decl.c (poplevel): Use Use DECL_SOURCE_LOCATION and "%qD" in warning_at instead of...
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "alias.h"
28 #include "tree.h"
29 #include "stringpool.h"
30 #include "varasm.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "target.h"
34 #include "gimplify.h"
35 #include "c-family/c-ubsan.h"
36
37 static bool begin_init_stmts (tree *, tree *);
38 static tree finish_init_stmts (bool, tree, tree);
39 static void construct_virtual_base (tree, tree);
40 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
41 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
42 static void perform_member_init (tree, tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_field_list (tree, tree, int *);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51
52 /* We are about to generate some complex initialization code.
53 Conceptually, it is all a single expression. However, we may want
54 to include conditionals, loops, and other such statement-level
55 constructs. Therefore, we build the initialization code inside a
56 statement-expression. This function starts such an expression.
57 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
58 pass them back to finish_init_stmts when the expression is
59 complete. */
60
61 static bool
62 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
63 {
64 bool is_global = !building_stmt_list_p ();
65
66 *stmt_expr_p = begin_stmt_expr ();
67 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
68
69 return is_global;
70 }
71
72 /* Finish out the statement-expression begun by the previous call to
73 begin_init_stmts. Returns the statement-expression itself. */
74
75 static tree
76 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
77 {
78 finish_compound_stmt (compound_stmt);
79
80 stmt_expr = finish_stmt_expr (stmt_expr, true);
81
82 gcc_assert (!building_stmt_list_p () == is_global);
83
84 return stmt_expr;
85 }
86
87 /* Constructors */
88
89 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
90 which we want to initialize the vtable pointer for, DATA is
91 TREE_LIST whose TREE_VALUE is the this ptr expression. */
92
93 static tree
94 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
95 {
96 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
97 return dfs_skip_bases;
98
99 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
100 {
101 tree base_ptr = TREE_VALUE ((tree) data);
102
103 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
104 tf_warning_or_error);
105
106 expand_virtual_init (binfo, base_ptr);
107 }
108
109 return NULL_TREE;
110 }
111
112 /* Initialize all the vtable pointers in the object pointed to by
113 ADDR. */
114
115 void
116 initialize_vtbl_ptrs (tree addr)
117 {
118 tree list;
119 tree type;
120
121 type = TREE_TYPE (TREE_TYPE (addr));
122 list = build_tree_list (type, addr);
123
124 /* Walk through the hierarchy, initializing the vptr in each base
125 class. We do these in pre-order because we can't find the virtual
126 bases for a class until we've initialized the vtbl for that
127 class. */
128 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
129 }
130
131 /* Return an expression for the zero-initialization of an object with
132 type T. This expression will either be a constant (in the case
133 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
134 aggregate), or NULL (in the case that T does not require
135 initialization). In either case, the value can be used as
136 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
137 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
138 is the number of elements in the array. If STATIC_STORAGE_P is
139 TRUE, initializers are only generated for entities for which
140 zero-initialization does not simply mean filling the storage with
141 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
142 subfields with bit positions at or above that bit size shouldn't
143 be added. Note that this only works when the result is assigned
144 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
145 expand_assignment will end up clearing the full size of TYPE. */
146
147 static tree
148 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
149 tree field_size)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialize an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (TYPE_PTR_OR_PTRMEM_P (type))
182 init = convert (type, nullptr_node);
183 else if (SCALAR_TYPE_P (type))
184 init = convert (type, integer_zero_node);
185 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
186 {
187 tree field;
188 vec<constructor_elt, va_gc> *v = NULL;
189
190 /* Iterate over the fields, building initializations. */
191 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
192 {
193 if (TREE_CODE (field) != FIELD_DECL)
194 continue;
195
196 if (TREE_TYPE (field) == error_mark_node)
197 continue;
198
199 /* Don't add virtual bases for base classes if they are beyond
200 the size of the current field, that means it is present
201 somewhere else in the object. */
202 if (field_size)
203 {
204 tree bitpos = bit_position (field);
205 if (TREE_CODE (bitpos) == INTEGER_CST
206 && !tree_int_cst_lt (bitpos, field_size))
207 continue;
208 }
209
210 /* Note that for class types there will be FIELD_DECLs
211 corresponding to base classes as well. Thus, iterating
212 over TYPE_FIELDs will result in correct initialization of
213 all of the subobjects. */
214 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
215 {
216 tree new_field_size
217 = (DECL_FIELD_IS_BASE (field)
218 && DECL_SIZE (field)
219 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
220 ? DECL_SIZE (field) : NULL_TREE;
221 tree value = build_zero_init_1 (TREE_TYPE (field),
222 /*nelts=*/NULL_TREE,
223 static_storage_p,
224 new_field_size);
225 if (value)
226 CONSTRUCTOR_APPEND_ELT(v, field, value);
227 }
228
229 /* For unions, only the first field is initialized. */
230 if (TREE_CODE (type) == UNION_TYPE)
231 break;
232 }
233
234 /* Build a constructor to contain the initializations. */
235 init = build_constructor (type, v);
236 }
237 else if (TREE_CODE (type) == ARRAY_TYPE)
238 {
239 tree max_index;
240 vec<constructor_elt, va_gc> *v = NULL;
241
242 /* Iterate over the array elements, building initializations. */
243 if (nelts)
244 max_index = fold_build2_loc (input_location,
245 MINUS_EXPR, TREE_TYPE (nelts),
246 nelts, integer_one_node);
247 else
248 max_index = array_type_nelts (type);
249
250 /* If we have an error_mark here, we should just return error mark
251 as we don't know the size of the array yet. */
252 if (max_index == error_mark_node)
253 return error_mark_node;
254 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
255
256 /* A zero-sized array, which is accepted as an extension, will
257 have an upper bound of -1. */
258 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
259 {
260 constructor_elt ce;
261
262 /* If this is a one element array, we just use a regular init. */
263 if (tree_int_cst_equal (size_zero_node, max_index))
264 ce.index = size_zero_node;
265 else
266 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
267 max_index);
268
269 ce.value = build_zero_init_1 (TREE_TYPE (type),
270 /*nelts=*/NULL_TREE,
271 static_storage_p, NULL_TREE);
272 if (ce.value)
273 {
274 vec_alloc (v, 1);
275 v->quick_push (ce);
276 }
277 }
278
279 /* Build a constructor to contain the initializations. */
280 init = build_constructor (type, v);
281 }
282 else if (VECTOR_TYPE_P (type))
283 init = build_zero_cst (type);
284 else
285 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
286
287 /* In all cases, the initializer is a constant. */
288 if (init)
289 TREE_CONSTANT (init) = 1;
290
291 return init;
292 }
293
294 /* Return an expression for the zero-initialization of an object with
295 type T. This expression will either be a constant (in the case
296 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
297 aggregate), or NULL (in the case that T does not require
298 initialization). In either case, the value can be used as
299 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
300 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
301 is the number of elements in the array. If STATIC_STORAGE_P is
302 TRUE, initializers are only generated for entities for which
303 zero-initialization does not simply mean filling the storage with
304 zero bytes. */
305
306 tree
307 build_zero_init (tree type, tree nelts, bool static_storage_p)
308 {
309 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
310 }
311
312 /* Return a suitable initializer for value-initializing an object of type
313 TYPE, as described in [dcl.init]. */
314
315 tree
316 build_value_init (tree type, tsubst_flags_t complain)
317 {
318 /* [dcl.init]
319
320 To value-initialize an object of type T means:
321
322 - if T is a class type (clause 9) with either no default constructor
323 (12.1) or a default constructor that is user-provided or deleted,
324 then the object is default-initialized;
325
326 - if T is a (possibly cv-qualified) class type without a user-provided
327 or deleted default constructor, then the object is zero-initialized
328 and the semantic constraints for default-initialization are checked,
329 and if T has a non-trivial default constructor, the object is
330 default-initialized;
331
332 - if T is an array type, then each element is value-initialized;
333
334 - otherwise, the object is zero-initialized.
335
336 A program that calls for default-initialization or
337 value-initialization of an entity of reference type is ill-formed. */
338
339 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
340 gcc_assert (!processing_template_decl
341 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
342
343 if (CLASS_TYPE_P (type)
344 && type_build_ctor_call (type))
345 {
346 tree ctor =
347 build_special_member_call (NULL_TREE, complete_ctor_identifier,
348 NULL, type, LOOKUP_NORMAL,
349 complain);
350 if (ctor == error_mark_node)
351 return ctor;
352 tree fn = NULL_TREE;
353 if (TREE_CODE (ctor) == CALL_EXPR)
354 fn = get_callee_fndecl (ctor);
355 ctor = build_aggr_init_expr (type, ctor);
356 if (fn && user_provided_p (fn))
357 return ctor;
358 else if (TYPE_HAS_COMPLEX_DFLT (type))
359 {
360 /* This is a class that needs constructing, but doesn't have
361 a user-provided constructor. So we need to zero-initialize
362 the object and then call the implicitly defined ctor.
363 This will be handled in simplify_aggr_init_expr. */
364 AGGR_INIT_ZERO_FIRST (ctor) = 1;
365 return ctor;
366 }
367 }
368
369 /* Discard any access checking during subobject initialization;
370 the checks are implied by the call to the ctor which we have
371 verified is OK (cpp0x/defaulted46.C). */
372 push_deferring_access_checks (dk_deferred);
373 tree r = build_value_init_noctor (type, complain);
374 pop_deferring_access_checks ();
375 return r;
376 }
377
378 /* Like build_value_init, but don't call the constructor for TYPE. Used
379 for base initializers. */
380
381 tree
382 build_value_init_noctor (tree type, tsubst_flags_t complain)
383 {
384 if (!COMPLETE_TYPE_P (type))
385 {
386 if (complain & tf_error)
387 error ("value-initialization of incomplete type %qT", type);
388 return error_mark_node;
389 }
390 /* FIXME the class and array cases should just use digest_init once it is
391 SFINAE-enabled. */
392 if (CLASS_TYPE_P (type))
393 {
394 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
395 || errorcount != 0);
396
397 if (TREE_CODE (type) != UNION_TYPE)
398 {
399 tree field;
400 vec<constructor_elt, va_gc> *v = NULL;
401
402 /* Iterate over the fields, building initializations. */
403 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
404 {
405 tree ftype, value;
406
407 if (TREE_CODE (field) != FIELD_DECL)
408 continue;
409
410 ftype = TREE_TYPE (field);
411
412 if (ftype == error_mark_node)
413 continue;
414
415 /* We could skip vfields and fields of types with
416 user-defined constructors, but I think that won't improve
417 performance at all; it should be simpler in general just
418 to zero out the entire object than try to only zero the
419 bits that actually need it. */
420
421 /* Note that for class types there will be FIELD_DECLs
422 corresponding to base classes as well. Thus, iterating
423 over TYPE_FIELDs will result in correct initialization of
424 all of the subobjects. */
425 value = build_value_init (ftype, complain);
426 value = maybe_constant_init (value);
427
428 if (value == error_mark_node)
429 return error_mark_node;
430
431 CONSTRUCTOR_APPEND_ELT(v, field, value);
432
433 /* We shouldn't have gotten here for anything that would need
434 non-trivial initialization, and gimplify_init_ctor_preeval
435 would need to be fixed to allow it. */
436 gcc_assert (TREE_CODE (value) != TARGET_EXPR
437 && TREE_CODE (value) != AGGR_INIT_EXPR);
438 }
439
440 /* Build a constructor to contain the zero- initializations. */
441 return build_constructor (type, v);
442 }
443 }
444 else if (TREE_CODE (type) == ARRAY_TYPE)
445 {
446 vec<constructor_elt, va_gc> *v = NULL;
447
448 /* Iterate over the array elements, building initializations. */
449 tree max_index = array_type_nelts (type);
450
451 /* If we have an error_mark here, we should just return error mark
452 as we don't know the size of the array yet. */
453 if (max_index == error_mark_node)
454 {
455 if (complain & tf_error)
456 error ("cannot value-initialize array of unknown bound %qT",
457 type);
458 return error_mark_node;
459 }
460 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
461
462 /* A zero-sized array, which is accepted as an extension, will
463 have an upper bound of -1. */
464 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
465 {
466 constructor_elt ce;
467
468 /* If this is a one element array, we just use a regular init. */
469 if (tree_int_cst_equal (size_zero_node, max_index))
470 ce.index = size_zero_node;
471 else
472 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
473
474 ce.value = build_value_init (TREE_TYPE (type), complain);
475 ce.value = maybe_constant_init (ce.value);
476 if (ce.value == error_mark_node)
477 return error_mark_node;
478
479 vec_alloc (v, 1);
480 v->quick_push (ce);
481
482 /* We shouldn't have gotten here for anything that would need
483 non-trivial initialization, and gimplify_init_ctor_preeval
484 would need to be fixed to allow it. */
485 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
486 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
487 }
488
489 /* Build a constructor to contain the initializations. */
490 return build_constructor (type, v);
491 }
492 else if (TREE_CODE (type) == FUNCTION_TYPE)
493 {
494 if (complain & tf_error)
495 error ("value-initialization of function type %qT", type);
496 return error_mark_node;
497 }
498 else if (TREE_CODE (type) == REFERENCE_TYPE)
499 {
500 if (complain & tf_error)
501 error ("value-initialization of reference type %qT", type);
502 return error_mark_node;
503 }
504
505 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
506 }
507
508 /* Initialize current class with INIT, a TREE_LIST of
509 arguments for a target constructor. If TREE_LIST is void_type_node,
510 an empty initializer list was given. */
511
512 static void
513 perform_target_ctor (tree init)
514 {
515 tree decl = current_class_ref;
516 tree type = current_class_type;
517
518 finish_expr_stmt (build_aggr_init (decl, init,
519 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
520 tf_warning_or_error));
521 if (type_build_dtor_call (type))
522 {
523 tree expr = build_delete (type, decl, sfk_complete_destructor,
524 LOOKUP_NORMAL
525 |LOOKUP_NONVIRTUAL
526 |LOOKUP_DESTRUCTOR,
527 0, tf_warning_or_error);
528 if (expr != error_mark_node
529 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
530 finish_eh_cleanup (expr);
531 }
532 }
533
534 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
535
536 tree
537 get_nsdmi (tree member, bool in_ctor)
538 {
539 tree init;
540 tree save_ccp = current_class_ptr;
541 tree save_ccr = current_class_ref;
542
543 if (!in_ctor)
544 {
545 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
546 refer to; constexpr evaluation knows what to do with it. */
547 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
548 current_class_ptr = build_address (current_class_ref);
549 }
550
551 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
552 {
553 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
554 if (TREE_CODE (init) == DEFAULT_ARG)
555 goto unparsed;
556
557 /* Check recursive instantiation. */
558 if (DECL_INSTANTIATING_NSDMI_P (member))
559 {
560 error ("recursive instantiation of non-static data member "
561 "initializer for %qD", member);
562 init = error_mark_node;
563 }
564 else
565 {
566 DECL_INSTANTIATING_NSDMI_P (member) = 1;
567
568 /* Do deferred instantiation of the NSDMI. */
569 init = (tsubst_copy_and_build
570 (init, DECL_TI_ARGS (member),
571 tf_warning_or_error, member, /*function_p=*/false,
572 /*integral_constant_expression_p=*/false));
573 init = digest_nsdmi_init (member, init);
574
575 DECL_INSTANTIATING_NSDMI_P (member) = 0;
576 }
577 }
578 else
579 {
580 init = DECL_INITIAL (member);
581 if (init && TREE_CODE (init) == DEFAULT_ARG)
582 {
583 unparsed:
584 error ("constructor required before non-static data member "
585 "for %qD has been parsed", member);
586 DECL_INITIAL (member) = error_mark_node;
587 init = error_mark_node;
588 }
589 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
590 so the aggregate init code below will see a CONSTRUCTOR. */
591 if (init && TREE_CODE (init) == TARGET_EXPR
592 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
593 init = TARGET_EXPR_INITIAL (init);
594 init = break_out_target_exprs (init);
595 }
596 current_class_ptr = save_ccp;
597 current_class_ref = save_ccr;
598 return init;
599 }
600
601 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
602 arguments. If TREE_LIST is void_type_node, an empty initializer
603 list was given; if NULL_TREE no initializer was given. */
604
605 static void
606 perform_member_init (tree member, tree init)
607 {
608 tree decl;
609 tree type = TREE_TYPE (member);
610
611 /* Use the non-static data member initializer if there was no
612 mem-initializer for this field. */
613 if (init == NULL_TREE)
614 init = get_nsdmi (member, /*ctor*/true);
615
616 if (init == error_mark_node)
617 return;
618
619 /* Effective C++ rule 12 requires that all data members be
620 initialized. */
621 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
622 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
623 "%qD should be initialized in the member initialization list",
624 member);
625
626 /* Get an lvalue for the data member. */
627 decl = build_class_member_access_expr (current_class_ref, member,
