ced8e6aac80c5c1fcc3569c0b14b74505ed07ff7
[gcc.git] / gcc / cp / parser.c
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Written by Mark Mitchell <mark@codesourcery.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "dyn-string.h"
27 #include "varray.h"
28 #include "cpplib.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "c-pragma.h"
32 #include "decl.h"
33 #include "flags.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "output.h"
37
38 \f
39 /* The lexer. */
40
41 /* Overview
42 --------
43
44 A cp_lexer represents a stream of cp_tokens. It allows arbitrary
45 look-ahead.
46
47 Methodology
48 -----------
49
50 We use a circular buffer to store incoming tokens.
51
52 Some artifacts of the C++ language (such as the
53 expression/declaration ambiguity) require arbitrary look-ahead.
54 The strategy we adopt for dealing with these problems is to attempt
55 to parse one construct (e.g., the declaration) and fall back to the
56 other (e.g., the expression) if that attempt does not succeed.
57 Therefore, we must sometimes store an arbitrary number of tokens.
58
59 The parser routinely peeks at the next token, and then consumes it
60 later. That also requires a buffer in which to store the tokens.
61
62 In order to easily permit adding tokens to the end of the buffer,
63 while removing them from the beginning of the buffer, we use a
64 circular buffer. */
65
66 /* A C++ token. */
67
68 typedef struct cp_token GTY (())
69 {
70 /* The kind of token. */
71 ENUM_BITFIELD (cpp_ttype) type : 8;
72 /* If this token is a keyword, this value indicates which keyword.
73 Otherwise, this value is RID_MAX. */
74 ENUM_BITFIELD (rid) keyword : 8;
75 /* Token flags. */
76 unsigned char flags;
77 /* The value associated with this token, if any. */
78 tree value;
79 /* The location at which this token was found. */
80 location_t location;
81 } cp_token;
82
83 /* The number of tokens in a single token block.
84 Computed so that cp_token_block fits in a 512B allocation unit. */
85
86 #define CP_TOKEN_BLOCK_NUM_TOKENS ((512 - 3*sizeof (char*))/sizeof (cp_token))
87
88 /* A group of tokens. These groups are chained together to store
89 large numbers of tokens. (For example, a token block is created
90 when the body of an inline member function is first encountered;
91 the tokens are processed later after the class definition is
92 complete.)
93
94 This somewhat ungainly data structure (as opposed to, say, a
95 variable-length array), is used due to constraints imposed by the
96 current garbage-collection methodology. If it is made more
97 flexible, we could perhaps simplify the data structures involved. */
98
99 typedef struct cp_token_block GTY (())
100 {
101 /* The tokens. */
102 cp_token tokens[CP_TOKEN_BLOCK_NUM_TOKENS];
103 /* The number of tokens in this block. */
104 size_t num_tokens;
105 /* The next token block in the chain. */
106 struct cp_token_block *next;
107 /* The previous block in the chain. */
108 struct cp_token_block *prev;
109 } cp_token_block;
110
111 typedef struct cp_token_cache GTY (())
112 {
113 /* The first block in the cache. NULL if there are no tokens in the
114 cache. */
115 cp_token_block *first;
116 /* The last block in the cache. NULL If there are no tokens in the
117 cache. */
118 cp_token_block *last;
119 } cp_token_cache;
120
121 /* Prototypes. */
122
123 static cp_token_cache *cp_token_cache_new
124 (void);
125 static void cp_token_cache_push_token
126 (cp_token_cache *, cp_token *);
127
128 /* Create a new cp_token_cache. */
129
130 static cp_token_cache *
131 cp_token_cache_new (void)
132 {
133 return ggc_alloc_cleared (sizeof (cp_token_cache));
134 }
135
136 /* Add *TOKEN to *CACHE. */
137
138 static void
139 cp_token_cache_push_token (cp_token_cache *cache,
140 cp_token *token)
141 {
142 cp_token_block *b = cache->last;
143
144 /* See if we need to allocate a new token block. */
145 if (!b || b->num_tokens == CP_TOKEN_BLOCK_NUM_TOKENS)
146 {
147 b = ggc_alloc_cleared (sizeof (cp_token_block));
148 b->prev = cache->last;
149 if (cache->last)
150 {
151 cache->last->next = b;
152 cache->last = b;
153 }
154 else
155 cache->first = cache->last = b;
156 }
157 /* Add this token to the current token block. */
158 b->tokens[b->num_tokens++] = *token;
159 }
160
161 /* The cp_lexer structure represents the C++ lexer. It is responsible
162 for managing the token stream from the preprocessor and supplying
163 it to the parser. */
164
165 typedef struct cp_lexer GTY (())
166 {
167 /* The memory allocated for the buffer. Never NULL. */
168 cp_token * GTY ((length ("(%h.buffer_end - %h.buffer)"))) buffer;
169 /* A pointer just past the end of the memory allocated for the buffer. */
170 cp_token * GTY ((skip)) buffer_end;
171 /* The first valid token in the buffer, or NULL if none. */
172 cp_token * GTY ((skip)) first_token;
173 /* The next available token. If NEXT_TOKEN is NULL, then there are
174 no more available tokens. */
175 cp_token * GTY ((skip)) next_token;
176 /* A pointer just past the last available token. If FIRST_TOKEN is
177 NULL, however, there are no available tokens, and then this
178 location is simply the place in which the next token read will be
179 placed. If LAST_TOKEN == FIRST_TOKEN, then the buffer is full.
180 When the LAST_TOKEN == BUFFER, then the last token is at the
181 highest memory address in the BUFFER. */
182 cp_token * GTY ((skip)) last_token;
183
184 /* A stack indicating positions at which cp_lexer_save_tokens was
185 called. The top entry is the most recent position at which we
186 began saving tokens. The entries are differences in token
187 position between FIRST_TOKEN and the first saved token.
188
189 If the stack is non-empty, we are saving tokens. When a token is
190 consumed, the NEXT_TOKEN pointer will move, but the FIRST_TOKEN
191 pointer will not. The token stream will be preserved so that it
192 can be reexamined later.
193
194 If the stack is empty, then we are not saving tokens. Whenever a
195 token is consumed, the FIRST_TOKEN pointer will be moved, and the
196 consumed token will be gone forever. */
197 varray_type saved_tokens;
198
199 /* The STRING_CST tokens encountered while processing the current
200 string literal. */
201 varray_type string_tokens;
202
203 /* True if we should obtain more tokens from the preprocessor; false
204 if we are processing a saved token cache. */
205 bool main_lexer_p;
206
207 /* True if we should output debugging information. */
208 bool debugging_p;
209
210 /* The next lexer in a linked list of lexers. */
211 struct cp_lexer *next;
212 } cp_lexer;
213
214 /* Prototypes. */
215
216 static cp_lexer *cp_lexer_new_main
217 (void);
218 static cp_lexer *cp_lexer_new_from_tokens
219 (struct cp_token_cache *);
220 static int cp_lexer_saving_tokens
221 (const cp_lexer *);
222 static cp_token *cp_lexer_next_token
223 (cp_lexer *, cp_token *);
224 static cp_token *cp_lexer_prev_token
225 (cp_lexer *, cp_token *);
226 static ptrdiff_t cp_lexer_token_difference
227 (cp_lexer *, cp_token *, cp_token *);
228 static cp_token *cp_lexer_read_token
229 (cp_lexer *);
230 static void cp_lexer_maybe_grow_buffer
231 (cp_lexer *);
232 static void cp_lexer_get_preprocessor_token
233 (cp_lexer *, cp_token *);
234 static cp_token *cp_lexer_peek_token
235 (cp_lexer *);
236 static cp_token *cp_lexer_peek_nth_token
237 (cp_lexer *, size_t);
238 static inline bool cp_lexer_next_token_is
239 (cp_lexer *, enum cpp_ttype);
240 static bool cp_lexer_next_token_is_not
241 (cp_lexer *, enum cpp_ttype);
242 static bool cp_lexer_next_token_is_keyword
243 (cp_lexer *, enum rid);
244 static cp_token *cp_lexer_consume_token
245 (cp_lexer *);
246 static void cp_lexer_purge_token
247 (cp_lexer *);
248 static void cp_lexer_purge_tokens_after
249 (cp_lexer *, cp_token *);
250 static void cp_lexer_save_tokens
251 (cp_lexer *);
252 static void cp_lexer_commit_tokens
253 (cp_lexer *);
254 static void cp_lexer_rollback_tokens
255 (cp_lexer *);
256 static inline void cp_lexer_set_source_position_from_token
257 (cp_lexer *, const cp_token *);
258 static void cp_lexer_print_token
259 (FILE *, cp_token *);
260 static inline bool cp_lexer_debugging_p
261 (cp_lexer *);
262 static void cp_lexer_start_debugging
263 (cp_lexer *) ATTRIBUTE_UNUSED;
264 static void cp_lexer_stop_debugging
265 (cp_lexer *) ATTRIBUTE_UNUSED;
266
267 /* Manifest constants. */
268
269 #define CP_TOKEN_BUFFER_SIZE 5
270 #define CP_SAVED_TOKENS_SIZE 5
271
272 /* A token type for keywords, as opposed to ordinary identifiers. */
273 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
274
275 /* A token type for template-ids. If a template-id is processed while
276 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
277 the value of the CPP_TEMPLATE_ID is whatever was returned by
278 cp_parser_template_id. */
279 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
280
281 /* A token type for nested-name-specifiers. If a
282 nested-name-specifier is processed while parsing tentatively, it is
283 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
284 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
285 cp_parser_nested_name_specifier_opt. */
286 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
287
288 /* A token type for tokens that are not tokens at all; these are used
289 to mark the end of a token block. */
290 #define CPP_NONE (CPP_NESTED_NAME_SPECIFIER + 1)
291
292 /* Variables. */
293
294 /* The stream to which debugging output should be written. */
295 static FILE *cp_lexer_debug_stream;
296
297 /* Create a new main C++ lexer, the lexer that gets tokens from the
298 preprocessor. */
299
300 static cp_lexer *
301 cp_lexer_new_main (void)
302 {
303 cp_lexer *lexer;
304 cp_token first_token;
305
306 /* It's possible that lexing the first token will load a PCH file,
307 which is a GC collection point. So we have to grab the first
308 token before allocating any memory. */
309 cp_lexer_get_preprocessor_token (NULL, &first_token);
310 c_common_no_more_pch ();
311
312 /* Allocate the memory. */
313 lexer = ggc_alloc_cleared (sizeof (cp_lexer));
314
315 /* Create the circular buffer. */
316 lexer->buffer = ggc_calloc (CP_TOKEN_BUFFER_SIZE, sizeof (cp_token));
317 lexer->buffer_end = lexer->buffer + CP_TOKEN_BUFFER_SIZE;
318
319 /* There is one token in the buffer. */
320 lexer->last_token = lexer->buffer + 1;
321 lexer->first_token = lexer->buffer;
322 lexer->next_token = lexer->buffer;
323 memcpy (lexer->buffer, &first_token, sizeof (cp_token));
324
325 /* This lexer obtains more tokens by calling c_lex. */
326 lexer->main_lexer_p = true;
327
328 /* Create the SAVED_TOKENS stack. */
329 VARRAY_INT_INIT (lexer->saved_tokens, CP_SAVED_TOKENS_SIZE, "saved_tokens");
330
331 /* Create the STRINGS array. */
332 VARRAY_TREE_INIT (lexer->string_tokens, 32, "strings");
333
334 /* Assume we are not debugging. */
335 lexer->debugging_p = false;
336
337 return lexer;
338 }
339
340 /* Create a new lexer whose token stream is primed with the TOKENS.
341 When these tokens are exhausted, no new tokens will be read. */
342
343 static cp_lexer *
344 cp_lexer_new_from_tokens (cp_token_cache *tokens)
345 {
346 cp_lexer *lexer;
347 cp_token *token;
348 cp_token_block *block;
349 ptrdiff_t num_tokens;
350
351 /* Allocate the memory. */
352 lexer = ggc_alloc_cleared (sizeof (cp_lexer));
353
354 /* Create a new buffer, appropriately sized. */
355 num_tokens = 0;
356 for (block = tokens->first; block != NULL; block = block->next)
357 num_tokens += block->num_tokens;
358 lexer->buffer = ggc_alloc (num_tokens * sizeof (cp_token));
359 lexer->buffer_end = lexer->buffer + num_tokens;
360
361 /* Install the tokens. */
362 token = lexer->buffer;
363 for (block = tokens->first; block != NULL; block = block->next)
364 {
365 memcpy (token, block->tokens, block->num_tokens * sizeof (cp_token));
366 token += block->num_tokens;
367 }
368
369 /* The FIRST_TOKEN is the beginning of the buffer. */
370 lexer->first_token = lexer->buffer;
371 /* The next available token is also at the beginning of the buffer. */
372 lexer->next_token = lexer->buffer;
373 /* The buffer is full. */
374 lexer->last_token = lexer->first_token;
375
376 /* This lexer doesn't obtain more tokens. */
377 lexer->main_lexer_p = false;
378
379 /* Create the SAVED_TOKENS stack. */
380 VARRAY_INT_INIT (lexer->saved_tokens, CP_SAVED_TOKENS_SIZE, "saved_tokens");
381
382 /* Create the STRINGS array. */
383 VARRAY_TREE_INIT (lexer->string_tokens, 32, "strings");
384
385 /* Assume we are not debugging. */
386 lexer->debugging_p = false;
387
388 return lexer;
389 }
390
391 /* Returns nonzero if debugging information should be output. */
392
393 static inline bool
394 cp_lexer_debugging_p (cp_lexer *lexer)
395 {
396 return lexer->debugging_p;
397 }
398
399 /* Set the current source position from the information stored in
400 TOKEN. */
401
402 static inline void
403 cp_lexer_set_source_position_from_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
404 const cp_token *token)
405 {
406 /* Ideally, the source position information would not be a global
407 variable, but it is. */
408
409 /* Update the line number. */
410 if (token->type != CPP_EOF)
411 input_location = token->location;
412 }
413
414 /* TOKEN points into the circular token buffer. Return a pointer to
415 the next token in the buffer. */
416
417 static inline cp_token *
418 cp_lexer_next_token (cp_lexer* lexer, cp_token* token)
419 {
420 token++;
421 if (token == lexer->buffer_end)
422 token = lexer->buffer;
423 return token;
424 }
425
426 /* TOKEN points into the circular token buffer. Return a pointer to
427 the previous token in the buffer. */
428
429 static inline cp_token *
430 cp_lexer_prev_token (cp_lexer* lexer, cp_token* token)
431 {
432 if (token == lexer->buffer)
433 token = lexer->buffer_end;
434 return token - 1;
435 }
436
437 /* nonzero if we are presently saving tokens. */
438
439 static int
440 cp_lexer_saving_tokens (const cp_lexer* lexer)
441 {
442 return VARRAY_ACTIVE_SIZE (lexer->saved_tokens) != 0;
443 }
444
445 /* Return a pointer to the token that is N tokens beyond TOKEN in the
446 buffer. */
447
448 static cp_token *
449 cp_lexer_advance_token (cp_lexer *lexer, cp_token *token, ptrdiff_t n)
450 {
451 token += n;
452 if (token >= lexer->buffer_end)
453 token = lexer->buffer + (token - lexer->buffer_end);
454 return token;
455 }
456
457 /* Returns the number of times that START would have to be incremented
458 to reach FINISH. If START and FINISH are the same, returns zero. */
459
460 static ptrdiff_t
461 cp_lexer_token_difference (cp_lexer* lexer, cp_token* start, cp_token* finish)
462 {
463 if (finish >= start)
464 return finish - start;
465 else
466 return ((lexer->buffer_end - lexer->buffer)
467 - (start - finish));
468 }
469
470 /* Obtain another token from the C preprocessor and add it to the
471 token buffer. Returns the newly read token. */
472
473 static cp_token *
474 cp_lexer_read_token (cp_lexer* lexer)
475 {
476 cp_token *token;
477
478 /* Make sure there is room in the buffer. */
479 cp_lexer_maybe_grow_buffer (lexer);
480
481 /* If there weren't any tokens, then this one will be the first. */
482 if (!lexer->first_token)
483 lexer->first_token = lexer->last_token;
484 /* Similarly, if there were no available tokens, there is one now. */
485 if (!lexer->next_token)
486 lexer->next_token = lexer->last_token;
487
488 /* Figure out where we're going to store the new token. */
489 token = lexer->last_token;
490
491 /* Get a new token from the preprocessor. */
492 cp_lexer_get_preprocessor_token (lexer, token);
493
494 /* Increment LAST_TOKEN. */
495 lexer->last_token = cp_lexer_next_token (lexer, token);
496
497 /* Strings should have type `const char []'. Right now, we will
498 have an ARRAY_TYPE that is constant rather than an array of
499 constant elements.
500 FIXME: Make fix_string_type get this right in the first place. */
501 if ((token->type == CPP_STRING || token->type == CPP_WSTRING)
502 && flag_const_strings)
503 {
504 if (c_lex_string_translate)
505 {
506 tree value = token->value;
507 tree type;
508
509 /* We might as well go ahead and release the chained
510 translated string such that we can reuse its memory. */
511 if (TREE_CHAIN (value))
512 value = TREE_CHAIN (token->value);
513
514 /* Get the current type. It will be an ARRAY_TYPE. */
515 type = TREE_TYPE (value);
516 /* Use build_cplus_array_type to rebuild the array, thereby
517 getting the right type. */
518 type = build_cplus_array_type (TREE_TYPE (type),
519 TYPE_DOMAIN (type));
520 /* Reset the type of the token. */
521 TREE_TYPE (value) = type;
522 }
523 }
524
525 return token;
526 }
527
528 /* If the circular buffer is full, make it bigger. */
529
530 static void
531 cp_lexer_maybe_grow_buffer (cp_lexer* lexer)
532 {
533 /* If the buffer is full, enlarge it. */
534 if (lexer->last_token == lexer->first_token)
535 {
536 cp_token *new_buffer;
537 cp_token *old_buffer;
538 cp_token *new_first_token;
539 ptrdiff_t buffer_length;
540 size_t num_tokens_to_copy;
541
542 /* Remember the current buffer pointer. It will become invalid,
543 but we will need to do pointer arithmetic involving this
544 value. */
545 old_buffer = lexer->buffer;
546 /* Compute the current buffer size. */
547 buffer_length = lexer->buffer_end - lexer->buffer;
548 /* Allocate a buffer twice as big. */
549 new_buffer = ggc_realloc (lexer->buffer,
550 2 * buffer_length * sizeof (cp_token));
551
552 /* Because the buffer is circular, logically consecutive tokens
553 are not necessarily placed consecutively in memory.
554 Therefore, we must keep move the tokens that were before
555 FIRST_TOKEN to the second half of the newly allocated
556 buffer. */
557 num_tokens_to_copy = (lexer->first_token - old_buffer);
558 memcpy (new_buffer + buffer_length,
559 new_buffer,
560 num_tokens_to_copy * sizeof (cp_token));
561 /* Clear the rest of the buffer. We never look at this storage,
562 but the garbage collector may. */
563 memset (new_buffer + buffer_length + num_tokens_to_copy, 0,
564 (buffer_length - num_tokens_to_copy) * sizeof (cp_token));
565
566 /* Now recompute all of the buffer pointers. */
567 new_first_token
568 = new_buffer + (lexer->first_token - old_buffer);
569 if (lexer->next_token != NULL)
570 {
571 ptrdiff_t next_token_delta;
572
573 if (lexer->next_token > lexer->first_token)
574 next_token_delta = lexer->next_token - lexer->first_token;
575 else
576 next_token_delta =
577 buffer_length - (lexer->first_token - lexer->next_token);
578 lexer->next_token = new_first_token + next_token_delta;
579 }
580 lexer->last_token = new_first_token + buffer_length;
581 lexer->buffer = new_buffer;
582 lexer->buffer_end = new_buffer + buffer_length * 2;
583 lexer->first_token = new_first_token;
584 }
585 }
586
587 /* Store the next token from the preprocessor in *TOKEN. */
588
589 static void
590 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
591 cp_token *token)
592 {
593 bool done;
594
595 /* If this not the main lexer, return a terminating CPP_EOF token. */
596 if (lexer != NULL && !lexer->main_lexer_p)
597 {
598 token->type = CPP_EOF;
599 token->location.line = 0;
600 token->location.file = NULL;
601 token->value = NULL_TREE;
602 token->keyword = RID_MAX;
603
604 return;
605 }
606
607 done = false;
608 /* Keep going until we get a token we like. */
609 while (!done)
610 {
611 /* Get a new token from the preprocessor. */
612 token->type = c_lex_with_flags (&token->value, &token->flags);
613 /* Issue messages about tokens we cannot process. */
614 switch (token->type)
615 {
616 case CPP_ATSIGN:
617 case CPP_HASH:
618 case CPP_PASTE:
619 error ("invalid token");
620 break;
621
622 default:
623 /* This is a good token, so we exit the loop. */
624 done = true;
625 break;
626 }
627 }
628 /* Now we've got our token. */
629 token->location = input_location;
630
631 /* Check to see if this token is a keyword. */
632 if (token->type == CPP_NAME
633 && C_IS_RESERVED_WORD (token->value))
634 {
635 /* Mark this token as a keyword. */
636 token->type = CPP_KEYWORD;
637 /* Record which keyword. */
638 token->keyword = C_RID_CODE (token->value);
639 /* Update the value. Some keywords are mapped to particular
640 entities, rather than simply having the value of the
641 corresponding IDENTIFIER_NODE. For example, `__const' is
642 mapped to `const'. */
643 token->value = ridpointers[token->keyword];
644 }
645 else
646 token->keyword = RID_MAX;
647 }
648
649 /* Return a pointer to the next token in the token stream, but do not
650 consume it. */
651
652 static cp_token *
653 cp_lexer_peek_token (cp_lexer* lexer)
654 {
655 cp_token *token;
656
657 /* If there are no tokens, read one now. */
658 if (!lexer->next_token)
659 cp_lexer_read_token (lexer);
660
661 /* Provide debugging output. */
662 if (cp_lexer_debugging_p (lexer))
663 {
664 fprintf (cp_lexer_debug_stream, "cp_lexer: peeking at token: ");
665 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
666 fprintf (cp_lexer_debug_stream, "\n");
667 }
668
669 token = lexer->next_token;
670 cp_lexer_set_source_position_from_token (lexer, token);
671 return token;
672 }
673
674 /* Return true if the next token has the indicated TYPE. */
675
676 static bool
677 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
678 {
679 cp_token *token;
680
681 /* Peek at the next token. */
682 token = cp_lexer_peek_token (lexer);
683 /* Check to see if it has the indicated TYPE. */
684 return token->type == type;
685 }
686
687 /* Return true if the next token does not have the indicated TYPE. */
688
689 static bool
690 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
691 {
692 return !cp_lexer_next_token_is (lexer, type);
693 }
694
695 /* Return true if the next token is the indicated KEYWORD. */
696
697 static bool
698 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
699 {
700 cp_token *token;
701
702 /* Peek at the next token. */
703 token = cp_lexer_peek_token (lexer);
704 /* Check to see if it is the indicated keyword. */
705 return token->keyword == keyword;
706 }
707
708 /* Return a pointer to the Nth token in the token stream. If N is 1,
709 then this is precisely equivalent to cp_lexer_peek_token. */
710
711 static cp_token *
712 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
713 {
714 cp_token *token;
715
716 /* N is 1-based, not zero-based. */
717 my_friendly_assert (n > 0, 20000224);
718
719 /* Skip ahead from NEXT_TOKEN, reading more tokens as necessary. */
720 token = lexer->next_token;
721 /* If there are no tokens in the buffer, get one now. */
722 if (!token)
723 {
724 cp_lexer_read_token (lexer);
725 token = lexer->next_token;
726 }
727
728 /* Now, read tokens until we have enough. */
729 while (--n > 0)
730 {
731 /* Advance to the next token. */
732 token = cp_lexer_next_token (lexer, token);
733 /* If that's all the tokens we have, read a new one. */
734 if (token == lexer->last_token)
735 token = cp_lexer_read_token (lexer);
736 }
737
738 return token;
739 }
740
741 /* Consume the next token. The pointer returned is valid only until
742 another token is read. Callers should preserve copy the token
743 explicitly if they will need its value for a longer period of
744 time. */
745
746 static cp_token *
747 cp_lexer_consume_token (cp_lexer* lexer)
748 {
749 cp_token *token;
750
751 /* If there are no tokens, read one now. */
752 if (!lexer->next_token)
753 cp_lexer_read_token (lexer);
754
755 /* Remember the token we'll be returning. */
756 token = lexer->next_token;
757
758 /* Increment NEXT_TOKEN. */
759 lexer->next_token = cp_lexer_next_token (lexer,
760 lexer->next_token);
761 /* Check to see if we're all out of tokens. */
762 if (lexer->next_token == lexer->last_token)
763 lexer->next_token = NULL;
764
765 /* If we're not saving tokens, then move FIRST_TOKEN too. */
766 if (!cp_lexer_saving_tokens (lexer))
767 {
768 /* If there are no tokens available, set FIRST_TOKEN to NULL. */
769 if (!lexer->next_token)
770 lexer->first_token = NULL;
771 else
772 lexer->first_token = lexer->next_token;
773 }
774
775 /* Provide debugging output. */
776 if (cp_lexer_debugging_p (lexer))
777 {
778 fprintf (cp_lexer_debug_stream, "cp_lexer: consuming token: ");
779 cp_lexer_print_token (cp_lexer_debug_stream, token);
780 fprintf (cp_lexer_debug_stream, "\n");
781 }
782
783 return token;
784 }
785
786 /* Permanently remove the next token from the token stream. There
787 must be a valid next token already; this token never reads
788 additional tokens from the preprocessor. */
789
790 static void
791 cp_lexer_purge_token (cp_lexer *lexer)
792 {
793 cp_token *token;
794 cp_token *next_token;
795
796 token = lexer->next_token;
797 while (true)
798 {
799 next_token = cp_lexer_next_token (lexer, token);
800 if (next_token == lexer->last_token)
801 break;
802 *token = *next_token;
803 token = next_token;
804 }
805
806 lexer->last_token = token;
807 /* The token purged may have been the only token remaining; if so,
808 clear NEXT_TOKEN. */
809 if (lexer->next_token == token)
810 lexer->next_token = NULL;
811 }
812
813 /* Permanently remove all tokens after TOKEN, up to, but not
814 including, the token that will be returned next by
815 cp_lexer_peek_token. */
816
817 static void
818 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *token)
819 {
820 cp_token *peek;
821 cp_token *t1;
822 cp_token *t2;
823
824 if (lexer->next_token)
825 {
826 /* Copy the tokens that have not yet been read to the location
827 immediately following TOKEN. */
828 t1 = cp_lexer_next_token (lexer, token);
829 t2 = peek = cp_lexer_peek_token (lexer);
830 /* Move tokens into the vacant area between TOKEN and PEEK. */
831 while (t2 != lexer->last_token)
832 {
833 *t1 = *t2;
834 t1 = cp_lexer_next_token (lexer, t1);
835 t2 = cp_lexer_next_token (lexer, t2);
836 }
837 /* Now, the next available token is right after TOKEN. */
838 lexer->next_token = cp_lexer_next_token (lexer, token);
839 /* And the last token is wherever we ended up. */
840 lexer->last_token = t1;
841 }
842 else
843 {
844 /* There are no tokens in the buffer, so there is nothing to
845 copy. The last token in the buffer is TOKEN itself. */
846 lexer->last_token = cp_lexer_next_token (lexer, token);
847 }
848 }
849
850 /* Begin saving tokens. All tokens consumed after this point will be
851 preserved. */
852
853 static void
854 cp_lexer_save_tokens (cp_lexer* lexer)
855 {
856 /* Provide debugging output. */
857 if (cp_lexer_debugging_p (lexer))
858 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
859
860 /* Make sure that LEXER->NEXT_TOKEN is non-NULL so that we can
861 restore the tokens if required. */
862 if (!lexer->next_token)
863 cp_lexer_read_token (lexer);
864
865 VARRAY_PUSH_INT (lexer->saved_tokens,
866 cp_lexer_token_difference (lexer,
867 lexer->first_token,
868 lexer->next_token));
869 }
870
871 /* Commit to the portion of the token stream most recently saved. */
872
873 static void
874 cp_lexer_commit_tokens (cp_lexer* lexer)
875 {
876 /* Provide debugging output. */
877 if (cp_lexer_debugging_p (lexer))
878 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
879
880 VARRAY_POP (lexer->saved_tokens);
881 }
882
883 /* Return all tokens saved since the last call to cp_lexer_save_tokens
884 to the token stream. Stop saving tokens. */
885
886 static void
887 cp_lexer_rollback_tokens (cp_lexer* lexer)
888 {
889 size_t delta;
890
891 /* Provide debugging output. */
892 if (cp_lexer_debugging_p (lexer))
893 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
894
895 /* Find the token that was the NEXT_TOKEN when we started saving
896 tokens. */
897 delta = VARRAY_TOP_INT(lexer->saved_tokens);
898 /* Make it the next token again now. */
899 lexer->next_token = cp_lexer_advance_token (lexer,
900 lexer->first_token,
901 delta);
902 /* It might be the case that there were no tokens when we started
903 saving tokens, but that there are some tokens now. */
904 if (!lexer->next_token && lexer->first_token)
905 lexer->next_token = lexer->first_token;
906
907 /* Stop saving tokens. */
908 VARRAY_POP (lexer->saved_tokens);
909 }
910
911 /* Print a representation of the TOKEN on the STREAM. */
912
913 static void
914 cp_lexer_print_token (FILE * stream, cp_token* token)
915 {
916 const char *token_type = NULL;
917
918 /* Figure out what kind of token this is. */
919 switch (token->type)
920 {
921 case CPP_EQ:
922 token_type = "EQ";
923 break;
924
925 case CPP_COMMA:
926 token_type = "COMMA";
927 break;
928
929 case CPP_OPEN_PAREN:
930 token_type = "OPEN_PAREN";
931 break;
932
933 case CPP_CLOSE_PAREN:
934 token_type = "CLOSE_PAREN";
935 break;
936
937 case CPP_OPEN_BRACE:
938 token_type = "OPEN_BRACE";
939 break;
940
941 case CPP_CLOSE_BRACE:
942 token_type = "CLOSE_BRACE";
943 break;
944
945 case CPP_SEMICOLON:
946 token_type = "SEMICOLON";
947 break;
948
949 case CPP_NAME:
950 token_type = "NAME";
951 break;
952
953 case CPP_EOF:
954 token_type = "EOF";
955 break;
956
957 case CPP_KEYWORD:
958 token_type = "keyword";
959 break;
960
961 /* This is not a token that we know how to handle yet. */
962 default:
963 break;
964 }
965
966 /* If we have a name for the token, print it out. Otherwise, we
967 simply give the numeric code. */
968 if (token_type)
969 fprintf (stream, "%s", token_type);
970 else
971 fprintf (stream, "%d", token->type);
972 /* And, for an identifier, print the identifier name. */
973 if (token->type == CPP_NAME
974 /* Some keywords have a value that is not an IDENTIFIER_NODE.
975 For example, `struct' is mapped to an INTEGER_CST. */
976 || (token->type == CPP_KEYWORD
977 && TREE_CODE (token->value) == IDENTIFIER_NODE))
978 fprintf (stream, " %s", IDENTIFIER_POINTER (token->value));
979 }
980
981 /* Start emitting debugging information. */
982
983 static void
984 cp_lexer_start_debugging (cp_lexer* lexer)
985 {
986 ++lexer->debugging_p;
987 }
988
989 /* Stop emitting debugging information. */
990
991 static void
992 cp_lexer_stop_debugging (cp_lexer* lexer)
993 {
994 --lexer->debugging_p;
995 }
996
997 \f
998 /* The parser. */
999
1000 /* Overview
1001 --------
1002
1003 A cp_parser parses the token stream as specified by the C++
1004 grammar. Its job is purely parsing, not semantic analysis. For
1005 example, the parser breaks the token stream into declarators,
1006 expressions, statements, and other similar syntactic constructs.
1007 It does not check that the types of the expressions on either side
1008 of an assignment-statement are compatible, or that a function is
1009 not declared with a parameter of type `void'.
1010
1011 The parser invokes routines elsewhere in the compiler to perform
1012 semantic analysis and to build up the abstract syntax tree for the
1013 code processed.
1014
1015 The parser (and the template instantiation code, which is, in a
1016 way, a close relative of parsing) are the only parts of the
1017 compiler that should be calling push_scope and pop_scope, or
1018 related functions. The parser (and template instantiation code)
1019 keeps track of what scope is presently active; everything else
1020 should simply honor that. (The code that generates static
1021 initializers may also need to set the scope, in order to check
1022 access control correctly when emitting the initializers.)
1023
1024 Methodology
1025 -----------
1026
1027 The parser is of the standard recursive-descent variety. Upcoming
1028 tokens in the token stream are examined in order to determine which
1029 production to use when parsing a non-terminal. Some C++ constructs
1030 require arbitrary look ahead to disambiguate. For example, it is
1031 impossible, in the general case, to tell whether a statement is an
1032 expression or declaration without scanning the entire statement.
1033 Therefore, the parser is capable of "parsing tentatively." When the
1034 parser is not sure what construct comes next, it enters this mode.
1035 Then, while we attempt to parse the construct, the parser queues up
1036 error messages, rather than issuing them immediately, and saves the
1037 tokens it consumes. If the construct is parsed successfully, the
1038 parser "commits", i.e., it issues any queued error messages and
1039 the tokens that were being preserved are permanently discarded.
1040 If, however, the construct is not parsed successfully, the parser
1041 rolls back its state completely so that it can resume parsing using
1042 a different alternative.
1043
1044 Future Improvements
1045 -------------------
1046
1047 The performance of the parser could probably be improved
1048 substantially. Some possible improvements include:
1049
1050 - The expression parser recurses through the various levels of
1051 precedence as specified in the grammar, rather than using an
1052 operator-precedence technique. Therefore, parsing a simple
1053 identifier requires multiple recursive calls.
1054
1055 - We could often eliminate the need to parse tentatively by
1056 looking ahead a little bit. In some places, this approach
1057 might not entirely eliminate the need to parse tentatively, but
1058 it might still speed up the average case. */
1059
1060 /* Flags that are passed to some parsing functions. These values can
1061 be bitwise-ored together. */
1062
1063 typedef enum cp_parser_flags
1064 {
1065 /* No flags. */
1066 CP_PARSER_FLAGS_NONE = 0x0,
1067 /* The construct is optional. If it is not present, then no error
1068 should be issued. */
1069 CP_PARSER_FLAGS_OPTIONAL = 0x1,
1070 /* When parsing a type-specifier, do not allow user-defined types. */
1071 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
1072 } cp_parser_flags;
1073
1074 /* The different kinds of declarators we want to parse. */
1075
1076 typedef enum cp_parser_declarator_kind
1077 {
1078 /* We want an abstract declarator. */
1079 CP_PARSER_DECLARATOR_ABSTRACT,
1080 /* We want a named declarator. */
1081 CP_PARSER_DECLARATOR_NAMED,
1082 /* We don't mind, but the name must be an unqualified-id. */
1083 CP_PARSER_DECLARATOR_EITHER
1084 } cp_parser_declarator_kind;
1085
1086 /* A mapping from a token type to a corresponding tree node type. */
1087
1088 typedef struct cp_parser_token_tree_map_node
1089 {
1090 /* The token type. */
1091 ENUM_BITFIELD (cpp_ttype) token_type : 8;
1092 /* The corresponding tree code. */
1093 ENUM_BITFIELD (tree_code) tree_type : 8;
1094 } cp_parser_token_tree_map_node;
1095
1096 /* A complete map consists of several ordinary entries, followed by a
1097 terminator. The terminating entry has a token_type of CPP_EOF. */
1098
1099 typedef cp_parser_token_tree_map_node cp_parser_token_tree_map[];
1100
1101 /* The status of a tentative parse. */
1102
1103 typedef enum cp_parser_status_kind
1104 {
1105 /* No errors have occurred. */
1106 CP_PARSER_STATUS_KIND_NO_ERROR,
1107 /* An error has occurred. */
1108 CP_PARSER_STATUS_KIND_ERROR,
1109 /* We are committed to this tentative parse, whether or not an error
1110 has occurred. */
1111 CP_PARSER_STATUS_KIND_COMMITTED
1112 } cp_parser_status_kind;
1113
1114 /* Context that is saved and restored when parsing tentatively. */
1115
1116 typedef struct cp_parser_context GTY (())
1117 {
1118 /* If this is a tentative parsing context, the status of the
1119 tentative parse. */
1120 enum cp_parser_status_kind status;
1121 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1122 that are looked up in this context must be looked up both in the
1123 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1124 the context of the containing expression. */
1125 tree object_type;
1126 /* The next parsing context in the stack. */
1127 struct cp_parser_context *next;
1128 } cp_parser_context;
1129
1130 /* Prototypes. */
1131
1132 /* Constructors and destructors. */
1133
1134 static cp_parser_context *cp_parser_context_new
1135 (cp_parser_context *);
1136
1137 /* Class variables. */
1138
1139 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1140
1141 /* Constructors and destructors. */
1142
1143 /* Construct a new context. The context below this one on the stack
1144 is given by NEXT. */
1145
1146 static cp_parser_context *
1147 cp_parser_context_new (cp_parser_context* next)
1148 {
1149 cp_parser_context *context;
1150
1151 /* Allocate the storage. */
1152 if (cp_parser_context_free_list != NULL)
1153 {
1154 /* Pull the first entry from the free list. */
1155 context = cp_parser_context_free_list;
1156 cp_parser_context_free_list = context->next;
1157 memset (context, 0, sizeof (*context));
1158 }
1159 else
1160 context = ggc_alloc_cleared (sizeof (cp_parser_context));
1161 /* No errors have occurred yet in this context. */
1162 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1163 /* If this is not the bottomost context, copy information that we
1164 need from the previous context. */
1165 if (next)
1166 {
1167 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1168 expression, then we are parsing one in this context, too. */
1169 context->object_type = next->object_type;
1170 /* Thread the stack. */
1171 context->next = next;
1172 }
1173
1174 return context;
1175 }
1176
1177 /* The cp_parser structure represents the C++ parser. */
1178
1179 typedef struct cp_parser GTY(())
1180 {
1181 /* The lexer from which we are obtaining tokens. */
1182 cp_lexer *lexer;
1183
1184 /* The scope in which names should be looked up. If NULL_TREE, then
1185 we look up names in the scope that is currently open in the
1186 source program. If non-NULL, this is either a TYPE or
1187 NAMESPACE_DECL for the scope in which we should look.
1188
1189 This value is not cleared automatically after a name is looked
1190 up, so we must be careful to clear it before starting a new look
1191 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1192 will look up `Z' in the scope of `X', rather than the current
1193 scope.) Unfortunately, it is difficult to tell when name lookup
1194 is complete, because we sometimes peek at a token, look it up,
1195 and then decide not to consume it. */
1196 tree scope;
1197
1198 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1199 last lookup took place. OBJECT_SCOPE is used if an expression
1200 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1201 respectively. QUALIFYING_SCOPE is used for an expression of the
1202 form "X::Y"; it refers to X. */
1203 tree object_scope;
1204 tree qualifying_scope;
1205
1206 /* A stack of parsing contexts. All but the bottom entry on the
1207 stack will be tentative contexts.
1208
1209 We parse tentatively in order to determine which construct is in
1210 use in some situations. For example, in order to determine
1211 whether a statement is an expression-statement or a
1212 declaration-statement we parse it tentatively as a
1213 declaration-statement. If that fails, we then reparse the same
1214 token stream as an expression-statement. */
1215 cp_parser_context *context;
1216
1217 /* True if we are parsing GNU C++. If this flag is not set, then
1218 GNU extensions are not recognized. */
1219 bool allow_gnu_extensions_p;
1220
1221 /* TRUE if the `>' token should be interpreted as the greater-than
1222 operator. FALSE if it is the end of a template-id or
1223 template-parameter-list. */
1224 bool greater_than_is_operator_p;
1225
1226 /* TRUE if default arguments are allowed within a parameter list
1227 that starts at this point. FALSE if only a gnu extension makes
1228 them permissible. */
1229 bool default_arg_ok_p;
1230
1231 /* TRUE if we are parsing an integral constant-expression. See
1232 [expr.const] for a precise definition. */
1233 bool integral_constant_expression_p;
1234
1235 /* TRUE if we are parsing an integral constant-expression -- but a
1236 non-constant expression should be permitted as well. This flag
1237 is used when parsing an array bound so that GNU variable-length
1238 arrays are tolerated. */
1239 bool allow_non_integral_constant_expression_p;
1240
1241 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1242 been seen that makes the expression non-constant. */
1243 bool non_integral_constant_expression_p;
1244
1245 /* TRUE if local variable names and `this' are forbidden in the
1246 current context. */
1247 bool local_variables_forbidden_p;
1248
1249 /* TRUE if the declaration we are parsing is part of a
1250 linkage-specification of the form `extern string-literal
1251 declaration'. */
1252 bool in_unbraced_linkage_specification_p;
1253
1254 /* TRUE if we are presently parsing a declarator, after the
1255 direct-declarator. */
1256 bool in_declarator_p;
1257
1258 /* TRUE if we are presently parsing a template-argument-list. */
1259 bool in_template_argument_list_p;
1260
1261 /* TRUE if we are presently parsing the body of an
1262 iteration-statement. */
1263 bool in_iteration_statement_p;
1264
1265 /* TRUE if we are presently parsing the body of a switch
1266 statement. */
1267 bool in_switch_statement_p;
1268
1269 /* TRUE if we are parsing a type-id in an expression context. In
1270 such a situation, both "type (expr)" and "type (type)" are valid
1271 alternatives. */
1272 bool in_type_id_in_expr_p;
1273
1274 /* If non-NULL, then we are parsing a construct where new type
1275 definitions are not permitted. The string stored here will be
1276 issued as an error message if a type is defined. */
1277 const char *type_definition_forbidden_message;
1278
1279 /* A list of lists. The outer list is a stack, used for member
1280 functions of local classes. At each level there are two sub-list,
1281 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1282 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1283 TREE_VALUE's. The functions are chained in reverse declaration
1284 order.
1285
1286 The TREE_PURPOSE sublist contains those functions with default
1287 arguments that need post processing, and the TREE_VALUE sublist
1288 contains those functions with definitions that need post
1289 processing.
1290
1291 These lists can only be processed once the outermost class being
1292 defined is complete. */
1293 tree unparsed_functions_queues;
1294
1295 /* The number of classes whose definitions are currently in
1296 progress. */
1297 unsigned num_classes_being_defined;
1298
1299 /* The number of template parameter lists that apply directly to the
1300 current declaration. */
1301 unsigned num_template_parameter_lists;
1302 } cp_parser;
1303
1304 /* The type of a function that parses some kind of expression. */
1305 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1306
1307 /* Prototypes. */
1308
1309 /* Constructors and destructors. */
1310
1311 static cp_parser *cp_parser_new
1312 (void);
1313
1314 /* Routines to parse various constructs.
