Class template argument deduction in new-expression
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33
34 static bool begin_init_stmts (tree *, tree *);
35 static tree finish_init_stmts (bool, tree, tree);
36 static void construct_virtual_base (tree, tree);
37 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
38 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
39 static void perform_member_init (tree, tree);
40 static int member_init_ok_or_else (tree, tree, tree);
41 static void expand_virtual_init (tree, tree);
42 static tree sort_mem_initializers (tree, tree);
43 static tree initializing_context (tree);
44 static void expand_cleanup_for_base (tree, tree);
45 static tree dfs_initialize_vtbl_ptrs (tree, void *);
46 static tree build_field_list (tree, tree, int *);
47 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
48
49 /* We are about to generate some complex initialization code.
50 Conceptually, it is all a single expression. However, we may want
51 to include conditionals, loops, and other such statement-level
52 constructs. Therefore, we build the initialization code inside a
53 statement-expression. This function starts such an expression.
54 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
55 pass them back to finish_init_stmts when the expression is
56 complete. */
57
58 static bool
59 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
60 {
61 bool is_global = !building_stmt_list_p ();
62
63 *stmt_expr_p = begin_stmt_expr ();
64 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
65
66 return is_global;
67 }
68
69 /* Finish out the statement-expression begun by the previous call to
70 begin_init_stmts. Returns the statement-expression itself. */
71
72 static tree
73 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
74 {
75 finish_compound_stmt (compound_stmt);
76
77 stmt_expr = finish_stmt_expr (stmt_expr, true);
78
79 gcc_assert (!building_stmt_list_p () == is_global);
80
81 return stmt_expr;
82 }
83
84 /* Constructors */
85
86 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
87 which we want to initialize the vtable pointer for, DATA is
88 TREE_LIST whose TREE_VALUE is the this ptr expression. */
89
90 static tree
91 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
92 {
93 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
94 return dfs_skip_bases;
95
96 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
97 {
98 tree base_ptr = TREE_VALUE ((tree) data);
99
100 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
101 tf_warning_or_error);
102
103 expand_virtual_init (binfo, base_ptr);
104 }
105
106 return NULL_TREE;
107 }
108
109 /* Initialize all the vtable pointers in the object pointed to by
110 ADDR. */
111
112 void
113 initialize_vtbl_ptrs (tree addr)
114 {
115 tree list;
116 tree type;
117
118 type = TREE_TYPE (TREE_TYPE (addr));
119 list = build_tree_list (type, addr);
120
121 /* Walk through the hierarchy, initializing the vptr in each base
122 class. We do these in pre-order because we can't find the virtual
123 bases for a class until we've initialized the vtbl for that
124 class. */
125 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
126 }
127
128 /* Return an expression for the zero-initialization of an object with
129 type T. This expression will either be a constant (in the case
130 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
131 aggregate), or NULL (in the case that T does not require
132 initialization). In either case, the value can be used as
133 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
134 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
135 is the number of elements in the array. If STATIC_STORAGE_P is
136 TRUE, initializers are only generated for entities for which
137 zero-initialization does not simply mean filling the storage with
138 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
139 subfields with bit positions at or above that bit size shouldn't
140 be added. Note that this only works when the result is assigned
141 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
142 expand_assignment will end up clearing the full size of TYPE. */
143
144 static tree
145 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
146 tree field_size)
147 {
148 tree init = NULL_TREE;
149
150 /* [dcl.init]
151
152 To zero-initialize an object of type T means:
153
154 -- if T is a scalar type, the storage is set to the value of zero
155 converted to T.
156
157 -- if T is a non-union class type, the storage for each nonstatic
158 data member and each base-class subobject is zero-initialized.
159
160 -- if T is a union type, the storage for its first data member is
161 zero-initialized.
162
163 -- if T is an array type, the storage for each element is
164 zero-initialized.
165
166 -- if T is a reference type, no initialization is performed. */
167
168 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
169
170 if (type == error_mark_node)
171 ;
172 else if (static_storage_p && zero_init_p (type))
173 /* In order to save space, we do not explicitly build initializers
174 for items that do not need them. GCC's semantics are that
175 items with static storage duration that are not otherwise
176 initialized are initialized to zero. */
177 ;
178 else if (TYPE_PTR_OR_PTRMEM_P (type))
179 init = fold (convert (type, nullptr_node));
180 else if (SCALAR_TYPE_P (type))
181 init = fold (convert (type, integer_zero_node));
182 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
183 {
184 tree field;
185 vec<constructor_elt, va_gc> *v = NULL;
186
187 /* Iterate over the fields, building initializations. */
188 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
189 {
190 if (TREE_CODE (field) != FIELD_DECL)
191 continue;
192
193 if (TREE_TYPE (field) == error_mark_node)
194 continue;
195
196 /* Don't add virtual bases for base classes if they are beyond
197 the size of the current field, that means it is present
198 somewhere else in the object. */
199 if (field_size)
200 {
201 tree bitpos = bit_position (field);
202 if (TREE_CODE (bitpos) == INTEGER_CST
203 && !tree_int_cst_lt (bitpos, field_size))
204 continue;
205 }
206
207 /* Note that for class types there will be FIELD_DECLs
208 corresponding to base classes as well. Thus, iterating
209 over TYPE_FIELDs will result in correct initialization of
210 all of the subobjects. */
211 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
212 {
213 tree new_field_size
214 = (DECL_FIELD_IS_BASE (field)
215 && DECL_SIZE (field)
216 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
217 ? DECL_SIZE (field) : NULL_TREE;
218 tree value = build_zero_init_1 (TREE_TYPE (field),
219 /*nelts=*/NULL_TREE,
220 static_storage_p,
221 new_field_size);
222 if (value)
223 CONSTRUCTOR_APPEND_ELT(v, field, value);
224 }
225
226 /* For unions, only the first field is initialized. */
227 if (TREE_CODE (type) == UNION_TYPE)
228 break;
229 }
230
231 /* Build a constructor to contain the initializations. */
232 init = build_constructor (type, v);
233 }
234 else if (TREE_CODE (type) == ARRAY_TYPE)
235 {
236 tree max_index;
237 vec<constructor_elt, va_gc> *v = NULL;
238
239 /* Iterate over the array elements, building initializations. */
240 if (nelts)
241 max_index = fold_build2_loc (input_location,
242 MINUS_EXPR, TREE_TYPE (nelts),
243 nelts, integer_one_node);
244 else
245 max_index = array_type_nelts (type);
246
247 /* If we have an error_mark here, we should just return error mark
248 as we don't know the size of the array yet. */
249 if (max_index == error_mark_node)
250 return error_mark_node;
251 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
252
253 /* A zero-sized array, which is accepted as an extension, will
254 have an upper bound of -1. */
255 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
256 {
257 constructor_elt ce;
258
259 /* If this is a one element array, we just use a regular init. */
260 if (tree_int_cst_equal (size_zero_node, max_index))
261 ce.index = size_zero_node;
262 else
263 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
264 max_index);
265
266 ce.value = build_zero_init_1 (TREE_TYPE (type),
267 /*nelts=*/NULL_TREE,
268 static_storage_p, NULL_TREE);
269 if (ce.value)
270 {
271 vec_alloc (v, 1);
272 v->quick_push (ce);
273 }
274 }
275
276 /* Build a constructor to contain the initializations. */
277 init = build_constructor (type, v);
278 }
279 else if (VECTOR_TYPE_P (type))
280 init = build_zero_cst (type);
281 else
282 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
283
284 /* In all cases, the initializer is a constant. */
285 if (init)
286 TREE_CONSTANT (init) = 1;
287
288 return init;
289 }
290
291 /* Return an expression for the zero-initialization of an object with
292 type T. This expression will either be a constant (in the case
293 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
294 aggregate), or NULL (in the case that T does not require
295 initialization). In either case, the value can be used as
296 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
297 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
298 is the number of elements in the array. If STATIC_STORAGE_P is
299 TRUE, initializers are only generated for entities for which
300 zero-initialization does not simply mean filling the storage with
301 zero bytes. */
302
303 tree
304 build_zero_init (tree type, tree nelts, bool static_storage_p)
305 {
306 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
307 }
308
309 /* Return a suitable initializer for value-initializing an object of type
310 TYPE, as described in [dcl.init]. */
311
312 tree
313 build_value_init (tree type, tsubst_flags_t complain)
314 {
315 /* [dcl.init]
316
317 To value-initialize an object of type T means:
318
319 - if T is a class type (clause 9) with either no default constructor
320 (12.1) or a default constructor that is user-provided or deleted,
321 then the object is default-initialized;
322
323 - if T is a (possibly cv-qualified) class type without a user-provided
324 or deleted default constructor, then the object is zero-initialized
325 and the semantic constraints for default-initialization are checked,
326 and if T has a non-trivial default constructor, the object is
327 default-initialized;
328
329 - if T is an array type, then each element is value-initialized;
330
331 - otherwise, the object is zero-initialized.
332
333 A program that calls for default-initialization or
334 value-initialization of an entity of reference type is ill-formed. */
335
336 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
337 gcc_assert (!processing_template_decl
338 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
339
340 if (CLASS_TYPE_P (type)
341 && type_build_ctor_call (type))
342 {
343 tree ctor =
344 build_special_member_call (NULL_TREE, complete_ctor_identifier,
345 NULL, type, LOOKUP_NORMAL,
346 complain);
347 if (ctor == error_mark_node)
348 return ctor;
349 tree fn = NULL_TREE;
350 if (TREE_CODE (ctor) == CALL_EXPR)
351 fn = get_callee_fndecl (ctor);
352 ctor = build_aggr_init_expr (type, ctor);
353 if (fn && user_provided_p (fn))
354 return ctor;
355 else if (TYPE_HAS_COMPLEX_DFLT (type))
356 {
357 /* This is a class that needs constructing, but doesn't have
358 a user-provided constructor. So we need to zero-initialize
359 the object and then call the implicitly defined ctor.
360 This will be handled in simplify_aggr_init_expr. */
361 AGGR_INIT_ZERO_FIRST (ctor) = 1;
362 return ctor;
363 }
364 }
365
366 /* Discard any access checking during subobject initialization;
367 the checks are implied by the call to the ctor which we have
368 verified is OK (cpp0x/defaulted46.C). */
369 push_deferring_access_checks (dk_deferred);
370 tree r = build_value_init_noctor (type, complain);
371 pop_deferring_access_checks ();
372 return r;
373 }
374
375 /* Like build_value_init, but don't call the constructor for TYPE. Used
376 for base initializers. */
377
378 tree
379 build_value_init_noctor (tree type, tsubst_flags_t complain)
380 {
381 if (!COMPLETE_TYPE_P (type))
382 {
383 if (complain & tf_error)
384 error ("value-initialization of incomplete type %qT", type);
385 return error_mark_node;
386 }
387 /* FIXME the class and array cases should just use digest_init once it is
388 SFINAE-enabled. */
389 if (CLASS_TYPE_P (type))
390 {
391 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
392 || errorcount != 0);
393
394 if (TREE_CODE (type) != UNION_TYPE)
395 {
396 tree field;
397 vec<constructor_elt, va_gc> *v = NULL;
398
399 /* Iterate over the fields, building initializations. */
400 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
401 {
402 tree ftype, value;
403
404 if (TREE_CODE (field) != FIELD_DECL)
405 continue;
406
407 ftype = TREE_TYPE (field);
408
409 if (ftype == error_mark_node)
410 continue;
411
412 /* We could skip vfields and fields of types with
413 user-defined constructors, but I think that won't improve
414 performance at all; it should be simpler in general just
415 to zero out the entire object than try to only zero the
416 bits that actually need it. */
417
418 /* Note that for class types there will be FIELD_DECLs
419 corresponding to base classes as well. Thus, iterating
420 over TYPE_FIELDs will result in correct initialization of
421 all of the subobjects. */
422 value = build_value_init (ftype, complain);
423 value = maybe_constant_init (value);
424
425 if (value == error_mark_node)
426 return error_mark_node;
427
428 CONSTRUCTOR_APPEND_ELT(v, field, value);
429
430 /* We shouldn't have gotten here for anything that would need
431 non-trivial initialization, and gimplify_init_ctor_preeval
432 would need to be fixed to allow it. */
433 gcc_assert (TREE_CODE (value) != TARGET_EXPR
434 && TREE_CODE (value) != AGGR_INIT_EXPR);
435 }
436
437 /* Build a constructor to contain the zero- initializations. */
438 return build_constructor (type, v);
439 }
440 }
441 else if (TREE_CODE (type) == ARRAY_TYPE)
442 {
443 vec<constructor_elt, va_gc> *v = NULL;
444
445 /* Iterate over the array elements, building initializations. */
446 tree max_index = array_type_nelts (type);
447
448 /* If we have an error_mark here, we should just return error mark
449 as we don't know the size of the array yet. */
450 if (max_index == error_mark_node)
451 {
452 if (complain & tf_error)
453 error ("cannot value-initialize array of unknown bound %qT",
454 type);
455 return error_mark_node;
456 }
457 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
458
459 /* A zero-sized array, which is accepted as an extension, will
460 have an upper bound of -1. */
461 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
462 {
463 constructor_elt ce;
464
465 /* If this is a one element array, we just use a regular init. */
466 if (tree_int_cst_equal (size_zero_node, max_index))
467 ce.index = size_zero_node;
468 else
469 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
470
471 ce.value = build_value_init (TREE_TYPE (type), complain);
472 ce.value = maybe_constant_init (ce.value);
473 if (ce.value == error_mark_node)
474 return error_mark_node;
475
476 vec_alloc (v, 1);
477 v->quick_push (ce);
478
479 /* We shouldn't have gotten here for anything that would need
480 non-trivial initialization, and gimplify_init_ctor_preeval
481 would need to be fixed to allow it. */
482 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
483 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
484 }
485
486 /* Build a constructor to contain the initializations. */
487 return build_constructor (type, v);
488 }
489 else if (TREE_CODE (type) == FUNCTION_TYPE)
490 {
491 if (complain & tf_error)
492 error ("value-initialization of function type %qT", type);
493 return error_mark_node;
494 }
495 else if (TREE_CODE (type) == REFERENCE_TYPE)
496 {
497 if (complain & tf_error)
498 error ("value-initialization of reference type %qT", type);
499 return error_mark_node;
500 }
501
502 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
503 }
504
505 /* Initialize current class with INIT, a TREE_LIST of
506 arguments for a target constructor. If TREE_LIST is void_type_node,
507 an empty initializer list was given. */
508
509 static void
510 perform_target_ctor (tree init)
511 {
512 tree decl = current_class_ref;
513 tree type = current_class_type;
514
515 finish_expr_stmt (build_aggr_init (decl, init,
516 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
517 tf_warning_or_error));
518 if (type_build_dtor_call (type))
519 {
520 tree expr = build_delete (type, decl, sfk_complete_destructor,
521 LOOKUP_NORMAL
522 |LOOKUP_NONVIRTUAL
523 |LOOKUP_DESTRUCTOR,
524 0, tf_warning_or_error);
525 if (expr != error_mark_node
526 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
527 finish_eh_cleanup (expr);
528 }
529 }
530
531 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
532
533 tree
534 get_nsdmi (tree member, bool in_ctor)
535 {
536 tree init;
537 tree save_ccp = current_class_ptr;
538 tree save_ccr = current_class_ref;
539
540 if (!in_ctor)
541 {
542 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
543 refer to; constexpr evaluation knows what to do with it. */
544 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
545 current_class_ptr = build_address (current_class_ref);
546 }
547
548 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
549 {
550 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
551 if (TREE_CODE (init) == DEFAULT_ARG)
552 goto unparsed;
553
554 /* Check recursive instantiation. */
555 if (DECL_INSTANTIATING_NSDMI_P (member))
556 {
557 error ("recursive instantiation of non-static data member "
558 "initializer for %qD", member);
559 init = error_mark_node;
560 }
561 else
562 {
563 DECL_INSTANTIATING_NSDMI_P (member) = 1;
564
565 /* Do deferred instantiation of the NSDMI. */
566 init = (tsubst_copy_and_build
567 (init, DECL_TI_ARGS (member),
568 tf_warning_or_error, member, /*function_p=*/false,
569 /*integral_constant_expression_p=*/false));
570 init = digest_nsdmi_init (member, init);
571
572 DECL_INSTANTIATING_NSDMI_P (member) = 0;
573 }
574 }
575 else
576 {
577 init = DECL_INITIAL (member);
578 if (init && TREE_CODE (init) == DEFAULT_ARG)
579 {
580 unparsed:
581 error ("constructor required before non-static data member "
582 "for %qD has been parsed", member);
583 DECL_INITIAL (member) = error_mark_node;
584 init = error_mark_node;
585 }
586 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
587 so the aggregate init code below will see a CONSTRUCTOR. */
588 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
589 if (simple_target)
590 init = TARGET_EXPR_INITIAL (init);
591 init = break_out_target_exprs (init);
592 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
593 /* Now put it back so C++17 copy elision works. */
594 init = get_target_expr (init);
595 }
596 current_class_ptr = save_ccp;
597 current_class_ref = save_ccr;
598 return init;
599 }
600
601 /* Diagnose the flexible array MEMBER if its INITializer is non-null
602 and return true if so. Otherwise return false. */
603
604 bool
605 maybe_reject_flexarray_init (tree member, tree init)
606 {
607 tree type = TREE_TYPE (member);
608
609 if (!init
610 || TREE_CODE (type) != ARRAY_TYPE
611 || TYPE_DOMAIN (type))
612 return false;
613
614 /* Point at the flexible array member declaration if it's initialized
615 in-class, and at the ctor if it's initialized in a ctor member
616 initializer list. */
617 location_t loc;
618 if (DECL_INITIAL (member) == init
619 || !current_function_decl
620 || DECL_DEFAULTED_FN (current_function_decl))
621 loc = DECL_SOURCE_LOCATION (member);
622 else
623 loc = DECL_SOURCE_LOCATION (current_function_decl);
624
625 error_at (loc, "initializer for flexible array member %q#D", member);
626 return true;
627 }
628
629 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
630 arguments. If TREE_LIST is void_type_node, an empty initializer
631 list was given; if NULL_TREE no initializer was given. */
632
633 static void
634 perform_member_init (tree member, tree init)
635 {
636 tree decl;
637 tree type = TREE_TYPE (member);
638
639 /* Use the non-static data member initializer if there was no
640 mem-initializer for this field. */
641 if (init == NULL_TREE)
642 init = get_nsdmi (member, /*ctor*/true);
643
644 if (init == error_mark_node)
645 return;
646
647 /* Effective C++ rule 12 requires that all data members be
648 initialized. */
649 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
650 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
651 "%qD should be initialized in the member initialization list",
652 member);
