark_node;
497 }
498 else if (TREE_CODE (type) == REFERENCE_TYPE)
499 {
500 if (complain & tf_error)
501 error ("value-initialization of reference type %qT", type);
502 return error_mark_node;
503 }
504
505 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
506 }
507
508 /* Initialize current class with INIT, a TREE_LIST of
509 arguments for a target constructor. If TREE_LIST is void_type_node,
510 an empty initializer list was given. */
511
512 static void
513 perform_target_ctor (tree init)
514 {
515 tree decl = current_class_ref;
516 tree type = current_class_type;
517
518 finish_expr_stmt (build_aggr_init (decl, init,
519 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
520 tf_warning_or_error));
521 if (type_build_dtor_call (type))
522 {
523 tree expr = build_delete (type, decl, sfk_complete_destructor,
524 LOOKUP_NORMAL
525 |LOOKUP_NONVIRTUAL
526 |LOOKUP_DESTRUCTOR,
527 0, tf_warning_or_error);
528 if (expr != error_mark_node
529 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
530 finish_eh_cleanup (expr);
531 }
532 }
533
534 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
535
536 tree
537 get_nsdmi (tree member, bool in_ctor)
538 {
539 tree init;
540 tree save_ccp = current_class_ptr;
541 tree save_ccr = current_class_ref;
542 if (!in_ctor)
543 {
544 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
545 refer to; constexpr evaluation knows what to do with it. */
546 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
547 current_class_ptr = build_address (current_class_ref);
548 }
549 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
550 {
551 /* Do deferred instantiation of the NSDMI. */
552 init = (tsubst_copy_and_build
553 (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
554 DECL_TI_ARGS (member),
555 tf_warning_or_error, member, /*function_p=*/false,
556 /*integral_constant_expression_p=*/false));
557
558 init = digest_nsdmi_init (member, init);
559 }
560 else
561 {
562 init = DECL_INITIAL (member);
563 if (init && TREE_CODE (init) == DEFAULT_ARG)
564 {
565 error ("constructor required before non-static data member "
566 "for %qD has been parsed", member);
567 DECL_INITIAL (member) = error_mark_node;
568 init = error_mark_node;
569 }
570 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
571 so the aggregate init code below will see a CONSTRUCTOR. */
572 if (init && TREE_CODE (init) == TARGET_EXPR
573 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
574 init = TARGET_EXPR_INITIAL (init);
575 init = break_out_target_exprs (init);
576 }
577 current_class_ptr = save_ccp;
578 current_class_ref = save_ccr;
579 return init;
580 }
581
582 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
583 arguments. If TREE_LIST is void_type_node, an empty initializer
584 list was given; if NULL_TREE no initializer was given. */
585
586 static void
587 perform_member_init (tree member, tree init)
588 {
589 tree decl;
590 tree type = TREE_TYPE (member);
591
592 /* Use the non-static data member initializer if there was no
593 mem-initializer for this field. */
594 if (init == NULL_TREE)
595 init = get_nsdmi (member, /*ctor*/true);
596
597 if (init == error_mark_node)
598 return;
599
600 /* Effective C++ rule 12 requires that all data members be
601 initialized. */
602 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
603 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
604 "%qD should be initialized in the member initialization list",
605 member);
606
607 /* Get an lvalue for the data member. */
608 decl = build_class_member_access_expr (current_class_ref, member,
609 /*access_path=*/NULL_TREE,
610 /*preserve_reference=*/true,
611 tf_warning_or_error);
612 if (decl == error_mark_node)
613 return;
614
615 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
616 && TREE_CHAIN (init) == NULL_TREE)
617 {
618 tree val = TREE_VALUE (init);
619 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
620 && TREE_OPERAND (val, 0) == current_class_ref)
621 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
622 OPT_Winit_self, "%qD is initialized with itself",
623 member);
624 }
625
626 if (init == void_type_node)
627 {
628 /* mem() means value-initialization. */
629 if (TREE_CODE (type) == ARRAY_TYPE)
630 {
631 init = build_vec_init_expr (type, init, tf_warning_or_error);
632 init = build2 (INIT_EXPR, type, decl, init);
633 finish_expr_stmt (init);
634 }
635 else
636 {
637 tree value = build_value_init (type, tf_warning_or_error);
638 if (value == error_mark_node)
639 return;
640 init = build2 (INIT_EXPR, type, decl, value);
641 finish_expr_stmt (init);
642 }
643 }
644 /* Deal with this here, as we will get confused if we try to call the
645 assignment op for an anonymous union. This can happen in a
646 synthesized copy constructor. */
647 else if (ANON_AGGR_TYPE_P (type))
648 {
649 if (init)
650 {
651 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
652 finish_expr_stmt (init);
653 }
654 }
655 else if (init
656 && (TREE_CODE (type) == REFERENCE_TYPE
657 /* Pre-digested NSDMI. */
658 || (((TREE_CODE (init) == CONSTRUCTOR
659 && TREE_TYPE (init) == type)
660 /* { } mem-initializer. */
661 || (TREE_CODE (init) == TREE_LIST
662 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
663 && (CP_AGGREGATE_TYPE_P (type)
664 || is_std_init_list (type)))))
665 {
666 /* With references and list-initialization, we need to deal with
667 extending temporary lifetimes. 12.2p5: "A temporary bound to a
668 reference member in a constructor’s ctor-initializer (12.6.2)
669 persists until the constructor exits." */
670 unsigned i; tree t;
671 vec<tree, va_gc> *cleanups = make_tree_vector ();
672 if (TREE_CODE (init) == TREE_LIST)
673 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
674 tf_warning_or_error);
675 if (TREE_TYPE (init) != type)
676 {
677 if (BRACE_ENCLOSED_INITIALIZER_P (init)
678 && CP_AGGREGATE_TYPE_P (type))
679 init = reshape_init (type, init, tf_warning_or_error);
680 init = digest_init (type, init, tf_warning_or_error);
681 }
682 if (init == error_mark_node)
683 return;
684 /* A FIELD_DECL doesn't really have a suitable lifetime, but
685 make_temporary_var_for_ref_to_temp will treat it as automatic and
686 set_up_extended_ref_temp wants to use the decl in a warning. */
687 init = extend_ref_init_temps (member, init, &cleanups);
688 if (TREE_CODE (type) == ARRAY_TYPE
689 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
690 init = build_vec_init_expr (type, init, tf_warning_or_error);
691 init = build2 (INIT_EXPR, type, decl, init);
692 finish_expr_stmt (init);
693 FOR_EACH_VEC_ELT (*cleanups, i, t)
694 push_cleanup (decl, t, false);
695 release_tree_vector (cleanups);
696 }
697 else if (type_build_ctor_call (type)
698 || (init && CLASS_TYPE_P (strip_array_types (type))))
699 {
700 if (TREE_CODE (type) == ARRAY_TYPE)
701 {
702 if (init)
703 {
704 if (TREE_CHAIN (init))
705 init = error_mark_node;
706 else
707 init = TREE_VALUE (init);
708 if (BRACE_ENCLOSED_INITIALIZER_P (init))
709 init = digest_init (type, init, tf_warning_or_error);
710 }
711 if (init == NULL_TREE
712 || same_type_ignoring_top_level_qualifiers_p (type,
713 TREE_TYPE (init)))
714 {
715 init = build_vec_init_expr (type, init, tf_warning_or_error);
716 init = build2 (INIT_EXPR, type, decl, init);
717 finish_expr_stmt (init);
718 }
719 else
720 error ("invalid initializer for array member %q#D", member);
721 }
722 else
723 {
724 int flags = LOOKUP_NORMAL;
725 if (DECL_DEFAULTED_FN (current_function_decl))
726 flags |= LOOKUP_DEFAULTED;
727 if (CP_TYPE_CONST_P (type)
728 && init == NULL_TREE
729 && default_init_uninitialized_part (type))
730 {
731 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
732 vtable; still give this diagnostic. */
733 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
734 "uninitialized const member in %q#T", type))
735 inform (DECL_SOURCE_LOCATION (member),
736 "%q#D should be initialized", member );
737 }
738 finish_expr_stmt (build_aggr_init (decl, init, flags,
739 tf_warning_or_error));
740 }
741 }
742 else
743 {
744 if (init == NULL_TREE)
745 {
746 tree core_type;
747 /* member traversal: note it leaves init NULL */
748 if (TREE_CODE (type) == REFERENCE_TYPE)
749 {
750 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
751 "uninitialized reference member in %q#T", type))
752 inform (DECL_SOURCE_LOCATION (member),
753 "%q#D should be initialized", member);
754 }
755 else if (CP_TYPE_CONST_P (type))
756 {
757 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
758 "uninitialized const member in %q#T", type))
759 inform (DECL_SOURCE_LOCATION (member),
760 "%q#D should be initialized", member );
761 }
762
763 core_type = strip_array_types (type);
764
765 if (CLASS_TYPE_P (core_type)
766 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
767 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
768 diagnose_uninitialized_cst_or_ref_member (core_type,
769 /*using_new=*/false,
770 /*complain=*/true);
771 }
772 else if (TREE_CODE (init) == TREE_LIST)
773 /* There was an explicit member initialization. Do some work
774 in that case. */
775 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
776 tf_warning_or_error);
777
778 if (init)
779 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
780 tf_warning_or_error));
781 }
782
783 if (type_build_dtor_call (type))
784 {
785 tree expr;
786
787 expr = build_class_member_access_expr (current_class_ref, member,
788 /*access_path=*/NULL_TREE,
789 /*preserve_reference=*/false,
790 tf_warning_or_error);
791 expr = build_delete (type, expr, sfk_complete_destructor,
792 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
793 tf_warning_or_error);
794
795 if (expr != error_mark_node
796 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
797 finish_eh_cleanup (expr);
798 }
799 }
800
801 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
802 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
803
804 static tree
805 build_field_list (tree t, tree list, int *uses_unions_p)
806 {
807 tree fields;
808
809 /* Note whether or not T is a union. */
810 if (TREE_CODE (t) == UNION_TYPE)
811 *uses_unions_p = 1;
812
813 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
814 {
815 tree fieldtype;
816
817 /* Skip CONST_DECLs for enumeration constants and so forth. */
818 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
819 continue;
820
821 fieldtype = TREE_TYPE (fields);
822 /* Keep track of whether or not any fields are unions. */
823 if (TREE_CODE (fieldtype) == UNION_TYPE)
824 *uses_unions_p = 1;
825
826 /* For an anonymous struct or union, we must recursively
827 consider the fields of the anonymous type. They can be
828 directly initialized from the constructor. */
829 if (ANON_AGGR_TYPE_P (fieldtype))
830 {
831 /* Add this field itself. Synthesized copy constructors
832 initialize the entire aggregate. */
833 list = tree_cons (fields, NULL_TREE, list);
834 /* And now add the fields in the anonymous aggregate. */
835 list = build_field_list (fieldtype, list, uses_unions_p);
836 }
837 /* Add this field. */
838 else if (DECL_NAME (fields))
839 list = tree_cons (fields, NULL_TREE, list);
840 }
841
842 return list;
843 }
844
845 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
846 a FIELD_DECL or BINFO in T that needs initialization. The
847 TREE_VALUE gives the initializer, or list of initializer arguments.
848
849 Return a TREE_LIST containing all of the initializations required
850 for T, in the order in which they should be performed. The output
851 list has the same format as the input. */
852
853 static tree
854 sort_mem_initializers (tree t, tree mem_inits)
855 {
856 tree init;
857 tree base, binfo, base_binfo;
858 tree sorted_inits;
859 tree next_subobject;
860 vec<tree, va_gc> *vbases;
861 int i;
862 int uses_unions_p = 0;
863
864 /* Build up a list of initializations. The TREE_PURPOSE of entry
865 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
866 TREE_VALUE will be the constructor arguments, or NULL if no
867 explicit initialization was provided. */
868 sorted_inits = NULL_TREE;
869
870 /* Process the virtual bases. */
871 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
872 vec_safe_iterate (vbases, i, &base); i++)
873 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
874
875 /* Process the direct bases. */
876 for (binfo = TYPE_BINFO (t), i = 0;
877 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
878 if (!BINFO_VIRTUAL_P (base_binfo))
879 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
880
881 /* Process the non-static data members. */
882 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
883 /* Reverse the entire list of initializations, so that they are in
884 the order that they will actually be performed. */
885 sorted_inits = nreverse (sorted_inits);
886
887 /* If the user presented the initializers in an order different from
888 that in which they will actually occur, we issue a warning. Keep
889 track of the next subobject which can be explicitly initialized
890 without issuing a warning. */
891 next_subobject = sorted_inits;
892
893 /* Go through the explicit initializers, filling in TREE_PURPOSE in
894 the SORTED_INITS. */
895 for (init = mem_inits; init; init = TREE_CHAIN (init))
896 {
897 tree subobject;
898 tree subobject_init;
899
900 subobject = TREE_PURPOSE (init);
901
902 /* If the explicit initializers are in sorted order, then
903 SUBOBJECT will be NEXT_SUBOBJECT, or something following
904 it. */
905 for (subobject_init = next_subobject;
906 subobject_init;
907 subobject_init = TREE_CHAIN (subobject_init))
908 if (TREE_PURPOSE (subobject_init) == subobject)
909 break;
910
911 /* Issue a warning if the explicit initializer order does not
912 match that which will actually occur.
913 ??? Are all these on the correct lines? */
914 if (warn_reorder && !subobject_init)
915 {
916 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
917 warning (OPT_Wreorder, "%q+D will be initialized after",
918 TREE_PURPOSE (next_subobject));
919 else
920 warning (OPT_Wreorder, "base %qT will be initialized after",
921 TREE_PURPOSE (next_subobject));
922 if (TREE_CODE (subobject) == FIELD_DECL)
923 warning (OPT_Wreorder, " %q+#D", subobject);
924 else
925 warning (OPT_Wreorder, " base %qT", subobject);
926 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
927 OPT_Wreorder, " when initialized here");
928 }
929
930 /* Look again, from the beginning of the list. */
931 if (!subobject_init)
932 {
933 subobject_init = sorted_inits;
934 while (TREE_PURPOSE (subobject_init) != subobject)
935 subobject_init = TREE_CHAIN (subobject_init);
936 }
937
938 /* It is invalid to initialize the same subobject more than
939 once. */
940 if (TREE_VALUE (subobject_init))
941 {
942 if (TREE_CODE (subobject) == FIELD_DECL)
943 error_at (DECL_SOURCE_LOCATION (current_function_decl),
944 "multiple initializations given for %qD",
945 subobject);
946 else
947 error_at (DECL_SOURCE_LOCATION (current_function_decl),
948 "multiple initializations given for base %qT",
949 subobject);
950 }
951
952 /* Record the initialization. */
953 TREE_VALUE (subobject_init) = TREE_VALUE (init);
954 next_subobject = subobject_init;
955 }
956
957 /* [class.base.init]
958
959 If a ctor-initializer specifies more than one mem-initializer for
960 multiple members of the same union (including members of
961 anonymous unions), the ctor-initializer is ill-formed.