1315
1316 Those that return `tree' will return the error_mark_node (rather
1317 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1318 Sometimes, they will return an ordinary node if error-recovery was
1319 attempted, even though a parse error occurred. So, to check
1320 whether or not a parse error occurred, you should always use
1321 cp_parser_error_occurred. If the construct is optional (indicated
1322 either by an `_opt' in the name of the function that does the
1323 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1324 the construct is not present. */
1325
1326 /* Lexical conventions [gram.lex] */
1327
1328 static tree cp_parser_identifier
1329 (cp_parser *);
1330
1331 /* Basic concepts [gram.basic] */
1332
1333 static bool cp_parser_translation_unit
1334 (cp_parser *);
1335
1336 /* Expressions [gram.expr] */
1337
1338 static tree cp_parser_primary_expression
1339 (cp_parser *, cp_id_kind *, tree *);
1340 static tree cp_parser_id_expression
1341 (cp_parser *, bool, bool, bool *, bool);
1342 static tree cp_parser_unqualified_id
1343 (cp_parser *, bool, bool, bool);
1344 static tree cp_parser_nested_name_specifier_opt
1345 (cp_parser *, bool, bool, bool, bool);
1346 static tree cp_parser_nested_name_specifier
1347 (cp_parser *, bool, bool, bool, bool);
1348 static tree cp_parser_class_or_namespace_name
1349 (cp_parser *, bool, bool, bool, bool, bool);
1350 static tree cp_parser_postfix_expression
1351 (cp_parser *, bool);
1352 static tree cp_parser_postfix_open_square_expression
1353 (cp_parser *, tree, bool);
1354 static tree cp_parser_postfix_dot_deref_expression
1355 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1356 static tree cp_parser_parenthesized_expression_list
1357 (cp_parser *, bool, bool *);
1358 static void cp_parser_pseudo_destructor_name
1359 (cp_parser *, tree *, tree *);
1360 static tree cp_parser_unary_expression
1361 (cp_parser *, bool);
1362 static enum tree_code cp_parser_unary_operator
1363 (cp_token *);
1364 static tree cp_parser_new_expression
1365 (cp_parser *);
1366 static tree cp_parser_new_placement
1367 (cp_parser *);
1368 static tree cp_parser_new_type_id
1369 (cp_parser *);
1370 static tree cp_parser_new_declarator_opt
1371 (cp_parser *);
1372 static tree cp_parser_direct_new_declarator
1373 (cp_parser *);
1374 static tree cp_parser_new_initializer
1375 (cp_parser *);
1376 static tree cp_parser_delete_expression
1377 (cp_parser *);
1378 static tree cp_parser_cast_expression
1379 (cp_parser *, bool);
1380 static tree cp_parser_pm_expression
1381 (cp_parser *);
1382 static tree cp_parser_multiplicative_expression
1383 (cp_parser *);
1384 static tree cp_parser_additive_expression
1385 (cp_parser *);
1386 static tree cp_parser_shift_expression
1387 (cp_parser *);
1388 static tree cp_parser_relational_expression
1389 (cp_parser *);
1390 static tree cp_parser_equality_expression
1391 (cp_parser *);
1392 static tree cp_parser_and_expression
1393 (cp_parser *);
1394 static tree cp_parser_exclusive_or_expression
1395 (cp_parser *);
1396 static tree cp_parser_inclusive_or_expression
1397 (cp_parser *);
1398 static tree cp_parser_logical_and_expression
1399 (cp_parser *);
1400 static tree cp_parser_logical_or_expression
1401 (cp_parser *);
1402 static tree cp_parser_question_colon_clause
1403 (cp_parser *, tree);
1404 static tree cp_parser_assignment_expression
1405 (cp_parser *);
1406 static enum tree_code cp_parser_assignment_operator_opt
1407 (cp_parser *);
1408 static tree cp_parser_expression
1409 (cp_parser *);
1410 static tree cp_parser_constant_expression
1411 (cp_parser *, bool, bool *);
1412 static tree cp_parser_builtin_offsetof
1413 (cp_parser *);
1414
1415 /* Statements [gram.stmt.stmt] */
1416
1417 static void cp_parser_statement
1418 (cp_parser *, tree);
1419 static tree cp_parser_labeled_statement
1420 (cp_parser *, tree);
1421 static tree cp_parser_expression_statement
1422 (cp_parser *, tree);
1423 static tree cp_parser_compound_statement
1424 (cp_parser *, tree, bool);
1425 static void cp_parser_statement_seq_opt
1426 (cp_parser *, tree);
1427 static tree cp_parser_selection_statement
1428 (cp_parser *);
1429 static tree cp_parser_condition
1430 (cp_parser *);
1431 static tree cp_parser_iteration_statement
1432 (cp_parser *);
1433 static void cp_parser_for_init_statement
1434 (cp_parser *);
1435 static tree cp_parser_jump_statement
1436 (cp_parser *);
1437 static void cp_parser_declaration_statement
1438 (cp_parser *);
1439
1440 static tree cp_parser_implicitly_scoped_statement
1441 (cp_parser *);
1442 static void cp_parser_already_scoped_statement
1443 (cp_parser *);
1444
1445 /* Declarations [gram.dcl.dcl] */
1446
1447 static void cp_parser_declaration_seq_opt
1448 (cp_parser *);
1449 static void cp_parser_declaration
1450 (cp_parser *);
1451 static void cp_parser_block_declaration
1452 (cp_parser *, bool);
1453 static void cp_parser_simple_declaration
1454 (cp_parser *, bool);
1455 static tree cp_parser_decl_specifier_seq
1456 (cp_parser *, cp_parser_flags, tree *, int *);
1457 static tree cp_parser_storage_class_specifier_opt
1458 (cp_parser *);
1459 static tree cp_parser_function_specifier_opt
1460 (cp_parser *);
1461 static tree cp_parser_type_specifier
1462 (cp_parser *, cp_parser_flags, bool, bool, int *, bool *);
1463 static tree cp_parser_simple_type_specifier
1464 (cp_parser *, cp_parser_flags, bool);
1465 static tree cp_parser_type_name
1466 (cp_parser *);
1467 static tree cp_parser_elaborated_type_specifier
1468 (cp_parser *, bool, bool);
1469 static tree cp_parser_enum_specifier
1470 (cp_parser *);
1471 static void cp_parser_enumerator_list
1472 (cp_parser *, tree);
1473 static void cp_parser_enumerator_definition
1474 (cp_parser *, tree);
1475 static tree cp_parser_namespace_name
1476 (cp_parser *);
1477 static void cp_parser_namespace_definition
1478 (cp_parser *);
1479 static void cp_parser_namespace_body
1480 (cp_parser *);
1481 static tree cp_parser_qualified_namespace_specifier
1482 (cp_parser *);
1483 static void cp_parser_namespace_alias_definition
1484 (cp_parser *);
1485 static void cp_parser_using_declaration
1486 (cp_parser *);
1487 static void cp_parser_using_directive
1488 (cp_parser *);
1489 static void cp_parser_asm_definition
1490 (cp_parser *);
1491 static void cp_parser_linkage_specification
1492 (cp_parser *);
1493
1494 /* Declarators [gram.dcl.decl] */
1495
1496 static tree cp_parser_init_declarator
1497 (cp_parser *, tree, tree, bool, bool, int, bool *);
1498 static tree cp_parser_declarator
1499 (cp_parser *, cp_parser_declarator_kind, int *, bool *);
1500 static tree cp_parser_direct_declarator
1501 (cp_parser *, cp_parser_declarator_kind, int *);
1502 static enum tree_code cp_parser_ptr_operator
1503 (cp_parser *, tree *, tree *);
1504 static tree cp_parser_cv_qualifier_seq_opt
1505 (cp_parser *);
1506 static tree cp_parser_cv_qualifier_opt
1507 (cp_parser *);
1508 static tree cp_parser_declarator_id
1509 (cp_parser *);
1510 static tree cp_parser_type_id
1511 (cp_parser *);
1512 static tree cp_parser_type_specifier_seq
1513 (cp_parser *);
1514 static tree cp_parser_parameter_declaration_clause
1515 (cp_parser *);
1516 static tree cp_parser_parameter_declaration_list
1517 (cp_parser *);
1518 static tree cp_parser_parameter_declaration
1519 (cp_parser *, bool, bool *);
1520 static void cp_parser_function_body
1521 (cp_parser *);
1522 static tree cp_parser_initializer
1523 (cp_parser *, bool *, bool *);
1524 static tree cp_parser_initializer_clause
1525 (cp_parser *, bool *);
1526 static tree cp_parser_initializer_list
1527 (cp_parser *, bool *);
1528
1529 static bool cp_parser_ctor_initializer_opt_and_function_body
1530 (cp_parser *);
1531
1532 /* Classes [gram.class] */
1533
1534 static tree cp_parser_class_name
1535 (cp_parser *, bool, bool, bool, bool, bool, bool);
1536 static tree cp_parser_class_specifier
1537 (cp_parser *);
1538 static tree cp_parser_class_head
1539 (cp_parser *, bool *, tree *);
1540 static enum tag_types cp_parser_class_key
1541 (cp_parser *);
1542 static void cp_parser_member_specification_opt
1543 (cp_parser *);
1544 static void cp_parser_member_declaration
1545 (cp_parser *);
1546 static tree cp_parser_pure_specifier
1547 (cp_parser *);
1548 static tree cp_parser_constant_initializer
1549 (cp_parser *);
1550
1551 /* Derived classes [gram.class.derived] */
1552
1553 static tree cp_parser_base_clause
1554 (cp_parser *);
1555 static tree cp_parser_base_specifier
1556 (cp_parser *);
1557
1558 /* Special member functions [gram.special] */
1559
1560 static tree cp_parser_conversion_function_id
1561 (cp_parser *);
1562 static tree cp_parser_conversion_type_id
1563 (cp_parser *);
1564 static tree cp_parser_conversion_declarator_opt
1565 (cp_parser *);
1566 static bool cp_parser_ctor_initializer_opt
1567 (cp_parser *);
1568 static void cp_parser_mem_initializer_list
1569 (cp_parser *);
1570 static tree cp_parser_mem_initializer
1571 (cp_parser *);
1572 static tree cp_parser_mem_initializer_id
1573 (cp_parser *);
1574
1575 /* Overloading [gram.over] */
1576
1577 static tree cp_parser_operator_function_id
1578 (cp_parser *);
1579 static tree cp_parser_operator
1580 (cp_parser *);
1581
1582 /* Templates [gram.temp] */
1583
1584 static void cp_parser_template_declaration
1585 (cp_parser *, bool);
1586 static tree cp_parser_template_parameter_list
1587 (cp_parser *);
1588 static tree cp_parser_template_parameter
1589 (cp_parser *);
1590 static tree cp_parser_type_parameter
1591 (cp_parser *);
1592 static tree cp_parser_template_id
1593 (cp_parser *, bool, bool, bool);
1594 static tree cp_parser_template_name
1595 (cp_parser *, bool, bool, bool, bool *);
1596 static tree cp_parser_template_argument_list
1597 (cp_parser *);
1598 static tree cp_parser_template_argument
1599 (cp_parser *);
1600 static void cp_parser_explicit_instantiation
1601 (cp_parser *);
1602 static void cp_parser_explicit_specialization
1603 (cp_parser *);
1604
1605 /* Exception handling [gram.exception] */
1606
1607 static tree cp_parser_try_block
1608 (cp_parser *);
1609 static bool cp_parser_function_try_block
1610 (cp_parser *);
1611 static void cp_parser_handler_seq
1612 (cp_parser *);
1613 static void cp_parser_handler
1614 (cp_parser *);
1615 static tree cp_parser_exception_declaration
1616 (cp_parser *);
1617 static tree cp_parser_throw_expression
1618 (cp_parser *);
1619 static tree cp_parser_exception_specification_opt
1620 (cp_parser *);
1621 static tree cp_parser_type_id_list
1622 (cp_parser *);
1623
1624 /* GNU Extensions */
1625
1626 static tree cp_parser_asm_specification_opt
1627 (cp_parser *);
1628 static tree cp_parser_asm_operand_list
1629 (cp_parser *);
1630 static tree cp_parser_asm_clobber_list
1631 (cp_parser *);
1632 static tree cp_parser_attributes_opt
1633 (cp_parser *);
1634 static tree cp_parser_attribute_list
1635 (cp_parser *);
1636 static bool cp_parser_extension_opt
1637 (cp_parser *, int *);
1638 static void cp_parser_label_declaration
1639 (cp_parser *);
1640
1641 /* Utility Routines */
1642
1643 static tree cp_parser_lookup_name
1644 (cp_parser *, tree, bool, bool, bool, bool);
1645 static tree cp_parser_lookup_name_simple
1646 (cp_parser *, tree);
1647 static tree cp_parser_maybe_treat_template_as_class
1648 (tree, bool);
1649 static bool cp_parser_check_declarator_template_parameters
1650 (cp_parser *, tree);
1651 static bool cp_parser_check_template_parameters
1652 (cp_parser *, unsigned);
1653 static tree cp_parser_simple_cast_expression
1654 (cp_parser *);
1655 static tree cp_parser_binary_expression
1656 (cp_parser *, const cp_parser_token_tree_map, cp_parser_expression_fn);
1657 static tree cp_parser_global_scope_opt
1658 (cp_parser *, bool);
1659 static bool cp_parser_constructor_declarator_p
1660 (cp_parser *, bool);
1661 static tree cp_parser_function_definition_from_specifiers_and_declarator
1662 (cp_parser *, tree, tree, tree);
1663 static tree cp_parser_function_definition_after_declarator
1664 (cp_parser *, bool);
1665 static void cp_parser_template_declaration_after_export
1666 (cp_parser *, bool);
1667 static tree cp_parser_single_declaration
1668 (cp_parser *, bool, bool *);
1669 static tree cp_parser_functional_cast
1670 (cp_parser *, tree);
1671 static tree cp_parser_save_member_function_body
1672 (cp_parser *, tree, tree, tree);
1673 static tree cp_parser_enclosed_template_argument_list
1674 (cp_parser *);
1675 static void cp_parser_save_default_args
1676 (cp_parser *, tree);
1677 static void cp_parser_late_parsing_for_member
1678 (cp_parser *, tree);
1679 static void cp_parser_late_parsing_default_args
1680 (cp_parser *, tree);
1681 static tree cp_parser_sizeof_operand
1682 (cp_parser *, enum rid);
1683 static bool cp_parser_declares_only_class_p
1684 (cp_parser *);
1685 static bool cp_parser_friend_p
1686 (tree);
1687 static cp_token *cp_parser_require
1688 (cp_parser *, enum cpp_ttype, const char *);
1689 static cp_token *cp_parser_require_keyword
1690 (cp_parser *, enum rid, const char *);
1691 static bool cp_parser_token_starts_function_definition_p
1692 (cp_token *);
1693 static bool cp_parser_next_token_starts_class_definition_p
1694 (cp_parser *);
1695 static bool cp_parser_next_token_ends_template_argument_p
1696 (cp_parser *);
1697 static bool cp_parser_nth_token_starts_template_argument_list_p
1698 (cp_parser *, size_t);
1699 static enum tag_types cp_parser_token_is_class_key
1700 (cp_token *);
1701 static void cp_parser_check_class_key
1702 (enum tag_types, tree type);
1703 static void cp_parser_check_access_in_redeclaration
1704 (tree type);
1705 static bool cp_parser_optional_template_keyword
1706 (cp_parser *);
1707 static void cp_parser_pre_parsed_nested_name_specifier
1708 (cp_parser *);
1709 static void cp_parser_cache_group
1710 (cp_parser *, cp_token_cache *, enum cpp_ttype, unsigned);
1711 static void cp_parser_parse_tentatively
1712 (cp_parser *);
1713 static void cp_parser_commit_to_tentative_parse
1714 (cp_parser *);
1715 static void cp_parser_abort_tentative_parse
1716 (cp_parser *);
1717 static bool cp_parser_parse_definitely
1718 (cp_parser *);
1719 static inline bool cp_parser_parsing_tentatively
1720 (cp_parser *);
1721 static bool cp_parser_committed_to_tentative_parse
1722 (cp_parser *);
1723 static void cp_parser_error
1724 (cp_parser *, const char *);
1725 static void cp_parser_name_lookup_error
1726 (cp_parser *, tree, tree, const char *);
1727 static bool cp_parser_simulate_error
1728 (cp_parser *);
1729 static void cp_parser_check_type_definition
1730 (cp_parser *);
1731 static void cp_parser_check_for_definition_in_return_type
1732 (tree, int);
1733 static void cp_parser_check_for_invalid_template_id
1734 (cp_parser *, tree);
1735 static bool cp_parser_non_integral_constant_expression
1736 (cp_parser *, const char *);
1737 static void cp_parser_diagnose_invalid_type_name
1738 (cp_parser *, tree, tree);
1739 static bool cp_parser_parse_and_diagnose_invalid_type_name
1740 (cp_parser *);
1741 static int cp_parser_skip_to_closing_parenthesis
1742 (cp_parser *, bool, bool, bool);
1743 static void cp_parser_skip_to_end_of_statement
1744 (cp_parser *);
1745 static void cp_parser_consume_semicolon_at_end_of_statement
1746 (cp_parser *);
1747 static void cp_parser_skip_to_end_of_block_or_statement
1748 (cp_parser *);
1749 static void cp_parser_skip_to_closing_brace
1750 (cp_parser *);
1751 static void cp_parser_skip_until_found
1752 (cp_parser *, enum cpp_ttype, const char *);
1753 static bool cp_parser_error_occurred
1754 (cp_parser *);
1755 static bool cp_parser_allow_gnu_extensions_p
1756 (cp_parser *);
1757 static bool cp_parser_is_string_literal
1758 (cp_token *);
1759 static bool cp_parser_is_keyword
1760 (cp_token *, enum rid);
1761 static tree cp_parser_make_typename_type
1762 (cp_parser *, tree, tree);
1763
1764 /* Returns nonzero if we are parsing tentatively. */
1765
1766 static inline bool
1767 cp_parser_parsing_tentatively (cp_parser* parser)
1768 {
1769 return parser->context->next != NULL;
1770 }
1771
1772 /* Returns nonzero if TOKEN is a string literal. */
1773
1774 static bool
1775 cp_parser_is_string_literal (cp_token* token)
1776 {
1777 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1778 }
1779
1780 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1781
1782 static bool
1783 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1784 {
1785 return token->keyword == keyword;
1786 }
1787
1788 /* Issue the indicated error MESSAGE. */
1789
1790 static void
1791 cp_parser_error (cp_parser* parser, const char* message)
1792 {
1793 /* Output the MESSAGE -- unless we're parsing tentatively. */
1794 if (!cp_parser_simulate_error (parser))
1795 {
1796 cp_token *token;
1797 token = cp_lexer_peek_token (parser->lexer);
1798 c_parse_error (message,
1799 /* Because c_parser_error does not understand
1800 CPP_KEYWORD, keywords are treated like
1801 identifiers. */
1802 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1803 token->value);
1804 }
1805 }
1806
1807 /* Issue an error about name-lookup failing. NAME is the
1808 IDENTIFIER_NODE DECL is the result of
1809 the lookup (as returned from cp_parser_lookup_name). DESIRED is
1810 the thing that we hoped to find. */
1811
1812 static void
1813 cp_parser_name_lookup_error (cp_parser* parser,
1814 tree name,
1815 tree decl,
1816 const char* desired)
1817 {
1818 /* If name lookup completely failed, tell the user that NAME was not
1819 declared. */
1820 if (decl == error_mark_node)
1821 {
1822 if (parser->scope && parser->scope != global_namespace)
1823 error ("`%D::%D' has not been declared",
1824 parser->scope, name);
1825 else if (parser->scope == global_namespace)
1826 error ("`::%D' has not been declared", name);
1827 else
1828 error ("`%D' has not been declared", name);
1829 }
1830 else if (parser->scope && parser->scope != global_namespace)
1831 error ("`%D::%D' %s", parser->scope, name, desired);
1832 else if (parser->scope == global_namespace)
1833 error ("`::%D' %s", name, desired);
1834 else
1835 error ("`%D' %s", name, desired);
1836 }
1837
1838 /* If we are parsing tentatively, remember that an error has occurred
1839 during this tentative parse. Returns true if the error was
1840 simulated; false if a message should be issued by the caller. */
1841
1842 static bool
1843 cp_parser_simulate_error (cp_parser* parser)
1844 {
1845 if (cp_parser_parsing_tentatively (parser)
1846 && !cp_parser_committed_to_tentative_parse (parser))
1847 {
1848 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
1849 return true;
1850 }
1851 return false;
1852 }
1853
1854 /* This function is called when a type is defined. If type
1855 definitions are forbidden at this point, an error message is
1856 issued. */
1857
1858 static void
1859 cp_parser_check_type_definition (cp_parser* parser)
1860 {
1861 /* If types are forbidden here, issue a message. */
1862 if (parser->type_definition_forbidden_message)
1863 /* Use `%s' to print the string in case there are any escape
1864 characters in the message. */
1865 error ("%s", parser->type_definition_forbidden_message);
1866 }
1867
1868 /* This function is called when a declaration is parsed. If
1869 DECLARATOR is a function declarator and DECLARES_CLASS_OR_ENUM
1870 indicates that a type was defined in the decl-specifiers for DECL,
1871 then an error is issued. */
1872
1873 static void
1874 cp_parser_check_for_definition_in_return_type (tree declarator,
1875 int declares_class_or_enum)
1876 {
1877 /* [dcl.fct] forbids type definitions in return types.
1878 Unfortunately, it's not easy to know whether or not we are
1879 processing a return type until after the fact. */
1880 while (declarator
1881 && (TREE_CODE (declarator) == INDIRECT_REF
1882 || TREE_CODE (declarator) == ADDR_EXPR))
1883 declarator = TREE_OPERAND (declarator, 0);
1884 if (declarator
1885 && TREE_CODE (declarator) == CALL_EXPR
1886 && declares_class_or_enum & 2)
1887 error ("new types may not be defined in a return type");
1888 }
1889
1890 /* A type-specifier (TYPE) has been parsed which cannot be followed by
1891 "<" in any valid C++ program. If the next token is indeed "<",
1892 issue a message warning the user about what appears to be an
1893 invalid attempt to form a template-id. */
1894
1895 static void
1896 cp_parser_check_for_invalid_template_id (cp_parser* parser,
1897 tree type)
1898 {
1899 ptrdiff_t start;
1900 cp_token *token;
1901
1902 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
1903 {
1904 if (TYPE_P (type))
1905 error ("`%T' is not a template", type);
1906 else if (TREE_CODE (type) == IDENTIFIER_NODE)
1907 error ("`%E' is not a template", type);
1908 else
1909 error ("invalid template-id");
1910 /* Remember the location of the invalid "<". */
1911 if (cp_parser_parsing_tentatively (parser)
1912 && !cp_parser_committed_to_tentative_parse (parser))
1913 {
1914 token = cp_lexer_peek_token (parser->lexer);
1915 token = cp_lexer_prev_token (parser->lexer, token);
1916 start = cp_lexer_token_difference (parser->lexer,
1917 parser->lexer->first_token,
1918 token);
1919 }
1920 else
1921 start = -1;
1922 /* Consume the "<". */
1923 cp_lexer_consume_token (parser->lexer);
1924 /* Parse the template arguments. */
1925 cp_parser_enclosed_template_argument_list (parser);
1926 /* Permanently remove the invalid template arguments so that
1927 this error message is not issued again. */
1928 if (start >= 0)
1929 {
1930 token = cp_lexer_advance_token (parser->lexer,
1931 parser->lexer->first_token,
1932 start);
1933 cp_lexer_purge_tokens_after (parser->lexer, token);
1934 }
1935 }
1936 }
1937
1938 /* If parsing an integral constant-expression, issue an error message
1939 about the fact that THING appeared and return true. Otherwise,
1940 return false, marking the current expression as non-constant. */
1941
1942 static bool
1943 cp_parser_non_integral_constant_expression (cp_parser *parser,
1944 const char *thing)
1945 {
1946 if (parser->integral_constant_expression_p)
1947 {
1948 if (!parser->allow_non_integral_constant_expression_p)
1949 {
1950 error ("%s cannot appear in a constant-expression", thing);
1951 return true;
1952 }
1953 parser->non_integral_constant_expression_p = true;
1954 }
1955 return false;
1956 }
1957
1958 /* Emit a diagnostic for an invalid type name. Consider also if it is
1959 qualified or not and the result of a lookup, to provide a better
1960 message. */
1961
1962 static void
1963 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
1964 {
1965 tree decl, old_scope;
1966 /* Try to lookup the identifier. */
1967 old_scope = parser->scope;
1968 parser->scope = scope;
1969 decl = cp_parser_lookup_name_simple (parser, id);
1970 parser->scope = old_scope;
1971 /* If the lookup found a template-name, it means that the user forgot
1972 to specify an argument list. Emit an useful error message. */
1973 if (TREE_CODE (decl) == TEMPLATE_DECL)
1974 error ("invalid use of template-name `%E' without an argument list",
1975 decl);
1976 else if (!parser->scope)
1977 {
1978 /* Issue an error message. */
1979 error ("`%E' does not name a type", id);
1980 /* If we're in a template class, it's possible that the user was
1981 referring to a type from a base class. For example:
1982
1983 template <typename T> struct A { typedef T X; };
1984 template <typename T> struct B : public A<T> { X x; };
1985
1986 The user should have said "typename A<T>::X". */
1987 if (processing_template_decl && current_class_type)
1988 {
1989 tree b;
1990
1991 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
1992 b;
1993 b = TREE_CHAIN (b))
1994 {
1995 tree base_type = BINFO_TYPE (b);
1996 if (CLASS_TYPE_P (base_type)
1997 && dependent_type_p (base_type))
1998 {
1999 tree field;
2000 /* Go from a particular instantiation of the
2001 template (which will have an empty TYPE_FIELDs),
2002 to the main version. */
2003 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
2004 for (field = TYPE_FIELDS (base_type);
2005 field;
2006 field = TREE_CHAIN (field))
2007 if (TREE_CODE (field) == TYPE_DECL
2008 && DECL_NAME (field) == id)
2009 {
2010 inform ("(perhaps `typename %T::%E' was intended)",
2011 BINFO_TYPE (b), id);
2012 break;
2013 }
2014 if (field)
2015 break;
2016 }
2017 }
2018 }
2019 }
2020 /* Here we diagnose qualified-ids where the scope is actually correct,
2021 but the identifier does not resolve to a valid type name. */
2022 else
2023 {
2024 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2025 error ("`%E' in namespace `%E' does not name a type",
2026 id, parser->scope);
2027 else if (TYPE_P (parser->scope))
2028 error ("`%E' in class `%T' does not name a type",
2029 id, parser->scope);
2030 else
2031 abort();
2032 }
2033 }
2034
2035 /* Check for a common situation where a type-name should be present,
2036 but is not, and issue a sensible error message. Returns true if an
2037 invalid type-name was detected.
2038
2039 The situation handled by this function are variable declarations of the
2040 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2041 Usually, `ID' should name a type, but if we got here it means that it
2042 does not. We try to emit the best possible error message depending on
2043 how exactly the id-expression looks like.
2044 */
2045
2046 static bool
2047 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2048 {
2049 tree id;
2050
2051 cp_parser_parse_tentatively (parser);
2052 id = cp_parser_id_expression (parser,
2053 /*template_keyword_p=*/false,
2054 /*check_dependency_p=*/true,
2055 /*template_p=*/NULL,
2056 /*declarator_p=*/true);
2057 /* After the id-expression, there should be a plain identifier,
2058 otherwise this is not a simple variable declaration. Also, if
2059 the scope is dependent, we cannot do much. */
2060 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2061 || (parser->scope && TYPE_P (parser->scope)
2062 && dependent_type_p (parser->scope)))
2063 {
2064 cp_parser_abort_tentative_parse (parser);
2065 return false;
2066 }
2067 if (!cp_parser_parse_definitely (parser))
2068 return false;
2069
2070 /* If we got here, this cannot be a valid variable declaration, thus
2071 the cp_parser_id_expression must have resolved to a plain identifier
2072 node (not a TYPE_DECL or TEMPLATE_ID_EXPR). */
2073 my_friendly_assert (TREE_CODE (id) == IDENTIFIER_NODE, 20030203);
2074 /* Emit a diagnostic for the invalid type. */
2075 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2076 /* Skip to the end of the declaration; there's no point in
2077 trying to process it. */
2078 cp_parser_skip_to_end_of_block_or_statement (parser);
2079 return true;
2080 }
2081
2082 /* Consume tokens up to, and including, the next non-nested closing `)'.
2083 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2084 are doing error recovery. Returns -1 if OR_COMMA is true and we
2085 found an unnested comma. */
2086
2087 static int
2088 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2089 bool recovering,
2090 bool or_comma,
2091 bool consume_paren)
2092 {
2093 unsigned paren_depth = 0;
2094 unsigned brace_depth = 0;
2095 int saved_c_lex_string_translate = c_lex_string_translate;
2096 int result;
2097
2098 if (recovering && !or_comma && cp_parser_parsing_tentatively (parser)
2099 && !cp_parser_committed_to_tentative_parse (parser))
2100 return 0;
2101
2102 if (! recovering)
2103 /* If we're looking ahead, keep both translated and untranslated
2104 strings. */
2105 c_lex_string_translate = -1;
2106
2107 while (true)
2108 {
2109 cp_token *token;
2110
2111 /* If we've run out of tokens, then there is no closing `)'. */
2112 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2113 {
2114 result = 0;
2115 break;
2116 }
2117
2118 token = cp_lexer_peek_token (parser->lexer);
2119
2120 /* This matches the processing in skip_to_end_of_statement. */
2121 if (token->type == CPP_SEMICOLON && !brace_depth)
2122 {
2123 result = 0;
2124 break;
2125 }
2126 if (token->type == CPP_OPEN_BRACE)
2127 ++brace_depth;
2128 if (token->type == CPP_CLOSE_BRACE)
2129 {
2130 if (!brace_depth--)
2131 {
2132 result = 0;
2133 break;
2134 }
2135 }
2136 if (recovering && or_comma && token->type == CPP_COMMA
2137 && !brace_depth && !paren_depth)
2138 {
2139 result = -1;
2140 break;
2141 }
2142
2143 if (!brace_depth)
2144 {
2145 /* If it is an `(', we have entered another level of nesting. */
2146 if (token->type == CPP_OPEN_PAREN)
2147 ++paren_depth;
2148 /* If it is a `)', then we might be done. */
2149 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2150 {
2151 if (consume_paren)
2152 cp_lexer_consume_token (parser->lexer);
2153 {
2154 result = 1;
2155 break;
2156 }
2157 }
2158 }
2159
2160 /* Consume the token. */
2161 cp_lexer_consume_token (parser->lexer);
2162 }
2163
2164 c_lex_string_translate = saved_c_lex_string_translate;
2165 return result;
2166 }
2167
2168 /* Consume tokens until we reach the end of the current statement.
2169 Normally, that will be just before consuming a `;'. However, if a
2170 non-nested `}' comes first, then we stop before consuming that. */
2171
2172 static void
2173 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2174 {
2175 unsigned nesting_depth = 0;
2176
2177 while (true)
2178 {
2179 cp_token *token;
2180
2181 /* Peek at the next token. */
2182 token = cp_lexer_peek_token (parser->lexer);
2183 /* If we've run out of tokens, stop. */
2184 if (token->type == CPP_EOF)
2185 break;
2186 /* If the next token is a `;', we have reached the end of the
2187 statement. */
2188 if (token->type == CPP_SEMICOLON && !nesting_depth)
2189 break;
2190 /* If the next token is a non-nested `}', then we have reached
2191 the end of the current block. */
2192 if (token->type == CPP_CLOSE_BRACE)
2193 {
2194 /* If this is a non-nested `}', stop before consuming it.
2195 That way, when confronted with something like:
2196
2197 { 3 + }
2198
2199 we stop before consuming the closing `}', even though we
2200 have not yet reached a `;'. */
2201 if (nesting_depth == 0)
2202 break;
2203 /* If it is the closing `}' for a block that we have
2204 scanned, stop -- but only after consuming the token.
2205 That way given:
2206
2207 void f g () { ... }
2208 typedef int I;
2209
2210 we will stop after the body of the erroneously declared
2211 function, but before consuming the following `typedef'
2212 declaration. */
2213 if (--nesting_depth == 0)
2214 {
2215 cp_lexer_consume_token (parser->lexer);
2216 break;
2217 }
2218 }
2219 /* If it the next token is a `{', then we are entering a new
2220 block. Consume the entire block. */
2221 else if (token->type == CPP_OPEN_BRACE)
2222 ++nesting_depth;
2223 /* Consume the token. */
2224 cp_lexer_consume_token (parser->lexer);
2225 }
2226 }
2227
2228 /* This function is called at the end of a statement or declaration.
2229 If the next token is a semicolon, it is consumed; otherwise, error
2230 recovery is attempted. */
2231
2232 static void
2233 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2234 {
2235 /* Look for the trailing `;'. */
2236 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2237 {
2238 /* If there is additional (erroneous) input, skip to the end of
2239 the statement. */
2240 cp_parser_skip_to_end_of_statement (parser);
2241 /* If the next token is now a `;', consume it. */
2242 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2243 cp_lexer_consume_token (parser->lexer);
2244 }
2245 }
2246
2247 /* Skip tokens until we have consumed an entire block, or until we
2248 have consumed a non-nested `;'. */
2249
2250 static void
2251 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2252 {
2253 unsigned nesting_depth = 0;
2254
2255 while (true)
2256 {
2257 cp_token *token;
2258
2259 /* Peek at the next token. */
2260 token = cp_lexer_peek_token (parser->lexer);
2261 /* If we've run out of tokens, stop. */
2262 if (token->type == CPP_EOF)
2263 break;
2264 /* If the next token is a `;', we have reached the end of the
2265 statement. */
2266 if (token->type == CPP_SEMICOLON && !nesting_depth)
2267 {
2268 /* Consume the `;'. */
2269 cp_lexer_consume_token (parser->lexer);
2270 break;
2271 }
2272 /* Consume the token. */
2273 token = cp_lexer_consume_token (parser->lexer);
2274 /* If the next token is a non-nested `}', then we have reached
2275 the end of the current block. */
2276 if (token->type == CPP_CLOSE_BRACE
2277 && (nesting_depth == 0 || --nesting_depth == 0))
2278 break;
2279 /* If it the next token is a `{', then we are entering a new
2280 block. Consume the entire block. */
2281 if (token->type == CPP_OPEN_BRACE)
2282 ++nesting_depth;
2283 }
2284 }
2285
2286 /* Skip tokens until a non-nested closing curly brace is the next
2287 token. */
2288
2289 static void
2290 cp_parser_skip_to_closing_brace (cp_parser *parser)
2291 {
2292 unsigned nesting_depth = 0;
2293
2294 while (true)
2295 {
2296 cp_token *token;
2297
2298 /* Peek at the next token. */
2299 token = cp_lexer_peek_token (parser->lexer);
2300 /* If we've run out of tokens, stop. */
2301 if (token->type == CPP_EOF)
2302 break;
2303 /* If the next token is a non-nested `}', then we have reached
2304 the end of the current block. */
2305 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2306 break;
2307 /* If it the next token is a `{', then we are entering a new
2308 block. Consume the entire block. */
2309 else if (token->type == CPP_OPEN_BRACE)
2310 ++nesting_depth;
2311 /* Consume the token. */
2312 cp_lexer_consume_token (parser->lexer);
2313 }
2314 }
2315
2316 /* This is a simple wrapper around make_typename_type. When the id is
2317 an unresolved identifier node, we can provide a superior diagnostic
2318 using cp_parser_diagnose_invalid_type_name. */
2319
2320 static tree
2321 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2322 {
2323 tree result;
2324 if (TREE_CODE (id) == IDENTIFIER_NODE)
2325 {
2326 result = make_typename_type (scope, id, /*complain=*/0);
2327 if (result == error_mark_node)
2328 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2329 return result;
2330 }
2331 return make_typename_type (scope, id, tf_error);
2332 }
2333
2334
2335 /* Create a new C++ parser. */
2336
2337 static cp_parser *
2338 cp_parser_new (void)
2339 {
2340 cp_parser *parser;
2341 cp_lexer *lexer;
2342
2343 /* cp_lexer_new_main is called before calling ggc_alloc because
2344 cp_lexer_new_main might load a PCH file. */
2345 lexer = cp_lexer_new_main ();
2346
2347 parser = ggc_alloc_cleared (sizeof (cp_parser));
2348 parser->lexer = lexer;
2349 parser->context = cp_parser_context_new (NULL);
2350
2351 /* For now, we always accept GNU extensions. */
2352 parser->allow_gnu_extensions_p = 1;
2353
2354 /* The `>' token is a greater-than operator, not the end of a
2355 template-id. */
2356 parser->greater_than_is_operator_p = true;
2357
2358 parser->default_arg_ok_p = true;
2359
2360 /* We are not parsing a constant-expression. */
2361 parser->integral_constant_expression_p = false;
2362 parser->allow_non_integral_constant_expression_p = false;
2363 parser->non_integral_constant_expression_p = false;
2364
2365 /* Local variable names are not forbidden. */
2366 parser->local_variables_forbidden_p = false;
2367
2368 /* We are not processing an `extern "C"' declaration. */
2369 parser->in_unbraced_linkage_specification_p = false;
2370
2371 /* We are not processing a declarator. */
2372 parser->in_declarator_p = false;
2373
2374 /* We are not processing a template-argument-list. */
2375 parser->in_template_argument_list_p = false;
2376
2377 /* We are not in an iteration statement. */
2378 parser->in_iteration_statement_p = false;
2379
2380 /* We are not in a switch statement. */
2381 parser->in_switch_statement_p = false;
2382
2383 /* We are not parsing a type-id inside an expression. */
2384 parser->in_type_id_in_expr_p = false;
2385
2386 /* The unparsed function queue is empty. */
2387 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2388
2389 /* There are no classes being defined. */
2390 parser->num_classes_being_defined = 0;
2391
2392 /* No template parameters apply. */
2393 parser->num_template_parameter_lists = 0;
2394
2395 return parser;
2396 }
2397
2398 /* Lexical conventions [gram.lex] */
2399
2400 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2401 identifier. */
2402
2403 static tree
2404 cp_parser_identifier (cp_parser* parser)
2405 {
2406 cp_token *token;
2407
2408 /* Look for the identifier. */
2409 token = cp_parser_require (parser, CPP_NAME, "identifier");
2410 /* Return the value. */
2411 return token ? token->value : error_mark_node;
2412 }
2413
2414 /* Basic concepts [gram.basic] */
2415
2416 /* Parse a translation-unit.
2417
2418 translation-unit:
2419 declaration-seq [opt]
2420
2421 Returns TRUE if all went well. */
2422
2423 static bool
2424 cp_parser_translation_unit (cp_parser* parser)
2425 {
2426 while (true)
2427 {
2428 cp_parser_declaration_seq_opt (parser);
2429
2430 /* If there are no tokens left then all went well. */
2431 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2432 break;
2433
2434 /* Otherwise, issue an error message. */
2435 cp_parser_error (parser, "expected declaration");
2436 return false;
2437 }
2438
2439 /* Consume the EOF token. */
2440 cp_parser_require (parser, CPP_EOF, "end-of-file");
2441
2442 /* Finish up. */
2443 finish_translation_unit ();
2444
2445 /* All went well. */
2446 return true;
2447 }
2448
2449 /* Expressions [gram.expr] */
2450
2451 /* Parse a primary-expression.
2452
2453 primary-expression:
2454 literal
2455 this
2456 ( expression )
2457 id-expression
2458
2459 GNU Extensions:
2460
2461 primary-expression:
2462 ( compound-statement )
2463 __builtin_va_arg ( assignment-expression , type-id )
2464
2465 literal:
2466 __null
2467
2468 Returns a representation of the expression.
2469
2470 *IDK indicates what kind of id-expression (if any) was present.
2471
2472 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2473 used as the operand of a pointer-to-member. In that case,
2474 *QUALIFYING_CLASS gives the class that is used as the qualifying
2475 class in the pointer-to-member. */
2476
2477 static tree
2478 cp_parser_primary_expression (cp_parser *parser,
2479 cp_id_kind *idk,
2480 tree *qualifying_class)
2481 {
2482 cp_token *token;
2483
2484 /* Assume the primary expression is not an id-expression. */
2485 *idk = CP_ID_KIND_NONE;
2486 /* And that it cannot be used as pointer-to-member. */
2487 *qualifying_class = NULL_TREE;
2488
2489 /* Peek at the next token. */
2490 token = cp_lexer_peek_token (parser->lexer);
2491 switch (token->type)
2492 {
2493 /* literal:
2494 integer-literal
2495 character-literal
2496 floating-literal
2497 string-literal
2498 boolean-literal */
2499 case CPP_CHAR:
2500 case CPP_WCHAR:
2501 case CPP_NUMBER:
2502 token = cp_lexer_consume_token (parser->lexer);
2503 return token->value;
2504
2505 case CPP_STRING:
2506 case CPP_WSTRING:
2507 token = cp_lexer_consume_token (parser->lexer);
2508 if (TREE_CHAIN (token->value))
2509 return TREE_CHAIN (token->value);
2510 else
2511 return token->value;
2512
2513 case CPP_OPEN_PAREN:
2514 {
2515 tree expr;
2516 bool saved_greater_than_is_operator_p;
2517
2518 /* Consume the `('. */
2519 cp_lexer_consume_token (parser->lexer);
2520 /* Within a parenthesized expression, a `>' token is always
2521 the greater-than operator. */
2522 saved_greater_than_is_operator_p
2523 = parser->greater_than_is_operator_p;
2524 parser->greater_than_is_operator_p = true;
2525 /* If we see `( { ' then we are looking at the beginning of
2526 a GNU statement-expression. */
2527 if (cp_parser_allow_gnu_extensions_p (parser)
2528 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2529 {
2530 /* Statement-expressions are not allowed by the standard. */
2531 if (pedantic)
2532 pedwarn ("ISO C++ forbids braced-groups within expressions");
2533
2534 /* And they're not allowed outside of a function-body; you
2535 cannot, for example, write:
2536
2537 int i = ({ int j = 3; j + 1; });
2538
2539 at class or namespace scope. */
2540 if (!at_function_scope_p ())
2541 error ("statement-expressions are allowed only inside functions");
2542 /* Start the statement-expression. */
2543 expr = begin_stmt_expr ();
2544 /* Parse the compound-statement. */
2545 cp_parser_compound_statement (parser, expr, false);
2546 /* Finish up. */
2547 expr = finish_stmt_expr (expr, false);
2548 }
2549 else
2550 {
2551 /* Parse the parenthesized expression. */
2552 expr = cp_parser_expression (parser);
2553 /* Let the front end know that this expression was
2554 enclosed in parentheses. This matters in case, for
2555 example, the expression is of the form `A::B', since
2556 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2557 not. */
2558 finish_parenthesized_expr (expr);
2559 }
2560 /* The `>' token might be the end of a template-id or
2561 template-parameter-list now. */
2562 parser->greater_than_is_operator_p
2563 = saved_greater_than_is_operator_p;
2564 /* Consume the `)'. */
2565 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2566 cp_parser_skip_to_end_of_statement (parser);
2567
2568 return expr;
2569 }
2570
2571 case CPP_KEYWORD:
2572 switch (token->keyword)
2573 {
2574 /* These two are the boolean literals. */
2575 case RID_TRUE:
2576 cp_lexer_consume_token (parser->lexer);
2577 return boolean_true_node;
2578 case RID_FALSE:
2579 cp_lexer_consume_token (parser->lexer);
2580 return boolean_false_node;
2581
2582 /* The `__null' literal. */
2583 case RID_NULL:
2584 cp_lexer_consume_token (parser->lexer);
2585 return null_node;
2586
2587 /* Recognize the `this' keyword. */
2588 case RID_THIS:
2589 cp_lexer_consume_token (parser->lexer);
2590 if (parser->local_variables_forbidden_p)
2591 {
2592 error ("`this' may not be used in this context");
2593 return error_mark_node;
2594 }
2595 /* Pointers cannot appear in constant-expressions. */
2596 if (cp_parser_non_integral_constant_expression (parser,
2597 "`this'"))
2598 return error_mark_node;
2599 return finish_this_expr ();
2600
2601 /* The `operator' keyword can be the beginning of an
2602 id-expression. */
2603 case RID_OPERATOR:
2604 goto id_expression;
2605
2606 case RID_FUNCTION_NAME:
2607 case RID_PRETTY_FUNCTION_NAME:
2608 case RID_C99_FUNCTION_NAME:
2609 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2610 __func__ are the names of variables -- but they are
2611 treated specially. Therefore, they are handled here,
2612 rather than relying on the generic id-expression logic
2613 below. Grammatically, these names are id-expressions.
2614
2615 Consume the token. */
2616 token = cp_lexer_consume_token (parser->lexer);
2617 /* Look up the name. */
2618 return finish_fname (token->value);
2619
2620 case RID_VA_ARG:
2621 {
2622 tree expression;
2623 tree type;
2624
2625 /* The `__builtin_va_arg' construct is used to handle
2626 `va_arg'. Consume the `__builtin_va_arg' token. */
2627 cp_lexer_consume_token (parser->lexer);
2628 /* Look for the opening `('. */
2629 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2630 /* Now, parse the assignment-expression. */
2631 expression = cp_parser_assignment_expression (parser);
2632 /* Look for the `,'. */
2633 cp_parser_require (parser, CPP_COMMA, "`,'");
2634 /* Parse the type-id. */
2635 type = cp_parser_type_id (parser);
2636 /* Look for the closing `)'. */
2637 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2638 /* Using `va_arg' in a constant-expression is not
2639 allowed. */
2640 if (cp_parser_non_integral_constant_expression (parser,
2641 "`va_arg'"))
2642 return error_mark_node;
2643 return build_x_va_arg (expression, type);
2644 }
2645
2646 case RID_OFFSETOF:
2647 return cp_parser_builtin_offsetof (parser);
2648
2649 default:
2650 cp_parser_error (parser, "expected primary-expression");
2651 return error_mark_node;
2652 }
2653
2654 /* An id-expression can start with either an identifier, a
2655 `::' as the beginning of a qualified-id, or the "operator"
2656 keyword. */
2657 case CPP_NAME:
2658 case CPP_SCOPE:
2659 case CPP_TEMPLATE_ID:
2660 case CPP_NESTED_NAME_SPECIFIER:
2661 {
2662 tree id_expression;
2663 tree decl;
2664 const char *error_msg;
2665
2666 id_expression:
2667 /* Parse the id-expression. */
2668 id_expression
2669 = cp_parser_id_expression (parser,
2670 /*template_keyword_p=*/false,
2671 /*check_dependency_p=*/true,
2672 /*template_p=*/NULL,
2673 /*declarator_p=*/false);
2674 if (id_expression == error_mark_node)
2675 return error_mark_node;
2676 /* If we have a template-id, then no further lookup is
2677 required. If the template-id was for a template-class, we
2678 will sometimes have a TYPE_DECL at this point. */
2679 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2680 || TREE_CODE (id_expression) == TYPE_DECL)
2681 decl = id_expression;
2682 /* Look up the name. */
2683 else
2684 {
2685 decl = cp_parser_lookup_name_simple (parser, id_expression);
2686 /* If name lookup gives us a SCOPE_REF, then the
2687 qualifying scope was dependent. Just propagate the
2688 name. */
2689 if (TREE_CODE (decl) == SCOPE_REF)
2690 {
2691 if (TYPE_P (TREE_OPERAND (decl, 0)))
2692 *qualifying_class = TREE_OPERAND (decl, 0);
2693 return decl;
2694 }
2695 /* Check to see if DECL is a local variable in a context
2696 where that is forbidden. */
2697 if (parser->local_variables_forbidden_p
2698 && local_variable_p (decl))
2699 {
2700 /* It might be that we only found DECL because we are
2701 trying to be generous with pre-ISO scoping rules.
2702 For example, consider:
2703
2704 int i;
2705 void g() {
2706 for (int i = 0; i < 10; ++i) {}
2707 extern void f(int j = i);
2708 }
2709
2710 Here, name look up will originally find the out
2711 of scope `i'. We need to issue a warning message,
2712 but then use the global `i'. */
2713 decl = check_for_out_of_scope_variable (decl);
2714 if (local_variable_p (decl))
2715 {
2716 error ("local variable `%D' may not appear in this context",
2717 decl);
2718 return error_mark_node;
2719 }
2720 }
2721 }
2722
2723 decl = finish_id_expression (id_expression, decl, parser->scope,
2724 idk, qualifying_class,
2725 parser->integral_constant_expression_p,
2726 parser->allow_non_integral_constant_expression_p,
2727 &parser->non_integral_constant_expression_p,
2728 &error_msg);
2729 if (error_msg)
2730 cp_parser_error (parser, error_msg);
2731 return decl;
2732 }
2733
2734 /* Anything else is an error. */
2735 default:
2736 cp_parser_error (parser, "expected primary-expression");
2737 return error_mark_node;
2738 }
2739 }
2740
2741 /* Parse an id-expression.
2742
2743 id-expression:
2744 unqualified-id
2745 qualified-id
2746
2747 qualified-id:
2748 :: [opt] nested-name-specifier template [opt] unqualified-id
2749 :: identifier
2750 :: operator-function-id
2751 :: template-id
2752
2753 Return a representation of the unqualified portion of the
2754 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
2755 a `::' or nested-name-specifier.
2756
2757 Often, if the id-expression was a qualified-id, the caller will
2758 want to make a SCOPE_REF to represent the qualified-id. This
2759 function does not do this in order to avoid wastefully creating
2760 SCOPE_REFs when they are not required.
2761
2762 If TEMPLATE_KEYWORD_P is true, then we have just seen the
2763 `template' keyword.
2764
2765 If CHECK_DEPENDENCY_P is false, then names are looked up inside
2766 uninstantiated templates.