628 /*access_path=*/NULL_TREE,
629 /*preserve_reference=*/true,
630 tf_warning_or_error);
631 if (decl == error_mark_node)
632 return;
633
634 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
635 && TREE_CHAIN (init) == NULL_TREE)
636 {
637 tree val = TREE_VALUE (init);
638 /* Handle references. */
639 if (REFERENCE_REF_P (val))
640 val = TREE_OPERAND (val, 0);
641 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
642 && TREE_OPERAND (val, 0) == current_class_ref)
643 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
644 OPT_Winit_self, "%qD is initialized with itself",
645 member);
646 }
647
648 if (init == void_type_node)
649 {
650 /* mem() means value-initialization. */
651 if (TREE_CODE (type) == ARRAY_TYPE)
652 {
653 init = build_vec_init_expr (type, init, tf_warning_or_error);
654 init = build2 (INIT_EXPR, type, decl, init);
655 finish_expr_stmt (init);
656 }
657 else
658 {
659 tree value = build_value_init (type, tf_warning_or_error);
660 if (value == error_mark_node)
661 return;
662 init = build2 (INIT_EXPR, type, decl, value);
663 finish_expr_stmt (init);
664 }
665 }
666 /* Deal with this here, as we will get confused if we try to call the
667 assignment op for an anonymous union. This can happen in a
668 synthesized copy constructor. */
669 else if (ANON_AGGR_TYPE_P (type))
670 {
671 if (init)
672 {
673 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
674 finish_expr_stmt (init);
675 }
676 }
677 else if (init
678 && (TREE_CODE (type) == REFERENCE_TYPE
679 /* Pre-digested NSDMI. */
680 || (((TREE_CODE (init) == CONSTRUCTOR
681 && TREE_TYPE (init) == type)
682 /* { } mem-initializer. */
683 || (TREE_CODE (init) == TREE_LIST
684 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
685 && (CP_AGGREGATE_TYPE_P (type)
686 || is_std_init_list (type)))))
687 {
688 /* With references and list-initialization, we need to deal with
689 extending temporary lifetimes. 12.2p5: "A temporary bound to a
690 reference member in a constructor’s ctor-initializer (12.6.2)
691 persists until the constructor exits." */
692 unsigned i; tree t;
693 vec<tree, va_gc> *cleanups = make_tree_vector ();
694 if (TREE_CODE (init) == TREE_LIST)
695 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
696 tf_warning_or_error);
697 if (TREE_TYPE (init) != type)
698 {
699 if (BRACE_ENCLOSED_INITIALIZER_P (init)
700 && CP_AGGREGATE_TYPE_P (type))
701 init = reshape_init (type, init, tf_warning_or_error);
702 init = digest_init (type, init, tf_warning_or_error);
703 }
704 if (init == error_mark_node)
705 return;
706 /* A FIELD_DECL doesn't really have a suitable lifetime, but
707 make_temporary_var_for_ref_to_temp will treat it as automatic and
708 set_up_extended_ref_temp wants to use the decl in a warning. */
709 init = extend_ref_init_temps (member, init, &cleanups);
710 if (TREE_CODE (type) == ARRAY_TYPE
711 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
712 init = build_vec_init_expr (type, init, tf_warning_or_error);
713 init = build2 (INIT_EXPR, type, decl, init);
714 finish_expr_stmt (init);
715 FOR_EACH_VEC_ELT (*cleanups, i, t)
716 push_cleanup (decl, t, false);
717 release_tree_vector (cleanups);
718 }
719 else if (type_build_ctor_call (type)
720 || (init && CLASS_TYPE_P (strip_array_types (type))))
721 {
722 if (TREE_CODE (type) == ARRAY_TYPE)
723 {
724 if (init)
725 {
726 if (TREE_CHAIN (init))
727 init = error_mark_node;
728 else
729 init = TREE_VALUE (init);
730 if (BRACE_ENCLOSED_INITIALIZER_P (init))
731 init = digest_init (type, init, tf_warning_or_error);
732 }
733 if (init == NULL_TREE
734 || same_type_ignoring_top_level_qualifiers_p (type,
735 TREE_TYPE (init)))
736 {
737 init = build_vec_init_expr (type, init, tf_warning_or_error);
738 init = build2 (INIT_EXPR, type, decl, init);
739 finish_expr_stmt (init);
740 }
741 else
742 error ("invalid initializer for array member %q#D", member);
743 }
744 else
745 {
746 int flags = LOOKUP_NORMAL;
747 if (DECL_DEFAULTED_FN (current_function_decl))
748 flags |= LOOKUP_DEFAULTED;
749 if (CP_TYPE_CONST_P (type)
750 && init == NULL_TREE
751 && default_init_uninitialized_part (type))
752 {
753 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
754 vtable; still give this diagnostic. */
755 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
756 "uninitialized const member in %q#T", type))
757 inform (DECL_SOURCE_LOCATION (member),
758 "%q#D should be initialized", member );
759 }
760 finish_expr_stmt (build_aggr_init (decl, init, flags,
761 tf_warning_or_error));
762 }
763 }
764 else
765 {
766 if (init == NULL_TREE)
767 {
768 tree core_type;
769 /* member traversal: note it leaves init NULL */
770 if (TREE_CODE (type) == REFERENCE_TYPE)
771 {
772 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
773 "uninitialized reference member in %q#T", type))
774 inform (DECL_SOURCE_LOCATION (member),
775 "%q#D should be initialized", member);
776 }
777 else if (CP_TYPE_CONST_P (type))
778 {
779 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
780 "uninitialized const member in %q#T", type))
781 inform (DECL_SOURCE_LOCATION (member),
782 "%q#D should be initialized", member );
783 }
784
785 core_type = strip_array_types (type);
786
787 if (CLASS_TYPE_P (core_type)
788 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
789 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
790 diagnose_uninitialized_cst_or_ref_member (core_type,
791 /*using_new=*/false,
792 /*complain=*/true);
793 }
794 else if (TREE_CODE (init) == TREE_LIST)
795 /* There was an explicit member initialization. Do some work
796 in that case. */
797 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
798 tf_warning_or_error);
799
800 if (init)
801 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
802 tf_warning_or_error));
803 }
804
805 if (type_build_dtor_call (type))
806 {
807 tree expr;
808
809 expr = build_class_member_access_expr (current_class_ref, member,
810 /*access_path=*/NULL_TREE,
811 /*preserve_reference=*/false,
812 tf_warning_or_error);
813 expr = build_delete (type, expr, sfk_complete_destructor,
814 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
815 tf_warning_or_error);
816
817 if (expr != error_mark_node
818 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
819 finish_eh_cleanup (expr);
820 }
821 }
822
823 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
824 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
825
826 static tree
827 build_field_list (tree t, tree list, int *uses_unions_p)
828 {
829 tree fields;
830
831 /* Note whether or not T is a union. */
832 if (TREE_CODE (t) == UNION_TYPE)
833 *uses_unions_p = 1;
834
835 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
836 {
837 tree fieldtype;
838
839 /* Skip CONST_DECLs for enumeration constants and so forth. */
840 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
841 continue;
842
843 fieldtype = TREE_TYPE (fields);
844 /* Keep track of whether or not any fields are unions. */
845 if (TREE_CODE (fieldtype) == UNION_TYPE)
846 *uses_unions_p = 1;
847
848 /* For an anonymous struct or union, we must recursively
849 consider the fields of the anonymous type. They can be
850 directly initialized from the constructor. */
851 if (ANON_AGGR_TYPE_P (fieldtype))
852 {
853 /* Add this field itself. Synthesized copy constructors
854 initialize the entire aggregate. */
855 list = tree_cons (fields, NULL_TREE, list);
856 /* And now add the fields in the anonymous aggregate. */
857 list = build_field_list (fieldtype, list, uses_unions_p);
858 }
859 /* Add this field. */
860 else if (DECL_NAME (fields))
861 list = tree_cons (fields, NULL_TREE, list);
862 }
863
864 return list;
865 }
866
867 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
868 a FIELD_DECL or BINFO in T that needs initialization. The
869 TREE_VALUE gives the initializer, or list of initializer arguments.
870
871 Return a TREE_LIST containing all of the initializations required
872 for T, in the order in which they should be performed. The output
873 list has the same format as the input. */
874
875 static tree
876 sort_mem_initializers (tree t, tree mem_inits)
877 {
878 tree init;
879 tree base, binfo, base_binfo;
880 tree sorted_inits;
881 tree next_subobject;
882 vec<tree, va_gc> *vbases;
883 int i;
884 int uses_unions_p = 0;
885
886 /* Build up a list of initializations. The TREE_PURPOSE of entry
887 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
888 TREE_VALUE will be the constructor arguments, or NULL if no
889 explicit initialization was provided. */
890 sorted_inits = NULL_TREE;
891
892 /* Process the virtual bases. */
893 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
894 vec_safe_iterate (vbases, i, &base); i++)
895 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
896
897 /* Process the direct bases. */
898 for (binfo = TYPE_BINFO (t), i = 0;
899 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
900 if (!BINFO_VIRTUAL_P (base_binfo))
901 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
902
903 /* Process the non-static data members. */
904 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
905 /* Reverse the entire list of initializations, so that they are in
906 the order that they will actually be performed. */
907 sorted_inits = nreverse (sorted_inits);
908
909 /* If the user presented the initializers in an order different from
910 that in which they will actually occur, we issue a warning. Keep
911 track of the next subobject which can be explicitly initialized
912 without issuing a warning. */
913 next_subobject = sorted_inits;
914
915 /* Go through the explicit initializers, filling in TREE_PURPOSE in
916 the SORTED_INITS. */
917 for (init = mem_inits; init; init = TREE_CHAIN (init))
918 {
919 tree subobject;
920 tree subobject_init;
921
922 subobject = TREE_PURPOSE (init);
923
924 /* If the explicit initializers are in sorted order, then
925 SUBOBJECT will be NEXT_SUBOBJECT, or something following
926 it. */
927 for (subobject_init = next_subobject;
928 subobject_init;
929 subobject_init = TREE_CHAIN (subobject_init))
930 if (TREE_PURPOSE (subobject_init) == subobject)
931 break;
932
933 /* Issue a warning if the explicit initializer order does not
934 match that which will actually occur.
935 ??? Are all these on the correct lines? */
936 if (warn_reorder && !subobject_init)
937 {
938 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
939 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
940 OPT_Wreorder, "%qD will be initialized after",
941 TREE_PURPOSE (next_subobject));
942 else
943 warning (OPT_Wreorder, "base %qT will be initialized after",
944 TREE_PURPOSE (next_subobject));
945 if (TREE_CODE (subobject) == FIELD_DECL)
946 warning_at (DECL_SOURCE_LOCATION (subobject),
947 OPT_Wreorder, " %q#D", subobject);
948 else
949 warning (OPT_Wreorder, " base %qT", subobject);
950 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
951 OPT_Wreorder, " when initialized here");
952 }
953
954 /* Look again, from the beginning of the list. */
955 if (!subobject_init)
956 {
957 subobject_init = sorted_inits;
958 while (TREE_PURPOSE (subobject_init) != subobject)
959 subobject_init = TREE_CHAIN (subobject_init);
960 }
961
962 /* It is invalid to initialize the same subobject more than
963 once. */
964 if (TREE_VALUE (subobject_init))
965 {
966 if (TREE_CODE (subobject) == FIELD_DECL)
967 error_at (DECL_SOURCE_LOCATION (current_function_decl),
968 "multiple initializations given for %qD",
969 subobject);
970 else
971 error_at (DECL_SOURCE_LOCATION (current_function_decl),
972 "multiple initializations given for base %qT",
973 subobject);
974 }
975
976 /* Record the initialization. */
977 TREE_VALUE (subobject_init) = TREE_VALUE (init);
978 next_subobject = subobject_init;
979 }
980
981 /* [class.base.init]
982
983 If a ctor-initializer specifies more than one mem-initializer for
984 multiple members of the same union (including members of
985 anonymous unions), the ctor-initializer is ill-formed.
986
987 Here we also splice out uninitialized union members. */
988 if (uses_unions_p)
989 {
990 tree *last_p = NULL;
991 tree *p;
992 for (p = &sorted_inits; *p; )
993 {
994 tree field;
995 tree ctx;
996
997 init = *p;
998
999 field = TREE_PURPOSE (init);
1000
1001 /* Skip base classes. */
1002 if (TREE_CODE (field) != FIELD_DECL)
1003 goto next;
1004
1005 /* If this is an anonymous union with no explicit initializer,
1006 splice it out. */
1007 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
1008 goto splice;
1009
1010 /* See if this field is a member of a union, or a member of a
1011 structure contained in a union, etc. */
1012 for (ctx = DECL_CONTEXT (field);
1013 !same_type_p (ctx, t);
1014 ctx = TYPE_CONTEXT (ctx))
1015 if (TREE_CODE (ctx) == UNION_TYPE
1016 || !ANON_AGGR_TYPE_P (ctx))
1017 break;
1018 /* If this field is not a member of a union, skip it. */
1019 if (TREE_CODE (ctx) != UNION_TYPE)
1020 goto next;
1021
1022 /* If this union member has no explicit initializer and no NSDMI,
1023 splice it out. */
1024 if (TREE_VALUE (init) || DECL_INITIAL (field))
1025 /* OK. */;
1026 else
1027 goto splice;
1028
1029 /* It's only an error if we have two initializers for the same
1030 union type. */
1031 if (!last_p)
1032 {
1033 last_p = p;
1034 goto next;
1035 }
1036
1037 /* See if LAST_FIELD and the field initialized by INIT are
1038 members of the same union. If so, there's a problem,
1039 unless they're actually members of the same structure
1040 which is itself a member of a union. For example, given:
1041
1042 union { struct { int i; int j; }; };
1043
1044 initializing both `i' and `j' makes sense. */
1045 ctx = common_enclosing_class (DECL_CONTEXT (field),
1046 DECL_CONTEXT (TREE_PURPOSE (*last_p)));
1047
1048 if (ctx && TREE_CODE (ctx) == UNION_TYPE)
1049 {
1050 /* A mem-initializer hides an NSDMI. */
1051 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1052 *last_p = TREE_CHAIN (*last_p);
1053 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1054 goto splice;
1055 else
1056 {
1057 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1058 "initializations for multiple members of %qT",
1059 ctx);
1060 goto splice;
1061 }
1062 }
1063
1064 last_p = p;
1065
1066 next:
1067 p = &TREE_CHAIN (*p);
1068 continue;
1069 splice:
1070 *p = TREE_CHAIN (*p);
1071 continue;
1072 }
1073 }
1074
1075 return sorted_inits;
1076 }
1077
1078 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1079 is a TREE_LIST giving the explicit mem-initializer-list for the
1080 constructor. The TREE_PURPOSE of each entry is a subobject (a
1081 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1082 is a TREE_LIST giving the arguments to the constructor or
1083 void_type_node for an empty list of arguments. */
1084
1085 void
1086 emit_mem_initializers (tree mem_inits)
1087 {
1088 int flags = LOOKUP_NORMAL;
1089
1090 /* We will already have issued an error message about the fact that
1091 the type is incomplete. */
1092 if (!COMPLETE_TYPE_P (current_class_type))
1093 return;
1094
1095 if (mem_inits
1096 && TYPE_P (TREE_PURPOSE (mem_inits))
1097 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1098 {
1099 /* Delegating constructor. */
1100 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1101 perform_target_ctor (TREE_VALUE (mem_inits));
1102 return;
1103 }
1104
1105 if (DECL_DEFAULTED_FN (current_function_decl)
1106 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1107 flags |= LOOKUP_DEFAULTED;
1108
1109 /* Sort the mem-initializers into the order in which the
1110 initializations should be performed. */
1111 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1112
1113 in_base_initializer = 1;
1114
1115 /* Initialize base classes. */
1116 for (; (mem_inits
1117 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1118 mem_inits = TREE_CHAIN (mem_inits))
1119 {
1120 tree subobject = TREE_PURPOSE (mem_inits);
1121 tree arguments = TREE_VALUE (mem_inits);
1122
1123 /* We already have issued an error message. */
1124 if (arguments == error_mark_node)
1125 continue;
1126
1127 if (arguments == NULL_TREE)
1128 {
1129 /* If these initializations are taking place in a copy constructor,
1130 the base class should probably be explicitly initialized if there
1131 is a user-defined constructor in the base class (other than the
1132 default constructor, which will be called anyway). */
1133 if (extra_warnings
1134 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1135 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1136 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1137 OPT_Wextra, "base class %q#T should be explicitly "
1138 "initialized in the copy constructor",
1139 BINFO_TYPE (subobject));
1140 }
1141
1142 /* Initialize the base. */
1143 if (BINFO_VIRTUAL_P (subobject))
1144 construct_virtual_base (subobject, arguments);
1145 else
1146 {
1147 tree base_addr;
1148
1149 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1150 subobject, 1, tf_warning_or_error);
1151 expand_aggr_init_1 (subobject, NULL_TREE,
1152 cp_build_indirect_ref (base_addr, RO_NULL,
1153 tf_warning_or_error),
1154 arguments,
1155 flags,
1156 tf_warning_or_error);
1157 expand_cleanup_for_base (subobject, NULL_TREE);
1158 }
1159 }
1160 in_base_initializer = 0;
1161
1162 /* Initialize the vptrs. */
1163 initialize_vtbl_ptrs (current_class_ptr);
1164
1165 /* Initialize the data members. */
1166 while (mem_inits)
1167 {
1168 perform_member_init (TREE_PURPOSE (mem_inits),
1169 TREE_VALUE (mem_inits));
1170 mem_inits = TREE_CHAIN (mem_inits);
1171 }
1172 }
1173
1174 /* Returns the address of the vtable (i.e., the value that should be
1175 assigned to the vptr) for BINFO. */
1176
1177 tree
1178 build_vtbl_address (tree binfo)
1179 {
1180 tree binfo_for = binfo;
1181 tree vtbl;
1182
1183 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1184 /* If this is a virtual primary base, then the vtable we want to store
1185 is that for the base this is being used as the primary base of. We
1186 can't simply skip the initialization, because we may be expanding the
1187 inits of a subobject constructor where the virtual base layout
1188 can be different. */
1189 while (BINFO_PRIMARY_P (binfo_for))
1190 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1191
1192 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1193 used. */
1194 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1195 TREE_USED (vtbl) = true;
1196
1197 /* Now compute the address to use when initializing the vptr. */
1198 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1199 if (VAR_P (vtbl))
1200 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1201
1202 return vtbl;
1203 }
1204
1205 /* This code sets up the virtual function tables appropriate for
1206 the pointer DECL. It is a one-ply initialization.