962
963 Here we also splice out uninitialized union members. */
964 if (uses_unions_p)
965 {
966 tree *last_p = NULL;
967 tree *p;
968 for (p = &sorted_inits; *p; )
969 {
970 tree field;
971 tree ctx;
972
973 init = *p;
974
975 field = TREE_PURPOSE (init);
976
977 /* Skip base classes. */
978 if (TREE_CODE (field) != FIELD_DECL)
979 goto next;
980
981 /* If this is an anonymous union with no explicit initializer,
982 splice it out. */
983 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
984 goto splice;
985
986 /* See if this field is a member of a union, or a member of a
987 structure contained in a union, etc. */
988 for (ctx = DECL_CONTEXT (field);
989 !same_type_p (ctx, t);
990 ctx = TYPE_CONTEXT (ctx))
991 if (TREE_CODE (ctx) == UNION_TYPE
992 || !ANON_AGGR_TYPE_P (ctx))
993 break;
994 /* If this field is not a member of a union, skip it. */
995 if (TREE_CODE (ctx) != UNION_TYPE)
996 goto next;
997
998 /* If this union member has no explicit initializer and no NSDMI,
999 splice it out. */
1000 if (TREE_VALUE (init) || DECL_INITIAL (field))
1001 /* OK. */;
1002 else
1003 goto splice;
1004
1005 /* It's only an error if we have two initializers for the same
1006 union type. */
1007 if (!last_p)
1008 {
1009 last_p = p;
1010 goto next;
1011 }
1012
1013 /* See if LAST_FIELD and the field initialized by INIT are
1014 members of the same union. If so, there's a problem,
1015 unless they're actually members of the same structure
1016 which is itself a member of a union. For example, given:
1017
1018 union { struct { int i; int j; }; };
1019
1020 initializing both `i' and `j' makes sense. */
1021 ctx = common_enclosing_class (DECL_CONTEXT (field),
1022 DECL_CONTEXT (TREE_PURPOSE (*last_p)));
1023
1024 if (ctx && TREE_CODE (ctx) == UNION_TYPE)
1025 {
1026 /* A mem-initializer hides an NSDMI. */
1027 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1028 *last_p = TREE_CHAIN (*last_p);
1029 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1030 goto splice;
1031 else
1032 {
1033 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1034 "initializations for multiple members of %qT",
1035 ctx);
1036 goto splice;
1037 }
1038 }
1039
1040 last_p = p;
1041
1042 next:
1043 p = &TREE_CHAIN (*p);
1044 continue;
1045 splice:
1046 *p = TREE_CHAIN (*p);
1047 continue;
1048 }
1049 }
1050
1051 return sorted_inits;
1052 }
1053
1054 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1055 is a TREE_LIST giving the explicit mem-initializer-list for the
1056 constructor. The TREE_PURPOSE of each entry is a subobject (a
1057 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1058 is a TREE_LIST giving the arguments to the constructor or
1059 void_type_node for an empty list of arguments. */
1060
1061 void
1062 emit_mem_initializers (tree mem_inits)
1063 {
1064 int flags = LOOKUP_NORMAL;
1065
1066 /* We will already have issued an error message about the fact that
1067 the type is incomplete. */
1068 if (!COMPLETE_TYPE_P (current_class_type))
1069 return;
1070
1071 if (mem_inits
1072 && TYPE_P (TREE_PURPOSE (mem_inits))
1073 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1074 {
1075 /* Delegating constructor. */
1076 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1077 perform_target_ctor (TREE_VALUE (mem_inits));
1078 return;
1079 }
1080
1081 if (DECL_DEFAULTED_FN (current_function_decl)
1082 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1083 flags |= LOOKUP_DEFAULTED;
1084
1085 /* Sort the mem-initializers into the order in which the
1086 initializations should be performed. */
1087 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1088
1089 in_base_initializer = 1;
1090
1091 /* Initialize base classes. */
1092 for (; (mem_inits
1093 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1094 mem_inits = TREE_CHAIN (mem_inits))
1095 {
1096 tree subobject = TREE_PURPOSE (mem_inits);
1097 tree arguments = TREE_VALUE (mem_inits);
1098
1099 /* We already have issued an error message. */
1100 if (arguments == error_mark_node)
1101 continue;
1102
1103 if (arguments == NULL_TREE)
1104 {
1105 /* If these initializations are taking place in a copy constructor,
1106 the base class should probably be explicitly initialized if there
1107 is a user-defined constructor in the base class (other than the
1108 default constructor, which will be called anyway). */
1109 if (extra_warnings
1110 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1111 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1112 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1113 OPT_Wextra, "base class %q#T should be explicitly "
1114 "initialized in the copy constructor",
1115 BINFO_TYPE (subobject));
1116 }
1117
1118 /* Initialize the base. */
1119 if (BINFO_VIRTUAL_P (subobject))
1120 construct_virtual_base (subobject, arguments);
1121 else
1122 {
1123 tree base_addr;
1124
1125 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1126 subobject, 1, tf_warning_or_error);
1127 expand_aggr_init_1 (subobject, NULL_TREE,
1128 cp_build_indirect_ref (base_addr, RO_NULL,
1129 tf_warning_or_error),
1130 arguments,
1131 flags,
1132 tf_warning_or_error);
1133 expand_cleanup_for_base (subobject, NULL_TREE);
1134 }
1135 }
1136 in_base_initializer = 0;
1137
1138 /* Initialize the vptrs. */
1139 initialize_vtbl_ptrs (current_class_ptr);
1140
1141 /* Initialize the data members. */
1142 while (mem_inits)
1143 {
1144 perform_member_init (TREE_PURPOSE (mem_inits),
1145 TREE_VALUE (mem_inits));
1146 mem_inits = TREE_CHAIN (mem_inits);
1147 }
1148 }
1149
1150 /* Returns the address of the vtable (i.e., the value that should be
1151 assigned to the vptr) for BINFO. */
1152
1153 tree
1154 build_vtbl_address (tree binfo)
1155 {
1156 tree binfo_for = binfo;
1157 tree vtbl;
1158
1159 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1160 /* If this is a virtual primary base, then the vtable we want to store
1161 is that for the base this is being used as the primary base of. We
1162 can't simply skip the initialization, because we may be expanding the
1163 inits of a subobject constructor where the virtual base layout
1164 can be different. */
1165 while (BINFO_PRIMARY_P (binfo_for))
1166 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1167
1168 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1169 used. */
1170 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1171 TREE_USED (vtbl) = true;
1172
1173 /* Now compute the address to use when initializing the vptr. */
1174 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1175 if (VAR_P (vtbl))
1176 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1177
1178 return vtbl;
1179 }
1180
1181 /* This code sets up the virtual function tables appropriate for
1182 the pointer DECL. It is a one-ply initialization.
1183
1184 BINFO is the exact type that DECL is supposed to be. In
1185 multiple inheritance, this might mean "C's A" if C : A, B. */
1186
1187 static void
1188 expand_virtual_init (tree binfo, tree decl)
1189 {
1190 tree vtbl, vtbl_ptr;
1191 tree vtt_index;
1192
1193 /* Compute the initializer for vptr. */
1194 vtbl = build_vtbl_address (binfo);
1195
1196 /* We may get this vptr from a VTT, if this is a subobject
1197 constructor or subobject destructor. */
1198 vtt_index = BINFO_VPTR_INDEX (binfo);
1199 if (vtt_index)
1200 {
1201 tree vtbl2;
1202 tree vtt_parm;
1203
1204 /* Compute the value to use, when there's a VTT. */
1205 vtt_parm = current_vtt_parm;
1206 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1207 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1208 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1209
1210 /* The actual initializer is the VTT value only in the subobject
1211 constructor. In maybe_clone_body we'll substitute NULL for
1212 the vtt_parm in the case of the non-subobject constructor. */
1213 vtbl = build3 (COND_EXPR,
1214 TREE_TYPE (vtbl),
1215 build2 (EQ_EXPR, boolean_type_node,
1216 current_in_charge_parm, integer_zero_node),
1217 vtbl2,
1218 vtbl);
1219 }
1220
1221 /* Compute the location of the vtpr. */
1222 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1223 tf_warning_or_error),
1224 TREE_TYPE (binfo));
1225 gcc_assert (vtbl_ptr != error_mark_node);
1226
1227 /* Assign the vtable to the vptr. */
1228 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1229 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1230 tf_warning_or_error));
1231 }
1232
1233 /* If an exception is thrown in a constructor, those base classes already
1234 constructed must be destroyed. This function creates the cleanup
1235 for BINFO, which has just been constructed. If FLAG is non-NULL,
1236 it is a DECL which is nonzero when this base needs to be
1237 destroyed. */
1238
1239 static void
1240 expand_cleanup_for_base (tree binfo, tree flag)
1241 {
1242 tree expr;
1243
1244 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1245 return;
1246
1247 /* Call the destructor. */
1248 expr = build_special_member_call (current_class_ref,
1249 base_dtor_identifier,
1250 NULL,
1251 binfo,
1252 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1253 tf_warning_or_error);
1254
1255 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1256 return;
1257
1258 if (flag)
1259 expr = fold_build3_loc (input_location,
1260 COND_EXPR, void_type_node,
1261 c_common_truthvalue_conversion (input_location, flag),
1262 expr, integer_zero_node);
1263
1264 finish_eh_cleanup (expr);
1265 }
1266
1267 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1268 constructor. */
1269
1270 static void
1271 construct_virtual_base (tree vbase, tree arguments)
1272 {
1273 tree inner_if_stmt;
1274 tree exp;
1275 tree flag;
1276
1277 /* If there are virtual base classes with destructors, we need to
1278 emit cleanups to destroy them if an exception is thrown during
1279 the construction process. These exception regions (i.e., the
1280 period during which the cleanups must occur) begin from the time
1281 the construction is complete to the end of the function. If we
1282 create a conditional block in which to initialize the
1283 base-classes, then the cleanup region for the virtual base begins
1284 inside a block, and ends outside of that block. This situation
1285 confuses the sjlj exception-handling code. Therefore, we do not
1286 create a single conditional block, but one for each
1287 initialization. (That way the cleanup regions always begin
1288 in the outer block.) We trust the back end to figure out
1289 that the FLAG will not change across initializations, and
1290 avoid doing multiple tests. */
1291 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1292 inner_if_stmt = begin_if_stmt ();
1293 finish_if_stmt_cond (flag, inner_if_stmt);
1294
1295 /* Compute the location of the virtual base. If we're
1296 constructing virtual bases, then we must be the most derived
1297 class. Therefore, we don't have to look up the virtual base;
1298 we already know where it is. */
1299 exp = convert_to_base_statically (current_class_ref, vbase);
1300
1301 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1302 0, tf_warning_or_error);
1303 finish_then_clause (inner_if_stmt);
1304 finish_if_stmt (inner_if_stmt);
1305
1306 expand_cleanup_for_base (vbase, flag);
1307 }
1308
1309 /* Find the context in which this FIELD can be initialized. */
1310
1311 static tree
1312 initializing_context (tree field)
1313 {
1314 tree t = DECL_CONTEXT (field);
1315
1316 /* Anonymous union members can be initialized in the first enclosing
1317 non-anonymous union context. */
1318 while (t && ANON_AGGR_TYPE_P (t))
1319 t = TYPE_CONTEXT (t);
1320 return t;
1321 }
1322
1323 /* Function to give error message if member initialization specification
1324 is erroneous. FIELD is the member we decided to initialize.
1325 TYPE is the type for which the initialization is being performed.
1326 FIELD must be a member of TYPE.
1327
1328 MEMBER_NAME is the name of the member. */
1329
1330 static int
1331 member_init_ok_or_else (tree field, tree type, tree member_name)
1332 {
1333 if (field == error_mark_node)
1334 return 0;
1335 if (!field)
1336 {
1337 error ("class %qT does not have any field named %qD", type,
1338 member_name);
1339 return 0;
1340 }
1341 if (VAR_P (field))
1342 {
1343 error ("%q#D is a static data member; it can only be "
1344 "initialized at its definition",
1345 field);
1346 return 0;
1347 }
1348 if (TREE_CODE (field) != FIELD_DECL)
1349 {
1350 error ("%q#D is not a non-static data member of %qT",
1351 field, type);
1352 return 0;
1353 }
1354 if (initializing_context (field) != type)
1355 {
1356 error ("class %qT does not have any field named %qD", type,
1357 member_name);
1358 return 0;
1359 }
1360
1361 return 1;
1362 }
1363
1364 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1365 is a _TYPE node or TYPE_DECL which names a base for that type.
1366 Check the validity of NAME, and return either the base _TYPE, base
1367 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1368 NULL_TREE and issue a diagnostic.
1369
1370 An old style unnamed direct single base construction is permitted,
1371 where NAME is NULL. */
1372
1373 tree
1374 expand_member_init (tree name)
1375 {
1376 tree basetype;
1377 tree field;
1378
1379 if (!current_class_ref)
1380 return NULL_TREE;
1381
1382 if (!name)
1383 {
1384 /* This is an obsolete unnamed base class initializer. The
1385 parser will already have warned about its use. */
1386 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1387 {
1388 case 0:
1389 error ("unnamed initializer for %qT, which has no base classes",
1390 current_class_type);
1391 return NULL_TREE;
1392 case 1:
1393 basetype = BINFO_TYPE
1394 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1395 break;
1396 default:
1397 error ("unnamed initializer for %qT, which uses multiple inheritance",
1398 current_class_type);
1399 return NULL_TREE;
1400 }
1401 }
1402 else if (TYPE_P (name))
1403 {
1404 basetype = TYPE_MAIN_VARIANT (name);
1405 name = TYPE_NAME (name);
1406 }
1407 else if (TREE_CODE (name) == TYPE_DECL)
1408 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1409 else
1410 basetype = NULL_TREE;
1411
1412 if (basetype)
1413 {
1414 tree class_binfo;
1415 tree direct_binfo;
1416 tree virtual_binfo;
1417 int i;
1418
1419 if (current_template_parms
1420 || same_type_p (basetype, current_class_type))
1421 return basetype;
1422
1423 class_binfo = TYPE_BINFO (current_class_type);
1424 direct_binfo = NULL_TREE;
1425 virtual_binfo = NULL_TREE;
1426
1427 /* Look for a direct base. */
1428 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1429 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1430 break;
1431
1432 /* Look for a virtual base -- unless the direct base is itself
1433 virtual. */
1434 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1435 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1436
1437 /* [class.base.init]
1438
1439 If a mem-initializer-id is ambiguous because it designates
1440 both a direct non-virtual base class and an inherited virtual
1441 base class, the mem-initializer is ill-formed. */
1442 if (direct_binfo && virtual_binfo)
1443 {
1444 error ("%qD is both a direct base and an indirect virtual base",
1445 basetype);
1446 return NULL_TREE;
1447 }
1448
1449 if (!direct_binfo && !virtual_binfo)
1450 {
1451 if (CLASSTYPE_VBASECLASSES (current_class_type))
1452 error ("type %qT is not a direct or virtual base of %qT",
1453 basetype, current_class_type);
1454 else
1455 error ("type %qT is not a direct base of %qT",
1456 basetype, current_class_type);
1457 return NULL_TREE;
1458 }
1459
1460 return direct_binfo ? direct_binfo : virtual_binfo;
1461 }
1462 else
1463 {
1464 if (identifier_p (name))
1465 field = lookup_field (current_class_type, name, 1, false);
1466 else
1467 field = name;
1468
1469 if (member_init_ok_or_else (field, current_class_type, name))
1470 return field;
1471 }
1472
1473 return NULL_TREE;
1474 }
1475
1476 /* This is like `expand_member_init', only it stores one aggregate
1477 value into another.