2767
2768 If *TEMPLATE_P is non-NULL, it is set to true iff the
2769 `template' keyword is used to explicitly indicate that the entity
2770 named is a template.
2771
2772 If DECLARATOR_P is true, the id-expression is appearing as part of
2773 a declarator, rather than as part of an expression. */
2774
2775 static tree
2776 cp_parser_id_expression (cp_parser *parser,
2777 bool template_keyword_p,
2778 bool check_dependency_p,
2779 bool *template_p,
2780 bool declarator_p)
2781 {
2782 bool global_scope_p;
2783 bool nested_name_specifier_p;
2784
2785 /* Assume the `template' keyword was not used. */
2786 if (template_p)
2787 *template_p = false;
2788
2789 /* Look for the optional `::' operator. */
2790 global_scope_p
2791 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
2792 != NULL_TREE);
2793 /* Look for the optional nested-name-specifier. */
2794 nested_name_specifier_p
2795 = (cp_parser_nested_name_specifier_opt (parser,
2796 /*typename_keyword_p=*/false,
2797 check_dependency_p,
2798 /*type_p=*/false,
2799 /*is_declarator=*/false)
2800 != NULL_TREE);
2801 /* If there is a nested-name-specifier, then we are looking at
2802 the first qualified-id production. */
2803 if (nested_name_specifier_p)
2804 {
2805 tree saved_scope;
2806 tree saved_object_scope;
2807 tree saved_qualifying_scope;
2808 tree unqualified_id;
2809 bool is_template;
2810
2811 /* See if the next token is the `template' keyword. */
2812 if (!template_p)
2813 template_p = &is_template;
2814 *template_p = cp_parser_optional_template_keyword (parser);
2815 /* Name lookup we do during the processing of the
2816 unqualified-id might obliterate SCOPE. */
2817 saved_scope = parser->scope;
2818 saved_object_scope = parser->object_scope;
2819 saved_qualifying_scope = parser->qualifying_scope;
2820 /* Process the final unqualified-id. */
2821 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
2822 check_dependency_p,
2823 declarator_p);
2824 /* Restore the SAVED_SCOPE for our caller. */
2825 parser->scope = saved_scope;
2826 parser->object_scope = saved_object_scope;
2827 parser->qualifying_scope = saved_qualifying_scope;
2828
2829 return unqualified_id;
2830 }
2831 /* Otherwise, if we are in global scope, then we are looking at one
2832 of the other qualified-id productions. */
2833 else if (global_scope_p)
2834 {
2835 cp_token *token;
2836 tree id;
2837
2838 /* Peek at the next token. */
2839 token = cp_lexer_peek_token (parser->lexer);
2840
2841 /* If it's an identifier, and the next token is not a "<", then
2842 we can avoid the template-id case. This is an optimization
2843 for this common case. */
2844 if (token->type == CPP_NAME
2845 && !cp_parser_nth_token_starts_template_argument_list_p
2846 (parser, 2))
2847 return cp_parser_identifier (parser);
2848
2849 cp_parser_parse_tentatively (parser);
2850 /* Try a template-id. */
2851 id = cp_parser_template_id (parser,
2852 /*template_keyword_p=*/false,
2853 /*check_dependency_p=*/true,
2854 declarator_p);
2855 /* If that worked, we're done. */
2856 if (cp_parser_parse_definitely (parser))
2857 return id;
2858
2859 /* Peek at the next token. (Changes in the token buffer may
2860 have invalidated the pointer obtained above.) */
2861 token = cp_lexer_peek_token (parser->lexer);
2862
2863 switch (token->type)
2864 {
2865 case CPP_NAME:
2866 return cp_parser_identifier (parser);
2867
2868 case CPP_KEYWORD:
2869 if (token->keyword == RID_OPERATOR)
2870 return cp_parser_operator_function_id (parser);
2871 /* Fall through. */
2872
2873 default:
2874 cp_parser_error (parser, "expected id-expression");
2875 return error_mark_node;
2876 }
2877 }
2878 else
2879 return cp_parser_unqualified_id (parser, template_keyword_p,
2880 /*check_dependency_p=*/true,
2881 declarator_p);
2882 }
2883
2884 /* Parse an unqualified-id.
2885
2886 unqualified-id:
2887 identifier
2888 operator-function-id
2889 conversion-function-id
2890 ~ class-name
2891 template-id
2892
2893 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
2894 keyword, in a construct like `A::template ...'.
2895
2896 Returns a representation of unqualified-id. For the `identifier'
2897 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
2898 production a BIT_NOT_EXPR is returned; the operand of the
2899 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
2900 other productions, see the documentation accompanying the
2901 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
2902 names are looked up in uninstantiated templates. If DECLARATOR_P
2903 is true, the unqualified-id is appearing as part of a declarator,
2904 rather than as part of an expression. */
2905
2906 static tree
2907 cp_parser_unqualified_id (cp_parser* parser,
2908 bool template_keyword_p,
2909 bool check_dependency_p,
2910 bool declarator_p)
2911 {
2912 cp_token *token;
2913
2914 /* Peek at the next token. */
2915 token = cp_lexer_peek_token (parser->lexer);
2916
2917 switch (token->type)
2918 {
2919 case CPP_NAME:
2920 {
2921 tree id;
2922
2923 /* We don't know yet whether or not this will be a
2924 template-id. */
2925 cp_parser_parse_tentatively (parser);
2926 /* Try a template-id. */
2927 id = cp_parser_template_id (parser, template_keyword_p,
2928 check_dependency_p,
2929 declarator_p);
2930 /* If it worked, we're done. */
2931 if (cp_parser_parse_definitely (parser))
2932 return id;
2933 /* Otherwise, it's an ordinary identifier. */
2934 return cp_parser_identifier (parser);
2935 }
2936
2937 case CPP_TEMPLATE_ID:
2938 return cp_parser_template_id (parser, template_keyword_p,
2939 check_dependency_p,
2940 declarator_p);
2941
2942 case CPP_COMPL:
2943 {
2944 tree type_decl;
2945 tree qualifying_scope;
2946 tree object_scope;
2947 tree scope;
2948
2949 /* Consume the `~' token. */
2950 cp_lexer_consume_token (parser->lexer);
2951 /* Parse the class-name. The standard, as written, seems to
2952 say that:
2953
2954 template <typename T> struct S { ~S (); };
2955 template <typename T> S<T>::~S() {}
2956
2957 is invalid, since `~' must be followed by a class-name, but
2958 `S<T>' is dependent, and so not known to be a class.
2959 That's not right; we need to look in uninstantiated
2960 templates. A further complication arises from:
2961
2962 template <typename T> void f(T t) {
2963 t.T::~T();
2964 }
2965
2966 Here, it is not possible to look up `T' in the scope of `T'
2967 itself. We must look in both the current scope, and the
2968 scope of the containing complete expression.
2969
2970 Yet another issue is:
2971
2972 struct S {
2973 int S;
2974 ~S();
2975 };
2976
2977 S::~S() {}
2978
2979 The standard does not seem to say that the `S' in `~S'
2980 should refer to the type `S' and not the data member
2981 `S::S'. */
2982
2983 /* DR 244 says that we look up the name after the "~" in the
2984 same scope as we looked up the qualifying name. That idea
2985 isn't fully worked out; it's more complicated than that. */
2986 scope = parser->scope;
2987 object_scope = parser->object_scope;
2988 qualifying_scope = parser->qualifying_scope;
2989
2990 /* If the name is of the form "X::~X" it's OK. */
2991 if (scope && TYPE_P (scope)
2992 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2993 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
2994 == CPP_OPEN_PAREN)
2995 && (cp_lexer_peek_token (parser->lexer)->value
2996 == TYPE_IDENTIFIER (scope)))
2997 {
2998 cp_lexer_consume_token (parser->lexer);
2999 return build_nt (BIT_NOT_EXPR, scope);
3000 }
3001
3002 /* If there was an explicit qualification (S::~T), first look
3003 in the scope given by the qualification (i.e., S). */
3004 if (scope)
3005 {
3006 cp_parser_parse_tentatively (parser);
3007 type_decl = cp_parser_class_name (parser,
3008 /*typename_keyword_p=*/false,
3009 /*template_keyword_p=*/false,
3010 /*type_p=*/false,
3011 /*check_dependency=*/false,
3012 /*class_head_p=*/false,
3013 declarator_p);
3014 if (cp_parser_parse_definitely (parser))
3015 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3016 }
3017 /* In "N::S::~S", look in "N" as well. */
3018 if (scope && qualifying_scope)
3019 {
3020 cp_parser_parse_tentatively (parser);
3021 parser->scope = qualifying_scope;
3022 parser->object_scope = NULL_TREE;
3023 parser->qualifying_scope = NULL_TREE;
3024 type_decl
3025 = cp_parser_class_name (parser,
3026 /*typename_keyword_p=*/false,
3027 /*template_keyword_p=*/false,
3028 /*type_p=*/false,
3029 /*check_dependency=*/false,
3030 /*class_head_p=*/false,
3031 declarator_p);
3032 if (cp_parser_parse_definitely (parser))
3033 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3034 }
3035 /* In "p->S::~T", look in the scope given by "*p" as well. */
3036 else if (object_scope)
3037 {
3038 cp_parser_parse_tentatively (parser);
3039 parser->scope = object_scope;
3040 parser->object_scope = NULL_TREE;
3041 parser->qualifying_scope = NULL_TREE;
3042 type_decl
3043 = cp_parser_class_name (parser,
3044 /*typename_keyword_p=*/false,
3045 /*template_keyword_p=*/false,
3046 /*type_p=*/false,
3047 /*check_dependency=*/false,
3048 /*class_head_p=*/false,
3049 declarator_p);
3050 if (cp_parser_parse_definitely (parser))
3051 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3052 }
3053 /* Look in the surrounding context. */
3054 parser->scope = NULL_TREE;
3055 parser->object_scope = NULL_TREE;
3056 parser->qualifying_scope = NULL_TREE;
3057 type_decl
3058 = cp_parser_class_name (parser,
3059 /*typename_keyword_p=*/false,
3060 /*template_keyword_p=*/false,
3061 /*type_p=*/false,
3062 /*check_dependency=*/false,
3063 /*class_head_p=*/false,
3064 declarator_p);
3065 /* If an error occurred, assume that the name of the
3066 destructor is the same as the name of the qualifying
3067 class. That allows us to keep parsing after running
3068 into ill-formed destructor names. */
3069 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3070 return build_nt (BIT_NOT_EXPR, scope);
3071 else if (type_decl == error_mark_node)
3072 return error_mark_node;
3073
3074 /* [class.dtor]
3075
3076 A typedef-name that names a class shall not be used as the
3077 identifier in the declarator for a destructor declaration. */
3078 if (declarator_p
3079 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3080 && !DECL_SELF_REFERENCE_P (type_decl))
3081 error ("typedef-name `%D' used as destructor declarator",
3082 type_decl);
3083
3084 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3085 }
3086
3087 case CPP_KEYWORD:
3088 if (token->keyword == RID_OPERATOR)
3089 {
3090 tree id;
3091
3092 /* This could be a template-id, so we try that first. */
3093 cp_parser_parse_tentatively (parser);
3094 /* Try a template-id. */
3095 id = cp_parser_template_id (parser, template_keyword_p,
3096 /*check_dependency_p=*/true,
3097 declarator_p);
3098 /* If that worked, we're done. */
3099 if (cp_parser_parse_definitely (parser))
3100 return id;
3101 /* We still don't know whether we're looking at an
3102 operator-function-id or a conversion-function-id. */
3103 cp_parser_parse_tentatively (parser);
3104 /* Try an operator-function-id. */
3105 id = cp_parser_operator_function_id (parser);
3106 /* If that didn't work, try a conversion-function-id. */
3107 if (!cp_parser_parse_definitely (parser))
3108 id = cp_parser_conversion_function_id (parser);
3109
3110 return id;
3111 }
3112 /* Fall through. */
3113
3114 default:
3115 cp_parser_error (parser, "expected unqualified-id");
3116 return error_mark_node;
3117 }
3118 }
3119
3120 /* Parse an (optional) nested-name-specifier.
3121
3122 nested-name-specifier:
3123 class-or-namespace-name :: nested-name-specifier [opt]
3124 class-or-namespace-name :: template nested-name-specifier [opt]
3125
3126 PARSER->SCOPE should be set appropriately before this function is
3127 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3128 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3129 in name lookups.
3130
3131 Sets PARSER->SCOPE to the class (TYPE) or namespace
3132 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3133 it unchanged if there is no nested-name-specifier. Returns the new
3134 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3135
3136 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3137 part of a declaration and/or decl-specifier. */
3138
3139 static tree
3140 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3141 bool typename_keyword_p,
3142 bool check_dependency_p,
3143 bool type_p,
3144 bool is_declaration)
3145 {
3146 bool success = false;
3147 tree access_check = NULL_TREE;
3148 ptrdiff_t start;
3149 cp_token* token;
3150
3151 /* If the next token corresponds to a nested name specifier, there
3152 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3153 false, it may have been true before, in which case something
3154 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3155 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3156 CHECK_DEPENDENCY_P is false, we have to fall through into the
3157 main loop. */
3158 if (check_dependency_p
3159 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3160 {
3161 cp_parser_pre_parsed_nested_name_specifier (parser);
3162 return parser->scope;
3163 }
3164
3165 /* Remember where the nested-name-specifier starts. */
3166 if (cp_parser_parsing_tentatively (parser)
3167 && !cp_parser_committed_to_tentative_parse (parser))
3168 {
3169 token = cp_lexer_peek_token (parser->lexer);
3170 start = cp_lexer_token_difference (parser->lexer,
3171 parser->lexer->first_token,
3172 token);
3173 }
3174 else
3175 start = -1;
3176
3177 push_deferring_access_checks (dk_deferred);
3178
3179 while (true)
3180 {
3181 tree new_scope;
3182 tree old_scope;
3183 tree saved_qualifying_scope;
3184 bool template_keyword_p;
3185
3186 /* Spot cases that cannot be the beginning of a
3187 nested-name-specifier. */
3188 token = cp_lexer_peek_token (parser->lexer);
3189
3190 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3191 the already parsed nested-name-specifier. */
3192 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3193 {
3194 /* Grab the nested-name-specifier and continue the loop. */
3195 cp_parser_pre_parsed_nested_name_specifier (parser);
3196 success = true;
3197 continue;
3198 }
3199
3200 /* Spot cases that cannot be the beginning of a
3201 nested-name-specifier. On the second and subsequent times
3202 through the loop, we look for the `template' keyword. */
3203 if (success && token->keyword == RID_TEMPLATE)
3204 ;
3205 /* A template-id can start a nested-name-specifier. */
3206 else if (token->type == CPP_TEMPLATE_ID)
3207 ;
3208 else
3209 {
3210 /* If the next token is not an identifier, then it is
3211 definitely not a class-or-namespace-name. */
3212 if (token->type != CPP_NAME)
3213 break;
3214 /* If the following token is neither a `<' (to begin a
3215 template-id), nor a `::', then we are not looking at a
3216 nested-name-specifier. */
3217 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3218 if (token->type != CPP_SCOPE
3219 && !cp_parser_nth_token_starts_template_argument_list_p
3220 (parser, 2))
3221 break;
3222 }
3223
3224 /* The nested-name-specifier is optional, so we parse
3225 tentatively. */
3226 cp_parser_parse_tentatively (parser);
3227
3228 /* Look for the optional `template' keyword, if this isn't the
3229 first time through the loop. */
3230 if (success)
3231 template_keyword_p = cp_parser_optional_template_keyword (parser);
3232 else
3233 template_keyword_p = false;
3234
3235 /* Save the old scope since the name lookup we are about to do
3236 might destroy it. */
3237 old_scope = parser->scope;
3238 saved_qualifying_scope = parser->qualifying_scope;
3239 /* Parse the qualifying entity. */
3240 new_scope
3241 = cp_parser_class_or_namespace_name (parser,
3242 typename_keyword_p,
3243 template_keyword_p,
3244 check_dependency_p,
3245 type_p,
3246 is_declaration);
3247 /* Look for the `::' token. */
3248 cp_parser_require (parser, CPP_SCOPE, "`::'");
3249
3250 /* If we found what we wanted, we keep going; otherwise, we're
3251 done. */
3252 if (!cp_parser_parse_definitely (parser))
3253 {
3254 bool error_p = false;
3255
3256 /* Restore the OLD_SCOPE since it was valid before the
3257 failed attempt at finding the last
3258 class-or-namespace-name. */
3259 parser->scope = old_scope;
3260 parser->qualifying_scope = saved_qualifying_scope;
3261 /* If the next token is an identifier, and the one after
3262 that is a `::', then any valid interpretation would have
3263 found a class-or-namespace-name. */
3264 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3265 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3266 == CPP_SCOPE)
3267 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3268 != CPP_COMPL))
3269 {
3270 token = cp_lexer_consume_token (parser->lexer);
3271 if (!error_p)
3272 {
3273 tree decl;
3274
3275 decl = cp_parser_lookup_name_simple (parser, token->value);
3276 if (TREE_CODE (decl) == TEMPLATE_DECL)
3277 error ("`%D' used without template parameters",
3278 decl);
3279 else
3280 cp_parser_name_lookup_error
3281 (parser, token->value, decl,
3282 "is not a class or namespace");
3283 parser->scope = NULL_TREE;
3284 error_p = true;
3285 /* Treat this as a successful nested-name-specifier
3286 due to:
3287
3288 [basic.lookup.qual]
3289
3290 If the name found is not a class-name (clause
3291 _class_) or namespace-name (_namespace.def_), the
3292 program is ill-formed. */
3293 success = true;
3294 }
3295 cp_lexer_consume_token (parser->lexer);
3296 }
3297 break;
3298 }
3299
3300 /* We've found one valid nested-name-specifier. */
3301 success = true;
3302 /* Make sure we look in the right scope the next time through
3303 the loop. */
3304 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3305 ? TREE_TYPE (new_scope)
3306 : new_scope);
3307 /* If it is a class scope, try to complete it; we are about to
3308 be looking up names inside the class. */
3309 if (TYPE_P (parser->scope)
3310 /* Since checking types for dependency can be expensive,
3311 avoid doing it if the type is already complete. */
3312 && !COMPLETE_TYPE_P (parser->scope)
3313 /* Do not try to complete dependent types. */
3314 && !dependent_type_p (parser->scope))
3315 complete_type (parser->scope);
3316 }
3317
3318 /* Retrieve any deferred checks. Do not pop this access checks yet
3319 so the memory will not be reclaimed during token replacing below. */
3320 access_check = get_deferred_access_checks ();
3321
3322 /* If parsing tentatively, replace the sequence of tokens that makes
3323 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3324 token. That way, should we re-parse the token stream, we will
3325 not have to repeat the effort required to do the parse, nor will
3326 we issue duplicate error messages. */
3327 if (success && start >= 0)
3328 {
3329 /* Find the token that corresponds to the start of the
3330 template-id. */
3331 token = cp_lexer_advance_token (parser->lexer,
3332 parser->lexer->first_token,
3333 start);
3334
3335 /* Reset the contents of the START token. */
3336 token->type = CPP_NESTED_NAME_SPECIFIER;
3337 token->value = build_tree_list (access_check, parser->scope);
3338 TREE_TYPE (token->value) = parser->qualifying_scope;
3339 token->keyword = RID_MAX;
3340 /* Purge all subsequent tokens. */
3341 cp_lexer_purge_tokens_after (parser->lexer, token);
3342 }
3343
3344 pop_deferring_access_checks ();
3345 return success ? parser->scope : NULL_TREE;
3346 }
3347
3348 /* Parse a nested-name-specifier. See
3349 cp_parser_nested_name_specifier_opt for details. This function
3350 behaves identically, except that it will an issue an error if no
3351 nested-name-specifier is present, and it will return
3352 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3353 is present. */
3354
3355 static tree
3356 cp_parser_nested_name_specifier (cp_parser *parser,
3357 bool typename_keyword_p,
3358 bool check_dependency_p,
3359 bool type_p,
3360 bool is_declaration)
3361 {
3362 tree scope;
3363
3364 /* Look for the nested-name-specifier. */
3365 scope = cp_parser_nested_name_specifier_opt (parser,
3366 typename_keyword_p,
3367 check_dependency_p,
3368 type_p,
3369 is_declaration);
3370 /* If it was not present, issue an error message. */
3371 if (!scope)
3372 {
3373 cp_parser_error (parser, "expected nested-name-specifier");
3374 parser->scope = NULL_TREE;
3375 return error_mark_node;
3376 }
3377
3378 return scope;
3379 }
3380
3381 /* Parse a class-or-namespace-name.
3382
3383 class-or-namespace-name:
3384 class-name
3385 namespace-name
3386
3387 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3388 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3389 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3390 TYPE_P is TRUE iff the next name should be taken as a class-name,
3391 even the same name is declared to be another entity in the same
3392 scope.
3393
3394 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3395 specified by the class-or-namespace-name. If neither is found the
3396 ERROR_MARK_NODE is returned. */
3397
3398 static tree
3399 cp_parser_class_or_namespace_name (cp_parser *parser,
3400 bool typename_keyword_p,
3401 bool template_keyword_p,
3402 bool check_dependency_p,
3403 bool type_p,
3404 bool is_declaration)
3405 {
3406 tree saved_scope;
3407 tree saved_qualifying_scope;
3408 tree saved_object_scope;
3409 tree scope;
3410 bool only_class_p;
3411
3412 /* Before we try to parse the class-name, we must save away the
3413 current PARSER->SCOPE since cp_parser_class_name will destroy
3414 it. */
3415 saved_scope = parser->scope;
3416 saved_qualifying_scope = parser->qualifying_scope;
3417 saved_object_scope = parser->object_scope;
3418 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3419 there is no need to look for a namespace-name. */
3420 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3421 if (!only_class_p)
3422 cp_parser_parse_tentatively (parser);
3423 scope = cp_parser_class_name (parser,
3424 typename_keyword_p,
3425 template_keyword_p,
3426 type_p,
3427 check_dependency_p,
3428 /*class_head_p=*/false,
3429 is_declaration);
3430 /* If that didn't work, try for a namespace-name. */
3431 if (!only_class_p && !cp_parser_parse_definitely (parser))
3432 {
3433 /* Restore the saved scope. */
3434 parser->scope = saved_scope;
3435 parser->qualifying_scope = saved_qualifying_scope;
3436 parser->object_scope = saved_object_scope;
3437 /* If we are not looking at an identifier followed by the scope
3438 resolution operator, then this is not part of a
3439 nested-name-specifier. (Note that this function is only used
3440 to parse the components of a nested-name-specifier.) */
3441 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3442 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3443 return error_mark_node;
3444 scope = cp_parser_namespace_name (parser);
3445 }
3446
3447 return scope;
3448 }
3449
3450 /* Parse a postfix-expression.
3451
3452 postfix-expression:
3453 primary-expression
3454 postfix-expression [ expression ]
3455 postfix-expression ( expression-list [opt] )
3456 simple-type-specifier ( expression-list [opt] )
3457 typename :: [opt] nested-name-specifier identifier
3458 ( expression-list [opt] )
3459 typename :: [opt] nested-name-specifier template [opt] template-id
3460 ( expression-list [opt] )
3461 postfix-expression . template [opt] id-expression
3462 postfix-expression -> template [opt] id-expression
3463 postfix-expression . pseudo-destructor-name
3464 postfix-expression -> pseudo-destructor-name
3465 postfix-expression ++
3466 postfix-expression --
3467 dynamic_cast < type-id > ( expression )
3468 static_cast < type-id > ( expression )
3469 reinterpret_cast < type-id > ( expression )
3470 const_cast < type-id > ( expression )
3471 typeid ( expression )
3472 typeid ( type-id )
3473
3474 GNU Extension:
3475
3476 postfix-expression:
3477 ( type-id ) { initializer-list , [opt] }
3478
3479 This extension is a GNU version of the C99 compound-literal
3480 construct. (The C99 grammar uses `type-name' instead of `type-id',
3481 but they are essentially the same concept.)
3482
3483 If ADDRESS_P is true, the postfix expression is the operand of the
3484 `&' operator.
3485
3486 Returns a representation of the expression. */
3487
3488 static tree
3489 cp_parser_postfix_expression (cp_parser *parser, bool address_p)
3490 {
3491 cp_token *token;
3492 enum rid keyword;
3493 cp_id_kind idk = CP_ID_KIND_NONE;
3494 tree postfix_expression = NULL_TREE;
3495 /* Non-NULL only if the current postfix-expression can be used to
3496 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3497 class used to qualify the member. */
3498 tree qualifying_class = NULL_TREE;
3499
3500 /* Peek at the next token. */
3501 token = cp_lexer_peek_token (parser->lexer);
3502 /* Some of the productions are determined by keywords. */
3503 keyword = token->keyword;
3504 switch (keyword)
3505 {
3506 case RID_DYNCAST:
3507 case RID_STATCAST:
3508 case RID_REINTCAST:
3509 case RID_CONSTCAST:
3510 {
3511 tree type;
3512 tree expression;
3513 const char *saved_message;
3514
3515 /* All of these can be handled in the same way from the point
3516 of view of parsing. Begin by consuming the token
3517 identifying the cast. */
3518 cp_lexer_consume_token (parser->lexer);
3519
3520 /* New types cannot be defined in the cast. */
3521 saved_message = parser->type_definition_forbidden_message;
3522 parser->type_definition_forbidden_message
3523 = "types may not be defined in casts";
3524
3525 /* Look for the opening `<'. */
3526 cp_parser_require (parser, CPP_LESS, "`<'");
3527 /* Parse the type to which we are casting. */
3528 type = cp_parser_type_id (parser);
3529 /* Look for the closing `>'. */
3530 cp_parser_require (parser, CPP_GREATER, "`>'");
3531 /* Restore the old message. */
3532 parser->type_definition_forbidden_message = saved_message;
3533
3534 /* And the expression which is being cast. */
3535 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3536 expression = cp_parser_expression (parser);
3537 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3538
3539 /* Only type conversions to integral or enumeration types
3540 can be used in constant-expressions. */
3541 if (parser->integral_constant_expression_p
3542 && !dependent_type_p (type)
3543 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3544 && (cp_parser_non_integral_constant_expression
3545 (parser,
3546 "a cast to a type other than an integral or "
3547 "enumeration type")))
3548 return error_mark_node;
3549
3550 switch (keyword)
3551 {
3552 case RID_DYNCAST:
3553 postfix_expression
3554 = build_dynamic_cast (type, expression);
3555 break;
3556 case RID_STATCAST:
3557 postfix_expression
3558 = build_static_cast (type, expression);
3559 break;
3560 case RID_REINTCAST:
3561 postfix_expression
3562 = build_reinterpret_cast (type, expression);
3563 break;
3564 case RID_CONSTCAST:
3565 postfix_expression
3566 = build_const_cast (type, expression);
3567 break;
3568 default:
3569 abort ();
3570 }
3571 }
3572 break;
3573
3574 case RID_TYPEID:
3575 {
3576 tree type;
3577 const char *saved_message;
3578 bool saved_in_type_id_in_expr_p;
3579
3580 /* Consume the `typeid' token. */
3581 cp_lexer_consume_token (parser->lexer);
3582 /* Look for the `(' token. */
3583 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3584 /* Types cannot be defined in a `typeid' expression. */
3585 saved_message = parser->type_definition_forbidden_message;
3586 parser->type_definition_forbidden_message
3587 = "types may not be defined in a `typeid\' expression";
3588 /* We can't be sure yet whether we're looking at a type-id or an
3589 expression. */
3590 cp_parser_parse_tentatively (parser);
3591 /* Try a type-id first. */
3592 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3593 parser->in_type_id_in_expr_p = true;
3594 type = cp_parser_type_id (parser);
3595 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3596 /* Look for the `)' token. Otherwise, we can't be sure that
3597 we're not looking at an expression: consider `typeid (int
3598 (3))', for example. */
3599 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3600 /* If all went well, simply lookup the type-id. */
3601 if (cp_parser_parse_definitely (parser))
3602 postfix_expression = get_typeid (type);
3603 /* Otherwise, fall back to the expression variant. */
3604 else
3605 {
3606 tree expression;
3607
3608 /* Look for an expression. */
3609 expression = cp_parser_expression (parser);
3610 /* Compute its typeid. */
3611 postfix_expression = build_typeid (expression);
3612 /* Look for the `)' token. */
3613 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3614 }
3615 /* `typeid' may not appear in an integral constant expression. */
3616 if (cp_parser_non_integral_constant_expression(parser,
3617 "`typeid' operator"))
3618 return error_mark_node;
3619 /* Restore the saved message. */
3620 parser->type_definition_forbidden_message = saved_message;
3621 }
3622 break;
3623
3624 case RID_TYPENAME:
3625 {
3626 bool template_p = false;
3627 tree id;
3628 tree type;
3629
3630 /* Consume the `typename' token. */
3631 cp_lexer_consume_token (parser->lexer);
3632 /* Look for the optional `::' operator. */
3633 cp_parser_global_scope_opt (parser,
3634 /*current_scope_valid_p=*/false);
3635 /* Look for the nested-name-specifier. */
3636 cp_parser_nested_name_specifier (parser,
3637 /*typename_keyword_p=*/true,
3638 /*check_dependency_p=*/true,
3639 /*type_p=*/true,
3640 /*is_declaration=*/true);
3641 /* Look for the optional `template' keyword. */
3642 template_p = cp_parser_optional_template_keyword (parser);
3643 /* We don't know whether we're looking at a template-id or an
3644 identifier. */
3645 cp_parser_parse_tentatively (parser);
3646 /* Try a template-id. */
3647 id = cp_parser_template_id (parser, template_p,
3648 /*check_dependency_p=*/true,
3649 /*is_declaration=*/true);
3650 /* If that didn't work, try an identifier. */
3651 if (!cp_parser_parse_definitely (parser))
3652 id = cp_parser_identifier (parser);
3653 /* If we look up a template-id in a non-dependent qualifying
3654 scope, there's no need to create a dependent type. */
3655 if (TREE_CODE (id) == TYPE_DECL
3656 && !dependent_type_p (parser->scope))
3657 type = TREE_TYPE (id);
3658 /* Create a TYPENAME_TYPE to represent the type to which the
3659 functional cast is being performed. */
3660 else
3661 type = make_typename_type (parser->scope, id,
3662 /*complain=*/1);
3663
3664 postfix_expression = cp_parser_functional_cast (parser, type);
3665 }
3666 break;
3667
3668 default:
3669 {
3670 tree type;
3671
3672 /* If the next thing is a simple-type-specifier, we may be
3673 looking at a functional cast. We could also be looking at
3674 an id-expression. So, we try the functional cast, and if
3675 that doesn't work we fall back to the primary-expression. */
3676 cp_parser_parse_tentatively (parser);
3677 /* Look for the simple-type-specifier. */
3678 type = cp_parser_simple_type_specifier (parser,
3679 CP_PARSER_FLAGS_NONE,
3680 /*identifier_p=*/false);
3681 /* Parse the cast itself. */
3682 if (!cp_parser_error_occurred (parser))
3683 postfix_expression
3684 = cp_parser_functional_cast (parser, type);
3685 /* If that worked, we're done. */
3686 if (cp_parser_parse_definitely (parser))
3687 break;
3688
3689 /* If the functional-cast didn't work out, try a
3690 compound-literal. */
3691 if (cp_parser_allow_gnu_extensions_p (parser)
3692 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
3693 {
3694 tree initializer_list = NULL_TREE;
3695 bool saved_in_type_id_in_expr_p;
3696
3697 cp_parser_parse_tentatively (parser);
3698 /* Consume the `('. */
3699 cp_lexer_consume_token (parser->lexer);
3700 /* Parse the type. */
3701 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3702 parser->in_type_id_in_expr_p = true;
3703 type = cp_parser_type_id (parser);
3704 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3705 /* Look for the `)'. */
3706 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3707 /* Look for the `{'. */
3708 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
3709 /* If things aren't going well, there's no need to
3710 keep going. */
3711 if (!cp_parser_error_occurred (parser))
3712 {
3713 bool non_constant_p;
3714 /* Parse the initializer-list. */
3715 initializer_list
3716 = cp_parser_initializer_list (parser, &non_constant_p);
3717 /* Allow a trailing `,'. */
3718 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
3719 cp_lexer_consume_token (parser->lexer);
3720 /* Look for the final `}'. */
3721 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
3722 }
3723 /* If that worked, we're definitely looking at a
3724 compound-literal expression. */
3725 if (cp_parser_parse_definitely (parser))
3726 {
3727 /* Warn the user that a compound literal is not
3728 allowed in standard C++. */
3729 if (pedantic)
3730 pedwarn ("ISO C++ forbids compound-literals");
3731 /* Form the representation of the compound-literal. */
3732 postfix_expression
3733 = finish_compound_literal (type, initializer_list);
3734 break;
3735 }
3736 }
3737
3738 /* It must be a primary-expression. */
3739 postfix_expression = cp_parser_primary_expression (parser,
3740 &idk,
3741 &qualifying_class);
3742 }
3743 break;
3744 }
3745
3746 /* If we were avoiding committing to the processing of a
3747 qualified-id until we knew whether or not we had a
3748 pointer-to-member, we now know. */
3749 if (qualifying_class)
3750 {
3751 bool done;
3752
3753 /* Peek at the next token. */
3754 token = cp_lexer_peek_token (parser->lexer);
3755 done = (token->type != CPP_OPEN_SQUARE
3756 && token->type != CPP_OPEN_PAREN
3757 && token->type != CPP_DOT
3758 && token->type != CPP_DEREF
3759 && token->type != CPP_PLUS_PLUS
3760 && token->type != CPP_MINUS_MINUS);
3761
3762 postfix_expression = finish_qualified_id_expr (qualifying_class,
3763 postfix_expression,
3764 done,
3765 address_p);
3766 if (done)
3767 return postfix_expression;
3768 }
3769
3770 /* Keep looping until the postfix-expression is complete. */
3771 while (true)
3772 {
3773 if (idk == CP_ID_KIND_UNQUALIFIED
3774 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
3775 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
3776 /* It is not a Koenig lookup function call. */
3777 postfix_expression
3778 = unqualified_name_lookup_error (postfix_expression);
3779
3780 /* Peek at the next token. */
3781 token = cp_lexer_peek_token (parser->lexer);
3782
3783 switch (token->type)
3784 {
3785 case CPP_OPEN_SQUARE:
3786 postfix_expression
3787 = cp_parser_postfix_open_square_expression (parser,
3788 postfix_expression,
3789 false);
3790 idk = CP_ID_KIND_NONE;
3791 break;
3792
3793 case CPP_OPEN_PAREN:
3794 /* postfix-expression ( expression-list [opt] ) */
3795 {
3796 bool koenig_p;
3797 tree args = (cp_parser_parenthesized_expression_list
3798 (parser, false, /*non_constant_p=*/NULL));
3799
3800 if (args == error_mark_node)
3801 {
3802 postfix_expression = error_mark_node;
3803 break;
3804 }
3805
3806 /* Function calls are not permitted in
3807 constant-expressions. */
3808 if (cp_parser_non_integral_constant_expression (parser,
3809 "a function call"))
3810 {
3811 postfix_expression = error_mark_node;
3812 break;
3813 }
3814
3815 koenig_p = false;
3816 if (idk == CP_ID_KIND_UNQUALIFIED)
3817 {
3818 /* We do not perform argument-dependent lookup if
3819 normal lookup finds a non-function, in accordance
3820 with the expected resolution of DR 218. */
3821 if (args
3822 && (is_overloaded_fn (postfix_expression)
3823 || TREE_CODE (postfix_expression) == IDENTIFIER_NODE))
3824 {
3825 koenig_p = true;
3826 postfix_expression
3827 = perform_koenig_lookup (postfix_expression, args);
3828 }
3829 else if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
3830 postfix_expression
3831 = unqualified_fn_lookup_error (postfix_expression);
3832 }
3833
3834 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
3835 {
3836 tree instance = TREE_OPERAND (postfix_expression, 0);
3837 tree fn = TREE_OPERAND (postfix_expression, 1);
3838
3839 if (processing_template_decl
3840 && (type_dependent_expression_p (instance)
3841 || (!BASELINK_P (fn)
3842 && TREE_CODE (fn) != FIELD_DECL)
3843 || type_dependent_expression_p (fn)
3844 || any_type_dependent_arguments_p (args)))
3845 {
3846 postfix_expression
3847 = build_min_nt (CALL_EXPR, postfix_expression,
3848 args, NULL_TREE);
3849 break;
3850 }
3851
3852 if (BASELINK_P (fn))
3853 postfix_expression
3854 = (build_new_method_call
3855 (instance, fn, args, NULL_TREE,
3856 (idk == CP_ID_KIND_QUALIFIED
3857 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
3858 else
3859 postfix_expression
3860 = finish_call_expr (postfix_expression, args,
3861 /*disallow_virtual=*/false,
3862 /*koenig_p=*/false);
3863 }
3864 else if (TREE_CODE (postfix_expression) == OFFSET_REF
3865 || TREE_CODE (postfix_expression) == MEMBER_REF
3866 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
3867 postfix_expression = (build_offset_ref_call_from_tree
3868 (postfix_expression, args));
3869 else if (idk == CP_ID_KIND_QUALIFIED)
3870 /* A call to a static class member, or a namespace-scope
3871 function. */
3872 postfix_expression
3873 = finish_call_expr (postfix_expression, args,
3874 /*disallow_virtual=*/true,
3875 koenig_p);
3876 else
3877 /* All other function calls. */
3878 postfix_expression
3879 = finish_call_expr (postfix_expression, args,
3880 /*disallow_virtual=*/false,
3881 koenig_p);
3882
3883 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
3884 idk = CP_ID_KIND_NONE;
3885 }
3886 break;
3887
3888 case CPP_DOT:
3889 case CPP_DEREF:
3890 /* postfix-expression . template [opt] id-expression
3891 postfix-expression . pseudo-destructor-name
3892 postfix-expression -> template [opt] id-expression
3893 postfix-expression -> pseudo-destructor-name */
3894
3895 /* Consume the `.' or `->' operator. */
3896 cp_lexer_consume_token (parser->lexer);
3897
3898 postfix_expression
3899 = cp_parser_postfix_dot_deref_expression (parser, token->type,
3900 postfix_expression,
3901 false, &idk);
3902 break;
3903
3904 case CPP_PLUS_PLUS:
3905 /* postfix-expression ++ */
3906 /* Consume the `++' token. */
3907 cp_lexer_consume_token (parser->lexer);
3908 /* Generate a representation for the complete expression. */
3909 postfix_expression
3910 = finish_increment_expr (postfix_expression,
3911 POSTINCREMENT_EXPR);
3912 /* Increments may not appear in constant-expressions. */
3913 if (cp_parser_non_integral_constant_expression (parser,
3914 "an increment"))
3915 postfix_expression = error_mark_node;
3916 idk = CP_ID_KIND_NONE;
3917 break;
3918
3919 case CPP_MINUS_MINUS:
3920 /* postfix-expression -- */
3921 /* Consume the `--' token. */
3922 cp_lexer_consume_token (parser->lexer);
3923 /* Generate a representation for the complete expression. */
3924 postfix_expression
3925 = finish_increment_expr (postfix_expression,
3926 POSTDECREMENT_EXPR);
3927 /* Decrements may not appear in constant-expressions. */
3928 if (cp_parser_non_integral_constant_expression (parser,
3929 "a decrement"))
3930 postfix_expression = error_mark_node;
3931 idk = CP_ID_KIND_NONE;
3932 break;
3933
3934 default:
3935 return postfix_expression;
3936 }
3937 }
3938
3939 /* We should never get here. */
3940 abort ();
3941 return error_mark_node;
3942 }
3943
3944 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
3945 by cp_parser_builtin_offsetof. We're looking for
3946
3947 postfix-expression [ expression ]
3948
3949 FOR_OFFSETOF is set if we're being called in that context, which
3950 changes how we deal with integer constant expressions. */
3951
3952 static tree
3953 cp_parser_postfix_open_square_expression (cp_parser *parser,
3954 tree postfix_expression,
3955 bool for_offsetof)
3956 {
3957 tree index;
3958
3959 /* Consume the `[' token. */
3960 cp_lexer_consume_token (parser->lexer);
3961
3962 /* Parse the index expression. */
3963 /* ??? For offsetof, there is a question of what to allow here. If
3964 offsetof is not being used in an integral constant expression context,
3965 then we *could* get the right answer by computing the value at runtime.
3966 If we are in an integral constant expression context, then we might
3967 could accept any constant expression; hard to say without analysis.
3968 Rather than open the barn door too wide right away, allow only integer
3969 constant expresions here. */
3970 if (for_offsetof)
3971 index = cp_parser_constant_expression (parser, false, NULL);
3972 else
3973 index = cp_parser_expression (parser);
3974
3975 /* Look for the closing `]'. */
3976 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
3977
3978 /* Build the ARRAY_REF. */
3979 postfix_expression = grok_array_decl (postfix_expression, index);
3980
3981 /* When not doing offsetof, array references are not permitted in
3982 constant-expressions. */
3983 if (!for_offsetof
3984 && (cp_parser_non_integral_constant_expression
3985 (parser, "an array reference")))
3986 postfix_expression = error_mark_node;
3987
3988 return postfix_expression;
3989 }
3990
3991 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
3992 by cp_parser_builtin_offsetof. We're looking for
3993
3994 postfix-expression . template [opt] id-expression
3995 postfix-expression . pseudo-destructor-name
3996 postfix-expression -> template [opt] id-expression
3997 postfix-expression -> pseudo-destructor-name
3998
3999 FOR_OFFSETOF is set if we're being called in that context. That sorta
4000 limits what of the above we'll actually accept, but nevermind.
4001 TOKEN_TYPE is the "." or "->" token, which will already have been
4002 removed from the stream. */
4003
4004 static tree
4005 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4006 enum cpp_ttype token_type,
4007 tree postfix_expression,
4008 bool for_offsetof, cp_id_kind *idk)
4009 {
4010 tree name;
4011 bool dependent_p;
4012 bool template_p;
4013 tree scope = NULL_TREE;
4014
4015 /* If this is a `->' operator, dereference the pointer. */
4016 if (token_type == CPP_DEREF)
4017 postfix_expression = build_x_arrow (postfix_expression);
4018 /* Check to see whether or not the expression is type-dependent. */
4019 dependent_p = type_dependent_expression_p (postfix_expression);
4020 /* The identifier following the `->' or `.' is not qualified. */
4021 parser->scope = NULL_TREE;
4022 parser->qualifying_scope = NULL_TREE;
4023 parser->object_scope = NULL_TREE;
4024 *idk = CP_ID_KIND_NONE;
4025 /* Enter the scope corresponding to the type of the object
4026 given by the POSTFIX_EXPRESSION. */
4027 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4028 {
4029 scope = TREE_TYPE (postfix_expression);
4030 /* According to the standard, no expression should ever have
4031 reference type. Unfortunately, we do not currently match
4032 the standard in this respect in that our internal representation
4033 of an expression may have reference type even when the standard
4034 says it does not. Therefore, we have to manually obtain the
4035 underlying type here. */
4036 scope = non_reference (scope);
4037 /* The type of the POSTFIX_EXPRESSION must be complete. */
4038 scope = complete_type_or_else (scope, NULL_TREE);
4039 /* Let the name lookup machinery know that we are processing a
4040 class member access expression. */
4041 parser->context->object_type = scope;
4042 /* If something went wrong, we want to be able to discern that case,
4043 as opposed to the case where there was no SCOPE due to the type
4044 of expression being dependent. */
4045 if (!scope)
4046 scope = error_mark_node;
4047 /* If the SCOPE was erroneous, make the various semantic analysis
4048 functions exit quickly -- and without issuing additional error
4049 messages. */
4050 if (scope == error_mark_node)
4051 postfix_expression = error_mark_node;
4052 }
4053
4054 /* If the SCOPE is not a scalar type, we are looking at an
4055 ordinary class member access expression, rather than a
4056 pseudo-destructor-name. */
4057 if (!scope || !SCALAR_TYPE_P (scope))
4058 {
4059 template_p = cp_parser_optional_template_keyword (parser);
4060 /* Parse the id-expression. */
4061 name = cp_parser_id_expression (parser, template_p,
4062 /*check_dependency_p=*/true,
4063 /*template_p=*/NULL,
4064 /*declarator_p=*/false);
4065 /* In general, build a SCOPE_REF if the member name is qualified.
4066 However, if the name was not dependent and has already been
4067 resolved; there is no need to build the SCOPE_REF. For example;
4068
4069 struct X { void f(); };
4070 template <typename T> void f(T* t) { t->X::f(); }
4071
4072 Even though "t" is dependent, "X::f" is not and has been resolved
4073 to a BASELINK; there is no need to include scope information. */
4074
4075 /* But we do need to remember that there was an explicit scope for
4076 virtual function calls. */
4077 if (parser->scope)
4078 *idk = CP_ID_KIND_QUALIFIED;
4079
4080 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4081 {
4082 name = build_nt (SCOPE_REF, parser->scope, name);
4083 parser->scope = NULL_TREE;
4084 parser->qualifying_scope = NULL_TREE;
4085 parser->object_scope = NULL_TREE;
4086 }
4087 if (scope && name && BASELINK_P (name))
4088 adjust_result_of_qualified_name_lookup
4089 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4090 postfix_expression
4091 = finish_class_member_access_expr (postfix_expression, name);
4092 }
4093 /* Otherwise, try the pseudo-destructor-name production. */
4094 else
4095 {
4096 tree s = NULL_TREE;
4097 tree type;
4098
4099 /* Parse the pseudo-destructor-name. */
4100 cp_parser_pseudo_destructor_name (parser, &s, &type);
4101 /* Form the call. */
4102 postfix_expression
4103 = finish_pseudo_destructor_expr (postfix_expression,
4104 s, TREE_TYPE (type));
4105 }
4106
4107 /* We no longer need to look up names in the scope of the object on
4108 the left-hand side of the `.' or `->' operator. */
4109 parser->context->object_type = NULL_TREE;
4110
4111 /* Outside of offsetof, these operators may not appear in
4112 constant-expressions. */
4113 if (!for_offsetof
4114 && (cp_parser_non_integral_constant_expression
4115 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4116 postfix_expression = error_mark_node;
4117
4118 return postfix_expression;
4119 }
4120
4121 /* Parse a parenthesized expression-list.