653
654 /* Get an lvalue for the data member. */
655 decl = build_class_member_access_expr (current_class_ref, member,
656 /*access_path=*/NULL_TREE,
657 /*preserve_reference=*/true,
658 tf_warning_or_error);
659 if (decl == error_mark_node)
660 return;
661
662 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
663 && TREE_CHAIN (init) == NULL_TREE)
664 {
665 tree val = TREE_VALUE (init);
666 /* Handle references. */
667 if (REFERENCE_REF_P (val))
668 val = TREE_OPERAND (val, 0);
669 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
670 && TREE_OPERAND (val, 0) == current_class_ref)
671 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
672 OPT_Winit_self, "%qD is initialized with itself",
673 member);
674 }
675
676 if (init == void_type_node)
677 {
678 /* mem() means value-initialization. */
679 if (TREE_CODE (type) == ARRAY_TYPE)
680 {
681 init = build_vec_init_expr (type, init, tf_warning_or_error);
682 init = build2 (INIT_EXPR, type, decl, init);
683 finish_expr_stmt (init);
684 }
685 else
686 {
687 tree value = build_value_init (type, tf_warning_or_error);
688 if (value == error_mark_node)
689 return;
690 init = build2 (INIT_EXPR, type, decl, value);
691 finish_expr_stmt (init);
692 }
693 }
694 /* Deal with this here, as we will get confused if we try to call the
695 assignment op for an anonymous union. This can happen in a
696 synthesized copy constructor. */
697 else if (ANON_AGGR_TYPE_P (type))
698 {
699 if (init)
700 {
701 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
702 finish_expr_stmt (init);
703 }
704 }
705 else if (init
706 && (TREE_CODE (type) == REFERENCE_TYPE
707 /* Pre-digested NSDMI. */
708 || (((TREE_CODE (init) == CONSTRUCTOR
709 && TREE_TYPE (init) == type)
710 /* { } mem-initializer. */
711 || (TREE_CODE (init) == TREE_LIST
712 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
713 && (CP_AGGREGATE_TYPE_P (type)
714 || is_std_init_list (type)))))
715 {
716 /* With references and list-initialization, we need to deal with
717 extending temporary lifetimes. 12.2p5: "A temporary bound to a
718 reference member in a constructor’s ctor-initializer (12.6.2)
719 persists until the constructor exits." */
720 unsigned i; tree t;
721 vec<tree, va_gc> *cleanups = make_tree_vector ();
722 if (TREE_CODE (init) == TREE_LIST)
723 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
724 tf_warning_or_error);
725 if (TREE_TYPE (init) != type)
726 {
727 if (BRACE_ENCLOSED_INITIALIZER_P (init)
728 && CP_AGGREGATE_TYPE_P (type))
729 init = reshape_init (type, init, tf_warning_or_error);
730 init = digest_init (type, init, tf_warning_or_error);
731 }
732 if (init == error_mark_node)
733 return;
734 /* A FIELD_DECL doesn't really have a suitable lifetime, but
735 make_temporary_var_for_ref_to_temp will treat it as automatic and
736 set_up_extended_ref_temp wants to use the decl in a warning. */
737 init = extend_ref_init_temps (member, init, &cleanups);
738 if (TREE_CODE (type) == ARRAY_TYPE
739 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
740 init = build_vec_init_expr (type, init, tf_warning_or_error);
741 init = build2 (INIT_EXPR, type, decl, init);
742 finish_expr_stmt (init);
743 FOR_EACH_VEC_ELT (*cleanups, i, t)
744 push_cleanup (decl, t, false);
745 release_tree_vector (cleanups);
746 }
747 else if (type_build_ctor_call (type)
748 || (init && CLASS_TYPE_P (strip_array_types (type))))
749 {
750 if (TREE_CODE (type) == ARRAY_TYPE)
751 {
752 if (init)
753 {
754 /* Check to make sure the member initializer is valid and
755 something like a CONSTRUCTOR in: T a[] = { 1, 2 } and
756 if it isn't, return early to avoid triggering another
757 error below. */
758 if (maybe_reject_flexarray_init (member, init))
759 return;
760
761 if (TREE_CODE (init) != TREE_LIST || TREE_CHAIN (init))
762 init = error_mark_node;
763 else
764 init = TREE_VALUE (init);
765
766 if (BRACE_ENCLOSED_INITIALIZER_P (init))
767 init = digest_init (type, init, tf_warning_or_error);
768 }
769 if (init == NULL_TREE
770 || same_type_ignoring_top_level_qualifiers_p (type,
771 TREE_TYPE (init)))
772 {
773 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
774 {
775 /* Initialize the array only if it's not a flexible
776 array member (i.e., if it has an upper bound). */
777 init = build_vec_init_expr (type, init, tf_warning_or_error);
778 init = build2 (INIT_EXPR, type, decl, init);
779 finish_expr_stmt (init);
780 }
781 }
782 else
783 error ("invalid initializer for array member %q#D", member);
784 }
785 else
786 {
787 int flags = LOOKUP_NORMAL;
788 if (DECL_DEFAULTED_FN (current_function_decl))
789 flags |= LOOKUP_DEFAULTED;
790 if (CP_TYPE_CONST_P (type)
791 && init == NULL_TREE
792 && default_init_uninitialized_part (type))
793 {
794 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
795 vtable; still give this diagnostic. */
796 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
797 "uninitialized const member in %q#T", type))
798 inform (DECL_SOURCE_LOCATION (member),
799 "%q#D should be initialized", member );
800 }
801 finish_expr_stmt (build_aggr_init (decl, init, flags,
802 tf_warning_or_error));
803 }
804 }
805 else
806 {
807 if (init == NULL_TREE)
808 {
809 tree core_type;
810 /* member traversal: note it leaves init NULL */
811 if (TREE_CODE (type) == REFERENCE_TYPE)
812 {
813 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
814 "uninitialized reference member in %q#T", type))
815 inform (DECL_SOURCE_LOCATION (member),
816 "%q#D should be initialized", member);
817 }
818 else if (CP_TYPE_CONST_P (type))
819 {
820 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
821 "uninitialized const member in %q#T", type))
822 inform (DECL_SOURCE_LOCATION (member),
823 "%q#D should be initialized", member );
824 }
825
826 core_type = strip_array_types (type);
827
828 if (CLASS_TYPE_P (core_type)
829 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
830 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
831 diagnose_uninitialized_cst_or_ref_member (core_type,
832 /*using_new=*/false,
833 /*complain=*/true);
834 }
835 else if (TREE_CODE (init) == TREE_LIST)
836 /* There was an explicit member initialization. Do some work
837 in that case. */
838 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
839 tf_warning_or_error);
840
841 /* Reject a member initializer for a flexible array member. */
842 if (init && !maybe_reject_flexarray_init (member, init))
843 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
844 INIT_EXPR, init,
845 tf_warning_or_error));
846 }
847
848 if (type_build_dtor_call (type))
849 {
850 tree expr;
851
852 expr = build_class_member_access_expr (current_class_ref, member,
853 /*access_path=*/NULL_TREE,
854 /*preserve_reference=*/false,
855 tf_warning_or_error);
856 expr = build_delete (type, expr, sfk_complete_destructor,
857 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
858 tf_warning_or_error);
859
860 if (expr != error_mark_node
861 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
862 finish_eh_cleanup (expr);
863 }
864 }
865
866 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
867 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
868
869 static tree
870 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
871 {
872 tree fields;
873
874 /* Note whether or not T is a union. */
875 if (TREE_CODE (t) == UNION_TYPE)
876 *uses_unions_or_anon_p = 1;
877
878 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
879 {
880 tree fieldtype;
881
882 /* Skip CONST_DECLs for enumeration constants and so forth. */
883 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
884 continue;
885
886 fieldtype = TREE_TYPE (fields);
887
888 /* For an anonymous struct or union, we must recursively
889 consider the fields of the anonymous type. They can be
890 directly initialized from the constructor. */
891 if (ANON_AGGR_TYPE_P (fieldtype))
892 {
893 /* Add this field itself. Synthesized copy constructors
894 initialize the entire aggregate. */
895 list = tree_cons (fields, NULL_TREE, list);
896 /* And now add the fields in the anonymous aggregate. */
897 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
898 *uses_unions_or_anon_p = 1;
899 }
900 /* Add this field. */
901 else if (DECL_NAME (fields))
902 list = tree_cons (fields, NULL_TREE, list);
903 }
904
905 return list;
906 }
907
908 /* Return the innermost aggregate scope for FIELD, whether that is
909 the enclosing class or an anonymous aggregate within it. */
910
911 static tree
912 innermost_aggr_scope (tree field)
913 {
914 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
915 return TREE_TYPE (field);
916 else
917 return DECL_CONTEXT (field);
918 }
919
920 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
921 a FIELD_DECL or BINFO in T that needs initialization. The
922 TREE_VALUE gives the initializer, or list of initializer arguments.
923
924 Return a TREE_LIST containing all of the initializations required
925 for T, in the order in which they should be performed. The output
926 list has the same format as the input. */
927
928 static tree
929 sort_mem_initializers (tree t, tree mem_inits)
930 {
931 tree init;
932 tree base, binfo, base_binfo;
933 tree sorted_inits;
934 tree next_subobject;
935 vec<tree, va_gc> *vbases;
936 int i;
937 int uses_unions_or_anon_p = 0;
938
939 /* Build up a list of initializations. The TREE_PURPOSE of entry
940 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
941 TREE_VALUE will be the constructor arguments, or NULL if no
942 explicit initialization was provided. */
943 sorted_inits = NULL_TREE;
944
945 /* Process the virtual bases. */
946 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
947 vec_safe_iterate (vbases, i, &base); i++)
948 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
949
950 /* Process the direct bases. */
951 for (binfo = TYPE_BINFO (t), i = 0;
952 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
953 if (!BINFO_VIRTUAL_P (base_binfo))
954 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
955
956 /* Process the non-static data members. */
957 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
958 /* Reverse the entire list of initializations, so that they are in
959 the order that they will actually be performed. */
960 sorted_inits = nreverse (sorted_inits);
961
962 /* If the user presented the initializers in an order different from
963 that in which they will actually occur, we issue a warning. Keep
964 track of the next subobject which can be explicitly initialized
965 without issuing a warning. */
966 next_subobject = sorted_inits;
967
968 /* Go through the explicit initializers, filling in TREE_PURPOSE in
969 the SORTED_INITS. */
970 for (init = mem_inits; init; init = TREE_CHAIN (init))
971 {
972 tree subobject;
973 tree subobject_init;
974
975 subobject = TREE_PURPOSE (init);
976
977 /* If the explicit initializers are in sorted order, then
978 SUBOBJECT will be NEXT_SUBOBJECT, or something following
979 it. */
980 for (subobject_init = next_subobject;
981 subobject_init;
982 subobject_init = TREE_CHAIN (subobject_init))
983 if (TREE_PURPOSE (subobject_init) == subobject)
984 break;
985
986 /* Issue a warning if the explicit initializer order does not
987 match that which will actually occur.
988 ??? Are all these on the correct lines? */
989 if (warn_reorder && !subobject_init)
990 {
991 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
992 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
993 OPT_Wreorder, "%qD will be initialized after",
994 TREE_PURPOSE (next_subobject));
995 else
996 warning (OPT_Wreorder, "base %qT will be initialized after",
997 TREE_PURPOSE (next_subobject));
998 if (TREE_CODE (subobject) == FIELD_DECL)
999 warning_at (DECL_SOURCE_LOCATION (subobject),
1000 OPT_Wreorder, " %q#D", subobject);
1001 else
1002 warning (OPT_Wreorder, " base %qT", subobject);
1003 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1004 OPT_Wreorder, " when initialized here");
1005 }
1006
1007 /* Look again, from the beginning of the list. */
1008 if (!subobject_init)
1009 {
1010 subobject_init = sorted_inits;
1011 while (TREE_PURPOSE (subobject_init) != subobject)
1012 subobject_init = TREE_CHAIN (subobject_init);
1013 }
1014
1015 /* It is invalid to initialize the same subobject more than
1016 once. */
1017 if (TREE_VALUE (subobject_init))
1018 {
1019 if (TREE_CODE (subobject) == FIELD_DECL)
1020 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1021 "multiple initializations given for %qD",
1022 subobject);
1023 else
1024 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1025 "multiple initializations given for base %qT",
1026 subobject);
1027 }
1028
1029 /* Record the initialization. */
1030 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1031 next_subobject = subobject_init;
1032 }
1033
1034 /* [class.base.init]
1035
1036 If a ctor-initializer specifies more than one mem-initializer for
1037 multiple members of the same union (including members of
1038 anonymous unions), the ctor-initializer is ill-formed.
1039
1040 Here we also splice out uninitialized union members. */
1041 if (uses_unions_or_anon_p)
1042 {
1043 tree *last_p = NULL;
1044 tree *p;
1045 for (p = &sorted_inits; *p; )
1046 {
1047 tree field;
1048 tree ctx;
1049
1050 init = *p;
1051
1052 field = TREE_PURPOSE (init);
1053
1054 /* Skip base classes. */
1055 if (TREE_CODE (field) != FIELD_DECL)
1056 goto next;
1057
1058 /* If this is an anonymous aggregate with no explicit initializer,
1059 splice it out. */
1060 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1061 goto splice;
1062
1063 /* See if this field is a member of a union, or a member of a
1064 structure contained in a union, etc. */
1065 ctx = innermost_aggr_scope (field);
1066
1067 /* If this field is not a member of a union, skip it. */
1068 if (TREE_CODE (ctx) != UNION_TYPE
1069 && !ANON_AGGR_TYPE_P (ctx))
1070 goto next;
1071
1072 /* If this union member has no explicit initializer and no NSDMI,
1073 splice it out. */
1074 if (TREE_VALUE (init) || DECL_INITIAL (field))
1075 /* OK. */;
1076 else
1077 goto splice;
1078
1079 /* It's only an error if we have two initializers for the same
1080 union type. */
1081 if (!last_p)
1082 {
1083 last_p = p;
1084 goto next;
1085 }
1086
1087 /* See if LAST_FIELD and the field initialized by INIT are
1088 members of the same union (or the union itself). If so, there's
1089 a problem, unless they're actually members of the same structure
1090 which is itself a member of a union. For example, given:
1091
1092 union { struct { int i; int j; }; };
1093
1094 initializing both `i' and `j' makes sense. */
1095 ctx = common_enclosing_class
1096 (innermost_aggr_scope (field),
1097 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1098
1099 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1100 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1101 {
1102 /* A mem-initializer hides an NSDMI. */
1103 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1104 *last_p = TREE_CHAIN (*last_p);
1105 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1106 goto splice;
1107 else
1108 {
1109 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1110 "initializations for multiple members of %qT",
1111 ctx);
1112 goto splice;
1113 }
1114 }
1115
1116 last_p = p;
1117
1118 next:
1119 p = &TREE_CHAIN (*p);
1120 continue;
1121 splice:
1122 *p = TREE_CHAIN (*p);
1123 continue;
1124 }
1125 }
1126
1127 return sorted_inits;
1128 }
1129
1130 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1131 is a TREE_LIST giving the explicit mem-initializer-list for the
1132 constructor. The TREE_PURPOSE of each entry is a subobject (a
1133 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1134 is a TREE_LIST giving the arguments to the constructor or
1135 void_type_node for an empty list of arguments. */
1136
1137 void
1138 emit_mem_initializers (tree mem_inits)
1139 {
1140 int flags = LOOKUP_NORMAL;
1141
1142 /* We will already have issued an error message about the fact that
1143 the type is incomplete. */
1144 if (!COMPLETE_TYPE_P (current_class_type))
1145 return;
1146
1147 if (mem_inits
1148 && TYPE_P (TREE_PURPOSE (mem_inits))
1149 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1150 {
1151 /* Delegating constructor. */
1152 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1153 perform_target_ctor (TREE_VALUE (mem_inits));
1154 return;
1155 }
1156
1157 if (DECL_DEFAULTED_FN (current_function_decl)
1158 && ! DECL_INHERITED_CTOR (current_function_decl))
1159 flags |= LOOKUP_DEFAULTED;
1160
1161 /* Sort the mem-initializers into the order in which the
1162 initializations should be performed. */
1163 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1164
1165 in_base_initializer = 1;
1166
1167 /* Initialize base classes. */
1168 for (; (mem_inits
1169 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1170 mem_inits = TREE_CHAIN (mem_inits))
1171 {
1172 tree subobject = TREE_PURPOSE (mem_inits);
1173 tree arguments = TREE_VALUE (mem_inits);
1174
1175 /* We already have issued an error message. */
1176 if (arguments == error_mark_node)
1177 continue;
1178
1179 /* Suppress access control when calling the inherited ctor. */
1180 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1181 && flag_new_inheriting_ctors
1182 && arguments);
1183 if (inherited_base)
1184 push_deferring_access_checks (dk_deferred);
1185
1186 if (arguments == NULL_TREE)
1187 {
1188 /* If these initializations are taking place in a copy constructor,
1189 the base class should probably be explicitly initialized if there
1190 is a user-defined constructor in the base class (other than the
1191 default constructor, which will be called anyway). */
1192 if (extra_warnings
1193 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1194 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1195 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1196 OPT_Wextra, "base class %q#T should be explicitly "
1197 "initialized in the copy constructor",
1198 BINFO_TYPE (subobject));
1199 }
1200
1201 /* Initialize the base. */
1202 if (!BINFO_VIRTUAL_P (subobject))
1203 {
1204 tree base_addr;
1205
1206 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1207 subobject, 1, tf_warning_or_error);
1208 expand_aggr_init_1 (subobject, NULL_TREE,
1209 cp_build_indirect_ref (base_addr, RO_NULL,
1210 tf_warning_or_error),
1211 arguments,
1212 flags,
1213 tf_warning_or_error);
1214 expand_cleanup_for_base (subobject, NULL_TREE);
1215 }
1216 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1217 /* C++14 DR1658 Means we do not have to construct vbases of
1218 abstract classes. */
1219 construct_virtual_base (subobject, arguments);
1220 else
1221 /* When not constructing vbases of abstract classes, at least mark
1222 the arguments expressions as read to avoid
1223 -Wunused-but-set-parameter false positives. */
1224 for (tree arg = arguments; arg; arg = TREE_CHAIN (arg))
1225 mark_exp_read (TREE_VALUE (arg));
1226
1227 if (inherited_base)
1228 pop_deferring_access_checks ();
1229 }
1230 in_base_initializer = 0;
1231
1232 /* Initialize the vptrs. */
1233 initialize_vtbl_ptrs (current_class_ptr);
1234
1235 /* Initialize the data members. */
1236 while (mem_inits)
1237 {
1238 perform_member_init (TREE_PURPOSE (mem_inits),
1239 TREE_VALUE (mem_inits));
1240 mem_inits = TREE_CHAIN (mem_inits);
1241 }
1242 }
1243
1244 /* Returns the address of the vtable (i.e., the value that should be
1245 assigned to the vptr) for BINFO. */
1246
1247 tree
1248 build_vtbl_address (tree binfo)
1249 {
1250 tree binfo_for = binfo;
1251 tree vtbl;
1252
1253 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1254 /* If this is a virtual primary base, then the vtable we want to store
1255 is that for the base this is being used as the primary base of. We
1256 can't simply skip the initialization, because we may be expanding the
1257 inits of a subobject constructor where the virtual base layout
1258 can be different. */
1259 while (BINFO_PRIMARY_P (binfo_for))
1260 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1261
1262 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1263 used. */
1264 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1265 TREE_USED (vtbl) = true;
1266
1267 /* Now compute the address to use when initializing the vptr. */
1268 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1269 if (VAR_P (vtbl))
1270 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1271
1272 return vtbl;
1273 }
1274
1275 /* This code sets up the virtual function tables appropriate for
1276 the pointer DECL. It is a one-ply initialization.