1478
1479 INIT comes in two flavors: it is either a value which
1480 is to be stored in EXP, or it is a parameter list
1481 to go to a constructor, which will operate on EXP.
1482 If INIT is not a parameter list for a constructor, then set
1483 LOOKUP_ONLYCONVERTING.
1484 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1485 the initializer, if FLAGS is 0, then it is the (init) form.
1486 If `init' is a CONSTRUCTOR, then we emit a warning message,
1487 explaining that such initializations are invalid.
1488
1489 If INIT resolves to a CALL_EXPR which happens to return
1490 something of the type we are looking for, then we know
1491 that we can safely use that call to perform the
1492 initialization.
1493
1494 The virtual function table pointer cannot be set up here, because
1495 we do not really know its type.
1496
1497 This never calls operator=().
1498
1499 When initializing, nothing is CONST.
1500
1501 A default copy constructor may have to be used to perform the
1502 initialization.
1503
1504 A constructor or a conversion operator may have to be used to
1505 perform the initialization, but not both, as it would be ambiguous. */
1506
1507 tree
1508 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1509 {
1510 tree stmt_expr;
1511 tree compound_stmt;
1512 int destroy_temps;
1513 tree type = TREE_TYPE (exp);
1514 int was_const = TREE_READONLY (exp);
1515 int was_volatile = TREE_THIS_VOLATILE (exp);
1516 int is_global;
1517
1518 if (init == error_mark_node)
1519 return error_mark_node;
1520
1521 TREE_READONLY (exp) = 0;
1522 TREE_THIS_VOLATILE (exp) = 0;
1523
1524 if (init && init != void_type_node
1525 && TREE_CODE (init) != TREE_LIST
1526 && !(TREE_CODE (init) == TARGET_EXPR
1527 && TARGET_EXPR_DIRECT_INIT_P (init))
1528 && !DIRECT_LIST_INIT_P (init))
1529 flags |= LOOKUP_ONLYCONVERTING;
1530
1531 if (TREE_CODE (type) == ARRAY_TYPE)
1532 {
1533 tree itype;
1534
1535 /* An array may not be initialized use the parenthesized
1536 initialization form -- unless the initializer is "()". */
1537 if (init && TREE_CODE (init) == TREE_LIST)
1538 {
1539 if (complain & tf_error)
1540 error ("bad array initializer");
1541 return error_mark_node;
1542 }
1543 /* Must arrange to initialize each element of EXP
1544 from elements of INIT. */
1545 itype = init ? TREE_TYPE (init) : NULL_TREE;
1546 if (cv_qualified_p (type))
1547 TREE_TYPE (exp) = cv_unqualified (type);
1548 if (itype && cv_qualified_p (itype))
1549 TREE_TYPE (init) = cv_unqualified (itype);
1550 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1551 /*explicit_value_init_p=*/false,
1552 itype && same_type_p (TREE_TYPE (init),
1553 TREE_TYPE (exp)),
1554 complain);
1555 TREE_READONLY (exp) = was_const;
1556 TREE_THIS_VOLATILE (exp) = was_volatile;
1557 TREE_TYPE (exp) = type;
1558 /* Restore the type of init unless it was used directly. */
1559 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1560 TREE_TYPE (init) = itype;
1561 return stmt_expr;
1562 }
1563
1564 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1565 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1566 /* Just know that we've seen something for this node. */
1567 TREE_USED (exp) = 1;
1568
1569 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1570 destroy_temps = stmts_are_full_exprs_p ();
1571 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1572 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1573 init, LOOKUP_NORMAL|flags, complain);
1574 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1575 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1576 TREE_READONLY (exp) = was_const;
1577 TREE_THIS_VOLATILE (exp) = was_volatile;
1578
1579 return stmt_expr;
1580 }
1581
1582 static void
1583 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1584 tsubst_flags_t complain)
1585 {
1586 tree type = TREE_TYPE (exp);
1587 tree ctor_name;
1588
1589 /* It fails because there may not be a constructor which takes
1590 its own type as the first (or only parameter), but which does
1591 take other types via a conversion. So, if the thing initializing
1592 the expression is a unit element of type X, first try X(X&),
1593 followed by initialization by X. If neither of these work
1594 out, then look hard. */
1595 tree rval;
1596 vec<tree, va_gc> *parms;
1597
1598 /* If we have direct-initialization from an initializer list, pull
1599 it out of the TREE_LIST so the code below can see it. */
1600 if (init && TREE_CODE (init) == TREE_LIST
1601 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1602 {
1603 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1604 && TREE_CHAIN (init) == NULL_TREE);
1605 init = TREE_VALUE (init);
1606 }
1607
1608 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1609 && CP_AGGREGATE_TYPE_P (type))
1610 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1611 happen for direct-initialization, too. */
1612 init = digest_init (type, init, complain);
1613
1614 /* A CONSTRUCTOR of the target's type is a previously digested
1615 initializer, whether that happened just above or in
1616 cp_parser_late_parsing_nsdmi.
1617
1618 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1619 set represents the whole initialization, so we shouldn't build up
1620 another ctor call. */
1621 if (init
1622 && (TREE_CODE (init) == CONSTRUCTOR
1623 || (TREE_CODE (init) == TARGET_EXPR
1624 && (TARGET_EXPR_DIRECT_INIT_P (init)
1625 || TARGET_EXPR_LIST_INIT_P (init))))
1626 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1627 {
1628 /* Early initialization via a TARGET_EXPR only works for
1629 complete objects. */
1630 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1631
1632 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1633 TREE_SIDE_EFFECTS (init) = 1;
1634 finish_expr_stmt (init);
1635 return;
1636 }
1637
1638 if (init && TREE_CODE (init) != TREE_LIST
1639 && (flags & LOOKUP_ONLYCONVERTING))
1640 {
1641 /* Base subobjects should only get direct-initialization. */
1642 gcc_assert (true_exp == exp);
1643
1644 if (flags & DIRECT_BIND)
1645 /* Do nothing. We hit this in two cases: Reference initialization,
1646 where we aren't initializing a real variable, so we don't want
1647 to run a new constructor; and catching an exception, where we
1648 have already built up the constructor call so we could wrap it
1649 in an exception region. */;
1650 else
1651 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1652 flags, complain);
1653
1654 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1655 /* We need to protect the initialization of a catch parm with a
1656 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1657 around the TARGET_EXPR for the copy constructor. See
1658 initialize_handler_parm. */
1659 {
1660 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1661 TREE_OPERAND (init, 0));
1662 TREE_TYPE (init) = void_type_node;
1663 }
1664 else
1665 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1666 TREE_SIDE_EFFECTS (init) = 1;
1667 finish_expr_stmt (init);
1668 return;
1669 }
1670
1671 if (init == NULL_TREE)
1672 parms = NULL;
1673 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1674 {
1675 parms = make_tree_vector ();
1676 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1677 vec_safe_push (parms, TREE_VALUE (init));
1678 }
1679 else
1680 parms = make_tree_vector_single (init);
1681
1682 if (exp == current_class_ref && current_function_decl
1683 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1684 {
1685 /* Delegating constructor. */
1686 tree complete;
1687 tree base;
1688 tree elt; unsigned i;
1689
1690 /* Unshare the arguments for the second call. */
1691 vec<tree, va_gc> *parms2 = make_tree_vector ();
1692 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1693 {
1694 elt = break_out_target_exprs (elt);
1695 vec_safe_push (parms2, elt);
1696 }
1697 complete = build_special_member_call (exp, complete_ctor_identifier,
1698 &parms2, binfo, flags,
1699 complain);
1700 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1701 release_tree_vector (parms2);
1702
1703 base = build_special_member_call (exp, base_ctor_identifier,
1704 &parms, binfo, flags,
1705 complain);
1706 base = fold_build_cleanup_point_expr (void_type_node, base);
1707 rval = build3 (COND_EXPR, void_type_node,
1708 build2 (EQ_EXPR, boolean_type_node,
1709 current_in_charge_parm, integer_zero_node),
1710 base,
1711 complete);
1712 }
1713 else
1714 {
1715 if (true_exp == exp)
1716 ctor_name = complete_ctor_identifier;
1717 else
1718 ctor_name = base_ctor_identifier;
1719 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1720 complain);
1721 }
1722
1723 if (parms != NULL)
1724 release_tree_vector (parms);
1725
1726 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1727 {
1728 tree fn = get_callee_fndecl (rval);
1729 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1730 {
1731 tree e = maybe_constant_init (rval, exp);
1732 if (TREE_CONSTANT (e))
1733 rval = build2 (INIT_EXPR, type, exp, e);
1734 }
1735 }
1736
1737 /* FIXME put back convert_to_void? */
1738 if (TREE_SIDE_EFFECTS (rval))
1739 finish_expr_stmt (rval);
1740 }
1741
1742 /* This function is responsible for initializing EXP with INIT
1743 (if any).
1744
1745 BINFO is the binfo of the type for who we are performing the
1746 initialization. For example, if W is a virtual base class of A and B,
1747 and C : A, B.
1748 If we are initializing B, then W must contain B's W vtable, whereas
1749 were we initializing C, W must contain C's W vtable.
1750
1751 TRUE_EXP is nonzero if it is the true expression being initialized.
1752 In this case, it may be EXP, or may just contain EXP. The reason we
1753 need this is because if EXP is a base element of TRUE_EXP, we
1754 don't necessarily know by looking at EXP where its virtual
1755 baseclass fields should really be pointing. But we do know
1756 from TRUE_EXP. In constructors, we don't know anything about
1757 the value being initialized.
1758
1759 FLAGS is just passed to `build_new_method_call'. See that function
1760 for its description. */
1761
1762 static void
1763 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1764 tsubst_flags_t complain)
1765 {
1766 tree type = TREE_TYPE (exp);
1767
1768 gcc_assert (init != error_mark_node && type != error_mark_node);
1769 gcc_assert (building_stmt_list_p ());
1770
1771 /* Use a function returning the desired type to initialize EXP for us.
1772 If the function is a constructor, and its first argument is
1773 NULL_TREE, know that it was meant for us--just slide exp on
1774 in and expand the constructor. Constructors now come
1775 as TARGET_EXPRs. */
1776
1777 if (init && VAR_P (exp)
1778 && COMPOUND_LITERAL_P (init))
1779 {
1780 vec<tree, va_gc> *cleanups = NULL;
1781 /* If store_init_value returns NULL_TREE, the INIT has been
1782 recorded as the DECL_INITIAL for EXP. That means there's
1783 nothing more we have to do. */
1784 init = store_init_value (exp, init, &cleanups, flags);
1785 if (init)
1786 finish_expr_stmt (init);
1787 gcc_assert (!cleanups);
1788 return;
1789 }
1790
1791 /* If an explicit -- but empty -- initializer list was present,
1792 that's value-initialization. */
1793 if (init == void_type_node)
1794 {
1795 /* If the type has data but no user-provided ctor, we need to zero
1796 out the object. */
1797 if (!type_has_user_provided_constructor (type)
1798 && !is_really_empty_class (type))
1799 {
1800 tree field_size = NULL_TREE;
1801 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1802 /* Don't clobber already initialized virtual bases. */
1803 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1804 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1805 field_size);
1806 init = build2 (INIT_EXPR, type, exp, init);
1807 finish_expr_stmt (init);
1808 }
1809
1810 /* If we don't need to mess with the constructor at all,
1811 then we're done. */
1812 if (! type_build_ctor_call (type))
1813 return;
1814
1815 /* Otherwise fall through and call the constructor. */
1816 init = NULL_TREE;
1817 }
1818
1819 /* We know that expand_default_init can handle everything we want
1820 at this point. */
1821 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1822 }
1823
1824 /* Report an error if TYPE is not a user-defined, class type. If
1825 OR_ELSE is nonzero, give an error message. */
1826
1827 int
1828 is_class_type (tree type, int or_else)
1829 {
1830 if (type == error_mark_node)
1831 return 0;
1832
1833 if (! CLASS_TYPE_P (type))
1834 {
1835 if (or_else)
1836 error ("%qT is not a class type", type);
1837 return 0;
1838 }
1839 return 1;
1840 }
1841
1842 tree
1843 get_type_value (tree name)
1844 {
1845 if (name == error_mark_node)
1846 return NULL_TREE;
1847
1848 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1849 return IDENTIFIER_TYPE_VALUE (name);
1850 else
1851 return NULL_TREE;
1852 }
1853
1854 /* Build a reference to a member of an aggregate. This is not a C++
1855 `&', but really something which can have its address taken, and
1856 then act as a pointer to member, for example TYPE :: FIELD can have
1857 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1858 this expression is the operand of "&".
1859
1860 @@ Prints out lousy diagnostics for operator <typename>
1861 @@ fields.