1207
1208 BINFO is the exact type that DECL is supposed to be. In
1209 multiple inheritance, this might mean "C's A" if C : A, B. */
1210
1211 static void
1212 expand_virtual_init (tree binfo, tree decl)
1213 {
1214 tree vtbl, vtbl_ptr;
1215 tree vtt_index;
1216
1217 /* Compute the initializer for vptr. */
1218 vtbl = build_vtbl_address (binfo);
1219
1220 /* We may get this vptr from a VTT, if this is a subobject
1221 constructor or subobject destructor. */
1222 vtt_index = BINFO_VPTR_INDEX (binfo);
1223 if (vtt_index)
1224 {
1225 tree vtbl2;
1226 tree vtt_parm;
1227
1228 /* Compute the value to use, when there's a VTT. */
1229 vtt_parm = current_vtt_parm;
1230 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1231 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1232 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1233
1234 /* The actual initializer is the VTT value only in the subobject
1235 constructor. In maybe_clone_body we'll substitute NULL for
1236 the vtt_parm in the case of the non-subobject constructor. */
1237 vtbl = build3 (COND_EXPR,
1238 TREE_TYPE (vtbl),
1239 build2 (EQ_EXPR, boolean_type_node,
1240 current_in_charge_parm, integer_zero_node),
1241 vtbl2,
1242 vtbl);
1243 }
1244
1245 /* Compute the location of the vtpr. */
1246 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1247 tf_warning_or_error),
1248 TREE_TYPE (binfo));
1249 gcc_assert (vtbl_ptr != error_mark_node);
1250
1251 /* Assign the vtable to the vptr. */
1252 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1253 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1254 tf_warning_or_error));
1255 }
1256
1257 /* If an exception is thrown in a constructor, those base classes already
1258 constructed must be destroyed. This function creates the cleanup
1259 for BINFO, which has just been constructed. If FLAG is non-NULL,
1260 it is a DECL which is nonzero when this base needs to be
1261 destroyed. */
1262
1263 static void
1264 expand_cleanup_for_base (tree binfo, tree flag)
1265 {
1266 tree expr;
1267
1268 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1269 return;
1270
1271 /* Call the destructor. */
1272 expr = build_special_member_call (current_class_ref,
1273 base_dtor_identifier,
1274 NULL,
1275 binfo,
1276 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1277 tf_warning_or_error);
1278
1279 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1280 return;
1281
1282 if (flag)
1283 expr = fold_build3_loc (input_location,
1284 COND_EXPR, void_type_node,
1285 c_common_truthvalue_conversion (input_location, flag),
1286 expr, integer_zero_node);
1287
1288 finish_eh_cleanup (expr);
1289 }
1290
1291 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1292 constructor. */
1293
1294 static void
1295 construct_virtual_base (tree vbase, tree arguments)
1296 {
1297 tree inner_if_stmt;
1298 tree exp;
1299 tree flag;
1300
1301 /* If there are virtual base classes with destructors, we need to
1302 emit cleanups to destroy them if an exception is thrown during
1303 the construction process. These exception regions (i.e., the
1304 period during which the cleanups must occur) begin from the time
1305 the construction is complete to the end of the function. If we
1306 create a conditional block in which to initialize the
1307 base-classes, then the cleanup region for the virtual base begins
1308 inside a block, and ends outside of that block. This situation
1309 confuses the sjlj exception-handling code. Therefore, we do not
1310 create a single conditional block, but one for each
1311 initialization. (That way the cleanup regions always begin
1312 in the outer block.) We trust the back end to figure out
1313 that the FLAG will not change across initializations, and
1314 avoid doing multiple tests. */
1315 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1316 inner_if_stmt = begin_if_stmt ();
1317 finish_if_stmt_cond (flag, inner_if_stmt);
1318
1319 /* Compute the location of the virtual base. If we're
1320 constructing virtual bases, then we must be the most derived
1321 class. Therefore, we don't have to look up the virtual base;
1322 we already know where it is. */
1323 exp = convert_to_base_statically (current_class_ref, vbase);
1324
1325 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1326 0, tf_warning_or_error);
1327 finish_then_clause (inner_if_stmt);
1328 finish_if_stmt (inner_if_stmt);
1329
1330 expand_cleanup_for_base (vbase, flag);
1331 }
1332
1333 /* Find the context in which this FIELD can be initialized. */
1334
1335 static tree
1336 initializing_context (tree field)
1337 {
1338 tree t = DECL_CONTEXT (field);
1339
1340 /* Anonymous union members can be initialized in the first enclosing
1341 non-anonymous union context. */
1342 while (t && ANON_AGGR_TYPE_P (t))
1343 t = TYPE_CONTEXT (t);
1344 return t;
1345 }
1346
1347 /* Function to give error message if member initialization specification
1348 is erroneous. FIELD is the member we decided to initialize.
1349 TYPE is the type for which the initialization is being performed.
1350 FIELD must be a member of TYPE.
1351
1352 MEMBER_NAME is the name of the member. */
1353
1354 static int
1355 member_init_ok_or_else (tree field, tree type, tree member_name)
1356 {
1357 if (field == error_mark_node)
1358 return 0;
1359 if (!field)
1360 {
1361 error ("class %qT does not have any field named %qD", type,
1362 member_name);
1363 return 0;
1364 }
1365 if (VAR_P (field))
1366 {
1367 error ("%q#D is a static data member; it can only be "
1368 "initialized at its definition",
1369 field);
1370 return 0;
1371 }
1372 if (TREE_CODE (field) != FIELD_DECL)
1373 {
1374 error ("%q#D is not a non-static data member of %qT",
1375 field, type);
1376 return 0;
1377 }
1378 if (initializing_context (field) != type)
1379 {
1380 error ("class %qT does not have any field named %qD", type,
1381 member_name);
1382 return 0;
1383 }
1384
1385 return 1;
1386 }
1387
1388 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1389 is a _TYPE node or TYPE_DECL which names a base for that type.
1390 Check the validity of NAME, and return either the base _TYPE, base
1391 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1392 NULL_TREE and issue a diagnostic.
1393
1394 An old style unnamed direct single base construction is permitted,
1395 where NAME is NULL. */
1396
1397 tree
1398 expand_member_init (tree name)
1399 {
1400 tree basetype;
1401 tree field;
1402
1403 if (!current_class_ref)
1404 return NULL_TREE;
1405
1406 if (!name)
1407 {
1408 /* This is an obsolete unnamed base class initializer. The
1409 parser will already have warned about its use. */
1410 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1411 {
1412 case 0:
1413 error ("unnamed initializer for %qT, which has no base classes",
1414 current_class_type);
1415 return NULL_TREE;
1416 case 1:
1417 basetype = BINFO_TYPE
1418 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1419 break;
1420 default:
1421 error ("unnamed initializer for %qT, which uses multiple inheritance",
1422 current_class_type);
1423 return NULL_TREE;
1424 }
1425 }
1426 else if (TYPE_P (name))
1427 {
1428 basetype = TYPE_MAIN_VARIANT (name);
1429 name = TYPE_NAME (name);
1430 }
1431 else if (TREE_CODE (name) == TYPE_DECL)
1432 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1433 else
1434 basetype = NULL_TREE;
1435
1436 if (basetype)
1437 {
1438 tree class_binfo;
1439 tree direct_binfo;
1440 tree virtual_binfo;
1441 int i;
1442
1443 if (current_template_parms
1444 || same_type_p (basetype, current_class_type))
1445 return basetype;
1446
1447 class_binfo = TYPE_BINFO (current_class_type);
1448 direct_binfo = NULL_TREE;
1449 virtual_binfo = NULL_TREE;
1450
1451 /* Look for a direct base. */
1452 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1453 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1454 break;
1455
1456 /* Look for a virtual base -- unless the direct base is itself
1457 virtual. */
1458 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1459 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1460
1461 /* [class.base.init]
1462
1463 If a mem-initializer-id is ambiguous because it designates
1464 both a direct non-virtual base class and an inherited virtual
1465 base class, the mem-initializer is ill-formed. */
1466 if (direct_binfo && virtual_binfo)
1467 {
1468 error ("%qD is both a direct base and an indirect virtual base",
1469 basetype);
1470 return NULL_TREE;
1471 }
1472
1473 if (!direct_binfo && !virtual_binfo)
1474 {
1475 if (CLASSTYPE_VBASECLASSES (current_class_type))
1476 error ("type %qT is not a direct or virtual base of %qT",
1477 basetype, current_class_type);
1478 else
1479 error ("type %qT is not a direct base of %qT",
1480 basetype, current_class_type);
1481 return NULL_TREE;
1482 }
1483
1484 return direct_binfo ? direct_binfo : virtual_binfo;
1485 }
1486 else
1487 {
1488 if (identifier_p (name))
1489 field = lookup_field (current_class_type, name, 1, false);
1490 else
1491 field = name;
1492
1493 if (member_init_ok_or_else (field, current_class_type, name))
1494 return field;
1495 }
1496
1497 return NULL_TREE;
1498 }
1499
1500 /* This is like `expand_member_init', only it stores one aggregate
1501 value into another.
1502
1503 INIT comes in two flavors: it is either a value which
1504 is to be stored in EXP, or it is a parameter list
1505 to go to a constructor, which will operate on EXP.
1506 If INIT is not a parameter list for a constructor, then set
1507 LOOKUP_ONLYCONVERTING.
1508 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1509 the initializer, if FLAGS is 0, then it is the (init) form.
1510 If `init' is a CONSTRUCTOR, then we emit a warning message,
1511 explaining that such initializations are invalid.
1512
1513 If INIT resolves to a CALL_EXPR which happens to return
1514 something of the type we are looking for, then we know
1515 that we can safely use that call to perform the
1516 initialization.
1517
1518 The virtual function table pointer cannot be set up here, because
1519 we do not really know its type.
1520
1521 This never calls operator=().
1522
1523 When initializing, nothing is CONST.
1524
1525 A default copy constructor may have to be used to perform the
1526 initialization.
1527
1528 A constructor or a conversion operator may have to be used to
1529 perform the initialization, but not both, as it would be ambiguous. */
1530
1531 tree
1532 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1533 {
1534 tree stmt_expr;
1535 tree compound_stmt;
1536 int destroy_temps;
1537 tree type = TREE_TYPE (exp);
1538 int was_const = TREE_READONLY (exp);
1539 int was_volatile = TREE_THIS_VOLATILE (exp);
1540 int is_global;
1541
1542 if (init == error_mark_node)
1543 return error_mark_node;
1544
1545 TREE_READONLY (exp) = 0;
1546 TREE_THIS_VOLATILE (exp) = 0;
1547
1548 if (init && init != void_type_node
1549 && TREE_CODE (init) != TREE_LIST
1550 && !(TREE_CODE (init) == TARGET_EXPR
1551 && TARGET_EXPR_DIRECT_INIT_P (init))
1552 && !DIRECT_LIST_INIT_P (init))
1553 flags |= LOOKUP_ONLYCONVERTING;
1554
1555 if (TREE_CODE (type) == ARRAY_TYPE)
1556 {
1557 tree itype;
1558
1559 /* An array may not be initialized use the parenthesized
1560 initialization form -- unless the initializer is "()". */
1561 if (init && TREE_CODE (init) == TREE_LIST)
1562 {
1563 if (complain & tf_error)
1564 error ("bad array initializer");
1565 return error_mark_node;
1566 }
1567 /* Must arrange to initialize each element of EXP
1568 from elements of INIT. */
1569 itype = init ? TREE_TYPE (init) : NULL_TREE;
1570 if (cv_qualified_p (type))
1571 TREE_TYPE (exp) = cv_unqualified (type);
1572 if (itype && cv_qualified_p (itype))
1573 TREE_TYPE (init) = cv_unqualified (itype);
1574 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1575 /*explicit_value_init_p=*/false,
1576 itype && same_type_p (TREE_TYPE (init),
1577 TREE_TYPE (exp)),
1578 complain);
1579 TREE_READONLY (exp) = was_const;
1580 TREE_THIS_VOLATILE (exp) = was_volatile;
1581 TREE_TYPE (exp) = type;
1582 /* Restore the type of init unless it was used directly. */
1583 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1584 TREE_TYPE (init) = itype;
1585 return stmt_expr;
1586 }
1587
1588 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1589 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1590 /* Just know that we've seen something for this node. */
1591 TREE_USED (exp) = 1;
1592
1593 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1594 destroy_temps = stmts_are_full_exprs_p ();
1595 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1596 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1597 init, LOOKUP_NORMAL|flags, complain);
1598 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1599 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1600 TREE_READONLY (exp) = was_const;
1601 TREE_THIS_VOLATILE (exp) = was_volatile;
1602
1603 return stmt_expr;
1604 }
1605
1606 static void
1607 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1608 tsubst_flags_t complain)
1609 {
1610 tree type = TREE_TYPE (exp);
1611 tree ctor_name;
1612
1613 /* It fails because there may not be a constructor which takes
1614 its own type as the first (or only parameter), but which does
1615 take other types via a conversion. So, if the thing initializing
1616 the expression is a unit element of type X, first try X(X&),
1617 followed by initialization by X. If neither of these work
1618 out, then look hard. */
1619 tree rval;
1620 vec<tree, va_gc> *parms;
1621
1622 /* If we have direct-initialization from an initializer list, pull
1623 it out of the TREE_LIST so the code below can see it. */
1624 if (init && TREE_CODE (init) == TREE_LIST
1625 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1626 {
1627 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1628 && TREE_CHAIN (init) == NULL_TREE);
1629 init = TREE_VALUE (init);
1630 }
1631
1632 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1633 && CP_AGGREGATE_TYPE_P (type))
1634 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1635 happen for direct-initialization, too. */
1636 {
1637 init = reshape_init (type, init, complain);
1638 init = digest_init (type, init, complain);
1639 }
1640
1641 /* A CONSTRUCTOR of the target's type is a previously digested
1642 initializer, whether that happened just above or in
1643 cp_parser_late_parsing_nsdmi.