1277
1278 BINFO is the exact type that DECL is supposed to be. In
1279 multiple inheritance, this might mean "C's A" if C : A, B. */
1280
1281 static void
1282 expand_virtual_init (tree binfo, tree decl)
1283 {
1284 tree vtbl, vtbl_ptr;
1285 tree vtt_index;
1286
1287 /* Compute the initializer for vptr. */
1288 vtbl = build_vtbl_address (binfo);
1289
1290 /* We may get this vptr from a VTT, if this is a subobject
1291 constructor or subobject destructor. */
1292 vtt_index = BINFO_VPTR_INDEX (binfo);
1293 if (vtt_index)
1294 {
1295 tree vtbl2;
1296 tree vtt_parm;
1297
1298 /* Compute the value to use, when there's a VTT. */
1299 vtt_parm = current_vtt_parm;
1300 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1301 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1302 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1303
1304 /* The actual initializer is the VTT value only in the subobject
1305 constructor. In maybe_clone_body we'll substitute NULL for
1306 the vtt_parm in the case of the non-subobject constructor. */
1307 vtbl = build_if_in_charge (vtbl, vtbl2);
1308 }
1309
1310 /* Compute the location of the vtpr. */
1311 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1312 tf_warning_or_error),
1313 TREE_TYPE (binfo));
1314 gcc_assert (vtbl_ptr != error_mark_node);
1315
1316 /* Assign the vtable to the vptr. */
1317 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1318 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1319 vtbl, tf_warning_or_error));
1320 }
1321
1322 /* If an exception is thrown in a constructor, those base classes already
1323 constructed must be destroyed. This function creates the cleanup
1324 for BINFO, which has just been constructed. If FLAG is non-NULL,
1325 it is a DECL which is nonzero when this base needs to be
1326 destroyed. */
1327
1328 static void
1329 expand_cleanup_for_base (tree binfo, tree flag)
1330 {
1331 tree expr;
1332
1333 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1334 return;
1335
1336 /* Call the destructor. */
1337 expr = build_special_member_call (current_class_ref,
1338 base_dtor_identifier,
1339 NULL,
1340 binfo,
1341 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1342 tf_warning_or_error);
1343
1344 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1345 return;
1346
1347 if (flag)
1348 expr = fold_build3_loc (input_location,
1349 COND_EXPR, void_type_node,
1350 c_common_truthvalue_conversion (input_location, flag),
1351 expr, integer_zero_node);
1352
1353 finish_eh_cleanup (expr);
1354 }
1355
1356 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1357 constructor. */
1358
1359 static void
1360 construct_virtual_base (tree vbase, tree arguments)
1361 {
1362 tree inner_if_stmt;
1363 tree exp;
1364 tree flag;
1365
1366 /* If there are virtual base classes with destructors, we need to
1367 emit cleanups to destroy them if an exception is thrown during
1368 the construction process. These exception regions (i.e., the
1369 period during which the cleanups must occur) begin from the time
1370 the construction is complete to the end of the function. If we
1371 create a conditional block in which to initialize the
1372 base-classes, then the cleanup region for the virtual base begins
1373 inside a block, and ends outside of that block. This situation
1374 confuses the sjlj exception-handling code. Therefore, we do not
1375 create a single conditional block, but one for each
1376 initialization. (That way the cleanup regions always begin
1377 in the outer block.) We trust the back end to figure out
1378 that the FLAG will not change across initializations, and
1379 avoid doing multiple tests. */
1380 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1381 inner_if_stmt = begin_if_stmt ();
1382 finish_if_stmt_cond (flag, inner_if_stmt);
1383
1384 /* Compute the location of the virtual base. If we're
1385 constructing virtual bases, then we must be the most derived
1386 class. Therefore, we don't have to look up the virtual base;
1387 we already know where it is. */
1388 exp = convert_to_base_statically (current_class_ref, vbase);
1389
1390 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1391 0, tf_warning_or_error);
1392 finish_then_clause (inner_if_stmt);
1393 finish_if_stmt (inner_if_stmt);
1394
1395 expand_cleanup_for_base (vbase, flag);
1396 }
1397
1398 /* Find the context in which this FIELD can be initialized. */
1399
1400 static tree
1401 initializing_context (tree field)
1402 {
1403 tree t = DECL_CONTEXT (field);
1404
1405 /* Anonymous union members can be initialized in the first enclosing
1406 non-anonymous union context. */
1407 while (t && ANON_AGGR_TYPE_P (t))
1408 t = TYPE_CONTEXT (t);
1409 return t;
1410 }
1411
1412 /* Function to give error message if member initialization specification
1413 is erroneous. FIELD is the member we decided to initialize.
1414 TYPE is the type for which the initialization is being performed.
1415 FIELD must be a member of TYPE.
1416
1417 MEMBER_NAME is the name of the member. */
1418
1419 static int
1420 member_init_ok_or_else (tree field, tree type, tree member_name)
1421 {
1422 if (field == error_mark_node)
1423 return 0;
1424 if (!field)
1425 {
1426 error ("class %qT does not have any field named %qD", type,
1427 member_name);
1428 return 0;
1429 }
1430 if (VAR_P (field))
1431 {
1432 error ("%q#D is a static data member; it can only be "
1433 "initialized at its definition",
1434 field);
1435 return 0;
1436 }
1437 if (TREE_CODE (field) != FIELD_DECL)
1438 {
1439 error ("%q#D is not a non-static data member of %qT",
1440 field, type);
1441 return 0;
1442 }
1443 if (initializing_context (field) != type)
1444 {
1445 error ("class %qT does not have any field named %qD", type,
1446 member_name);
1447 return 0;
1448 }
1449
1450 return 1;
1451 }
1452
1453 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1454 is a _TYPE node or TYPE_DECL which names a base for that type.
1455 Check the validity of NAME, and return either the base _TYPE, base
1456 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1457 NULL_TREE and issue a diagnostic.
1458
1459 An old style unnamed direct single base construction is permitted,
1460 where NAME is NULL. */
1461
1462 tree
1463 expand_member_init (tree name)
1464 {
1465 tree basetype;
1466 tree field;
1467
1468 if (!current_class_ref)
1469 return NULL_TREE;
1470
1471 if (!name)
1472 {
1473 /* This is an obsolete unnamed base class initializer. The
1474 parser will already have warned about its use. */
1475 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1476 {
1477 case 0:
1478 error ("unnamed initializer for %qT, which has no base classes",
1479 current_class_type);
1480 return NULL_TREE;
1481 case 1:
1482 basetype = BINFO_TYPE
1483 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1484 break;
1485 default:
1486 error ("unnamed initializer for %qT, which uses multiple inheritance",
1487 current_class_type);
1488 return NULL_TREE;
1489 }
1490 }
1491 else if (TYPE_P (name))
1492 {
1493 basetype = TYPE_MAIN_VARIANT (name);
1494 name = TYPE_NAME (name);
1495 }
1496 else if (TREE_CODE (name) == TYPE_DECL)
1497 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1498 else
1499 basetype = NULL_TREE;
1500
1501 if (basetype)
1502 {
1503 tree class_binfo;
1504 tree direct_binfo;
1505 tree virtual_binfo;
1506 int i;
1507
1508 if (current_template_parms
1509 || same_type_p (basetype, current_class_type))
1510 return basetype;
1511
1512 class_binfo = TYPE_BINFO (current_class_type);
1513 direct_binfo = NULL_TREE;
1514 virtual_binfo = NULL_TREE;
1515
1516 /* Look for a direct base. */
1517 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1518 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1519 break;
1520
1521 /* Look for a virtual base -- unless the direct base is itself
1522 virtual. */
1523 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1524 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1525
1526 /* [class.base.init]
1527
1528 If a mem-initializer-id is ambiguous because it designates
1529 both a direct non-virtual base class and an inherited virtual
1530 base class, the mem-initializer is ill-formed. */
1531 if (direct_binfo && virtual_binfo)
1532 {
1533 error ("%qD is both a direct base and an indirect virtual base",
1534 basetype);
1535 return NULL_TREE;
1536 }
1537
1538 if (!direct_binfo && !virtual_binfo)
1539 {
1540 if (CLASSTYPE_VBASECLASSES (current_class_type))
1541 error ("type %qT is not a direct or virtual base of %qT",
1542 basetype, current_class_type);
1543 else
1544 error ("type %qT is not a direct base of %qT",
1545 basetype, current_class_type);
1546 return NULL_TREE;
1547 }
1548
1549 return direct_binfo ? direct_binfo : virtual_binfo;
1550 }
1551 else
1552 {
1553 if (identifier_p (name))
1554 field = lookup_field (current_class_type, name, 1, false);
1555 else
1556 field = name;
1557
1558 if (member_init_ok_or_else (field, current_class_type, name))
1559 return field;
1560 }
1561
1562 return NULL_TREE;
1563 }
1564
1565 /* This is like `expand_member_init', only it stores one aggregate
1566 value into another.
1567
1568 INIT comes in two flavors: it is either a value which
1569 is to be stored in EXP, or it is a parameter list
1570 to go to a constructor, which will operate on EXP.
1571 If INIT is not a parameter list for a constructor, then set
1572 LOOKUP_ONLYCONVERTING.
1573 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1574 the initializer, if FLAGS is 0, then it is the (init) form.
1575 If `init' is a CONSTRUCTOR, then we emit a warning message,
1576 explaining that such initializations are invalid.
1577
1578 If INIT resolves to a CALL_EXPR which happens to return
1579 something of the type we are looking for, then we know
1580 that we can safely use that call to perform the
1581 initialization.
1582
1583 The virtual function table pointer cannot be set up here, because
1584 we do not really know its type.
1585
1586 This never calls operator=().
1587
1588 When initializing, nothing is CONST.
1589
1590 A default copy constructor may have to be used to perform the
1591 initialization.
1592
1593 A constructor or a conversion operator may have to be used to
1594 perform the initialization, but not both, as it would be ambiguous. */
1595
1596 tree
1597 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1598 {
1599 tree stmt_expr;
1600 tree compound_stmt;
1601 int destroy_temps;
1602 tree type = TREE_TYPE (exp);
1603 int was_const = TREE_READONLY (exp);
1604 int was_volatile = TREE_THIS_VOLATILE (exp);
1605 int is_global;
1606
1607 if (init == error_mark_node)
1608 return error_mark_node;
1609
1610 TREE_READONLY (exp) = 0;
1611 TREE_THIS_VOLATILE (exp) = 0;
1612
1613 if (TREE_CODE (type) == ARRAY_TYPE)
1614 {
1615 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1616 int from_array = 0;
1617
1618 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1619 {
1620 from_array = 1;
1621 if (init && DECL_P (init)
1622 && !(flags & LOOKUP_ONLYCONVERTING))
1623 {
1624 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1625 recognizes it as direct-initialization. */
1626 init = build_constructor_single (init_list_type_node,
1627 NULL_TREE, init);
1628 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1629 }
1630 }
1631 else
1632 {
1633 /* An array may not be initialized use the parenthesized
1634 initialization form -- unless the initializer is "()". */
1635 if (init && TREE_CODE (init) == TREE_LIST)
1636 {
1637 if (complain & tf_error)
1638 error ("bad array initializer");
1639 return error_mark_node;
1640 }
1641 /* Must arrange to initialize each element of EXP
1642 from elements of INIT. */
1643 if (cv_qualified_p (type))
1644 TREE_TYPE (exp) = cv_unqualified (type);
1645 if (itype && cv_qualified_p (itype))
1646 TREE_TYPE (init) = cv_unqualified (itype);
1647 from_array = (itype && same_type_p (TREE_TYPE (init),
1648 TREE_TYPE (exp)));
1649 }
1650
1651 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1652 /*explicit_value_init_p=*/false,
1653 from_array,
1654 complain);
1655 TREE_READONLY (exp) = was_const;
1656 TREE_THIS_VOLATILE (exp) = was_volatile;
1657 TREE_TYPE (exp) = type;
1658 /* Restore the type of init unless it was used directly. */
1659 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1660 TREE_TYPE (init) = itype;
1661 return stmt_expr;
1662 }
1663
1664 if (init && init != void_type_node
1665 && TREE_CODE (init) != TREE_LIST
1666 && !(TREE_CODE (init) == TARGET_EXPR
1667 && TARGET_EXPR_DIRECT_INIT_P (init))
1668 && !DIRECT_LIST_INIT_P (init))
1669 flags |= LOOKUP_ONLYCONVERTING;
1670
1671 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1672 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1673 /* Just know that we've seen something for this node. */
1674 TREE_USED (exp) = 1;
1675
1676 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1677 destroy_temps = stmts_are_full_exprs_p ();
1678 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1679 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1680 init, LOOKUP_NORMAL|flags, complain);
1681 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1682 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1683 TREE_READONLY (exp) = was_const;
1684 TREE_THIS_VOLATILE (exp) = was_volatile;
1685
1686 return stmt_expr;
1687 }
1688
1689 static void
1690 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1691 tsubst_flags_t complain)
1692 {
1693 tree type = TREE_TYPE (exp);
1694 tree ctor_name;
1695
1696 /* It fails because there may not be a constructor which takes
1697 its own type as the first (or only parameter), but which does
1698 take other types via a conversion. So, if the thing initializing
1699 the expression is a unit element of type X, first try X(X&),
1700 followed by initialization by X. If neither of these work
1701 out, then look hard. */
1702 tree rval;
1703 vec<tree, va_gc> *parms;
1704
1705 /* If we have direct-initialization from an initializer list, pull
1706 it out of the TREE_LIST so the code below can see it. */
1707 if (init && TREE_CODE (init) == TREE_LIST
1708 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1709 {
1710 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1711 && TREE_CHAIN (init) == NULL_TREE);
1712 init = TREE_VALUE (init);
1713 /* Only call reshape_init if it has not been called earlier
1714 by the callers. */
1715 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1716 init = reshape_init (type, init, complain);
1717 }
1718
1719 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1720 && CP_AGGREGATE_TYPE_P (type))
1721 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1722 happen for direct-initialization, too. */
1723 init = digest_init (type, init, complain);
1724
1725 /* A CONSTRUCTOR of the target's type is a previously digested
1726 initializer, whether that happened just above or in
1727 cp_parser_late_parsing_nsdmi.
1728
1729 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1730 set represents the whole initialization, so we shouldn't build up
1731 another ctor call. */
1732 if (init
1733 && (TREE_CODE (init) == CONSTRUCTOR
1734 || (TREE_CODE (init) == TARGET_EXPR
1735 && (TARGET_EXPR_DIRECT_INIT_P (init)
1736 || TARGET_EXPR_LIST_INIT_P (init))))
1737 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1738 {
1739 /* Early initialization via a TARGET_EXPR only works for
1740 complete objects. */
1741 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1742
1743 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1744 TREE_SIDE_EFFECTS (init) = 1;
1745 finish_expr_stmt (init);
1746 return;
1747 }
1748
1749 if (init && TREE_CODE (init) != TREE_LIST
1750 && (flags & LOOKUP_ONLYCONVERTING))
1751 {
1752 /* Base subobjects should only get direct-initialization. */
1753 gcc_assert (true_exp == exp);
1754
1755 if (flags & DIRECT_BIND)
1756 /* Do nothing. We hit this in two cases: Reference initialization,
1757 where we aren't initializing a real variable, so we don't want
1758 to run a new constructor; and catching an exception, where we
1759 have already built up the constructor call so we could wrap it
1760 in an exception region. */;
1761 else
1762 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1763 flags, complain);
1764
1765 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1766 /* We need to protect the initialization of a catch parm with a
1767 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1768 around the TARGET_EXPR for the copy constructor. See
1769 initialize_handler_parm. */
1770 {
1771 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1772 TREE_OPERAND (init, 0));
1773 TREE_TYPE (init) = void_type_node;
1774 }
1775 else
1776 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1777 TREE_SIDE_EFFECTS (init) = 1;
1778 finish_expr_stmt (init);
1779 return;
1780 }
1781
1782 if (init == NULL_TREE)
1783 parms = NULL;
1784 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1785 {
1786 parms = make_tree_vector ();
1787 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1788 vec_safe_push (parms, TREE_VALUE (init));
1789 }
1790 else
1791 parms = make_tree_vector_single (init);
1792
1793 if (exp == current_class_ref && current_function_decl
1794 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1795 {
1796 /* Delegating constructor. */
1797 tree complete;
1798 tree base;
1799 tree elt; unsigned i;
1800
1801 /* Unshare the arguments for the second call. */
1802 vec<tree, va_gc> *parms2 = make_tree_vector ();
1803 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1804 {
1805 elt = break_out_target_exprs (elt);
1806 vec_safe_push (parms2, elt);
1807 }
1808 complete = build_special_member_call (exp, complete_ctor_identifier,
1809 &parms2, binfo, flags,
1810 complain);
1811 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1812 release_tree_vector (parms2);
1813
1814 base = build_special_member_call (exp, base_ctor_identifier,
1815 &parms, binfo, flags,
1816 complain);
1817 base = fold_build_cleanup_point_expr (void_type_node, base);
1818 rval = build_if_in_charge (complete, base);
1819 }
1820 else
1821 {
1822 if (true_exp == exp)
1823 ctor_name = complete_ctor_identifier;
1824 else
1825 ctor_name = base_ctor_identifier;
1826 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1827 complain);
1828 }
1829
1830 if (parms != NULL)
1831 release_tree_vector (parms);
1832
1833 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1834 {
1835 tree fn = get_callee_fndecl (rval);
1836 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1837 {
1838 tree e = maybe_constant_init (rval, exp);
1839 if (TREE_CONSTANT (e))
1840 rval = build2 (INIT_EXPR, type, exp, e);
1841 }
1842 }
1843
1844 /* FIXME put back convert_to_void? */
1845 if (TREE_SIDE_EFFECTS (rval))
1846 finish_expr_stmt (rval);
1847 }
1848
1849 /* This function is responsible for initializing EXP with INIT
1850 (if any).
1851
1852 BINFO is the binfo of the type for who we are performing the
1853 initialization. For example, if W is a virtual base class of A and B,
1854 and C : A, B.
1855 If we are initializing B, then W must contain B's W vtable, whereas
1856 were we initializing C, W must contain C's W vtable.