1862
1863 @@ This function should be rewritten and placed in search.c. */
1864
1865 tree
1866 build_offset_ref (tree type, tree member, bool address_p,
1867 tsubst_flags_t complain)
1868 {
1869 tree decl;
1870 tree basebinfo = NULL_TREE;
1871
1872 /* class templates can come in as TEMPLATE_DECLs here. */
1873 if (TREE_CODE (member) == TEMPLATE_DECL)
1874 return member;
1875
1876 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1877 return build_qualified_name (NULL_TREE, type, member,
1878 /*template_p=*/false);
1879
1880 gcc_assert (TYPE_P (type));
1881 if (! is_class_type (type, 1))
1882 return error_mark_node;
1883
1884 gcc_assert (DECL_P (member) || BASELINK_P (member));
1885 /* Callers should call mark_used before this point. */
1886 gcc_assert (!DECL_P (member) || TREE_USED (member));
1887
1888 type = TYPE_MAIN_VARIANT (type);
1889 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1890 {
1891 if (complain & tf_error)
1892 error ("incomplete type %qT does not have member %qD", type, member);
1893 return error_mark_node;
1894 }
1895
1896 /* Entities other than non-static members need no further
1897 processing. */
1898 if (TREE_CODE (member) == TYPE_DECL)
1899 return member;
1900 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1901 return convert_from_reference (member);
1902
1903 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1904 {
1905 if (complain & tf_error)
1906 error ("invalid pointer to bit-field %qD", member);
1907 return error_mark_node;
1908 }
1909
1910 /* Set up BASEBINFO for member lookup. */
1911 decl = maybe_dummy_object (type, &basebinfo);
1912
1913 /* A lot of this logic is now handled in lookup_member. */
1914 if (BASELINK_P (member))
1915 {
1916 /* Go from the TREE_BASELINK to the member function info. */
1917 tree t = BASELINK_FUNCTIONS (member);
1918
1919 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1920 {
1921 /* Get rid of a potential OVERLOAD around it. */
1922 t = OVL_CURRENT (t);
1923
1924 /* Unique functions are handled easily. */
1925
1926 /* For non-static member of base class, we need a special rule
1927 for access checking [class.protected]:
1928
1929 If the access is to form a pointer to member, the
1930 nested-name-specifier shall name the derived class
1931 (or any class derived from that class). */
1932 if (address_p && DECL_P (t)
1933 && DECL_NONSTATIC_MEMBER_P (t))
1934 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1935 complain);
1936 else
1937 perform_or_defer_access_check (basebinfo, t, t,
1938 complain);
1939
1940 if (DECL_STATIC_FUNCTION_P (t))
1941 return t;
1942 member = t;
1943 }
1944 else
1945 TREE_TYPE (member) = unknown_type_node;
1946 }
1947 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1948 /* We need additional test besides the one in
1949 check_accessibility_of_qualified_id in case it is
1950 a pointer to non-static member. */
1951 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1952 complain);
1953
1954 if (!address_p)
1955 {
1956 /* If MEMBER is non-static, then the program has fallen afoul of
1957 [expr.prim]:
1958
1959 An id-expression that denotes a nonstatic data member or
1960 nonstatic member function of a class can only be used:
1961
1962 -- as part of a class member access (_expr.ref_) in which the
1963 object-expression refers to the member's class or a class
1964 derived from that class, or
1965
1966 -- to form a pointer to member (_expr.unary.op_), or
1967
1968 -- in the body of a nonstatic member function of that class or
1969 of a class derived from that class (_class.mfct.nonstatic_), or
1970
1971 -- in a mem-initializer for a constructor for that class or for
1972 a class derived from that class (_class.base.init_). */
1973 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1974 {
1975 /* Build a representation of the qualified name suitable
1976 for use as the operand to "&" -- even though the "&" is
1977 not actually present. */
1978 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1979 /* In Microsoft mode, treat a non-static member function as if
1980 it were a pointer-to-member. */
1981 if (flag_ms_extensions)
1982 {
1983 PTRMEM_OK_P (member) = 1;
1984 return cp_build_addr_expr (member, complain);
1985 }
1986 if (complain & tf_error)
1987 error ("invalid use of non-static member function %qD",
1988 TREE_OPERAND (member, 1));
1989 return error_mark_node;
1990 }
1991 else if (TREE_CODE (member) == FIELD_DECL)
1992 {
1993 if (complain & tf_error)
1994 error ("invalid use of non-static data member %qD", member);
1995 return error_mark_node;
1996 }
1997 return member;
1998 }
1999
2000 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2001 PTRMEM_OK_P (member) = 1;
2002 return member;
2003 }
2004
2005 /* If DECL is a scalar enumeration constant or variable with a
2006 constant initializer, return the initializer (or, its initializers,
2007 recursively); otherwise, return DECL. If STRICT_P, the
2008 initializer is only returned if DECL is a
2009 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2010 return an aggregate constant. */
2011
2012 static tree
2013 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2014 {
2015 while (TREE_CODE (decl) == CONST_DECL
2016 || (strict_p
2017 ? decl_constant_var_p (decl)
2018 : (VAR_P (decl)
2019 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2020 {
2021 tree init;
2022 /* If DECL is a static data member in a template
2023 specialization, we must instantiate it here. The
2024 initializer for the static data member is not processed
2025 until needed; we need it now. */
2026 mark_used (decl);
2027 mark_rvalue_use (decl);
2028 init = DECL_INITIAL (decl);
2029 if (init == error_mark_node)
2030 {
2031 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2032 /* Treat the error as a constant to avoid cascading errors on
2033 excessively recursive template instantiation (c++/9335). */
2034 return init;
2035 else
2036 return decl;
2037 }
2038 /* Initializers in templates are generally expanded during
2039 instantiation, so before that for const int i(2)
2040 INIT is a TREE_LIST with the actual initializer as
2041 TREE_VALUE. */
2042 if (processing_template_decl
2043 && init
2044 && TREE_CODE (init) == TREE_LIST
2045 && TREE_CHAIN (init) == NULL_TREE)
2046 init = TREE_VALUE (init);
2047 if (!init
2048 || !TREE_TYPE (init)
2049 || !TREE_CONSTANT (init)
2050 || (!return_aggregate_cst_ok_p
2051 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2052 return an aggregate constant (of which string
2053 literals are a special case), as we do not want
2054 to make inadvertent copies of such entities, and
2055 we must be sure that their addresses are the
2056 same everywhere. */
2057 && (TREE_CODE (init) == CONSTRUCTOR
2058 || TREE_CODE (init) == STRING_CST)))
2059 break;
2060 decl = unshare_expr (init);
2061 }
2062 return decl;
2063 }
2064
2065 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2066 of integral or enumeration type, or a constexpr variable of scalar type,
2067 then return that value. These are those variables permitted in constant
2068 expressions by [5.19/1]. */
2069
2070 tree
2071 scalar_constant_value (tree decl)
2072 {
2073 return constant_value_1 (decl, /*strict_p=*/true,
2074 /*return_aggregate_cst_ok_p=*/false);
2075 }
2076
2077 /* Like scalar_constant_value, but can also return aggregate initializers. */
2078
2079 tree
2080 decl_really_constant_value (tree decl)
2081 {
2082 return constant_value_1 (decl, /*strict_p=*/true,
2083 /*return_aggregate_cst_ok_p=*/true);
2084 }
2085
2086 /* A more relaxed version of scalar_constant_value, used by the
2087 common C/C++ code. */
2088
2089 tree
2090 decl_constant_value (tree decl)
2091 {
2092 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2093 /*return_aggregate_cst_ok_p=*/true);
2094 }
2095 \f
2096 /* Common subroutines of build_new and build_vec_delete. */
2097
2098 /* Call the global __builtin_delete to delete ADDR. */
2099
2100 static tree
2101 build_builtin_delete_call (tree addr)
2102 {
2103 mark_used (global_delete_fndecl);
2104 return build_call_n (global_delete_fndecl, 1, addr);
2105 }
2106 \f
2107 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2108 the type of the object being allocated; otherwise, it's just TYPE.
2109 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2110 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2111 a vector of arguments to be provided as arguments to a placement
2112 new operator. This routine performs no semantic checks; it just
2113 creates and returns a NEW_EXPR. */
2114
2115 static tree
2116 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2117 vec<tree, va_gc> *init, int use_global_new)
2118 {
2119 tree init_list;
2120 tree new_expr;
2121
2122 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2123 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2124 permits us to distinguish the case of a missing initializer "new
2125 int" from an empty initializer "new int()". */
2126 if (init == NULL)
2127 init_list = NULL_TREE;
2128 else if (init->is_empty ())
2129 init_list = void_node;
2130 else
2131 init_list = build_tree_list_vec (init);
2132
2133 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2134 build_tree_list_vec (placement), type, nelts,
2135 init_list);
2136 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2137 TREE_SIDE_EFFECTS (new_expr) = 1;
2138
2139 return new_expr;
2140 }
2141
2142 /* Diagnose uninitialized const members or reference members of type
2143 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2144 new expression without a new-initializer and a declaration. Returns
2145 the error count. */
2146
2147 static int
2148 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2149 bool using_new, bool complain)
2150 {
2151 tree field;
2152 int error_count = 0;
2153
2154 if (type_has_user_provided_constructor (type))
2155 return 0;
2156
2157 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2158 {
2159 tree field_type;
2160
2161 if (TREE_CODE (field) != FIELD_DECL)
2162 continue;
2163
2164 field_type = strip_array_types (TREE_TYPE (field));
2165
2166 if (type_has_user_provided_constructor (field_type))
2167 continue;
2168
2169 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2170 {
2171 ++ error_count;
2172 if (complain)
2173 {
2174 if (DECL_CONTEXT (field) == origin)
2175 {
2176 if (using_new)
2177 error ("uninitialized reference member in %q#T "
2178 "using %<new%> without new-initializer", origin);
2179 else
2180 error ("uninitialized reference member in %q#T", origin);
2181 }
2182 else
2183 {
2184 if (using_new)
2185 error ("uninitialized reference member in base %q#T "
2186 "of %q#T using %<new%> without new-initializer",
2187 DECL_CONTEXT (field), origin);
2188 else
2189 error ("uninitialized reference member in base %q#T "
2190 "of %q#T", DECL_CONTEXT (field), origin);
2191 }
2192 inform (DECL_SOURCE_LOCATION (field),
2193 "%q#D should be initialized", field);
2194 }
2195 }
2196
2197 if (CP_TYPE_CONST_P (field_type))
2198 {
2199 ++ error_count;
2200 if (complain)
2201 {
2202 if (DECL_CONTEXT (field) == origin)
2203 {
2204 if (using_new)
2205 error ("uninitialized const member in %q#T "
2206 "using %<new%> without new-initializer", origin);
2207 else
2208 error ("uninitialized const member in %q#T", origin);
2209 }
2210 else
2211 {
2212 if (using_new)
2213 error ("uninitialized const member in base %q#T "
2214 "of %q#T using %<new%> without new-initializer",
2215 DECL_CONTEXT (field), origin);
2216 else
2217 error ("uninitialized const member in base %q#T "
2218 "of %q#T", DECL_CONTEXT (field), origin);
2219 }
2220 inform (DECL_SOURCE_LOCATION (field),
2221 "%q#D should be initialized", field);
2222 }
2223 }
2224
2225 if (CLASS_TYPE_P (field_type))
2226 error_count
2227 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2228 using_new, complain);
2229 }
2230 return error_count;
2231 }
2232
2233 int
2234 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2235 {
2236 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2237 }
2238
2239 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2240 overflowed. Pretend it returns sizetype so that it plays nicely in the
2241 COND_EXPR. */
2242
2243 tree
2244 throw_bad_array_new_length (void)
2245 {
2246 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2247 if (!get_global_value_if_present (fn, &fn))
2248 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2249 NULL_TREE));
2250
2251 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2252 }
2253
2254 /* Call __cxa_bad_array_length to indicate that there were too many
2255 initializers. */
2256
2257 tree
2258 throw_bad_array_length (void)
2259 {
2260 tree fn = get_identifier ("__cxa_throw_bad_array_length");
2261 if (!get_global_value_if_present (fn, &fn))
2262 fn = push_throw_library_fn (fn, build_function_type_list (void_type_node,
2263 NULL_TREE));
2264
2265 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2266 }
2267
2268 /* Generate code for a new-expression, including calling the "operator
2269 new" function, initializing the object, and, if an exception occurs
2270 during construction, cleaning up. The arguments are as for
2271 build_raw_new_expr. This may change PLACEMENT and INIT. */
2272
2273 static tree
2274 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2275 vec<tree, va_gc> **init, bool globally_qualified_p,
2276 tsubst_flags_t complain)
2277 {
2278 tree size, rval;
2279 /* True iff this is a call to "operator new[]" instead of just
2280 "operator new". */
2281 bool array_p = false;
2282 /* If ARRAY_P is true, the element type of the array. This is never
2283 an ARRAY_TYPE; for something like "new int[3][4]", the
2284 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2285 TYPE. */
2286 tree elt_type;
2287 /* The type of the new-expression. (This type is always a pointer
2288 type.) */
2289 tree pointer_type;
2290 tree non_const_pointer_type;
2291 tree outer_nelts = NULL_TREE;
2292 /* For arrays, a bounds checks on the NELTS parameter. */
2293 tree outer_nelts_check = NULL_TREE;
2294 bool outer_nelts_from_type = false;
2295 offset_int inner_nelts_count = 1;
2296 tree alloc_call, alloc_expr;
2297 /* Size of the inner array elements. */
2298 offset_int inner_size;
2299 /* The address returned by the call to "operator new". This node is
2300 a VAR_DECL and is therefore reusable. */
2301 tree alloc_node;
2302 tree alloc_fn;
2303 tree cookie_expr, init_expr;
2304 int nothrow, check_new;
2305 int use_java_new = 0;
2306 /* If non-NULL, the number of extra bytes to allocate at the
2307 beginning of the storage allocated for an array-new expression in
2308 order to store the number of elements. */
2309 tree cookie_size = NULL_TREE;
2310 tree placement_first;
2311 tree placement_expr = NULL_TREE;
2312 /* True if the function we are calling is a placement allocation
2313 function. */
2314 bool placement_allocation_fn_p;
2315 /* True if the storage must be initialized, either by a constructor
2316 or due to an explicit new-initializer. */
2317 bool is_initialized;
2318 /* The address of the thing allocated, not including any cookie. In
2319 particular, if an array cookie is in use, DATA_ADDR is the
2320 address of the first array element. This node is a VAR_DECL, and
2321 is therefore reusable. */
2322 tree data_addr;
2323 tree init_preeval_expr = NULL_TREE;
2324 tree orig_type = type;
2325
2326 if (nelts)
2327 {
2328 outer_nelts = nelts;
2329 array_p = true;
2330 }
2331 else if (TREE_CODE (type) == ARRAY_TYPE)
2332 {
2333 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2334 extension for variable N. (This also covers new T where T is
2335 a VLA typedef.) */
2336 array_p = true;
2337 nelts = array_type_nelts_top (type);
2338 outer_nelts = nelts;
2339 type = TREE_TYPE (type);
2340 outer_nelts_from_type = true;
2341 }
2342
2343 /* If our base type is an array, then make sure we know how many elements
2344 it has. */
2345 for (elt_type = type;
2346 TREE_CODE (elt_type) == ARRAY_TYPE;
2347 elt_type = TREE_TYPE (elt_type))
2348 {
2349 tree inner_nelts = array_type_nelts_top (elt_type);
2350 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2351 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2352 {
2353 bool overflow;
2354 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2355 inner_nelts_count, SIGNED, &overflow);
2356 if (overflow)
2357 {
2358 if (complain & tf_error)
2359 error ("integer overflow in array size");
2360 nelts = error_mark_node;
2361 }
2362 inner_nelts_count = result;
2363 }
2364 else
2365 {
2366 if (complain & tf_error)
2367 {
2368 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2369 "array size in new-expression must be constant");
2370 cxx_constant_value(inner_nelts);
2371 }
2372 nelts = error_mark_node;
2373 }
2374 if (nelts != error_mark_node)
2375 nelts = cp_build_binary_op (input_location,
2376 MULT_EXPR, nelts,
2377 inner_nelts_cst,
2378 complain);
2379 }
2380
2381 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2382 {
2383 error ("variably modified type not allowed in new-expression");
2384 return error_mark_node;
2385 }
2386
2387 if (nelts == error_mark_node)
2388 return error_mark_node;
2389
2390 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2391 variable. */
2392 if (outer_nelts_from_type
2393 && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2394 {
2395 if (complain & tf_warning_or_error)
2396 {
2397 const char *msg;
2398 if (typedef_variant_p (orig_type))
2399 msg = ("non-constant array new length must be specified "
2400 "directly, not by typedef");
2401 else
2402 msg = ("non-constant array new length must be specified "
2403 "without parentheses around the type-id");
2404 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2405 OPT_Wvla, msg);
2406 }
2407 else
2408 return error_mark_node;
2409 }
2410
2411 if (VOID_TYPE_P (elt_type))
2412 {
2413 if (complain & tf_error)
2414 error ("invalid type %<void%> for new");
2415 return error_mark_node;
2416 }
2417
2418 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2419 return error_mark_node;
2420
2421 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2422
2423 if (*init == NULL && cxx_dialect < cxx11)
2424 {
2425 bool maybe_uninitialized_error = false;
2426 /* A program that calls for default-initialization [...] of an
2427 entity of reference type is ill-formed. */
2428 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2429 maybe_uninitialized_error = true;
2430
2431 /* A new-expression that creates an object of type T initializes
2432 that object as follows:
2433 - If the new-initializer is omitted:
2434 -- If T is a (possibly cv-qualified) non-POD class type
2435 (or array thereof), the object is default-initialized (8.5).