1644
1645 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1646 set represents the whole initialization, so we shouldn't build up
1647 another ctor call. */
1648 if (init
1649 && (TREE_CODE (init) == CONSTRUCTOR
1650 || (TREE_CODE (init) == TARGET_EXPR
1651 && (TARGET_EXPR_DIRECT_INIT_P (init)
1652 || TARGET_EXPR_LIST_INIT_P (init))))
1653 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1654 {
1655 /* Early initialization via a TARGET_EXPR only works for
1656 complete objects. */
1657 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1658
1659 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1660 TREE_SIDE_EFFECTS (init) = 1;
1661 finish_expr_stmt (init);
1662 return;
1663 }
1664
1665 if (init && TREE_CODE (init) != TREE_LIST
1666 && (flags & LOOKUP_ONLYCONVERTING))
1667 {
1668 /* Base subobjects should only get direct-initialization. */
1669 gcc_assert (true_exp == exp);
1670
1671 if (flags & DIRECT_BIND)
1672 /* Do nothing. We hit this in two cases: Reference initialization,
1673 where we aren't initializing a real variable, so we don't want
1674 to run a new constructor; and catching an exception, where we
1675 have already built up the constructor call so we could wrap it
1676 in an exception region. */;
1677 else
1678 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1679 flags, complain);
1680
1681 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1682 /* We need to protect the initialization of a catch parm with a
1683 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1684 around the TARGET_EXPR for the copy constructor. See
1685 initialize_handler_parm. */
1686 {
1687 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1688 TREE_OPERAND (init, 0));
1689 TREE_TYPE (init) = void_type_node;
1690 }
1691 else
1692 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1693 TREE_SIDE_EFFECTS (init) = 1;
1694 finish_expr_stmt (init);
1695 return;
1696 }
1697
1698 if (init == NULL_TREE)
1699 parms = NULL;
1700 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1701 {
1702 parms = make_tree_vector ();
1703 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1704 vec_safe_push (parms, TREE_VALUE (init));
1705 }
1706 else
1707 parms = make_tree_vector_single (init);
1708
1709 if (exp == current_class_ref && current_function_decl
1710 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1711 {
1712 /* Delegating constructor. */
1713 tree complete;
1714 tree base;
1715 tree elt; unsigned i;
1716
1717 /* Unshare the arguments for the second call. */
1718 vec<tree, va_gc> *parms2 = make_tree_vector ();
1719 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1720 {
1721 elt = break_out_target_exprs (elt);
1722 vec_safe_push (parms2, elt);
1723 }
1724 complete = build_special_member_call (exp, complete_ctor_identifier,
1725 &parms2, binfo, flags,
1726 complain);
1727 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1728 release_tree_vector (parms2);
1729
1730 base = build_special_member_call (exp, base_ctor_identifier,
1731 &parms, binfo, flags,
1732 complain);
1733 base = fold_build_cleanup_point_expr (void_type_node, base);
1734 rval = build3 (COND_EXPR, void_type_node,
1735 build2 (EQ_EXPR, boolean_type_node,
1736 current_in_charge_parm, integer_zero_node),
1737 base,
1738 complete);
1739 }
1740 else
1741 {
1742 if (true_exp == exp)
1743 ctor_name = complete_ctor_identifier;
1744 else
1745 ctor_name = base_ctor_identifier;
1746 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1747 complain);
1748 }
1749
1750 if (parms != NULL)
1751 release_tree_vector (parms);
1752
1753 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1754 {
1755 tree fn = get_callee_fndecl (rval);
1756 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1757 {
1758 tree e = maybe_constant_init (rval, exp);
1759 if (TREE_CONSTANT (e))
1760 rval = build2 (INIT_EXPR, type, exp, e);
1761 }
1762 }
1763
1764 /* FIXME put back convert_to_void? */
1765 if (TREE_SIDE_EFFECTS (rval))
1766 finish_expr_stmt (rval);
1767 }
1768
1769 /* This function is responsible for initializing EXP with INIT
1770 (if any).
1771
1772 BINFO is the binfo of the type for who we are performing the
1773 initialization. For example, if W is a virtual base class of A and B,
1774 and C : A, B.
1775 If we are initializing B, then W must contain B's W vtable, whereas
1776 were we initializing C, W must contain C's W vtable.
1777
1778 TRUE_EXP is nonzero if it is the true expression being initialized.
1779 In this case, it may be EXP, or may just contain EXP. The reason we
1780 need this is because if EXP is a base element of TRUE_EXP, we
1781 don't necessarily know by looking at EXP where its virtual
1782 baseclass fields should really be pointing. But we do know
1783 from TRUE_EXP. In constructors, we don't know anything about
1784 the value being initialized.
1785
1786 FLAGS is just passed to `build_new_method_call'. See that function
1787 for its description. */
1788
1789 static void
1790 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1791 tsubst_flags_t complain)
1792 {
1793 tree type = TREE_TYPE (exp);
1794
1795 gcc_assert (init != error_mark_node && type != error_mark_node);
1796 gcc_assert (building_stmt_list_p ());
1797
1798 /* Use a function returning the desired type to initialize EXP for us.
1799 If the function is a constructor, and its first argument is
1800 NULL_TREE, know that it was meant for us--just slide exp on
1801 in and expand the constructor. Constructors now come
1802 as TARGET_EXPRs. */
1803
1804 if (init && VAR_P (exp)
1805 && COMPOUND_LITERAL_P (init))
1806 {
1807 vec<tree, va_gc> *cleanups = NULL;
1808 /* If store_init_value returns NULL_TREE, the INIT has been
1809 recorded as the DECL_INITIAL for EXP. That means there's
1810 nothing more we have to do. */
1811 init = store_init_value (exp, init, &cleanups, flags);
1812 if (init)
1813 finish_expr_stmt (init);
1814 gcc_assert (!cleanups);
1815 return;
1816 }
1817
1818 /* If an explicit -- but empty -- initializer list was present,
1819 that's value-initialization. */
1820 if (init == void_type_node)
1821 {
1822 /* If the type has data but no user-provided ctor, we need to zero
1823 out the object. */
1824 if (!type_has_user_provided_constructor (type)
1825 && !is_really_empty_class (type))
1826 {
1827 tree field_size = NULL_TREE;
1828 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1829 /* Don't clobber already initialized virtual bases. */
1830 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1831 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1832 field_size);
1833 init = build2 (INIT_EXPR, type, exp, init);
1834 finish_expr_stmt (init);
1835 }
1836
1837 /* If we don't need to mess with the constructor at all,
1838 then we're done. */
1839 if (! type_build_ctor_call (type))
1840 return;
1841
1842 /* Otherwise fall through and call the constructor. */
1843 init = NULL_TREE;
1844 }
1845
1846 /* We know that expand_default_init can handle everything we want
1847 at this point. */
1848 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1849 }
1850
1851 /* Report an error if TYPE is not a user-defined, class type. If
1852 OR_ELSE is nonzero, give an error message. */
1853
1854 int
1855 is_class_type (tree type, int or_else)
1856 {
1857 if (type == error_mark_node)
1858 return 0;
1859
1860 if (! CLASS_TYPE_P (type))
1861 {
1862 if (or_else)
1863 error ("%qT is not a class type", type);
1864 return 0;
1865 }
1866 return 1;
1867 }
1868
1869 tree
1870 get_type_value (tree name)
1871 {
1872 if (name == error_mark_node)
1873 return NULL_TREE;
1874
1875 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1876 return IDENTIFIER_TYPE_VALUE (name);
1877 else
1878 return NULL_TREE;
1879 }
1880
1881 /* Build a reference to a member of an aggregate. This is not a C++
1882 `&', but really something which can have its address taken, and
1883 then act as a pointer to member, for example TYPE :: FIELD can have
1884 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1885 this expression is the operand of "&".
1886
1887 @@ Prints out lousy diagnostics for operator <typename>
1888 @@ fields.
1889
1890 @@ This function should be rewritten and placed in search.c. */
1891
1892 tree
1893 build_offset_ref (tree type, tree member, bool address_p,
1894 tsubst_flags_t complain)
1895 {
1896 tree decl;
1897 tree basebinfo = NULL_TREE;
1898
1899 /* class templates can come in as TEMPLATE_DECLs here. */
1900 if (TREE_CODE (member) == TEMPLATE_DECL)
1901 return member;
1902
1903 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1904 return build_qualified_name (NULL_TREE, type, member,
1905 /*template_p=*/false);
1906
1907 gcc_assert (TYPE_P (type));
1908 if (! is_class_type (type, 1))
1909 return error_mark_node;
1910
1911 gcc_assert (DECL_P (member) || BASELINK_P (member));
1912 /* Callers should call mark_used before this point. */
1913 gcc_assert (!DECL_P (member) || TREE_USED (member));
1914
1915 type = TYPE_MAIN_VARIANT (type);
1916 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1917 {
1918 if (complain & tf_error)
1919 error ("incomplete type %qT does not have member %qD", type, member);
1920 return error_mark_node;
1921 }
1922
1923 /* Entities other than non-static members need no further
1924 processing. */
1925 if (TREE_CODE (member) == TYPE_DECL)
1926 return member;
1927 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1928 return convert_from_reference (member);
1929
1930 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1931 {
1932 if (complain & tf_error)
1933 error ("invalid pointer to bit-field %qD", member);
1934 return error_mark_node;
1935 }
1936
1937 /* Set up BASEBINFO for member lookup. */
1938 decl = maybe_dummy_object (type, &basebinfo);
1939
1940 /* A lot of this logic is now handled in lookup_member. */
1941 if (BASELINK_P (member))
1942 {
1943 /* Go from the TREE_BASELINK to the member function info. */
1944 tree t = BASELINK_FUNCTIONS (member);
1945
1946 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1947 {
1948 /* Get rid of a potential OVERLOAD around it. */
1949 t = OVL_CURRENT (t);
1950
1951 /* Unique functions are handled easily. */
1952
1953 /* For non-static member of base class, we need a special rule
1954 for access checking [class.protected]:
1955
1956 If the access is to form a pointer to member, the
1957 nested-name-specifier shall name the derived class
1958 (or any class derived from that class). */
1959 if (address_p && DECL_P (t)
1960 && DECL_NONSTATIC_MEMBER_P (t))
1961 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1962 complain);
1963 else
1964 perform_or_defer_access_check (basebinfo, t, t,
1965 complain);
1966
1967 if (DECL_STATIC_FUNCTION_P (t))
1968 return t;
1969 member = t;
1970 }
1971 else
1972 TREE_TYPE (member) = unknown_type_node;
1973 }
1974 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1975 /* We need additional test besides the one in
1976 check_accessibility_of_qualified_id in case it is
1977 a pointer to non-static member. */
1978 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1979 complain);
1980
1981 if (!address_p)
1982 {
1983 /* If MEMBER is non-static, then the program has fallen afoul of
1984 [expr.prim]:
1985
1986 An id-expression that denotes a nonstatic data member or
1987 nonstatic member function of a class can only be used:
1988
1989 -- as part of a class member access (_expr.ref_) in which the
1990 object-expression refers to the member's class or a class
1991 derived from that class, or
1992
1993 -- to form a pointer to member (_expr.unary.op_), or
1994
1995 -- in the body of a nonstatic member function of that class or
1996 of a class derived from that class (_class.mfct.nonstatic_), or
1997
1998 -- in a mem-initializer for a constructor for that class or for
1999 a class derived from that class (_class.base.init_). */
2000 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2001 {
2002 /* Build a representation of the qualified name suitable
2003 for use as the operand to "&" -- even though the "&" is
2004 not actually present. */
2005 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2006 /* In Microsoft mode, treat a non-static member function as if
2007 it were a pointer-to-member. */
2008 if (flag_ms_extensions)
2009 {
2010 PTRMEM_OK_P (member) = 1;
2011 return cp_build_addr_expr (member, complain);
2012 }
2013 if (complain & tf_error)
2014 error ("invalid use of non-static member function %qD",
2015 TREE_OPERAND (member, 1));
2016 return error_mark_node;
2017 }
2018 else if (TREE_CODE (member) == FIELD_DECL)
2019 {
2020 if (complain & tf_error)
2021 error ("invalid use of non-static data member %qD", member);
2022 return error_mark_node;
2023 }
2024 return member;
2025 }
2026
2027 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2028 PTRMEM_OK_P (member) = 1;
2029 return member;
2030 }
2031
2032 /* If DECL is a scalar enumeration constant or variable with a
2033 constant initializer, return the initializer (or, its initializers,
2034 recursively); otherwise, return DECL. If STRICT_P, the
2035 initializer is only returned if DECL is a
2036 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2037 return an aggregate constant. */
2038
2039 static tree
2040 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2041 {
2042 while (TREE_CODE (decl) == CONST_DECL
2043 || (strict_p
2044 ? decl_constant_var_p (decl)
2045 : (VAR_P (decl)
2046 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2047 {
2048 tree init;
2049 /* If DECL is a static data member in a template
2050 specialization, we must instantiate it here. The
2051 initializer for the static data member is not processed
2052 until needed; we need it now. */
2053 mark_used (decl, tf_none);
2054 mark_rvalue_use (decl);
2055 init = DECL_INITIAL (decl);
2056 if (init == error_mark_node)
2057 {
2058 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2059 /* Treat the error as a constant to avoid cascading errors on
2060 excessively recursive template instantiation (c++/9335). */
2061 return init;
2062 else
2063 return decl;
2064 }
2065 /* Initializers in templates are generally expanded during
2066 instantiation, so before that for const int i(2)
2067 INIT is a TREE_LIST with the actual initializer as
2068 TREE_VALUE. */
2069 if (processing_template_decl
2070 && init
2071 && TREE_CODE (init) == TREE_LIST
2072 && TREE_CHAIN (init) == NULL_TREE)
2073 init = TREE_VALUE (init);
2074 if (!init
2075 || !TREE_TYPE (init)
2076 || !TREE_CONSTANT (init)
2077 || (!return_aggregate_cst_ok_p
2078 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2079 return an aggregate constant (of which string
2080 literals are a special case), as we do not want
2081 to make inadvertent copies of such entities, and
2082 we must be sure that their addresses are the
2083 same everywhere. */
2084 && (TREE_CODE (init) == CONSTRUCTOR
2085 || TREE_CODE (init) == STRING_CST)))
2086 break;
2087 decl = unshare_expr (init);
2088 }
2089 return decl;
2090 }
2091
2092 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2093 of integral or enumeration type, or a constexpr variable of scalar type,
2094 then return that value. These are those variables permitted in constant
2095 expressions by [5.19/1]. */
2096
2097 tree
2098 scalar_constant_value (tree decl)
2099 {
2100 return constant_value_1 (decl, /*strict_p=*/true,
2101 /*return_aggregate_cst_ok_p=*/false);
2102 }
2103
2104 /* Like scalar_constant_value, but can also return aggregate initializers. */
2105
2106 tree
2107 decl_really_constant_value (tree decl)
2108 {
2109 return constant_value_1 (decl, /*strict_p=*/true,
2110 /*return_aggregate_cst_ok_p=*/true);
2111 }
2112
2113 /* A more relaxed version of scalar_constant_value, used by the
2114 common C/C++ code. */
2115
2116 tree
2117 decl_constant_value (tree decl)
2118 {
2119 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2120 /*return_aggregate_cst_ok_p=*/true);
2121 }
2122 \f
2123 /* Common subroutines of build_new and build_vec_delete. */
2124 \f
2125 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2126 the type of the object being allocated; otherwise, it's just TYPE.