4122
4123 expression-list:
4124 assignment-expression
4125 expression-list, assignment-expression
4126
4127 attribute-list:
4128 expression-list
4129 identifier
4130 identifier, expression-list
4131
4132 Returns a TREE_LIST. The TREE_VALUE of each node is a
4133 representation of an assignment-expression. Note that a TREE_LIST
4134 is returned even if there is only a single expression in the list.
4135 error_mark_node is returned if the ( and or ) are
4136 missing. NULL_TREE is returned on no expressions. The parentheses
4137 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4138 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4139 indicates whether or not all of the expressions in the list were
4140 constant. */
4141
4142 static tree
4143 cp_parser_parenthesized_expression_list (cp_parser* parser,
4144 bool is_attribute_list,
4145 bool *non_constant_p)
4146 {
4147 tree expression_list = NULL_TREE;
4148 tree identifier = NULL_TREE;
4149
4150 /* Assume all the expressions will be constant. */
4151 if (non_constant_p)
4152 *non_constant_p = false;
4153
4154 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4155 return error_mark_node;
4156
4157 /* Consume expressions until there are no more. */
4158 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4159 while (true)
4160 {
4161 tree expr;
4162
4163 /* At the beginning of attribute lists, check to see if the
4164 next token is an identifier. */
4165 if (is_attribute_list
4166 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4167 {
4168 cp_token *token;
4169
4170 /* Consume the identifier. */
4171 token = cp_lexer_consume_token (parser->lexer);
4172 /* Save the identifier. */
4173 identifier = token->value;
4174 }
4175 else
4176 {
4177 /* Parse the next assignment-expression. */
4178 if (non_constant_p)
4179 {
4180 bool expr_non_constant_p;
4181 expr = (cp_parser_constant_expression
4182 (parser, /*allow_non_constant_p=*/true,
4183 &expr_non_constant_p));
4184 if (expr_non_constant_p)
4185 *non_constant_p = true;
4186 }
4187 else
4188 expr = cp_parser_assignment_expression (parser);
4189
4190 /* Add it to the list. We add error_mark_node
4191 expressions to the list, so that we can still tell if
4192 the correct form for a parenthesized expression-list
4193 is found. That gives better errors. */
4194 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4195
4196 if (expr == error_mark_node)
4197 goto skip_comma;
4198 }
4199
4200 /* After the first item, attribute lists look the same as
4201 expression lists. */
4202 is_attribute_list = false;
4203
4204 get_comma:;
4205 /* If the next token isn't a `,', then we are done. */
4206 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4207 break;
4208
4209 /* Otherwise, consume the `,' and keep going. */
4210 cp_lexer_consume_token (parser->lexer);
4211 }
4212
4213 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4214 {
4215 int ending;
4216
4217 skip_comma:;
4218 /* We try and resync to an unnested comma, as that will give the
4219 user better diagnostics. */
4220 ending = cp_parser_skip_to_closing_parenthesis (parser,
4221 /*recovering=*/true,
4222 /*or_comma=*/true,
4223 /*consume_paren=*/true);
4224 if (ending < 0)
4225 goto get_comma;
4226 if (!ending)
4227 return error_mark_node;
4228 }
4229
4230 /* We built up the list in reverse order so we must reverse it now. */
4231 expression_list = nreverse (expression_list);
4232 if (identifier)
4233 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4234
4235 return expression_list;
4236 }
4237
4238 /* Parse a pseudo-destructor-name.
4239
4240 pseudo-destructor-name:
4241 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4242 :: [opt] nested-name-specifier template template-id :: ~ type-name
4243 :: [opt] nested-name-specifier [opt] ~ type-name
4244
4245 If either of the first two productions is used, sets *SCOPE to the
4246 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4247 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4248 or ERROR_MARK_NODE if the parse fails. */
4249
4250 static void
4251 cp_parser_pseudo_destructor_name (cp_parser* parser,
4252 tree* scope,
4253 tree* type)
4254 {
4255 bool nested_name_specifier_p;
4256
4257 /* Look for the optional `::' operator. */
4258 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4259 /* Look for the optional nested-name-specifier. */
4260 nested_name_specifier_p
4261 = (cp_parser_nested_name_specifier_opt (parser,
4262 /*typename_keyword_p=*/false,
4263 /*check_dependency_p=*/true,
4264 /*type_p=*/false,
4265 /*is_declaration=*/true)
4266 != NULL_TREE);
4267 /* Now, if we saw a nested-name-specifier, we might be doing the
4268 second production. */
4269 if (nested_name_specifier_p
4270 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4271 {
4272 /* Consume the `template' keyword. */
4273 cp_lexer_consume_token (parser->lexer);
4274 /* Parse the template-id. */
4275 cp_parser_template_id (parser,
4276 /*template_keyword_p=*/true,
4277 /*check_dependency_p=*/false,
4278 /*is_declaration=*/true);
4279 /* Look for the `::' token. */
4280 cp_parser_require (parser, CPP_SCOPE, "`::'");
4281 }
4282 /* If the next token is not a `~', then there might be some
4283 additional qualification. */
4284 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4285 {
4286 /* Look for the type-name. */
4287 *scope = TREE_TYPE (cp_parser_type_name (parser));
4288
4289 /* If we didn't get an aggregate type, or we don't have ::~,
4290 then something has gone wrong. Since the only caller of this
4291 function is looking for something after `.' or `->' after a
4292 scalar type, most likely the program is trying to get a
4293 member of a non-aggregate type. */
4294 if (*scope == error_mark_node
4295 || cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4296 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4297 {
4298 cp_parser_error (parser, "request for member of non-aggregate type");
4299 *type = error_mark_node;
4300 return;
4301 }
4302
4303 /* Look for the `::' token. */
4304 cp_parser_require (parser, CPP_SCOPE, "`::'");
4305 }
4306 else
4307 *scope = NULL_TREE;
4308
4309 /* Look for the `~'. */
4310 cp_parser_require (parser, CPP_COMPL, "`~'");
4311 /* Look for the type-name again. We are not responsible for
4312 checking that it matches the first type-name. */
4313 *type = cp_parser_type_name (parser);
4314 }
4315
4316 /* Parse a unary-expression.
4317
4318 unary-expression:
4319 postfix-expression
4320 ++ cast-expression
4321 -- cast-expression
4322 unary-operator cast-expression
4323 sizeof unary-expression
4324 sizeof ( type-id )
4325 new-expression
4326 delete-expression
4327
4328 GNU Extensions:
4329
4330 unary-expression:
4331 __extension__ cast-expression
4332 __alignof__ unary-expression
4333 __alignof__ ( type-id )
4334 __real__ cast-expression
4335 __imag__ cast-expression
4336 && identifier
4337
4338 ADDRESS_P is true iff the unary-expression is appearing as the
4339 operand of the `&' operator.
4340
4341 Returns a representation of the expression. */
4342
4343 static tree
4344 cp_parser_unary_expression (cp_parser *parser, bool address_p)
4345 {
4346 cp_token *token;
4347 enum tree_code unary_operator;
4348
4349 /* Peek at the next token. */
4350 token = cp_lexer_peek_token (parser->lexer);
4351 /* Some keywords give away the kind of expression. */
4352 if (token->type == CPP_KEYWORD)
4353 {
4354 enum rid keyword = token->keyword;
4355
4356 switch (keyword)
4357 {
4358 case RID_ALIGNOF:
4359 case RID_SIZEOF:
4360 {
4361 tree operand;
4362 enum tree_code op;
4363
4364 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4365 /* Consume the token. */
4366 cp_lexer_consume_token (parser->lexer);
4367 /* Parse the operand. */
4368 operand = cp_parser_sizeof_operand (parser, keyword);
4369
4370 if (TYPE_P (operand))
4371 return cxx_sizeof_or_alignof_type (operand, op, true);
4372 else
4373 return cxx_sizeof_or_alignof_expr (operand, op);
4374 }
4375
4376 case RID_NEW:
4377 return cp_parser_new_expression (parser);
4378
4379 case RID_DELETE:
4380 return cp_parser_delete_expression (parser);
4381
4382 case RID_EXTENSION:
4383 {
4384 /* The saved value of the PEDANTIC flag. */
4385 int saved_pedantic;
4386 tree expr;
4387
4388 /* Save away the PEDANTIC flag. */
4389 cp_parser_extension_opt (parser, &saved_pedantic);
4390 /* Parse the cast-expression. */
4391 expr = cp_parser_simple_cast_expression (parser);
4392 /* Restore the PEDANTIC flag. */
4393 pedantic = saved_pedantic;
4394
4395 return expr;
4396 }
4397
4398 case RID_REALPART:
4399 case RID_IMAGPART:
4400 {
4401 tree expression;
4402
4403 /* Consume the `__real__' or `__imag__' token. */
4404 cp_lexer_consume_token (parser->lexer);
4405 /* Parse the cast-expression. */
4406 expression = cp_parser_simple_cast_expression (parser);
4407 /* Create the complete representation. */
4408 return build_x_unary_op ((keyword == RID_REALPART
4409 ? REALPART_EXPR : IMAGPART_EXPR),
4410 expression);
4411 }
4412 break;
4413
4414 default:
4415 break;
4416 }
4417 }
4418
4419 /* Look for the `:: new' and `:: delete', which also signal the
4420 beginning of a new-expression, or delete-expression,
4421 respectively. If the next token is `::', then it might be one of
4422 these. */
4423 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4424 {
4425 enum rid keyword;
4426
4427 /* See if the token after the `::' is one of the keywords in
4428 which we're interested. */
4429 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4430 /* If it's `new', we have a new-expression. */
4431 if (keyword == RID_NEW)
4432 return cp_parser_new_expression (parser);
4433 /* Similarly, for `delete'. */
4434 else if (keyword == RID_DELETE)
4435 return cp_parser_delete_expression (parser);
4436 }
4437
4438 /* Look for a unary operator. */
4439 unary_operator = cp_parser_unary_operator (token);
4440 /* The `++' and `--' operators can be handled similarly, even though
4441 they are not technically unary-operators in the grammar. */
4442 if (unary_operator == ERROR_MARK)
4443 {
4444 if (token->type == CPP_PLUS_PLUS)
4445 unary_operator = PREINCREMENT_EXPR;
4446 else if (token->type == CPP_MINUS_MINUS)
4447 unary_operator = PREDECREMENT_EXPR;
4448 /* Handle the GNU address-of-label extension. */
4449 else if (cp_parser_allow_gnu_extensions_p (parser)
4450 && token->type == CPP_AND_AND)
4451 {
4452 tree identifier;
4453
4454 /* Consume the '&&' token. */
4455 cp_lexer_consume_token (parser->lexer);
4456 /* Look for the identifier. */
4457 identifier = cp_parser_identifier (parser);
4458 /* Create an expression representing the address. */
4459 return finish_label_address_expr (identifier);
4460 }
4461 }
4462 if (unary_operator != ERROR_MARK)
4463 {
4464 tree cast_expression;
4465 tree expression = error_mark_node;
4466 const char *non_constant_p = NULL;
4467
4468 /* Consume the operator token. */
4469 token = cp_lexer_consume_token (parser->lexer);
4470 /* Parse the cast-expression. */
4471 cast_expression
4472 = cp_parser_cast_expression (parser, unary_operator == ADDR_EXPR);
4473 /* Now, build an appropriate representation. */
4474 switch (unary_operator)
4475 {
4476 case INDIRECT_REF:
4477 non_constant_p = "`*'";
4478 expression = build_x_indirect_ref (cast_expression, "unary *");
4479 break;
4480
4481 case ADDR_EXPR:
4482 non_constant_p = "`&'";
4483 /* Fall through. */
4484 case BIT_NOT_EXPR:
4485 expression = build_x_unary_op (unary_operator, cast_expression);
4486 break;
4487
4488 case PREINCREMENT_EXPR:
4489 case PREDECREMENT_EXPR:
4490 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4491 ? "`++'" : "`--'");
4492 /* Fall through. */
4493 case CONVERT_EXPR:
4494 case NEGATE_EXPR:
4495 case TRUTH_NOT_EXPR:
4496 expression = finish_unary_op_expr (unary_operator, cast_expression);
4497 break;
4498
4499 default:
4500 abort ();
4501 }
4502
4503 if (non_constant_p
4504 && cp_parser_non_integral_constant_expression (parser,
4505 non_constant_p))
4506 expression = error_mark_node;
4507
4508 return expression;
4509 }
4510
4511 return cp_parser_postfix_expression (parser, address_p);
4512 }
4513
4514 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4515 unary-operator, the corresponding tree code is returned. */
4516
4517 static enum tree_code
4518 cp_parser_unary_operator (cp_token* token)
4519 {
4520 switch (token->type)
4521 {
4522 case CPP_MULT:
4523 return INDIRECT_REF;
4524
4525 case CPP_AND:
4526 return ADDR_EXPR;
4527
4528 case CPP_PLUS:
4529 return CONVERT_EXPR;
4530
4531 case CPP_MINUS:
4532 return NEGATE_EXPR;
4533
4534 case CPP_NOT:
4535 return TRUTH_NOT_EXPR;
4536
4537 case CPP_COMPL:
4538 return BIT_NOT_EXPR;
4539
4540 default:
4541 return ERROR_MARK;
4542 }
4543 }
4544
4545 /* Parse a new-expression.
4546
4547 new-expression:
4548 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4549 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4550
4551 Returns a representation of the expression. */
4552
4553 static tree
4554 cp_parser_new_expression (cp_parser* parser)
4555 {
4556 bool global_scope_p;
4557 tree placement;
4558 tree type;
4559 tree initializer;
4560
4561 /* Look for the optional `::' operator. */
4562 global_scope_p
4563 = (cp_parser_global_scope_opt (parser,
4564 /*current_scope_valid_p=*/false)
4565 != NULL_TREE);
4566 /* Look for the `new' operator. */
4567 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4568 /* There's no easy way to tell a new-placement from the
4569 `( type-id )' construct. */
4570 cp_parser_parse_tentatively (parser);
4571 /* Look for a new-placement. */
4572 placement = cp_parser_new_placement (parser);
4573 /* If that didn't work out, there's no new-placement. */
4574 if (!cp_parser_parse_definitely (parser))
4575 placement = NULL_TREE;
4576
4577 /* If the next token is a `(', then we have a parenthesized
4578 type-id. */
4579 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4580 {
4581 /* Consume the `('. */
4582 cp_lexer_consume_token (parser->lexer);
4583 /* Parse the type-id. */
4584 type = cp_parser_type_id (parser);
4585 /* Look for the closing `)'. */
4586 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4587 /* There should not be a direct-new-declarator in this production,
4588 but GCC used to allowed this, so we check and emit a sensible error
4589 message for this case. */
4590 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4591 {
4592 error ("array bound forbidden after parenthesized type-id");
4593 inform ("try removing the parentheses around the type-id");
4594 cp_parser_direct_new_declarator (parser);
4595 }
4596 }
4597 /* Otherwise, there must be a new-type-id. */
4598 else
4599 type = cp_parser_new_type_id (parser);
4600
4601 /* If the next token is a `(', then we have a new-initializer. */
4602 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4603 initializer = cp_parser_new_initializer (parser);
4604 else
4605 initializer = NULL_TREE;
4606
4607 /* A new-expression may not appear in an integral constant
4608 expression. */
4609 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
4610 return error_mark_node;
4611
4612 /* Create a representation of the new-expression. */
4613 return build_new (placement, type, initializer, global_scope_p);
4614 }
4615
4616 /* Parse a new-placement.
4617
4618 new-placement:
4619 ( expression-list )
4620
4621 Returns the same representation as for an expression-list. */
4622
4623 static tree
4624 cp_parser_new_placement (cp_parser* parser)
4625 {
4626 tree expression_list;
4627
4628 /* Parse the expression-list. */
4629 expression_list = (cp_parser_parenthesized_expression_list
4630 (parser, false, /*non_constant_p=*/NULL));
4631
4632 return expression_list;
4633 }
4634
4635 /* Parse a new-type-id.
4636
4637 new-type-id:
4638 type-specifier-seq new-declarator [opt]
4639
4640 Returns a TREE_LIST whose TREE_PURPOSE is the type-specifier-seq,
4641 and whose TREE_VALUE is the new-declarator. */
4642
4643 static tree
4644 cp_parser_new_type_id (cp_parser* parser)
4645 {
4646 tree type_specifier_seq;
4647 tree declarator;
4648 const char *saved_message;
4649
4650 /* The type-specifier sequence must not contain type definitions.
4651 (It cannot contain declarations of new types either, but if they
4652 are not definitions we will catch that because they are not
4653 complete.) */
4654 saved_message = parser->type_definition_forbidden_message;
4655 parser->type_definition_forbidden_message
4656 = "types may not be defined in a new-type-id";
4657 /* Parse the type-specifier-seq. */
4658 type_specifier_seq = cp_parser_type_specifier_seq (parser);
4659 /* Restore the old message. */
4660 parser->type_definition_forbidden_message = saved_message;
4661 /* Parse the new-declarator. */
4662 declarator = cp_parser_new_declarator_opt (parser);
4663
4664 return build_tree_list (type_specifier_seq, declarator);
4665 }
4666
4667 /* Parse an (optional) new-declarator.
4668
4669 new-declarator:
4670 ptr-operator new-declarator [opt]
4671 direct-new-declarator
4672
4673 Returns a representation of the declarator. See
4674 cp_parser_declarator for the representations used. */
4675
4676 static tree
4677 cp_parser_new_declarator_opt (cp_parser* parser)
4678 {
4679 enum tree_code code;
4680 tree type;
4681 tree cv_qualifier_seq;
4682
4683 /* We don't know if there's a ptr-operator next, or not. */
4684 cp_parser_parse_tentatively (parser);
4685 /* Look for a ptr-operator. */
4686 code = cp_parser_ptr_operator (parser, &type, &cv_qualifier_seq);
4687 /* If that worked, look for more new-declarators. */
4688 if (cp_parser_parse_definitely (parser))
4689 {
4690 tree declarator;
4691
4692 /* Parse another optional declarator. */
4693 declarator = cp_parser_new_declarator_opt (parser);
4694
4695 /* Create the representation of the declarator. */
4696 if (code == INDIRECT_REF)
4697 declarator = make_pointer_declarator (cv_qualifier_seq,
4698 declarator);
4699 else
4700 declarator = make_reference_declarator (cv_qualifier_seq,
4701 declarator);
4702
4703 /* Handle the pointer-to-member case. */
4704 if (type)
4705 declarator = build_nt (SCOPE_REF, type, declarator);
4706
4707 return declarator;
4708 }
4709
4710 /* If the next token is a `[', there is a direct-new-declarator. */
4711 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4712 return cp_parser_direct_new_declarator (parser);
4713
4714 return NULL_TREE;
4715 }
4716
4717 /* Parse a direct-new-declarator.
4718
4719 direct-new-declarator:
4720 [ expression ]
4721 direct-new-declarator [constant-expression]
4722
4723 Returns an ARRAY_REF, following the same conventions as are
4724 documented for cp_parser_direct_declarator. */
4725
4726 static tree
4727 cp_parser_direct_new_declarator (cp_parser* parser)
4728 {
4729 tree declarator = NULL_TREE;
4730
4731 while (true)
4732 {
4733 tree expression;
4734
4735 /* Look for the opening `['. */
4736 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
4737 /* The first expression is not required to be constant. */
4738 if (!declarator)
4739 {
4740 expression = cp_parser_expression (parser);
4741 /* The standard requires that the expression have integral
4742 type. DR 74 adds enumeration types. We believe that the
4743 real intent is that these expressions be handled like the
4744 expression in a `switch' condition, which also allows
4745 classes with a single conversion to integral or
4746 enumeration type. */
4747 if (!processing_template_decl)
4748 {
4749 expression
4750 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
4751 expression,
4752 /*complain=*/true);
4753 if (!expression)
4754 {
4755 error ("expression in new-declarator must have integral or enumeration type");
4756 expression = error_mark_node;
4757 }
4758 }
4759 }
4760 /* But all the other expressions must be. */
4761 else
4762 expression
4763 = cp_parser_constant_expression (parser,
4764 /*allow_non_constant=*/false,
4765 NULL);
4766 /* Look for the closing `]'. */
4767 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4768
4769 /* Add this bound to the declarator. */
4770 declarator = build_nt (ARRAY_REF, declarator, expression);
4771
4772 /* If the next token is not a `[', then there are no more
4773 bounds. */
4774 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
4775 break;
4776 }
4777
4778 return declarator;
4779 }
4780
4781 /* Parse a new-initializer.
4782
4783 new-initializer:
4784 ( expression-list [opt] )
4785
4786 Returns a representation of the expression-list. If there is no
4787 expression-list, VOID_ZERO_NODE is returned. */
4788
4789 static tree
4790 cp_parser_new_initializer (cp_parser* parser)
4791 {
4792 tree expression_list;
4793
4794 expression_list = (cp_parser_parenthesized_expression_list
4795 (parser, false, /*non_constant_p=*/NULL));
4796 if (!expression_list)
4797 expression_list = void_zero_node;
4798
4799 return expression_list;
4800 }
4801
4802 /* Parse a delete-expression.
4803
4804 delete-expression:
4805 :: [opt] delete cast-expression
4806 :: [opt] delete [ ] cast-expression
4807
4808 Returns a representation of the expression. */
4809
4810 static tree
4811 cp_parser_delete_expression (cp_parser* parser)
4812 {
4813 bool global_scope_p;
4814 bool array_p;
4815 tree expression;
4816
4817 /* Look for the optional `::' operator. */
4818 global_scope_p
4819 = (cp_parser_global_scope_opt (parser,
4820 /*current_scope_valid_p=*/false)
4821 != NULL_TREE);
4822 /* Look for the `delete' keyword. */
4823 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
4824 /* See if the array syntax is in use. */
4825 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4826 {
4827 /* Consume the `[' token. */
4828 cp_lexer_consume_token (parser->lexer);
4829 /* Look for the `]' token. */
4830 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4831 /* Remember that this is the `[]' construct. */
4832 array_p = true;
4833 }
4834 else
4835 array_p = false;
4836
4837 /* Parse the cast-expression. */
4838 expression = cp_parser_simple_cast_expression (parser);
4839
4840 /* A delete-expression may not appear in an integral constant
4841 expression. */
4842 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
4843 return error_mark_node;
4844
4845 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
4846 }
4847
4848 /* Parse a cast-expression.
4849
4850 cast-expression:
4851 unary-expression
4852 ( type-id ) cast-expression
4853
4854 Returns a representation of the expression. */
4855
4856 static tree
4857 cp_parser_cast_expression (cp_parser *parser, bool address_p)
4858 {
4859 /* If it's a `(', then we might be looking at a cast. */
4860 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4861 {
4862 tree type = NULL_TREE;
4863 tree expr = NULL_TREE;
4864 bool compound_literal_p;
4865 const char *saved_message;
4866
4867 /* There's no way to know yet whether or not this is a cast.
4868 For example, `(int (3))' is a unary-expression, while `(int)
4869 3' is a cast. So, we resort to parsing tentatively. */
4870 cp_parser_parse_tentatively (parser);
4871 /* Types may not be defined in a cast. */
4872 saved_message = parser->type_definition_forbidden_message;
4873 parser->type_definition_forbidden_message
4874 = "types may not be defined in casts";
4875 /* Consume the `('. */
4876 cp_lexer_consume_token (parser->lexer);
4877 /* A very tricky bit is that `(struct S) { 3 }' is a
4878 compound-literal (which we permit in C++ as an extension).
4879 But, that construct is not a cast-expression -- it is a
4880 postfix-expression. (The reason is that `(struct S) { 3 }.i'
4881 is legal; if the compound-literal were a cast-expression,
4882 you'd need an extra set of parentheses.) But, if we parse
4883 the type-id, and it happens to be a class-specifier, then we
4884 will commit to the parse at that point, because we cannot
4885 undo the action that is done when creating a new class. So,
4886 then we cannot back up and do a postfix-expression.
4887
4888 Therefore, we scan ahead to the closing `)', and check to see
4889 if the token after the `)' is a `{'. If so, we are not
4890 looking at a cast-expression.
4891
4892 Save tokens so that we can put them back. */
4893 cp_lexer_save_tokens (parser->lexer);
4894 /* Skip tokens until the next token is a closing parenthesis.
4895 If we find the closing `)', and the next token is a `{', then
4896 we are looking at a compound-literal. */
4897 compound_literal_p
4898 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
4899 /*consume_paren=*/true)
4900 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
4901 /* Roll back the tokens we skipped. */
4902 cp_lexer_rollback_tokens (parser->lexer);
4903 /* If we were looking at a compound-literal, simulate an error
4904 so that the call to cp_parser_parse_definitely below will
4905 fail. */
4906 if (compound_literal_p)
4907 cp_parser_simulate_error (parser);
4908 else
4909 {
4910 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
4911 parser->in_type_id_in_expr_p = true;
4912 /* Look for the type-id. */
4913 type = cp_parser_type_id (parser);
4914 /* Look for the closing `)'. */
4915 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4916 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
4917 }
4918
4919 /* Restore the saved message. */
4920 parser->type_definition_forbidden_message = saved_message;
4921
4922 /* If ok so far, parse the dependent expression. We cannot be
4923 sure it is a cast. Consider `(T ())'. It is a parenthesized
4924 ctor of T, but looks like a cast to function returning T
4925 without a dependent expression. */
4926 if (!cp_parser_error_occurred (parser))
4927 expr = cp_parser_simple_cast_expression (parser);
4928
4929 if (cp_parser_parse_definitely (parser))
4930 {
4931 /* Warn about old-style casts, if so requested. */
4932 if (warn_old_style_cast
4933 && !in_system_header
4934 && !VOID_TYPE_P (type)
4935 && current_lang_name != lang_name_c)
4936 warning ("use of old-style cast");
4937
4938 /* Only type conversions to integral or enumeration types
4939 can be used in constant-expressions. */
4940 if (parser->integral_constant_expression_p
4941 && !dependent_type_p (type)
4942 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
4943 && (cp_parser_non_integral_constant_expression
4944 (parser,
4945 "a cast to a type other than an integral or "
4946 "enumeration type")))
4947 return error_mark_node;
4948
4949 /* Perform the cast. */
4950 expr = build_c_cast (type, expr);
4951 return expr;
4952 }
4953 }
4954
4955 /* If we get here, then it's not a cast, so it must be a
4956 unary-expression. */
4957 return cp_parser_unary_expression (parser, address_p);
4958 }
4959
4960 /* Parse a pm-expression.
4961
4962 pm-expression:
4963 cast-expression
4964 pm-expression .* cast-expression
4965 pm-expression ->* cast-expression
4966
4967 Returns a representation of the expression. */
4968
4969 static tree
4970 cp_parser_pm_expression (cp_parser* parser)
4971 {
4972 static const cp_parser_token_tree_map map = {
4973 { CPP_DEREF_STAR, MEMBER_REF },
4974 { CPP_DOT_STAR, DOTSTAR_EXPR },
4975 { CPP_EOF, ERROR_MARK }
4976 };
4977
4978 return cp_parser_binary_expression (parser, map,
4979 cp_parser_simple_cast_expression);
4980 }
4981
4982 /* Parse a multiplicative-expression.
4983
4984 multiplicative-expression:
4985 pm-expression
4986 multiplicative-expression * pm-expression
4987 multiplicative-expression / pm-expression
4988 multiplicative-expression % pm-expression
4989
4990 Returns a representation of the expression. */
4991
4992 static tree
4993 cp_parser_multiplicative_expression (cp_parser* parser)
4994 {
4995 static const cp_parser_token_tree_map map = {
4996 { CPP_MULT, MULT_EXPR },
4997 { CPP_DIV, TRUNC_DIV_EXPR },
4998 { CPP_MOD, TRUNC_MOD_EXPR },
4999 { CPP_EOF, ERROR_MARK }
5000 };
5001
5002 return cp_parser_binary_expression (parser,
5003 map,
5004 cp_parser_pm_expression);
5005 }
5006
5007 /* Parse an additive-expression.
5008
5009 additive-expression:
5010 multiplicative-expression
5011 additive-expression + multiplicative-expression
5012 additive-expression - multiplicative-expression
5013
5014 Returns a representation of the expression. */
5015
5016 static tree
5017 cp_parser_additive_expression (cp_parser* parser)
5018 {
5019 static const cp_parser_token_tree_map map = {
5020 { CPP_PLUS, PLUS_EXPR },
5021 { CPP_MINUS, MINUS_EXPR },
5022 { CPP_EOF, ERROR_MARK }
5023 };
5024
5025 return cp_parser_binary_expression (parser,
5026 map,
5027 cp_parser_multiplicative_expression);
5028 }
5029
5030 /* Parse a shift-expression.
5031
5032 shift-expression:
5033 additive-expression
5034 shift-expression << additive-expression
5035 shift-expression >> additive-expression
5036
5037 Returns a representation of the expression. */
5038
5039 static tree
5040 cp_parser_shift_expression (cp_parser* parser)
5041 {
5042 static const cp_parser_token_tree_map map = {
5043 { CPP_LSHIFT, LSHIFT_EXPR },
5044 { CPP_RSHIFT, RSHIFT_EXPR },
5045 { CPP_EOF, ERROR_MARK }
5046 };
5047
5048 return cp_parser_binary_expression (parser,
5049 map,
5050 cp_parser_additive_expression);
5051 }
5052
5053 /* Parse a relational-expression.
5054
5055 relational-expression:
5056 shift-expression
5057 relational-expression < shift-expression
5058 relational-expression > shift-expression
5059 relational-expression <= shift-expression
5060 relational-expression >= shift-expression
5061
5062 GNU Extension:
5063
5064 relational-expression:
5065 relational-expression <? shift-expression
5066 relational-expression >? shift-expression
5067
5068 Returns a representation of the expression. */
5069
5070 static tree
5071 cp_parser_relational_expression (cp_parser* parser)
5072 {
5073 static const cp_parser_token_tree_map map = {
5074 { CPP_LESS, LT_EXPR },
5075 { CPP_GREATER, GT_EXPR },
5076 { CPP_LESS_EQ, LE_EXPR },
5077 { CPP_GREATER_EQ, GE_EXPR },
5078 { CPP_MIN, MIN_EXPR },
5079 { CPP_MAX, MAX_EXPR },
5080 { CPP_EOF, ERROR_MARK }
5081 };
5082
5083 return cp_parser_binary_expression (parser,
5084 map,
5085 cp_parser_shift_expression);
5086 }
5087
5088 /* Parse an equality-expression.
5089
5090 equality-expression:
5091 relational-expression
5092 equality-expression == relational-expression
5093 equality-expression != relational-expression
5094
5095 Returns a representation of the expression. */
5096
5097 static tree
5098 cp_parser_equality_expression (cp_parser* parser)
5099 {
5100 static const cp_parser_token_tree_map map = {
5101 { CPP_EQ_EQ, EQ_EXPR },
5102 { CPP_NOT_EQ, NE_EXPR },
5103 { CPP_EOF, ERROR_MARK }
5104 };
5105
5106 return cp_parser_binary_expression (parser,
5107 map,
5108 cp_parser_relational_expression);
5109 }
5110
5111 /* Parse an and-expression.
5112
5113 and-expression:
5114 equality-expression
5115 and-expression & equality-expression
5116
5117 Returns a representation of the expression. */
5118
5119 static tree
5120 cp_parser_and_expression (cp_parser* parser)
5121 {
5122 static const cp_parser_token_tree_map map = {
5123 { CPP_AND, BIT_AND_EXPR },
5124 { CPP_EOF, ERROR_MARK }
5125 };
5126
5127 return cp_parser_binary_expression (parser,
5128 map,
5129 cp_parser_equality_expression);
5130 }
5131
5132 /* Parse an exclusive-or-expression.
5133
5134 exclusive-or-expression:
5135 and-expression
5136 exclusive-or-expression ^ and-expression
5137
5138 Returns a representation of the expression. */
5139
5140 static tree
5141 cp_parser_exclusive_or_expression (cp_parser* parser)
5142 {
5143 static const cp_parser_token_tree_map map = {
5144 { CPP_XOR, BIT_XOR_EXPR },
5145 { CPP_EOF, ERROR_MARK }
5146 };
5147
5148 return cp_parser_binary_expression (parser,
5149 map,
5150 cp_parser_and_expression);
5151 }
5152
5153
5154 /* Parse an inclusive-or-expression.
5155
5156 inclusive-or-expression:
5157 exclusive-or-expression
5158 inclusive-or-expression | exclusive-or-expression
5159
5160 Returns a representation of the expression. */
5161
5162 static tree
5163 cp_parser_inclusive_or_expression (cp_parser* parser)
5164 {
5165 static const cp_parser_token_tree_map map = {
5166 { CPP_OR, BIT_IOR_EXPR },
5167 { CPP_EOF, ERROR_MARK }
5168 };
5169
5170 return cp_parser_binary_expression (parser,
5171 map,
5172 cp_parser_exclusive_or_expression);
5173 }
5174
5175 /* Parse a logical-and-expression.
5176
5177 logical-and-expression:
5178 inclusive-or-expression
5179 logical-and-expression && inclusive-or-expression
5180
5181 Returns a representation of the expression. */
5182
5183 static tree
5184 cp_parser_logical_and_expression (cp_parser* parser)
5185 {
5186 static const cp_parser_token_tree_map map = {
5187 { CPP_AND_AND, TRUTH_ANDIF_EXPR },
5188 { CPP_EOF, ERROR_MARK }
5189 };
5190
5191 return cp_parser_binary_expression (parser,
5192 map,
5193 cp_parser_inclusive_or_expression);
5194 }
5195
5196 /* Parse a logical-or-expression.
5197
5198 logical-or-expression:
5199 logical-and-expression
5200 logical-or-expression || logical-and-expression
5201
5202 Returns a representation of the expression. */
5203
5204 static tree
5205 cp_parser_logical_or_expression (cp_parser* parser)
5206 {
5207 static const cp_parser_token_tree_map map = {
5208 { CPP_OR_OR, TRUTH_ORIF_EXPR },
5209 { CPP_EOF, ERROR_MARK }
5210 };
5211
5212 return cp_parser_binary_expression (parser,
5213 map,
5214 cp_parser_logical_and_expression);
5215 }
5216
5217 /* Parse the `? expression : assignment-expression' part of a
5218 conditional-expression. The LOGICAL_OR_EXPR is the
5219 logical-or-expression that started the conditional-expression.
5220 Returns a representation of the entire conditional-expression.
5221
5222 This routine is used by cp_parser_assignment_expression.
5223
5224 ? expression : assignment-expression
5225
5226 GNU Extensions:
5227
5228 ? : assignment-expression */
5229
5230 static tree
5231 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5232 {
5233 tree expr;
5234 tree assignment_expr;
5235
5236 /* Consume the `?' token. */
5237 cp_lexer_consume_token (parser->lexer);
5238 if (cp_parser_allow_gnu_extensions_p (parser)
5239 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5240 /* Implicit true clause. */
5241 expr = NULL_TREE;
5242 else
5243 /* Parse the expression. */
5244 expr = cp_parser_expression (parser);
5245
5246 /* The next token should be a `:'. */
5247 cp_parser_require (parser, CPP_COLON, "`:'");
5248 /* Parse the assignment-expression. */
5249 assignment_expr = cp_parser_assignment_expression (parser);
5250
5251 /* Build the conditional-expression. */
5252 return build_x_conditional_expr (logical_or_expr,
5253 expr,
5254 assignment_expr);
5255 }
5256
5257 /* Parse an assignment-expression.
5258
5259 assignment-expression:
5260 conditional-expression
5261 logical-or-expression assignment-operator assignment_expression
5262 throw-expression
5263
5264 Returns a representation for the expression. */
5265
5266 static tree
5267 cp_parser_assignment_expression (cp_parser* parser)
5268 {
5269 tree expr;
5270
5271 /* If the next token is the `throw' keyword, then we're looking at
5272 a throw-expression. */
5273 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5274 expr = cp_parser_throw_expression (parser);
5275 /* Otherwise, it must be that we are looking at a
5276 logical-or-expression. */
5277 else
5278 {
5279 /* Parse the logical-or-expression. */
5280 expr = cp_parser_logical_or_expression (parser);
5281 /* If the next token is a `?' then we're actually looking at a
5282 conditional-expression. */
5283 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5284 return cp_parser_question_colon_clause (parser, expr);
5285 else
5286 {
5287 enum tree_code assignment_operator;
5288
5289 /* If it's an assignment-operator, we're using the second
5290 production. */
5291 assignment_operator
5292 = cp_parser_assignment_operator_opt (parser);
5293 if (assignment_operator != ERROR_MARK)
5294 {
5295 tree rhs;
5296
5297 /* Parse the right-hand side of the assignment. */
5298 rhs = cp_parser_assignment_expression (parser);
5299 /* An assignment may not appear in a
5300 constant-expression. */
5301 if (cp_parser_non_integral_constant_expression (parser,
5302 "an assignment"))
5303 return error_mark_node;
5304 /* Build the assignment expression. */
5305 expr = build_x_modify_expr (expr,
5306 assignment_operator,
5307 rhs);
5308 }
5309 }
5310 }
5311
5312 return expr;
5313 }
5314
5315 /* Parse an (optional) assignment-operator.
5316
5317 assignment-operator: one of
5318 = *= /= %= += -= >>= <<= &= ^= |=
5319
5320 GNU Extension:
5321
5322 assignment-operator: one of
5323 <?= >?=
5324
5325 If the next token is an assignment operator, the corresponding tree
5326 code is returned, and the token is consumed. For example, for
5327 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5328 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5329 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5330 operator, ERROR_MARK is returned. */
5331
5332 static enum tree_code
5333 cp_parser_assignment_operator_opt (cp_parser* parser)
5334 {
5335 enum tree_code op;
5336 cp_token *token;
5337
5338 /* Peek at the next toen. */
5339 token = cp_lexer_peek_token (parser->lexer);
5340
5341 switch (token->type)
5342 {
5343 case CPP_EQ:
5344 op = NOP_EXPR;
5345 break;
5346
5347 case CPP_MULT_EQ:
5348 op = MULT_EXPR;
5349 break;
5350
5351 case CPP_DIV_EQ:
5352 op = TRUNC_DIV_EXPR;
5353 break;
5354
5355 case CPP_MOD_EQ:
5356 op = TRUNC_MOD_EXPR;
5357 break;
5358
5359 case CPP_PLUS_EQ:
5360 op = PLUS_EXPR;
5361 break;
5362
5363 case CPP_MINUS_EQ:
5364 op = MINUS_EXPR;
5365 break;
5366
5367 case CPP_RSHIFT_EQ:
5368 op = RSHIFT_EXPR;
5369 break;
5370
5371 case CPP_LSHIFT_EQ:
5372 op = LSHIFT_EXPR;
5373 break;
5374
5375 case CPP_AND_EQ:
5376 op = BIT_AND_EXPR;
5377 break;
5378
5379 case CPP_XOR_EQ:
5380 op = BIT_XOR_EXPR;
5381 break;
5382
5383 case CPP_OR_EQ:
5384 op = BIT_IOR_EXPR;
5385 break;
5386
5387 case CPP_MIN_EQ:
5388 op = MIN_EXPR;
5389 break;
5390
5391 case CPP_MAX_EQ:
5392 op = MAX_EXPR;
5393 break;
5394
5395 default:
5396 /* Nothing else is an assignment operator. */
5397 op = ERROR_MARK;
5398 }
5399
5400 /* If it was an assignment operator, consume it. */
5401 if (op != ERROR_MARK)
5402 cp_lexer_consume_token (parser->lexer);
5403
5404 return op;
5405 }
5406
5407 /* Parse an expression.
5408
5409 expression:
5410 assignment-expression
5411 expression , assignment-expression
5412
5413 Returns a representation of the expression. */
5414
5415 static tree
5416 cp_parser_expression (cp_parser* parser)
5417 {
5418 tree expression = NULL_TREE;
5419
5420 while (true)
5421 {
5422 tree assignment_expression;
5423
5424 /* Parse the next assignment-expression. */
5425 assignment_expression
5426 = cp_parser_assignment_expression (parser);
5427 /* If this is the first assignment-expression, we can just
5428 save it away. */
5429 if (!expression)
5430 expression = assignment_expression;
5431 else
5432 expression = build_x_compound_expr (expression,
5433 assignment_expression);
5434 /* If the next token is not a comma, then we are done with the
5435 expression. */
5436 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5437 break;
5438 /* Consume the `,'. */
5439 cp_lexer_consume_token (parser->lexer);
5440 /* A comma operator cannot appear in a constant-expression. */
5441 if (cp_parser_non_integral_constant_expression (parser,
5442 "a comma operator"))
5443 expression = error_mark_node;
5444 }
5445
5446 return expression;
5447 }
5448
5449 /* Parse a constant-expression.
5450
5451 constant-expression:
5452 conditional-expression
5453
5454 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5455 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5456 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5457 is false, NON_CONSTANT_P should be NULL. */
5458
5459 static tree
5460 cp_parser_constant_expression (cp_parser* parser,
5461 bool allow_non_constant_p,
5462 bool *non_constant_p)
5463 {
5464 bool saved_integral_constant_expression_p;
5465 bool saved_allow_non_integral_constant_expression_p;
5466 bool saved_non_integral_constant_expression_p;
5467 tree expression;
5468
5469 /* It might seem that we could simply parse the
5470 conditional-expression, and then check to see if it were
5471 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5472 one that the compiler can figure out is constant, possibly after
5473 doing some simplifications or optimizations. The standard has a
5474 precise definition of constant-expression, and we must honor
5475 that, even though it is somewhat more restrictive.
5476
5477 For example:
5478
5479 int i[(2, 3)];
5480
5481 is not a legal declaration, because `(2, 3)' is not a
5482 constant-expression. The `,' operator is forbidden in a
5483 constant-expression. However, GCC's constant-folding machinery
5484 will fold this operation to an INTEGER_CST for `3'. */
5485
5486 /* Save the old settings. */
5487 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5488 saved_allow_non_integral_constant_expression_p
5489 = parser->allow_non_integral_constant_expression_p;
5490 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5491 /* We are now parsing a constant-expression. */
5492 parser->integral_constant_expression_p = true;
5493 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5494 parser->non_integral_constant_expression_p = false;
5495 /* Although the grammar says "conditional-expression", we parse an
5496 "assignment-expression", which also permits "throw-expression"
5497 and the use of assignment operators. In the case that
5498 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5499 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5500 actually essential that we look for an assignment-expression.
5501 For example, cp_parser_initializer_clauses uses this function to
5502 determine whether a particular assignment-expression is in fact
5503 constant. */
5504 expression = cp_parser_assignment_expression (parser);
5505 /* Restore the old settings. */
5506 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
5507 parser->allow_non_integral_constant_expression_p
5508 = saved_allow_non_integral_constant_expression_p;
5509 if (allow_non_constant_p)
5510 *non_constant_p = parser->non_integral_constant_expression_p;
5511 parser->non_integral_constant_expression_p = saved_non_integral_constant_expression_p;
5512
5513 return expression;
5514 }
5515
5516 /* Parse __builtin_offsetof.
5517
5518 offsetof-expression:
5519 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5520
5521 offsetof-member-designator:
5522 id-expression
5523 | offsetof-member-designator "." id-expression
5524 | offsetof-member-designator "[" expression "]"
5525 */
5526
5527 static tree
5528 cp_parser_builtin_offsetof (cp_parser *parser)
5529 {
5530 int save_ice_p, save_non_ice_p;
5531 tree type, expr;
5532 cp_id_kind dummy;
5533
5534 /* We're about to accept non-integral-constant things, but will
5535 definitely yield an integral constant expression. Save and
5536 restore these values around our local parsing. */
5537 save_ice_p = parser->integral_constant_expression_p;
5538 save_non_ice_p = parser->non_integral_constant_expression_p;
5539
5540 /* Consume the "__builtin_offsetof" token. */
5541 cp_lexer_consume_token (parser->lexer);
5542 /* Consume the opening `('. */
5543 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5544 /* Parse the type-id. */
5545 type = cp_parser_type_id (parser);
5546 /* Look for the `,'. */
5547 cp_parser_require (parser, CPP_COMMA, "`,'");
5548
5549 /* Build the (type *)null that begins the traditional offsetof macro. */
5550 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5551
5552 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5553 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5554 true, &dummy);
5555 while (true)
5556 {
5557 cp_token *token = cp_lexer_peek_token (parser->lexer);
5558 switch (token->type)
5559 {
5560 case CPP_OPEN_SQUARE:
5561 /* offsetof-member-designator "[" expression "]" */
5562 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5563 break;
5564
5565 case CPP_DOT:
5566 /* offsetof-member-designator "." identifier */
5567 cp_lexer_consume_token (parser->lexer);
5568 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5569 true, &dummy);
5570 break;
5571
5572 case CPP_CLOSE_PAREN:
5573 /* Consume the ")" token. */
5574 cp_lexer_consume_token (parser->lexer);
5575 goto success;
5576
5577 default:
5578 /* Error. We know the following require will fail, but
5579 that gives the proper error message. */
5580 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5581 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5582 expr = error_mark_node;
5583 goto failure;
5584 }
5585 }
5586
5587 success:
5588 /* We've finished the parsing, now finish with the semantics. At present
5589 we're just mirroring the traditional macro implementation. Better
5590 would be to do the lowering of the ADDR_EXPR to flat pointer arithmetic
5591 here rather than in build_x_unary_op. */
5592 expr = build_reinterpret_cast (build_reference_type (char_type_node), expr);
5593 expr = build_x_unary_op (ADDR_EXPR, expr);
5594 expr = build_reinterpret_cast (size_type_node, expr);
5595
5596 failure:
5597 parser->integral_constant_expression_p = save_ice_p;
5598 parser->non_integral_constant_expression_p = save_non_ice_p;
5599
5600 return expr;
5601 }
5602
5603 /* Statements [gram.stmt.stmt] */
5604
5605 /* Parse a statement.