1857
1858 TRUE_EXP is nonzero if it is the true expression being initialized.
1859 In this case, it may be EXP, or may just contain EXP. The reason we
1860 need this is because if EXP is a base element of TRUE_EXP, we
1861 don't necessarily know by looking at EXP where its virtual
1862 baseclass fields should really be pointing. But we do know
1863 from TRUE_EXP. In constructors, we don't know anything about
1864 the value being initialized.
1865
1866 FLAGS is just passed to `build_new_method_call'. See that function
1867 for its description. */
1868
1869 static void
1870 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1871 tsubst_flags_t complain)
1872 {
1873 tree type = TREE_TYPE (exp);
1874
1875 gcc_assert (init != error_mark_node && type != error_mark_node);
1876 gcc_assert (building_stmt_list_p ());
1877
1878 /* Use a function returning the desired type to initialize EXP for us.
1879 If the function is a constructor, and its first argument is
1880 NULL_TREE, know that it was meant for us--just slide exp on
1881 in and expand the constructor. Constructors now come
1882 as TARGET_EXPRs. */
1883
1884 if (init && VAR_P (exp)
1885 && COMPOUND_LITERAL_P (init))
1886 {
1887 vec<tree, va_gc> *cleanups = NULL;
1888 /* If store_init_value returns NULL_TREE, the INIT has been
1889 recorded as the DECL_INITIAL for EXP. That means there's
1890 nothing more we have to do. */
1891 init = store_init_value (exp, init, &cleanups, flags);
1892 if (init)
1893 finish_expr_stmt (init);
1894 gcc_assert (!cleanups);
1895 return;
1896 }
1897
1898 /* List-initialization from {} becomes value-initialization for non-aggregate
1899 classes with default constructors. Handle this here when we're
1900 initializing a base, so protected access works. */
1901 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
1902 {
1903 tree elt = TREE_VALUE (init);
1904 if (DIRECT_LIST_INIT_P (elt)
1905 && CONSTRUCTOR_ELTS (elt) == 0
1906 && CLASSTYPE_NON_AGGREGATE (type)
1907 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
1908 init = void_type_node;
1909 }
1910
1911 /* If an explicit -- but empty -- initializer list was present,
1912 that's value-initialization. */
1913 if (init == void_type_node)
1914 {
1915 /* If the type has data but no user-provided ctor, we need to zero
1916 out the object. */
1917 if (!type_has_user_provided_constructor (type)
1918 && !is_really_empty_class (type))
1919 {
1920 tree field_size = NULL_TREE;
1921 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1922 /* Don't clobber already initialized virtual bases. */
1923 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1924 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1925 field_size);
1926 init = build2 (INIT_EXPR, type, exp, init);
1927 finish_expr_stmt (init);
1928 }
1929
1930 /* If we don't need to mess with the constructor at all,
1931 then we're done. */
1932 if (! type_build_ctor_call (type))
1933 return;
1934
1935 /* Otherwise fall through and call the constructor. */
1936 init = NULL_TREE;
1937 }
1938
1939 /* We know that expand_default_init can handle everything we want
1940 at this point. */
1941 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1942 }
1943
1944 /* Report an error if TYPE is not a user-defined, class type. If
1945 OR_ELSE is nonzero, give an error message. */
1946
1947 int
1948 is_class_type (tree type, int or_else)
1949 {
1950 if (type == error_mark_node)
1951 return 0;
1952
1953 if (! CLASS_TYPE_P (type))
1954 {
1955 if (or_else)
1956 error ("%qT is not a class type", type);
1957 return 0;
1958 }
1959 return 1;
1960 }
1961
1962 tree
1963 get_type_value (tree name)
1964 {
1965 if (name == error_mark_node)
1966 return NULL_TREE;
1967
1968 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1969 return IDENTIFIER_TYPE_VALUE (name);
1970 else
1971 return NULL_TREE;
1972 }
1973
1974 /* Build a reference to a member of an aggregate. This is not a C++
1975 `&', but really something which can have its address taken, and
1976 then act as a pointer to member, for example TYPE :: FIELD can have
1977 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1978 this expression is the operand of "&".
1979
1980 @@ Prints out lousy diagnostics for operator <typename>
1981 @@ fields.
1982
1983 @@ This function should be rewritten and placed in search.c. */
1984
1985 tree
1986 build_offset_ref (tree type, tree member, bool address_p,
1987 tsubst_flags_t complain)
1988 {
1989 tree decl;
1990 tree basebinfo = NULL_TREE;
1991
1992 /* class templates can come in as TEMPLATE_DECLs here. */
1993 if (TREE_CODE (member) == TEMPLATE_DECL)
1994 return member;
1995
1996 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1997 return build_qualified_name (NULL_TREE, type, member,
1998 /*template_p=*/false);
1999
2000 gcc_assert (TYPE_P (type));
2001 if (! is_class_type (type, 1))
2002 return error_mark_node;
2003
2004 gcc_assert (DECL_P (member) || BASELINK_P (member));
2005 /* Callers should call mark_used before this point. */
2006 gcc_assert (!DECL_P (member) || TREE_USED (member));
2007
2008 type = TYPE_MAIN_VARIANT (type);
2009 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2010 {
2011 if (complain & tf_error)
2012 error ("incomplete type %qT does not have member %qD", type, member);
2013 return error_mark_node;
2014 }
2015
2016 /* Entities other than non-static members need no further
2017 processing. */
2018 if (TREE_CODE (member) == TYPE_DECL)
2019 return member;
2020 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2021 return convert_from_reference (member);
2022
2023 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2024 {
2025 if (complain & tf_error)
2026 error ("invalid pointer to bit-field %qD", member);
2027 return error_mark_node;
2028 }
2029
2030 /* Set up BASEBINFO for member lookup. */
2031 decl = maybe_dummy_object (type, &basebinfo);
2032
2033 /* A lot of this logic is now handled in lookup_member. */
2034 if (BASELINK_P (member))
2035 {
2036 /* Go from the TREE_BASELINK to the member function info. */
2037 tree t = BASELINK_FUNCTIONS (member);
2038
2039 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2040 {
2041 /* Get rid of a potential OVERLOAD around it. */
2042 t = OVL_CURRENT (t);
2043
2044 /* Unique functions are handled easily. */
2045
2046 /* For non-static member of base class, we need a special rule
2047 for access checking [class.protected]:
2048
2049 If the access is to form a pointer to member, the
2050 nested-name-specifier shall name the derived class
2051 (or any class derived from that class). */
2052 bool ok;
2053 if (address_p && DECL_P (t)
2054 && DECL_NONSTATIC_MEMBER_P (t))
2055 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2056 complain);
2057 else
2058 ok = perform_or_defer_access_check (basebinfo, t, t,
2059 complain);
2060 if (!ok)
2061 return error_mark_node;
2062 if (DECL_STATIC_FUNCTION_P (t))
2063 return t;
2064 member = t;
2065 }
2066 else
2067 TREE_TYPE (member) = unknown_type_node;
2068 }
2069 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2070 {
2071 /* We need additional test besides the one in
2072 check_accessibility_of_qualified_id in case it is
2073 a pointer to non-static member. */
2074 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2075 complain))
2076 return error_mark_node;
2077 }
2078
2079 if (!address_p)
2080 {
2081 /* If MEMBER is non-static, then the program has fallen afoul of
2082 [expr.prim]:
2083
2084 An id-expression that denotes a nonstatic data member or
2085 nonstatic member function of a class can only be used:
2086
2087 -- as part of a class member access (_expr.ref_) in which the
2088 object-expression refers to the member's class or a class
2089 derived from that class, or
2090
2091 -- to form a pointer to member (_expr.unary.op_), or
2092
2093 -- in the body of a nonstatic member function of that class or
2094 of a class derived from that class (_class.mfct.nonstatic_), or
2095
2096 -- in a mem-initializer for a constructor for that class or for
2097 a class derived from that class (_class.base.init_). */
2098 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2099 {
2100 /* Build a representation of the qualified name suitable
2101 for use as the operand to "&" -- even though the "&" is
2102 not actually present. */
2103 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2104 /* In Microsoft mode, treat a non-static member function as if
2105 it were a pointer-to-member. */
2106 if (flag_ms_extensions)
2107 {
2108 PTRMEM_OK_P (member) = 1;
2109 return cp_build_addr_expr (member, complain);
2110 }
2111 if (complain & tf_error)
2112 error ("invalid use of non-static member function %qD",
2113 TREE_OPERAND (member, 1));
2114 return error_mark_node;
2115 }
2116 else if (TREE_CODE (member) == FIELD_DECL)
2117 {
2118 if (complain & tf_error)
2119 error ("invalid use of non-static data member %qD", member);
2120 return error_mark_node;
2121 }
2122 return member;
2123 }
2124
2125 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2126 PTRMEM_OK_P (member) = 1;
2127 return member;
2128 }
2129
2130 /* If DECL is a scalar enumeration constant or variable with a
2131 constant initializer, return the initializer (or, its initializers,
2132 recursively); otherwise, return DECL. If STRICT_P, the
2133 initializer is only returned if DECL is a
2134 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2135 return an aggregate constant. */
2136
2137 static tree
2138 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2139 {
2140 while (TREE_CODE (decl) == CONST_DECL
2141 || decl_constant_var_p (decl)
2142 || (!strict_p && VAR_P (decl)
2143 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2144 {
2145 tree init;
2146 /* If DECL is a static data member in a template
2147 specialization, we must instantiate it here. The
2148 initializer for the static data member is not processed
2149 until needed; we need it now. */
2150 mark_used (decl, tf_none);
2151 mark_rvalue_use (decl);
2152 init = DECL_INITIAL (decl);
2153 if (init == error_mark_node)
2154 {
2155 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2156 /* Treat the error as a constant to avoid cascading errors on
2157 excessively recursive template instantiation (c++/9335). */
2158 return init;
2159 else
2160 return decl;
2161 }
2162 /* Initializers in templates are generally expanded during
2163 instantiation, so before that for const int i(2)
2164 INIT is a TREE_LIST with the actual initializer as
2165 TREE_VALUE. */
2166 if (processing_template_decl
2167 && init
2168 && TREE_CODE (init) == TREE_LIST
2169 && TREE_CHAIN (init) == NULL_TREE)
2170 init = TREE_VALUE (init);
2171 /* Instantiate a non-dependent initializer for user variables. We
2172 mustn't do this for the temporary for an array compound literal;
2173 trying to instatiate the initializer will keep creating new
2174 temporaries until we crash. Probably it's not useful to do it for
2175 other artificial variables, either. */
2176 if (!DECL_ARTIFICIAL (decl))
2177 init = instantiate_non_dependent_or_null (init);
2178 if (!init
2179 || !TREE_TYPE (init)
2180 || !TREE_CONSTANT (init)
2181 || (!return_aggregate_cst_ok_p
2182 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2183 return an aggregate constant (of which string
2184 literals are a special case), as we do not want
2185 to make inadvertent copies of such entities, and
2186 we must be sure that their addresses are the
2187 same everywhere. */
2188 && (TREE_CODE (init) == CONSTRUCTOR
2189 || TREE_CODE (init) == STRING_CST)))
2190 break;
2191 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2192 initialization, since it doesn't represent the entire value. */
2193 if (TREE_CODE (init) == CONSTRUCTOR
2194 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2195 break;
2196 decl = unshare_expr (init);
2197 }
2198 return decl;
2199 }
2200
2201 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2202 of integral or enumeration type, or a constexpr variable of scalar type,
2203 then return that value. These are those variables permitted in constant
2204 expressions by [5.19/1]. */
2205
2206 tree
2207 scalar_constant_value (tree decl)
2208 {
2209 return constant_value_1 (decl, /*strict_p=*/true,
2210 /*return_aggregate_cst_ok_p=*/false);
2211 }
2212
2213 /* Like scalar_constant_value, but can also return aggregate initializers. */
2214
2215 tree
2216 decl_really_constant_value (tree decl)
2217 {
2218 return constant_value_1 (decl, /*strict_p=*/true,
2219 /*return_aggregate_cst_ok_p=*/true);
2220 }
2221
2222 /* A more relaxed version of scalar_constant_value, used by the
2223 common C/C++ code. */
2224
2225 tree
2226 decl_constant_value (tree decl)
2227 {
2228 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2229 /*return_aggregate_cst_ok_p=*/true);
2230 }
2231 \f
2232 /* Common subroutines of build_new and build_vec_delete. */
2233 \f
2234 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2235 the type of the object being allocated; otherwise, it's just TYPE.
2236 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2237 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2238 a vector of arguments to be provided as arguments to a placement
2239 new operator. This routine performs no semantic checks; it just
2240 creates and returns a NEW_EXPR. */
2241
2242 static tree
2243 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2244 vec<tree, va_gc> *init, int use_global_new)
2245 {
2246 tree init_list;
2247 tree new_expr;
2248
2249 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2250 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2251 permits us to distinguish the case of a missing initializer "new
2252 int" from an empty initializer "new int()". */
2253 if (init == NULL)
2254 init_list = NULL_TREE;
2255 else if (init->is_empty ())
2256 init_list = void_node;
2257 else
2258 init_list = build_tree_list_vec (init);
2259
2260 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2261 build_tree_list_vec (placement), type, nelts,
2262 init_list);
2263 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2264 TREE_SIDE_EFFECTS (new_expr) = 1;
2265
2266 return new_expr;
2267 }
2268
2269 /* Diagnose uninitialized const members or reference members of type
2270 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2271 new expression without a new-initializer and a declaration. Returns
2272 the error count. */
2273
2274 static int
2275 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2276 bool using_new, bool complain)
2277 {
2278 tree field;
2279 int error_count = 0;
2280
2281 if (type_has_user_provided_constructor (type))
2282 return 0;
2283
2284 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2285 {
2286 tree field_type;
2287
2288 if (TREE_CODE (field) != FIELD_DECL)
2289 continue;
2290
2291 field_type = strip_array_types (TREE_TYPE (field));
2292
2293 if (type_has_user_provided_constructor (field_type))
2294 continue;
2295
2296 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2297 {
2298 ++ error_count;
2299 if (complain)
2300 {
2301 if (DECL_CONTEXT (field) == origin)
2302 {
2303 if (using_new)
2304 error ("uninitialized reference member in %q#T "
2305 "using %<new%> without new-initializer", origin);
2306 else
2307 error ("uninitialized reference member in %q#T", origin);
2308 }
2309 else
2310 {
2311 if (using_new)
2312 error ("uninitialized reference member in base %q#T "
2313 "of %q#T using %<new%> without new-initializer",
2314 DECL_CONTEXT (field), origin);
2315 else
2316 error ("uninitialized reference member in base %q#T "
2317 "of %q#T", DECL_CONTEXT (field), origin);
2318 }
2319 inform (DECL_SOURCE_LOCATION (field),
2320 "%q#D should be initialized", field);
2321 }
2322 }
2323
2324 if (CP_TYPE_CONST_P (field_type))
2325 {
2326 ++ error_count;
2327 if (complain)
2328 {
2329 if (DECL_CONTEXT (field) == origin)
2330 {
2331 if (using_new)
2332 error ("uninitialized const member in %q#T "
2333 "using %<new%> without new-initializer", origin);
2334 else
2335 error ("uninitialized const member in %q#T", origin);
2336 }
2337 else
2338 {
2339 if (using_new)
2340 error ("uninitialized const member in base %q#T "
2341 "of %q#T using %<new%> without new-initializer",
2342 DECL_CONTEXT (field), origin);
2343 else
2344 error ("uninitialized const member in base %q#T "
2345 "of %q#T", DECL_CONTEXT (field), origin);
2346 }
2347 inform (DECL_SOURCE_LOCATION (field),
2348 "%q#D should be initialized", field);
2349 }
2350 }
2351
2352 if (CLASS_TYPE_P (field_type))
2353 error_count
2354 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2355 using_new, complain);
2356 }
2357 return error_count;
2358 }
2359
2360 int
2361 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2362 {
2363 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2364 }
2365
2366 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2367 overflowed. Pretend it returns sizetype so that it plays nicely in the
2368 COND_EXPR. */
2369
2370 tree
2371 throw_bad_array_new_length (void)
2372 {
2373 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2374 if (!get_global_value_if_present (fn, &fn))
2375 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2376 NULL_TREE));
2377
2378 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2379 }
2380
2381 /* Attempt to find the initializer for field T in the initializer INIT,
2382 when non-null. Returns the initializer when successful and NULL
2383 otherwise. */
2384 static tree
2385 find_field_init (tree t, tree init)
2386 {
2387 if (!init)
2388 return NULL_TREE;
2389
2390 unsigned HOST_WIDE_INT idx;
2391 tree field, elt;
2392
2393 /* Iterate over all top-level initializer elements. */
2394 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2395 {
2396 /* If the member T is found, return it. */
2397 if (field == t)
2398 return elt;
2399
2400 /* Otherwise continue and/or recurse into nested initializers. */
2401 if (TREE_CODE (elt) == CONSTRUCTOR
2402 && (init = find_field_init (t, elt)))
2403 return init;
2404 }
2405 return NULL_TREE;
2406 }
2407
2408 /* Attempt to verify that the argument, OPER, of a placement new expression
2409 refers to an object sufficiently large for an object of TYPE or an array
2410 of NELTS of such objects when NELTS is non-null, and issue a warning when
2411 it does not. SIZE specifies the size needed to construct the object or
2412 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2413 greater when the array under construction requires a cookie to store
2414 NELTS. GCC's placement new expression stores the cookie when invoking
2415 a user-defined placement new operator function but not the default one.
2416 Placement new expressions with user-defined placement new operator are
2417 not diagnosed since we don't know how they use the buffer (this could
2418 be a future extension). */
2419 static void
2420 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2421 {
2422 location_t loc = EXPR_LOC_OR_LOC (oper, input_location);
2423
2424 /* The number of bytes to add to or subtract from the size of the provided
2425 buffer based on an offset into an array or an array element reference.
2426 Although intermediate results may be negative (as in a[3] - 2) the final
2427 result cannot be. */
2428 HOST_WIDE_INT adjust = 0;
2429 /* True when the size of the entire destination object should be used
2430 to compute the possibly optimistic estimate of the available space. */
2431 bool use_obj_size = false;
2432 /* True when the reference to the destination buffer is an ADDR_EXPR. */
2433 bool addr_expr = false;
2434
2435 STRIP_NOPS (oper);
2436
2437 /* Using a function argument or a (non-array) variable as an argument
2438 to placement new is not checked since it's unknown what it might
2439 point to. */
2440 if (TREE_CODE (oper) == PARM_DECL
2441 || VAR_P (oper)
2442 || TREE_CODE (oper) == COMPONENT_REF)
2443 return;
2444
2445 /* Evaluate any constant expressions. */
2446 size = fold_non_dependent_expr (size);
2447
2448 /* Handle the common case of array + offset expression when the offset
2449 is a constant. */
2450 if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2451 {
2452 /* If the offset is comple-time constant, use it to compute a more
2453 accurate estimate of the size of the buffer. Since the operand
2454 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2455 it to signed first.