2127 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2128 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2129 a vector of arguments to be provided as arguments to a placement
2130 new operator. This routine performs no semantic checks; it just
2131 creates and returns a NEW_EXPR. */
2132
2133 static tree
2134 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2135 vec<tree, va_gc> *init, int use_global_new)
2136 {
2137 tree init_list;
2138 tree new_expr;
2139
2140 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2141 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2142 permits us to distinguish the case of a missing initializer "new
2143 int" from an empty initializer "new int()". */
2144 if (init == NULL)
2145 init_list = NULL_TREE;
2146 else if (init->is_empty ())
2147 init_list = void_node;
2148 else
2149 init_list = build_tree_list_vec (init);
2150
2151 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2152 build_tree_list_vec (placement), type, nelts,
2153 init_list);
2154 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2155 TREE_SIDE_EFFECTS (new_expr) = 1;
2156
2157 return new_expr;
2158 }
2159
2160 /* Diagnose uninitialized const members or reference members of type
2161 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2162 new expression without a new-initializer and a declaration. Returns
2163 the error count. */
2164
2165 static int
2166 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2167 bool using_new, bool complain)
2168 {
2169 tree field;
2170 int error_count = 0;
2171
2172 if (type_has_user_provided_constructor (type))
2173 return 0;
2174
2175 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2176 {
2177 tree field_type;
2178
2179 if (TREE_CODE (field) != FIELD_DECL)
2180 continue;
2181
2182 field_type = strip_array_types (TREE_TYPE (field));
2183
2184 if (type_has_user_provided_constructor (field_type))
2185 continue;
2186
2187 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2188 {
2189 ++ error_count;
2190 if (complain)
2191 {
2192 if (DECL_CONTEXT (field) == origin)
2193 {
2194 if (using_new)
2195 error ("uninitialized reference member in %q#T "
2196 "using %<new%> without new-initializer", origin);
2197 else
2198 error ("uninitialized reference member in %q#T", origin);
2199 }
2200 else
2201 {
2202 if (using_new)
2203 error ("uninitialized reference member in base %q#T "
2204 "of %q#T using %<new%> without new-initializer",
2205 DECL_CONTEXT (field), origin);
2206 else
2207 error ("uninitialized reference member in base %q#T "
2208 "of %q#T", DECL_CONTEXT (field), origin);
2209 }
2210 inform (DECL_SOURCE_LOCATION (field),
2211 "%q#D should be initialized", field);
2212 }
2213 }
2214
2215 if (CP_TYPE_CONST_P (field_type))
2216 {
2217 ++ error_count;
2218 if (complain)
2219 {
2220 if (DECL_CONTEXT (field) == origin)
2221 {
2222 if (using_new)
2223 error ("uninitialized const member in %q#T "
2224 "using %<new%> without new-initializer", origin);
2225 else
2226 error ("uninitialized const member in %q#T", origin);
2227 }
2228 else
2229 {
2230 if (using_new)
2231 error ("uninitialized const member in base %q#T "
2232 "of %q#T using %<new%> without new-initializer",
2233 DECL_CONTEXT (field), origin);
2234 else
2235 error ("uninitialized const member in base %q#T "
2236 "of %q#T", DECL_CONTEXT (field), origin);
2237 }
2238 inform (DECL_SOURCE_LOCATION (field),
2239 "%q#D should be initialized", field);
2240 }
2241 }
2242
2243 if (CLASS_TYPE_P (field_type))
2244 error_count
2245 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2246 using_new, complain);
2247 }
2248 return error_count;
2249 }
2250
2251 int
2252 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2253 {
2254 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2255 }
2256
2257 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2258 overflowed. Pretend it returns sizetype so that it plays nicely in the
2259 COND_EXPR. */
2260
2261 tree
2262 throw_bad_array_new_length (void)
2263 {
2264 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2265 if (!get_global_value_if_present (fn, &fn))
2266 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2267 NULL_TREE));
2268
2269 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2270 }
2271
2272 /* Generate code for a new-expression, including calling the "operator
2273 new" function, initializing the object, and, if an exception occurs
2274 during construction, cleaning up. The arguments are as for
2275 build_raw_new_expr. This may change PLACEMENT and INIT. */
2276
2277 static tree
2278 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2279 vec<tree, va_gc> **init, bool globally_qualified_p,
2280 tsubst_flags_t complain)
2281 {
2282 tree size, rval;
2283 /* True iff this is a call to "operator new[]" instead of just
2284 "operator new". */
2285 bool array_p = false;
2286 /* If ARRAY_P is true, the element type of the array. This is never
2287 an ARRAY_TYPE; for something like "new int[3][4]", the
2288 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2289 TYPE. */
2290 tree elt_type;
2291 /* The type of the new-expression. (This type is always a pointer
2292 type.) */
2293 tree pointer_type;
2294 tree non_const_pointer_type;
2295 tree outer_nelts = NULL_TREE;
2296 /* For arrays, a bounds checks on the NELTS parameter. */
2297 tree outer_nelts_check = NULL_TREE;
2298 bool outer_nelts_from_type = false;
2299 offset_int inner_nelts_count = 1;
2300 tree alloc_call, alloc_expr;
2301 /* Size of the inner array elements. */
2302 offset_int inner_size;
2303 /* The address returned by the call to "operator new". This node is
2304 a VAR_DECL and is therefore reusable. */
2305 tree alloc_node;
2306 tree alloc_fn;
2307 tree cookie_expr, init_expr;
2308 int nothrow, check_new;
2309 int use_java_new = 0;
2310 /* If non-NULL, the number of extra bytes to allocate at the
2311 beginning of the storage allocated for an array-new expression in
2312 order to store the number of elements. */
2313 tree cookie_size = NULL_TREE;
2314 tree placement_first;
2315 tree placement_expr = NULL_TREE;
2316 /* True if the function we are calling is a placement allocation
2317 function. */
2318 bool placement_allocation_fn_p;
2319 /* True if the storage must be initialized, either by a constructor
2320 or due to an explicit new-initializer. */
2321 bool is_initialized;
2322 /* The address of the thing allocated, not including any cookie. In
2323 particular, if an array cookie is in use, DATA_ADDR is the
2324 address of the first array element. This node is a VAR_DECL, and
2325 is therefore reusable. */
2326 tree data_addr;
2327 tree init_preeval_expr = NULL_TREE;
2328 tree orig_type = type;
2329
2330 if (nelts)
2331 {
2332 outer_nelts = nelts;
2333 array_p = true;
2334 }
2335 else if (TREE_CODE (type) == ARRAY_TYPE)
2336 {
2337 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2338 extension for variable N. (This also covers new T where T is
2339 a VLA typedef.) */
2340 array_p = true;
2341 nelts = array_type_nelts_top (type);
2342 outer_nelts = nelts;
2343 type = TREE_TYPE (type);
2344 outer_nelts_from_type = true;
2345 }
2346
2347 /* If our base type is an array, then make sure we know how many elements
2348 it has. */
2349 for (elt_type = type;
2350 TREE_CODE (elt_type) == ARRAY_TYPE;
2351 elt_type = TREE_TYPE (elt_type))
2352 {
2353 tree inner_nelts = array_type_nelts_top (elt_type);
2354 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2355 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2356 {
2357 bool overflow;
2358 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2359 inner_nelts_count, SIGNED, &overflow);
2360 if (overflow)
2361 {
2362 if (complain & tf_error)
2363 error ("integer overflow in array size");
2364 nelts = error_mark_node;
2365 }
2366 inner_nelts_count = result;
2367 }
2368 else
2369 {
2370 if (complain & tf_error)
2371 {
2372 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2373 "array size in new-expression must be constant");
2374 cxx_constant_value(inner_nelts);
2375 }
2376 nelts = error_mark_node;
2377 }
2378 if (nelts != error_mark_node)
2379 nelts = cp_build_binary_op (input_location,
2380 MULT_EXPR, nelts,
2381 inner_nelts_cst,
2382 complain);
2383 }
2384
2385 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2386 {
2387 error ("variably modified type not allowed in new-expression");
2388 return error_mark_node;
2389 }
2390
2391 if (nelts == error_mark_node)
2392 return error_mark_node;
2393
2394 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2395 variable. */
2396 if (outer_nelts_from_type
2397 && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2398 {
2399 if (complain & tf_warning_or_error)
2400 {
2401 const char *msg;
2402 if (typedef_variant_p (orig_type))
2403 msg = ("non-constant array new length must be specified "
2404 "directly, not by typedef");
2405 else
2406 msg = ("non-constant array new length must be specified "
2407 "without parentheses around the type-id");
2408 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2409 OPT_Wvla, msg);
2410 }
2411 else
2412 return error_mark_node;
2413 }
2414
2415 if (VOID_TYPE_P (elt_type))
2416 {
2417 if (complain & tf_error)
2418 error ("invalid type %<void%> for new");
2419 return error_mark_node;
2420 }
2421
2422 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2423 return error_mark_node;
2424
2425 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2426
2427 if (*init == NULL && cxx_dialect < cxx11)
2428 {
2429 bool maybe_uninitialized_error = false;
2430 /* A program that calls for default-initialization [...] of an
2431 entity of reference type is ill-formed. */
2432 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2433 maybe_uninitialized_error = true;
2434
2435 /* A new-expression that creates an object of type T initializes
2436 that object as follows:
2437 - If the new-initializer is omitted:
2438 -- If T is a (possibly cv-qualified) non-POD class type
2439 (or array thereof), the object is default-initialized (8.5).
2440 [...]
2441 -- Otherwise, the object created has indeterminate
2442 value. If T is a const-qualified type, or a (possibly
2443 cv-qualified) POD class type (or array thereof)
2444 containing (directly or indirectly) a member of
2445 const-qualified type, the program is ill-formed; */
2446
2447 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2448 maybe_uninitialized_error = true;
2449
2450 if (maybe_uninitialized_error
2451 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2452 /*using_new=*/true,
2453 complain & tf_error))
2454 return error_mark_node;
2455 }
2456
2457 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2458 && default_init_uninitialized_part (elt_type))
2459 {
2460 if (complain & tf_error)
2461 error ("uninitialized const in %<new%> of %q#T", elt_type);
2462 return error_mark_node;
2463 }
2464
2465 size = size_in_bytes (elt_type);
2466 if (array_p)
2467 {
2468 /* Maximum available size in bytes. Half of the address space
2469 minus the cookie size. */
2470 offset_int max_size
2471 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2472 /* Maximum number of outer elements which can be allocated. */
2473 offset_int max_outer_nelts;
2474 tree max_outer_nelts_tree;
2475
2476 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2477 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2478 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2479 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2480 /* Unconditionally subtract the cookie size. This decreases the
2481 maximum object size and is safe even if we choose not to use
2482 a cookie after all. */
2483 max_size -= wi::to_offset (cookie_size);
2484 bool overflow;
2485 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2486 &overflow);
2487 if (overflow || wi::gtu_p (inner_size, max_size))
2488 {
2489 if (complain & tf_error)
2490 error ("size of array is too large");
2491 return error_mark_node;
2492 }
2493
2494 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2495 /* Only keep the top-most seven bits, to simplify encoding the
2496 constant in the instruction stream. */
2497 {
2498 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2499 - wi::clz (max_outer_nelts);
2500 max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
2501 shift);
2502 }
2503 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2504
2505 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2506 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2507 outer_nelts,
2508 max_outer_nelts_tree);
2509 }
2510
2511 alloc_fn = NULL_TREE;
2512
2513 /* If PLACEMENT is a single simple pointer type not passed by
2514 reference, prepare to capture it in a temporary variable. Do
2515 this now, since PLACEMENT will change in the calls below. */
2516 placement_first = NULL_TREE;
2517 if (vec_safe_length (*placement) == 1
2518 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2519 placement_first = (**placement)[0];
2520
2521 /* Allocate the object. */
2522 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2523 {
2524 tree class_addr;
2525 tree class_decl;
2526 static const char alloc_name[] = "_Jv_AllocObject";
2527
2528 if (!MAYBE_CLASS_TYPE_P (elt_type))
2529 {
2530 error ("%qT isn%'t a valid Java class type", elt_type);
2531 return error_mark_node;
2532 }
2533
2534 class_decl = build_java_class_ref (elt_type);
2535 if (class_decl == error_mark_node)
2536 return error_mark_node;
2537
2538 use_java_new = 1;
2539 if (!get_global_value_if_present (get_identifier (alloc_name),
2540 &alloc_fn))
2541 {
2542 if (complain & tf_error)
2543 error ("call to Java constructor with %qs undefined", alloc_name);
2544 return error_mark_node;
2545 }
2546 else if (really_overloaded_fn (alloc_fn))
2547 {
2548 if (complain & tf_error)
2549 error ("%qD should never be overloaded", alloc_fn);
2550 return error_mark_node;
2551 }
2552 alloc_fn = OVL_CURRENT (alloc_fn);
2553 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2554 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2555 class_addr, NULL_TREE);
2556 }
2557 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2558 {
2559 error ("Java class %q#T object allocated using placement new", elt_type);
2560 return error_mark_node;
2561 }
2562 else
2563 {
2564 tree fnname;
2565 tree fns;
2566
2567 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2568
2569 if (!globally_qualified_p
2570 && CLASS_TYPE_P (elt_type)
2571 && (array_p
2572 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2573 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2574 {
2575 /* Use a class-specific operator new. */
2576 /* If a cookie is required, add some extra space. */
2577 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2578 size = size_binop (PLUS_EXPR, size, cookie_size);
2579 else
2580 {
2581 cookie_size = NULL_TREE;
2582 /* No size arithmetic necessary, so the size check is
2583 not needed. */
2584 if (outer_nelts_check != NULL && inner_size == 1)
2585 outer_nelts_check = NULL_TREE;
2586 }
2587 /* Perform the overflow check. */
2588 tree errval = TYPE_MAX_VALUE (sizetype);
2589 if (cxx_dialect >= cxx11 && flag_exceptions)
2590 errval = throw_bad_array_new_length ();
2591 if (outer_nelts_check != NULL_TREE)
2592 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2593 size, errval);
2594 /* Create the argument list. */
2595 vec_safe_insert (*placement, 0, size);
2596 /* Do name-lookup to find the appropriate operator. */
2597 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2598 if (fns == NULL_TREE)
2599 {
2600 if (complain & tf_error)
2601 error ("no suitable %qD found in class %qT", fnname, elt_type);
2602 return error_mark_node;
2603 }
2604 if (TREE_CODE (fns) == TREE_LIST)
2605 {
2606 if (complain & tf_error)
2607 {
2608 error ("request for member %qD is ambiguous", fnname);
2609 print_candidates (fns);
2610 }
2611 return error_mark_node;
2612 }
2613 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2614 fns, placement,
2615 /*conversion_path=*/NULL_TREE,
2616 LOOKUP_NORMAL,
2617 &alloc_fn,
2618 complain);
2619 }
2620 else
2621 {
2622 /* Use a global operator new. */
2623 /* See if a cookie might be required. */
2624 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2625 {
2626 cookie_size = NULL_TREE;
2627 /* No size arithmetic necessary, so the size check is
2628 not needed. */
2629 if (outer_nelts_check != NULL && inner_size == 1)
2630 outer_nelts_check = NULL_TREE;
2631 }
2632
2633 alloc_call = build_operator_new_call (fnname, placement,
2634 &size, &cookie_size,
2635 outer_nelts_check,
2636 &alloc_fn, complain);
2637 }
2638 }
2639
2640 if (alloc_call == error_mark_node)
2641 return error_mark_node;
2642
2643 gcc_assert (alloc_fn != NULL_TREE);
2644
2645 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2646 into a temporary variable. */
2647 if (!processing_template_decl
2648 && placement_first != NULL_TREE
2649 && TREE_CODE (alloc_call) == CALL_EXPR
2650 && call_expr_nargs (alloc_call) == 2
2651 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2652 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2653 {
2654 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2655
2656 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2657 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2658 {
2659 placement_expr = get_target_expr (placement_first);
2660 CALL_EXPR_ARG (alloc_call, 1)
2661 = convert (TREE_TYPE (placement_arg), placement_expr);
2662 }
2663 }
2664
2665 /* In the simple case, we can stop now. */
2666 pointer_type = build_pointer_type (type);
2667 if (!cookie_size && !is_initialized)
2668 return build_nop (pointer_type, alloc_call);
2669
2670 /* Store the result of the allocation call in a variable so that we can
2671 use it more than once. */
2672 alloc_expr = get_target_expr (alloc_call);
2673 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2674
2675 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2676 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2677 alloc_call = TREE_OPERAND (alloc_call, 1);
2678
2679 /* Now, check to see if this function is actually a placement
2680 allocation function. This can happen even when PLACEMENT is NULL
2681 because we might have something like:
2682
2683 struct S { void* operator new (size_t, int i = 0); };
2684
2685 A call to `new S' will get this allocation function, even though
2686 there is no explicit placement argument. If there is more than
2687 one argument, or there are variable arguments, then this is a
2688 placement allocation function. */
2689 placement_allocation_fn_p
2690 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2691 || varargs_function_p (alloc_fn));
2692
2693 /* Preevaluate the placement args so that we don't reevaluate them for a
2694 placement delete. */
2695 if (placement_allocation_fn_p)
2696 {
2697 tree inits;
2698 stabilize_call (alloc_call, &inits);
2699 if (inits)
2700 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2701 alloc_expr);
2702 }
2703
2704 /* unless an allocation function is declared with an empty excep-
2705 tion-specification (_except.spec_), throw(), it indicates failure to
2706 allocate storage by throwing a bad_alloc exception (clause _except_,
2707 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2708 cation function is declared with an empty exception-specification,
2709 throw(), it returns null to indicate failure to allocate storage and a
2710 non-null pointer otherwise.