5606
5607 statement:
5608 labeled-statement
5609 expression-statement
5610 compound-statement
5611 selection-statement
5612 iteration-statement
5613 jump-statement
5614 declaration-statement
5615 try-block */
5616
5617 static void
5618 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
5619 {
5620 tree statement;
5621 cp_token *token;
5622 location_t statement_locus;
5623
5624 /* There is no statement yet. */
5625 statement = NULL_TREE;
5626 /* Peek at the next token. */
5627 token = cp_lexer_peek_token (parser->lexer);
5628 /* Remember the location of the first token in the statement. */
5629 statement_locus = token->location;
5630 /* If this is a keyword, then that will often determine what kind of
5631 statement we have. */
5632 if (token->type == CPP_KEYWORD)
5633 {
5634 enum rid keyword = token->keyword;
5635
5636 switch (keyword)
5637 {
5638 case RID_CASE:
5639 case RID_DEFAULT:
5640 statement = cp_parser_labeled_statement (parser,
5641 in_statement_expr);
5642 break;
5643
5644 case RID_IF:
5645 case RID_SWITCH:
5646 statement = cp_parser_selection_statement (parser);
5647 break;
5648
5649 case RID_WHILE:
5650 case RID_DO:
5651 case RID_FOR:
5652 statement = cp_parser_iteration_statement (parser);
5653 break;
5654
5655 case RID_BREAK:
5656 case RID_CONTINUE:
5657 case RID_RETURN:
5658 case RID_GOTO:
5659 statement = cp_parser_jump_statement (parser);
5660 break;
5661
5662 case RID_TRY:
5663 statement = cp_parser_try_block (parser);
5664 break;
5665
5666 default:
5667 /* It might be a keyword like `int' that can start a
5668 declaration-statement. */
5669 break;
5670 }
5671 }
5672 else if (token->type == CPP_NAME)
5673 {
5674 /* If the next token is a `:', then we are looking at a
5675 labeled-statement. */
5676 token = cp_lexer_peek_nth_token (parser->lexer, 2);
5677 if (token->type == CPP_COLON)
5678 statement = cp_parser_labeled_statement (parser, in_statement_expr);
5679 }
5680 /* Anything that starts with a `{' must be a compound-statement. */
5681 else if (token->type == CPP_OPEN_BRACE)
5682 statement = cp_parser_compound_statement (parser, NULL, false);
5683
5684 /* Everything else must be a declaration-statement or an
5685 expression-statement. Try for the declaration-statement
5686 first, unless we are looking at a `;', in which case we know that
5687 we have an expression-statement. */
5688 if (!statement)
5689 {
5690 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5691 {
5692 cp_parser_parse_tentatively (parser);
5693 /* Try to parse the declaration-statement. */
5694 cp_parser_declaration_statement (parser);
5695 /* If that worked, we're done. */
5696 if (cp_parser_parse_definitely (parser))
5697 return;
5698 }
5699 /* Look for an expression-statement instead. */
5700 statement = cp_parser_expression_statement (parser, in_statement_expr);
5701 }
5702
5703 /* Set the line number for the statement. */
5704 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
5705 {
5706 SET_EXPR_LOCUS (statement, NULL);
5707 annotate_with_locus (statement, statement_locus);
5708 }
5709 }
5710
5711 /* Parse a labeled-statement.
5712
5713 labeled-statement:
5714 identifier : statement
5715 case constant-expression : statement
5716 default : statement
5717
5718 GNU Extension:
5719
5720 labeled-statement:
5721 case constant-expression ... constant-expression : statement
5722
5723 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
5724 For an ordinary label, returns a LABEL_EXPR. */
5725
5726 static tree
5727 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
5728 {
5729 cp_token *token;
5730 tree statement = error_mark_node;
5731
5732 /* The next token should be an identifier. */
5733 token = cp_lexer_peek_token (parser->lexer);
5734 if (token->type != CPP_NAME
5735 && token->type != CPP_KEYWORD)
5736 {
5737 cp_parser_error (parser, "expected labeled-statement");
5738 return error_mark_node;
5739 }
5740
5741 switch (token->keyword)
5742 {
5743 case RID_CASE:
5744 {
5745 tree expr, expr_hi;
5746 cp_token *ellipsis;
5747
5748 /* Consume the `case' token. */
5749 cp_lexer_consume_token (parser->lexer);
5750 /* Parse the constant-expression. */
5751 expr = cp_parser_constant_expression (parser,
5752 /*allow_non_constant_p=*/false,
5753 NULL);
5754
5755 ellipsis = cp_lexer_peek_token (parser->lexer);
5756 if (ellipsis->type == CPP_ELLIPSIS)
5757 {
5758 /* Consume the `...' token. */
5759 cp_lexer_consume_token (parser->lexer);
5760 expr_hi =
5761 cp_parser_constant_expression (parser,
5762 /*allow_non_constant_p=*/false,
5763 NULL);
5764 /* We don't need to emit warnings here, as the common code
5765 will do this for us. */
5766 }
5767 else
5768 expr_hi = NULL_TREE;
5769
5770 if (!parser->in_switch_statement_p)
5771 error ("case label `%E' not within a switch statement", expr);
5772 else
5773 statement = finish_case_label (expr, expr_hi);
5774 }
5775 break;
5776
5777 case RID_DEFAULT:
5778 /* Consume the `default' token. */
5779 cp_lexer_consume_token (parser->lexer);
5780 if (!parser->in_switch_statement_p)
5781 error ("case label not within a switch statement");
5782 else
5783 statement = finish_case_label (NULL_TREE, NULL_TREE);
5784 break;
5785
5786 default:
5787 /* Anything else must be an ordinary label. */
5788 statement = finish_label_stmt (cp_parser_identifier (parser));
5789 break;
5790 }
5791
5792 /* Require the `:' token. */
5793 cp_parser_require (parser, CPP_COLON, "`:'");
5794 /* Parse the labeled statement. */
5795 cp_parser_statement (parser, in_statement_expr);
5796
5797 /* Return the label, in the case of a `case' or `default' label. */
5798 return statement;
5799 }
5800
5801 /* Parse an expression-statement.
5802
5803 expression-statement:
5804 expression [opt] ;
5805
5806 Returns the new EXPR_STMT -- or NULL_TREE if the expression
5807 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
5808 indicates whether this expression-statement is part of an
5809 expression statement. */
5810
5811 static tree
5812 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
5813 {
5814 tree statement = NULL_TREE;
5815
5816 /* If the next token is a ';', then there is no expression
5817 statement. */
5818 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5819 statement = cp_parser_expression (parser);
5820
5821 /* Consume the final `;'. */
5822 cp_parser_consume_semicolon_at_end_of_statement (parser);
5823
5824 if (in_statement_expr
5825 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
5826 {
5827 /* This is the final expression statement of a statement
5828 expression. */
5829 statement = finish_stmt_expr_expr (statement, in_statement_expr);
5830 }
5831 else if (statement)
5832 statement = finish_expr_stmt (statement);
5833 else
5834 finish_stmt ();
5835
5836 return statement;
5837 }
5838
5839 /* Parse a compound-statement.
5840
5841 compound-statement:
5842 { statement-seq [opt] }
5843
5844 Returns a COMPOUND_STMT representing the statement. */
5845
5846 static tree
5847 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
5848 bool in_try)
5849 {
5850 tree compound_stmt;
5851
5852 /* Consume the `{'. */
5853 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
5854 return error_mark_node;
5855 /* Begin the compound-statement. */
5856 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
5857 /* Parse an (optional) statement-seq. */
5858 cp_parser_statement_seq_opt (parser, in_statement_expr);
5859 /* Finish the compound-statement. */
5860 finish_compound_stmt (compound_stmt);
5861 /* Consume the `}'. */
5862 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
5863
5864 return compound_stmt;
5865 }
5866
5867 /* Parse an (optional) statement-seq.
5868
5869 statement-seq:
5870 statement
5871 statement-seq [opt] statement */
5872
5873 static void
5874 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
5875 {
5876 /* Scan statements until there aren't any more. */
5877 while (true)
5878 {
5879 /* If we're looking at a `}', then we've run out of statements. */
5880 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
5881 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
5882 break;
5883
5884 /* Parse the statement. */
5885 cp_parser_statement (parser, in_statement_expr);
5886 }
5887 }
5888
5889 /* Parse a selection-statement.
5890
5891 selection-statement:
5892 if ( condition ) statement
5893 if ( condition ) statement else statement
5894 switch ( condition ) statement
5895
5896 Returns the new IF_STMT or SWITCH_STMT. */
5897
5898 static tree
5899 cp_parser_selection_statement (cp_parser* parser)
5900 {
5901 cp_token *token;
5902 enum rid keyword;
5903
5904 /* Peek at the next token. */
5905 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
5906
5907 /* See what kind of keyword it is. */
5908 keyword = token->keyword;
5909 switch (keyword)
5910 {
5911 case RID_IF:
5912 case RID_SWITCH:
5913 {
5914 tree statement;
5915 tree condition;
5916
5917 /* Look for the `('. */
5918 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
5919 {
5920 cp_parser_skip_to_end_of_statement (parser);
5921 return error_mark_node;
5922 }
5923
5924 /* Begin the selection-statement. */
5925 if (keyword == RID_IF)
5926 statement = begin_if_stmt ();
5927 else
5928 statement = begin_switch_stmt ();
5929
5930 /* Parse the condition. */
5931 condition = cp_parser_condition (parser);
5932 /* Look for the `)'. */
5933 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
5934 cp_parser_skip_to_closing_parenthesis (parser, true, false,
5935 /*consume_paren=*/true);
5936
5937 if (keyword == RID_IF)
5938 {
5939 /* Add the condition. */
5940 finish_if_stmt_cond (condition, statement);
5941
5942 /* Parse the then-clause. */
5943 cp_parser_implicitly_scoped_statement (parser);
5944 finish_then_clause (statement);
5945
5946 /* If the next token is `else', parse the else-clause. */
5947 if (cp_lexer_next_token_is_keyword (parser->lexer,
5948 RID_ELSE))
5949 {
5950 /* Consume the `else' keyword. */
5951 cp_lexer_consume_token (parser->lexer);
5952 begin_else_clause (statement);
5953 /* Parse the else-clause. */
5954 cp_parser_implicitly_scoped_statement (parser);
5955 finish_else_clause (statement);
5956 }
5957
5958 /* Now we're all done with the if-statement. */
5959 finish_if_stmt (statement);
5960 }
5961 else
5962 {
5963 bool in_switch_statement_p;
5964
5965 /* Add the condition. */
5966 finish_switch_cond (condition, statement);
5967
5968 /* Parse the body of the switch-statement. */
5969 in_switch_statement_p = parser->in_switch_statement_p;
5970 parser->in_switch_statement_p = true;
5971 cp_parser_implicitly_scoped_statement (parser);
5972 parser->in_switch_statement_p = in_switch_statement_p;
5973
5974 /* Now we're all done with the switch-statement. */
5975 finish_switch_stmt (statement);
5976 }
5977
5978 return statement;
5979 }
5980 break;
5981
5982 default:
5983 cp_parser_error (parser, "expected selection-statement");
5984 return error_mark_node;
5985 }
5986 }
5987
5988 /* Parse a condition.
5989
5990 condition:
5991 expression
5992 type-specifier-seq declarator = assignment-expression
5993
5994 GNU Extension:
5995
5996 condition:
5997 type-specifier-seq declarator asm-specification [opt]
5998 attributes [opt] = assignment-expression
5999
6000 Returns the expression that should be tested. */
6001
6002 static tree
6003 cp_parser_condition (cp_parser* parser)
6004 {
6005 tree type_specifiers;
6006 const char *saved_message;
6007
6008 /* Try the declaration first. */
6009 cp_parser_parse_tentatively (parser);
6010 /* New types are not allowed in the type-specifier-seq for a
6011 condition. */
6012 saved_message = parser->type_definition_forbidden_message;
6013 parser->type_definition_forbidden_message
6014 = "types may not be defined in conditions";
6015 /* Parse the type-specifier-seq. */
6016 type_specifiers = cp_parser_type_specifier_seq (parser);
6017 /* Restore the saved message. */
6018 parser->type_definition_forbidden_message = saved_message;
6019 /* If all is well, we might be looking at a declaration. */
6020 if (!cp_parser_error_occurred (parser))
6021 {
6022 tree decl;
6023 tree asm_specification;
6024 tree attributes;
6025 tree declarator;
6026 tree initializer = NULL_TREE;
6027
6028 /* Parse the declarator. */
6029 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6030 /*ctor_dtor_or_conv_p=*/NULL,
6031 /*parenthesized_p=*/NULL);
6032 /* Parse the attributes. */
6033 attributes = cp_parser_attributes_opt (parser);
6034 /* Parse the asm-specification. */
6035 asm_specification = cp_parser_asm_specification_opt (parser);
6036 /* If the next token is not an `=', then we might still be
6037 looking at an expression. For example:
6038
6039 if (A(a).x)
6040
6041 looks like a decl-specifier-seq and a declarator -- but then
6042 there is no `=', so this is an expression. */
6043 cp_parser_require (parser, CPP_EQ, "`='");
6044 /* If we did see an `=', then we are looking at a declaration
6045 for sure. */
6046 if (cp_parser_parse_definitely (parser))
6047 {
6048 /* Create the declaration. */
6049 decl = start_decl (declarator, type_specifiers,
6050 /*initialized_p=*/true,
6051 attributes, /*prefix_attributes=*/NULL_TREE);
6052 /* Parse the assignment-expression. */
6053 initializer = cp_parser_assignment_expression (parser);
6054
6055 /* Process the initializer. */
6056 cp_finish_decl (decl,
6057 initializer,
6058 asm_specification,
6059 LOOKUP_ONLYCONVERTING);
6060
6061 return convert_from_reference (decl);
6062 }
6063 }
6064 /* If we didn't even get past the declarator successfully, we are
6065 definitely not looking at a declaration. */
6066 else
6067 cp_parser_abort_tentative_parse (parser);
6068
6069 /* Otherwise, we are looking at an expression. */
6070 return cp_parser_expression (parser);
6071 }
6072
6073 /* Parse an iteration-statement.
6074
6075 iteration-statement:
6076 while ( condition ) statement
6077 do statement while ( expression ) ;
6078 for ( for-init-statement condition [opt] ; expression [opt] )
6079 statement
6080
6081 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6082
6083 static tree
6084 cp_parser_iteration_statement (cp_parser* parser)
6085 {
6086 cp_token *token;
6087 enum rid keyword;
6088 tree statement;
6089 bool in_iteration_statement_p;
6090
6091
6092 /* Peek at the next token. */
6093 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6094 if (!token)
6095 return error_mark_node;
6096
6097 /* Remember whether or not we are already within an iteration
6098 statement. */
6099 in_iteration_statement_p = parser->in_iteration_statement_p;
6100
6101 /* See what kind of keyword it is. */
6102 keyword = token->keyword;
6103 switch (keyword)
6104 {
6105 case RID_WHILE:
6106 {
6107 tree condition;
6108
6109 /* Begin the while-statement. */
6110 statement = begin_while_stmt ();
6111 /* Look for the `('. */
6112 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6113 /* Parse the condition. */
6114 condition = cp_parser_condition (parser);
6115 finish_while_stmt_cond (condition, statement);
6116 /* Look for the `)'. */
6117 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6118 /* Parse the dependent statement. */
6119 parser->in_iteration_statement_p = true;
6120 cp_parser_already_scoped_statement (parser);
6121 parser->in_iteration_statement_p = in_iteration_statement_p;
6122 /* We're done with the while-statement. */
6123 finish_while_stmt (statement);
6124 }
6125 break;
6126
6127 case RID_DO:
6128 {
6129 tree expression;
6130
6131 /* Begin the do-statement. */
6132 statement = begin_do_stmt ();
6133 /* Parse the body of the do-statement. */
6134 parser->in_iteration_statement_p = true;
6135 cp_parser_implicitly_scoped_statement (parser);
6136 parser->in_iteration_statement_p = in_iteration_statement_p;
6137 finish_do_body (statement);
6138 /* Look for the `while' keyword. */
6139 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6140 /* Look for the `('. */
6141 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6142 /* Parse the expression. */
6143 expression = cp_parser_expression (parser);
6144 /* We're done with the do-statement. */
6145 finish_do_stmt (expression, statement);
6146 /* Look for the `)'. */
6147 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6148 /* Look for the `;'. */
6149 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6150 }
6151 break;
6152
6153 case RID_FOR:
6154 {
6155 tree condition = NULL_TREE;
6156 tree expression = NULL_TREE;
6157
6158 /* Begin the for-statement. */
6159 statement = begin_for_stmt ();
6160 /* Look for the `('. */
6161 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6162 /* Parse the initialization. */
6163 cp_parser_for_init_statement (parser);
6164 finish_for_init_stmt (statement);
6165
6166 /* If there's a condition, process it. */
6167 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6168 condition = cp_parser_condition (parser);
6169 finish_for_cond (condition, statement);
6170 /* Look for the `;'. */
6171 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6172
6173 /* If there's an expression, process it. */
6174 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6175 expression = cp_parser_expression (parser);
6176 finish_for_expr (expression, statement);
6177 /* Look for the `)'. */
6178 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6179
6180 /* Parse the body of the for-statement. */
6181 parser->in_iteration_statement_p = true;
6182 cp_parser_already_scoped_statement (parser);
6183 parser->in_iteration_statement_p = in_iteration_statement_p;
6184
6185 /* We're done with the for-statement. */
6186 finish_for_stmt (statement);
6187 }
6188 break;
6189
6190 default:
6191 cp_parser_error (parser, "expected iteration-statement");
6192 statement = error_mark_node;
6193 break;
6194 }
6195
6196 return statement;
6197 }
6198
6199 /* Parse a for-init-statement.
6200
6201 for-init-statement:
6202 expression-statement
6203 simple-declaration */
6204
6205 static void
6206 cp_parser_for_init_statement (cp_parser* parser)
6207 {
6208 /* If the next token is a `;', then we have an empty
6209 expression-statement. Grammatically, this is also a
6210 simple-declaration, but an invalid one, because it does not
6211 declare anything. Therefore, if we did not handle this case
6212 specially, we would issue an error message about an invalid
6213 declaration. */
6214 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6215 {
6216 /* We're going to speculatively look for a declaration, falling back
6217 to an expression, if necessary. */
6218 cp_parser_parse_tentatively (parser);
6219 /* Parse the declaration. */
6220 cp_parser_simple_declaration (parser,
6221 /*function_definition_allowed_p=*/false);
6222 /* If the tentative parse failed, then we shall need to look for an
6223 expression-statement. */
6224 if (cp_parser_parse_definitely (parser))
6225 return;
6226 }
6227
6228 cp_parser_expression_statement (parser, false);
6229 }
6230
6231 /* Parse a jump-statement.
6232
6233 jump-statement:
6234 break ;
6235 continue ;
6236 return expression [opt] ;
6237 goto identifier ;
6238
6239 GNU extension:
6240
6241 jump-statement:
6242 goto * expression ;
6243
6244 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_STMT, or GOTO_EXPR. */
6245
6246 static tree
6247 cp_parser_jump_statement (cp_parser* parser)
6248 {
6249 tree statement = error_mark_node;
6250 cp_token *token;
6251 enum rid keyword;
6252
6253 /* Peek at the next token. */
6254 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6255 if (!token)
6256 return error_mark_node;
6257
6258 /* See what kind of keyword it is. */
6259 keyword = token->keyword;
6260 switch (keyword)
6261 {
6262 case RID_BREAK:
6263 if (!parser->in_switch_statement_p
6264 && !parser->in_iteration_statement_p)
6265 {
6266 error ("break statement not within loop or switch");
6267 statement = error_mark_node;
6268 }
6269 else
6270 statement = finish_break_stmt ();
6271 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6272 break;
6273
6274 case RID_CONTINUE:
6275 if (!parser->in_iteration_statement_p)
6276 {
6277 error ("continue statement not within a loop");
6278 statement = error_mark_node;
6279 }
6280 else
6281 statement = finish_continue_stmt ();
6282 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6283 break;
6284
6285 case RID_RETURN:
6286 {
6287 tree expr;
6288
6289 /* If the next token is a `;', then there is no
6290 expression. */
6291 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6292 expr = cp_parser_expression (parser);
6293 else
6294 expr = NULL_TREE;
6295 /* Build the return-statement. */
6296 statement = finish_return_stmt (expr);
6297 /* Look for the final `;'. */
6298 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6299 }
6300 break;
6301
6302 case RID_GOTO:
6303 /* Create the goto-statement. */
6304 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6305 {
6306 /* Issue a warning about this use of a GNU extension. */
6307 if (pedantic)
6308 pedwarn ("ISO C++ forbids computed gotos");
6309 /* Consume the '*' token. */
6310 cp_lexer_consume_token (parser->lexer);
6311 /* Parse the dependent expression. */
6312 finish_goto_stmt (cp_parser_expression (parser));
6313 }
6314 else
6315 finish_goto_stmt (cp_parser_identifier (parser));
6316 /* Look for the final `;'. */
6317 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6318 break;
6319
6320 default:
6321 cp_parser_error (parser, "expected jump-statement");
6322 break;
6323 }
6324
6325 return statement;
6326 }
6327
6328 /* Parse a declaration-statement.
6329
6330 declaration-statement:
6331 block-declaration */
6332
6333 static void
6334 cp_parser_declaration_statement (cp_parser* parser)
6335 {
6336 /* Parse the block-declaration. */
6337 cp_parser_block_declaration (parser, /*statement_p=*/true);
6338
6339 /* Finish off the statement. */
6340 finish_stmt ();
6341 }
6342
6343 /* Some dependent statements (like `if (cond) statement'), are
6344 implicitly in their own scope. In other words, if the statement is
6345 a single statement (as opposed to a compound-statement), it is
6346 none-the-less treated as if it were enclosed in braces. Any
6347 declarations appearing in the dependent statement are out of scope
6348 after control passes that point. This function parses a statement,
6349 but ensures that is in its own scope, even if it is not a
6350 compound-statement.
6351
6352 Returns the new statement. */
6353
6354 static tree
6355 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6356 {
6357 tree statement;
6358
6359 /* If the token is not a `{', then we must take special action. */
6360 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6361 {
6362 /* Create a compound-statement. */
6363 statement = begin_compound_stmt (0);
6364 /* Parse the dependent-statement. */
6365 cp_parser_statement (parser, false);
6366 /* Finish the dummy compound-statement. */
6367 finish_compound_stmt (statement);
6368 }
6369 /* Otherwise, we simply parse the statement directly. */
6370 else
6371 statement = cp_parser_compound_statement (parser, NULL, false);
6372
6373 /* Return the statement. */
6374 return statement;
6375 }
6376
6377 /* For some dependent statements (like `while (cond) statement'), we
6378 have already created a scope. Therefore, even if the dependent
6379 statement is a compound-statement, we do not want to create another
6380 scope. */
6381
6382 static void
6383 cp_parser_already_scoped_statement (cp_parser* parser)
6384 {
6385 /* If the token is a `{', then we must take special action. */
6386 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6387 cp_parser_statement (parser, false);
6388 else
6389 {
6390 /* Avoid calling cp_parser_compound_statement, so that we
6391 don't create a new scope. Do everything else by hand. */
6392 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6393 cp_parser_statement_seq_opt (parser, false);
6394 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6395 }
6396 }
6397
6398 /* Declarations [gram.dcl.dcl] */
6399
6400 /* Parse an optional declaration-sequence.
6401
6402 declaration-seq:
6403 declaration
6404 declaration-seq declaration */
6405
6406 static void
6407 cp_parser_declaration_seq_opt (cp_parser* parser)
6408 {
6409 while (true)
6410 {
6411 cp_token *token;
6412
6413 token = cp_lexer_peek_token (parser->lexer);
6414
6415 if (token->type == CPP_CLOSE_BRACE
6416 || token->type == CPP_EOF)
6417 break;
6418
6419 if (token->type == CPP_SEMICOLON)
6420 {
6421 /* A declaration consisting of a single semicolon is
6422 invalid. Allow it unless we're being pedantic. */
6423 if (pedantic && !in_system_header)
6424 pedwarn ("extra `;'");
6425 cp_lexer_consume_token (parser->lexer);
6426 continue;
6427 }
6428
6429 /* The C lexer modifies PENDING_LANG_CHANGE when it wants the
6430 parser to enter or exit implicit `extern "C"' blocks. */
6431 while (pending_lang_change > 0)
6432 {
6433 push_lang_context (lang_name_c);
6434 --pending_lang_change;
6435 }
6436 while (pending_lang_change < 0)
6437 {
6438 pop_lang_context ();
6439 ++pending_lang_change;
6440 }
6441
6442 /* Parse the declaration itself. */
6443 cp_parser_declaration (parser);
6444 }
6445 }
6446
6447 /* Parse a declaration.
6448
6449 declaration:
6450 block-declaration
6451 function-definition
6452 template-declaration
6453 explicit-instantiation
6454 explicit-specialization
6455 linkage-specification
6456 namespace-definition
6457
6458 GNU extension:
6459
6460 declaration:
6461 __extension__ declaration */
6462
6463 static void
6464 cp_parser_declaration (cp_parser* parser)
6465 {
6466 cp_token token1;
6467 cp_token token2;
6468 int saved_pedantic;
6469
6470 /* Set this here since we can be called after
6471 pushing the linkage specification. */
6472 c_lex_string_translate = 1;
6473
6474 /* Check for the `__extension__' keyword. */
6475 if (cp_parser_extension_opt (parser, &saved_pedantic))
6476 {
6477 /* Parse the qualified declaration. */
6478 cp_parser_declaration (parser);
6479 /* Restore the PEDANTIC flag. */
6480 pedantic = saved_pedantic;
6481
6482 return;
6483 }
6484
6485 /* Try to figure out what kind of declaration is present. */
6486 token1 = *cp_lexer_peek_token (parser->lexer);
6487
6488 /* Don't translate the CPP_STRING in extern "C". */
6489 if (token1.keyword == RID_EXTERN)
6490 c_lex_string_translate = 0;
6491
6492 if (token1.type != CPP_EOF)
6493 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6494
6495 c_lex_string_translate = 1;
6496
6497 /* If the next token is `extern' and the following token is a string
6498 literal, then we have a linkage specification. */
6499 if (token1.keyword == RID_EXTERN
6500 && cp_parser_is_string_literal (&token2))
6501 cp_parser_linkage_specification (parser);
6502 /* If the next token is `template', then we have either a template
6503 declaration, an explicit instantiation, or an explicit
6504 specialization. */
6505 else if (token1.keyword == RID_TEMPLATE)
6506 {
6507 /* `template <>' indicates a template specialization. */
6508 if (token2.type == CPP_LESS
6509 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6510 cp_parser_explicit_specialization (parser);
6511 /* `template <' indicates a template declaration. */
6512 else if (token2.type == CPP_LESS)
6513 cp_parser_template_declaration (parser, /*member_p=*/false);
6514 /* Anything else must be an explicit instantiation. */
6515 else
6516 cp_parser_explicit_instantiation (parser);
6517 }
6518 /* If the next token is `export', then we have a template
6519 declaration. */
6520 else if (token1.keyword == RID_EXPORT)
6521 cp_parser_template_declaration (parser, /*member_p=*/false);
6522 /* If the next token is `extern', 'static' or 'inline' and the one
6523 after that is `template', we have a GNU extended explicit
6524 instantiation directive. */
6525 else if (cp_parser_allow_gnu_extensions_p (parser)
6526 && (token1.keyword == RID_EXTERN
6527 || token1.keyword == RID_STATIC
6528 || token1.keyword == RID_INLINE)
6529 && token2.keyword == RID_TEMPLATE)
6530 cp_parser_explicit_instantiation (parser);
6531 /* If the next token is `namespace', check for a named or unnamed
6532 namespace definition. */
6533 else if (token1.keyword == RID_NAMESPACE
6534 && (/* A named namespace definition. */
6535 (token2.type == CPP_NAME
6536 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6537 == CPP_OPEN_BRACE))
6538 /* An unnamed namespace definition. */
6539 || token2.type == CPP_OPEN_BRACE))
6540 cp_parser_namespace_definition (parser);
6541 /* We must have either a block declaration or a function
6542 definition. */
6543 else
6544 /* Try to parse a block-declaration, or a function-definition. */
6545 cp_parser_block_declaration (parser, /*statement_p=*/false);
6546 }
6547
6548 /* Parse a block-declaration.
6549
6550 block-declaration:
6551 simple-declaration
6552 asm-definition
6553 namespace-alias-definition
6554 using-declaration
6555 using-directive
6556
6557 GNU Extension:
6558
6559 block-declaration:
6560 __extension__ block-declaration
6561 label-declaration
6562
6563 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6564 part of a declaration-statement. */
6565
6566 static void
6567 cp_parser_block_declaration (cp_parser *parser,
6568 bool statement_p)
6569 {
6570 cp_token *token1;
6571 int saved_pedantic;
6572
6573 /* Check for the `__extension__' keyword. */
6574 if (cp_parser_extension_opt (parser, &saved_pedantic))
6575 {
6576 /* Parse the qualified declaration. */
6577 cp_parser_block_declaration (parser, statement_p);
6578 /* Restore the PEDANTIC flag. */
6579 pedantic = saved_pedantic;
6580
6581 return;
6582 }
6583
6584 /* Peek at the next token to figure out which kind of declaration is
6585 present. */
6586 token1 = cp_lexer_peek_token (parser->lexer);
6587
6588 /* If the next keyword is `asm', we have an asm-definition. */
6589 if (token1->keyword == RID_ASM)
6590 {
6591 if (statement_p)
6592 cp_parser_commit_to_tentative_parse (parser);
6593 cp_parser_asm_definition (parser);
6594 }
6595 /* If the next keyword is `namespace', we have a
6596 namespace-alias-definition. */
6597 else if (token1->keyword == RID_NAMESPACE)
6598 cp_parser_namespace_alias_definition (parser);
6599 /* If the next keyword is `using', we have either a
6600 using-declaration or a using-directive. */
6601 else if (token1->keyword == RID_USING)
6602 {
6603 cp_token *token2;
6604
6605 if (statement_p)
6606 cp_parser_commit_to_tentative_parse (parser);
6607 /* If the token after `using' is `namespace', then we have a
6608 using-directive. */
6609 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
6610 if (token2->keyword == RID_NAMESPACE)
6611 cp_parser_using_directive (parser);
6612 /* Otherwise, it's a using-declaration. */
6613 else
6614 cp_parser_using_declaration (parser);
6615 }
6616 /* If the next keyword is `__label__' we have a label declaration. */
6617 else if (token1->keyword == RID_LABEL)
6618 {
6619 if (statement_p)
6620 cp_parser_commit_to_tentative_parse (parser);
6621 cp_parser_label_declaration (parser);
6622 }
6623 /* Anything else must be a simple-declaration. */
6624 else
6625 cp_parser_simple_declaration (parser, !statement_p);
6626 }
6627
6628 /* Parse a simple-declaration.
6629
6630 simple-declaration:
6631 decl-specifier-seq [opt] init-declarator-list [opt] ;
6632
6633 init-declarator-list:
6634 init-declarator
6635 init-declarator-list , init-declarator
6636
6637 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
6638 function-definition as a simple-declaration. */
6639
6640 static void
6641 cp_parser_simple_declaration (cp_parser* parser,
6642 bool function_definition_allowed_p)
6643 {
6644 tree decl_specifiers;
6645 tree attributes;
6646 int declares_class_or_enum;
6647 bool saw_declarator;
6648
6649 /* Defer access checks until we know what is being declared; the
6650 checks for names appearing in the decl-specifier-seq should be
6651 done as if we were in the scope of the thing being declared. */
6652 push_deferring_access_checks (dk_deferred);
6653
6654 /* Parse the decl-specifier-seq. We have to keep track of whether
6655 or not the decl-specifier-seq declares a named class or
6656 enumeration type, since that is the only case in which the
6657 init-declarator-list is allowed to be empty.
6658
6659 [dcl.dcl]
6660
6661 In a simple-declaration, the optional init-declarator-list can be
6662 omitted only when declaring a class or enumeration, that is when
6663 the decl-specifier-seq contains either a class-specifier, an
6664 elaborated-type-specifier, or an enum-specifier. */
6665 decl_specifiers
6666 = cp_parser_decl_specifier_seq (parser,
6667 CP_PARSER_FLAGS_OPTIONAL,
6668 &attributes,
6669 &declares_class_or_enum);
6670 /* We no longer need to defer access checks. */
6671 stop_deferring_access_checks ();
6672
6673 /* In a block scope, a valid declaration must always have a
6674 decl-specifier-seq. By not trying to parse declarators, we can
6675 resolve the declaration/expression ambiguity more quickly. */
6676 if (!function_definition_allowed_p && !decl_specifiers)
6677 {
6678 cp_parser_error (parser, "expected declaration");
6679 goto done;
6680 }
6681
6682 /* If the next two tokens are both identifiers, the code is
6683 erroneous. The usual cause of this situation is code like:
6684
6685 T t;
6686
6687 where "T" should name a type -- but does not. */
6688 if (cp_parser_parse_and_diagnose_invalid_type_name (parser))
6689 {
6690 /* If parsing tentatively, we should commit; we really are
6691 looking at a declaration. */
6692 cp_parser_commit_to_tentative_parse (parser);
6693 /* Give up. */
6694 goto done;
6695 }
6696
6697 /* Keep going until we hit the `;' at the end of the simple
6698 declaration. */
6699 saw_declarator = false;
6700 while (cp_lexer_next_token_is_not (parser->lexer,
6701 CPP_SEMICOLON))
6702 {
6703 cp_token *token;
6704 bool function_definition_p;
6705 tree decl;
6706
6707 saw_declarator = true;
6708 /* Parse the init-declarator. */
6709 decl = cp_parser_init_declarator (parser, decl_specifiers, attributes,
6710 function_definition_allowed_p,
6711 /*member_p=*/false,
6712 declares_class_or_enum,
6713 &function_definition_p);
6714 /* If an error occurred while parsing tentatively, exit quickly.
6715 (That usually happens when in the body of a function; each
6716 statement is treated as a declaration-statement until proven
6717 otherwise.) */
6718 if (cp_parser_error_occurred (parser))
6719 goto done;
6720 /* Handle function definitions specially. */
6721 if (function_definition_p)
6722 {
6723 /* If the next token is a `,', then we are probably
6724 processing something like:
6725
6726 void f() {}, *p;
6727
6728 which is erroneous. */
6729 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
6730 error ("mixing declarations and function-definitions is forbidden");
6731 /* Otherwise, we're done with the list of declarators. */
6732 else
6733 {
6734 pop_deferring_access_checks ();
6735 return;
6736 }
6737 }
6738 /* The next token should be either a `,' or a `;'. */
6739 token = cp_lexer_peek_token (parser->lexer);
6740 /* If it's a `,', there are more declarators to come. */
6741 if (token->type == CPP_COMMA)
6742 cp_lexer_consume_token (parser->lexer);
6743 /* If it's a `;', we are done. */
6744 else if (token->type == CPP_SEMICOLON)
6745 break;
6746 /* Anything else is an error. */
6747 else
6748 {
6749 cp_parser_error (parser, "expected `,' or `;'");
6750 /* Skip tokens until we reach the end of the statement. */
6751 cp_parser_skip_to_end_of_statement (parser);
6752 /* If the next token is now a `;', consume it. */
6753 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
6754 cp_lexer_consume_token (parser->lexer);
6755 goto done;
6756 }
6757 /* After the first time around, a function-definition is not
6758 allowed -- even if it was OK at first. For example:
6759
6760 int i, f() {}
6761
6762 is not valid. */
6763 function_definition_allowed_p = false;
6764 }
6765
6766 /* Issue an error message if no declarators are present, and the
6767 decl-specifier-seq does not itself declare a class or
6768 enumeration. */
6769 if (!saw_declarator)
6770 {
6771 if (cp_parser_declares_only_class_p (parser))
6772 shadow_tag (decl_specifiers);
6773 /* Perform any deferred access checks. */
6774 perform_deferred_access_checks ();
6775 }
6776
6777 /* Consume the `;'. */
6778 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6779
6780 done:
6781 pop_deferring_access_checks ();
6782 }
6783
6784 /* Parse a decl-specifier-seq.
6785
6786 decl-specifier-seq:
6787 decl-specifier-seq [opt] decl-specifier
6788
6789 decl-specifier:
6790 storage-class-specifier
6791 type-specifier
6792 function-specifier
6793 friend
6794 typedef
6795
6796 GNU Extension:
6797
6798 decl-specifier:
6799 attributes
6800
6801 Returns a TREE_LIST, giving the decl-specifiers in the order they
6802 appear in the source code. The TREE_VALUE of each node is the
6803 decl-specifier. For a keyword (such as `auto' or `friend'), the
6804 TREE_VALUE is simply the corresponding TREE_IDENTIFIER. For the
6805 representation of a type-specifier, see cp_parser_type_specifier.
6806
6807 If there are attributes, they will be stored in *ATTRIBUTES,
6808 represented as described above cp_parser_attributes.
6809
6810 If FRIEND_IS_NOT_CLASS_P is non-NULL, and the `friend' specifier
6811 appears, and the entity that will be a friend is not going to be a
6812 class, then *FRIEND_IS_NOT_CLASS_P will be set to TRUE. Note that
6813 even if *FRIEND_IS_NOT_CLASS_P is FALSE, the entity to which
6814 friendship is granted might not be a class.
6815
6816 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
6817 flags:
6818
6819 1: one of the decl-specifiers is an elaborated-type-specifier
6820 (i.e., a type declaration)
6821 2: one of the decl-specifiers is an enum-specifier or a
6822 class-specifier (i.e., a type definition)
6823
6824 */
6825
6826 static tree
6827 cp_parser_decl_specifier_seq (cp_parser* parser,
6828 cp_parser_flags flags,
6829 tree* attributes,
6830 int* declares_class_or_enum)
6831 {
6832 tree decl_specs = NULL_TREE;
6833 bool friend_p = false;
6834 bool constructor_possible_p = !parser->in_declarator_p;
6835
6836 /* Assume no class or enumeration type is declared. */
6837 *declares_class_or_enum = 0;
6838
6839 /* Assume there are no attributes. */
6840 *attributes = NULL_TREE;
6841
6842 /* Keep reading specifiers until there are no more to read. */
6843 while (true)
6844 {
6845 tree decl_spec = NULL_TREE;
6846 bool constructor_p;
6847 cp_token *token;
6848
6849 /* Peek at the next token. */
6850 token = cp_lexer_peek_token (parser->lexer);
6851 /* Handle attributes. */
6852 if (token->keyword == RID_ATTRIBUTE)
6853 {
6854 /* Parse the attributes. */
6855 decl_spec = cp_parser_attributes_opt (parser);
6856 /* Add them to the list. */
6857 *attributes = chainon (*attributes, decl_spec);
6858 continue;
6859 }
6860 /* If the next token is an appropriate keyword, we can simply
6861 add it to the list. */
6862 switch (token->keyword)
6863 {
6864 case RID_FRIEND:
6865 /* decl-specifier:
6866 friend */
6867 if (friend_p)
6868 error ("duplicate `friend'");
6869 else
6870 friend_p = true;
6871 /* The representation of the specifier is simply the
6872 appropriate TREE_IDENTIFIER node. */
6873 decl_spec = token->value;
6874 /* Consume the token. */
6875 cp_lexer_consume_token (parser->lexer);
6876 break;
6877
6878 /* function-specifier:
6879 inline
6880 virtual
6881 explicit */
6882 case RID_INLINE:
6883 case RID_VIRTUAL:
6884 case RID_EXPLICIT:
6885 decl_spec = cp_parser_function_specifier_opt (parser);
6886 break;
6887
6888 /* decl-specifier:
6889 typedef */
6890 case RID_TYPEDEF:
6891 /* The representation of the specifier is simply the
6892 appropriate TREE_IDENTIFIER node. */
6893 decl_spec = token->value;
6894 /* Consume the token. */
6895 cp_lexer_consume_token (parser->lexer);
6896 /* A constructor declarator cannot appear in a typedef. */
6897 constructor_possible_p = false;
6898 /* The "typedef" keyword can only occur in a declaration; we
6899 may as well commit at this point. */
6900 cp_parser_commit_to_tentative_parse (parser);
6901 break;
6902
6903 /* storage-class-specifier:
6904 auto
6905 register
6906 static
6907 extern
6908 mutable
6909
6910 GNU Extension:
6911 thread */
6912 case RID_AUTO:
6913 case RID_REGISTER:
6914 case RID_STATIC:
6915 case RID_EXTERN:
6916 case RID_MUTABLE:
6917 case RID_THREAD:
6918 decl_spec = cp_parser_storage_class_specifier_opt (parser);
6919 break;
6920
6921 default:
6922 break;
6923 }
6924
6925 /* Constructors are a special case. The `S' in `S()' is not a
6926 decl-specifier; it is the beginning of the declarator. */
6927 constructor_p = (!decl_spec
6928 && constructor_possible_p
6929 && cp_parser_constructor_declarator_p (parser,
6930 friend_p));
6931
6932 /* If we don't have a DECL_SPEC yet, then we must be looking at
6933 a type-specifier. */
6934 if (!decl_spec && !constructor_p)
6935 {
6936 int decl_spec_declares_class_or_enum;
6937 bool is_cv_qualifier;
6938
6939 decl_spec
6940 = cp_parser_type_specifier (parser, flags,
6941 friend_p,
6942 /*is_declaration=*/true,
6943 &decl_spec_declares_class_or_enum,
6944 &is_cv_qualifier);
6945
6946 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
6947
6948 /* If this type-specifier referenced a user-defined type
6949 (a typedef, class-name, etc.), then we can't allow any
6950 more such type-specifiers henceforth.
6951
6952 [dcl.spec]
6953
6954 The longest sequence of decl-specifiers that could
6955 possibly be a type name is taken as the
6956 decl-specifier-seq of a declaration. The sequence shall
6957 be self-consistent as described below.
6958
6959 [dcl.type]
6960
6961 As a general rule, at most one type-specifier is allowed
6962 in the complete decl-specifier-seq of a declaration. The
6963 only exceptions are the following:
6964
6965 -- const or volatile can be combined with any other
6966 type-specifier.
6967
6968 -- signed or unsigned can be combined with char, long,
6969 short, or int.
6970
6971 -- ..
6972
6973 Example:
6974
6975 typedef char* Pc;
6976 void g (const int Pc);
6977
6978 Here, Pc is *not* part of the decl-specifier seq; it's
6979 the declarator. Therefore, once we see a type-specifier
6980 (other than a cv-qualifier), we forbid any additional
6981 user-defined types. We *do* still allow things like `int
6982 int' to be considered a decl-specifier-seq, and issue the
6983 error message later. */
6984 if (decl_spec && !is_cv_qualifier)
6985 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
6986 /* A constructor declarator cannot follow a type-specifier. */
6987 if (decl_spec)
6988 constructor_possible_p = false;
6989 }
6990
6991 /* If we still do not have a DECL_SPEC, then there are no more
6992 decl-specifiers. */
6993 if (!decl_spec)
6994 {
6995 /* Issue an error message, unless the entire construct was
6996 optional. */
6997 if (!(flags & CP_PARSER_FLAGS_OPTIONAL))
6998 {
6999 cp_parser_error (parser, "expected decl specifier");
7000 return error_mark_node;
7001 }
7002
7003 break;
7004 }
7005
7006 /* Add the DECL_SPEC to the list of specifiers. */
7007 if (decl_specs == NULL || TREE_VALUE (decl_specs) != error_mark_node)
7008 decl_specs = tree_cons (NULL_TREE, decl_spec, decl_specs);
7009
7010 /* After we see one decl-specifier, further decl-specifiers are
7011 always optional. */
7012 flags |= CP_PARSER_FLAGS_OPTIONAL;
7013 }
7014
7015 /* Don't allow a friend specifier with a class definition. */
7016 if (friend_p && (*declares_class_or_enum & 2))
7017 error ("class definition may not be declared a friend");
7018
7019 /* We have built up the DECL_SPECS in reverse order. Return them in
7020 the correct order. */
7021 return nreverse (decl_specs);
7022 }
7023
7024 /* Parse an (optional) storage-class-specifier.
7025
7026 storage-class-specifier:
7027 auto
7028 register
7029 static
7030 extern
7031 mutable
7032
7033 GNU Extension:
7034
7035 storage-class-specifier:
7036 thread
7037
7038 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7039
7040 static tree
7041 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7042 {
7043 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7044 {
7045 case RID_AUTO:
7046 case RID_REGISTER:
7047 case RID_STATIC:
7048 case RID_EXTERN:
7049 case RID_MUTABLE:
7050 case RID_THREAD:
7051 /* Consume the token. */
7052 return cp_lexer_consume_token (parser->lexer)->value;
7053
7054 default:
7055 return NULL_TREE;
7056 }
7057 }
7058
7059 /* Parse an (optional) function-specifier.
7060
7061 function-specifier:
7062 inline
7063 virtual
7064 explicit
7065
7066 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7067
7068 static tree
7069 cp_parser_function_specifier_opt (cp_parser* parser)
7070 {
7071 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7072 {
7073 case RID_INLINE:
7074 case RID_VIRTUAL:
7075 case RID_EXPLICIT:
7076 /* Consume the token. */
7077 return cp_lexer_consume_token (parser->lexer)->value;
7078
7079 default:
7080 return NULL_TREE;
7081 }
7082 }
7083
7084 /* Parse a linkage-specification.
7085
7086 linkage-specification:
7087 extern string-literal { declaration-seq [opt] }
7088 extern string-literal declaration */
7089
7090 static void
7091 cp_parser_linkage_specification (cp_parser* parser)
7092 {
7093 cp_token *token;
7094 tree linkage;
7095
7096 /* Look for the `extern' keyword. */
7097 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7098
7099 /* Peek at the next token. */
7100 token = cp_lexer_peek_token (parser->lexer);
7101 /* If it's not a string-literal, then there's a problem. */
7102 if (!cp_parser_is_string_literal (token))
7103 {
7104 cp_parser_error (parser, "expected language-name");
7105 return;
7106 }
7107 /* Consume the token. */
7108 cp_lexer_consume_token (parser->lexer);
7109
7110 /* Transform the literal into an identifier. If the literal is a
7111 wide-character string, or contains embedded NULs, then we can't
7112 handle it as the user wants. */
7113 if (token->type == CPP_WSTRING
7114 || (strlen (TREE_STRING_POINTER (token->value))
7115 != (size_t) (TREE_STRING_LENGTH (token->value) - 1)))
7116 {
7117 cp_parser_error (parser, "invalid linkage-specification");
7118 /* Assume C++ linkage. */
7119 linkage = get_identifier ("c++");
7120 }
7121 /* If the string is chained to another string, take the latter,
7122 that's the untranslated string. */
7123 else if (TREE_CHAIN (token->value))
7124 linkage = get_identifier (TREE_STRING_POINTER (TREE_CHAIN (token->value)));
7125 /* If it's a simple string constant, things are easier. */
7126 else
7127 linkage = get_identifier (TREE_STRING_POINTER (token->value));
7128
7129 /* We're now using the new linkage. */
7130 push_lang_context (linkage);
7131
7132 /* If the next token is a `{', then we're using the first
7133 production. */
7134 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7135 {
7136 /* Consume the `{' token. */
7137 cp_lexer_consume_token (parser->lexer);
7138 /* Parse the declarations. */
7139 cp_parser_declaration_seq_opt (parser);
7140 /* Look for the closing `}'. */
7141 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7142 }
7143 /* Otherwise, there's just one declaration. */
7144 else
7145 {
7146 bool saved_in_unbraced_linkage_specification_p;
7147
7148 saved_in_unbraced_linkage_specification_p
7149 = parser->in_unbraced_linkage_specification_p;
7150 parser->in_unbraced_linkage_specification_p = true;
7151 have_extern_spec = true;
7152 cp_parser_declaration (parser);
7153 have_extern_spec = false;
7154 parser->in_unbraced_linkage_specification_p
7155 = saved_in_unbraced_linkage_specification_p;
7156 }
7157
7158 /* We're done with the linkage-specification. */
7159 pop_lang_context ();
7160 }
7161
7162 /* Special member functions [gram.special] */
7163
7164 /* Parse a conversion-function-id.