2436 [...]
2437 -- Otherwise, the object created has indeterminate
2438 value. If T is a const-qualified type, or a (possibly
2439 cv-qualified) POD class type (or array thereof)
2440 containing (directly or indirectly) a member of
2441 const-qualified type, the program is ill-formed; */
2442
2443 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2444 maybe_uninitialized_error = true;
2445
2446 if (maybe_uninitialized_error
2447 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2448 /*using_new=*/true,
2449 complain & tf_error))
2450 return error_mark_node;
2451 }
2452
2453 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2454 && default_init_uninitialized_part (elt_type))
2455 {
2456 if (complain & tf_error)
2457 error ("uninitialized const in %<new%> of %q#T", elt_type);
2458 return error_mark_node;
2459 }
2460
2461 size = size_in_bytes (elt_type);
2462 if (array_p)
2463 {
2464 /* Maximum available size in bytes. Half of the address space
2465 minus the cookie size. */
2466 offset_int max_size
2467 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2468 /* Maximum number of outer elements which can be allocated. */
2469 offset_int max_outer_nelts;
2470 tree max_outer_nelts_tree;
2471
2472 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2473 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2474 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2475 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2476 /* Unconditionally subtract the cookie size. This decreases the
2477 maximum object size and is safe even if we choose not to use
2478 a cookie after all. */
2479 max_size -= wi::to_offset (cookie_size);
2480 bool overflow;
2481 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2482 &overflow);
2483 if (overflow || wi::gtu_p (inner_size, max_size))
2484 {
2485 if (complain & tf_error)
2486 error ("size of array is too large");
2487 return error_mark_node;
2488 }
2489
2490 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2491 /* Only keep the top-most seven bits, to simplify encoding the
2492 constant in the instruction stream. */
2493 {
2494 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2495 - wi::clz (max_outer_nelts);
2496 max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
2497 shift);
2498 }
2499 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2500
2501 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2502 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2503 outer_nelts,
2504 max_outer_nelts_tree);
2505 }
2506
2507 alloc_fn = NULL_TREE;
2508
2509 /* If PLACEMENT is a single simple pointer type not passed by
2510 reference, prepare to capture it in a temporary variable. Do
2511 this now, since PLACEMENT will change in the calls below. */
2512 placement_first = NULL_TREE;
2513 if (vec_safe_length (*placement) == 1
2514 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2515 placement_first = (**placement)[0];
2516
2517 /* Allocate the object. */
2518 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2519 {
2520 tree class_addr;
2521 tree class_decl;
2522 static const char alloc_name[] = "_Jv_AllocObject";
2523
2524 if (!MAYBE_CLASS_TYPE_P (elt_type))
2525 {
2526 error ("%qT isn%'t a valid Java class type", elt_type);
2527 return error_mark_node;
2528 }
2529
2530 class_decl = build_java_class_ref (elt_type);
2531 if (class_decl == error_mark_node)
2532 return error_mark_node;
2533
2534 use_java_new = 1;
2535 if (!get_global_value_if_present (get_identifier (alloc_name),
2536 &alloc_fn))
2537 {
2538 if (complain & tf_error)
2539 error ("call to Java constructor with %qs undefined", alloc_name);
2540 return error_mark_node;
2541 }
2542 else if (really_overloaded_fn (alloc_fn))
2543 {
2544 if (complain & tf_error)
2545 error ("%qD should never be overloaded", alloc_fn);
2546 return error_mark_node;
2547 }
2548 alloc_fn = OVL_CURRENT (alloc_fn);
2549 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2550 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2551 class_addr, NULL_TREE);
2552 }
2553 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2554 {
2555 error ("Java class %q#T object allocated using placement new", elt_type);
2556 return error_mark_node;
2557 }
2558 else
2559 {
2560 tree fnname;
2561 tree fns;
2562
2563 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2564
2565 if (!globally_qualified_p
2566 && CLASS_TYPE_P (elt_type)
2567 && (array_p
2568 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2569 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2570 {
2571 /* Use a class-specific operator new. */
2572 /* If a cookie is required, add some extra space. */
2573 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2574 size = size_binop (PLUS_EXPR, size, cookie_size);
2575 else
2576 {
2577 cookie_size = NULL_TREE;
2578 /* No size arithmetic necessary, so the size check is
2579 not needed. */
2580 if (outer_nelts_check != NULL && inner_size == 1)
2581 outer_nelts_check = NULL_TREE;
2582 }
2583 /* Perform the overflow check. */
2584 tree errval = TYPE_MAX_VALUE (sizetype);
2585 if (cxx_dialect >= cxx11 && flag_exceptions)
2586 errval = throw_bad_array_new_length ();
2587 if (outer_nelts_check != NULL_TREE)
2588 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2589 size, errval);
2590 /* Create the argument list. */
2591 vec_safe_insert (*placement, 0, size);
2592 /* Do name-lookup to find the appropriate operator. */
2593 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2594 if (fns == NULL_TREE)
2595 {
2596 if (complain & tf_error)
2597 error ("no suitable %qD found in class %qT", fnname, elt_type);
2598 return error_mark_node;
2599 }
2600 if (TREE_CODE (fns) == TREE_LIST)
2601 {
2602 if (complain & tf_error)
2603 {
2604 error ("request for member %qD is ambiguous", fnname);
2605 print_candidates (fns);
2606 }
2607 return error_mark_node;
2608 }
2609 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2610 fns, placement,
2611 /*conversion_path=*/NULL_TREE,
2612 LOOKUP_NORMAL,
2613 &alloc_fn,
2614 complain);
2615 }
2616 else
2617 {
2618 /* Use a global operator new. */
2619 /* See if a cookie might be required. */
2620 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2621 {
2622 cookie_size = NULL_TREE;
2623 /* No size arithmetic necessary, so the size check is
2624 not needed. */
2625 if (outer_nelts_check != NULL && inner_size == 1)
2626 outer_nelts_check = NULL_TREE;
2627 }
2628
2629 alloc_call = build_operator_new_call (fnname, placement,
2630 &size, &cookie_size,
2631 outer_nelts_check,
2632 &alloc_fn, complain);
2633 }
2634 }
2635
2636 if (alloc_call == error_mark_node)
2637 return error_mark_node;
2638
2639 gcc_assert (alloc_fn != NULL_TREE);
2640
2641 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2642 into a temporary variable. */
2643 if (!processing_template_decl
2644 && placement_first != NULL_TREE
2645 && TREE_CODE (alloc_call) == CALL_EXPR
2646 && call_expr_nargs (alloc_call) == 2
2647 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2648 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2649 {
2650 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2651
2652 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2653 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2654 {
2655 placement_expr = get_target_expr (placement_first);
2656 CALL_EXPR_ARG (alloc_call, 1)
2657 = convert (TREE_TYPE (placement_arg), placement_expr);
2658 }
2659 }
2660
2661 /* In the simple case, we can stop now. */
2662 pointer_type = build_pointer_type (type);
2663 if (!cookie_size && !is_initialized)
2664 return build_nop (pointer_type, alloc_call);
2665
2666 /* Store the result of the allocation call in a variable so that we can
2667 use it more than once. */
2668 alloc_expr = get_target_expr (alloc_call);
2669 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2670
2671 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2672 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2673 alloc_call = TREE_OPERAND (alloc_call, 1);
2674
2675 /* Now, check to see if this function is actually a placement
2676 allocation function. This can happen even when PLACEMENT is NULL
2677 because we might have something like:
2678
2679 struct S { void* operator new (size_t, int i = 0); };
2680
2681 A call to `new S' will get this allocation function, even though
2682 there is no explicit placement argument. If there is more than
2683 one argument, or there are variable arguments, then this is a
2684 placement allocation function. */
2685 placement_allocation_fn_p
2686 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2687 || varargs_function_p (alloc_fn));
2688
2689 /* Preevaluate the placement args so that we don't reevaluate them for a
2690 placement delete. */
2691 if (placement_allocation_fn_p)
2692 {
2693 tree inits;
2694 stabilize_call (alloc_call, &inits);
2695 if (inits)
2696 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2697 alloc_expr);
2698 }
2699
2700 /* unless an allocation function is declared with an empty excep-
2701 tion-specification (_except.spec_), throw(), it indicates failure to
2702 allocate storage by throwing a bad_alloc exception (clause _except_,
2703 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2704 cation function is declared with an empty exception-specification,
2705 throw(), it returns null to indicate failure to allocate storage and a
2706 non-null pointer otherwise.
2707
2708 So check for a null exception spec on the op new we just called. */
2709
2710 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2711 check_new = (flag_check_new || nothrow) && ! use_java_new;
2712
2713 if (cookie_size)
2714 {
2715 tree cookie;
2716 tree cookie_ptr;
2717 tree size_ptr_type;
2718
2719 /* Adjust so we're pointing to the start of the object. */
2720 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2721
2722 /* Store the number of bytes allocated so that we can know how
2723 many elements to destroy later. We use the last sizeof
2724 (size_t) bytes to store the number of elements. */
2725 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2726 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2727 alloc_node, cookie_ptr);
2728 size_ptr_type = build_pointer_type (sizetype);
2729 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2730 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2731
2732 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2733
2734 if (targetm.cxx.cookie_has_size ())
2735 {
2736 /* Also store the element size. */
2737 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2738 fold_build1_loc (input_location,
2739 NEGATE_EXPR, sizetype,
2740 size_in_bytes (sizetype)));
2741
2742 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2743 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2744 size_in_bytes (elt_type));
2745 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2746 cookie, cookie_expr);
2747 }
2748 }
2749 else
2750 {
2751 cookie_expr = NULL_TREE;
2752 data_addr = alloc_node;
2753 }
2754
2755 /* Now use a pointer to the type we've actually allocated. */
2756
2757 /* But we want to operate on a non-const version to start with,
2758 since we'll be modifying the elements. */
2759 non_const_pointer_type = build_pointer_type
2760 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2761
2762 data_addr = fold_convert (non_const_pointer_type, data_addr);
2763 /* Any further uses of alloc_node will want this type, too. */
2764 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2765
2766 /* Now initialize the allocated object. Note that we preevaluate the
2767 initialization expression, apart from the actual constructor call or
2768 assignment--we do this because we want to delay the allocation as long
2769 as possible in order to minimize the size of the exception region for
2770 placement delete. */
2771 if (is_initialized)
2772 {
2773 bool stable;
2774 bool explicit_value_init_p = false;
2775
2776 if (*init != NULL && (*init)->is_empty ())
2777 {
2778 *init = NULL;
2779 explicit_value_init_p = true;
2780 }
2781
2782 if (processing_template_decl && explicit_value_init_p)
2783 {
2784 /* build_value_init doesn't work in templates, and we don't need
2785 the initializer anyway since we're going to throw it away and
2786 rebuild it at instantiation time, so just build up a single
2787 constructor call to get any appropriate diagnostics. */
2788 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2789 if (type_build_ctor_call (elt_type))
2790 init_expr = build_special_member_call (init_expr,
2791 complete_ctor_identifier,
2792 init, elt_type,
2793 LOOKUP_NORMAL,
2794 complain);
2795 stable = stabilize_init (init_expr, &init_preeval_expr);
2796 }
2797 else if (array_p)
2798 {
2799 tree vecinit = NULL_TREE;
2800 if (vec_safe_length (*init) == 1
2801 && DIRECT_LIST_INIT_P ((**init)[0]))
2802 {
2803 vecinit = (**init)[0];
2804 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2805 /* List-value-initialization, leave it alone. */;
2806 else
2807 {
2808 tree arraytype, domain;
2809 if (TREE_CONSTANT (nelts))
2810 domain = compute_array_index_type (NULL_TREE, nelts,
2811 complain);
2812 else
2813 /* We'll check the length at runtime. */
2814 domain = NULL_TREE;
2815 arraytype = build_cplus_array_type (type, domain);
2816 vecinit = digest_init (arraytype, vecinit, complain);
2817 }
2818 }
2819 else if (*init)
2820 {
2821 if (complain & tf_error)
2822 permerror (input_location,
2823 "parenthesized initializer in array new");
2824 else
2825 return error_mark_node;
2826 vecinit = build_tree_list_vec (*init);
2827 }
2828 init_expr
2829 = build_vec_init (data_addr,
2830 cp_build_binary_op (input_location,
2831 MINUS_EXPR, outer_nelts,
2832 integer_one_node,
2833 complain),
2834 vecinit,
2835 explicit_value_init_p,
2836 /*from_array=*/0,
2837 complain);
2838
2839 /* An array initialization is stable because the initialization
2840 of each element is a full-expression, so the temporaries don't
2841 leak out. */
2842 stable = true;
2843 }
2844 else
2845 {
2846 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2847
2848 if (type_build_ctor_call (type) && !explicit_value_init_p)
2849 {
2850 init_expr = build_special_member_call (init_expr,
2851 complete_ctor_identifier,
2852 init, elt_type,
2853 LOOKUP_NORMAL,
2854 complain);
2855 }
2856 else if (explicit_value_init_p)
2857 {
2858 /* Something like `new int()'. */
2859 tree val = build_value_init (type, complain);
2860 if (val == error_mark_node)
2861 return error_mark_node;
2862 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2863 }
2864 else
2865 {
2866 tree ie;
2867
2868 /* We are processing something like `new int (10)', which
2869 means allocate an int, and initialize it with 10. */
2870
2871 ie = build_x_compound_expr_from_vec (*init, "new initializer",
2872 complain);
2873 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2874 complain);
2875 }
2876 stable = stabilize_init (init_expr, &init_preeval_expr);
2877 }
2878
2879 if (init_expr == error_mark_node)
2880 return error_mark_node;
2881
2882 /* If any part of the object initialization terminates by throwing an
2883 exception and a suitable deallocation function can be found, the
2884 deallocation function is called to free the memory in which the
2885 object was being constructed, after which the exception continues
2886 to propagate in the context of the new-expression. If no
2887 unambiguous matching deallocation function can be found,
2888 propagating the exception does not cause the object's memory to be
2889 freed. */
2890 if (flag_exceptions && ! use_java_new)
2891 {
2892 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2893 tree cleanup;
2894
2895 /* The Standard is unclear here, but the right thing to do
2896 is to use the same method for finding deallocation
2897 functions that we use for finding allocation functions. */
2898 cleanup = (build_op_delete_call
2899 (dcode,
2900 alloc_node,
2901 size,
2902 globally_qualified_p,
2903 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2904 alloc_fn,
2905 complain));
2906
2907 if (!cleanup)
2908 /* We're done. */;
2909 else if (stable)
2910 /* This is much simpler if we were able to preevaluate all of
2911 the arguments to the constructor call. */
2912 {
2913 /* CLEANUP is compiler-generated, so no diagnostics. */
2914 TREE_NO_WARNING (cleanup) = true;
2915 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2916 init_expr, cleanup);
2917 /* Likewise, this try-catch is compiler-generated. */
2918 TREE_NO_WARNING (init_expr) = true;
2919 }
2920 else
2921 /* Ack! First we allocate the memory. Then we set our sentry
2922 variable to true, and expand a cleanup that deletes the
2923 memory if sentry is true. Then we run the constructor, and
2924 finally clear the sentry.