2711
2712 So check for a null exception spec on the op new we just called. */
2713
2714 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2715 check_new = (flag_check_new || nothrow) && ! use_java_new;
2716
2717 if (cookie_size)
2718 {
2719 tree cookie;
2720 tree cookie_ptr;
2721 tree size_ptr_type;
2722
2723 /* Adjust so we're pointing to the start of the object. */
2724 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2725
2726 /* Store the number of bytes allocated so that we can know how
2727 many elements to destroy later. We use the last sizeof
2728 (size_t) bytes to store the number of elements. */
2729 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2730 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2731 alloc_node, cookie_ptr);
2732 size_ptr_type = build_pointer_type (sizetype);
2733 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2734 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2735
2736 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2737
2738 if (targetm.cxx.cookie_has_size ())
2739 {
2740 /* Also store the element size. */
2741 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2742 fold_build1_loc (input_location,
2743 NEGATE_EXPR, sizetype,
2744 size_in_bytes (sizetype)));
2745
2746 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2747 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2748 size_in_bytes (elt_type));
2749 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2750 cookie, cookie_expr);
2751 }
2752 }
2753 else
2754 {
2755 cookie_expr = NULL_TREE;
2756 data_addr = alloc_node;
2757 }
2758
2759 /* Now use a pointer to the type we've actually allocated. */
2760
2761 /* But we want to operate on a non-const version to start with,
2762 since we'll be modifying the elements. */
2763 non_const_pointer_type = build_pointer_type
2764 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2765
2766 data_addr = fold_convert (non_const_pointer_type, data_addr);
2767 /* Any further uses of alloc_node will want this type, too. */
2768 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2769
2770 /* Now initialize the allocated object. Note that we preevaluate the
2771 initialization expression, apart from the actual constructor call or
2772 assignment--we do this because we want to delay the allocation as long
2773 as possible in order to minimize the size of the exception region for
2774 placement delete. */
2775 if (is_initialized)
2776 {
2777 bool stable;
2778 bool explicit_value_init_p = false;
2779
2780 if (*init != NULL && (*init)->is_empty ())
2781 {
2782 *init = NULL;
2783 explicit_value_init_p = true;
2784 }
2785
2786 if (processing_template_decl && explicit_value_init_p)
2787 {
2788 /* build_value_init doesn't work in templates, and we don't need
2789 the initializer anyway since we're going to throw it away and
2790 rebuild it at instantiation time, so just build up a single
2791 constructor call to get any appropriate diagnostics. */
2792 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2793 if (type_build_ctor_call (elt_type))
2794 init_expr = build_special_member_call (init_expr,
2795 complete_ctor_identifier,
2796 init, elt_type,
2797 LOOKUP_NORMAL,
2798 complain);
2799 stable = stabilize_init (init_expr, &init_preeval_expr);
2800 }
2801 else if (array_p)
2802 {
2803 tree vecinit = NULL_TREE;
2804 if (vec_safe_length (*init) == 1
2805 && DIRECT_LIST_INIT_P ((**init)[0]))
2806 {
2807 vecinit = (**init)[0];
2808 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2809 /* List-value-initialization, leave it alone. */;
2810 else
2811 {
2812 tree arraytype, domain;
2813 if (TREE_CONSTANT (nelts))
2814 domain = compute_array_index_type (NULL_TREE, nelts,
2815 complain);
2816 else
2817 /* We'll check the length at runtime. */
2818 domain = NULL_TREE;
2819 arraytype = build_cplus_array_type (type, domain);
2820 vecinit = digest_init (arraytype, vecinit, complain);
2821 }
2822 }
2823 else if (*init)
2824 {
2825 if (complain & tf_error)
2826 permerror (input_location,
2827 "parenthesized initializer in array new");
2828 else
2829 return error_mark_node;
2830 vecinit = build_tree_list_vec (*init);
2831 }
2832 init_expr
2833 = build_vec_init (data_addr,
2834 cp_build_binary_op (input_location,
2835 MINUS_EXPR, outer_nelts,
2836 integer_one_node,
2837 complain),
2838 vecinit,
2839 explicit_value_init_p,
2840 /*from_array=*/0,
2841 complain);
2842
2843 /* An array initialization is stable because the initialization
2844 of each element is a full-expression, so the temporaries don't
2845 leak out. */
2846 stable = true;
2847 }
2848 else
2849 {
2850 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2851
2852 if (type_build_ctor_call (type) && !explicit_value_init_p)
2853 {
2854 init_expr = build_special_member_call (init_expr,
2855 complete_ctor_identifier,
2856 init, elt_type,
2857 LOOKUP_NORMAL,
2858 complain);
2859 }
2860 else if (explicit_value_init_p)
2861 {
2862 /* Something like `new int()'. */
2863 tree val = build_value_init (type, complain);
2864 if (val == error_mark_node)
2865 return error_mark_node;
2866 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2867 }
2868 else
2869 {
2870 tree ie;
2871
2872 /* We are processing something like `new int (10)', which
2873 means allocate an int, and initialize it with 10. */
2874
2875 ie = build_x_compound_expr_from_vec (*init, "new initializer",
2876 complain);
2877 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2878 complain);
2879 }
2880 stable = stabilize_init (init_expr, &init_preeval_expr);
2881 }
2882
2883 if (init_expr == error_mark_node)
2884 return error_mark_node;
2885
2886 /* If any part of the object initialization terminates by throwing an
2887 exception and a suitable deallocation function can be found, the
2888 deallocation function is called to free the memory in which the
2889 object was being constructed, after which the exception continues
2890 to propagate in the context of the new-expression. If no
2891 unambiguous matching deallocation function can be found,
2892 propagating the exception does not cause the object's memory to be
2893 freed. */
2894 if (flag_exceptions && ! use_java_new)
2895 {
2896 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2897 tree cleanup;
2898
2899 /* The Standard is unclear here, but the right thing to do
2900 is to use the same method for finding deallocation
2901 functions that we use for finding allocation functions. */
2902 cleanup = (build_op_delete_call
2903 (dcode,
2904 alloc_node,
2905 size,
2906 globally_qualified_p,
2907 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2908 alloc_fn,
2909 complain));
2910
2911 if (!cleanup)
2912 /* We're done. */;
2913 else if (stable)
2914 /* This is much simpler if we were able to preevaluate all of
2915 the arguments to the constructor call. */
2916 {
2917 /* CLEANUP is compiler-generated, so no diagnostics. */
2918 TREE_NO_WARNING (cleanup) = true;
2919 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2920 init_expr, cleanup);
2921 /* Likewise, this try-catch is compiler-generated. */
2922 TREE_NO_WARNING (init_expr) = true;
2923 }
2924 else
2925 /* Ack! First we allocate the memory. Then we set our sentry
2926 variable to true, and expand a cleanup that deletes the
2927 memory if sentry is true. Then we run the constructor, and
2928 finally clear the sentry.
2929
2930 We need to do this because we allocate the space first, so
2931 if there are any temporaries with cleanups in the
2932 constructor args and we weren't able to preevaluate them, we
2933 need this EH region to extend until end of full-expression
2934 to preserve nesting. */
2935 {
2936 tree end, sentry, begin;
2937
2938 begin = get_target_expr (boolean_true_node);
2939 CLEANUP_EH_ONLY (begin) = 1;
2940
2941 sentry = TARGET_EXPR_SLOT (begin);
2942
2943 /* CLEANUP is compiler-generated, so no diagnostics. */
2944 TREE_NO_WARNING (cleanup) = true;
2945
2946 TARGET_EXPR_CLEANUP (begin)
2947 = build3 (COND_EXPR, void_type_node, sentry,
2948 cleanup, void_node);
2949
2950 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2951 sentry, boolean_false_node);
2952
2953 init_expr
2954 = build2 (COMPOUND_EXPR, void_type_node, begin,
2955 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2956 end));
2957 /* Likewise, this is compiler-generated. */
2958 TREE_NO_WARNING (init_expr) = true;
2959 }
2960 }
2961 }
2962 else
2963 init_expr = NULL_TREE;
2964
2965 /* Now build up the return value in reverse order. */
2966
2967 rval = data_addr;
2968
2969 if (init_expr)
2970 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2971 if (cookie_expr)
2972 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2973
2974 if (rval == data_addr)
2975 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2976 and return the call (which doesn't need to be adjusted). */
2977 rval = TARGET_EXPR_INITIAL (alloc_expr);
2978 else
2979 {
2980 if (check_new)
2981 {
2982 tree ifexp = cp_build_binary_op (input_location,
2983 NE_EXPR, alloc_node,
2984 nullptr_node,
2985 complain);
2986 rval = build_conditional_expr (input_location, ifexp, rval,
2987 alloc_node, complain);
2988 }
2989
2990 /* Perform the allocation before anything else, so that ALLOC_NODE
2991 has been initialized before we start using it. */
2992 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2993 }
2994
2995 if (init_preeval_expr)
2996 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2997
2998 /* A new-expression is never an lvalue. */
2999 gcc_assert (!lvalue_p (rval));
3000
3001 return convert (pointer_type, rval);
3002 }
3003
3004 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3005 is a vector of placement-new arguments (or NULL if none). If NELTS
3006 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3007 is not NULL, then this is an array-new allocation; TYPE is the type
3008 of the elements in the array and NELTS is the number of elements in
3009 the array. *INIT, if non-NULL, is the initializer for the new
3010 object, or an empty vector to indicate an initializer of "()". If
3011 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3012 rather than just "new". This may change PLACEMENT and INIT. */
3013
3014 tree
3015 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3016 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3017 {
3018 tree rval;
3019 vec<tree, va_gc> *orig_placement = NULL;
3020 tree orig_nelts = NULL_TREE;
3021 vec<tree, va_gc> *orig_init = NULL;
3022
3023 if (type == error_mark_node)
3024 return error_mark_node;
3025
3026 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3027 /* Don't do auto deduction where it might affect mangling. */
3028 && (!processing_template_decl || at_function_scope_p ()))
3029 {
3030 tree auto_node = type_uses_auto (type);
3031 if (auto_node)
3032 {
3033 tree d_init = (**init)[0];
3034 d_init = resolve_nondeduced_context (d_init);
3035 type = do_auto_deduction (type, d_init, auto_node);
3036 }
3037 }
3038
3039 if (processing_template_decl)
3040 {
3041 if (dependent_type_p (type)
3042 || any_type_dependent_arguments_p (*placement)
3043 || (nelts && type_dependent_expression_p (nelts))
3044 || (nelts && *init)
3045 || any_type_dependent_arguments_p (*init))
3046 return build_raw_new_expr (*placement, type, nelts, *init,
3047 use_global_new);
3048
3049 orig_placement = make_tree_vector_copy (*placement);
3050 orig_nelts = nelts;
3051 if (*init)
3052 orig_init = make_tree_vector_copy (*init);
3053
3054 make_args_non_dependent (*placement);
3055 if (nelts)
3056 nelts = build_non_dependent_expr (nelts);
3057 make_args_non_dependent (*init);
3058 }
3059
3060 if (nelts)
3061 {
3062 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3063 {
3064 if (complain & tf_error)
3065 permerror (input_location, "size in array new must have integral type");
3066 else
3067 return error_mark_node;
3068 }
3069 nelts = mark_rvalue_use (nelts);
3070 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3071 }
3072
3073 /* ``A reference cannot be created by the new operator. A reference
3074 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3075 returned by new.'' ARM 5.3.3 */
3076 if (TREE_CODE (type) == REFERENCE_TYPE)
3077 {
3078 if (complain & tf_error)
3079 error ("new cannot be applied to a reference type");
3080 else
3081 return error_mark_node;
3082 type = TREE_TYPE (type);
3083 }
3084
3085 if (TREE_CODE (type) == FUNCTION_TYPE)
3086 {
3087 if (complain & tf_error)
3088 error ("new cannot be applied to a function type");
3089 return error_mark_node;
3090 }
3091
3092 /* The type allocated must be complete. If the new-type-id was
3093 "T[N]" then we are just checking that "T" is complete here, but
3094 that is equivalent, since the value of "N" doesn't matter. */
3095 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3096 return error_mark_node;
3097
3098 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3099 if (rval == error_mark_node)
3100 return error_mark_node;
3101
3102 if (processing_template_decl)
3103 {
3104 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3105 orig_init, use_global_new);
3106 release_tree_vector (orig_placement);
3107 release_tree_vector (orig_init);
3108 return ret;
3109 }
3110
3111 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3112 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3113 TREE_NO_WARNING (rval) = 1;
3114
3115 return rval;
3116 }
3117
3118 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3119
3120 tree
3121 build_java_class_ref (tree type)
3122 {
3123 tree name = NULL_TREE, class_decl;
3124 static tree CL_suffix = NULL_TREE;
3125 if (CL_suffix == NULL_TREE)
3126 CL_suffix = get_identifier("class$");
3127 if (jclass_node == NULL_TREE)
3128 {
3129 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3130 if (jclass_node == NULL_TREE)
3131 {
3132 error ("call to Java constructor, while %<jclass%> undefined");
3133 return error_mark_node;
3134 }
3135 jclass_node = TREE_TYPE (jclass_node);
3136 }
3137
3138 /* Mangle the class$ field. */
3139 {
3140 tree field;
3141 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3142 if (DECL_NAME (field) == CL_suffix)
3143 {
3144 mangle_decl (field);
3145 name = DECL_ASSEMBLER_NAME (field);
3146 break;
3147 }
3148 if (!field)
3149 {
3150 error ("can%'t find %<class$%> in %qT", type);
3151 return error_mark_node;
3152 }
3153 }
3154
3155 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3156 if (class_decl == NULL_TREE)
3157 {
3158 class_decl = build_decl (input_location,
3159 VAR_DECL, name, TREE_TYPE (jclass_node));
3160 TREE_STATIC (class_decl) = 1;
3161 DECL_EXTERNAL (class_decl) = 1;
3162 TREE_PUBLIC (class_decl) = 1;
3163 DECL_ARTIFICIAL (class_decl) = 1;
3164 DECL_IGNORED_P (class_decl) = 1;
3165 pushdecl_top_level (class_decl);
3166 make_decl_rtl (class_decl);
3167 }
3168 return class_decl;
3169 }
3170 \f
3171 static tree
3172 build_vec_delete_1 (tree base, tree maxindex, tree type,
3173 special_function_kind auto_delete_vec,
3174 int use_global_delete, tsubst_flags_t complain)
3175 {
3176 tree virtual_size;
3177 tree ptype = build_pointer_type (type = complete_type (type));
3178 tree size_exp;
3179
3180 /* Temporary variables used by the loop. */
3181 tree tbase, tbase_init;
3182
3183 /* This is the body of the loop that implements the deletion of a
3184 single element, and moves temp variables to next elements. */
3185 tree body;
3186
3187 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3188 tree loop = 0;
3189
3190 /* This is the thing that governs what to do after the loop has run. */
3191 tree deallocate_expr = 0;
3192
3193 /* This is the BIND_EXPR which holds the outermost iterator of the
3194 loop. It is convenient to set this variable up and test it before
3195 executing any other code in the loop.