2456 Otherwise, use the size of the entire array as an optimistic
2457 estimate (this may lead to false negatives). */
2458 tree adj = TREE_OPERAND (oper, 1);
2459 if (CONSTANT_CLASS_P (adj))
2460 adjust += tree_to_shwi (convert (ssizetype, adj));
2461 else
2462 use_obj_size = true;
2463
2464 oper = TREE_OPERAND (oper, 0);
2465
2466 STRIP_NOPS (oper);
2467 }
2468
2469 if (TREE_CODE (oper) == TARGET_EXPR)
2470 oper = TREE_OPERAND (oper, 1);
2471 else if (TREE_CODE (oper) == ADDR_EXPR)
2472 {
2473 addr_expr = true;
2474 oper = TREE_OPERAND (oper, 0);
2475 }
2476
2477 STRIP_NOPS (oper);
2478
2479 if (TREE_CODE (oper) == ARRAY_REF
2480 && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2481 {
2482 /* Similar to the offset computed above, see if the array index
2483 is a compile-time constant. If so, and unless the offset was
2484 not a compile-time constant, use the index to determine the
2485 size of the buffer. Otherwise, use the entire array as
2486 an optimistic estimate of the size. */
2487 const_tree adj = TREE_OPERAND (oper, 1);
2488 if (!use_obj_size && CONSTANT_CLASS_P (adj))
2489 adjust += tree_to_shwi (adj);
2490 else
2491 {
2492 use_obj_size = true;
2493 adjust = 0;
2494 }
2495
2496 oper = TREE_OPERAND (oper, 0);
2497 }
2498
2499 /* Refers to the declared object that constains the subobject referenced
2500 by OPER. When the object is initialized, makes it possible to determine
2501 the actual size of a flexible array member used as the buffer passed
2502 as OPER to placement new. */
2503 tree var_decl = NULL_TREE;
2504 /* True when operand is a COMPONENT_REF, to distinguish flexible array
2505 members from arrays of unspecified size. */
2506 bool compref = TREE_CODE (oper) == COMPONENT_REF;
2507
2508 /* Descend into a struct or union to find the member whose address
2509 is being used as the argument. */
2510 if (TREE_CODE (oper) == COMPONENT_REF)
2511 {
2512 tree op0 = oper;
2513 while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2514 if (VAR_P (op0))
2515 var_decl = op0;
2516 oper = TREE_OPERAND (oper, 1);
2517 }
2518
2519 if ((addr_expr || !POINTER_TYPE_P (TREE_TYPE (oper)))
2520 && (VAR_P (oper)
2521 || TREE_CODE (oper) == FIELD_DECL
2522 || TREE_CODE (oper) == PARM_DECL))
2523 {
2524 /* A possibly optimistic estimate of the number of bytes available
2525 in the destination buffer. */
2526 unsigned HOST_WIDE_INT bytes_avail = 0;
2527 /* True when the estimate above is in fact the exact size
2528 of the destination buffer rather than an estimate. */
2529 bool exact_size = true;
2530
2531 /* Treat members of unions and members of structs uniformly, even
2532 though the size of a member of a union may be viewed as extending
2533 to the end of the union itself (it is by __builtin_object_size). */
2534 if ((VAR_P (oper) || use_obj_size)
2535 && DECL_SIZE_UNIT (oper)
2536 && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2537 {
2538 /* Use the size of the entire array object when the expression
2539 refers to a variable or its size depends on an expression
2540 that's not a compile-time constant. */
2541 bytes_avail = tree_to_uhwi (DECL_SIZE_UNIT (oper));
2542 exact_size = !use_obj_size;
2543 }
2544 else if (TYPE_SIZE_UNIT (TREE_TYPE (oper))
2545 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (oper))))
2546 {
2547 /* Use the size of the type of the destination buffer object
2548 as the optimistic estimate of the available space in it. */
2549 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (oper)));
2550 }
2551 else if (var_decl)
2552 {
2553 /* Constructing into a buffer provided by the flexible array
2554 member of a declared object (which is permitted as a G++
2555 extension). If the array member has been initialized,
2556 determine its size from the initializer. Otherwise,
2557 the array size is zero. */
2558 bytes_avail = 0;
2559
2560 if (tree init = find_field_init (oper, DECL_INITIAL (var_decl)))
2561 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2562 }
2563 else
2564 {
2565 /* Bail if neither the size of the object nor its type is known. */
2566 return;
2567 }
2568
2569 tree_code oper_code = TREE_CODE (TREE_TYPE (oper));
2570
2571 if (compref && oper_code == ARRAY_TYPE)
2572 {
2573 /* Avoid diagnosing flexible array members (which are accepted
2574 as an extension and diagnosed with -Wpedantic) and zero-length
2575 arrays (also an extension).
2576 Overflowing construction in one-element arrays is diagnosed
2577 only at level 2. */
2578 if (bytes_avail == 0 && !var_decl)
2579 return;
2580
2581 tree nelts = array_type_nelts_top (TREE_TYPE (oper));
2582 tree nelts_cst = maybe_constant_value (nelts);
2583 if (TREE_CODE (nelts_cst) == INTEGER_CST
2584 && integer_onep (nelts_cst)
2585 && !var_decl
2586 && warn_placement_new < 2)
2587 return;
2588 }
2589
2590 /* The size of the buffer can only be adjusted down but not up. */
2591 gcc_checking_assert (0 <= adjust);
2592
2593 /* Reduce the size of the buffer by the adjustment computed above
2594 from the offset and/or the index into the array. */
2595 if (bytes_avail < static_cast<unsigned HOST_WIDE_INT>(adjust))
2596 bytes_avail = 0;
2597 else
2598 bytes_avail -= adjust;
2599
2600 /* The minimum amount of space needed for the allocation. This
2601 is an optimistic estimate that makes it possible to detect
2602 placement new invocation for some undersize buffers but not
2603 others. */
2604 unsigned HOST_WIDE_INT bytes_need;
2605
2606 if (CONSTANT_CLASS_P (size))
2607 bytes_need = tree_to_uhwi (size);
2608 else if (nelts && CONSTANT_CLASS_P (nelts))
2609 bytes_need = tree_to_uhwi (nelts)
2610 * tree_to_uhwi (TYPE_SIZE_UNIT (type));
2611 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2612 bytes_need = tree_to_uhwi (TYPE_SIZE_UNIT (type));
2613 else
2614 {
2615 /* The type is a VLA. */
2616 return;
2617 }
2618
2619 if (bytes_avail < bytes_need)
2620 {
2621 if (nelts)
2622 if (CONSTANT_CLASS_P (nelts))
2623 warning_at (loc, OPT_Wplacement_new_,
2624 exact_size ?
2625 "placement new constructing an object of type "
2626 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2627 "and size %qwi"
2628 : "placement new constructing an object of type "
2629 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2630 "and size at most %qwu",
2631 type, tree_to_uhwi (nelts), bytes_need,
2632 TREE_TYPE (oper),
2633 bytes_avail);
2634 else
2635 warning_at (loc, OPT_Wplacement_new_,
2636 exact_size ?
2637 "placement new constructing an array of objects "
2638 "of type %qT and size %qwu in a region of type %qT "
2639 "and size %qwi"
2640 : "placement new constructing an array of objects "
2641 "of type %qT and size %qwu in a region of type %qT "
2642 "and size at most %qwu",
2643 type, bytes_need, TREE_TYPE (oper),
2644 bytes_avail);
2645 else
2646 warning_at (loc, OPT_Wplacement_new_,
2647 exact_size ?
2648 "placement new constructing an object of type %qT "
2649 "and size %qwu in a region of type %qT and size %qwi"
2650 : "placement new constructing an object of type %qT "
2651 "and size %qwu in a region of type %qT and size "
2652 "at most %qwu",
2653 type, bytes_need, TREE_TYPE (oper),
2654 bytes_avail);
2655 }
2656 }
2657 }
2658
2659 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2660
2661 bool
2662 type_has_new_extended_alignment (tree t)
2663 {
2664 return (aligned_new_threshold
2665 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2666 }
2667
2668 /* Return the alignment we expect malloc to guarantee. This should just be
2669 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2670 reason, so don't let the threshold be smaller than max_align_t_align. */
2671
2672 unsigned
2673 malloc_alignment ()
2674 {
2675 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2676 }
2677
2678 /* Generate code for a new-expression, including calling the "operator
2679 new" function, initializing the object, and, if an exception occurs
2680 during construction, cleaning up. The arguments are as for
2681 build_raw_new_expr. This may change PLACEMENT and INIT.
2682 TYPE is the type of the object being constructed, possibly an array
2683 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2684 be an array of the form U[inner], with the whole expression being
2685 "new U[NELTS][inner]"). */
2686
2687 static tree
2688 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2689 vec<tree, va_gc> **init, bool globally_qualified_p,
2690 tsubst_flags_t complain)
2691 {
2692 tree size, rval;
2693 /* True iff this is a call to "operator new[]" instead of just
2694 "operator new". */
2695 bool array_p = false;
2696 /* If ARRAY_P is true, the element type of the array. This is never
2697 an ARRAY_TYPE; for something like "new int[3][4]", the
2698 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2699 TYPE. */
2700 tree elt_type;
2701 /* The type of the new-expression. (This type is always a pointer
2702 type.) */
2703 tree pointer_type;
2704 tree non_const_pointer_type;
2705 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2706 tree outer_nelts = NULL_TREE;
2707 /* For arrays with a non-constant number of elements, a bounds checks
2708 on the NELTS parameter to avoid integer overflow at runtime. */
2709 tree outer_nelts_check = NULL_TREE;
2710 bool outer_nelts_from_type = false;
2711 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2712 offset_int inner_nelts_count = 1;
2713 tree alloc_call, alloc_expr;
2714 /* Size of the inner array elements (those with constant dimensions). */
2715 offset_int inner_size;
2716 /* The address returned by the call to "operator new". This node is
2717 a VAR_DECL and is therefore reusable. */
2718 tree alloc_node;
2719 tree alloc_fn;
2720 tree cookie_expr, init_expr;
2721 int nothrow, check_new;
2722 /* If non-NULL, the number of extra bytes to allocate at the
2723 beginning of the storage allocated for an array-new expression in
2724 order to store the number of elements. */
2725 tree cookie_size = NULL_TREE;
2726 tree placement_first;
2727 tree placement_expr = NULL_TREE;
2728 /* True if the function we are calling is a placement allocation
2729 function. */
2730 bool placement_allocation_fn_p;
2731 /* True if the storage must be initialized, either by a constructor
2732 or due to an explicit new-initializer. */
2733 bool is_initialized;
2734 /* The address of the thing allocated, not including any cookie. In
2735 particular, if an array cookie is in use, DATA_ADDR is the
2736 address of the first array element. This node is a VAR_DECL, and
2737 is therefore reusable. */
2738 tree data_addr;
2739 tree init_preeval_expr = NULL_TREE;
2740 tree orig_type = type;
2741
2742 if (nelts)
2743 {
2744 outer_nelts = nelts;
2745 array_p = true;
2746 }
2747 else if (TREE_CODE (type) == ARRAY_TYPE)
2748 {
2749 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2750 extension for variable N. (This also covers new T where T is
2751 a VLA typedef.) */
2752 array_p = true;
2753 nelts = array_type_nelts_top (type);
2754 outer_nelts = nelts;
2755 type = TREE_TYPE (type);
2756 outer_nelts_from_type = true;
2757 }
2758
2759 /* Lots of logic below. depends on whether we have a constant number of
2760 elements, so go ahead and fold it now. */
2761 if (outer_nelts)
2762 outer_nelts = maybe_constant_value (outer_nelts);
2763
2764 /* If our base type is an array, then make sure we know how many elements
2765 it has. */
2766 for (elt_type = type;
2767 TREE_CODE (elt_type) == ARRAY_TYPE;
2768 elt_type = TREE_TYPE (elt_type))
2769 {
2770 tree inner_nelts = array_type_nelts_top (elt_type);
2771 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2772 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2773 {
2774 bool overflow;
2775 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2776 inner_nelts_count, SIGNED, &overflow);
2777 if (overflow)
2778 {
2779 if (complain & tf_error)
2780 error ("integer overflow in array size");
2781 nelts = error_mark_node;
2782 }
2783 inner_nelts_count = result;
2784 }
2785 else
2786 {
2787 if (complain & tf_error)
2788 {
2789 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2790 "array size in new-expression must be constant");
2791 cxx_constant_value(inner_nelts);
2792 }
2793 nelts = error_mark_node;
2794 }
2795 if (nelts != error_mark_node)
2796 nelts = cp_build_binary_op (input_location,
2797 MULT_EXPR, nelts,
2798 inner_nelts_cst,
2799 complain);
2800 }
2801
2802 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2803 {
2804 error ("variably modified type not allowed in new-expression");
2805 return error_mark_node;
2806 }
2807
2808 if (nelts == error_mark_node)
2809 return error_mark_node;
2810
2811 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2812 variable. */
2813 if (outer_nelts_from_type
2814 && !TREE_CONSTANT (outer_nelts))
2815 {
2816 if (complain & tf_warning_or_error)
2817 {
2818 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location), OPT_Wvla,
2819 typedef_variant_p (orig_type)
2820 ? G_("non-constant array new length must be specified "
2821 "directly, not by typedef")
2822 : G_("non-constant array new length must be specified "
2823 "without parentheses around the type-id"));
2824 }
2825 else
2826 return error_mark_node;
2827 }
2828
2829 if (VOID_TYPE_P (elt_type))
2830 {
2831 if (complain & tf_error)
2832 error ("invalid type %<void%> for new");
2833 return error_mark_node;
2834 }
2835
2836 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2837 return error_mark_node;
2838
2839 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2840
2841 if (*init == NULL && cxx_dialect < cxx11)
2842 {
2843 bool maybe_uninitialized_error = false;
2844 /* A program that calls for default-initialization [...] of an
2845 entity of reference type is ill-formed. */
2846 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2847 maybe_uninitialized_error = true;
2848
2849 /* A new-expression that creates an object of type T initializes
2850 that object as follows:
2851 - If the new-initializer is omitted:
2852 -- If T is a (possibly cv-qualified) non-POD class type
2853 (or array thereof), the object is default-initialized (8.5).
2854 [...]
2855 -- Otherwise, the object created has indeterminate
2856 value. If T is a const-qualified type, or a (possibly
2857 cv-qualified) POD class type (or array thereof)
2858 containing (directly or indirectly) a member of
2859 const-qualified type, the program is ill-formed; */
2860
2861 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2862 maybe_uninitialized_error = true;
2863
2864 if (maybe_uninitialized_error
2865 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2866 /*using_new=*/true,
2867 complain & tf_error))
2868 return error_mark_node;
2869 }
2870
2871 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2872 && default_init_uninitialized_part (elt_type))
2873 {
2874 if (complain & tf_error)
2875 error ("uninitialized const in %<new%> of %q#T", elt_type);
2876 return error_mark_node;
2877 }
2878
2879 size = size_in_bytes (elt_type);
2880 if (array_p)
2881 {
2882 /* Maximum available size in bytes. Half of the address space
2883 minus the cookie size. */
2884 offset_int max_size
2885 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2886 /* Maximum number of outer elements which can be allocated. */
2887 offset_int max_outer_nelts;
2888 tree max_outer_nelts_tree;
2889
2890 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2891 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2892 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2893 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2894 /* Unconditionally subtract the cookie size. This decreases the
2895 maximum object size and is safe even if we choose not to use
2896 a cookie after all. */
2897 max_size -= wi::to_offset (cookie_size);
2898 bool overflow;
2899 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2900 &overflow);
2901 if (overflow || wi::gtu_p (inner_size, max_size))
2902 {
2903 if (complain & tf_error)
2904 error ("size of array is too large");
2905 return error_mark_node;
2906 }
2907
2908 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2909 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2910
2911 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
2912
2913 if (INTEGER_CST == TREE_CODE (outer_nelts))
2914 {
2915 if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts))
2916 {
2917 /* When the array size is constant, check it at compile time
2918 to make sure it doesn't exceed the implementation-defined
2919 maximum, as required by C++ 14 (in C++ 11 this requirement
2920 isn't explicitly stated but it's enforced anyway -- see
2921 grokdeclarator in cp/decl.c). */
2922 if (complain & tf_error)
2923 error ("size of array is too large");
2924 return error_mark_node;
2925 }
2926 }
2927 else
2928 {
2929 /* When a runtime check is necessary because the array size
2930 isn't constant, keep only the top-most seven bits (starting
2931 with the most significant non-zero bit) of the maximum size
2932 to compare the array size against, to simplify encoding the
2933 constant maximum size in the instruction stream. */
2934
2935 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2936 - wi::clz (max_outer_nelts);
2937 max_outer_nelts = (max_outer_nelts >> shift) << shift;
2938
2939 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2940 outer_nelts,
2941 max_outer_nelts_tree);
2942 }
2943 }
2944
2945 tree align_arg = NULL_TREE;
2946 if (type_has_new_extended_alignment (elt_type))
2947 align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
2948
2949 alloc_fn = NULL_TREE;
2950
2951 /* If PLACEMENT is a single simple pointer type not passed by
2952 reference, prepare to capture it in a temporary variable. Do
2953 this now, since PLACEMENT will change in the calls below. */
2954 placement_first = NULL_TREE;
2955 if (vec_safe_length (*placement) == 1
2956 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2957 placement_first = (**placement)[0];
2958
2959 bool member_new_p = false;
2960
2961 /* Allocate the object. */
2962 tree fnname;
2963 tree fns;
2964
2965 fnname = cp_operator_id (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2966
2967 member_new_p = !globally_qualified_p
2968 && CLASS_TYPE_P (elt_type)
2969 && (array_p
2970 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2971 : TYPE_HAS_NEW_OPERATOR (elt_type));
2972
2973 if (member_new_p)
2974 {
2975 /* Use a class-specific operator new. */
2976 /* If a cookie is required, add some extra space. */
2977 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2978 size = size_binop (PLUS_EXPR, size, cookie_size);
2979 else
2980 {
2981 cookie_size = NULL_TREE;
2982 /* No size arithmetic necessary, so the size check is
2983 not needed. */
2984 if (outer_nelts_check != NULL && inner_size == 1)
2985 outer_nelts_check = NULL_TREE;
2986 }
2987 /* Perform the overflow check. */
2988 tree errval = TYPE_MAX_VALUE (sizetype);
2989 if (cxx_dialect >= cxx11 && flag_exceptions)
2990 errval = throw_bad_array_new_length ();
2991 if (outer_nelts_check != NULL_TREE)
2992 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2993 size, errval);
2994 /* Create the argument list. */
2995 vec_safe_insert (*placement, 0, size);
2996 /* Do name-lookup to find the appropriate operator. */
2997 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2998 if (fns == NULL_TREE)
2999 {
3000 if (complain & tf_error)
3001 error ("no suitable %qD found in class %qT", fnname, elt_type);
3002 return error_mark_node;
3003 }
3004 if (TREE_CODE (fns) == TREE_LIST)
3005 {
3006 if (complain & tf_error)
3007 {
3008 error ("request for member %qD is ambiguous", fnname);
3009 print_candidates (fns);
3010 }
3011 return error_mark_node;
3012 }
3013 tree dummy = build_dummy_object (elt_type);
3014 alloc_call = NULL_TREE;
3015 if (align_arg)
3016 {
3017 vec<tree, va_gc> *align_args
3018 = vec_copy_and_insert (*placement, align_arg, 1);
3019 alloc_call
3020 = build_new_method_call (dummy, fns, &align_args,
3021 /*conversion_path=*/NULL_TREE,
3022 LOOKUP_NORMAL, &alloc_fn, tf_none);
3023 /* If no matching function is found and the allocated object type
3024 has new-extended alignment, the alignment argument is removed
3025 from the argument list, and overload resolution is performed
3026 again. */
3027 if (alloc_call == error_mark_node)
3028 alloc_call = NULL_TREE;
3029 }
3030 if (!alloc_call)
3031 alloc_call = build_new_method_call (dummy, fns, placement,
3032 /*conversion_path=*/NULL_TREE,
3033 LOOKUP_NORMAL,
3034 &alloc_fn, complain);
3035 }
3036 else
3037 {
3038 /* Use a global operator new. */
3039 /* See if a cookie might be required. */
3040 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3041 {
3042 cookie_size = NULL_TREE;
3043 /* No size arithmetic necessary, so the size check is
3044 not needed. */
3045 if (outer_nelts_check != NULL && inner_size == 1)
3046 outer_nelts_check = NULL_TREE;
3047 }
3048
3049 alloc_call = build_operator_new_call (fnname, placement,
3050 &size, &cookie_size,
3051 align_arg, outer_nelts_check,
3052 &alloc_fn, complain);
3053 }
3054
3055 if (alloc_call == error_mark_node)
3056 return error_mark_node;
3057
3058 gcc_assert (alloc_fn != NULL_TREE);
3059
3060 /* Now, check to see if this function is actually a placement
3061 allocation function. This can happen even when PLACEMENT is NULL
3062 because we might have something like:
3063
3064 struct S { void* operator new (size_t, int i = 0); };
3065
3066 A call to `new S' will get this allocation function, even though
3067 there is no explicit placement argument. If there is more than
3068 one argument, or there are variable arguments, then this is a
3069 placement allocation function. */
3070 placement_allocation_fn_p
3071 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3072 || varargs_function_p (alloc_fn));
3073
3074 if (warn_aligned_new
3075 && !placement_allocation_fn_p
3076 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3077 && (warn_aligned_new > 1
3078 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3079 && !aligned_allocation_fn_p (alloc_fn))
3080 {
3081 warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3082 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type));
3083 inform (input_location, "uses %qD, which does not have an alignment "
3084 "parameter", alloc_fn);
3085 if (!aligned_new_threshold)
3086 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3087 "over-aligned new support");
3088 }
3089
3090 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3091 into a temporary variable. */
3092 if (!processing_template_decl
3093 && TREE_CODE (alloc_call) == CALL_EXPR
3094 && call_expr_nargs (alloc_call) == 2
3095 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3096 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3097 {
3098 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3099
3100 if (placement_first != NULL_TREE
3101 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3102 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3103 {
3104 placement_expr = get_target_expr (placement_first);
3105 CALL_EXPR_ARG (alloc_call, 1)
3106 = fold_convert (TREE_TYPE (placement), placement_expr);
3107 }
3108
3109 if (!member_new_p
3110 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3111 {
3112 /* Attempt to make the warning point at the operator new argument. */
3113 if (placement_first)
3114 placement = placement_first;
3115
3116 warn_placement_new_too_small (orig_type, nelts, size, placement);
3117 }
3118 }
3119
3120 /* In the simple case, we can stop now. */
3121 pointer_type = build_pointer_type (type);
3122 if (!cookie_size && !is_initialized)
3123 return build_nop (pointer_type, alloc_call);
3124
3125 /* Store the result of the allocation call in a variable so that we can
3126 use it more than once. */
3127 alloc_expr = get_target_expr (alloc_call);
3128 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3129
3130 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3131 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3132 alloc_call = TREE_OPERAND (alloc_call, 1);
3133
3134 /* Preevaluate the placement args so that we don't reevaluate them for a
3135 placement delete. */
3136 if (placement_allocation_fn_p)
3137 {
3138 tree inits;
3139 stabilize_call (alloc_call, &inits);
3140 if (inits)
3141 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3142 alloc_expr);
3143 }
3144
3145 /* unless an allocation function is declared with an empty excep-
3146 tion-specification (_except.spec_), throw(), it indicates failure to
3147 allocate storage by throwing a bad_alloc exception (clause _except_,
3148 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3149 cation function is declared with an empty exception-specification,
3150 throw(), it returns null to indicate failure to allocate storage and a
3151 non-null pointer otherwise.