2925
2926 We need to do this because we allocate the space first, so
2927 if there are any temporaries with cleanups in the
2928 constructor args and we weren't able to preevaluate them, we
2929 need this EH region to extend until end of full-expression
2930 to preserve nesting. */
2931 {
2932 tree end, sentry, begin;
2933
2934 begin = get_target_expr (boolean_true_node);
2935 CLEANUP_EH_ONLY (begin) = 1;
2936
2937 sentry = TARGET_EXPR_SLOT (begin);
2938
2939 /* CLEANUP is compiler-generated, so no diagnostics. */
2940 TREE_NO_WARNING (cleanup) = true;
2941
2942 TARGET_EXPR_CLEANUP (begin)
2943 = build3 (COND_EXPR, void_type_node, sentry,
2944 cleanup, void_node);
2945
2946 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2947 sentry, boolean_false_node);
2948
2949 init_expr
2950 = build2 (COMPOUND_EXPR, void_type_node, begin,
2951 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2952 end));
2953 /* Likewise, this is compiler-generated. */
2954 TREE_NO_WARNING (init_expr) = true;
2955 }
2956 }
2957 }
2958 else
2959 init_expr = NULL_TREE;
2960
2961 /* Now build up the return value in reverse order. */
2962
2963 rval = data_addr;
2964
2965 if (init_expr)
2966 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2967 if (cookie_expr)
2968 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2969
2970 if (rval == data_addr)
2971 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2972 and return the call (which doesn't need to be adjusted). */
2973 rval = TARGET_EXPR_INITIAL (alloc_expr);
2974 else
2975 {
2976 if (check_new)
2977 {
2978 tree ifexp = cp_build_binary_op (input_location,
2979 NE_EXPR, alloc_node,
2980 nullptr_node,
2981 complain);
2982 rval = build_conditional_expr (input_location, ifexp, rval,
2983 alloc_node, complain);
2984 }
2985
2986 /* Perform the allocation before anything else, so that ALLOC_NODE
2987 has been initialized before we start using it. */
2988 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2989 }
2990
2991 if (init_preeval_expr)
2992 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2993
2994 /* A new-expression is never an lvalue. */
2995 gcc_assert (!lvalue_p (rval));
2996
2997 return convert (pointer_type, rval);
2998 }
2999
3000 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3001 is a vector of placement-new arguments (or NULL if none). If NELTS
3002 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3003 is not NULL, then this is an array-new allocation; TYPE is the type
3004 of the elements in the array and NELTS is the number of elements in
3005 the array. *INIT, if non-NULL, is the initializer for the new
3006 object, or an empty vector to indicate an initializer of "()". If
3007 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3008 rather than just "new". This may change PLACEMENT and INIT. */
3009
3010 tree
3011 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3012 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3013 {
3014 tree rval;
3015 vec<tree, va_gc> *orig_placement = NULL;
3016 tree orig_nelts = NULL_TREE;
3017 vec<tree, va_gc> *orig_init = NULL;
3018
3019 if (type == error_mark_node)
3020 return error_mark_node;
3021
3022 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3023 /* Don't do auto deduction where it might affect mangling. */
3024 && (!processing_template_decl || at_function_scope_p ()))
3025 {
3026 tree auto_node = type_uses_auto (type);
3027 if (auto_node)
3028 {
3029 tree d_init = (**init)[0];
3030 d_init = resolve_nondeduced_context (d_init);
3031 type = do_auto_deduction (type, d_init, auto_node);
3032 }
3033 }
3034
3035 if (processing_template_decl)
3036 {
3037 if (dependent_type_p (type)
3038 || any_type_dependent_arguments_p (*placement)
3039 || (nelts && type_dependent_expression_p (nelts))
3040 || (nelts && *init)
3041 || any_type_dependent_arguments_p (*init))
3042 return build_raw_new_expr (*placement, type, nelts, *init,
3043 use_global_new);
3044
3045 orig_placement = make_tree_vector_copy (*placement);
3046 orig_nelts = nelts;
3047 if (*init)
3048 orig_init = make_tree_vector_copy (*init);
3049
3050 make_args_non_dependent (*placement);
3051 if (nelts)
3052 nelts = build_non_dependent_expr (nelts);
3053 make_args_non_dependent (*init);
3054 }
3055
3056 if (nelts)
3057 {
3058 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3059 {
3060 if (complain & tf_error)
3061 permerror (input_location, "size in array new must have integral type");
3062 else
3063 return error_mark_node;
3064 }
3065 nelts = mark_rvalue_use (nelts);
3066 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3067 }
3068
3069 /* ``A reference cannot be created by the new operator. A reference
3070 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3071 returned by new.'' ARM 5.3.3 */
3072 if (TREE_CODE (type) == REFERENCE_TYPE)
3073 {
3074 if (complain & tf_error)
3075 error ("new cannot be applied to a reference type");
3076 else
3077 return error_mark_node;
3078 type = TREE_TYPE (type);
3079 }
3080
3081 if (TREE_CODE (type) == FUNCTION_TYPE)
3082 {
3083 if (complain & tf_error)
3084 error ("new cannot be applied to a function type");
3085 return error_mark_node;
3086 }
3087
3088 /* The type allocated must be complete. If the new-type-id was
3089 "T[N]" then we are just checking that "T" is complete here, but
3090 that is equivalent, since the value of "N" doesn't matter. */
3091 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3092 return error_mark_node;
3093
3094 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3095 if (rval == error_mark_node)
3096 return error_mark_node;
3097
3098 if (processing_template_decl)
3099 {
3100 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3101 orig_init, use_global_new);
3102 release_tree_vector (orig_placement);
3103 release_tree_vector (orig_init);
3104 return ret;
3105 }
3106
3107 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3108 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3109 TREE_NO_WARNING (rval) = 1;
3110
3111 return rval;
3112 }
3113
3114 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3115
3116 tree
3117 build_java_class_ref (tree type)
3118 {
3119 tree name = NULL_TREE, class_decl;
3120 static tree CL_suffix = NULL_TREE;
3121 if (CL_suffix == NULL_TREE)
3122 CL_suffix = get_identifier("class$");
3123 if (jclass_node == NULL_TREE)
3124 {
3125 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3126 if (jclass_node == NULL_TREE)
3127 {
3128 error ("call to Java constructor, while %<jclass%> undefined");
3129 return error_mark_node;
3130 }
3131 jclass_node = TREE_TYPE (jclass_node);
3132 }
3133
3134 /* Mangle the class$ field. */
3135 {
3136 tree field;
3137 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3138 if (DECL_NAME (field) == CL_suffix)
3139 {
3140 mangle_decl (field);
3141 name = DECL_ASSEMBLER_NAME (field);
3142 break;
3143 }
3144 if (!field)
3145 {
3146 error ("can%'t find %<class$%> in %qT", type);
3147 return error_mark_node;
3148 }
3149 }
3150
3151 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3152 if (class_decl == NULL_TREE)
3153 {
3154 class_decl = build_decl (input_location,
3155 VAR_DECL, name, TREE_TYPE (jclass_node));
3156 TREE_STATIC (class_decl) = 1;
3157 DECL_EXTERNAL (class_decl) = 1;
3158 TREE_PUBLIC (class_decl) = 1;
3159 DECL_ARTIFICIAL (class_decl) = 1;
3160 DECL_IGNORED_P (class_decl) = 1;
3161 pushdecl_top_level (class_decl);
3162 make_decl_rtl (class_decl);
3163 }
3164 return class_decl;
3165 }
3166 \f
3167 static tree
3168 build_vec_delete_1 (tree base, tree maxindex, tree type,
3169 special_function_kind auto_delete_vec,
3170 int use_global_delete, tsubst_flags_t complain)
3171 {
3172 tree virtual_size;
3173 tree ptype = build_pointer_type (type = complete_type (type));
3174 tree size_exp;
3175
3176 /* Temporary variables used by the loop. */
3177 tree tbase, tbase_init;
3178
3179 /* This is the body of the loop that implements the deletion of a
3180 single element, and moves temp variables to next elements. */
3181 tree body;
3182
3183 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3184 tree loop = 0;
3185
3186 /* This is the thing that governs what to do after the loop has run. */
3187 tree deallocate_expr = 0;
3188
3189 /* This is the BIND_EXPR which holds the outermost iterator of the
3190 loop. It is convenient to set this variable up and test it before
3191 executing any other code in the loop.
3192 This is also the containing expression returned by this function. */
3193 tree controller = NULL_TREE;
3194 tree tmp;
3195
3196 /* We should only have 1-D arrays here. */
3197 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3198
3199 if (base == error_mark_node || maxindex == error_mark_node)
3200 return error_mark_node;
3201
3202 if (!COMPLETE_TYPE_P (type))
3203 {
3204 if ((complain & tf_warning)
3205 && warning (OPT_Wdelete_incomplete,
3206 "possible problem detected in invocation of "
3207 "delete [] operator:"))
3208 {
3209 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3210 inform (input_location, "neither the destructor nor the "
3211 "class-specific operator delete [] will be called, "
3212 "even if they are declared when the class is defined");
3213 }
3214 return build_builtin_delete_call (base);
3215 }
3216
3217 size_exp = size_in_bytes (type);
3218
3219 if (! MAYBE_CLASS_TYPE_P (type))
3220 goto no_destructor;
3221 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3222 {
3223 /* Make sure the destructor is callable. */
3224 if (type_build_dtor_call (type))
3225 {
3226 tmp = build_delete (ptype, base, sfk_complete_destructor,
3227 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3228 complain);
3229 if (tmp == error_mark_node)
3230 return error_mark_node;
3231 }
3232 goto no_destructor;
3233 }
3234
3235 /* The below is short by the cookie size. */
3236 virtual_size = size_binop (MULT_EXPR, size_exp,
3237 convert (sizetype, maxindex));
3238
3239 tbase = create_temporary_var (ptype);
3240 tbase_init
3241 = cp_build_modify_expr (tbase, NOP_EXPR,
3242 fold_build_pointer_plus_loc (input_location,
3243 fold_convert (ptype,
3244 base),
3245 virtual_size),
3246 complain);
3247 if (tbase_init == error_mark_node)
3248 return error_mark_node;
3249 controller = build3 (BIND_EXPR, void_type_node, tbase,
3250 NULL_TREE, NULL_TREE);
3251 TREE_SIDE_EFFECTS (controller) = 1;
3252
3253 body = build1 (EXIT_EXPR, void_type_node,
3254 build2 (EQ_EXPR, boolean_type_node, tbase,
3255 fold_convert (ptype, base)));
3256 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3257 tmp = fold_build_pointer_plus (tbase, tmp);
3258 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3259 if (tmp == error_mark_node)
3260 return error_mark_node;
3261 body = build_compound_expr (input_location, body, tmp);
3262 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3263 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3264 complain);
3265 if (tmp == error_mark_node)
3266 return error_mark_node;
3267 body = build_compound_expr (input_location, body, tmp);
3268
3269 loop = build1 (LOOP_EXPR, void_type_node, body);
3270 loop = build_compound_expr (input_location, tbase_init, loop);
3271
3272 no_destructor:
3273 /* Delete the storage if appropriate. */
3274 if (auto_delete_vec == sfk_deleting_destructor)
3275 {
3276 tree base_tbd;
3277
3278 /* The below is short by the cookie size. */
3279 virtual_size = size_binop (MULT_EXPR, size_exp,
3280 convert (sizetype, maxindex));
3281
3282 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3283 /* no header */
3284 base_tbd = base;
3285 else
3286 {
3287 tree cookie_size;
3288
3289 cookie_size = targetm.cxx.get_cookie_size (type);
3290 base_tbd = cp_build_binary_op (input_location,
3291 MINUS_EXPR,
3292 cp_convert (string_type_node,
3293 base, complain),
3294 cookie_size,
3295 complain);
3296 if (base_tbd == error_mark_node)
3297 return error_mark_node;
3298 base_tbd = cp_convert (ptype, base_tbd, complain);
3299 /* True size with header. */
3300 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3301 }
3302
3303 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3304 base_tbd, virtual_size,
3305 use_global_delete & 1,
3306 /*placement=*/NULL_TREE,
3307 /*alloc_fn=*/NULL_TREE,
3308 complain);
3309 }
3310
3311 body = loop;
3312 if (!deallocate_expr)
3313 ;
3314 else if (!body)
3315 body = deallocate_expr;
3316 else
3317 body = build_compound_expr (input_location, body, deallocate_expr);
3318
3319 if (!body)
3320 body = integer_zero_node;
3321
3322 /* Outermost wrapper: If pointer is null, punt. */
3323 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3324 fold_build2_loc (input_location,
3325 NE_EXPR, boolean_type_node, base,
3326 convert (TREE_TYPE (base),
3327 nullptr_node)),
3328 body, integer_zero_node);
3329 body = build1 (NOP_EXPR, void_type_node, body);
3330
3331 if (controller)
3332 {
3333 TREE_OPERAND (controller, 1) = body;
3334 body = controller;
3335 }
3336
3337 if (TREE_CODE (base) == SAVE_EXPR)
3338 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3339 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3340
3341 return convert_to_void (body, ICV_CAST, complain);
3342 }
3343
3344 /* Create an unnamed variable of the indicated TYPE. */
3345
3346 tree
3347 create_temporary_var (tree type)
3348 {
3349 tree decl;
3350
3351 decl = build_decl (input_location,
3352 VAR_DECL, NULL_TREE, type);
3353 TREE_USED (decl) = 1;
3354 DECL_ARTIFICIAL (decl) = 1;
3355 DECL_IGNORED_P (decl) = 1;
3356 DECL_CONTEXT (decl) = current_function_decl;
3357
3358 return decl;
3359 }
3360
3361 /* Create a new temporary variable of the indicated TYPE, initialized
3362 to INIT.