3196 This is also the containing expression returned by this function. */
3197 tree controller = NULL_TREE;
3198 tree tmp;
3199
3200 /* We should only have 1-D arrays here. */
3201 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3202
3203 if (base == error_mark_node || maxindex == error_mark_node)
3204 return error_mark_node;
3205
3206 if (!COMPLETE_TYPE_P (type))
3207 {
3208 if ((complain & tf_warning)
3209 && warning (OPT_Wdelete_incomplete,
3210 "possible problem detected in invocation of "
3211 "delete [] operator:"))
3212 {
3213 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3214 inform (input_location, "neither the destructor nor the "
3215 "class-specific operator delete [] will be called, "
3216 "even if they are declared when the class is defined");
3217 }
3218 /* This size won't actually be used. */
3219 size_exp = size_one_node;
3220 goto no_destructor;
3221 }
3222
3223 size_exp = size_in_bytes (type);
3224
3225 if (! MAYBE_CLASS_TYPE_P (type))
3226 goto no_destructor;
3227 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3228 {
3229 /* Make sure the destructor is callable. */
3230 if (type_build_dtor_call (type))
3231 {
3232 tmp = build_delete (ptype, base, sfk_complete_destructor,
3233 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3234 complain);
3235 if (tmp == error_mark_node)
3236 return error_mark_node;
3237 }
3238 goto no_destructor;
3239 }
3240
3241 /* The below is short by the cookie size. */
3242 virtual_size = size_binop (MULT_EXPR, size_exp,
3243 convert (sizetype, maxindex));
3244
3245 tbase = create_temporary_var (ptype);
3246 tbase_init
3247 = cp_build_modify_expr (tbase, NOP_EXPR,
3248 fold_build_pointer_plus_loc (input_location,
3249 fold_convert (ptype,
3250 base),
3251 virtual_size),
3252 complain);
3253 if (tbase_init == error_mark_node)
3254 return error_mark_node;
3255 controller = build3 (BIND_EXPR, void_type_node, tbase,
3256 NULL_TREE, NULL_TREE);
3257 TREE_SIDE_EFFECTS (controller) = 1;
3258
3259 body = build1 (EXIT_EXPR, void_type_node,
3260 build2 (EQ_EXPR, boolean_type_node, tbase,
3261 fold_convert (ptype, base)));
3262 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3263 tmp = fold_build_pointer_plus (tbase, tmp);
3264 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3265 if (tmp == error_mark_node)
3266 return error_mark_node;
3267 body = build_compound_expr (input_location, body, tmp);
3268 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3269 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3270 complain);
3271 if (tmp == error_mark_node)
3272 return error_mark_node;
3273 body = build_compound_expr (input_location, body, tmp);
3274
3275 loop = build1 (LOOP_EXPR, void_type_node, body);
3276 loop = build_compound_expr (input_location, tbase_init, loop);
3277
3278 no_destructor:
3279 /* Delete the storage if appropriate. */
3280 if (auto_delete_vec == sfk_deleting_destructor)
3281 {
3282 tree base_tbd;
3283
3284 /* The below is short by the cookie size. */
3285 virtual_size = size_binop (MULT_EXPR, size_exp,
3286 convert (sizetype, maxindex));
3287
3288 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3289 /* no header */
3290 base_tbd = base;
3291 else
3292 {
3293 tree cookie_size;
3294
3295 cookie_size = targetm.cxx.get_cookie_size (type);
3296 base_tbd = cp_build_binary_op (input_location,
3297 MINUS_EXPR,
3298 cp_convert (string_type_node,
3299 base, complain),
3300 cookie_size,
3301 complain);
3302 if (base_tbd == error_mark_node)
3303 return error_mark_node;
3304 base_tbd = cp_convert (ptype, base_tbd, complain);
3305 /* True size with header. */
3306 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3307 }
3308
3309 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3310 base_tbd, virtual_size,
3311 use_global_delete & 1,
3312 /*placement=*/NULL_TREE,
3313 /*alloc_fn=*/NULL_TREE,
3314 complain);
3315 }
3316
3317 body = loop;
3318 if (!deallocate_expr)
3319 ;
3320 else if (!body)
3321 body = deallocate_expr;
3322 else
3323 body = build_compound_expr (input_location, body, deallocate_expr);
3324
3325 if (!body)
3326 body = integer_zero_node;
3327
3328 /* Outermost wrapper: If pointer is null, punt. */
3329 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3330 fold_build2_loc (input_location,
3331 NE_EXPR, boolean_type_node, base,
3332 convert (TREE_TYPE (base),
3333 nullptr_node)),
3334 body, integer_zero_node);
3335 body = build1 (NOP_EXPR, void_type_node, body);
3336
3337 if (controller)
3338 {
3339 TREE_OPERAND (controller, 1) = body;
3340 body = controller;
3341 }
3342
3343 if (TREE_CODE (base) == SAVE_EXPR)
3344 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3345 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3346
3347 return convert_to_void (body, ICV_CAST, complain);
3348 }
3349
3350 /* Create an unnamed variable of the indicated TYPE. */
3351
3352 tree
3353 create_temporary_var (tree type)
3354 {
3355 tree decl;
3356
3357 decl = build_decl (input_location,
3358 VAR_DECL, NULL_TREE, type);
3359 TREE_USED (decl) = 1;
3360 DECL_ARTIFICIAL (decl) = 1;
3361 DECL_IGNORED_P (decl) = 1;
3362 DECL_CONTEXT (decl) = current_function_decl;
3363
3364 return decl;
3365 }
3366
3367 /* Create a new temporary variable of the indicated TYPE, initialized
3368 to INIT.
3369
3370 It is not entered into current_binding_level, because that breaks
3371 things when it comes time to do final cleanups (which take place
3372 "outside" the binding contour of the function). */
3373
3374 tree
3375 get_temp_regvar (tree type, tree init)
3376 {
3377 tree decl;
3378
3379 decl = create_temporary_var (type);
3380 add_decl_expr (decl);
3381
3382 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3383 tf_warning_or_error));
3384
3385 return decl;
3386 }
3387
3388 /* Subroutine of build_vec_init. Returns true if assigning to an array of
3389 INNER_ELT_TYPE from INIT is trivial. */
3390
3391 static bool
3392 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3393 {
3394 tree fromtype = inner_elt_type;
3395 if (real_lvalue_p (init))
3396 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3397 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3398 }
3399
3400 /* `build_vec_init' returns tree structure that performs
3401 initialization of a vector of aggregate types.
3402
3403 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3404 to the first element, of POINTER_TYPE.
3405 MAXINDEX is the maximum index of the array (one less than the
3406 number of elements). It is only used if BASE is a pointer or
3407 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3408
3409 INIT is the (possibly NULL) initializer.
3410
3411 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3412 elements in the array are value-initialized.
3413
3414 FROM_ARRAY is 0 if we should init everything with INIT
3415 (i.e., every element initialized from INIT).
3416 FROM_ARRAY is 1 if we should index into INIT in parallel
3417 with initialization of DECL.
3418 FROM_ARRAY is 2 if we should index into INIT in parallel,
3419 but use assignment instead of initialization. */
3420
3421 tree
3422 build_vec_init (tree base, tree maxindex, tree init,
3423 bool explicit_value_init_p,
3424 int from_array, tsubst_flags_t complain)
3425 {
3426 tree rval;
3427 tree base2 = NULL_TREE;
3428 tree itype = NULL_TREE;
3429 tree iterator;
3430 /* The type of BASE. */
3431 tree atype = TREE_TYPE (base);
3432 /* The type of an element in the array. */
3433 tree type = TREE_TYPE (atype);
3434 /* The element type reached after removing all outer array
3435 types. */
3436 tree inner_elt_type;
3437 /* The type of a pointer to an element in the array. */
3438 tree ptype;
3439 tree stmt_expr;
3440 tree compound_stmt;
3441 int destroy_temps;
3442 tree try_block = NULL_TREE;
3443 int num_initialized_elts = 0;
3444 bool is_global;
3445 tree obase = base;
3446 bool xvalue = false;
3447 bool errors = false;
3448
3449 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3450 maxindex = array_type_nelts (atype);
3451
3452 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3453 return error_mark_node;
3454
3455 if (explicit_value_init_p)
3456 gcc_assert (!init);
3457
3458 inner_elt_type = strip_array_types (type);
3459
3460 /* Look through the TARGET_EXPR around a compound literal. */
3461 if (init && TREE_CODE (init) == TARGET_EXPR
3462 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3463 && from_array != 2)
3464 init = TARGET_EXPR_INITIAL (init);
3465
3466 /* If we have a braced-init-list, make sure that the array
3467 is big enough for all the initializers. */
3468 bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
3469 && CONSTRUCTOR_NELTS (init) > 0
3470 && !TREE_CONSTANT (maxindex));
3471
3472 if (init
3473 && TREE_CODE (atype) == ARRAY_TYPE
3474 && TREE_CONSTANT (maxindex)
3475 && (from_array == 2
3476 ? vec_copy_assign_is_trivial (inner_elt_type, init)
3477 : !TYPE_NEEDS_CONSTRUCTING (type))
3478 && ((TREE_CODE (init) == CONSTRUCTOR
3479 /* Don't do this if the CONSTRUCTOR might contain something
3480 that might throw and require us to clean up. */
3481 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3482 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3483 || from_array))
3484 {
3485 /* Do non-default initialization of trivial arrays resulting from
3486 brace-enclosed initializers. In this case, digest_init and
3487 store_constructor will handle the semantics for us. */
3488
3489 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3490 init = digest_init (atype, init, complain);
3491 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3492 return stmt_expr;
3493 }
3494
3495 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3496 if (TREE_CODE (atype) == ARRAY_TYPE)
3497 {
3498 ptype = build_pointer_type (type);
3499 base = decay_conversion (base, complain);
3500 if (base == error_mark_node)
3501 return error_mark_node;
3502 base = cp_convert (ptype, base, complain);
3503 }
3504 else
3505 ptype = atype;
3506
3507 /* The code we are generating looks like:
3508 ({
3509 T* t1 = (T*) base;
3510 T* rval = t1;
3511 ptrdiff_t iterator = maxindex;
3512 try {
3513 for (; iterator != -1; --iterator) {
3514 ... initialize *t1 ...
3515 ++t1;
3516 }
3517 } catch (...) {
3518 ... destroy elements that were constructed ...
3519 }
3520 rval;
3521 })
3522
3523 We can omit the try and catch blocks if we know that the
3524 initialization will never throw an exception, or if the array
3525 elements do not have destructors. We can omit the loop completely if
3526 the elements of the array do not have constructors.
3527
3528 We actually wrap the entire body of the above in a STMT_EXPR, for
3529 tidiness.
3530
3531 When copying from array to another, when the array elements have
3532 only trivial copy constructors, we should use __builtin_memcpy
3533 rather than generating a loop. That way, we could take advantage
3534 of whatever cleverness the back end has for dealing with copies
3535 of blocks of memory. */
3536
3537 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3538 destroy_temps = stmts_are_full_exprs_p ();
3539 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3540 rval = get_temp_regvar (ptype, base);
3541 base = get_temp_regvar (ptype, rval);
3542 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3543
3544 /* If initializing one array from another, initialize element by
3545 element. We rely upon the below calls to do the argument
3546 checking. Evaluate the initializer before entering the try block. */
3547 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3548 {
3549 if (lvalue_kind (init) & clk_rvalueref)
3550 xvalue = true;
3551 base2 = decay_conversion (init, complain);
3552 if (base2 == error_mark_node)
3553 return error_mark_node;
3554 itype = TREE_TYPE (base2);
3555 base2 = get_temp_regvar (itype, base2);
3556 itype = TREE_TYPE (itype);
3557 }
3558
3559 /* Protect the entire array initialization so that we can destroy
3560 the partially constructed array if an exception is thrown.
3561 But don't do this if we're assigning. */
3562 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3563 && from_array != 2)
3564 {
3565 try_block = begin_try_block ();
3566 }
3567
3568 /* Should we try to create a constant initializer? */
3569 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3570 && TREE_CONSTANT (maxindex)
3571 && (init ? TREE_CODE (init) == CONSTRUCTOR
3572 : (type_has_constexpr_default_constructor
3573 (inner_elt_type)))
3574 && (literal_type_p (inner_elt_type)
3575 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3576 vec<constructor_elt, va_gc> *const_vec = NULL;
3577 bool saw_non_const = false;
3578 /* If we're initializing a static array, we want to do static
3579 initialization of any elements with constant initializers even if
3580 some are non-constant. */
3581 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3582
3583 bool empty_list = false;
3584 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3585 && CONSTRUCTOR_NELTS (init) == 0)
3586 /* Skip over the handling of non-empty init lists. */
3587 empty_list = true;
3588
3589 /* Maybe pull out constant value when from_array? */
3590
3591 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3592 {
3593 /* Do non-default initialization of non-trivial arrays resulting from
3594 brace-enclosed initializers. */
3595 unsigned HOST_WIDE_INT idx;
3596 tree field, elt;
3597 /* If the constructor already has the array type, it's been through
3598 digest_init, so we shouldn't try to do anything more. */
3599 bool digested = same_type_p (atype, TREE_TYPE (init));
3600 from_array = 0;
3601
3602 if (length_check)
3603 {
3604 tree nelts = build_int_cst (ptrdiff_type_node,
3605 CONSTRUCTOR_NELTS (init) - 1);
3606 if (TREE_CODE (atype) != ARRAY_TYPE)
3607 {
3608 if (flag_exceptions)
3609 {
3610 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3611 nelts);
3612 c = build3 (COND_EXPR, void_type_node, c,
3613 throw_bad_array_new_length (), void_node);
3614 finish_expr_stmt (c);
3615 }
3616 /* Don't check an array new when -fno-exceptions. */
3617 }
3618 else if (flag_sanitize & SANITIZE_BOUNDS
3619 && do_ubsan_in_current_function ())
3620 {
3621 /* Make sure the last element of the initializer is in bounds. */
3622 finish_expr_stmt
3623 (ubsan_instrument_bounds
3624 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3625 }
3626 }
3627
3628 if (try_const)
3629 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
3630
3631 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3632 {
3633 tree baseref = build1 (INDIRECT_REF, type, base);
3634 tree one_init;
3635
3636 num_initialized_elts++;
3637
3638 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3639 if (digested)
3640 one_init = build2 (INIT_EXPR, type, baseref, elt);
3641 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3642 one_init = build_aggr_init (baseref, elt, 0, complain);
3643 else
3644 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3645 elt, complain);
3646 if (one_init == error_mark_node)
3647 errors = true;
3648 if (try_const)
3649 {
3650 tree e = maybe_constant_init (one_init);
3651 if (reduced_constant_expression_p (e))
3652 {
3653 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3654 if (do_static_init)
3655 one_init = NULL_TREE;
3656 else
3657 one_init = build2 (INIT_EXPR, type, baseref, e);
3658 }
3659 else
3660 {
3661 if (do_static_init)
3662 {
3663 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3664 true);
3665 if (value)
3666 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
3667 }
3668 saw_non_const = true;
3669 }
3670 }
3671
3672 if (one_init)
3673 finish_expr_stmt (one_init);
3674 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3675
3676 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3677 if (one_init == error_mark_node)
3678 errors = true;
3679 else
3680 finish_expr_stmt (one_init);
3681
3682 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3683 complain);
3684 if (one_init == error_mark_node)
3685 errors = true;
3686 else
3687 finish_expr_stmt (one_init);
3688 }
3689
3690 /* Any elements without explicit initializers get T{}. */
3691 empty_list = true;
3692 }
3693 else if (from_array)
3694 {
3695 if (init)
3696 /* OK, we set base2 above. */;
3697 else if (CLASS_TYPE_P (type)
3698 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3699 {
3700 if (complain & tf_error)
3701 error ("initializer ends prematurely");
3702 errors = true;
3703 }
3704 }
3705
3706 /* Now, default-initialize any remaining elements. We don't need to
3707 do that if a) the type does not need constructing, or b) we've
3708 already initialized all the elements.
3709
3710 We do need to keep going if we're copying an array. */
3711
3712 if (try_const && !init)
3713 /* With a constexpr default constructor, which we checked for when
3714 setting try_const above, default-initialization is equivalent to
3715 value-initialization, and build_value_init gives us something more
3716 friendly to maybe_constant_init. */
3717 explicit_value_init_p = true;
3718 if (from_array
3719 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3720 && ! (tree_fits_shwi_p (maxindex)
3721 && (num_initialized_elts
3722 == tree_to_shwi (maxindex) + 1))))
3723 {
3724 /* If the ITERATOR is equal to -1, then we don't have to loop;
3725 we've already initialized all the elements. */
3726 tree for_stmt;
3727 tree elt_init;
3728 tree to;
3729
3730 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3731 finish_for_init_stmt (for_stmt);
3732 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3733 build_int_cst (TREE_TYPE (iterator), -1)),
3734 for_stmt, false);
3735 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3736 complain);
3737 if (elt_init == error_mark_node)
3738 errors = true;
3739 finish_for_expr (elt_init, for_stmt);
3740
3741 to = build1 (INDIRECT_REF, type, base);
3742
3743 /* If the initializer is {}, then all elements are initialized from T{}.