3152
3153 So check for a null exception spec on the op new we just called. */
3154
3155 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3156 check_new = (flag_check_new || nothrow);
3157
3158 if (cookie_size)
3159 {
3160 tree cookie;
3161 tree cookie_ptr;
3162 tree size_ptr_type;
3163
3164 /* Adjust so we're pointing to the start of the object. */
3165 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3166
3167 /* Store the number of bytes allocated so that we can know how
3168 many elements to destroy later. We use the last sizeof
3169 (size_t) bytes to store the number of elements. */
3170 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3171 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3172 alloc_node, cookie_ptr);
3173 size_ptr_type = build_pointer_type (sizetype);
3174 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3175 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3176
3177 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3178
3179 if (targetm.cxx.cookie_has_size ())
3180 {
3181 /* Also store the element size. */
3182 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3183 fold_build1_loc (input_location,
3184 NEGATE_EXPR, sizetype,
3185 size_in_bytes (sizetype)));
3186
3187 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3188 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3189 size_in_bytes (elt_type));
3190 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3191 cookie, cookie_expr);
3192 }
3193 }
3194 else
3195 {
3196 cookie_expr = NULL_TREE;
3197 data_addr = alloc_node;
3198 }
3199
3200 /* Now use a pointer to the type we've actually allocated. */
3201
3202 /* But we want to operate on a non-const version to start with,
3203 since we'll be modifying the elements. */
3204 non_const_pointer_type = build_pointer_type
3205 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3206
3207 data_addr = fold_convert (non_const_pointer_type, data_addr);
3208 /* Any further uses of alloc_node will want this type, too. */
3209 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3210
3211 /* Now initialize the allocated object. Note that we preevaluate the
3212 initialization expression, apart from the actual constructor call or
3213 assignment--we do this because we want to delay the allocation as long
3214 as possible in order to minimize the size of the exception region for
3215 placement delete. */
3216 if (is_initialized)
3217 {
3218 bool stable;
3219 bool explicit_value_init_p = false;
3220
3221 if (*init != NULL && (*init)->is_empty ())
3222 {
3223 *init = NULL;
3224 explicit_value_init_p = true;
3225 }
3226
3227 if (processing_template_decl && explicit_value_init_p)
3228 {
3229 /* build_value_init doesn't work in templates, and we don't need
3230 the initializer anyway since we're going to throw it away and
3231 rebuild it at instantiation time, so just build up a single
3232 constructor call to get any appropriate diagnostics. */
3233 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3234 if (type_build_ctor_call (elt_type))
3235 init_expr = build_special_member_call (init_expr,
3236 complete_ctor_identifier,
3237 init, elt_type,
3238 LOOKUP_NORMAL,
3239 complain);
3240 stable = stabilize_init (init_expr, &init_preeval_expr);
3241 }
3242 else if (array_p)
3243 {
3244 tree vecinit = NULL_TREE;
3245 if (vec_safe_length (*init) == 1
3246 && DIRECT_LIST_INIT_P ((**init)[0]))
3247 {
3248 vecinit = (**init)[0];
3249 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3250 /* List-value-initialization, leave it alone. */;
3251 else
3252 {
3253 tree arraytype, domain;
3254 if (TREE_CONSTANT (nelts))
3255 domain = compute_array_index_type (NULL_TREE, nelts,
3256 complain);
3257 else
3258 /* We'll check the length at runtime. */
3259 domain = NULL_TREE;
3260 arraytype = build_cplus_array_type (type, domain);
3261 vecinit = digest_init (arraytype, vecinit, complain);
3262 }
3263 }
3264 else if (*init)
3265 {
3266 if (complain & tf_error)
3267 permerror (input_location,
3268 "parenthesized initializer in array new");
3269 else
3270 return error_mark_node;
3271 vecinit = build_tree_list_vec (*init);
3272 }
3273 init_expr
3274 = build_vec_init (data_addr,
3275 cp_build_binary_op (input_location,
3276 MINUS_EXPR, outer_nelts,
3277 integer_one_node,
3278 complain),
3279 vecinit,
3280 explicit_value_init_p,
3281 /*from_array=*/0,
3282 complain);
3283
3284 /* An array initialization is stable because the initialization
3285 of each element is a full-expression, so the temporaries don't
3286 leak out. */
3287 stable = true;
3288 }
3289 else
3290 {
3291 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3292
3293 if (type_build_ctor_call (type) && !explicit_value_init_p)
3294 {
3295 init_expr = build_special_member_call (init_expr,
3296 complete_ctor_identifier,
3297 init, elt_type,
3298 LOOKUP_NORMAL,
3299 complain);
3300 }
3301 else if (explicit_value_init_p)
3302 {
3303 /* Something like `new int()'. NO_CLEANUP is needed so
3304 we don't try and build a (possibly ill-formed)
3305 destructor. */
3306 tree val = build_value_init (type, complain | tf_no_cleanup);
3307 if (val == error_mark_node)
3308 return error_mark_node;
3309 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3310 }
3311 else
3312 {
3313 tree ie;
3314
3315 /* We are processing something like `new int (10)', which
3316 means allocate an int, and initialize it with 10. */
3317
3318 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3319 complain);
3320 init_expr = cp_build_modify_expr (input_location, init_expr,
3321 INIT_EXPR, ie, complain);
3322 }
3323 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3324 object being initialized, replace them now and don't try to
3325 preevaluate. */
3326 bool had_placeholder = false;
3327 if (cxx_dialect >= cxx14
3328 && !processing_template_decl
3329 && TREE_CODE (init_expr) == INIT_EXPR)
3330 TREE_OPERAND (init_expr, 1)
3331 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3332 TREE_OPERAND (init_expr, 0),
3333 &had_placeholder);
3334 stable = (!had_placeholder
3335 && stabilize_init (init_expr, &init_preeval_expr));
3336 }
3337
3338 if (init_expr == error_mark_node)
3339 return error_mark_node;
3340
3341 /* If any part of the object initialization terminates by throwing an
3342 exception and a suitable deallocation function can be found, the
3343 deallocation function is called to free the memory in which the
3344 object was being constructed, after which the exception continues
3345 to propagate in the context of the new-expression. If no
3346 unambiguous matching deallocation function can be found,
3347 propagating the exception does not cause the object's memory to be
3348 freed. */
3349 if (flag_exceptions)
3350 {
3351 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3352 tree cleanup;
3353
3354 /* The Standard is unclear here, but the right thing to do
3355 is to use the same method for finding deallocation
3356 functions that we use for finding allocation functions. */
3357 cleanup = (build_op_delete_call
3358 (dcode,
3359 alloc_node,
3360 size,
3361 globally_qualified_p,
3362 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3363 alloc_fn,
3364 complain));
3365
3366 if (!cleanup)
3367 /* We're done. */;
3368 else if (stable)
3369 /* This is much simpler if we were able to preevaluate all of
3370 the arguments to the constructor call. */
3371 {
3372 /* CLEANUP is compiler-generated, so no diagnostics. */
3373 TREE_NO_WARNING (cleanup) = true;
3374 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3375 init_expr, cleanup);
3376 /* Likewise, this try-catch is compiler-generated. */
3377 TREE_NO_WARNING (init_expr) = true;
3378 }
3379 else
3380 /* Ack! First we allocate the memory. Then we set our sentry
3381 variable to true, and expand a cleanup that deletes the
3382 memory if sentry is true. Then we run the constructor, and
3383 finally clear the sentry.
3384
3385 We need to do this because we allocate the space first, so
3386 if there are any temporaries with cleanups in the
3387 constructor args and we weren't able to preevaluate them, we
3388 need this EH region to extend until end of full-expression
3389 to preserve nesting. */
3390 {
3391 tree end, sentry, begin;
3392
3393 begin = get_target_expr (boolean_true_node);
3394 CLEANUP_EH_ONLY (begin) = 1;
3395
3396 sentry = TARGET_EXPR_SLOT (begin);
3397
3398 /* CLEANUP is compiler-generated, so no diagnostics. */
3399 TREE_NO_WARNING (cleanup) = true;
3400
3401 TARGET_EXPR_CLEANUP (begin)
3402 = build3 (COND_EXPR, void_type_node, sentry,
3403 cleanup, void_node);
3404
3405 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3406 sentry, boolean_false_node);
3407
3408 init_expr
3409 = build2 (COMPOUND_EXPR, void_type_node, begin,
3410 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3411 end));
3412 /* Likewise, this is compiler-generated. */
3413 TREE_NO_WARNING (init_expr) = true;
3414 }
3415 }
3416 }
3417 else
3418 init_expr = NULL_TREE;
3419
3420 /* Now build up the return value in reverse order. */
3421
3422 rval = data_addr;
3423
3424 if (init_expr)
3425 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3426 if (cookie_expr)
3427 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3428
3429 if (rval == data_addr)
3430 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3431 and return the call (which doesn't need to be adjusted). */
3432 rval = TARGET_EXPR_INITIAL (alloc_expr);
3433 else
3434 {
3435 if (check_new)
3436 {
3437 tree ifexp = cp_build_binary_op (input_location,
3438 NE_EXPR, alloc_node,
3439 nullptr_node,
3440 complain);
3441 rval = build_conditional_expr (input_location, ifexp, rval,
3442 alloc_node, complain);
3443 }
3444
3445 /* Perform the allocation before anything else, so that ALLOC_NODE
3446 has been initialized before we start using it. */
3447 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3448 }
3449
3450 if (init_preeval_expr)
3451 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3452
3453 /* A new-expression is never an lvalue. */
3454 gcc_assert (!obvalue_p (rval));
3455
3456 return convert (pointer_type, rval);
3457 }
3458
3459 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3460 is a vector of placement-new arguments (or NULL if none). If NELTS
3461 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3462 is not NULL, then this is an array-new allocation; TYPE is the type
3463 of the elements in the array and NELTS is the number of elements in
3464 the array. *INIT, if non-NULL, is the initializer for the new
3465 object, or an empty vector to indicate an initializer of "()". If
3466 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3467 rather than just "new". This may change PLACEMENT and INIT. */
3468
3469 tree
3470 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3471 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3472 {
3473 tree rval;
3474 vec<tree, va_gc> *orig_placement = NULL;
3475 tree orig_nelts = NULL_TREE;
3476 vec<tree, va_gc> *orig_init = NULL;
3477
3478 if (type == error_mark_node)
3479 return error_mark_node;
3480
3481 if (nelts == NULL_TREE
3482 /* Don't do auto deduction where it might affect mangling. */
3483 && (!processing_template_decl || at_function_scope_p ()))
3484 {
3485 tree auto_node = type_uses_auto (type);
3486 if (auto_node)
3487 {
3488 tree d_init = NULL_TREE;
3489 if (vec_safe_length (*init) == 1)
3490 {
3491 d_init = (**init)[0];
3492 d_init = resolve_nondeduced_context (d_init, complain);
3493 }
3494 type = do_auto_deduction (type, d_init, auto_node);
3495 }
3496 }
3497
3498 if (processing_template_decl)
3499 {
3500 if (dependent_type_p (type)
3501 || any_type_dependent_arguments_p (*placement)
3502 || (nelts && type_dependent_expression_p (nelts))
3503 || (nelts && *init)
3504 || any_type_dependent_arguments_p (*init))
3505 return build_raw_new_expr (*placement, type, nelts, *init,
3506 use_global_new);
3507
3508 orig_placement = make_tree_vector_copy (*placement);
3509 orig_nelts = nelts;
3510 if (*init)
3511 {
3512 orig_init = make_tree_vector_copy (*init);
3513 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3514 digest_init clobber them in place. */
3515 for (unsigned i = 0; i < orig_init->length(); ++i)
3516 {
3517 tree e = (**init)[i];
3518 if (TREE_CODE (e) == CONSTRUCTOR)
3519 (**init)[i] = copy_node (e);
3520 }
3521 }
3522
3523 make_args_non_dependent (*placement);
3524 if (nelts)
3525 nelts = build_non_dependent_expr (nelts);
3526 make_args_non_dependent (*init);
3527 }
3528
3529 if (nelts)
3530 {
3531 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3532 {
3533 if (complain & tf_error)
3534 permerror (input_location, "size in array new must have integral type");
3535 else
3536 return error_mark_node;
3537 }
3538
3539 /* Try to determine the constant value only for the purposes
3540 of the diagnostic below but continue to use the original
3541 value and handle const folding later. */
3542 const_tree cst_nelts = maybe_constant_value (nelts);
3543
3544 /* The expression in a noptr-new-declarator is erroneous if it's of
3545 non-class type and its value before converting to std::size_t is
3546 less than zero. ... If the expression is a constant expression,
3547 the program is ill-fomed. */
3548 if (INTEGER_CST == TREE_CODE (cst_nelts)
3549 && tree_int_cst_sgn (cst_nelts) == -1)
3550 {
3551 if (complain & tf_error)
3552 error ("size of array is negative");
3553 return error_mark_node;
3554 }
3555
3556 nelts = mark_rvalue_use (nelts);
3557 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3558 }
3559
3560 /* ``A reference cannot be created by the new operator. A reference
3561 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3562 returned by new.'' ARM 5.3.3 */
3563 if (TREE_CODE (type) == REFERENCE_TYPE)
3564 {
3565 if (complain & tf_error)
3566 error ("new cannot be applied to a reference type");
3567 else
3568 return error_mark_node;
3569 type = TREE_TYPE (type);
3570 }
3571
3572 if (TREE_CODE (type) == FUNCTION_TYPE)
3573 {
3574 if (complain & tf_error)
3575 error ("new cannot be applied to a function type");
3576 return error_mark_node;
3577 }
3578
3579 /* The type allocated must be complete. If the new-type-id was
3580 "T[N]" then we are just checking that "T" is complete here, but
3581 that is equivalent, since the value of "N" doesn't matter. */
3582 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3583 return error_mark_node;
3584
3585 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3586 if (rval == error_mark_node)
3587 return error_mark_node;
3588
3589 if (processing_template_decl)
3590 {
3591 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3592 orig_init, use_global_new);
3593 release_tree_vector (orig_placement);
3594 release_tree_vector (orig_init);
3595 return ret;
3596 }
3597
3598 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3599 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3600 TREE_NO_WARNING (rval) = 1;
3601
3602 return rval;
3603 }
3604 \f
3605 static tree
3606 build_vec_delete_1 (tree base, tree maxindex, tree type,
3607 special_function_kind auto_delete_vec,
3608 int use_global_delete, tsubst_flags_t complain)
3609 {
3610 tree virtual_size;
3611 tree ptype = build_pointer_type (type = complete_type (type));
3612 tree size_exp;
3613
3614 /* Temporary variables used by the loop. */
3615 tree tbase, tbase_init;
3616
3617 /* This is the body of the loop that implements the deletion of a
3618 single element, and moves temp variables to next elements. */
3619 tree body;
3620
3621 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3622 tree loop = 0;
3623
3624 /* This is the thing that governs what to do after the loop has run. */
3625 tree deallocate_expr = 0;
3626
3627 /* This is the BIND_EXPR which holds the outermost iterator of the
3628 loop. It is convenient to set this variable up and test it before
3629 executing any other code in the loop.