3363
3364 It is not entered into current_binding_level, because that breaks
3365 things when it comes time to do final cleanups (which take place
3366 "outside" the binding contour of the function). */
3367
3368 tree
3369 get_temp_regvar (tree type, tree init)
3370 {
3371 tree decl;
3372
3373 decl = create_temporary_var (type);
3374 add_decl_expr (decl);
3375
3376 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3377 tf_warning_or_error));
3378
3379 return decl;
3380 }
3381
3382 /* `build_vec_init' returns tree structure that performs
3383 initialization of a vector of aggregate types.
3384
3385 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3386 to the first element, of POINTER_TYPE.
3387 MAXINDEX is the maximum index of the array (one less than the
3388 number of elements). It is only used if BASE is a pointer or
3389 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3390
3391 INIT is the (possibly NULL) initializer.
3392
3393 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3394 elements in the array are value-initialized.
3395
3396 FROM_ARRAY is 0 if we should init everything with INIT
3397 (i.e., every element initialized from INIT).
3398 FROM_ARRAY is 1 if we should index into INIT in parallel
3399 with initialization of DECL.
3400 FROM_ARRAY is 2 if we should index into INIT in parallel,
3401 but use assignment instead of initialization. */
3402
3403 tree
3404 build_vec_init (tree base, tree maxindex, tree init,
3405 bool explicit_value_init_p,
3406 int from_array, tsubst_flags_t complain)
3407 {
3408 tree rval;
3409 tree base2 = NULL_TREE;
3410 tree itype = NULL_TREE;
3411 tree iterator;
3412 /* The type of BASE. */
3413 tree atype = TREE_TYPE (base);
3414 /* The type of an element in the array. */
3415 tree type = TREE_TYPE (atype);
3416 /* The element type reached after removing all outer array
3417 types. */
3418 tree inner_elt_type;
3419 /* The type of a pointer to an element in the array. */
3420 tree ptype;
3421 tree stmt_expr;
3422 tree compound_stmt;
3423 int destroy_temps;
3424 tree try_block = NULL_TREE;
3425 int num_initialized_elts = 0;
3426 bool is_global;
3427 tree obase = base;
3428 bool xvalue = false;
3429 bool errors = false;
3430 tree length_check = NULL_TREE;
3431
3432 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3433 maxindex = array_type_nelts (atype);
3434
3435 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3436 return error_mark_node;
3437
3438 if (explicit_value_init_p)
3439 gcc_assert (!init);
3440
3441 inner_elt_type = strip_array_types (type);
3442
3443 /* Look through the TARGET_EXPR around a compound literal. */
3444 if (init && TREE_CODE (init) == TARGET_EXPR
3445 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3446 && from_array != 2)
3447 init = TARGET_EXPR_INITIAL (init);
3448
3449 /* If we have a braced-init-list, make sure that the array
3450 is big enough for all the initializers. */
3451 if (init && TREE_CODE (init) == CONSTRUCTOR
3452 && CONSTRUCTOR_NELTS (init) > 0
3453 && !TREE_CONSTANT (maxindex)
3454 && flag_exceptions)
3455 length_check = fold_build2 (LT_EXPR, boolean_type_node, maxindex,
3456 size_int (CONSTRUCTOR_NELTS (init) - 1));
3457
3458 if (init
3459 && TREE_CODE (atype) == ARRAY_TYPE
3460 && TREE_CONSTANT (maxindex)
3461 && (from_array == 2
3462 ? (!CLASS_TYPE_P (inner_elt_type)
3463 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3464 : !TYPE_NEEDS_CONSTRUCTING (type))
3465 && ((TREE_CODE (init) == CONSTRUCTOR
3466 /* Don't do this if the CONSTRUCTOR might contain something
3467 that might throw and require us to clean up. */
3468 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3469 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3470 || from_array))
3471 {
3472 /* Do non-default initialization of trivial arrays resulting from
3473 brace-enclosed initializers. In this case, digest_init and
3474 store_constructor will handle the semantics for us. */
3475
3476 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3477 init = digest_init (atype, init, complain);
3478 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3479 if (length_check)
3480 stmt_expr = build3 (COND_EXPR, atype, length_check,
3481 throw_bad_array_length (),
3482 stmt_expr);
3483 return stmt_expr;
3484 }
3485
3486 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3487 if (TREE_CODE (atype) == ARRAY_TYPE)
3488 {
3489 ptype = build_pointer_type (type);
3490 base = decay_conversion (base, complain);
3491 if (base == error_mark_node)
3492 return error_mark_node;
3493 base = cp_convert (ptype, base, complain);
3494 }
3495 else
3496 ptype = atype;
3497
3498 /* The code we are generating looks like:
3499 ({
3500 T* t1 = (T*) base;
3501 T* rval = t1;
3502 ptrdiff_t iterator = maxindex;
3503 try {
3504 for (; iterator != -1; --iterator) {
3505 ... initialize *t1 ...
3506 ++t1;
3507 }
3508 } catch (...) {
3509 ... destroy elements that were constructed ...
3510 }
3511 rval;
3512 })
3513
3514 We can omit the try and catch blocks if we know that the
3515 initialization will never throw an exception, or if the array
3516 elements do not have destructors. We can omit the loop completely if
3517 the elements of the array do not have constructors.
3518
3519 We actually wrap the entire body of the above in a STMT_EXPR, for
3520 tidiness.
3521
3522 When copying from array to another, when the array elements have
3523 only trivial copy constructors, we should use __builtin_memcpy
3524 rather than generating a loop. That way, we could take advantage
3525 of whatever cleverness the back end has for dealing with copies
3526 of blocks of memory. */
3527
3528 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3529 destroy_temps = stmts_are_full_exprs_p ();
3530 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3531 rval = get_temp_regvar (ptype, base);
3532 base = get_temp_regvar (ptype, rval);
3533 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3534
3535 /* If initializing one array from another, initialize element by
3536 element. We rely upon the below calls to do the argument
3537 checking. Evaluate the initializer before entering the try block. */
3538 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3539 {
3540 if (lvalue_kind (init) & clk_rvalueref)
3541 xvalue = true;
3542 base2 = decay_conversion (init, complain);
3543 if (base2 == error_mark_node)
3544 return error_mark_node;
3545 itype = TREE_TYPE (base2);
3546 base2 = get_temp_regvar (itype, base2);
3547 itype = TREE_TYPE (itype);
3548 }
3549
3550 /* Protect the entire array initialization so that we can destroy
3551 the partially constructed array if an exception is thrown.
3552 But don't do this if we're assigning. */
3553 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3554 && from_array != 2)
3555 {
3556 try_block = begin_try_block ();
3557 }
3558
3559 /* Should we try to create a constant initializer? */
3560 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3561 && TREE_CONSTANT (maxindex)
3562 && init && TREE_CODE (init) == CONSTRUCTOR
3563 && (literal_type_p (inner_elt_type)
3564 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3565 vec<constructor_elt, va_gc> *const_vec = NULL;
3566 bool saw_non_const = false;
3567 /* If we're initializing a static array, we want to do static
3568 initialization of any elements with constant initializers even if
3569 some are non-constant. */
3570 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3571
3572 bool empty_list = false;
3573 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3574 && CONSTRUCTOR_NELTS (init) == 0)
3575 /* Skip over the handling of non-empty init lists. */
3576 empty_list = true;
3577
3578 /* Maybe pull out constant value when from_array? */
3579
3580 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3581 {
3582 /* Do non-default initialization of non-trivial arrays resulting from
3583 brace-enclosed initializers. */
3584 unsigned HOST_WIDE_INT idx;
3585 tree field, elt;
3586 /* If the constructor already has the array type, it's been through
3587 digest_init, so we shouldn't try to do anything more. */
3588 bool digested = same_type_p (atype, TREE_TYPE (init));
3589 from_array = 0;
3590
3591 if (length_check)
3592 {
3593 tree throw_call;
3594 throw_call = throw_bad_array_new_length ();
3595 length_check = build3 (COND_EXPR, void_type_node, length_check,
3596 throw_call, void_node);
3597 finish_expr_stmt (length_check);
3598 }
3599
3600 if (try_const)
3601 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
3602
3603 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3604 {
3605 tree baseref = build1 (INDIRECT_REF, type, base);
3606 tree one_init;
3607
3608 num_initialized_elts++;
3609
3610 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3611 if (digested)
3612 one_init = build2 (INIT_EXPR, type, baseref, elt);
3613 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3614 one_init = build_aggr_init (baseref, elt, 0, complain);
3615 else
3616 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3617 elt, complain);
3618 if (one_init == error_mark_node)
3619 errors = true;
3620 if (try_const)
3621 {
3622 tree e = maybe_constant_init (one_init);
3623 if (reduced_constant_expression_p (e))
3624 {
3625 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3626 if (do_static_init)
3627 one_init = NULL_TREE;
3628 else
3629 one_init = build2 (INIT_EXPR, type, baseref, e);
3630 }
3631 else
3632 {
3633 if (do_static_init)
3634 {
3635 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3636 true);
3637 if (value)
3638 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
3639 }
3640 saw_non_const = true;
3641 }
3642 }
3643
3644 if (one_init)
3645 finish_expr_stmt (one_init);
3646 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3647
3648 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3649 if (one_init == error_mark_node)
3650 errors = true;
3651 else
3652 finish_expr_stmt (one_init);
3653
3654 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3655 complain);
3656 if (one_init == error_mark_node)
3657 errors = true;
3658 else
3659 finish_expr_stmt (one_init);
3660 }
3661
3662 /* Any elements without explicit initializers get T{}. */
3663 empty_list = true;
3664 }
3665 else if (from_array)
3666 {
3667 if (init)
3668 /* OK, we set base2 above. */;
3669 else if (CLASS_TYPE_P (type)
3670 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3671 {
3672 if (complain & tf_error)
3673 error ("initializer ends prematurely");
3674 errors = true;
3675 }
3676 }
3677
3678 /* Now, default-initialize any remaining elements. We don't need to
3679 do that if a) the type does not need constructing, or b) we've
3680 already initialized all the elements.
3681
3682 We do need to keep going if we're copying an array. */
3683
3684 if (from_array
3685 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3686 && ! (tree_fits_shwi_p (maxindex)
3687 && (num_initialized_elts
3688 == tree_to_shwi (maxindex) + 1))))
3689 {
3690 /* If the ITERATOR is equal to -1, then we don't have to loop;
3691 we've already initialized all the elements. */
3692 tree for_stmt;
3693 tree elt_init;
3694 tree to;
3695
3696 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3697 finish_for_init_stmt (for_stmt);
3698 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3699 build_int_cst (TREE_TYPE (iterator), -1)),
3700 for_stmt, false);
3701 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3702 complain);
3703 if (elt_init == error_mark_node)
3704 errors = true;
3705 finish_for_expr (elt_init, for_stmt);
3706
3707 to = build1 (INDIRECT_REF, type, base);
3708
3709 /* If the initializer is {}, then all elements are initialized from T{}.
3710 But for non-classes, that's the same as value-initialization. */
3711 if (empty_list)
3712 {
3713 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3714 {
3715 if (BRACE_ENCLOSED_INITIALIZER_P (init)
3716 && CONSTRUCTOR_NELTS (init) == 0)
3717 /* Reuse it. */;
3718 else
3719 init = build_constructor (init_list_type_node, NULL);
3720 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
3721 }
3722 else
3723 {
3724 init = NULL_TREE;
3725 explicit_value_init_p = true;
3726 }
3727 }
3728
3729 if (from_array)
3730 {
3731 tree from;
3732
3733 if (base2)
3734 {
3735 from = build1 (INDIRECT_REF, itype, base2);
3736 if (xvalue)
3737 from = move (from);
3738 }
3739 else
3740 from = NULL_TREE;
3741
3742 if (from_array == 2)
3743 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3744 complain);
3745 else if (type_build_ctor_call (type))
3746 elt_init = build_aggr_init (to, from, 0, complain);
3747 else if (from)
3748 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3749 complain);
3750 else
3751 gcc_unreachable ();
3752 }
3753 else if (TREE_CODE (type) == ARRAY_TYPE)
3754 {
3755 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3756 sorry
3757 ("cannot initialize multi-dimensional array with initializer");
3758 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3759 0, init,
3760 explicit_value_init_p,
3761 0, complain);
3762 }
3763 else if (explicit_value_init_p)
3764 {
3765 elt_init = build_value_init (type, complain);
3766 if (elt_init != error_mark_node)
3767 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3768 }
3769 else
3770 {
3771 gcc_assert (type_build_ctor_call (type) || init);
3772 if (CLASS_TYPE_P (type))
3773 elt_init = build_aggr_init (to, init, 0, complain);
3774 else
3775 {
3776 if (TREE_CODE (init) == TREE_LIST)
3777 init = build_x_compound_expr_from_list (init, ELK_INIT,
3778 complain);
3779 elt_init = build2 (INIT_EXPR, type, to, init);
3780 }
3781 }
3782
3783 if (elt_init == error_mark_node)
3784 errors = true;
3785
3786 if (try_const)
3787 {
3788 tree e = maybe_constant_init (elt_init);
3789 if (reduced_constant_expression_p (e))
3790 {
3791 if (initializer_zerop (e))
3792 /* Don't fill the CONSTRUCTOR with zeros. */
3793 e = NULL_TREE;
3794 if (do_static_init)
3795 elt_init = NULL_TREE;
3796 }
3797 else
3798 {
3799 saw_non_const = true;
3800 if (do_static_init)
3801 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
3802 }
3803
3804 if (e)
3805 {
3806 int max = tree_to_shwi (maxindex)+1;
3807 for (; num_initialized_elts < max; ++num_initialized_elts)
3808 {
3809 tree field = size_int (num_initialized_elts);
3810 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3811 }
3812 }
3813 }
3814
3815 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3816 if (elt_init)
3817 finish_expr_stmt (elt_init);
3818 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3819
3820 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3821 complain));
3822 if (base2)
3823 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3824 complain));
3825
3826 finish_for_stmt (for_stmt);
3827 }
3828
3829 /* Make sure to cleanup any partially constructed elements. */
3830 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3831 && from_array != 2)
3832 {
3833 tree e;
3834 tree m = cp_build_binary_op (input_location,
3835 MINUS_EXPR, maxindex, iterator,
3836 complain);
3837
3838 /* Flatten multi-dimensional array since build_vec_delete only
3839 expects one-dimensional array. */
3840 if (TREE_CODE (type) == ARRAY_TYPE)
3841 m = cp_build_binary_op (input_location,
3842 MULT_EXPR, m,
3843 /* Avoid mixing signed and unsigned. */
3844 convert (TREE_TYPE (m),
3845 array_type_nelts_total (type)),
3846 complain);
3847
3848 finish_cleanup_try_block (try_block);
3849 e = build_vec_delete_1 (rval, m,
3850 inner_elt_type, sfk_complete_destructor,
3851 /*use_global_delete=*/0, complain);
3852 if (e == error_mark_node)
3853 errors = true;
3854 finish_cleanup (e, try_block);
3855 }
3856
3857 /* The value of the array initialization is the array itself, RVAL
3858 is a pointer to the first element. */
3859 finish_stmt_expr_expr (rval, stmt_expr);
3860
3861 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3862
3863 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3864
3865 if (errors)
3866 return error_mark_node;
3867
3868 if (try_const)
3869 {
3870 if (!saw_non_const)
3871 {
3872 tree const_init = build_constructor (atype, const_vec);
3873 return build2 (INIT_EXPR, atype, obase, const_init);
3874 }
3875 else if (do_static_init && !vec_safe_is_empty (const_vec))
3876 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
3877 else
3878 vec_free (const_vec);
3879 }
3880
3881 /* Now make the result have the correct type. */
3882 if (TREE_CODE (atype) == ARRAY_TYPE)
3883 {
3884 atype = build_pointer_type (atype);
3885 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3886 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3887 TREE_NO_WARNING (stmt_expr) = 1;
3888 }
3889
3890 return stmt_expr;
3891 }
3892
3893 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3894 build_delete. */
3895
3896 static tree
3897 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3898 tsubst_flags_t complain)
3899 {
3900 tree name;
3901 tree fn;
3902 switch (dtor_kind)
3903 {
3904 case sfk_complete_destructor:
3905 name = complete_dtor_identifier;
3906 break;
3907
3908 case sfk_base_destructor:
3909 name = base_dtor_identifier;
3910 break;
3911
3912 case sfk_deleting_destructor:
3913 name = deleting_dtor_identifier;
3914 break;
3915
3916 default:
3917 gcc_unreachable ();
3918 }
3919 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3920 return build_new_method_call (exp, fn,
3921 /*args=*/NULL,
3922 /*conversion_path=*/NULL_TREE,
3923 flags,
3924 /*fn_p=*/NULL,
3925 complain);
3926 }
3927
3928 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3929 ADDR is an expression which yields the store to be destroyed.