3744 But for non-classes, that's the same as value-initialization. */
3745 if (empty_list)
3746 {
3747 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3748 {
3749 init = build_constructor (init_list_type_node, NULL);
3750 }
3751 else
3752 {
3753 init = NULL_TREE;
3754 explicit_value_init_p = true;
3755 }
3756 }
3757
3758 if (from_array)
3759 {
3760 tree from;
3761
3762 if (base2)
3763 {
3764 from = build1 (INDIRECT_REF, itype, base2);
3765 if (xvalue)
3766 from = move (from);
3767 }
3768 else
3769 from = NULL_TREE;
3770
3771 if (from_array == 2)
3772 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3773 complain);
3774 else if (type_build_ctor_call (type))
3775 elt_init = build_aggr_init (to, from, 0, complain);
3776 else if (from)
3777 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3778 complain);
3779 else
3780 gcc_unreachable ();
3781 }
3782 else if (TREE_CODE (type) == ARRAY_TYPE)
3783 {
3784 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3785 sorry
3786 ("cannot initialize multi-dimensional array with initializer");
3787 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3788 0, init,
3789 explicit_value_init_p,
3790 0, complain);
3791 }
3792 else if (explicit_value_init_p)
3793 {
3794 elt_init = build_value_init (type, complain);
3795 if (elt_init != error_mark_node)
3796 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3797 }
3798 else
3799 {
3800 gcc_assert (type_build_ctor_call (type) || init);
3801 if (CLASS_TYPE_P (type))
3802 elt_init = build_aggr_init (to, init, 0, complain);
3803 else
3804 {
3805 if (TREE_CODE (init) == TREE_LIST)
3806 init = build_x_compound_expr_from_list (init, ELK_INIT,
3807 complain);
3808 elt_init = build2 (INIT_EXPR, type, to, init);
3809 }
3810 }
3811
3812 if (elt_init == error_mark_node)
3813 errors = true;
3814
3815 if (try_const)
3816 {
3817 /* FIXME refs to earlier elts */
3818 tree e = maybe_constant_init (elt_init);
3819 if (reduced_constant_expression_p (e))
3820 {
3821 if (initializer_zerop (e))
3822 /* Don't fill the CONSTRUCTOR with zeros. */
3823 e = NULL_TREE;
3824 if (do_static_init)
3825 elt_init = NULL_TREE;
3826 }
3827 else
3828 {
3829 saw_non_const = true;
3830 if (do_static_init)
3831 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
3832 else
3833 e = NULL_TREE;
3834 }
3835
3836 if (e)
3837 {
3838 int max = tree_to_shwi (maxindex)+1;
3839 for (; num_initialized_elts < max; ++num_initialized_elts)
3840 {
3841 tree field = size_int (num_initialized_elts);
3842 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3843 }
3844 }
3845 }
3846
3847 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3848 if (elt_init)
3849 finish_expr_stmt (elt_init);
3850 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3851
3852 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3853 complain));
3854 if (base2)
3855 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3856 complain));
3857
3858 finish_for_stmt (for_stmt);
3859 }
3860
3861 /* Make sure to cleanup any partially constructed elements. */
3862 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3863 && from_array != 2)
3864 {
3865 tree e;
3866 tree m = cp_build_binary_op (input_location,
3867 MINUS_EXPR, maxindex, iterator,
3868 complain);
3869
3870 /* Flatten multi-dimensional array since build_vec_delete only
3871 expects one-dimensional array. */
3872 if (TREE_CODE (type) == ARRAY_TYPE)
3873 m = cp_build_binary_op (input_location,
3874 MULT_EXPR, m,
3875 /* Avoid mixing signed and unsigned. */
3876 convert (TREE_TYPE (m),
3877 array_type_nelts_total (type)),
3878 complain);
3879
3880 finish_cleanup_try_block (try_block);
3881 e = build_vec_delete_1 (rval, m,
3882 inner_elt_type, sfk_complete_destructor,
3883 /*use_global_delete=*/0, complain);
3884 if (e == error_mark_node)
3885 errors = true;
3886 finish_cleanup (e, try_block);
3887 }
3888
3889 /* The value of the array initialization is the array itself, RVAL
3890 is a pointer to the first element. */
3891 finish_stmt_expr_expr (rval, stmt_expr);
3892
3893 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3894
3895 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3896
3897 if (errors)
3898 return error_mark_node;
3899
3900 if (try_const)
3901 {
3902 if (!saw_non_const)
3903 {
3904 tree const_init = build_constructor (atype, const_vec);
3905 return build2 (INIT_EXPR, atype, obase, const_init);
3906 }
3907 else if (do_static_init && !vec_safe_is_empty (const_vec))
3908 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
3909 else
3910 vec_free (const_vec);
3911 }
3912
3913 /* Now make the result have the correct type. */
3914 if (TREE_CODE (atype) == ARRAY_TYPE)
3915 {
3916 atype = build_pointer_type (atype);
3917 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3918 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3919 TREE_NO_WARNING (stmt_expr) = 1;
3920 }
3921
3922 return stmt_expr;
3923 }
3924
3925 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3926 build_delete. */
3927
3928 static tree
3929 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3930 tsubst_flags_t complain)
3931 {
3932 tree name;
3933 tree fn;
3934 switch (dtor_kind)
3935 {
3936 case sfk_complete_destructor:
3937 name = complete_dtor_identifier;
3938 break;
3939
3940 case sfk_base_destructor:
3941 name = base_dtor_identifier;
3942 break;
3943
3944 case sfk_deleting_destructor:
3945 name = deleting_dtor_identifier;
3946 break;
3947
3948 default:
3949 gcc_unreachable ();
3950 }
3951 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3952 return build_new_method_call (exp, fn,
3953 /*args=*/NULL,
3954 /*conversion_path=*/NULL_TREE,
3955 flags,
3956 /*fn_p=*/NULL,
3957 complain);
3958 }
3959
3960 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3961 ADDR is an expression which yields the store to be destroyed.
3962 AUTO_DELETE is the name of the destructor to call, i.e., either
3963 sfk_complete_destructor, sfk_base_destructor, or
3964 sfk_deleting_destructor.
3965
3966 FLAGS is the logical disjunction of zero or more LOOKUP_
3967 flags. See cp-tree.h for more info. */
3968
3969 tree
3970 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3971 int flags, int use_global_delete, tsubst_flags_t complain)
3972 {
3973 tree expr;
3974
3975 if (addr == error_mark_node)
3976 return error_mark_node;
3977
3978 tree type = TYPE_MAIN_VARIANT (otype);
3979
3980 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3981 set to `error_mark_node' before it gets properly cleaned up. */
3982 if (type == error_mark_node)
3983 return error_mark_node;
3984
3985 if (TREE_CODE (type) == POINTER_TYPE)
3986 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3987
3988 if (TREE_CODE (type) == ARRAY_TYPE)
3989 {
3990 if (TYPE_DOMAIN (type) == NULL_TREE)
3991 {
3992 if (complain & tf_error)
3993 error ("unknown array size in delete");
3994 return error_mark_node;
3995 }
3996 return build_vec_delete (addr, array_type_nelts (type),
3997 auto_delete, use_global_delete, complain);
3998 }
3999
4000 if (TYPE_PTR_P (otype))
4001 {
4002 addr = mark_rvalue_use (addr);
4003
4004 /* We don't want to warn about delete of void*, only other
4005 incomplete types. Deleting other incomplete types
4006 invokes undefined behavior, but it is not ill-formed, so
4007 compile to something that would even do The Right Thing
4008 (TM) should the type have a trivial dtor and no delete
4009 operator. */
4010 if (!VOID_TYPE_P (type))
4011 {
4012 complete_type (type);
4013 if (!COMPLETE_TYPE_P (type))
4014 {
4015 if ((complain & tf_warning)
4016 && warning (OPT_Wdelete_incomplete,
4017 "possible problem detected in invocation of "
4018 "delete operator:"))
4019 {
4020 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4021 inform (input_location,
4022 "neither the destructor nor the class-specific "
4023 "operator delete will be called, even if they are "
4024 "declared when the class is defined");
4025 }
4026 }
4027 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4028 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4029 && TYPE_POLYMORPHIC_P (type))
4030 {
4031 tree dtor;
4032 dtor = CLASSTYPE_DESTRUCTORS (type);
4033 if (!dtor || !DECL_VINDEX (dtor))
4034 {
4035 if (CLASSTYPE_PURE_VIRTUALS (type))
4036 warning (OPT_Wdelete_non_virtual_dtor,
4037 "deleting object of abstract class type %qT"
4038 " which has non-virtual destructor"
4039 " will cause undefined behaviour", type);
4040 else
4041 warning (OPT_Wdelete_non_virtual_dtor,
4042 "deleting object of polymorphic class type %qT"
4043 " which has non-virtual destructor"
4044 " might cause undefined behaviour", type);
4045 }
4046 }
4047 }
4048 if (TREE_SIDE_EFFECTS (addr))
4049 addr = save_expr (addr);
4050
4051 /* Throw away const and volatile on target type of addr. */
4052 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4053 }
4054 else
4055 {
4056 /* Don't check PROTECT here; leave that decision to the
4057 destructor. If the destructor is accessible, call it,
4058 else report error. */
4059 addr = cp_build_addr_expr (addr, complain);
4060 if (addr == error_mark_node)
4061 return error_mark_node;
4062 if (TREE_SIDE_EFFECTS (addr))
4063 addr = save_expr (addr);
4064
4065 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4066 }
4067
4068 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4069 {
4070 /* Make sure the destructor is callable. */
4071 if (type_build_dtor_call (type))
4072 {
4073 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4074 complain),
4075 sfk_complete_destructor, flags, complain);
4076 if (expr == error_mark_node)
4077 return error_mark_node;
4078 }
4079
4080 if (auto_delete != sfk_deleting_destructor)
4081 return void_node;
4082
4083 return build_op_delete_call (DELETE_EXPR, addr,
4084 cxx_sizeof_nowarn (type),
4085 use_global_delete,
4086 /*placement=*/NULL_TREE,
4087 /*alloc_fn=*/NULL_TREE,
4088 complain);
4089 }
4090 else
4091 {
4092 tree head = NULL_TREE;
4093 tree do_delete = NULL_TREE;
4094 tree ifexp;
4095
4096 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4097 lazily_declare_fn (sfk_destructor, type);
4098
4099 /* For `::delete x', we must not use the deleting destructor
4100 since then we would not be sure to get the global `operator
4101 delete'. */
4102 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4103 {
4104 /* We will use ADDR multiple times so we must save it. */
4105 addr = save_expr (addr);
4106 head = get_target_expr (build_headof (addr));
4107 /* Delete the object. */
4108 do_delete = build_op_delete_call (DELETE_EXPR,
4109 head,
4110 cxx_sizeof_nowarn (type),
4111 /*global_p=*/true,
4112 /*placement=*/NULL_TREE,
4113 /*alloc_fn=*/NULL_TREE,
4114 complain);
4115 /* Otherwise, treat this like a complete object destructor
4116 call. */
4117 auto_delete = sfk_complete_destructor;
4118 }
4119 /* If the destructor is non-virtual, there is no deleting
4120 variant. Instead, we must explicitly call the appropriate
4121 `operator delete' here. */
4122 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4123 && auto_delete == sfk_deleting_destructor)
4124 {
4125 /* We will use ADDR multiple times so we must save it. */
4126 addr = save_expr (addr);
4127 /* Build the call. */
4128 do_delete = build_op_delete_call (DELETE_EXPR,
4129 addr,
4130 cxx_sizeof_nowarn (type),
4131 /*global_p=*/false,
4132 /*placement=*/NULL_TREE,
4133 /*alloc_fn=*/NULL_TREE,
4134 complain);
4135 /* Call the complete object destructor. */
4136 auto_delete = sfk_complete_destructor;
4137 }
4138 else if (auto_delete == sfk_deleting_destructor
4139 && TYPE_GETS_REG_DELETE (type))
4140 {
4141 /* Make sure we have access to the member op delete, even though
4142 we'll actually be calling it from the destructor. */
4143 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4144 /*global_p=*/false,
4145 /*placement=*/NULL_TREE,
4146 /*alloc_fn=*/NULL_TREE,
4147 complain);
4148 }
4149
4150 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4151 auto_delete, flags, complain);
4152 if (expr == error_mark_node)
4153 return error_mark_node;
4154 if (do_delete)
4155 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4156
4157 /* We need to calculate this before the dtor changes the vptr. */
4158 if (head)
4159 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4160
4161 if (flags & LOOKUP_DESTRUCTOR)
4162 /* Explicit destructor call; don't check for null pointer. */
4163 ifexp = integer_one_node;
4164 else
4165 {
4166 /* Handle deleting a null pointer. */
4167 ifexp = fold (cp_build_binary_op (input_location,
4168 NE_EXPR, addr, nullptr_node,
4169 complain));
4170 if (ifexp == error_mark_node)
4171 return error_mark_node;
4172 }
4173
4174 if (ifexp != integer_one_node)
4175 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4176
4177 return expr;
4178 }
4179 }
4180
4181 /* At the beginning of a destructor, push cleanups that will call the
4182 destructors for our base classes and members.
4183
4184 Called from begin_destructor_body. */
4185
4186 void
4187 push_base_cleanups (void)
4188 {
4189 tree binfo, base_binfo;
4190 int i;
4191 tree member;
4192 tree expr;
4193 vec<tree, va_gc> *vbases;
4194
4195 /* Run destructors for all virtual baseclasses. */
4196 if (CLASSTYPE_VBASECLASSES (current_class_type))
4197 {
4198 tree cond = (condition_conversion
4199 (build2 (BIT_AND_EXPR, integer_type_node,
4200 current_in_charge_parm,
4201 integer_two_node)));
4202
4203 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4204 order, which is also the right order for pushing cleanups. */
4205 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4206 vec_safe_iterate (vbases, i, &base_binfo); i++)
4207 {
4208 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4209 {
4210 expr = build_special_member_call (current_class_ref,
4211 base_dtor_identifier,
4212 NULL,
4213 base_binfo,
4214 (LOOKUP_NORMAL
4215 | LOOKUP_NONVIRTUAL),
4216 tf_warning_or_error);
4217 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4218 {
4219 expr = build3 (COND_EXPR, void_type_node, cond,
4220 expr, void_node);
4221 finish_decl_cleanup (NULL_TREE, expr);
4222 }
4223 }
4224 }
4225 }
4226
4227 /* Take care of the remaining baseclasses. */
4228 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4229 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4230 {
4231 if (BINFO_VIRTUAL_P (base_binfo)
4232 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4233 continue;
4234
4235 expr = build_special_member_call (current_class_ref,
4236 base_dtor_identifier,
4237 NULL, base_binfo,
4238 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4239 tf_warning_or_error);
4240 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4241 finish_decl_cleanup (NULL_TREE, expr);
4242 }
4243
4244 /* Don't automatically destroy union members. */
4245 if (TREE_CODE (current_class_type) == UNION_TYPE)
4246 return;
4247
4248 for (member = TYPE_FIELDS (current_class_type); member;
4249 member = DECL_CHAIN (member))
4250 {
4251 tree this_type = TREE_TYPE (member);
4252 if (this_type == error_mark_node
4253 || TREE_CODE (member) != FIELD_DECL
4254 || DECL_ARTIFICIAL (member))
4255 continue;
4256 if (ANON_AGGR_TYPE_P (this_type))
4257 continue;
4258 if (type_build_dtor_call (this_type))
4259 {
4260 tree this_member = (build_class_member_access_expr
4261 (current_class_ref, member,
4262 /*access_path=*/NULL_TREE,
4263 /*preserve_reference=*/false,
4264 tf_warning_or_error));
4265 expr = build_delete (this_type, this_member,
4266 sfk_complete_destructor,
4267 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4268 0, tf_warning_or_error);
4269 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4270 finish_decl_cleanup (NULL_TREE, expr);
4271 }
4272 }
4273 }
4274
4275 /* Build a C++ vector delete expression.
4276 MAXINDEX is the number of elements to be deleted.
4277 ELT_SIZE is the nominal size of each element in the vector.
4278 BASE is the expression that should yield the store to be deleted.
4279 This function expands (or synthesizes) these calls itself.
4280 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4281
4282 This also calls delete for virtual baseclasses of elements of the vector.
4283
4284 Update: MAXINDEX is no longer needed. The size can be extracted from the
4285 start of the vector for pointers, and from the type for arrays. We still
4286 use MAXINDEX for arrays because it happens to already have one of the
4287 values we'd have to extract. (We could use MAXINDEX with pointers to
4288 confirm the size, and trap if the numbers differ; not clear that it'd
4289 be worth bothering.) */
4290
4291 tree
4292 build_vec_delete (tree base, tree maxindex,
4293 special_function_kind auto_delete_vec,
4294 int use_global_delete, tsubst_flags_t complain)
4295 {
4296 tree type;
4297 tree rval;
4298 tree base_init = NULL_TREE;
4299
4300 type = TREE_TYPE (base);
4301
4302 if (TYPE_PTR_P (type))
4303 {
4304 /* Step back one from start of vector, and read dimension. */
4305 tree cookie_addr;
4306 tree size_ptr_type = build_pointer_type (sizetype);
4307
4308 base = mark_rvalue_use (base);
4309 if (TREE_SIDE_EFFECTS (base))
4310 {
4311 base_init = get_target_expr (base);
4312 base = TARGET_EXPR_SLOT (base_init);
4313 }
4314 type = strip_array_types (TREE_TYPE (type));
4315 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4316 sizetype, TYPE_SIZE_UNIT (sizetype));
4317 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4318 cookie_addr);
4319 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4320 }
4321 else if (TREE_CODE (type) == ARRAY_TYPE)
4322 {
4323 /* Get the total number of things in the array, maxindex is a
4324 bad name. */
4325 maxindex = array_type_nelts_total (type);
4326 type = strip_array_types (type);
4327 base = decay_conversion (base, complain);
4328 if (base == error_mark_node)
4329 return error_mark_node;
4330 if (TREE_SIDE_EFFECTS (base))
4331 {
4332 base_init = get_target_expr (base);
4333 base = TARGET_EXPR_SLOT (base_init);
4334 }
4335 }
4336 else
4337 {
4338 if (base != error_mark_node && !(complain & tf_error))
4339 error ("type to vector delete is neither pointer or array type");
4340 return error_mark_node;
4341 }
4342
4343 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4344 use_global_delete, complain);
4345 if (base_init && rval != error_mark_node)
4346 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4347
4348 return rval;
4349 }