7165
7166 conversion-function-id:
7167 operator conversion-type-id
7168
7169 Returns an IDENTIFIER_NODE representing the operator. */
7170
7171 static tree
7172 cp_parser_conversion_function_id (cp_parser* parser)
7173 {
7174 tree type;
7175 tree saved_scope;
7176 tree saved_qualifying_scope;
7177 tree saved_object_scope;
7178 bool pop_p = false;
7179
7180 /* Look for the `operator' token. */
7181 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7182 return error_mark_node;
7183 /* When we parse the conversion-type-id, the current scope will be
7184 reset. However, we need that information in able to look up the
7185 conversion function later, so we save it here. */
7186 saved_scope = parser->scope;
7187 saved_qualifying_scope = parser->qualifying_scope;
7188 saved_object_scope = parser->object_scope;
7189 /* We must enter the scope of the class so that the names of
7190 entities declared within the class are available in the
7191 conversion-type-id. For example, consider:
7192
7193 struct S {
7194 typedef int I;
7195 operator I();
7196 };
7197
7198 S::operator I() { ... }
7199
7200 In order to see that `I' is a type-name in the definition, we
7201 must be in the scope of `S'. */
7202 if (saved_scope)
7203 pop_p = push_scope (saved_scope);
7204 /* Parse the conversion-type-id. */
7205 type = cp_parser_conversion_type_id (parser);
7206 /* Leave the scope of the class, if any. */
7207 if (pop_p)
7208 pop_scope (saved_scope);
7209 /* Restore the saved scope. */
7210 parser->scope = saved_scope;
7211 parser->qualifying_scope = saved_qualifying_scope;
7212 parser->object_scope = saved_object_scope;
7213 /* If the TYPE is invalid, indicate failure. */
7214 if (type == error_mark_node)
7215 return error_mark_node;
7216 return mangle_conv_op_name_for_type (type);
7217 }
7218
7219 /* Parse a conversion-type-id:
7220
7221 conversion-type-id:
7222 type-specifier-seq conversion-declarator [opt]
7223
7224 Returns the TYPE specified. */
7225
7226 static tree
7227 cp_parser_conversion_type_id (cp_parser* parser)
7228 {
7229 tree attributes;
7230 tree type_specifiers;
7231 tree declarator;
7232
7233 /* Parse the attributes. */
7234 attributes = cp_parser_attributes_opt (parser);
7235 /* Parse the type-specifiers. */
7236 type_specifiers = cp_parser_type_specifier_seq (parser);
7237 /* If that didn't work, stop. */
7238 if (type_specifiers == error_mark_node)
7239 return error_mark_node;
7240 /* Parse the conversion-declarator. */
7241 declarator = cp_parser_conversion_declarator_opt (parser);
7242
7243 return grokdeclarator (declarator, type_specifiers, TYPENAME,
7244 /*initialized=*/0, &attributes);
7245 }
7246
7247 /* Parse an (optional) conversion-declarator.
7248
7249 conversion-declarator:
7250 ptr-operator conversion-declarator [opt]
7251
7252 Returns a representation of the declarator. See
7253 cp_parser_declarator for details. */
7254
7255 static tree
7256 cp_parser_conversion_declarator_opt (cp_parser* parser)
7257 {
7258 enum tree_code code;
7259 tree class_type;
7260 tree cv_qualifier_seq;
7261
7262 /* We don't know if there's a ptr-operator next, or not. */
7263 cp_parser_parse_tentatively (parser);
7264 /* Try the ptr-operator. */
7265 code = cp_parser_ptr_operator (parser, &class_type,
7266 &cv_qualifier_seq);
7267 /* If it worked, look for more conversion-declarators. */
7268 if (cp_parser_parse_definitely (parser))
7269 {
7270 tree declarator;
7271
7272 /* Parse another optional declarator. */
7273 declarator = cp_parser_conversion_declarator_opt (parser);
7274
7275 /* Create the representation of the declarator. */
7276 if (code == INDIRECT_REF)
7277 declarator = make_pointer_declarator (cv_qualifier_seq,
7278 declarator);
7279 else
7280 declarator = make_reference_declarator (cv_qualifier_seq,
7281 declarator);
7282
7283 /* Handle the pointer-to-member case. */
7284 if (class_type)
7285 declarator = build_nt (SCOPE_REF, class_type, declarator);
7286
7287 return declarator;
7288 }
7289
7290 return NULL_TREE;
7291 }
7292
7293 /* Parse an (optional) ctor-initializer.
7294
7295 ctor-initializer:
7296 : mem-initializer-list
7297
7298 Returns TRUE iff the ctor-initializer was actually present. */
7299
7300 static bool
7301 cp_parser_ctor_initializer_opt (cp_parser* parser)
7302 {
7303 /* If the next token is not a `:', then there is no
7304 ctor-initializer. */
7305 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7306 {
7307 /* Do default initialization of any bases and members. */
7308 if (DECL_CONSTRUCTOR_P (current_function_decl))
7309 finish_mem_initializers (NULL_TREE);
7310
7311 return false;
7312 }
7313
7314 /* Consume the `:' token. */
7315 cp_lexer_consume_token (parser->lexer);
7316 /* And the mem-initializer-list. */
7317 cp_parser_mem_initializer_list (parser);
7318
7319 return true;
7320 }
7321
7322 /* Parse a mem-initializer-list.
7323
7324 mem-initializer-list:
7325 mem-initializer
7326 mem-initializer , mem-initializer-list */
7327
7328 static void
7329 cp_parser_mem_initializer_list (cp_parser* parser)
7330 {
7331 tree mem_initializer_list = NULL_TREE;
7332
7333 /* Let the semantic analysis code know that we are starting the
7334 mem-initializer-list. */
7335 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7336 error ("only constructors take base initializers");
7337
7338 /* Loop through the list. */
7339 while (true)
7340 {
7341 tree mem_initializer;
7342
7343 /* Parse the mem-initializer. */
7344 mem_initializer = cp_parser_mem_initializer (parser);
7345 /* Add it to the list, unless it was erroneous. */
7346 if (mem_initializer)
7347 {
7348 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7349 mem_initializer_list = mem_initializer;
7350 }
7351 /* If the next token is not a `,', we're done. */
7352 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7353 break;
7354 /* Consume the `,' token. */
7355 cp_lexer_consume_token (parser->lexer);
7356 }
7357
7358 /* Perform semantic analysis. */
7359 if (DECL_CONSTRUCTOR_P (current_function_decl))
7360 finish_mem_initializers (mem_initializer_list);
7361 }
7362
7363 /* Parse a mem-initializer.
7364
7365 mem-initializer:
7366 mem-initializer-id ( expression-list [opt] )
7367
7368 GNU extension:
7369
7370 mem-initializer:
7371 ( expression-list [opt] )
7372
7373 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7374 class) or FIELD_DECL (for a non-static data member) to initialize;
7375 the TREE_VALUE is the expression-list. */
7376
7377 static tree
7378 cp_parser_mem_initializer (cp_parser* parser)
7379 {
7380 tree mem_initializer_id;
7381 tree expression_list;
7382 tree member;
7383
7384 /* Find out what is being initialized. */
7385 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7386 {
7387 pedwarn ("anachronistic old-style base class initializer");
7388 mem_initializer_id = NULL_TREE;
7389 }
7390 else
7391 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7392 member = expand_member_init (mem_initializer_id);
7393 if (member && !DECL_P (member))
7394 in_base_initializer = 1;
7395
7396 expression_list
7397 = cp_parser_parenthesized_expression_list (parser, false,
7398 /*non_constant_p=*/NULL);
7399 if (!expression_list)
7400 expression_list = void_type_node;
7401
7402 in_base_initializer = 0;
7403
7404 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7405 }
7406
7407 /* Parse a mem-initializer-id.
7408
7409 mem-initializer-id:
7410 :: [opt] nested-name-specifier [opt] class-name
7411 identifier
7412
7413 Returns a TYPE indicating the class to be initializer for the first
7414 production. Returns an IDENTIFIER_NODE indicating the data member
7415 to be initialized for the second production. */
7416
7417 static tree
7418 cp_parser_mem_initializer_id (cp_parser* parser)
7419 {
7420 bool global_scope_p;
7421 bool nested_name_specifier_p;
7422 bool template_p = false;
7423 tree id;
7424
7425 /* `typename' is not allowed in this context ([temp.res]). */
7426 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7427 {
7428 error ("keyword `typename' not allowed in this context (a qualified "
7429 "member initializer is implicitly a type)");
7430 cp_lexer_consume_token (parser->lexer);
7431 }
7432 /* Look for the optional `::' operator. */
7433 global_scope_p
7434 = (cp_parser_global_scope_opt (parser,
7435 /*current_scope_valid_p=*/false)
7436 != NULL_TREE);
7437 /* Look for the optional nested-name-specifier. The simplest way to
7438 implement:
7439
7440 [temp.res]
7441
7442 The keyword `typename' is not permitted in a base-specifier or
7443 mem-initializer; in these contexts a qualified name that
7444 depends on a template-parameter is implicitly assumed to be a
7445 type name.
7446
7447 is to assume that we have seen the `typename' keyword at this
7448 point. */
7449 nested_name_specifier_p
7450 = (cp_parser_nested_name_specifier_opt (parser,
7451 /*typename_keyword_p=*/true,
7452 /*check_dependency_p=*/true,
7453 /*type_p=*/true,
7454 /*is_declaration=*/true)
7455 != NULL_TREE);
7456 if (nested_name_specifier_p)
7457 template_p = cp_parser_optional_template_keyword (parser);
7458 /* If there is a `::' operator or a nested-name-specifier, then we
7459 are definitely looking for a class-name. */
7460 if (global_scope_p || nested_name_specifier_p)
7461 return cp_parser_class_name (parser,
7462 /*typename_keyword_p=*/true,
7463 /*template_keyword_p=*/template_p,
7464 /*type_p=*/false,
7465 /*check_dependency_p=*/true,
7466 /*class_head_p=*/false,
7467 /*is_declaration=*/true);
7468 /* Otherwise, we could also be looking for an ordinary identifier. */
7469 cp_parser_parse_tentatively (parser);
7470 /* Try a class-name. */
7471 id = cp_parser_class_name (parser,
7472 /*typename_keyword_p=*/true,
7473 /*template_keyword_p=*/false,
7474 /*type_p=*/false,
7475 /*check_dependency_p=*/true,
7476 /*class_head_p=*/false,
7477 /*is_declaration=*/true);
7478 /* If we found one, we're done. */
7479 if (cp_parser_parse_definitely (parser))
7480 return id;
7481 /* Otherwise, look for an ordinary identifier. */
7482 return cp_parser_identifier (parser);
7483 }
7484
7485 /* Overloading [gram.over] */
7486
7487 /* Parse an operator-function-id.
7488
7489 operator-function-id:
7490 operator operator
7491
7492 Returns an IDENTIFIER_NODE for the operator which is a
7493 human-readable spelling of the identifier, e.g., `operator +'. */
7494
7495 static tree
7496 cp_parser_operator_function_id (cp_parser* parser)
7497 {
7498 /* Look for the `operator' keyword. */
7499 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7500 return error_mark_node;
7501 /* And then the name of the operator itself. */
7502 return cp_parser_operator (parser);
7503 }
7504
7505 /* Parse an operator.
7506
7507 operator:
7508 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7509 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7510 || ++ -- , ->* -> () []
7511
7512 GNU Extensions:
7513
7514 operator:
7515 <? >? <?= >?=
7516
7517 Returns an IDENTIFIER_NODE for the operator which is a
7518 human-readable spelling of the identifier, e.g., `operator +'. */
7519
7520 static tree
7521 cp_parser_operator (cp_parser* parser)
7522 {
7523 tree id = NULL_TREE;
7524 cp_token *token;
7525
7526 /* Peek at the next token. */
7527 token = cp_lexer_peek_token (parser->lexer);
7528 /* Figure out which operator we have. */
7529 switch (token->type)
7530 {
7531 case CPP_KEYWORD:
7532 {
7533 enum tree_code op;
7534
7535 /* The keyword should be either `new' or `delete'. */
7536 if (token->keyword == RID_NEW)
7537 op = NEW_EXPR;
7538 else if (token->keyword == RID_DELETE)
7539 op = DELETE_EXPR;
7540 else
7541 break;
7542
7543 /* Consume the `new' or `delete' token. */
7544 cp_lexer_consume_token (parser->lexer);
7545
7546 /* Peek at the next token. */
7547 token = cp_lexer_peek_token (parser->lexer);
7548 /* If it's a `[' token then this is the array variant of the
7549 operator. */
7550 if (token->type == CPP_OPEN_SQUARE)
7551 {
7552 /* Consume the `[' token. */
7553 cp_lexer_consume_token (parser->lexer);
7554 /* Look for the `]' token. */
7555 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7556 id = ansi_opname (op == NEW_EXPR
7557 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7558 }
7559 /* Otherwise, we have the non-array variant. */
7560 else
7561 id = ansi_opname (op);
7562
7563 return id;
7564 }
7565
7566 case CPP_PLUS:
7567 id = ansi_opname (PLUS_EXPR);
7568 break;
7569
7570 case CPP_MINUS:
7571 id = ansi_opname (MINUS_EXPR);
7572 break;
7573
7574 case CPP_MULT:
7575 id = ansi_opname (MULT_EXPR);
7576 break;
7577
7578 case CPP_DIV:
7579 id = ansi_opname (TRUNC_DIV_EXPR);
7580 break;
7581
7582 case CPP_MOD:
7583 id = ansi_opname (TRUNC_MOD_EXPR);
7584 break;
7585
7586 case CPP_XOR:
7587 id = ansi_opname (BIT_XOR_EXPR);
7588 break;
7589
7590 case CPP_AND:
7591 id = ansi_opname (BIT_AND_EXPR);
7592 break;
7593
7594 case CPP_OR:
7595 id = ansi_opname (BIT_IOR_EXPR);
7596 break;
7597
7598 case CPP_COMPL:
7599 id = ansi_opname (BIT_NOT_EXPR);
7600 break;
7601
7602 case CPP_NOT:
7603 id = ansi_opname (TRUTH_NOT_EXPR);
7604 break;
7605
7606 case CPP_EQ:
7607 id = ansi_assopname (NOP_EXPR);
7608 break;
7609
7610 case CPP_LESS:
7611 id = ansi_opname (LT_EXPR);
7612 break;
7613
7614 case CPP_GREATER:
7615 id = ansi_opname (GT_EXPR);
7616 break;
7617
7618 case CPP_PLUS_EQ:
7619 id = ansi_assopname (PLUS_EXPR);
7620 break;
7621
7622 case CPP_MINUS_EQ:
7623 id = ansi_assopname (MINUS_EXPR);
7624 break;
7625
7626 case CPP_MULT_EQ:
7627 id = ansi_assopname (MULT_EXPR);
7628 break;
7629
7630 case CPP_DIV_EQ:
7631 id = ansi_assopname (TRUNC_DIV_EXPR);
7632 break;
7633
7634 case CPP_MOD_EQ:
7635 id = ansi_assopname (TRUNC_MOD_EXPR);
7636 break;
7637
7638 case CPP_XOR_EQ:
7639 id = ansi_assopname (BIT_XOR_EXPR);
7640 break;
7641
7642 case CPP_AND_EQ:
7643 id = ansi_assopname (BIT_AND_EXPR);
7644 break;
7645
7646 case CPP_OR_EQ:
7647 id = ansi_assopname (BIT_IOR_EXPR);
7648 break;
7649
7650 case CPP_LSHIFT:
7651 id = ansi_opname (LSHIFT_EXPR);
7652 break;
7653
7654 case CPP_RSHIFT:
7655 id = ansi_opname (RSHIFT_EXPR);
7656 break;
7657
7658 case CPP_LSHIFT_EQ:
7659 id = ansi_assopname (LSHIFT_EXPR);
7660 break;
7661
7662 case CPP_RSHIFT_EQ:
7663 id = ansi_assopname (RSHIFT_EXPR);
7664 break;
7665
7666 case CPP_EQ_EQ:
7667 id = ansi_opname (EQ_EXPR);
7668 break;
7669
7670 case CPP_NOT_EQ:
7671 id = ansi_opname (NE_EXPR);
7672 break;
7673
7674 case CPP_LESS_EQ:
7675 id = ansi_opname (LE_EXPR);
7676 break;
7677
7678 case CPP_GREATER_EQ:
7679 id = ansi_opname (GE_EXPR);
7680 break;
7681
7682 case CPP_AND_AND:
7683 id = ansi_opname (TRUTH_ANDIF_EXPR);
7684 break;
7685
7686 case CPP_OR_OR:
7687 id = ansi_opname (TRUTH_ORIF_EXPR);
7688 break;
7689
7690 case CPP_PLUS_PLUS:
7691 id = ansi_opname (POSTINCREMENT_EXPR);
7692 break;
7693
7694 case CPP_MINUS_MINUS:
7695 id = ansi_opname (PREDECREMENT_EXPR);
7696 break;
7697
7698 case CPP_COMMA:
7699 id = ansi_opname (COMPOUND_EXPR);
7700 break;
7701
7702 case CPP_DEREF_STAR:
7703 id = ansi_opname (MEMBER_REF);
7704 break;
7705
7706 case CPP_DEREF:
7707 id = ansi_opname (COMPONENT_REF);
7708 break;
7709
7710 case CPP_OPEN_PAREN:
7711 /* Consume the `('. */
7712 cp_lexer_consume_token (parser->lexer);
7713 /* Look for the matching `)'. */
7714 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
7715 return ansi_opname (CALL_EXPR);
7716
7717 case CPP_OPEN_SQUARE:
7718 /* Consume the `['. */
7719 cp_lexer_consume_token (parser->lexer);
7720 /* Look for the matching `]'. */
7721 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7722 return ansi_opname (ARRAY_REF);
7723
7724 /* Extensions. */
7725 case CPP_MIN:
7726 id = ansi_opname (MIN_EXPR);
7727 break;
7728
7729 case CPP_MAX:
7730 id = ansi_opname (MAX_EXPR);
7731 break;
7732
7733 case CPP_MIN_EQ:
7734 id = ansi_assopname (MIN_EXPR);
7735 break;
7736
7737 case CPP_MAX_EQ:
7738 id = ansi_assopname (MAX_EXPR);
7739 break;
7740
7741 default:
7742 /* Anything else is an error. */
7743 break;
7744 }
7745
7746 /* If we have selected an identifier, we need to consume the
7747 operator token. */
7748 if (id)
7749 cp_lexer_consume_token (parser->lexer);
7750 /* Otherwise, no valid operator name was present. */
7751 else
7752 {
7753 cp_parser_error (parser, "expected operator");
7754 id = error_mark_node;
7755 }
7756
7757 return id;
7758 }
7759
7760 /* Parse a template-declaration.
7761
7762 template-declaration:
7763 export [opt] template < template-parameter-list > declaration
7764
7765 If MEMBER_P is TRUE, this template-declaration occurs within a
7766 class-specifier.
7767
7768 The grammar rule given by the standard isn't correct. What
7769 is really meant is:
7770
7771 template-declaration:
7772 export [opt] template-parameter-list-seq
7773 decl-specifier-seq [opt] init-declarator [opt] ;
7774 export [opt] template-parameter-list-seq
7775 function-definition
7776
7777 template-parameter-list-seq:
7778 template-parameter-list-seq [opt]
7779 template < template-parameter-list > */
7780
7781 static void
7782 cp_parser_template_declaration (cp_parser* parser, bool member_p)
7783 {
7784 /* Check for `export'. */
7785 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
7786 {
7787 /* Consume the `export' token. */
7788 cp_lexer_consume_token (parser->lexer);
7789 /* Warn that we do not support `export'. */
7790 warning ("keyword `export' not implemented, and will be ignored");
7791 }
7792
7793 cp_parser_template_declaration_after_export (parser, member_p);
7794 }
7795
7796 /* Parse a template-parameter-list.
7797
7798 template-parameter-list:
7799 template-parameter
7800 template-parameter-list , template-parameter
7801
7802 Returns a TREE_LIST. Each node represents a template parameter.
7803 The nodes are connected via their TREE_CHAINs. */
7804
7805 static tree
7806 cp_parser_template_parameter_list (cp_parser* parser)
7807 {
7808 tree parameter_list = NULL_TREE;
7809
7810 while (true)
7811 {
7812 tree parameter;
7813 cp_token *token;
7814
7815 /* Parse the template-parameter. */
7816 parameter = cp_parser_template_parameter (parser);
7817 /* Add it to the list. */
7818 parameter_list = process_template_parm (parameter_list,
7819 parameter);
7820
7821 /* Peek at the next token. */
7822 token = cp_lexer_peek_token (parser->lexer);
7823 /* If it's not a `,', we're done. */
7824 if (token->type != CPP_COMMA)
7825 break;
7826 /* Otherwise, consume the `,' token. */
7827 cp_lexer_consume_token (parser->lexer);
7828 }
7829
7830 return parameter_list;
7831 }
7832
7833 /* Parse a template-parameter.
7834
7835 template-parameter:
7836 type-parameter
7837 parameter-declaration
7838
7839 Returns a TREE_LIST. The TREE_VALUE represents the parameter. The
7840 TREE_PURPOSE is the default value, if any. */
7841
7842 static tree
7843 cp_parser_template_parameter (cp_parser* parser)
7844 {
7845 cp_token *token;
7846
7847 /* Peek at the next token. */
7848 token = cp_lexer_peek_token (parser->lexer);
7849 /* If it is `class' or `template', we have a type-parameter. */
7850 if (token->keyword == RID_TEMPLATE)
7851 return cp_parser_type_parameter (parser);
7852 /* If it is `class' or `typename' we do not know yet whether it is a
7853 type parameter or a non-type parameter. Consider:
7854
7855 template <typename T, typename T::X X> ...
7856
7857 or:
7858
7859 template <class C, class D*> ...
7860
7861 Here, the first parameter is a type parameter, and the second is
7862 a non-type parameter. We can tell by looking at the token after
7863 the identifier -- if it is a `,', `=', or `>' then we have a type
7864 parameter. */
7865 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
7866 {
7867 /* Peek at the token after `class' or `typename'. */
7868 token = cp_lexer_peek_nth_token (parser->lexer, 2);
7869 /* If it's an identifier, skip it. */
7870 if (token->type == CPP_NAME)
7871 token = cp_lexer_peek_nth_token (parser->lexer, 3);
7872 /* Now, see if the token looks like the end of a template
7873 parameter. */
7874 if (token->type == CPP_COMMA
7875 || token->type == CPP_EQ
7876 || token->type == CPP_GREATER)
7877 return cp_parser_type_parameter (parser);
7878 }
7879
7880 /* Otherwise, it is a non-type parameter.
7881
7882 [temp.param]
7883
7884 When parsing a default template-argument for a non-type
7885 template-parameter, the first non-nested `>' is taken as the end
7886 of the template parameter-list rather than a greater-than
7887 operator. */
7888 return
7889 cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
7890 /*parenthesized_p=*/NULL);
7891 }
7892
7893 /* Parse a type-parameter.
7894
7895 type-parameter:
7896 class identifier [opt]
7897 class identifier [opt] = type-id
7898 typename identifier [opt]
7899 typename identifier [opt] = type-id
7900 template < template-parameter-list > class identifier [opt]
7901 template < template-parameter-list > class identifier [opt]
7902 = id-expression
7903
7904 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
7905 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
7906 the declaration of the parameter. */
7907
7908 static tree
7909 cp_parser_type_parameter (cp_parser* parser)
7910 {
7911 cp_token *token;
7912 tree parameter;
7913
7914 /* Look for a keyword to tell us what kind of parameter this is. */
7915 token = cp_parser_require (parser, CPP_KEYWORD,
7916 "`class', `typename', or `template'");
7917 if (!token)
7918 return error_mark_node;
7919
7920 switch (token->keyword)
7921 {
7922 case RID_CLASS:
7923 case RID_TYPENAME:
7924 {
7925 tree identifier;
7926 tree default_argument;
7927
7928 /* If the next token is an identifier, then it names the
7929 parameter. */
7930 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
7931 identifier = cp_parser_identifier (parser);
7932 else
7933 identifier = NULL_TREE;
7934
7935 /* Create the parameter. */
7936 parameter = finish_template_type_parm (class_type_node, identifier);
7937
7938 /* If the next token is an `=', we have a default argument. */
7939 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
7940 {
7941 /* Consume the `=' token. */
7942 cp_lexer_consume_token (parser->lexer);
7943 /* Parse the default-argument. */
7944 default_argument = cp_parser_type_id (parser);
7945 }
7946 else
7947 default_argument = NULL_TREE;
7948
7949 /* Create the combined representation of the parameter and the
7950 default argument. */
7951 parameter = build_tree_list (default_argument, parameter);
7952 }
7953 break;
7954
7955 case RID_TEMPLATE:
7956 {
7957 tree parameter_list;
7958 tree identifier;
7959 tree default_argument;
7960
7961 /* Look for the `<'. */
7962 cp_parser_require (parser, CPP_LESS, "`<'");
7963 /* Parse the template-parameter-list. */
7964 begin_template_parm_list ();
7965 parameter_list
7966 = cp_parser_template_parameter_list (parser);
7967 parameter_list = end_template_parm_list (parameter_list);
7968 /* Look for the `>'. */
7969 cp_parser_require (parser, CPP_GREATER, "`>'");
7970 /* Look for the `class' keyword. */
7971 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
7972 /* If the next token is an `=', then there is a
7973 default-argument. If the next token is a `>', we are at
7974 the end of the parameter-list. If the next token is a `,',
7975 then we are at the end of this parameter. */
7976 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
7977 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
7978 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7979 identifier = cp_parser_identifier (parser);
7980 else
7981 identifier = NULL_TREE;
7982 /* Create the template parameter. */
7983 parameter = finish_template_template_parm (class_type_node,
7984 identifier);
7985
7986 /* If the next token is an `=', then there is a
7987 default-argument. */
7988 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
7989 {
7990 bool is_template;
7991
7992 /* Consume the `='. */
7993 cp_lexer_consume_token (parser->lexer);
7994 /* Parse the id-expression. */
7995 default_argument
7996 = cp_parser_id_expression (parser,
7997 /*template_keyword_p=*/false,
7998 /*check_dependency_p=*/true,
7999 /*template_p=*/&is_template,
8000 /*declarator_p=*/false);
8001 if (TREE_CODE (default_argument) == TYPE_DECL)
8002 /* If the id-expression was a template-id that refers to
8003 a template-class, we already have the declaration here,
8004 so no further lookup is needed. */
8005 ;
8006 else
8007 /* Look up the name. */
8008 default_argument
8009 = cp_parser_lookup_name (parser, default_argument,
8010 /*is_type=*/false,
8011 /*is_template=*/is_template,
8012 /*is_namespace=*/false,
8013 /*check_dependency=*/true);
8014 /* See if the default argument is valid. */
8015 default_argument
8016 = check_template_template_default_arg (default_argument);
8017 }
8018 else
8019 default_argument = NULL_TREE;
8020
8021 /* Create the combined representation of the parameter and the
8022 default argument. */
8023 parameter = build_tree_list (default_argument, parameter);
8024 }
8025 break;
8026
8027 default:
8028 /* Anything else is an error. */
8029 cp_parser_error (parser,
8030 "expected `class', `typename', or `template'");
8031 parameter = error_mark_node;
8032 }
8033
8034 return parameter;
8035 }
8036
8037 /* Parse a template-id.
8038
8039 template-id:
8040 template-name < template-argument-list [opt] >
8041
8042 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8043 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8044 returned. Otherwise, if the template-name names a function, or set
8045 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8046 names a class, returns a TYPE_DECL for the specialization.
8047
8048 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8049 uninstantiated templates. */
8050
8051 static tree
8052 cp_parser_template_id (cp_parser *parser,
8053 bool template_keyword_p,
8054 bool check_dependency_p,
8055 bool is_declaration)
8056 {
8057 tree template;
8058 tree arguments;
8059 tree template_id;
8060 ptrdiff_t start_of_id;
8061 tree access_check = NULL_TREE;
8062 cp_token *next_token, *next_token_2;
8063 bool is_identifier;
8064
8065 /* If the next token corresponds to a template-id, there is no need
8066 to reparse it. */
8067 next_token = cp_lexer_peek_token (parser->lexer);
8068 if (next_token->type == CPP_TEMPLATE_ID)
8069 {
8070 tree value;
8071 tree check;
8072
8073 /* Get the stored value. */
8074 value = cp_lexer_consume_token (parser->lexer)->value;
8075 /* Perform any access checks that were deferred. */
8076 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8077 perform_or_defer_access_check (TREE_PURPOSE (check),
8078 TREE_VALUE (check));
8079 /* Return the stored value. */
8080 return TREE_VALUE (value);
8081 }
8082
8083 /* Avoid performing name lookup if there is no possibility of
8084 finding a template-id. */
8085 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8086 || (next_token->type == CPP_NAME
8087 && !cp_parser_nth_token_starts_template_argument_list_p
8088 (parser, 2)))
8089 {
8090 cp_parser_error (parser, "expected template-id");
8091 return error_mark_node;
8092 }
8093
8094 /* Remember where the template-id starts. */
8095 if (cp_parser_parsing_tentatively (parser)
8096 && !cp_parser_committed_to_tentative_parse (parser))
8097 {
8098 next_token = cp_lexer_peek_token (parser->lexer);
8099 start_of_id = cp_lexer_token_difference (parser->lexer,
8100 parser->lexer->first_token,
8101 next_token);
8102 }
8103 else
8104 start_of_id = -1;
8105
8106 push_deferring_access_checks (dk_deferred);
8107
8108 /* Parse the template-name. */
8109 is_identifier = false;
8110 template = cp_parser_template_name (parser, template_keyword_p,
8111 check_dependency_p,
8112 is_declaration,
8113 &is_identifier);
8114 if (template == error_mark_node || is_identifier)
8115 {
8116 pop_deferring_access_checks ();
8117 return template;
8118 }
8119
8120 /* If we find the sequence `[:' after a template-name, it's probably
8121 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8122 parse correctly the argument list. */
8123 next_token = cp_lexer_peek_nth_token (parser->lexer, 1);
8124 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8125 if (next_token->type == CPP_OPEN_SQUARE
8126 && next_token->flags & DIGRAPH
8127 && next_token_2->type == CPP_COLON
8128 && !(next_token_2->flags & PREV_WHITE))
8129 {
8130 cp_parser_parse_tentatively (parser);
8131 /* Change `:' into `::'. */
8132 next_token_2->type = CPP_SCOPE;
8133 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8134 CPP_LESS. */
8135 cp_lexer_consume_token (parser->lexer);
8136 /* Parse the arguments. */
8137 arguments = cp_parser_enclosed_template_argument_list (parser);
8138 if (!cp_parser_parse_definitely (parser))
8139 {
8140 /* If we couldn't parse an argument list, then we revert our changes
8141 and return simply an error. Maybe this is not a template-id
8142 after all. */
8143 next_token_2->type = CPP_COLON;
8144 cp_parser_error (parser, "expected `<'");
8145 pop_deferring_access_checks ();
8146 return error_mark_node;
8147 }
8148 /* Otherwise, emit an error about the invalid digraph, but continue
8149 parsing because we got our argument list. */
8150 pedwarn ("`<::' cannot begin a template-argument list");
8151 inform ("`<:' is an alternate spelling for `['. Insert whitespace "
8152 "between `<' and `::'");
8153 if (!flag_permissive)
8154 {
8155 static bool hint;
8156 if (!hint)
8157 {
8158 inform ("(if you use `-fpermissive' G++ will accept your code)");
8159 hint = true;
8160 }
8161 }
8162 }
8163 else
8164 {
8165 /* Look for the `<' that starts the template-argument-list. */
8166 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8167 {
8168 pop_deferring_access_checks ();
8169 return error_mark_node;
8170 }
8171 /* Parse the arguments. */
8172 arguments = cp_parser_enclosed_template_argument_list (parser);
8173 }
8174
8175 /* Build a representation of the specialization. */
8176 if (TREE_CODE (template) == IDENTIFIER_NODE)
8177 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8178 else if (DECL_CLASS_TEMPLATE_P (template)
8179 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8180 template_id
8181 = finish_template_type (template, arguments,
8182 cp_lexer_next_token_is (parser->lexer,
8183 CPP_SCOPE));
8184 else
8185 {
8186 /* If it's not a class-template or a template-template, it should be
8187 a function-template. */
8188 my_friendly_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8189 || TREE_CODE (template) == OVERLOAD
8190 || BASELINK_P (template)),
8191 20010716);
8192
8193 template_id = lookup_template_function (template, arguments);
8194 }
8195
8196 /* Retrieve any deferred checks. Do not pop this access checks yet
8197 so the memory will not be reclaimed during token replacing below. */
8198 access_check = get_deferred_access_checks ();
8199
8200 /* If parsing tentatively, replace the sequence of tokens that makes
8201 up the template-id with a CPP_TEMPLATE_ID token. That way,
8202 should we re-parse the token stream, we will not have to repeat
8203 the effort required to do the parse, nor will we issue duplicate
8204 error messages about problems during instantiation of the
8205 template. */
8206 if (start_of_id >= 0)
8207 {
8208 cp_token *token;
8209
8210 /* Find the token that corresponds to the start of the
8211 template-id. */
8212 token = cp_lexer_advance_token (parser->lexer,
8213 parser->lexer->first_token,
8214 start_of_id);
8215
8216 /* Reset the contents of the START_OF_ID token. */
8217 token->type = CPP_TEMPLATE_ID;
8218 token->value = build_tree_list (access_check, template_id);
8219 token->keyword = RID_MAX;
8220 /* Purge all subsequent tokens. */
8221 cp_lexer_purge_tokens_after (parser->lexer, token);
8222 }
8223
8224 pop_deferring_access_checks ();
8225 return template_id;
8226 }
8227
8228 /* Parse a template-name.
8229
8230 template-name:
8231 identifier
8232
8233 The standard should actually say:
8234
8235 template-name:
8236 identifier
8237 operator-function-id
8238
8239 A defect report has been filed about this issue.
8240
8241 A conversion-function-id cannot be a template name because they cannot
8242 be part of a template-id. In fact, looking at this code:
8243
8244 a.operator K<int>()
8245
8246 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8247 It is impossible to call a templated conversion-function-id with an
8248 explicit argument list, since the only allowed template parameter is
8249 the type to which it is converting.
8250
8251 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8252 `template' keyword, in a construction like:
8253
8254 T::template f<3>()
8255
8256 In that case `f' is taken to be a template-name, even though there
8257 is no way of knowing for sure.
8258
8259 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8260 name refers to a set of overloaded functions, at least one of which
8261 is a template, or an IDENTIFIER_NODE with the name of the template,
8262 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8263 names are looked up inside uninstantiated templates. */
8264
8265 static tree
8266 cp_parser_template_name (cp_parser* parser,
8267 bool template_keyword_p,
8268 bool check_dependency_p,
8269 bool is_declaration,
8270 bool *is_identifier)
8271 {
8272 tree identifier;
8273 tree decl;
8274 tree fns;
8275
8276 /* If the next token is `operator', then we have either an
8277 operator-function-id or a conversion-function-id. */
8278 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8279 {
8280 /* We don't know whether we're looking at an
8281 operator-function-id or a conversion-function-id. */
8282 cp_parser_parse_tentatively (parser);
8283 /* Try an operator-function-id. */
8284 identifier = cp_parser_operator_function_id (parser);
8285 /* If that didn't work, try a conversion-function-id. */
8286 if (!cp_parser_parse_definitely (parser))
8287 {
8288 cp_parser_error (parser, "expected template-name");
8289 return error_mark_node;
8290 }
8291 }
8292 /* Look for the identifier. */
8293 else
8294 identifier = cp_parser_identifier (parser);
8295
8296 /* If we didn't find an identifier, we don't have a template-id. */
8297 if (identifier == error_mark_node)
8298 return error_mark_node;
8299
8300 /* If the name immediately followed the `template' keyword, then it
8301 is a template-name. However, if the next token is not `<', then
8302 we do not treat it as a template-name, since it is not being used
8303 as part of a template-id. This enables us to handle constructs
8304 like:
8305
8306 template <typename T> struct S { S(); };
8307 template <typename T> S<T>::S();
8308
8309 correctly. We would treat `S' as a template -- if it were `S<T>'
8310 -- but we do not if there is no `<'. */
8311
8312 if (processing_template_decl
8313 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8314 {
8315 /* In a declaration, in a dependent context, we pretend that the
8316 "template" keyword was present in order to improve error
8317 recovery. For example, given:
8318
8319 template <typename T> void f(T::X<int>);
8320
8321 we want to treat "X<int>" as a template-id. */
8322 if (is_declaration
8323 && !template_keyword_p
8324 && parser->scope && TYPE_P (parser->scope)
8325 && dependent_type_p (parser->scope)
8326 /* Do not do this for dtors (or ctors), since they never
8327 need the template keyword before their name. */
8328 && !constructor_name_p (identifier, parser->scope))
8329 {
8330 ptrdiff_t start;
8331 cp_token* token;
8332 /* Explain what went wrong. */
8333 error ("non-template `%D' used as template", identifier);
8334 inform ("use `%T::template %D' to indicate that it is a template",
8335 parser->scope, identifier);
8336 /* If parsing tentatively, find the location of the "<"
8337 token. */
8338 if (cp_parser_parsing_tentatively (parser)
8339 && !cp_parser_committed_to_tentative_parse (parser))
8340 {
8341 cp_parser_simulate_error (parser);
8342 token = cp_lexer_peek_token (parser->lexer);
8343 token = cp_lexer_prev_token (parser->lexer, token);
8344 start = cp_lexer_token_difference (parser->lexer,
8345 parser->lexer->first_token,
8346 token);
8347 }
8348 else
8349 start = -1;
8350 /* Parse the template arguments so that we can issue error
8351 messages about them. */
8352 cp_lexer_consume_token (parser->lexer);
8353 cp_parser_enclosed_template_argument_list (parser);
8354 /* Skip tokens until we find a good place from which to
8355 continue parsing. */
8356 cp_parser_skip_to_closing_parenthesis (parser,
8357 /*recovering=*/true,
8358 /*or_comma=*/true,
8359 /*consume_paren=*/false);
8360 /* If parsing tentatively, permanently remove the
8361 template argument list. That will prevent duplicate
8362 error messages from being issued about the missing
8363 "template" keyword. */
8364 if (start >= 0)
8365 {
8366 token = cp_lexer_advance_token (parser->lexer,
8367 parser->lexer->first_token,
8368 start);
8369 cp_lexer_purge_tokens_after (parser->lexer, token);
8370 }
8371 if (is_identifier)
8372 *is_identifier = true;
8373 return identifier;
8374 }
8375
8376 /* If the "template" keyword is present, then there is generally
8377 no point in doing name-lookup, so we just return IDENTIFIER.
8378 But, if the qualifying scope is non-dependent then we can
8379 (and must) do name-lookup normally. */
8380 if (template_keyword_p
8381 && (!parser->scope
8382 || (TYPE_P (parser->scope)
8383 && dependent_type_p (parser->scope))))
8384 return identifier;
8385 }
8386
8387 /* Look up the name. */
8388 decl = cp_parser_lookup_name (parser, identifier,
8389 /*is_type=*/false,
8390 /*is_template=*/false,
8391 /*is_namespace=*/false,
8392 check_dependency_p);
8393 decl = maybe_get_template_decl_from_type_decl (decl);
8394
8395 /* If DECL is a template, then the name was a template-name. */
8396 if (TREE_CODE (decl) == TEMPLATE_DECL)
8397 ;
8398 else
8399 {
8400 /* The standard does not explicitly indicate whether a name that
8401 names a set of overloaded declarations, some of which are
8402 templates, is a template-name. However, such a name should
8403 be a template-name; otherwise, there is no way to form a
8404 template-id for the overloaded templates. */
8405 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8406 if (TREE_CODE (fns) == OVERLOAD)
8407 {
8408 tree fn;
8409
8410 for (fn = fns; fn; fn = OVL_NEXT (fn))
8411 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8412 break;
8413 }
8414 else
8415 {
8416 /* Otherwise, the name does not name a template. */
8417 cp_parser_error (parser, "expected template-name");
8418 return error_mark_node;
8419 }
8420 }
8421
8422 /* If DECL is dependent, and refers to a function, then just return
8423 its name; we will look it up again during template instantiation. */
8424 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8425 {
8426 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8427 if (TYPE_P (scope) && dependent_type_p (scope))
8428 return identifier;
8429 }
8430
8431 return decl;
8432 }
8433
8434 /* Parse a template-argument-list.
8435
8436 template-argument-list:
8437 template-argument
8438 template-argument-list , template-argument
8439
8440 Returns a TREE_VEC containing the arguments. */
8441
8442 static tree
8443 cp_parser_template_argument_list (cp_parser* parser)
8444 {
8445 tree fixed_args[10];
8446 unsigned n_args = 0;
8447 unsigned alloced = 10;
8448 tree *arg_ary = fixed_args;
8449 tree vec;
8450 bool saved_in_template_argument_list_p;
8451
8452 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8453 parser->in_template_argument_list_p = true;
8454 do
8455 {
8456 tree argument;
8457
8458 if (n_args)
8459 /* Consume the comma. */
8460 cp_lexer_consume_token (parser->lexer);
8461
8462 /* Parse the template-argument. */
8463 argument = cp_parser_template_argument (parser);
8464 if (n_args == alloced)
8465 {
8466 alloced *= 2;
8467
8468 if (arg_ary == fixed_args)
8469 {
8470 arg_ary = xmalloc (sizeof (tree) * alloced);
8471 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8472 }
8473 else
8474 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8475 }
8476 arg_ary[n_args++] = argument;
8477 }
8478 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8479
8480 vec = make_tree_vec (n_args);
8481
8482 while (n_args--)
8483 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8484
8485 if (arg_ary != fixed_args)
8486 free (arg_ary);
8487 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8488 return vec;
8489 }
8490
8491 /* Parse a template-argument.
8492
8493 template-argument:
8494 assignment-expression
8495 type-id
8496 id-expression
8497
8498 The representation is that of an assignment-expression, type-id, or
8499 id-expression -- except that the qualified id-expression is
8500 evaluated, so that the value returned is either a DECL or an
8501 OVERLOAD.
8502
8503 Although the standard says "assignment-expression", it forbids
8504 throw-expressions or assignments in the template argument.
8505 Therefore, we use "conditional-expression" instead. */
8506
8507 static tree
8508 cp_parser_template_argument (cp_parser* parser)
8509 {
8510 tree argument;
8511 bool template_p;
8512 bool address_p;
8513 bool maybe_type_id = false;
8514 cp_token *token;
8515 cp_id_kind idk;
8516 tree qualifying_class;
8517
8518 /* There's really no way to know what we're looking at, so we just
8519 try each alternative in order.
8520
8521 [temp.arg]
8522
8523 In a template-argument, an ambiguity between a type-id and an
8524 expression is resolved to a type-id, regardless of the form of
8525 the corresponding template-parameter.
8526
8527 Therefore, we try a type-id first. */
8528 cp_parser_parse_tentatively (parser);
8529 argument = cp_parser_type_id (parser);
8530 /* If there was no error parsing the type-id but the next token is a '>>',
8531 we probably found a typo for '> >'. But there are type-id which are
8532 also valid expressions. For instance:
8533
8534 struct X { int operator >> (int); };
8535 template <int V> struct Foo {};
8536 Foo<X () >> 5> r;
8537
8538 Here 'X()' is a valid type-id of a function type, but the user just
8539 wanted to write the expression "X() >> 5". Thus, we remember that we
8540 found a valid type-id, but we still try to parse the argument as an
8541 expression to see what happens. */
8542 if (!cp_parser_error_occurred (parser)
8543 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8544 {
8545 maybe_type_id = true;
8546 cp_parser_abort_tentative_parse (parser);
8547 }
8548 else
8549 {
8550 /* If the next token isn't a `,' or a `>', then this argument wasn't
8551 really finished. This means that the argument is not a valid
8552 type-id. */
8553 if (!cp_parser_next_token_ends_template_argument_p (parser))
8554 cp_parser_error (parser, "expected template-argument");
8555 /* If that worked, we're done. */
8556 if (cp_parser_parse_definitely (parser))
8557 return argument;
8558 }
8559 /* We're still not sure what the argument will be. */
8560 cp_parser_parse_tentatively (parser);
8561 /* Try a template. */
8562 argument = cp_parser_id_expression (parser,
8563 /*template_keyword_p=*/false,
8564 /*check_dependency_p=*/true,
8565 &template_p,
8566 /*declarator_p=*/false);
8567 /* If the next token isn't a `,' or a `>', then this argument wasn't
8568 really finished. */
8569 if (!cp_parser_next_token_ends_template_argument_p (parser))
8570 cp_parser_error (parser, "expected template-argument");
8571 if (!cp_parser_error_occurred (parser))
8572 {
8573 /* Figure out what is being referred to. If the id-expression
8574 was for a class template specialization, then we will have a
8575 TYPE_DECL at this point. There is no need to do name lookup
8576 at this point in that case. */
8577 if (TREE_CODE (argument) != TYPE_DECL)
8578 argument = cp_parser_lookup_name (parser, argument,
8579 /*is_type=*/false,
8580 /*is_template=*/template_p,
8581 /*is_namespace=*/false,
8582 /*check_dependency=*/true);
8583 if (TREE_CODE (argument) != TEMPLATE_DECL
8584 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
8585 cp_parser_error (parser, "expected template-name");
8586 }
8587 if (cp_parser_parse_definitely (parser))
8588 return argument;
8589 /* It must be a non-type argument. There permitted cases are given
8590 in [temp.arg.nontype]:
8591
8592 -- an integral constant-expression of integral or enumeration
8593 type; or
8594
8595 -- the name of a non-type template-parameter; or
8596
8597 -- the name of an object or function with external linkage...