3630 This is also the containing expression returned by this function. */
3631 tree controller = NULL_TREE;
3632 tree tmp;
3633
3634 /* We should only have 1-D arrays here. */
3635 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3636
3637 if (base == error_mark_node || maxindex == error_mark_node)
3638 return error_mark_node;
3639
3640 if (!COMPLETE_TYPE_P (type))
3641 {
3642 if ((complain & tf_warning)
3643 && warning (OPT_Wdelete_incomplete,
3644 "possible problem detected in invocation of "
3645 "delete [] operator:"))
3646 {
3647 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3648 inform (input_location, "neither the destructor nor the "
3649 "class-specific operator delete [] will be called, "
3650 "even if they are declared when the class is defined");
3651 }
3652 /* This size won't actually be used. */
3653 size_exp = size_one_node;
3654 goto no_destructor;
3655 }
3656
3657 size_exp = size_in_bytes (type);
3658
3659 if (! MAYBE_CLASS_TYPE_P (type))
3660 goto no_destructor;
3661 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3662 {
3663 /* Make sure the destructor is callable. */
3664 if (type_build_dtor_call (type))
3665 {
3666 tmp = build_delete (ptype, base, sfk_complete_destructor,
3667 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3668 complain);
3669 if (tmp == error_mark_node)
3670 return error_mark_node;
3671 }
3672 goto no_destructor;
3673 }
3674
3675 /* The below is short by the cookie size. */
3676 virtual_size = size_binop (MULT_EXPR, size_exp,
3677 fold_convert (sizetype, maxindex));
3678
3679 tbase = create_temporary_var (ptype);
3680 tbase_init
3681 = cp_build_modify_expr (input_location, tbase, NOP_EXPR,
3682 fold_build_pointer_plus_loc (input_location,
3683 fold_convert (ptype,
3684 base),
3685 virtual_size),
3686 complain);
3687 if (tbase_init == error_mark_node)
3688 return error_mark_node;
3689 controller = build3 (BIND_EXPR, void_type_node, tbase,
3690 NULL_TREE, NULL_TREE);
3691 TREE_SIDE_EFFECTS (controller) = 1;
3692
3693 body = build1 (EXIT_EXPR, void_type_node,
3694 build2 (EQ_EXPR, boolean_type_node, tbase,
3695 fold_convert (ptype, base)));
3696 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3697 tmp = fold_build_pointer_plus (tbase, tmp);
3698 tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain);
3699 if (tmp == error_mark_node)
3700 return error_mark_node;
3701 body = build_compound_expr (input_location, body, tmp);
3702 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3703 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3704 complain);
3705 if (tmp == error_mark_node)
3706 return error_mark_node;
3707 body = build_compound_expr (input_location, body, tmp);
3708
3709 loop = build1 (LOOP_EXPR, void_type_node, body);
3710 loop = build_compound_expr (input_location, tbase_init, loop);
3711
3712 no_destructor:
3713 /* Delete the storage if appropriate. */
3714 if (auto_delete_vec == sfk_deleting_destructor)
3715 {
3716 tree base_tbd;
3717
3718 /* The below is short by the cookie size. */
3719 virtual_size = size_binop (MULT_EXPR, size_exp,
3720 fold_convert (sizetype, maxindex));
3721
3722 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3723 /* no header */
3724 base_tbd = base;
3725 else
3726 {
3727 tree cookie_size;
3728
3729 cookie_size = targetm.cxx.get_cookie_size (type);
3730 base_tbd = cp_build_binary_op (input_location,
3731 MINUS_EXPR,
3732 cp_convert (string_type_node,
3733 base, complain),
3734 cookie_size,
3735 complain);
3736 if (base_tbd == error_mark_node)
3737 return error_mark_node;
3738 base_tbd = cp_convert (ptype, base_tbd, complain);
3739 /* True size with header. */
3740 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3741 }
3742
3743 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3744 base_tbd, virtual_size,
3745 use_global_delete & 1,
3746 /*placement=*/NULL_TREE,
3747 /*alloc_fn=*/NULL_TREE,
3748 complain);
3749 }
3750
3751 body = loop;
3752 if (!deallocate_expr)
3753 ;
3754 else if (!body)
3755 body = deallocate_expr;
3756 else
3757 /* The delete operator mist be called, even if a destructor
3758 throws. */
3759 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3760
3761 if (!body)
3762 body = integer_zero_node;
3763
3764 /* Outermost wrapper: If pointer is null, punt. */
3765 tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base,
3766 fold_convert (TREE_TYPE (base), nullptr_node));
3767 /* This is a compiler generated comparison, don't emit
3768 e.g. -Wnonnull-compare warning for it. */
3769 TREE_NO_WARNING (cond) = 1;
3770 body = build3_loc (input_location, COND_EXPR, void_type_node,
3771 cond, body, integer_zero_node);
3772 COND_EXPR_IS_VEC_DELETE (body) = true;
3773 body = build1 (NOP_EXPR, void_type_node, body);
3774
3775 if (controller)
3776 {
3777 TREE_OPERAND (controller, 1) = body;
3778 body = controller;
3779 }
3780
3781 if (TREE_CODE (base) == SAVE_EXPR)
3782 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3783 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3784
3785 return convert_to_void (body, ICV_CAST, complain);
3786 }
3787
3788 /* Create an unnamed variable of the indicated TYPE. */
3789
3790 tree
3791 create_temporary_var (tree type)
3792 {
3793 tree decl;
3794
3795 decl = build_decl (input_location,
3796 VAR_DECL, NULL_TREE, type);
3797 TREE_USED (decl) = 1;
3798 DECL_ARTIFICIAL (decl) = 1;
3799 DECL_IGNORED_P (decl) = 1;
3800 DECL_CONTEXT (decl) = current_function_decl;
3801
3802 return decl;
3803 }
3804
3805 /* Create a new temporary variable of the indicated TYPE, initialized
3806 to INIT.
3807
3808 It is not entered into current_binding_level, because that breaks
3809 things when it comes time to do final cleanups (which take place
3810 "outside" the binding contour of the function). */
3811
3812 tree
3813 get_temp_regvar (tree type, tree init)
3814 {
3815 tree decl;
3816
3817 decl = create_temporary_var (type);
3818 add_decl_expr (decl);
3819
3820 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
3821 init, tf_warning_or_error));
3822
3823 return decl;
3824 }
3825
3826 /* Subroutine of build_vec_init. Returns true if assigning to an array of
3827 INNER_ELT_TYPE from INIT is trivial. */
3828
3829 static bool
3830 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3831 {
3832 tree fromtype = inner_elt_type;
3833 if (lvalue_p (init))
3834 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3835 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3836 }
3837
3838 /* `build_vec_init' returns tree structure that performs
3839 initialization of a vector of aggregate types.
3840
3841 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3842 to the first element, of POINTER_TYPE.
3843 MAXINDEX is the maximum index of the array (one less than the
3844 number of elements). It is only used if BASE is a pointer or
3845 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3846
3847 INIT is the (possibly NULL) initializer.
3848
3849 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3850 elements in the array are value-initialized.
3851
3852 FROM_ARRAY is 0 if we should init everything with INIT
3853 (i.e., every element initialized from INIT).
3854 FROM_ARRAY is 1 if we should index into INIT in parallel
3855 with initialization of DECL.
3856 FROM_ARRAY is 2 if we should index into INIT in parallel,
3857 but use assignment instead of initialization. */
3858
3859 tree
3860 build_vec_init (tree base, tree maxindex, tree init,
3861 bool explicit_value_init_p,
3862 int from_array, tsubst_flags_t complain)
3863 {
3864 tree rval;
3865 tree base2 = NULL_TREE;
3866 tree itype = NULL_TREE;
3867 tree iterator;
3868 /* The type of BASE. */
3869 tree atype = TREE_TYPE (base);
3870 /* The type of an element in the array. */
3871 tree type = TREE_TYPE (atype);
3872 /* The element type reached after removing all outer array
3873 types. */
3874 tree inner_elt_type;
3875 /* The type of a pointer to an element in the array. */
3876 tree ptype;
3877 tree stmt_expr;
3878 tree compound_stmt;
3879 int destroy_temps;
3880 tree try_block = NULL_TREE;
3881 int num_initialized_elts = 0;
3882 bool is_global;
3883 tree obase = base;
3884 bool xvalue = false;
3885 bool errors = false;
3886
3887 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3888 maxindex = array_type_nelts (atype);
3889
3890 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3891 return error_mark_node;
3892
3893 maxindex = maybe_constant_value (maxindex);
3894 if (explicit_value_init_p)
3895 gcc_assert (!init);
3896
3897 inner_elt_type = strip_array_types (type);
3898
3899 /* Look through the TARGET_EXPR around a compound literal. */
3900 if (init && TREE_CODE (init) == TARGET_EXPR
3901 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3902 && from_array != 2)
3903 init = TARGET_EXPR_INITIAL (init);
3904
3905 bool direct_init = false;
3906 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
3907 && CONSTRUCTOR_NELTS (init) == 1)
3908 {
3909 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
3910 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
3911 {
3912 direct_init = DIRECT_LIST_INIT_P (init);
3913 init = elt;
3914 }
3915 }
3916
3917 /* If we have a braced-init-list, make sure that the array
3918 is big enough for all the initializers. */
3919 bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
3920 && CONSTRUCTOR_NELTS (init) > 0
3921 && !TREE_CONSTANT (maxindex));
3922
3923 if (init
3924 && TREE_CODE (atype) == ARRAY_TYPE
3925 && TREE_CONSTANT (maxindex)
3926 && (from_array == 2
3927 ? vec_copy_assign_is_trivial (inner_elt_type, init)
3928 : !TYPE_NEEDS_CONSTRUCTING (type))
3929 && ((TREE_CODE (init) == CONSTRUCTOR
3930 /* Don't do this if the CONSTRUCTOR might contain something
3931 that might throw and require us to clean up. */
3932 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3933 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3934 || from_array))
3935 {
3936 /* Do non-default initialization of trivial arrays resulting from
3937 brace-enclosed initializers. In this case, digest_init and
3938 store_constructor will handle the semantics for us. */
3939
3940 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3941 init = digest_init (atype, init, complain);
3942 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3943 return stmt_expr;
3944 }
3945
3946 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3947 maxindex = fold_simple (maxindex);
3948
3949 if (TREE_CODE (atype) == ARRAY_TYPE)
3950 {
3951 ptype = build_pointer_type (type);
3952 base = decay_conversion (base, complain);
3953 if (base == error_mark_node)
3954 return error_mark_node;
3955 base = cp_convert (ptype, base, complain);
3956 }
3957 else
3958 ptype = atype;
3959
3960 /* The code we are generating looks like:
3961 ({
3962 T* t1 = (T*) base;
3963 T* rval = t1;
3964 ptrdiff_t iterator = maxindex;
3965 try {
3966 for (; iterator != -1; --iterator) {
3967 ... initialize *t1 ...
3968 ++t1;
3969 }
3970 } catch (...) {
3971 ... destroy elements that were constructed ...
3972 }
3973 rval;
3974 })
3975
3976 We can omit the try and catch blocks if we know that the
3977 initialization will never throw an exception, or if the array
3978 elements do not have destructors. We can omit the loop completely if
3979 the elements of the array do not have constructors.
3980
3981 We actually wrap the entire body of the above in a STMT_EXPR, for
3982 tidiness.
3983
3984 When copying from array to another, when the array elements have
3985 only trivial copy constructors, we should use __builtin_memcpy
3986 rather than generating a loop. That way, we could take advantage
3987 of whatever cleverness the back end has for dealing with copies
3988 of blocks of memory. */
3989
3990 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3991 destroy_temps = stmts_are_full_exprs_p ();
3992 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3993 rval = get_temp_regvar (ptype, base);
3994 base = get_temp_regvar (ptype, rval);
3995 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3996
3997 /* If initializing one array from another, initialize element by
3998 element. We rely upon the below calls to do the argument
3999 checking. Evaluate the initializer before entering the try block. */
4000 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4001 {
4002 if (lvalue_kind (init) & clk_rvalueref)
4003 xvalue = true;
4004 base2 = decay_conversion (init, complain);
4005 if (base2 == error_mark_node)
4006 return error_mark_node;
4007 itype = TREE_TYPE (base2);
4008 base2 = get_temp_regvar (itype, base2);
4009 itype = TREE_TYPE (itype);
4010 }
4011
4012 /* Protect the entire array initialization so that we can destroy
4013 the partially constructed array if an exception is thrown.
4014 But don't do this if we're assigning. */
4015 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4016 && from_array != 2)
4017 {
4018 try_block = begin_try_block ();
4019 }
4020
4021 /* Should we try to create a constant initializer? */
4022 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4023 && TREE_CONSTANT (maxindex)
4024 && (init ? TREE_CODE (init) == CONSTRUCTOR
4025 : (type_has_constexpr_default_constructor
4026 (inner_elt_type)))
4027 && (literal_type_p (inner_elt_type)
4028 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4029 vec<constructor_elt, va_gc> *const_vec = NULL;
4030 bool saw_non_const = false;
4031 /* If we're initializing a static array, we want to do static
4032 initialization of any elements with constant initializers even if
4033 some are non-constant. */
4034 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4035
4036 bool empty_list = false;
4037 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4038 && CONSTRUCTOR_NELTS (init) == 0)
4039 /* Skip over the handling of non-empty init lists. */
4040 empty_list = true;
4041
4042 /* Maybe pull out constant value when from_array? */
4043
4044 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4045 {
4046 /* Do non-default initialization of non-trivial arrays resulting from
4047 brace-enclosed initializers. */
4048 unsigned HOST_WIDE_INT idx;
4049 tree field, elt;
4050 /* If the constructor already has the array type, it's been through
4051 digest_init, so we shouldn't try to do anything more. */
4052 bool digested = same_type_p (atype, TREE_TYPE (init));
4053 from_array = 0;
4054
4055 if (length_check)
4056 {
4057 tree nelts = build_int_cst (ptrdiff_type_node,
4058 CONSTRUCTOR_NELTS (init) - 1);
4059 if (TREE_CODE (atype) != ARRAY_TYPE)
4060 {
4061 if (flag_exceptions)
4062 {
4063 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
4064 nelts);
4065 c = build3 (COND_EXPR, void_type_node, c,
4066 throw_bad_array_new_length (), void_node);
4067 finish_expr_stmt (c);
4068 }
4069 /* Don't check an array new when -fno-exceptions. */
4070 }
4071 else if (flag_sanitize & SANITIZE_BOUNDS
4072 && do_ubsan_in_current_function ())
4073 {
4074 /* Make sure the last element of the initializer is in bounds. */
4075 finish_expr_stmt
4076 (ubsan_instrument_bounds
4077 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
4078 }
4079 }
4080
4081 if (try_const)
4082 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4083
4084 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4085 {
4086 tree baseref = build1 (INDIRECT_REF, type, base);
4087 tree one_init;
4088
4089 num_initialized_elts++;
4090
4091 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4092 if (digested)
4093 one_init = build2 (INIT_EXPR, type, baseref, elt);
4094 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4095 one_init = build_aggr_init (baseref, elt, 0, complain);
4096 else
4097 one_init = cp_build_modify_expr (input_location, baseref,
4098 NOP_EXPR, elt, complain);
4099 if (one_init == error_mark_node)
4100 errors = true;
4101 if (try_const)
4102 {
4103 tree e = maybe_constant_init (one_init);
4104 if (reduced_constant_expression_p (e))
4105 {
4106 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4107 if (do_static_init)
4108 one_init = NULL_TREE;
4109 else
4110 one_init = build2 (INIT_EXPR, type, baseref, e);
4111 }
4112 else
4113 {
4114 if (do_static_init)
4115 {
4116 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4117 true);
4118 if (value)
4119 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4120 }
4121 saw_non_const = true;
4122 }
4123 }
4124
4125 if (one_init)
4126 finish_expr_stmt (one_init);
4127 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4128
4129 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4130 complain);
4131 if (one_init == error_mark_node)
4132 errors = true;
4133 else
4134 finish_expr_stmt (one_init);
4135
4136 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4137 complain);
4138 if (one_init == error_mark_node)
4139 errors = true;
4140 else
4141 finish_expr_stmt (one_init);
4142 }
4143
4144 /* Any elements without explicit initializers get T{}. */
4145 empty_list = true;
4146 }
4147 else if (from_array)
4148 {
4149 if (init)
4150 /* OK, we set base2 above. */;
4151 else if (CLASS_TYPE_P (type)
4152 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4153 {
4154 if (complain & tf_error)
4155 error ("initializer ends prematurely");
4156 errors = true;
4157 }
4158 }
4159
4160 /* Now, default-initialize any remaining elements. We don't need to
4161 do that if a) the type does not need constructing, or b) we've
4162 already initialized all the elements.
4163
4164 We do need to keep going if we're copying an array. */
4165
4166 if (try_const && !init)
4167 /* With a constexpr default constructor, which we checked for when
4168 setting try_const above, default-initialization is equivalent to
4169 value-initialization, and build_value_init gives us something more
4170 friendly to maybe_constant_init. */
4171 explicit_value_init_p = true;
4172 if (from_array
4173 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4174 && ! (tree_fits_shwi_p (maxindex)
4175 && (num_initialized_elts
4176 == tree_to_shwi (maxindex) + 1))))
4177 {
4178 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4179 we've already initialized all the elements. */
4180 tree for_stmt;
4181 tree elt_init;
4182 tree to;
4183
4184 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4185 finish_init_stmt (for_stmt);
4186 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4187 build_int_cst (TREE_TYPE (iterator), -1)),
4188 for_stmt, false);
4189 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4190 complain);
4191 if (elt_init == error_mark_node)
4192 errors = true;
4193 finish_for_expr (elt_init, for_stmt);
4194
4195 to = build1 (INDIRECT_REF, type, base);
4196
4197 /* If the initializer is {}, then all elements are initialized from T{}.