3930 AUTO_DELETE is the name of the destructor to call, i.e., either
3931 sfk_complete_destructor, sfk_base_destructor, or
3932 sfk_deleting_destructor.
3933
3934 FLAGS is the logical disjunction of zero or more LOOKUP_
3935 flags. See cp-tree.h for more info. */
3936
3937 tree
3938 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3939 int flags, int use_global_delete, tsubst_flags_t complain)
3940 {
3941 tree expr;
3942
3943 if (addr == error_mark_node)
3944 return error_mark_node;
3945
3946 tree type = TYPE_MAIN_VARIANT (otype);
3947
3948 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3949 set to `error_mark_node' before it gets properly cleaned up. */
3950 if (type == error_mark_node)
3951 return error_mark_node;
3952
3953 if (TREE_CODE (type) == POINTER_TYPE)
3954 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3955
3956 if (TREE_CODE (type) == ARRAY_TYPE)
3957 {
3958 if (TYPE_DOMAIN (type) == NULL_TREE)
3959 {
3960 if (complain & tf_error)
3961 error ("unknown array size in delete");
3962 return error_mark_node;
3963 }
3964 return build_vec_delete (addr, array_type_nelts (type),
3965 auto_delete, use_global_delete, complain);
3966 }
3967
3968 if (TYPE_PTR_P (otype))
3969 {
3970 bool complete_p = true;
3971
3972 addr = mark_rvalue_use (addr);
3973
3974 /* We don't want to warn about delete of void*, only other
3975 incomplete types. Deleting other incomplete types
3976 invokes undefined behavior, but it is not ill-formed, so
3977 compile to something that would even do The Right Thing
3978 (TM) should the type have a trivial dtor and no delete
3979 operator. */
3980 if (!VOID_TYPE_P (type))
3981 {
3982 complete_type (type);
3983 if (!COMPLETE_TYPE_P (type))
3984 {
3985 if ((complain & tf_warning)
3986 && warning (OPT_Wdelete_incomplete,
3987 "possible problem detected in invocation of "
3988 "delete operator:"))
3989 {
3990 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3991 inform (input_location,
3992 "neither the destructor nor the class-specific "
3993 "operator delete will be called, even if they are "
3994 "declared when the class is defined");
3995 }
3996 complete_p = false;
3997 }
3998 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3999 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4000 && TYPE_POLYMORPHIC_P (type))
4001 {
4002 tree dtor;
4003 dtor = CLASSTYPE_DESTRUCTORS (type);
4004 if (!dtor || !DECL_VINDEX (dtor))
4005 {
4006 if (CLASSTYPE_PURE_VIRTUALS (type))
4007 warning (OPT_Wdelete_non_virtual_dtor,
4008 "deleting object of abstract class type %qT"
4009 " which has non-virtual destructor"
4010 " will cause undefined behaviour", type);
4011 else
4012 warning (OPT_Wdelete_non_virtual_dtor,
4013 "deleting object of polymorphic class type %qT"
4014 " which has non-virtual destructor"
4015 " might cause undefined behaviour", type);
4016 }
4017 }
4018 }
4019 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
4020 /* Call the builtin operator delete. */
4021 return build_builtin_delete_call (addr);
4022 if (TREE_SIDE_EFFECTS (addr))
4023 addr = save_expr (addr);
4024
4025 /* Throw away const and volatile on target type of addr. */
4026 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4027 }
4028 else
4029 {
4030 /* Don't check PROTECT here; leave that decision to the
4031 destructor. If the destructor is accessible, call it,
4032 else report error. */
4033 addr = cp_build_addr_expr (addr, complain);
4034 if (addr == error_mark_node)
4035 return error_mark_node;
4036 if (TREE_SIDE_EFFECTS (addr))
4037 addr = save_expr (addr);
4038
4039 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4040 }
4041
4042 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4043 {
4044 /* Make sure the destructor is callable. */
4045 if (type_build_dtor_call (type))
4046 {
4047 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4048 complain),
4049 sfk_complete_destructor, flags, complain);
4050 if (expr == error_mark_node)
4051 return error_mark_node;
4052 }
4053
4054 if (auto_delete != sfk_deleting_destructor)
4055 return void_node;
4056
4057 return build_op_delete_call (DELETE_EXPR, addr,
4058 cxx_sizeof_nowarn (type),
4059 use_global_delete,
4060 /*placement=*/NULL_TREE,
4061 /*alloc_fn=*/NULL_TREE,
4062 complain);
4063 }
4064 else
4065 {
4066 tree head = NULL_TREE;
4067 tree do_delete = NULL_TREE;
4068 tree ifexp;
4069
4070 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4071 lazily_declare_fn (sfk_destructor, type);
4072
4073 /* For `::delete x', we must not use the deleting destructor
4074 since then we would not be sure to get the global `operator
4075 delete'. */
4076 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4077 {
4078 /* We will use ADDR multiple times so we must save it. */
4079 addr = save_expr (addr);
4080 head = get_target_expr (build_headof (addr));
4081 /* Delete the object. */
4082 do_delete = build_builtin_delete_call (head);
4083 /* Otherwise, treat this like a complete object destructor
4084 call. */
4085 auto_delete = sfk_complete_destructor;
4086 }
4087 /* If the destructor is non-virtual, there is no deleting
4088 variant. Instead, we must explicitly call the appropriate
4089 `operator delete' here. */
4090 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4091 && auto_delete == sfk_deleting_destructor)
4092 {
4093 /* We will use ADDR multiple times so we must save it. */
4094 addr = save_expr (addr);
4095 /* Build the call. */
4096 do_delete = build_op_delete_call (DELETE_EXPR,
4097 addr,
4098 cxx_sizeof_nowarn (type),
4099 /*global_p=*/false,
4100 /*placement=*/NULL_TREE,
4101 /*alloc_fn=*/NULL_TREE,
4102 complain);
4103 /* Call the complete object destructor. */
4104 auto_delete = sfk_complete_destructor;
4105 }
4106 else if (auto_delete == sfk_deleting_destructor
4107 && TYPE_GETS_REG_DELETE (type))
4108 {
4109 /* Make sure we have access to the member op delete, even though
4110 we'll actually be calling it from the destructor. */
4111 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4112 /*global_p=*/false,
4113 /*placement=*/NULL_TREE,
4114 /*alloc_fn=*/NULL_TREE,
4115 complain);
4116 }
4117
4118 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4119 auto_delete, flags, complain);
4120 if (expr == error_mark_node)
4121 return error_mark_node;
4122 if (do_delete)
4123 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4124
4125 /* We need to calculate this before the dtor changes the vptr. */
4126 if (head)
4127 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4128
4129 if (flags & LOOKUP_DESTRUCTOR)
4130 /* Explicit destructor call; don't check for null pointer. */
4131 ifexp = integer_one_node;
4132 else
4133 {
4134 /* Handle deleting a null pointer. */
4135 ifexp = fold (cp_build_binary_op (input_location,
4136 NE_EXPR, addr, nullptr_node,
4137 complain));
4138 if (ifexp == error_mark_node)
4139 return error_mark_node;
4140 }
4141
4142 if (ifexp != integer_one_node)
4143 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4144
4145 return expr;
4146 }
4147 }
4148
4149 /* At the beginning of a destructor, push cleanups that will call the
4150 destructors for our base classes and members.
4151
4152 Called from begin_destructor_body. */
4153
4154 void
4155 push_base_cleanups (void)
4156 {
4157 tree binfo, base_binfo;
4158 int i;
4159 tree member;
4160 tree expr;
4161 vec<tree, va_gc> *vbases;
4162
4163 /* Run destructors for all virtual baseclasses. */
4164 if (CLASSTYPE_VBASECLASSES (current_class_type))
4165 {
4166 tree cond = (condition_conversion
4167 (build2 (BIT_AND_EXPR, integer_type_node,
4168 current_in_charge_parm,
4169 integer_two_node)));
4170
4171 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4172 order, which is also the right order for pushing cleanups. */
4173 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4174 vec_safe_iterate (vbases, i, &base_binfo); i++)
4175 {
4176 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4177 {
4178 expr = build_special_member_call (current_class_ref,
4179 base_dtor_identifier,
4180 NULL,
4181 base_binfo,
4182 (LOOKUP_NORMAL
4183 | LOOKUP_NONVIRTUAL),
4184 tf_warning_or_error);
4185 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4186 {
4187 expr = build3 (COND_EXPR, void_type_node, cond,
4188 expr, void_node);
4189 finish_decl_cleanup (NULL_TREE, expr);
4190 }
4191 }
4192 }
4193 }
4194
4195 /* Take care of the remaining baseclasses. */
4196 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4197 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4198 {
4199 if (BINFO_VIRTUAL_P (base_binfo)
4200 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4201 continue;
4202
4203 expr = build_special_member_call (current_class_ref,
4204 base_dtor_identifier,
4205 NULL, base_binfo,
4206 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4207 tf_warning_or_error);
4208 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4209 finish_decl_cleanup (NULL_TREE, expr);
4210 }
4211
4212 /* Don't automatically destroy union members. */
4213 if (TREE_CODE (current_class_type) == UNION_TYPE)
4214 return;
4215
4216 for (member = TYPE_FIELDS (current_class_type); member;
4217 member = DECL_CHAIN (member))
4218 {
4219 tree this_type = TREE_TYPE (member);
4220 if (this_type == error_mark_node
4221 || TREE_CODE (member) != FIELD_DECL
4222 || DECL_ARTIFICIAL (member))
4223 continue;
4224 if (ANON_AGGR_TYPE_P (this_type))
4225 continue;
4226 if (type_build_dtor_call (this_type))
4227 {
4228 tree this_member = (build_class_member_access_expr
4229 (current_class_ref, member,
4230 /*access_path=*/NULL_TREE,
4231 /*preserve_reference=*/false,
4232 tf_warning_or_error));
4233 expr = build_delete (this_type, this_member,
4234 sfk_complete_destructor,
4235 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4236 0, tf_warning_or_error);
4237 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4238 finish_decl_cleanup (NULL_TREE, expr);
4239 }
4240 }
4241 }
4242
4243 /* Build a C++ vector delete expression.
4244 MAXINDEX is the number of elements to be deleted.
4245 ELT_SIZE is the nominal size of each element in the vector.
4246 BASE is the expression that should yield the store to be deleted.
4247 This function expands (or synthesizes) these calls itself.
4248 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4249
4250 This also calls delete for virtual baseclasses of elements of the vector.
4251
4252 Update: MAXINDEX is no longer needed. The size can be extracted from the
4253 start of the vector for pointers, and from the type for arrays. We still
4254 use MAXINDEX for arrays because it happens to already have one of the
4255 values we'd have to extract. (We could use MAXINDEX with pointers to
4256 confirm the size, and trap if the numbers differ; not clear that it'd
4257 be worth bothering.) */
4258
4259 tree
4260 build_vec_delete (tree base, tree maxindex,
4261 special_function_kind auto_delete_vec,
4262 int use_global_delete, tsubst_flags_t complain)
4263 {
4264 tree type;
4265 tree rval;
4266 tree base_init = NULL_TREE;
4267
4268 type = TREE_TYPE (base);
4269
4270 if (TYPE_PTR_P (type))
4271 {
4272 /* Step back one from start of vector, and read dimension. */
4273 tree cookie_addr;
4274 tree size_ptr_type = build_pointer_type (sizetype);
4275
4276 base = mark_rvalue_use (base);
4277 if (TREE_SIDE_EFFECTS (base))
4278 {
4279 base_init = get_target_expr (base);
4280 base = TARGET_EXPR_SLOT (base_init);
4281 }
4282 type = strip_array_types (TREE_TYPE (type));
4283 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4284 sizetype, TYPE_SIZE_UNIT (sizetype));
4285 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4286 cookie_addr);
4287 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4288 }
4289 else if (TREE_CODE (type) == ARRAY_TYPE)
4290 {
4291 /* Get the total number of things in the array, maxindex is a
4292 bad name. */
4293 maxindex = array_type_nelts_total (type);
4294 type = strip_array_types (type);
4295 base = decay_conversion (base, complain);
4296 if (base == error_mark_node)
4297 return error_mark_node;
4298 if (TREE_SIDE_EFFECTS (base))
4299 {
4300 base_init = get_target_expr (base);
4301 base = TARGET_EXPR_SLOT (base_init);
4302 }
4303 }
4304 else
4305 {
4306 if (base != error_mark_node && !(complain & tf_error))
4307 error ("type to vector delete is neither pointer or array type");
4308 return error_mark_node;
4309 }
4310
4311 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4312 use_global_delete, complain);
4313 if (base_init && rval != error_mark_node)
4314 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4315
4316 return rval;
4317 }