8598
8599 -- the address of an object or function with external linkage...
8600
8601 -- a pointer to member... */
8602 /* Look for a non-type template parameter. */
8603 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8604 {
8605 cp_parser_parse_tentatively (parser);
8606 argument = cp_parser_primary_expression (parser,
8607 &idk,
8608 &qualifying_class);
8609 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
8610 || !cp_parser_next_token_ends_template_argument_p (parser))
8611 cp_parser_simulate_error (parser);
8612 if (cp_parser_parse_definitely (parser))
8613 return argument;
8614 }
8615 /* If the next token is "&", the argument must be the address of an
8616 object or function with external linkage. */
8617 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
8618 if (address_p)
8619 cp_lexer_consume_token (parser->lexer);
8620 /* See if we might have an id-expression. */
8621 token = cp_lexer_peek_token (parser->lexer);
8622 if (token->type == CPP_NAME
8623 || token->keyword == RID_OPERATOR
8624 || token->type == CPP_SCOPE
8625 || token->type == CPP_TEMPLATE_ID
8626 || token->type == CPP_NESTED_NAME_SPECIFIER)
8627 {
8628 cp_parser_parse_tentatively (parser);
8629 argument = cp_parser_primary_expression (parser,
8630 &idk,
8631 &qualifying_class);
8632 if (cp_parser_error_occurred (parser)
8633 || !cp_parser_next_token_ends_template_argument_p (parser))
8634 cp_parser_abort_tentative_parse (parser);
8635 else
8636 {
8637 if (qualifying_class)
8638 argument = finish_qualified_id_expr (qualifying_class,
8639 argument,
8640 /*done=*/true,
8641 address_p);
8642 if (TREE_CODE (argument) == VAR_DECL)
8643 {
8644 /* A variable without external linkage might still be a
8645 valid constant-expression, so no error is issued here
8646 if the external-linkage check fails. */
8647 if (!DECL_EXTERNAL_LINKAGE_P (argument))
8648 cp_parser_simulate_error (parser);
8649 }
8650 else if (is_overloaded_fn (argument))
8651 /* All overloaded functions are allowed; if the external
8652 linkage test does not pass, an error will be issued
8653 later. */
8654 ;
8655 else if (address_p
8656 && (TREE_CODE (argument) == OFFSET_REF
8657 || TREE_CODE (argument) == SCOPE_REF))
8658 /* A pointer-to-member. */
8659 ;
8660 else
8661 cp_parser_simulate_error (parser);
8662
8663 if (cp_parser_parse_definitely (parser))
8664 {
8665 if (address_p)
8666 argument = build_x_unary_op (ADDR_EXPR, argument);
8667 return argument;
8668 }
8669 }
8670 }
8671 /* If the argument started with "&", there are no other valid
8672 alternatives at this point. */
8673 if (address_p)
8674 {
8675 cp_parser_error (parser, "invalid non-type template argument");
8676 return error_mark_node;
8677 }
8678 /* If the argument wasn't successfully parsed as a type-id followed
8679 by '>>', the argument can only be a constant expression now.
8680 Otherwise, we try parsing the constant-expression tentatively,
8681 because the argument could really be a type-id. */
8682 if (maybe_type_id)
8683 cp_parser_parse_tentatively (parser);
8684 argument = cp_parser_constant_expression (parser,
8685 /*allow_non_constant_p=*/false,
8686 /*non_constant_p=*/NULL);
8687 argument = fold_non_dependent_expr (argument);
8688 if (!maybe_type_id)
8689 return argument;
8690 if (!cp_parser_next_token_ends_template_argument_p (parser))
8691 cp_parser_error (parser, "expected template-argument");
8692 if (cp_parser_parse_definitely (parser))
8693 return argument;
8694 /* We did our best to parse the argument as a non type-id, but that
8695 was the only alternative that matched (albeit with a '>' after
8696 it). We can assume it's just a typo from the user, and a
8697 diagnostic will then be issued. */
8698 return cp_parser_type_id (parser);
8699 }
8700
8701 /* Parse an explicit-instantiation.
8702
8703 explicit-instantiation:
8704 template declaration
8705
8706 Although the standard says `declaration', what it really means is:
8707
8708 explicit-instantiation:
8709 template decl-specifier-seq [opt] declarator [opt] ;
8710
8711 Things like `template int S<int>::i = 5, int S<double>::j;' are not
8712 supposed to be allowed. A defect report has been filed about this
8713 issue.
8714
8715 GNU Extension:
8716
8717 explicit-instantiation:
8718 storage-class-specifier template
8719 decl-specifier-seq [opt] declarator [opt] ;
8720 function-specifier template
8721 decl-specifier-seq [opt] declarator [opt] ; */
8722
8723 static void
8724 cp_parser_explicit_instantiation (cp_parser* parser)
8725 {
8726 int declares_class_or_enum;
8727 tree decl_specifiers;
8728 tree attributes;
8729 tree extension_specifier = NULL_TREE;
8730
8731 /* Look for an (optional) storage-class-specifier or
8732 function-specifier. */
8733 if (cp_parser_allow_gnu_extensions_p (parser))
8734 {
8735 extension_specifier
8736 = cp_parser_storage_class_specifier_opt (parser);
8737 if (!extension_specifier)
8738 extension_specifier = cp_parser_function_specifier_opt (parser);
8739 }
8740
8741 /* Look for the `template' keyword. */
8742 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
8743 /* Let the front end know that we are processing an explicit
8744 instantiation. */
8745 begin_explicit_instantiation ();
8746 /* [temp.explicit] says that we are supposed to ignore access
8747 control while processing explicit instantiation directives. */
8748 push_deferring_access_checks (dk_no_check);
8749 /* Parse a decl-specifier-seq. */
8750 decl_specifiers
8751 = cp_parser_decl_specifier_seq (parser,
8752 CP_PARSER_FLAGS_OPTIONAL,
8753 &attributes,
8754 &declares_class_or_enum);
8755 /* If there was exactly one decl-specifier, and it declared a class,
8756 and there's no declarator, then we have an explicit type
8757 instantiation. */
8758 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
8759 {
8760 tree type;
8761
8762 type = check_tag_decl (decl_specifiers);
8763 /* Turn access control back on for names used during
8764 template instantiation. */
8765 pop_deferring_access_checks ();
8766 if (type)
8767 do_type_instantiation (type, extension_specifier, /*complain=*/1);
8768 }
8769 else
8770 {
8771 tree declarator;
8772 tree decl;
8773
8774 /* Parse the declarator. */
8775 declarator
8776 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
8777 /*ctor_dtor_or_conv_p=*/NULL,
8778 /*parenthesized_p=*/NULL);
8779 cp_parser_check_for_definition_in_return_type (declarator,
8780 declares_class_or_enum);
8781 if (declarator != error_mark_node)
8782 {
8783 decl = grokdeclarator (declarator, decl_specifiers,
8784 NORMAL, 0, NULL);
8785 /* Turn access control back on for names used during
8786 template instantiation. */
8787 pop_deferring_access_checks ();
8788 /* Do the explicit instantiation. */
8789 do_decl_instantiation (decl, extension_specifier);
8790 }
8791 else
8792 {
8793 pop_deferring_access_checks ();
8794 /* Skip the body of the explicit instantiation. */
8795 cp_parser_skip_to_end_of_statement (parser);
8796 }
8797 }
8798 /* We're done with the instantiation. */
8799 end_explicit_instantiation ();
8800
8801 cp_parser_consume_semicolon_at_end_of_statement (parser);
8802 }
8803
8804 /* Parse an explicit-specialization.
8805
8806 explicit-specialization:
8807 template < > declaration
8808
8809 Although the standard says `declaration', what it really means is:
8810
8811 explicit-specialization:
8812 template <> decl-specifier [opt] init-declarator [opt] ;
8813 template <> function-definition
8814 template <> explicit-specialization
8815 template <> template-declaration */
8816
8817 static void
8818 cp_parser_explicit_specialization (cp_parser* parser)
8819 {
8820 /* Look for the `template' keyword. */
8821 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
8822 /* Look for the `<'. */
8823 cp_parser_require (parser, CPP_LESS, "`<'");
8824 /* Look for the `>'. */
8825 cp_parser_require (parser, CPP_GREATER, "`>'");
8826 /* We have processed another parameter list. */
8827 ++parser->num_template_parameter_lists;
8828 /* Let the front end know that we are beginning a specialization. */
8829 begin_specialization ();
8830
8831 /* If the next keyword is `template', we need to figure out whether
8832 or not we're looking a template-declaration. */
8833 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
8834 {
8835 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
8836 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
8837 cp_parser_template_declaration_after_export (parser,
8838 /*member_p=*/false);
8839 else
8840 cp_parser_explicit_specialization (parser);
8841 }
8842 else
8843 /* Parse the dependent declaration. */
8844 cp_parser_single_declaration (parser,
8845 /*member_p=*/false,
8846 /*friend_p=*/NULL);
8847
8848 /* We're done with the specialization. */
8849 end_specialization ();
8850 /* We're done with this parameter list. */
8851 --parser->num_template_parameter_lists;
8852 }
8853
8854 /* Parse a type-specifier.
8855
8856 type-specifier:
8857 simple-type-specifier
8858 class-specifier
8859 enum-specifier
8860 elaborated-type-specifier
8861 cv-qualifier
8862
8863 GNU Extension:
8864
8865 type-specifier:
8866 __complex__
8867
8868 Returns a representation of the type-specifier. If the
8869 type-specifier is a keyword (like `int' or `const', or
8870 `__complex__') then the corresponding IDENTIFIER_NODE is returned.
8871 For a class-specifier, enum-specifier, or elaborated-type-specifier
8872 a TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
8873
8874 If IS_FRIEND is TRUE then this type-specifier is being declared a
8875 `friend'. If IS_DECLARATION is TRUE, then this type-specifier is
8876 appearing in a decl-specifier-seq.
8877
8878 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
8879 class-specifier, enum-specifier, or elaborated-type-specifier, then
8880 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
8881 if a type is declared; 2 if it is defined. Otherwise, it is set to
8882 zero.
8883
8884 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
8885 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
8886 is set to FALSE. */
8887
8888 static tree
8889 cp_parser_type_specifier (cp_parser* parser,
8890 cp_parser_flags flags,
8891 bool is_friend,
8892 bool is_declaration,
8893 int* declares_class_or_enum,
8894 bool* is_cv_qualifier)
8895 {
8896 tree type_spec = NULL_TREE;
8897 cp_token *token;
8898 enum rid keyword;
8899
8900 /* Assume this type-specifier does not declare a new type. */
8901 if (declares_class_or_enum)
8902 *declares_class_or_enum = 0;
8903 /* And that it does not specify a cv-qualifier. */
8904 if (is_cv_qualifier)
8905 *is_cv_qualifier = false;
8906 /* Peek at the next token. */
8907 token = cp_lexer_peek_token (parser->lexer);
8908
8909 /* If we're looking at a keyword, we can use that to guide the
8910 production we choose. */
8911 keyword = token->keyword;
8912 switch (keyword)
8913 {
8914 /* Any of these indicate either a class-specifier, or an
8915 elaborated-type-specifier. */
8916 case RID_CLASS:
8917 case RID_STRUCT:
8918 case RID_UNION:
8919 case RID_ENUM:
8920 /* Parse tentatively so that we can back up if we don't find a
8921 class-specifier or enum-specifier. */
8922 cp_parser_parse_tentatively (parser);
8923 /* Look for the class-specifier or enum-specifier. */
8924 if (keyword == RID_ENUM)
8925 type_spec = cp_parser_enum_specifier (parser);
8926 else
8927 type_spec = cp_parser_class_specifier (parser);
8928
8929 /* If that worked, we're done. */
8930 if (cp_parser_parse_definitely (parser))
8931 {
8932 if (declares_class_or_enum)
8933 *declares_class_or_enum = 2;
8934 return type_spec;
8935 }
8936
8937 /* Fall through. */
8938
8939 case RID_TYPENAME:
8940 /* Look for an elaborated-type-specifier. */
8941 type_spec = cp_parser_elaborated_type_specifier (parser,
8942 is_friend,
8943 is_declaration);
8944 /* We're declaring a class or enum -- unless we're using
8945 `typename'. */
8946 if (declares_class_or_enum && keyword != RID_TYPENAME)
8947 *declares_class_or_enum = 1;
8948 return type_spec;
8949
8950 case RID_CONST:
8951 case RID_VOLATILE:
8952 case RID_RESTRICT:
8953 type_spec = cp_parser_cv_qualifier_opt (parser);
8954 /* Even though we call a routine that looks for an optional
8955 qualifier, we know that there should be one. */
8956 my_friendly_assert (type_spec != NULL, 20000328);
8957 /* This type-specifier was a cv-qualified. */
8958 if (is_cv_qualifier)
8959 *is_cv_qualifier = true;
8960
8961 return type_spec;
8962
8963 case RID_COMPLEX:
8964 /* The `__complex__' keyword is a GNU extension. */
8965 return cp_lexer_consume_token (parser->lexer)->value;
8966
8967 default:
8968 break;
8969 }
8970
8971 /* If we do not already have a type-specifier, assume we are looking
8972 at a simple-type-specifier. */
8973 type_spec = cp_parser_simple_type_specifier (parser, flags,
8974 /*identifier_p=*/true);
8975
8976 /* If we didn't find a type-specifier, and a type-specifier was not
8977 optional in this context, issue an error message. */
8978 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
8979 {
8980 cp_parser_error (parser, "expected type specifier");
8981 return error_mark_node;
8982 }
8983
8984 return type_spec;
8985 }
8986
8987 /* Parse a simple-type-specifier.
8988
8989 simple-type-specifier:
8990 :: [opt] nested-name-specifier [opt] type-name
8991 :: [opt] nested-name-specifier template template-id
8992 char
8993 wchar_t
8994 bool
8995 short
8996 int
8997 long
8998 signed
8999 unsigned
9000 float
9001 double
9002 void
9003
9004 GNU Extension:
9005
9006 simple-type-specifier:
9007 __typeof__ unary-expression
9008 __typeof__ ( type-id )
9009
9010 For the various keywords, the value returned is simply the
9011 TREE_IDENTIFIER representing the keyword if IDENTIFIER_P is true.
9012 For the first two productions, and if IDENTIFIER_P is false, the
9013 value returned is the indicated TYPE_DECL. */
9014
9015 static tree
9016 cp_parser_simple_type_specifier (cp_parser* parser, cp_parser_flags flags,
9017 bool identifier_p)
9018 {
9019 tree type = NULL_TREE;
9020 cp_token *token;
9021
9022 /* Peek at the next token. */
9023 token = cp_lexer_peek_token (parser->lexer);
9024
9025 /* If we're looking at a keyword, things are easy. */
9026 switch (token->keyword)
9027 {
9028 case RID_CHAR:
9029 type = char_type_node;
9030 break;
9031 case RID_WCHAR:
9032 type = wchar_type_node;
9033 break;
9034 case RID_BOOL:
9035 type = boolean_type_node;
9036 break;
9037 case RID_SHORT:
9038 type = short_integer_type_node;
9039 break;
9040 case RID_INT:
9041 type = integer_type_node;
9042 break;
9043 case RID_LONG:
9044 type = long_integer_type_node;
9045 break;
9046 case RID_SIGNED:
9047 type = integer_type_node;
9048 break;
9049 case RID_UNSIGNED:
9050 type = unsigned_type_node;
9051 break;
9052 case RID_FLOAT:
9053 type = float_type_node;
9054 break;
9055 case RID_DOUBLE:
9056 type = double_type_node;
9057 break;
9058 case RID_VOID:
9059 type = void_type_node;
9060 break;
9061
9062 case RID_TYPEOF:
9063 {
9064 tree operand;
9065
9066 /* Consume the `typeof' token. */
9067 cp_lexer_consume_token (parser->lexer);
9068 /* Parse the operand to `typeof'. */
9069 operand = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9070 /* If it is not already a TYPE, take its type. */
9071 if (!TYPE_P (operand))
9072 operand = finish_typeof (operand);
9073
9074 return operand;
9075 }
9076
9077 default:
9078 break;
9079 }
9080
9081 /* If the type-specifier was for a built-in type, we're done. */
9082 if (type)
9083 {
9084 tree id;
9085
9086 /* Consume the token. */
9087 id = cp_lexer_consume_token (parser->lexer)->value;
9088
9089 /* There is no valid C++ program where a non-template type is
9090 followed by a "<". That usually indicates that the user thought
9091 that the type was a template. */
9092 cp_parser_check_for_invalid_template_id (parser, type);
9093
9094 return identifier_p ? id : TYPE_NAME (type);
9095 }
9096
9097 /* The type-specifier must be a user-defined type. */
9098 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9099 {
9100 bool qualified_p;
9101
9102 /* Don't gobble tokens or issue error messages if this is an
9103 optional type-specifier. */
9104 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9105 cp_parser_parse_tentatively (parser);
9106
9107 /* Look for the optional `::' operator. */
9108 cp_parser_global_scope_opt (parser,
9109 /*current_scope_valid_p=*/false);
9110 /* Look for the nested-name specifier. */
9111 qualified_p
9112 = (cp_parser_nested_name_specifier_opt (parser,
9113 /*typename_keyword_p=*/false,
9114 /*check_dependency_p=*/true,
9115 /*type_p=*/false,
9116 /*is_declaration=*/false)
9117 != NULL_TREE);
9118 /* If we have seen a nested-name-specifier, and the next token
9119 is `template', then we are using the template-id production. */
9120 if (parser->scope
9121 && cp_parser_optional_template_keyword (parser))
9122 {
9123 /* Look for the template-id. */
9124 type = cp_parser_template_id (parser,
9125 /*template_keyword_p=*/true,
9126 /*check_dependency_p=*/true,
9127 /*is_declaration=*/false);
9128 /* If the template-id did not name a type, we are out of
9129 luck. */
9130 if (TREE_CODE (type) != TYPE_DECL)
9131 {
9132 cp_parser_error (parser, "expected template-id for type");
9133 type = NULL_TREE;
9134 }
9135 }
9136 /* Otherwise, look for a type-name. */
9137 else
9138 type = cp_parser_type_name (parser);
9139 /* Keep track of all name-lookups performed in class scopes. */
9140 if (type
9141 && !qualified_p
9142 && TREE_CODE (type) == TYPE_DECL
9143 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9144 maybe_note_name_used_in_class (DECL_NAME (type), type);
9145 /* If it didn't work out, we don't have a TYPE. */
9146 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9147 && !cp_parser_parse_definitely (parser))
9148 type = NULL_TREE;
9149 }
9150
9151 /* If we didn't get a type-name, issue an error message. */
9152 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9153 {
9154 cp_parser_error (parser, "expected type-name");
9155 return error_mark_node;
9156 }
9157
9158 /* There is no valid C++ program where a non-template type is
9159 followed by a "<". That usually indicates that the user thought
9160 that the type was a template. */
9161 if (type && type != error_mark_node)
9162 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9163
9164 return type;
9165 }
9166
9167 /* Parse a type-name.
9168
9169 type-name:
9170 class-name
9171 enum-name
9172 typedef-name
9173
9174 enum-name:
9175 identifier
9176
9177 typedef-name:
9178 identifier
9179
9180 Returns a TYPE_DECL for the the type. */
9181
9182 static tree
9183 cp_parser_type_name (cp_parser* parser)
9184 {
9185 tree type_decl;
9186 tree identifier;
9187
9188 /* We can't know yet whether it is a class-name or not. */
9189 cp_parser_parse_tentatively (parser);
9190 /* Try a class-name. */
9191 type_decl = cp_parser_class_name (parser,
9192 /*typename_keyword_p=*/false,
9193 /*template_keyword_p=*/false,
9194 /*type_p=*/false,
9195 /*check_dependency_p=*/true,
9196 /*class_head_p=*/false,
9197 /*is_declaration=*/false);
9198 /* If it's not a class-name, keep looking. */
9199 if (!cp_parser_parse_definitely (parser))
9200 {
9201 /* It must be a typedef-name or an enum-name. */
9202 identifier = cp_parser_identifier (parser);
9203 if (identifier == error_mark_node)
9204 return error_mark_node;
9205
9206 /* Look up the type-name. */
9207 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9208 /* Issue an error if we did not find a type-name. */
9209 if (TREE_CODE (type_decl) != TYPE_DECL)
9210 {
9211 if (!cp_parser_simulate_error (parser))
9212 cp_parser_name_lookup_error (parser, identifier, type_decl,
9213 "is not a type");
9214 type_decl = error_mark_node;
9215 }
9216 /* Remember that the name was used in the definition of the
9217 current class so that we can check later to see if the
9218 meaning would have been different after the class was
9219 entirely defined. */
9220 else if (type_decl != error_mark_node
9221 && !parser->scope)
9222 maybe_note_name_used_in_class (identifier, type_decl);
9223 }
9224
9225 return type_decl;
9226 }
9227
9228
9229 /* Parse an elaborated-type-specifier. Note that the grammar given
9230 here incorporates the resolution to DR68.
9231
9232 elaborated-type-specifier:
9233 class-key :: [opt] nested-name-specifier [opt] identifier
9234 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9235 enum :: [opt] nested-name-specifier [opt] identifier
9236 typename :: [opt] nested-name-specifier identifier
9237 typename :: [opt] nested-name-specifier template [opt]
9238 template-id
9239
9240 GNU extension:
9241
9242 elaborated-type-specifier:
9243 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9244 class-key attributes :: [opt] nested-name-specifier [opt]
9245 template [opt] template-id
9246 enum attributes :: [opt] nested-name-specifier [opt] identifier
9247
9248 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9249 declared `friend'. If IS_DECLARATION is TRUE, then this
9250 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9251 something is being declared.
9252
9253 Returns the TYPE specified. */
9254
9255 static tree
9256 cp_parser_elaborated_type_specifier (cp_parser* parser,
9257 bool is_friend,
9258 bool is_declaration)
9259 {
9260 enum tag_types tag_type;
9261 tree identifier;
9262 tree type = NULL_TREE;
9263 tree attributes = NULL_TREE;
9264
9265 /* See if we're looking at the `enum' keyword. */
9266 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9267 {
9268 /* Consume the `enum' token. */
9269 cp_lexer_consume_token (parser->lexer);
9270 /* Remember that it's an enumeration type. */
9271 tag_type = enum_type;
9272 /* Parse the attributes. */
9273 attributes = cp_parser_attributes_opt (parser);
9274 }
9275 /* Or, it might be `typename'. */
9276 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9277 RID_TYPENAME))
9278 {
9279 /* Consume the `typename' token. */
9280 cp_lexer_consume_token (parser->lexer);
9281 /* Remember that it's a `typename' type. */
9282 tag_type = typename_type;
9283 /* The `typename' keyword is only allowed in templates. */
9284 if (!processing_template_decl)
9285 pedwarn ("using `typename' outside of template");
9286 }
9287 /* Otherwise it must be a class-key. */
9288 else
9289 {
9290 tag_type = cp_parser_class_key (parser);
9291 if (tag_type == none_type)
9292 return error_mark_node;
9293 /* Parse the attributes. */
9294 attributes = cp_parser_attributes_opt (parser);
9295 }
9296
9297 /* Look for the `::' operator. */
9298 cp_parser_global_scope_opt (parser,
9299 /*current_scope_valid_p=*/false);
9300 /* Look for the nested-name-specifier. */
9301 if (tag_type == typename_type)
9302 {
9303 if (cp_parser_nested_name_specifier (parser,
9304 /*typename_keyword_p=*/true,
9305 /*check_dependency_p=*/true,
9306 /*type_p=*/true,
9307 is_declaration)
9308 == error_mark_node)
9309 return error_mark_node;
9310 }
9311 else
9312 /* Even though `typename' is not present, the proposed resolution
9313 to Core Issue 180 says that in `class A<T>::B', `B' should be
9314 considered a type-name, even if `A<T>' is dependent. */
9315 cp_parser_nested_name_specifier_opt (parser,
9316 /*typename_keyword_p=*/true,
9317 /*check_dependency_p=*/true,
9318 /*type_p=*/true,
9319 is_declaration);
9320 /* For everything but enumeration types, consider a template-id. */
9321 if (tag_type != enum_type)
9322 {
9323 bool template_p = false;
9324 tree decl;
9325
9326 /* Allow the `template' keyword. */
9327 template_p = cp_parser_optional_template_keyword (parser);
9328 /* If we didn't see `template', we don't know if there's a
9329 template-id or not. */
9330 if (!template_p)
9331 cp_parser_parse_tentatively (parser);
9332 /* Parse the template-id. */
9333 decl = cp_parser_template_id (parser, template_p,
9334 /*check_dependency_p=*/true,
9335 is_declaration);
9336 /* If we didn't find a template-id, look for an ordinary
9337 identifier. */
9338 if (!template_p && !cp_parser_parse_definitely (parser))
9339 ;
9340 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9341 in effect, then we must assume that, upon instantiation, the
9342 template will correspond to a class. */
9343 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9344 && tag_type == typename_type)
9345 type = make_typename_type (parser->scope, decl,
9346 /*complain=*/1);
9347 else
9348 type = TREE_TYPE (decl);
9349 }
9350
9351 /* For an enumeration type, consider only a plain identifier. */
9352 if (!type)
9353 {
9354 identifier = cp_parser_identifier (parser);
9355
9356 if (identifier == error_mark_node)
9357 {
9358 parser->scope = NULL_TREE;
9359 return error_mark_node;
9360 }
9361
9362 /* For a `typename', we needn't call xref_tag. */
9363 if (tag_type == typename_type)
9364 return cp_parser_make_typename_type (parser, parser->scope,
9365 identifier);
9366 /* Look up a qualified name in the usual way. */
9367 if (parser->scope)
9368 {
9369 tree decl;
9370
9371 /* In an elaborated-type-specifier, names are assumed to name
9372 types, so we set IS_TYPE to TRUE when calling
9373 cp_parser_lookup_name. */
9374 decl = cp_parser_lookup_name (parser, identifier,
9375 /*is_type=*/true,
9376 /*is_template=*/false,
9377 /*is_namespace=*/false,
9378 /*check_dependency=*/true);
9379
9380 /* If we are parsing friend declaration, DECL may be a
9381 TEMPLATE_DECL tree node here. However, we need to check
9382 whether this TEMPLATE_DECL results in valid code. Consider
9383 the following example:
9384
9385 namespace N {
9386 template <class T> class C {};
9387 }
9388 class X {
9389 template <class T> friend class N::C; // #1, valid code
9390 };
9391 template <class T> class Y {
9392 friend class N::C; // #2, invalid code
9393 };
9394
9395 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9396 name lookup of `N::C'. We see that friend declaration must
9397 be template for the code to be valid. Note that
9398 processing_template_decl does not work here since it is
9399 always 1 for the above two cases. */
9400
9401 decl = (cp_parser_maybe_treat_template_as_class
9402 (decl, /*tag_name_p=*/is_friend
9403 && parser->num_template_parameter_lists));
9404
9405 if (TREE_CODE (decl) != TYPE_DECL)
9406 {
9407 error ("expected type-name");
9408 return error_mark_node;
9409 }
9410
9411 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9412 check_elaborated_type_specifier
9413 (tag_type, decl,
9414 (parser->num_template_parameter_lists
9415 || DECL_SELF_REFERENCE_P (decl)));
9416
9417 type = TREE_TYPE (decl);
9418 }
9419 else
9420 {
9421 /* An elaborated-type-specifier sometimes introduces a new type and
9422 sometimes names an existing type. Normally, the rule is that it
9423 introduces a new type only if there is not an existing type of
9424 the same name already in scope. For example, given:
9425
9426 struct S {};
9427 void f() { struct S s; }
9428
9429 the `struct S' in the body of `f' is the same `struct S' as in
9430 the global scope; the existing definition is used. However, if
9431 there were no global declaration, this would introduce a new
9432 local class named `S'.
9433
9434 An exception to this rule applies to the following code:
9435
9436 namespace N { struct S; }
9437
9438 Here, the elaborated-type-specifier names a new type
9439 unconditionally; even if there is already an `S' in the
9440 containing scope this declaration names a new type.
9441 This exception only applies if the elaborated-type-specifier
9442 forms the complete declaration:
9443
9444 [class.name]
9445
9446 A declaration consisting solely of `class-key identifier ;' is
9447 either a redeclaration of the name in the current scope or a
9448 forward declaration of the identifier as a class name. It
9449 introduces the name into the current scope.
9450
9451 We are in this situation precisely when the next token is a `;'.
9452
9453 An exception to the exception is that a `friend' declaration does
9454 *not* name a new type; i.e., given:
9455
9456 struct S { friend struct T; };
9457
9458 `T' is not a new type in the scope of `S'.
9459
9460 Also, `new struct S' or `sizeof (struct S)' never results in the
9461 definition of a new type; a new type can only be declared in a
9462 declaration context. */
9463
9464 /* Warn about attributes. They are ignored. */
9465 if (attributes)
9466 warning ("type attributes are honored only at type definition");
9467
9468 type = xref_tag (tag_type, identifier,
9469 (is_friend
9470 || !is_declaration
9471 || cp_lexer_next_token_is_not (parser->lexer,
9472 CPP_SEMICOLON)),
9473 parser->num_template_parameter_lists);
9474 }
9475 }
9476 if (tag_type != enum_type)
9477 cp_parser_check_class_key (tag_type, type);
9478
9479 /* A "<" cannot follow an elaborated type specifier. If that
9480 happens, the user was probably trying to form a template-id. */
9481 cp_parser_check_for_invalid_template_id (parser, type);
9482
9483 return type;
9484 }
9485
9486 /* Parse an enum-specifier.
9487
9488 enum-specifier:
9489 enum identifier [opt] { enumerator-list [opt] }
9490
9491 Returns an ENUM_TYPE representing the enumeration. */
9492
9493 static tree
9494 cp_parser_enum_specifier (cp_parser* parser)
9495 {
9496 cp_token *token;
9497 tree identifier = NULL_TREE;
9498 tree type;
9499
9500 /* Look for the `enum' keyword. */
9501 if (!cp_parser_require_keyword (parser, RID_ENUM, "`enum'"))
9502 return error_mark_node;
9503 /* Peek at the next token. */
9504 token = cp_lexer_peek_token (parser->lexer);
9505
9506 /* See if it is an identifier. */
9507 if (token->type == CPP_NAME)
9508 identifier = cp_parser_identifier (parser);
9509
9510 /* Look for the `{'. */
9511 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
9512 return error_mark_node;
9513
9514 /* At this point, we're going ahead with the enum-specifier, even
9515 if some other problem occurs. */
9516 cp_parser_commit_to_tentative_parse (parser);
9517
9518 /* Issue an error message if type-definitions are forbidden here. */
9519 cp_parser_check_type_definition (parser);
9520
9521 /* Create the new type. */
9522 type = start_enum (identifier ? identifier : make_anon_name ());
9523
9524 /* Peek at the next token. */
9525 token = cp_lexer_peek_token (parser->lexer);
9526 /* If it's not a `}', then there are some enumerators. */
9527 if (token->type != CPP_CLOSE_BRACE)
9528 cp_parser_enumerator_list (parser, type);
9529 /* Look for the `}'. */
9530 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9531
9532 /* Finish up the enumeration. */
9533 finish_enum (type);
9534
9535 return type;
9536 }
9537
9538 /* Parse an enumerator-list. The enumerators all have the indicated
9539 TYPE.
9540
9541 enumerator-list:
9542 enumerator-definition
9543 enumerator-list , enumerator-definition */
9544
9545 static void
9546 cp_parser_enumerator_list (cp_parser* parser, tree type)
9547 {
9548 while (true)
9549 {
9550 cp_token *token;
9551
9552 /* Parse an enumerator-definition. */
9553 cp_parser_enumerator_definition (parser, type);
9554 /* Peek at the next token. */
9555 token = cp_lexer_peek_token (parser->lexer);
9556 /* If it's not a `,', then we've reached the end of the
9557 list. */
9558 if (token->type != CPP_COMMA)
9559 break;
9560 /* Otherwise, consume the `,' and keep going. */
9561 cp_lexer_consume_token (parser->lexer);
9562 /* If the next token is a `}', there is a trailing comma. */
9563 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
9564 {
9565 if (pedantic && !in_system_header)
9566 pedwarn ("comma at end of enumerator list");
9567 break;
9568 }
9569 }
9570 }
9571
9572 /* Parse an enumerator-definition. The enumerator has the indicated
9573 TYPE.
9574
9575 enumerator-definition:
9576 enumerator
9577 enumerator = constant-expression
9578
9579 enumerator:
9580 identifier */
9581
9582 static void
9583 cp_parser_enumerator_definition (cp_parser* parser, tree type)
9584 {
9585 cp_token *token;
9586 tree identifier;
9587 tree value;
9588
9589 /* Look for the identifier. */
9590 identifier = cp_parser_identifier (parser);
9591 if (identifier == error_mark_node)
9592 return;
9593
9594 /* Peek at the next token. */
9595 token = cp_lexer_peek_token (parser->lexer);
9596 /* If it's an `=', then there's an explicit value. */
9597 if (token->type == CPP_EQ)
9598 {
9599 /* Consume the `=' token. */
9600 cp_lexer_consume_token (parser->lexer);
9601 /* Parse the value. */
9602 value = cp_parser_constant_expression (parser,
9603 /*allow_non_constant_p=*/false,
9604 NULL);
9605 }
9606 else
9607 value = NULL_TREE;
9608
9609 /* Create the enumerator. */
9610 build_enumerator (identifier, value, type);
9611 }
9612
9613 /* Parse a namespace-name.
9614
9615 namespace-name:
9616 original-namespace-name
9617 namespace-alias
9618
9619 Returns the NAMESPACE_DECL for the namespace. */
9620
9621 static tree
9622 cp_parser_namespace_name (cp_parser* parser)
9623 {
9624 tree identifier;
9625 tree namespace_decl;
9626
9627 /* Get the name of the namespace. */
9628 identifier = cp_parser_identifier (parser);
9629 if (identifier == error_mark_node)
9630 return error_mark_node;
9631
9632 /* Look up the identifier in the currently active scope. Look only
9633 for namespaces, due to:
9634
9635 [basic.lookup.udir]
9636
9637 When looking up a namespace-name in a using-directive or alias
9638 definition, only namespace names are considered.
9639
9640 And:
9641
9642 [basic.lookup.qual]
9643
9644 During the lookup of a name preceding the :: scope resolution
9645 operator, object, function, and enumerator names are ignored.
9646
9647 (Note that cp_parser_class_or_namespace_name only calls this
9648 function if the token after the name is the scope resolution
9649 operator.) */
9650 namespace_decl = cp_parser_lookup_name (parser, identifier,
9651 /*is_type=*/false,
9652 /*is_template=*/false,
9653 /*is_namespace=*/true,
9654 /*check_dependency=*/true);
9655 /* If it's not a namespace, issue an error. */
9656 if (namespace_decl == error_mark_node
9657 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
9658 {
9659 cp_parser_error (parser, "expected namespace-name");
9660 namespace_decl = error_mark_node;
9661 }
9662
9663 return namespace_decl;
9664 }
9665
9666 /* Parse a namespace-definition.
9667
9668 namespace-definition:
9669 named-namespace-definition
9670 unnamed-namespace-definition
9671
9672 named-namespace-definition:
9673 original-namespace-definition
9674 extension-namespace-definition
9675
9676 original-namespace-definition:
9677 namespace identifier { namespace-body }
9678
9679 extension-namespace-definition:
9680 namespace original-namespace-name { namespace-body }
9681
9682 unnamed-namespace-definition:
9683 namespace { namespace-body } */
9684
9685 static void
9686 cp_parser_namespace_definition (cp_parser* parser)
9687 {
9688 tree identifier;
9689
9690 /* Look for the `namespace' keyword. */
9691 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
9692
9693 /* Get the name of the namespace. We do not attempt to distinguish
9694 between an original-namespace-definition and an
9695 extension-namespace-definition at this point. The semantic
9696 analysis routines are responsible for that. */
9697 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9698 identifier = cp_parser_identifier (parser);
9699 else
9700 identifier = NULL_TREE;
9701
9702 /* Look for the `{' to start the namespace. */
9703 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
9704 /* Start the namespace. */
9705 push_namespace (identifier);
9706 /* Parse the body of the namespace. */
9707 cp_parser_namespace_body (parser);
9708 /* Finish the namespace. */
9709 pop_namespace ();
9710 /* Look for the final `}'. */
9711 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9712 }
9713
9714 /* Parse a namespace-body.
9715
9716 namespace-body:
9717 declaration-seq [opt] */
9718
9719 static void
9720 cp_parser_namespace_body (cp_parser* parser)
9721 {
9722 cp_parser_declaration_seq_opt (parser);
9723 }
9724
9725 /* Parse a namespace-alias-definition.
9726
9727 namespace-alias-definition:
9728 namespace identifier = qualified-namespace-specifier ; */
9729
9730 static void
9731 cp_parser_namespace_alias_definition (cp_parser* parser)
9732 {
9733 tree identifier;
9734 tree namespace_specifier;
9735
9736 /* Look for the `namespace' keyword. */
9737 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
9738 /* Look for the identifier. */
9739 identifier = cp_parser_identifier (parser);
9740 if (identifier == error_mark_node)
9741 return;
9742 /* Look for the `=' token. */
9743 cp_parser_require (parser, CPP_EQ, "`='");
9744 /* Look for the qualified-namespace-specifier. */
9745 namespace_specifier
9746 = cp_parser_qualified_namespace_specifier (parser);
9747 /* Look for the `;' token. */
9748 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
9749
9750 /* Register the alias in the symbol table. */
9751 do_namespace_alias (identifier, namespace_specifier);
9752 }
9753
9754 /* Parse a qualified-namespace-specifier.
9755
9756 qualified-namespace-specifier:
9757 :: [opt] nested-name-specifier [opt] namespace-name
9758
9759 Returns a NAMESPACE_DECL corresponding to the specified
9760 namespace. */
9761
9762 static tree
9763 cp_parser_qualified_namespace_specifier (cp_parser* parser)
9764 {
9765 /* Look for the optional `::'. */
9766 cp_parser_global_scope_opt (parser,
9767 /*current_scope_valid_p=*/false);
9768
9769 /* Look for the optional nested-name-specifier. */
9770 cp_parser_nested_name_specifier_opt (parser,
9771 /*typename_keyword_p=*/false,
9772 /*check_dependency_p=*/true,
9773 /*type_p=*/false,
9774 /*is_declaration=*/true);
9775
9776 return cp_parser_namespace_name (parser);
9777 }
9778
9779 /* Parse a using-declaration.
9780
9781 using-declaration:
9782 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
9783 using :: unqualified-id ; */
9784
9785 static void
9786 cp_parser_using_declaration (cp_parser* parser)
9787 {
9788 cp_token *token;
9789 bool typename_p = false;
9790 bool global_scope_p;
9791 tree decl;
9792 tree identifier;
9793 tree scope;
9794 tree qscope;
9795
9796 /* Look for the `using' keyword. */
9797 cp_parser_require_keyword (parser, RID_USING, "`using'");
9798
9799 /* Peek at the next token. */
9800 token = cp_lexer_peek_token (parser->lexer);
9801 /* See if it's `typename'. */
9802 if (token->keyword == RID_TYPENAME)
9803 {
9804 /* Remember that we've seen it. */
9805 typename_p = true;
9806 /* Consume the `typename' token. */
9807 cp_lexer_consume_token (parser->lexer);
9808 }
9809
9810 /* Look for the optional global scope qualification. */
9811 global_scope_p
9812 = (cp_parser_global_scope_opt (parser,
9813 /*current_scope_valid_p=*/false)
9814 != NULL_TREE);
9815
9816 /* If we saw `typename', or didn't see `::', then there must be a
9817 nested-name-specifier present. */
9818 if (typename_p || !global_scope_p)
9819 qscope = cp_parser_nested_name_specifier (parser, typename_p,
9820 /*check_dependency_p=*/true,
9821 /*type_p=*/false,
9822 /*is_declaration=*/true);
9823 /* Otherwise, we could be in either of the two productions. In that
9824 case, treat the nested-name-specifier as optional. */
9825 else
9826 qscope = cp_parser_nested_name_specifier_opt (parser,
9827 /*typename_keyword_p=*/false,
9828 /*check_dependency_p=*/true,
9829 /*type_p=*/false,
9830 /*is_declaration=*/true);
9831 if (!qscope)
9832 qscope = global_namespace;
9833
9834 /* Parse the unqualified-id. */
9835 identifier = cp_parser_unqualified_id (parser,
9836 /*template_keyword_p=*/false,
9837 /*check_dependency_p=*/true,
9838 /*declarator_p=*/true);
9839
9840 /* The function we call to handle a using-declaration is different
9841 depending on what scope we are in. */
9842 if (identifier == error_mark_node)
9843 ;
9844 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
9845 && TREE_CODE (identifier) != BIT_NOT_EXPR)
9846 /* [namespace.udecl]
9847
9848 A using declaration shall not name a template-id. */
9849 error ("a template-id may not appear in a using-declaration");
9850 else
9851 {
9852 scope = current_scope ();
9853 if (scope && TYPE_P (scope))
9854 {
9855 /* Create the USING_DECL. */
9856 decl = do_class_using_decl (build_nt (SCOPE_REF,
9857 parser->scope,
9858 identifier));
9859 /* Add it to the list of members in this class. */
9860 finish_member_declaration (decl);
9861 }
9862 else
9863 {
9864 decl = cp_parser_lookup_name_simple (parser, identifier);
9865 if (decl == error_mark_node)
9866 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
9867 else if (scope)
9868 do_local_using_decl (decl, qscope, identifier);
9869 else
9870 do_toplevel_using_decl (decl, qscope, identifier);
9871 }
9872 }
9873
9874 /* Look for the final `;'. */
9875 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
9876 }
9877
9878 /* Parse a using-directive.
9879
9880 using-directive:
9881 using namespace :: [opt] nested-name-specifier [opt]
9882 namespace-name ; */
9883
9884 static void
9885 cp_parser_using_directive (cp_parser* parser)
9886 {
9887 tree namespace_decl;
9888 tree attribs;
9889
9890 /* Look for the `using' keyword. */
9891 cp_parser_require_keyword (parser, RID_USING, "`using'");
9892 /* And the `namespace' keyword. */
9893 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
9894 /* Look for the optional `::' operator. */
9895 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
9896 /* And the optional nested-name-specifier. */
9897 cp_parser_nested_name_specifier_opt (parser,
9898 /*typename_keyword_p=*/false,
9899 /*check_dependency_p=*/true,
9900 /*type_p=*/false,
9901 /*is_declaration=*/true);
9902 /* Get the namespace being used. */
9903 namespace_decl = cp_parser_namespace_name (parser);
9904 /* And any specified attributes. */
9905 attribs = cp_parser_attributes_opt (parser);
9906 /* Update the symbol table. */
9907 parse_using_directive (namespace_decl, attribs);
9908 /* Look for the final `;'. */
9909 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
9910 }
9911
9912 /* Parse an asm-definition.
9913
9914 asm-definition:
9915 asm ( string-literal ) ;
9916
9917 GNU Extension:
9918
9919 asm-definition:
9920 asm volatile [opt] ( string-literal ) ;
9921 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
9922 asm volatile [opt] ( string-literal : asm-operand-list [opt]
9923 : asm-operand-list [opt] ) ;
9924 asm volatile [opt] ( string-literal : asm-operand-list [opt]
9925 : asm-operand-list [opt]
9926 : asm-operand-list [opt] ) ; */
9927
9928 static void
9929 cp_parser_asm_definition (cp_parser* parser)
9930 {
9931 cp_token *token;
9932 tree string;
9933 tree outputs = NULL_TREE;
9934 tree inputs = NULL_TREE;
9935 tree clobbers = NULL_TREE;
9936 tree asm_stmt;
9937 bool volatile_p = false;
9938 bool extended_p = false;
9939
9940 /* Look for the `asm' keyword. */
9941 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
9942 /* See if the next token is `volatile'. */
9943 if (cp_parser_allow_gnu_extensions_p (parser)
9944 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
9945 {
9946 /* Remember that we saw the `volatile' keyword. */
9947 volatile_p = true;
9948 /* Consume the token. */
9949 cp_lexer_consume_token (parser->lexer);
9950 }
9951 /* Look for the opening `('. */
9952 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
9953 /* Look for the string. */
9954 c_lex_string_translate = 0;
9955 token = cp_parser_require (parser, CPP_STRING, "asm body");
9956 if (!token)
9957 goto finish;
9958 string = token->value;
9959 /* If we're allowing GNU extensions, check for the extended assembly
9960 syntax. Unfortunately, the `:' tokens need not be separated by
9961 a space in C, and so, for compatibility, we tolerate that here
9962 too. Doing that means that we have to treat the `::' operator as
9963 two `:' tokens. */
9964 if (cp_parser_allow_gnu_extensions_p (parser)
9965 && at_function_scope_p ()
9966 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
9967 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
9968 {
9969 bool inputs_p = false;
9970 bool clobbers_p = false;
9971
9972 /* The extended syntax was used. */
9973 extended_p = true;
9974
9975 /* Look for outputs. */
9976 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
9977 {
9978 /* Consume the `:'. */
9979 cp_lexer_consume_token (parser->lexer);
9980 /* Parse the output-operands. */
9981 if (cp_lexer_next_token_is_not (parser->lexer,
9982 CPP_COLON)
9983 && cp_lexer_next_token_is_not (parser->lexer,
9984 CPP_SCOPE)
9985 && cp_lexer_next_token_is_not (parser->lexer,
9986 CPP_CLOSE_PAREN))
9987 outputs = cp_parser_asm_operand_list (parser);
9988 }
9989 /* If the next token is `::', there are no outputs, and the
9990 next token is the beginning of the inputs. */
9991 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
9992 {
9993 /* Consume the `::' token. */
9994 cp_lexer_consume_token (parser->lexer);
9995 /* The inputs are coming next. */
9996 inputs_p = true;
9997 }
9998
9999 /* Look for inputs. */
10000 if (inputs_p
10001 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10002 {
10003 if (!inputs_p)
10004 /* Consume the `:'. */
10005 cp_lexer_consume_token (parser->lexer);
10006 /* Parse the output-operands. */
10007 if (cp_lexer_next_token_is_not (parser->lexer,
10008 CPP_COLON)
10009 && cp_lexer_next_token_is_not (parser->lexer,
10010 CPP_SCOPE)
10011 && cp_lexer_next_token_is_not (parser->lexer,
10012 CPP_CLOSE_PAREN))
10013 inputs = cp_parser_asm_operand_list (parser);
10014 }
10015 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10016 /* The clobbers are coming next. */
10017 clobbers_p = true;
10018
10019 /* Look for clobbers. */
10020 if (clobbers_p
10021 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10022 {
10023 if (!clobbers_p)
10024 /* Consume the `:'. */
10025 cp_lexer_consume_token (parser->lexer);
10026 /* Parse the clobbers. */
10027 if (cp_lexer_next_token_is_not (parser->lexer,
10028 CPP_CLOSE_PAREN))
10029 clobbers = cp_parser_asm_clobber_list (parser);
10030 }
10031 }
10032 /* Look for the closing `)'. */
10033 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10034 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10035 /*consume_paren=*/true);
10036 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10037
10038 /* Create the ASM_EXPR. */
10039 if (at_function_scope_p ())
10040 {
10041 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10042 inputs, clobbers);
10043 /* If the extended syntax was not used, mark the ASM_EXPR. */
10044 if (!extended_p)
10045 ASM_INPUT_P (asm_stmt) = 1;
10046 }
10047 else
10048 assemble_asm (string);
10049
10050 finish:
10051 c_lex_string_translate = 1;
10052 }
10053
10054 /* Declarators [gram.dcl.decl] */
10055
10056 /* Parse an init-declarator.