4198 But for non-classes, that's the same as value-initialization. */
4199 if (empty_list)
4200 {
4201 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4202 {
4203 init = build_constructor (init_list_type_node, NULL);
4204 }
4205 else
4206 {
4207 init = NULL_TREE;
4208 explicit_value_init_p = true;
4209 }
4210 }
4211
4212 if (from_array)
4213 {
4214 tree from;
4215
4216 if (base2)
4217 {
4218 from = build1 (INDIRECT_REF, itype, base2);
4219 if (xvalue)
4220 from = move (from);
4221 if (direct_init)
4222 from = build_tree_list (NULL_TREE, from);
4223 }
4224 else
4225 from = NULL_TREE;
4226
4227 if (from_array == 2)
4228 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4229 from, complain);
4230 else if (type_build_ctor_call (type))
4231 elt_init = build_aggr_init (to, from, 0, complain);
4232 else if (from)
4233 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4234 complain);
4235 else
4236 gcc_unreachable ();
4237 }
4238 else if (TREE_CODE (type) == ARRAY_TYPE)
4239 {
4240 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4241 sorry
4242 ("cannot initialize multi-dimensional array with initializer");
4243 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4244 0, init,
4245 explicit_value_init_p,
4246 0, complain);
4247 }
4248 else if (explicit_value_init_p)
4249 {
4250 elt_init = build_value_init (type, complain);
4251 if (elt_init != error_mark_node)
4252 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4253 }
4254 else
4255 {
4256 gcc_assert (type_build_ctor_call (type) || init);
4257 if (CLASS_TYPE_P (type))
4258 elt_init = build_aggr_init (to, init, 0, complain);
4259 else
4260 {
4261 if (TREE_CODE (init) == TREE_LIST)
4262 init = build_x_compound_expr_from_list (init, ELK_INIT,
4263 complain);
4264 elt_init = build2 (INIT_EXPR, type, to, init);
4265 }
4266 }
4267
4268 if (elt_init == error_mark_node)
4269 errors = true;
4270
4271 if (try_const)
4272 {
4273 /* FIXME refs to earlier elts */
4274 tree e = maybe_constant_init (elt_init);
4275 if (reduced_constant_expression_p (e))
4276 {
4277 if (initializer_zerop (e))
4278 /* Don't fill the CONSTRUCTOR with zeros. */
4279 e = NULL_TREE;
4280 if (do_static_init)
4281 elt_init = NULL_TREE;
4282 }
4283 else
4284 {
4285 saw_non_const = true;
4286 if (do_static_init)
4287 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4288 else
4289 e = NULL_TREE;
4290 }
4291
4292 if (e)
4293 {
4294 int max = tree_to_shwi (maxindex)+1;
4295 for (; num_initialized_elts < max; ++num_initialized_elts)
4296 {
4297 tree field = size_int (num_initialized_elts);
4298 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4299 }
4300 }
4301 }
4302
4303 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4304 if (elt_init)
4305 finish_expr_stmt (elt_init);
4306 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4307
4308 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4309 complain));
4310 if (base2)
4311 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4312 complain));
4313
4314 finish_for_stmt (for_stmt);
4315 }
4316
4317 /* Make sure to cleanup any partially constructed elements. */
4318 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4319 && from_array != 2)
4320 {
4321 tree e;
4322 tree m = cp_build_binary_op (input_location,
4323 MINUS_EXPR, maxindex, iterator,
4324 complain);
4325
4326 /* Flatten multi-dimensional array since build_vec_delete only
4327 expects one-dimensional array. */
4328 if (TREE_CODE (type) == ARRAY_TYPE)
4329 m = cp_build_binary_op (input_location,
4330 MULT_EXPR, m,
4331 /* Avoid mixing signed and unsigned. */
4332 convert (TREE_TYPE (m),
4333 array_type_nelts_total (type)),
4334 complain);
4335
4336 finish_cleanup_try_block (try_block);
4337 e = build_vec_delete_1 (rval, m,
4338 inner_elt_type, sfk_complete_destructor,
4339 /*use_global_delete=*/0, complain);
4340 if (e == error_mark_node)
4341 errors = true;
4342 finish_cleanup (e, try_block);
4343 }
4344
4345 /* The value of the array initialization is the array itself, RVAL
4346 is a pointer to the first element. */
4347 finish_stmt_expr_expr (rval, stmt_expr);
4348
4349 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4350
4351 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4352
4353 if (errors)
4354 return error_mark_node;
4355
4356 if (try_const)
4357 {
4358 if (!saw_non_const)
4359 {
4360 tree const_init = build_constructor (atype, const_vec);
4361 return build2 (INIT_EXPR, atype, obase, const_init);
4362 }
4363 else if (do_static_init && !vec_safe_is_empty (const_vec))
4364 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4365 else
4366 vec_free (const_vec);
4367 }
4368
4369 /* Now make the result have the correct type. */
4370 if (TREE_CODE (atype) == ARRAY_TYPE)
4371 {
4372 atype = build_pointer_type (atype);
4373 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4374 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
4375 TREE_NO_WARNING (stmt_expr) = 1;
4376 }
4377
4378 return stmt_expr;
4379 }
4380
4381 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4382 build_delete. */
4383
4384 static tree
4385 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4386 tsubst_flags_t complain)
4387 {
4388 tree name;
4389 tree fn;
4390 switch (dtor_kind)
4391 {
4392 case sfk_complete_destructor:
4393 name = complete_dtor_identifier;
4394 break;
4395
4396 case sfk_base_destructor:
4397 name = base_dtor_identifier;
4398 break;
4399
4400 case sfk_deleting_destructor:
4401 name = deleting_dtor_identifier;
4402 break;
4403
4404 default:
4405 gcc_unreachable ();
4406 }
4407 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
4408 return build_new_method_call (exp, fn,
4409 /*args=*/NULL,
4410 /*conversion_path=*/NULL_TREE,
4411 flags,
4412 /*fn_p=*/NULL,
4413 complain);
4414 }
4415
4416 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4417 ADDR is an expression which yields the store to be destroyed.
4418 AUTO_DELETE is the name of the destructor to call, i.e., either
4419 sfk_complete_destructor, sfk_base_destructor, or
4420 sfk_deleting_destructor.
4421
4422 FLAGS is the logical disjunction of zero or more LOOKUP_
4423 flags. See cp-tree.h for more info. */
4424
4425 tree
4426 build_delete (tree otype, tree addr, special_function_kind auto_delete,
4427 int flags, int use_global_delete, tsubst_flags_t complain)
4428 {
4429 tree expr;
4430
4431 if (addr == error_mark_node)
4432 return error_mark_node;
4433
4434 tree type = TYPE_MAIN_VARIANT (otype);
4435
4436 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4437 set to `error_mark_node' before it gets properly cleaned up. */
4438 if (type == error_mark_node)
4439 return error_mark_node;
4440
4441 if (TREE_CODE (type) == POINTER_TYPE)
4442 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4443
4444 if (TREE_CODE (type) == ARRAY_TYPE)
4445 {
4446 if (TYPE_DOMAIN (type) == NULL_TREE)
4447 {
4448 if (complain & tf_error)
4449 error ("unknown array size in delete");
4450 return error_mark_node;
4451 }
4452 return build_vec_delete (addr, array_type_nelts (type),
4453 auto_delete, use_global_delete, complain);
4454 }
4455
4456 if (TYPE_PTR_P (otype))
4457 {
4458 addr = mark_rvalue_use (addr);
4459
4460 /* We don't want to warn about delete of void*, only other
4461 incomplete types. Deleting other incomplete types
4462 invokes undefined behavior, but it is not ill-formed, so
4463 compile to something that would even do The Right Thing
4464 (TM) should the type have a trivial dtor and no delete
4465 operator. */
4466 if (!VOID_TYPE_P (type))
4467 {
4468 complete_type (type);
4469 if (!COMPLETE_TYPE_P (type))
4470 {
4471 if ((complain & tf_warning)
4472 && warning (OPT_Wdelete_incomplete,
4473 "possible problem detected in invocation of "
4474 "delete operator:"))
4475 {
4476 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4477 inform (input_location,
4478 "neither the destructor nor the class-specific "
4479 "operator delete will be called, even if they are "
4480 "declared when the class is defined");
4481 }
4482 }
4483 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4484 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4485 && TYPE_POLYMORPHIC_P (type))
4486 {
4487 tree dtor;
4488 dtor = CLASSTYPE_DESTRUCTORS (type);
4489 if (!dtor || !DECL_VINDEX (dtor))
4490 {
4491 if (CLASSTYPE_PURE_VIRTUALS (type))
4492 warning (OPT_Wdelete_non_virtual_dtor,
4493 "deleting object of abstract class type %qT"
4494 " which has non-virtual destructor"
4495 " will cause undefined behavior", type);
4496 else
4497 warning (OPT_Wdelete_non_virtual_dtor,
4498 "deleting object of polymorphic class type %qT"
4499 " which has non-virtual destructor"
4500 " might cause undefined behavior", type);
4501 }
4502 }
4503 }
4504 if (TREE_SIDE_EFFECTS (addr))
4505 addr = save_expr (addr);
4506
4507 /* Throw away const and volatile on target type of addr. */
4508 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4509 }
4510 else
4511 {
4512 /* Don't check PROTECT here; leave that decision to the
4513 destructor. If the destructor is accessible, call it,
4514 else report error. */
4515 addr = cp_build_addr_expr (addr, complain);
4516 if (addr == error_mark_node)
4517 return error_mark_node;
4518 if (TREE_SIDE_EFFECTS (addr))
4519 addr = save_expr (addr);
4520
4521 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4522 }
4523
4524 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4525 {
4526 /* Make sure the destructor is callable. */
4527 if (type_build_dtor_call (type))
4528 {
4529 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4530 complain),
4531 sfk_complete_destructor, flags, complain);
4532 if (expr == error_mark_node)
4533 return error_mark_node;
4534 }
4535
4536 if (auto_delete != sfk_deleting_destructor)
4537 return void_node;
4538
4539 return build_op_delete_call (DELETE_EXPR, addr,
4540 cxx_sizeof_nowarn (type),
4541 use_global_delete,
4542 /*placement=*/NULL_TREE,
4543 /*alloc_fn=*/NULL_TREE,
4544 complain);
4545 }
4546 else
4547 {
4548 tree head = NULL_TREE;
4549 tree do_delete = NULL_TREE;
4550 tree ifexp;
4551
4552 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4553 lazily_declare_fn (sfk_destructor, type);
4554
4555 /* For `::delete x', we must not use the deleting destructor
4556 since then we would not be sure to get the global `operator
4557 delete'. */
4558 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4559 {
4560 /* We will use ADDR multiple times so we must save it. */
4561 addr = save_expr (addr);
4562 head = get_target_expr (build_headof (addr));
4563 /* Delete the object. */
4564 do_delete = build_op_delete_call (DELETE_EXPR,
4565 head,
4566 cxx_sizeof_nowarn (type),
4567 /*global_p=*/true,
4568 /*placement=*/NULL_TREE,
4569 /*alloc_fn=*/NULL_TREE,
4570 complain);
4571 /* Otherwise, treat this like a complete object destructor
4572 call. */
4573 auto_delete = sfk_complete_destructor;
4574 }
4575 /* If the destructor is non-virtual, there is no deleting
4576 variant. Instead, we must explicitly call the appropriate
4577 `operator delete' here. */
4578 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4579 && auto_delete == sfk_deleting_destructor)
4580 {
4581 /* We will use ADDR multiple times so we must save it. */
4582 addr = save_expr (addr);
4583 /* Build the call. */
4584 do_delete = build_op_delete_call (DELETE_EXPR,
4585 addr,
4586 cxx_sizeof_nowarn (type),
4587 /*global_p=*/false,
4588 /*placement=*/NULL_TREE,
4589 /*alloc_fn=*/NULL_TREE,
4590 complain);
4591 /* Call the complete object destructor. */
4592 auto_delete = sfk_complete_destructor;
4593 }
4594 else if (auto_delete == sfk_deleting_destructor
4595 && TYPE_GETS_REG_DELETE (type))
4596 {
4597 /* Make sure we have access to the member op delete, even though
4598 we'll actually be calling it from the destructor. */
4599 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4600 /*global_p=*/false,
4601 /*placement=*/NULL_TREE,
4602 /*alloc_fn=*/NULL_TREE,
4603 complain);
4604 }
4605
4606 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4607 auto_delete, flags, complain);
4608 if (expr == error_mark_node)
4609 return error_mark_node;
4610 if (do_delete)
4611 /* The delete operator must be called, regardless of whether
4612 the destructor throws.
4613
4614 [expr.delete]/7 The deallocation function is called
4615 regardless of whether the destructor for the object or some
4616 element of the array throws an exception. */
4617 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4618
4619 /* We need to calculate this before the dtor changes the vptr. */
4620 if (head)
4621 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4622
4623 if (flags & LOOKUP_DESTRUCTOR)
4624 /* Explicit destructor call; don't check for null pointer. */
4625 ifexp = integer_one_node;
4626 else
4627 {
4628 /* Handle deleting a null pointer. */
4629 warning_sentinel s (warn_address);
4630 ifexp = cp_build_binary_op (input_location, NE_EXPR, addr,
4631 nullptr_node, complain);
4632 if (ifexp == error_mark_node)
4633 return error_mark_node;
4634 /* This is a compiler generated comparison, don't emit
4635 e.g. -Wnonnull-compare warning for it. */
4636 else if (TREE_CODE (ifexp) == NE_EXPR)
4637 TREE_NO_WARNING (ifexp) = 1;
4638 }
4639
4640 if (ifexp != integer_one_node)
4641 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4642
4643 return expr;
4644 }
4645 }
4646
4647 /* At the beginning of a destructor, push cleanups that will call the
4648 destructors for our base classes and members.
4649
4650 Called from begin_destructor_body. */
4651
4652 void
4653 push_base_cleanups (void)
4654 {
4655 tree binfo, base_binfo;
4656 int i;
4657 tree member;
4658 tree expr;
4659 vec<tree, va_gc> *vbases;
4660
4661 /* Run destructors for all virtual baseclasses. */
4662 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
4663 && CLASSTYPE_VBASECLASSES (current_class_type))
4664 {
4665 tree cond = (condition_conversion
4666 (build2 (BIT_AND_EXPR, integer_type_node,
4667 current_in_charge_parm,
4668 integer_two_node)));
4669
4670 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4671 order, which is also the right order for pushing cleanups. */
4672 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4673 vec_safe_iterate (vbases, i, &base_binfo); i++)
4674 {
4675 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4676 {
4677 expr = build_special_member_call (current_class_ref,
4678 base_dtor_identifier,
4679 NULL,
4680 base_binfo,
4681 (LOOKUP_NORMAL
4682 | LOOKUP_NONVIRTUAL),
4683 tf_warning_or_error);
4684 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4685 {
4686 expr = build3 (COND_EXPR, void_type_node, cond,
4687 expr, void_node);
4688 finish_decl_cleanup (NULL_TREE, expr);
4689 }
4690 }
4691 }
4692 }
4693
4694 /* Take care of the remaining baseclasses. */
4695 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4696 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4697 {
4698 if (BINFO_VIRTUAL_P (base_binfo)
4699 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4700 continue;
4701
4702 expr = build_special_member_call (current_class_ref,
4703 base_dtor_identifier,
4704 NULL, base_binfo,
4705 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4706 tf_warning_or_error);
4707 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4708 finish_decl_cleanup (NULL_TREE, expr);
4709 }
4710
4711 /* Don't automatically destroy union members. */
4712 if (TREE_CODE (current_class_type) == UNION_TYPE)
4713 return;
4714
4715 for (member = TYPE_FIELDS (current_class_type); member;
4716 member = DECL_CHAIN (member))
4717 {
4718 tree this_type = TREE_TYPE (member);
4719 if (this_type == error_mark_node
4720 || TREE_CODE (member) != FIELD_DECL
4721 || DECL_ARTIFICIAL (member))
4722 continue;
4723 if (ANON_AGGR_TYPE_P (this_type))
4724 continue;
4725 if (type_build_dtor_call (this_type))
4726 {
4727 tree this_member = (build_class_member_access_expr
4728 (current_class_ref, member,
4729 /*access_path=*/NULL_TREE,
4730 /*preserve_reference=*/false,
4731 tf_warning_or_error));
4732 expr = build_delete (this_type, this_member,
4733 sfk_complete_destructor,
4734 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4735 0, tf_warning_or_error);
4736 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4737 finish_decl_cleanup (NULL_TREE, expr);
4738 }
4739 }
4740 }
4741
4742 /* Build a C++ vector delete expression.
4743 MAXINDEX is the number of elements to be deleted.
4744 ELT_SIZE is the nominal size of each element in the vector.
4745 BASE is the expression that should yield the store to be deleted.
4746 This function expands (or synthesizes) these calls itself.
4747 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4748
4749 This also calls delete for virtual baseclasses of elements of the vector.
4750
4751 Update: MAXINDEX is no longer needed. The size can be extracted from the
4752 start of the vector for pointers, and from the type for arrays. We still
4753 use MAXINDEX for arrays because it happens to already have one of the
4754 values we'd have to extract. (We could use MAXINDEX with pointers to
4755 confirm the size, and trap if the numbers differ; not clear that it'd
4756 be worth bothering.) */
4757
4758 tree
4759 build_vec_delete (tree base, tree maxindex,
4760 special_function_kind auto_delete_vec,
4761 int use_global_delete, tsubst_flags_t complain)
4762 {
4763 tree type;
4764 tree rval;
4765 tree base_init = NULL_TREE;
4766
4767 type = TREE_TYPE (base);
4768
4769 if (TYPE_PTR_P (type))
4770 {
4771 /* Step back one from start of vector, and read dimension. */
4772 tree cookie_addr;
4773 tree size_ptr_type = build_pointer_type (sizetype);
4774
4775 base = mark_rvalue_use (base);
4776 if (TREE_SIDE_EFFECTS (base))
4777 {
4778 base_init = get_target_expr (base);
4779 base = TARGET_EXPR_SLOT (base_init);
4780 }
4781 type = strip_array_types (TREE_TYPE (type));
4782 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4783 sizetype, TYPE_SIZE_UNIT (sizetype));
4784 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4785 cookie_addr);
4786 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4787 }
4788 else if (TREE_CODE (type) == ARRAY_TYPE)
4789 {
4790 /* Get the total number of things in the array, maxindex is a
4791 bad name. */
4792 maxindex = array_type_nelts_total (type);
4793 type = strip_array_types (type);
4794 base = decay_conversion (base, complain);
4795 if (base == error_mark_node)
4796 return error_mark_node;
4797 if (TREE_SIDE_EFFECTS (base))
4798 {
4799 base_init = get_target_expr (base);
4800 base = TARGET_EXPR_SLOT (base_init);
4801 }
4802 }
4803 else
4804 {
4805 if (base != error_mark_node && !(complain & tf_error))
4806 error ("type to vector delete is neither pointer or array type");
4807 return error_mark_node;
4808 }
4809
4810 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4811 use_global_delete, complain);
4812 if (base_init && rval != error_mark_node)
4813 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4814
4815 return rval;
4816 }