10057
10058 init-declarator:
10059 declarator initializer [opt]
10060
10061 GNU Extension:
10062
10063 init-declarator:
10064 declarator asm-specification [opt] attributes [opt] initializer [opt]
10065
10066 function-definition:
10067 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10068 function-body
10069 decl-specifier-seq [opt] declarator function-try-block
10070
10071 GNU Extension:
10072
10073 function-definition:
10074 __extension__ function-definition
10075
10076 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10077 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10078 then this declarator appears in a class scope. The new DECL created
10079 by this declarator is returned.
10080
10081 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10082 for a function-definition here as well. If the declarator is a
10083 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10084 be TRUE upon return. By that point, the function-definition will
10085 have been completely parsed.
10086
10087 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10088 is FALSE. */
10089
10090 static tree
10091 cp_parser_init_declarator (cp_parser* parser,
10092 tree decl_specifiers,
10093 tree prefix_attributes,
10094 bool function_definition_allowed_p,
10095 bool member_p,
10096 int declares_class_or_enum,
10097 bool* function_definition_p)
10098 {
10099 cp_token *token;
10100 tree declarator;
10101 tree attributes;
10102 tree asm_specification;
10103 tree initializer;
10104 tree decl = NULL_TREE;
10105 tree scope;
10106 bool is_initialized;
10107 bool is_parenthesized_init;
10108 bool is_non_constant_init;
10109 int ctor_dtor_or_conv_p;
10110 bool friend_p;
10111 bool pop_p = false;
10112
10113 /* Assume that this is not the declarator for a function
10114 definition. */
10115 if (function_definition_p)
10116 *function_definition_p = false;
10117
10118 /* Defer access checks while parsing the declarator; we cannot know
10119 what names are accessible until we know what is being
10120 declared. */
10121 resume_deferring_access_checks ();
10122
10123 /* Parse the declarator. */
10124 declarator
10125 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10126 &ctor_dtor_or_conv_p,
10127 /*parenthesized_p=*/NULL);
10128 /* Gather up the deferred checks. */
10129 stop_deferring_access_checks ();
10130
10131 /* If the DECLARATOR was erroneous, there's no need to go
10132 further. */
10133 if (declarator == error_mark_node)
10134 return error_mark_node;
10135
10136 cp_parser_check_for_definition_in_return_type (declarator,
10137 declares_class_or_enum);
10138
10139 /* Figure out what scope the entity declared by the DECLARATOR is
10140 located in. `grokdeclarator' sometimes changes the scope, so
10141 we compute it now. */
10142 scope = get_scope_of_declarator (declarator);
10143
10144 /* If we're allowing GNU extensions, look for an asm-specification
10145 and attributes. */
10146 if (cp_parser_allow_gnu_extensions_p (parser))
10147 {
10148 /* Look for an asm-specification. */
10149 asm_specification = cp_parser_asm_specification_opt (parser);
10150 /* And attributes. */
10151 attributes = cp_parser_attributes_opt (parser);
10152 }
10153 else
10154 {
10155 asm_specification = NULL_TREE;
10156 attributes = NULL_TREE;
10157 }
10158
10159 /* Peek at the next token. */
10160 token = cp_lexer_peek_token (parser->lexer);
10161 /* Check to see if the token indicates the start of a
10162 function-definition. */
10163 if (cp_parser_token_starts_function_definition_p (token))
10164 {
10165 if (!function_definition_allowed_p)
10166 {
10167 /* If a function-definition should not appear here, issue an
10168 error message. */
10169 cp_parser_error (parser,
10170 "a function-definition is not allowed here");
10171 return error_mark_node;
10172 }
10173 else
10174 {
10175 /* Neither attributes nor an asm-specification are allowed
10176 on a function-definition. */
10177 if (asm_specification)
10178 error ("an asm-specification is not allowed on a function-definition");
10179 if (attributes)
10180 error ("attributes are not allowed on a function-definition");
10181 /* This is a function-definition. */
10182 *function_definition_p = true;
10183
10184 /* Parse the function definition. */
10185 if (member_p)
10186 decl = cp_parser_save_member_function_body (parser,
10187 decl_specifiers,
10188 declarator,
10189 prefix_attributes);
10190 else
10191 decl
10192 = (cp_parser_function_definition_from_specifiers_and_declarator
10193 (parser, decl_specifiers, prefix_attributes, declarator));
10194
10195 return decl;
10196 }
10197 }
10198
10199 /* [dcl.dcl]
10200
10201 Only in function declarations for constructors, destructors, and
10202 type conversions can the decl-specifier-seq be omitted.
10203
10204 We explicitly postpone this check past the point where we handle
10205 function-definitions because we tolerate function-definitions
10206 that are missing their return types in some modes. */
10207 if (!decl_specifiers && ctor_dtor_or_conv_p <= 0)
10208 {
10209 cp_parser_error (parser,
10210 "expected constructor, destructor, or type conversion");
10211 return error_mark_node;
10212 }
10213
10214 /* An `=' or an `(' indicates an initializer. */
10215 is_initialized = (token->type == CPP_EQ
10216 || token->type == CPP_OPEN_PAREN);
10217 /* If the init-declarator isn't initialized and isn't followed by a
10218 `,' or `;', it's not a valid init-declarator. */
10219 if (!is_initialized
10220 && token->type != CPP_COMMA
10221 && token->type != CPP_SEMICOLON)
10222 {
10223 cp_parser_error (parser, "expected init-declarator");
10224 return error_mark_node;
10225 }
10226
10227 /* Because start_decl has side-effects, we should only call it if we
10228 know we're going ahead. By this point, we know that we cannot
10229 possibly be looking at any other construct. */
10230 cp_parser_commit_to_tentative_parse (parser);
10231
10232 /* If the decl specifiers were bad, issue an error now that we're
10233 sure this was intended to be a declarator. Then continue
10234 declaring the variable(s), as int, to try to cut down on further
10235 errors. */
10236 if (decl_specifiers != NULL
10237 && TREE_VALUE (decl_specifiers) == error_mark_node)
10238 {
10239 cp_parser_error (parser, "invalid type in declaration");
10240 TREE_VALUE (decl_specifiers) = integer_type_node;
10241 }
10242
10243 /* Check to see whether or not this declaration is a friend. */
10244 friend_p = cp_parser_friend_p (decl_specifiers);
10245
10246 /* Check that the number of template-parameter-lists is OK. */
10247 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10248 return error_mark_node;
10249
10250 /* Enter the newly declared entry in the symbol table. If we're
10251 processing a declaration in a class-specifier, we wait until
10252 after processing the initializer. */
10253 if (!member_p)
10254 {
10255 if (parser->in_unbraced_linkage_specification_p)
10256 {
10257 decl_specifiers = tree_cons (error_mark_node,
10258 get_identifier ("extern"),
10259 decl_specifiers);
10260 have_extern_spec = false;
10261 }
10262 decl = start_decl (declarator, decl_specifiers,
10263 is_initialized, attributes, prefix_attributes);
10264 }
10265
10266 /* Enter the SCOPE. That way unqualified names appearing in the
10267 initializer will be looked up in SCOPE. */
10268 if (scope)
10269 pop_p = push_scope (scope);
10270
10271 /* Perform deferred access control checks, now that we know in which
10272 SCOPE the declared entity resides. */
10273 if (!member_p && decl)
10274 {
10275 tree saved_current_function_decl = NULL_TREE;
10276
10277 /* If the entity being declared is a function, pretend that we
10278 are in its scope. If it is a `friend', it may have access to
10279 things that would not otherwise be accessible. */
10280 if (TREE_CODE (decl) == FUNCTION_DECL)
10281 {
10282 saved_current_function_decl = current_function_decl;
10283 current_function_decl = decl;
10284 }
10285
10286 /* Perform the access control checks for the declarator and the
10287 the decl-specifiers. */
10288 perform_deferred_access_checks ();
10289
10290 /* Restore the saved value. */
10291 if (TREE_CODE (decl) == FUNCTION_DECL)
10292 current_function_decl = saved_current_function_decl;
10293 }
10294
10295 /* Parse the initializer. */
10296 if (is_initialized)
10297 initializer = cp_parser_initializer (parser,
10298 &is_parenthesized_init,
10299 &is_non_constant_init);
10300 else
10301 {
10302 initializer = NULL_TREE;
10303 is_parenthesized_init = false;
10304 is_non_constant_init = true;
10305 }
10306
10307 /* The old parser allows attributes to appear after a parenthesized
10308 initializer. Mark Mitchell proposed removing this functionality
10309 on the GCC mailing lists on 2002-08-13. This parser accepts the
10310 attributes -- but ignores them. */
10311 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10312 if (cp_parser_attributes_opt (parser))
10313 warning ("attributes after parenthesized initializer ignored");
10314
10315 /* Leave the SCOPE, now that we have processed the initializer. It
10316 is important to do this before calling cp_finish_decl because it
10317 makes decisions about whether to create DECL_STMTs or not based
10318 on the current scope. */
10319 if (pop_p)
10320 pop_scope (scope);
10321
10322 /* For an in-class declaration, use `grokfield' to create the
10323 declaration. */
10324 if (member_p)
10325 {
10326 decl = grokfield (declarator, decl_specifiers,
10327 initializer, /*asmspec=*/NULL_TREE,
10328 /*attributes=*/NULL_TREE);
10329 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10330 cp_parser_save_default_args (parser, decl);
10331 }
10332
10333 /* Finish processing the declaration. But, skip friend
10334 declarations. */
10335 if (!friend_p && decl)
10336 cp_finish_decl (decl,
10337 initializer,
10338 asm_specification,
10339 /* If the initializer is in parentheses, then this is
10340 a direct-initialization, which means that an
10341 `explicit' constructor is OK. Otherwise, an
10342 `explicit' constructor cannot be used. */
10343 ((is_parenthesized_init || !is_initialized)
10344 ? 0 : LOOKUP_ONLYCONVERTING));
10345
10346 /* Remember whether or not variables were initialized by
10347 constant-expressions. */
10348 if (decl && TREE_CODE (decl) == VAR_DECL
10349 && is_initialized && !is_non_constant_init)
10350 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10351
10352 return decl;
10353 }
10354
10355 /* Parse a declarator.
10356
10357 declarator:
10358 direct-declarator
10359 ptr-operator declarator
10360
10361 abstract-declarator:
10362 ptr-operator abstract-declarator [opt]
10363 direct-abstract-declarator
10364
10365 GNU Extensions:
10366
10367 declarator:
10368 attributes [opt] direct-declarator
10369 attributes [opt] ptr-operator declarator
10370
10371 abstract-declarator:
10372 attributes [opt] ptr-operator abstract-declarator [opt]
10373 attributes [opt] direct-abstract-declarator
10374
10375 Returns a representation of the declarator. If the declarator has
10376 the form `* declarator', then an INDIRECT_REF is returned, whose
10377 only operand is the sub-declarator. Analogously, `& declarator' is
10378 represented as an ADDR_EXPR. For `X::* declarator', a SCOPE_REF is
10379 used. The first operand is the TYPE for `X'. The second operand
10380 is an INDIRECT_REF whose operand is the sub-declarator.
10381
10382 Otherwise, the representation is as for a direct-declarator.
10383
10384 (It would be better to define a structure type to represent
10385 declarators, rather than abusing `tree' nodes to represent
10386 declarators. That would be much clearer and save some memory.
10387 There is no reason for declarators to be garbage-collected, for
10388 example; they are created during parser and no longer needed after
10389 `grokdeclarator' has been called.)
10390
10391 For a ptr-operator that has the optional cv-qualifier-seq,
10392 cv-qualifiers will be stored in the TREE_TYPE of the INDIRECT_REF
10393 node.
10394
10395 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10396 detect constructor, destructor or conversion operators. It is set
10397 to -1 if the declarator is a name, and +1 if it is a
10398 function. Otherwise it is set to zero. Usually you just want to
10399 test for >0, but internally the negative value is used.
10400
10401 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10402 a decl-specifier-seq unless it declares a constructor, destructor,
10403 or conversion. It might seem that we could check this condition in
10404 semantic analysis, rather than parsing, but that makes it difficult
10405 to handle something like `f()'. We want to notice that there are
10406 no decl-specifiers, and therefore realize that this is an
10407 expression, not a declaration.)
10408
10409 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10410 the declarator is a direct-declarator of the form "(...)". */
10411
10412 static tree
10413 cp_parser_declarator (cp_parser* parser,
10414 cp_parser_declarator_kind dcl_kind,
10415 int* ctor_dtor_or_conv_p,
10416 bool* parenthesized_p)
10417 {
10418 cp_token *token;
10419 tree declarator;
10420 enum tree_code code;
10421 tree cv_qualifier_seq;
10422 tree class_type;
10423 tree attributes = NULL_TREE;
10424
10425 /* Assume this is not a constructor, destructor, or type-conversion
10426 operator. */
10427 if (ctor_dtor_or_conv_p)
10428 *ctor_dtor_or_conv_p = 0;
10429
10430 if (cp_parser_allow_gnu_extensions_p (parser))
10431 attributes = cp_parser_attributes_opt (parser);
10432
10433 /* Peek at the next token. */
10434 token = cp_lexer_peek_token (parser->lexer);
10435
10436 /* Check for the ptr-operator production. */
10437 cp_parser_parse_tentatively (parser);
10438 /* Parse the ptr-operator. */
10439 code = cp_parser_ptr_operator (parser,
10440 &class_type,
10441 &cv_qualifier_seq);
10442 /* If that worked, then we have a ptr-operator. */
10443 if (cp_parser_parse_definitely (parser))
10444 {
10445 /* If a ptr-operator was found, then this declarator was not
10446 parenthesized. */
10447 if (parenthesized_p)
10448 *parenthesized_p = true;
10449 /* The dependent declarator is optional if we are parsing an
10450 abstract-declarator. */
10451 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10452 cp_parser_parse_tentatively (parser);
10453
10454 /* Parse the dependent declarator. */
10455 declarator = cp_parser_declarator (parser, dcl_kind,
10456 /*ctor_dtor_or_conv_p=*/NULL,
10457 /*parenthesized_p=*/NULL);
10458
10459 /* If we are parsing an abstract-declarator, we must handle the
10460 case where the dependent declarator is absent. */
10461 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
10462 && !cp_parser_parse_definitely (parser))
10463 declarator = NULL_TREE;
10464
10465 /* Build the representation of the ptr-operator. */
10466 if (code == INDIRECT_REF)
10467 declarator = make_pointer_declarator (cv_qualifier_seq,
10468 declarator);
10469 else
10470 declarator = make_reference_declarator (cv_qualifier_seq,
10471 declarator);
10472 /* Handle the pointer-to-member case. */
10473 if (class_type)
10474 declarator = build_nt (SCOPE_REF, class_type, declarator);
10475 }
10476 /* Everything else is a direct-declarator. */
10477 else
10478 {
10479 if (parenthesized_p)
10480 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
10481 CPP_OPEN_PAREN);
10482 declarator = cp_parser_direct_declarator (parser, dcl_kind,
10483 ctor_dtor_or_conv_p);
10484 }
10485
10486 if (attributes && declarator != error_mark_node)
10487 declarator = tree_cons (attributes, declarator, NULL_TREE);
10488
10489 return declarator;
10490 }
10491
10492 /* Parse a direct-declarator or direct-abstract-declarator.
10493
10494 direct-declarator:
10495 declarator-id
10496 direct-declarator ( parameter-declaration-clause )
10497 cv-qualifier-seq [opt]
10498 exception-specification [opt]
10499 direct-declarator [ constant-expression [opt] ]
10500 ( declarator )
10501
10502 direct-abstract-declarator:
10503 direct-abstract-declarator [opt]
10504 ( parameter-declaration-clause )
10505 cv-qualifier-seq [opt]
10506 exception-specification [opt]
10507 direct-abstract-declarator [opt] [ constant-expression [opt] ]
10508 ( abstract-declarator )
10509
10510 Returns a representation of the declarator. DCL_KIND is
10511 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
10512 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
10513 we are parsing a direct-declarator. It is
10514 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
10515 of ambiguity we prefer an abstract declarator, as per
10516 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P is as for
10517 cp_parser_declarator.
10518
10519 For the declarator-id production, the representation is as for an
10520 id-expression, except that a qualified name is represented as a
10521 SCOPE_REF. A function-declarator is represented as a CALL_EXPR;
10522 see the documentation of the FUNCTION_DECLARATOR_* macros for
10523 information about how to find the various declarator components.
10524 An array-declarator is represented as an ARRAY_REF. The
10525 direct-declarator is the first operand; the constant-expression
10526 indicating the size of the array is the second operand. */
10527
10528 static tree
10529 cp_parser_direct_declarator (cp_parser* parser,
10530 cp_parser_declarator_kind dcl_kind,
10531 int* ctor_dtor_or_conv_p)
10532 {
10533 cp_token *token;
10534 tree declarator = NULL_TREE;
10535 tree scope = NULL_TREE;
10536 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
10537 bool saved_in_declarator_p = parser->in_declarator_p;
10538 bool first = true;
10539 bool pop_p = false;
10540
10541 while (true)
10542 {
10543 /* Peek at the next token. */
10544 token = cp_lexer_peek_token (parser->lexer);
10545 if (token->type == CPP_OPEN_PAREN)
10546 {
10547 /* This is either a parameter-declaration-clause, or a
10548 parenthesized declarator. When we know we are parsing a
10549 named declarator, it must be a parenthesized declarator
10550 if FIRST is true. For instance, `(int)' is a
10551 parameter-declaration-clause, with an omitted
10552 direct-abstract-declarator. But `((*))', is a
10553 parenthesized abstract declarator. Finally, when T is a
10554 template parameter `(T)' is a
10555 parameter-declaration-clause, and not a parenthesized
10556 named declarator.
10557
10558 We first try and parse a parameter-declaration-clause,
10559 and then try a nested declarator (if FIRST is true).
10560
10561 It is not an error for it not to be a
10562 parameter-declaration-clause, even when FIRST is
10563 false. Consider,
10564
10565 int i (int);
10566 int i (3);
10567
10568 The first is the declaration of a function while the
10569 second is a the definition of a variable, including its
10570 initializer.
10571
10572 Having seen only the parenthesis, we cannot know which of
10573 these two alternatives should be selected. Even more
10574 complex are examples like:
10575
10576 int i (int (a));
10577 int i (int (3));
10578
10579 The former is a function-declaration; the latter is a
10580 variable initialization.
10581
10582 Thus again, we try a parameter-declaration-clause, and if
10583 that fails, we back out and return. */
10584
10585 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10586 {
10587 tree params;
10588 unsigned saved_num_template_parameter_lists;
10589
10590 cp_parser_parse_tentatively (parser);
10591
10592 /* Consume the `('. */
10593 cp_lexer_consume_token (parser->lexer);
10594 if (first)
10595 {
10596 /* If this is going to be an abstract declarator, we're
10597 in a declarator and we can't have default args. */
10598 parser->default_arg_ok_p = false;
10599 parser->in_declarator_p = true;
10600 }
10601
10602 /* Inside the function parameter list, surrounding
10603 template-parameter-lists do not apply. */
10604 saved_num_template_parameter_lists
10605 = parser->num_template_parameter_lists;
10606 parser->num_template_parameter_lists = 0;
10607
10608 /* Parse the parameter-declaration-clause. */
10609 params = cp_parser_parameter_declaration_clause (parser);
10610
10611 parser->num_template_parameter_lists
10612 = saved_num_template_parameter_lists;
10613
10614 /* If all went well, parse the cv-qualifier-seq and the
10615 exception-specification. */
10616 if (cp_parser_parse_definitely (parser))
10617 {
10618 tree cv_qualifiers;
10619 tree exception_specification;
10620
10621 if (ctor_dtor_or_conv_p)
10622 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
10623 first = false;
10624 /* Consume the `)'. */
10625 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
10626
10627 /* Parse the cv-qualifier-seq. */
10628 cv_qualifiers = cp_parser_cv_qualifier_seq_opt (parser);
10629 /* And the exception-specification. */
10630 exception_specification
10631 = cp_parser_exception_specification_opt (parser);
10632
10633 /* Create the function-declarator. */
10634 declarator = make_call_declarator (declarator,
10635 params,
10636 cv_qualifiers,
10637 exception_specification);
10638 /* Any subsequent parameter lists are to do with
10639 return type, so are not those of the declared
10640 function. */
10641 parser->default_arg_ok_p = false;
10642
10643 /* Repeat the main loop. */
10644 continue;
10645 }
10646 }
10647
10648 /* If this is the first, we can try a parenthesized
10649 declarator. */
10650 if (first)
10651 {
10652 bool saved_in_type_id_in_expr_p;
10653
10654 parser->default_arg_ok_p = saved_default_arg_ok_p;
10655 parser->in_declarator_p = saved_in_declarator_p;
10656
10657 /* Consume the `('. */
10658 cp_lexer_consume_token (parser->lexer);
10659 /* Parse the nested declarator. */
10660 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
10661 parser->in_type_id_in_expr_p = true;
10662 declarator
10663 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
10664 /*parenthesized_p=*/NULL);
10665 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
10666 first = false;
10667 /* Expect a `)'. */
10668 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10669 declarator = error_mark_node;
10670 if (declarator == error_mark_node)
10671 break;
10672
10673 goto handle_declarator;
10674 }
10675 /* Otherwise, we must be done. */
10676 else
10677 break;
10678 }
10679 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10680 && token->type == CPP_OPEN_SQUARE)
10681 {
10682 /* Parse an array-declarator. */
10683 tree bounds;
10684
10685 if (ctor_dtor_or_conv_p)
10686 *ctor_dtor_or_conv_p = 0;
10687
10688 first = false;
10689 parser->default_arg_ok_p = false;
10690 parser->in_declarator_p = true;
10691 /* Consume the `['. */
10692 cp_lexer_consume_token (parser->lexer);
10693 /* Peek at the next token. */
10694 token = cp_lexer_peek_token (parser->lexer);
10695 /* If the next token is `]', then there is no
10696 constant-expression. */
10697 if (token->type != CPP_CLOSE_SQUARE)
10698 {
10699 bool non_constant_p;
10700
10701 bounds
10702 = cp_parser_constant_expression (parser,
10703 /*allow_non_constant=*/true,
10704 &non_constant_p);
10705 if (!non_constant_p)
10706 bounds = fold_non_dependent_expr (bounds);
10707 }
10708 else
10709 bounds = NULL_TREE;
10710 /* Look for the closing `]'. */
10711 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
10712 {
10713 declarator = error_mark_node;
10714 break;
10715 }
10716
10717 declarator = build_nt (ARRAY_REF, declarator, bounds);
10718 }
10719 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
10720 {
10721 /* Parse a declarator-id */
10722 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
10723 cp_parser_parse_tentatively (parser);
10724 declarator = cp_parser_declarator_id (parser);
10725 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
10726 {
10727 if (!cp_parser_parse_definitely (parser))
10728 declarator = error_mark_node;
10729 else if (TREE_CODE (declarator) != IDENTIFIER_NODE)
10730 {
10731 cp_parser_error (parser, "expected unqualified-id");
10732 declarator = error_mark_node;
10733 }
10734 }
10735
10736 if (declarator == error_mark_node)
10737 break;
10738
10739 if (TREE_CODE (declarator) == SCOPE_REF
10740 && !current_scope ())
10741 {
10742 tree scope = TREE_OPERAND (declarator, 0);
10743
10744 /* In the declaration of a member of a template class
10745 outside of the class itself, the SCOPE will sometimes
10746 be a TYPENAME_TYPE. For example, given:
10747
10748 template <typename T>
10749 int S<T>::R::i = 3;
10750
10751 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
10752 this context, we must resolve S<T>::R to an ordinary
10753 type, rather than a typename type.
10754
10755 The reason we normally avoid resolving TYPENAME_TYPEs
10756 is that a specialization of `S' might render
10757 `S<T>::R' not a type. However, if `S' is
10758 specialized, then this `i' will not be used, so there
10759 is no harm in resolving the types here. */
10760 if (TREE_CODE (scope) == TYPENAME_TYPE)
10761 {
10762 tree type;
10763
10764 /* Resolve the TYPENAME_TYPE. */
10765 type = resolve_typename_type (scope,
10766 /*only_current_p=*/false);
10767 /* If that failed, the declarator is invalid. */
10768 if (type == error_mark_node)
10769 error ("`%T::%D' is not a type",
10770 TYPE_CONTEXT (scope),
10771 TYPE_IDENTIFIER (scope));
10772 /* Build a new DECLARATOR. */
10773 declarator = build_nt (SCOPE_REF,
10774 type,
10775 TREE_OPERAND (declarator, 1));
10776 }
10777 }
10778
10779 /* Check to see whether the declarator-id names a constructor,
10780 destructor, or conversion. */
10781 if (declarator && ctor_dtor_or_conv_p
10782 && ((TREE_CODE (declarator) == SCOPE_REF
10783 && CLASS_TYPE_P (TREE_OPERAND (declarator, 0)))
10784 || (TREE_CODE (declarator) != SCOPE_REF
10785 && at_class_scope_p ())))
10786 {
10787 tree unqualified_name;
10788 tree class_type;
10789
10790 /* Get the unqualified part of the name. */
10791 if (TREE_CODE (declarator) == SCOPE_REF)
10792 {
10793 class_type = TREE_OPERAND (declarator, 0);
10794 unqualified_name = TREE_OPERAND (declarator, 1);
10795 }
10796 else
10797 {
10798 class_type = current_class_type;
10799 unqualified_name = declarator;
10800 }
10801
10802 /* See if it names ctor, dtor or conv. */
10803 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR
10804 || IDENTIFIER_TYPENAME_P (unqualified_name)
10805 || constructor_name_p (unqualified_name, class_type)
10806 || (TREE_CODE (unqualified_name) == TYPE_DECL
10807 && same_type_p (TREE_TYPE (unqualified_name),
10808 class_type)))
10809 *ctor_dtor_or_conv_p = -1;
10810 if (TREE_CODE (declarator) == SCOPE_REF
10811 && TREE_CODE (unqualified_name) == TYPE_DECL
10812 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
10813 {
10814 error ("invalid use of constructor as a template");
10815 inform ("use `%T::%D' instead of `%T::%T' to name the "
10816 "constructor in a qualified name", class_type,
10817 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
10818 class_type, class_type);
10819 }
10820 }
10821
10822 handle_declarator:;
10823 scope = get_scope_of_declarator (declarator);
10824 if (scope)
10825 /* Any names that appear after the declarator-id for a
10826 member are looked up in the containing scope. */
10827 pop_p = push_scope (scope);
10828 parser->in_declarator_p = true;
10829 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
10830 || (declarator
10831 && (TREE_CODE (declarator) == SCOPE_REF
10832 || TREE_CODE (declarator) == IDENTIFIER_NODE)))
10833 /* Default args are only allowed on function
10834 declarations. */
10835 parser->default_arg_ok_p = saved_default_arg_ok_p;
10836 else
10837 parser->default_arg_ok_p = false;
10838
10839 first = false;
10840 }
10841 /* We're done. */
10842 else
10843 break;
10844 }
10845
10846 /* For an abstract declarator, we might wind up with nothing at this
10847 point. That's an error; the declarator is not optional. */
10848 if (!declarator)
10849 cp_parser_error (parser, "expected declarator");
10850
10851 /* If we entered a scope, we must exit it now. */
10852 if (pop_p)
10853 pop_scope (scope);
10854
10855 parser->default_arg_ok_p = saved_default_arg_ok_p;
10856 parser->in_declarator_p = saved_in_declarator_p;
10857
10858 return declarator;
10859 }
10860
10861 /* Parse a ptr-operator.
10862
10863 ptr-operator:
10864 * cv-qualifier-seq [opt]
10865 &
10866 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
10867
10868 GNU Extension:
10869
10870 ptr-operator:
10871 & cv-qualifier-seq [opt]
10872
10873 Returns INDIRECT_REF if a pointer, or pointer-to-member, was
10874 used. Returns ADDR_EXPR if a reference was used. In the
10875 case of a pointer-to-member, *TYPE is filled in with the
10876 TYPE containing the member. *CV_QUALIFIER_SEQ is filled in
10877 with the cv-qualifier-seq, or NULL_TREE, if there are no
10878 cv-qualifiers. Returns ERROR_MARK if an error occurred. */
10879
10880 static enum tree_code
10881 cp_parser_ptr_operator (cp_parser* parser,
10882 tree* type,
10883 tree* cv_qualifier_seq)
10884 {
10885 enum tree_code code = ERROR_MARK;
10886 cp_token *token;
10887
10888 /* Assume that it's not a pointer-to-member. */
10889 *type = NULL_TREE;
10890 /* And that there are no cv-qualifiers. */
10891 *cv_qualifier_seq = NULL_TREE;
10892
10893 /* Peek at the next token. */
10894 token = cp_lexer_peek_token (parser->lexer);
10895 /* If it's a `*' or `&' we have a pointer or reference. */
10896 if (token->type == CPP_MULT || token->type == CPP_AND)
10897 {
10898 /* Remember which ptr-operator we were processing. */
10899 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
10900
10901 /* Consume the `*' or `&'. */
10902 cp_lexer_consume_token (parser->lexer);
10903
10904 /* A `*' can be followed by a cv-qualifier-seq, and so can a
10905 `&', if we are allowing GNU extensions. (The only qualifier
10906 that can legally appear after `&' is `restrict', but that is
10907 enforced during semantic analysis. */
10908 if (code == INDIRECT_REF
10909 || cp_parser_allow_gnu_extensions_p (parser))
10910 *cv_qualifier_seq = cp_parser_cv_qualifier_seq_opt (parser);
10911 }
10912 else
10913 {
10914 /* Try the pointer-to-member case. */
10915 cp_parser_parse_tentatively (parser);
10916 /* Look for the optional `::' operator. */
10917 cp_parser_global_scope_opt (parser,
10918 /*current_scope_valid_p=*/false);
10919 /* Look for the nested-name specifier. */
10920 cp_parser_nested_name_specifier (parser,
10921 /*typename_keyword_p=*/false,
10922 /*check_dependency_p=*/true,
10923 /*type_p=*/false,
10924 /*is_declaration=*/false);
10925 /* If we found it, and the next token is a `*', then we are
10926 indeed looking at a pointer-to-member operator. */
10927 if (!cp_parser_error_occurred (parser)
10928 && cp_parser_require (parser, CPP_MULT, "`*'"))
10929 {
10930 /* The type of which the member is a member is given by the
10931 current SCOPE. */
10932 *type = parser->scope;
10933 /* The next name will not be qualified. */
10934 parser->scope = NULL_TREE;
10935 parser->qualifying_scope = NULL_TREE;
10936 parser->object_scope = NULL_TREE;
10937 /* Indicate that the `*' operator was used. */
10938 code = INDIRECT_REF;
10939 /* Look for the optional cv-qualifier-seq. */
10940 *cv_qualifier_seq = cp_parser_cv_qualifier_seq_opt (parser);
10941 }
10942 /* If that didn't work we don't have a ptr-operator. */
10943 if (!cp_parser_parse_definitely (parser))
10944 cp_parser_error (parser, "expected ptr-operator");
10945 }
10946
10947 return code;
10948 }
10949
10950 /* Parse an (optional) cv-qualifier-seq.
10951
10952 cv-qualifier-seq:
10953 cv-qualifier cv-qualifier-seq [opt]
10954
10955 Returns a TREE_LIST. The TREE_VALUE of each node is the
10956 representation of a cv-qualifier. */
10957
10958 static tree
10959 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
10960 {
10961 tree cv_qualifiers = NULL_TREE;
10962
10963 while (true)
10964 {
10965 tree cv_qualifier;
10966
10967 /* Look for the next cv-qualifier. */
10968 cv_qualifier = cp_parser_cv_qualifier_opt (parser);
10969 /* If we didn't find one, we're done. */
10970 if (!cv_qualifier)
10971 break;
10972
10973 /* Add this cv-qualifier to the list. */
10974 cv_qualifiers
10975 = tree_cons (NULL_TREE, cv_qualifier, cv_qualifiers);
10976 }
10977
10978 /* We built up the list in reverse order. */
10979 return nreverse (cv_qualifiers);
10980 }
10981
10982 /* Parse an (optional) cv-qualifier.
10983
10984 cv-qualifier:
10985 const
10986 volatile
10987
10988 GNU Extension:
10989
10990 cv-qualifier:
10991 __restrict__ */
10992
10993 static tree
10994 cp_parser_cv_qualifier_opt (cp_parser* parser)
10995 {
10996 cp_token *token;
10997 tree cv_qualifier = NULL_TREE;
10998
10999 /* Peek at the next token. */
11000 token = cp_lexer_peek_token (parser->lexer);
11001 /* See if it's a cv-qualifier. */
11002 switch (token->keyword)
11003 {
11004 case RID_CONST:
11005 case RID_VOLATILE:
11006 case RID_RESTRICT:
11007 /* Save the value of the token. */
11008 cv_qualifier = token->value;
11009 /* Consume the token. */
11010 cp_lexer_consume_token (parser->lexer);
11011 break;
11012
11013 default:
11014 break;
11015 }
11016
11017 return cv_qualifier;
11018 }
11019
11020 /* Parse a declarator-id.
11021
11022 declarator-id:
11023 id-expression
11024 :: [opt] nested-name-specifier [opt] type-name
11025
11026 In the `id-expression' case, the value returned is as for
11027 cp_parser_id_expression if the id-expression was an unqualified-id.
11028 If the id-expression was a qualified-id, then a SCOPE_REF is
11029 returned. The first operand is the scope (either a NAMESPACE_DECL
11030 or TREE_TYPE), but the second is still just a representation of an
11031 unqualified-id. */
11032
11033 static tree
11034 cp_parser_declarator_id (cp_parser* parser)
11035 {
11036 tree id_expression;
11037
11038 /* The expression must be an id-expression. Assume that qualified
11039 names are the names of types so that:
11040
11041 template <class T>
11042 int S<T>::R::i = 3;
11043
11044 will work; we must treat `S<T>::R' as the name of a type.
11045 Similarly, assume that qualified names are templates, where
11046 required, so that:
11047
11048 template <class T>
11049 int S<T>::R<T>::i = 3;
11050
11051 will work, too. */
11052 id_expression = cp_parser_id_expression (parser,
11053 /*template_keyword_p=*/false,
11054 /*check_dependency_p=*/false,
11055 /*template_p=*/NULL,
11056 /*declarator_p=*/true);
11057 /* If the name was qualified, create a SCOPE_REF to represent
11058 that. */
11059 if (parser->scope)
11060 {
11061 id_expression = build_nt (SCOPE_REF, parser->scope, id_expression);
11062 parser->scope = NULL_TREE;
11063 }
11064
11065 return id_expression;
11066 }
11067
11068 /* Parse a type-id.
11069
11070 type-id:
11071 type-specifier-seq abstract-declarator [opt]
11072
11073 Returns the TYPE specified. */
11074
11075 static tree
11076 cp_parser_type_id (cp_parser* parser)
11077 {
11078 tree type_specifier_seq;
11079 tree abstract_declarator;
11080
11081 /* Parse the type-specifier-seq. */
11082 type_specifier_seq
11083 = cp_parser_type_specifier_seq (parser);
11084 if (type_specifier_seq == error_mark_node)
11085 return error_mark_node;
11086
11087 /* There might or might not be an abstract declarator. */
11088 cp_parser_parse_tentatively (parser);
11089 /* Look for the declarator. */
11090 abstract_declarator
11091 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11092 /*parenthesized_p=*/NULL);
11093 /* Check to see if there really was a declarator. */
11094 if (!cp_parser_parse_definitely (parser))
11095 abstract_declarator = NULL_TREE;
11096
11097 return groktypename (build_tree_list (type_specifier_seq,
11098 abstract_declarator));
11099 }
11100
11101 /* Parse a type-specifier-seq.
11102
11103 type-specifier-seq:
11104 type-specifier type-specifier-seq [opt]
11105
11106 GNU extension:
11107
11108 type-specifier-seq:
11109 attributes type-specifier-seq [opt]
11110
11111 Returns a TREE_LIST. Either the TREE_VALUE of each node is a
11112 type-specifier, or the TREE_PURPOSE is a list of attributes. */
11113
11114 static tree
11115 cp_parser_type_specifier_seq (cp_parser* parser)
11116 {
11117 bool seen_type_specifier = false;
11118 tree type_specifier_seq = NULL_TREE;
11119
11120 /* Parse the type-specifiers and attributes. */
11121 while (true)
11122 {
11123 tree type_specifier;
11124
11125 /* Check for attributes first. */
11126 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11127 {
11128 type_specifier_seq = tree_cons (cp_parser_attributes_opt (parser),
11129 NULL_TREE,
11130 type_specifier_seq);
11131 continue;
11132 }
11133
11134 /* After the first type-specifier, others are optional. */
11135 if (seen_type_specifier)
11136 cp_parser_parse_tentatively (parser);
11137 /* Look for the type-specifier. */
11138 type_specifier = cp_parser_type_specifier (parser,
11139 CP_PARSER_FLAGS_NONE,
11140 /*is_friend=*/false,
11141 /*is_declaration=*/false,
11142 NULL,
11143 NULL);
11144 /* If the first type-specifier could not be found, this is not a
11145 type-specifier-seq at all. */
11146 if (!seen_type_specifier && type_specifier == error_mark_node)
11147 return error_mark_node;
11148 /* If subsequent type-specifiers could not be found, the
11149 type-specifier-seq is complete. */
11150 else if (seen_type_specifier && !cp_parser_parse_definitely (parser))
11151 break;
11152
11153 /* Add the new type-specifier to the list. */
11154 type_specifier_seq
11155 = tree_cons (NULL_TREE, type_specifier, type_specifier_seq);
11156 seen_type_specifier = true;
11157 }
11158
11159 /* We built up the list in reverse order. */
11160 return nreverse (type_specifier_seq);
11161 }
11162
11163 /* Parse a parameter-declaration-clause.
11164
11165 parameter-declaration-clause:
11166 parameter-declaration-list [opt] ... [opt]
11167 parameter-declaration-list , ...
11168
11169 Returns a representation for the parameter declarations. Each node
11170 is a TREE_LIST. (See cp_parser_parameter_declaration for the exact
11171 representation.) If the parameter-declaration-clause ends with an
11172 ellipsis, PARMLIST_ELLIPSIS_P will hold of the first node in the
11173 list. A return value of NULL_TREE indicates a
11174 parameter-declaration-clause consisting only of an ellipsis. */
11175
11176 static tree
11177 cp_parser_parameter_declaration_clause (cp_parser* parser)
11178 {
11179 tree parameters;
11180 cp_token *token;
11181 bool ellipsis_p;
11182
11183 /* Peek at the next token. */
11184 token = cp_lexer_peek_token (parser->lexer);
11185 /* Check for trivial parameter-declaration-clauses. */
11186 if (token->type == CPP_ELLIPSIS)
11187 {
11188 /* Consume the `...' token. */
11189 cp_lexer_consume_token (parser->lexer);
11190 return NULL_TREE;
11191 }
11192 else if (token->type == CPP_CLOSE_PAREN)
11193 /* There are no parameters. */
11194 {
11195 #ifndef NO_IMPLICIT_EXTERN_C
11196 if (in_system_header && current_class_type == NULL
11197 && current_lang_name == lang_name_c)
11198 return NULL_TREE;
11199 else
11200 #endif
11201 return void_list_node;
11202 }
11203 /* Check for `(void)', too, which is a special case. */
11204 else if (token->keyword == RID_VOID
11205 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11206 == CPP_CLOSE_PAREN))
11207 {
11208 /* Consume the `void' token. */
11209 cp_lexer_consume_token (parser->lexer);
11210 /* There are no parameters. */
11211 return void_list_node;
11212 }
11213
11214 /* Parse the parameter-declaration-list. */
11215 parameters = cp_parser_parameter_declaration_list (parser);
11216 /* If a parse error occurred while parsing the
11217 parameter-declaration-list, then the entire
11218 parameter-declaration-clause is erroneous. */
11219 if (parameters == error_mark_node)
11220 return error_mark_node;
11221
11222 /* Peek at the next token. */
11223 token = cp_lexer_peek_token (parser->lexer);
11224 /* If it's a `,', the clause should terminate with an ellipsis. */
11225 if (token->type == CPP_COMMA)
11226 {
11227 /* Consume the `,'. */
11228 cp_lexer_consume_token (parser->lexer);
11229 /* Expect an ellipsis. */
11230 ellipsis_p
11231 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11232 }
11233 /* It might also be `...' if the optional trailing `,' was
11234 omitted. */
11235 else if (token->type == CPP_ELLIPSIS)
11236 {
11237 /* Consume the `...' token. */
11238 cp_lexer_consume_token (parser->lexer);
11239 /* And remember that we saw it. */
11240 ellipsis_p = true;
11241 }
11242 else
11243 ellipsis_p = false;
11244
11245 /* Finish the parameter list. */
11246 return finish_parmlist (parameters, ellipsis_p);
11247 }
11248
11249 /* Parse a parameter-declaration-list.
11250
11251 parameter-declaration-list:
11252 parameter-declaration
11253 parameter-declaration-list , parameter-declaration
11254
11255 Returns a representation of the parameter-declaration-list, as for
11256 cp_parser_parameter_declaration_clause. However, the
11257 `void_list_node' is never appended to the list. */
11258
11259 static tree
11260 cp_parser_parameter_declaration_list (cp_parser* parser)
11261 {
11262 tree parameters = NULL_TREE;
11263
11264 /* Look for more parameters. */
11265 while (true)
11266 {
11267 tree parameter;
11268 bool parenthesized_p;
11269 /* Parse the parameter. */
11270 parameter
11271 = cp_parser_parameter_declaration (parser,
11272 /*template_parm_p=*/false,
11273 &parenthesized_p);
11274
11275 /* If a parse error occurred parsing the parameter declaration,
11276 then the entire parameter-declaration-list is erroneous. */
11277 if (parameter == error_mark_node)
11278 {
11279 parameters = error_mark_node;
11280 break;
11281 }
11282 /* Add the new parameter to the list. */
11283 TREE_CHAIN (parameter) = parameters;
11284 parameters = parameter;
11285
11286 /* Peek at the next token. */
11287 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11288 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
11289 /* The parameter-declaration-list is complete. */
11290 break;
11291 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11292 {
11293 cp_token *token;
11294
11295 /* Peek at the next token. */
11296 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11297 /* If it's an ellipsis, then the list is complete. */
11298 if (token->type == CPP_ELLIPSIS)
11299 break;
11300 /* Otherwise, there must be more parameters. Consume the
11301 `,'. */
11302 cp_lexer_consume_token (parser->lexer);
11303 /* When parsing something like:
11304
11305 int i(float f, double d)
11306
11307 we can tell after seeing the declaration for "f" that we
11308 are not looking at an initialization of a variable "i",
11309 but rather at the declaration of a function "i".
11310
11311 Due to the fact that the parsing of template arguments
11312 (as specified to a template-id) requires backtracking we
11313 cannot use this technique when inside a template argument
11314 list. */
11315 if (!parser->in_template_argument_list_p
11316 && !parser->in_type_id_in_expr_p
11317 && cp_parser_parsing_tentatively (parser)
11318 && !cp_parser_committed_to_tentative_parse (parser)
11319 /* However, a parameter-declaration of the form
11320 "foat(f)" (which is a valid declaration of a
11321 parameter "f") can also be interpreted as an
11322 expression (the conversion of "f" to "float"). */
11323 && !parenthesized_p)
11324 cp_parser_commit_to_tentative_parse (parser);
11325 }
11326 else
11327 {
11328 cp_parser_error (parser, "expected `,' or `...'");
11329 if (!cp_parser_parsing_tentatively (parser)
11330 || cp_parser_committed_to_tentative_parse (parser))
11331 cp_parser_skip_to_closing_parenthesis (parser,
11332 /*recovering=*/true,
11333 /*or_comma=*/false,
11334 /*consume_paren=*/false);
11335 break;
11336 }
11337 }
11338
11339 /* We built up the list in reverse order; straighten it out now. */
11340 return nreverse (parameters);
11341 }
11342
11343 /* Parse a parameter declaration.
11344
11345 parameter-declaration:
11346 decl-specifier-seq declarator
11347 decl-specifier-seq declarator = assignment-expression
11348 decl-specifier-seq abstract-declarator [opt]
11349 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11350
11351 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11352 declares a template parameter. (In that case, a non-nested `>'
11353 token encountered during the parsing of the assignment-expression
11354 is not interpreted as a greater-than operator.)
11355
11356 Returns a TREE_LIST representing the parameter-declaration. The
11357 TREE_PURPOSE is the default argument expression, or NULL_TREE if
11358 there is no default argument. The TREE_VALUE is a representation
11359 of the decl-specifier-seq and declarator. In particular, the
11360 TREE_VALUE will be a TREE_LIST whose TREE_PURPOSE represents the
11361 decl-specifier-seq and whose TREE_VALUE represents the declarator.
11362 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
11363 the declarator is of the form "(p)". */
11364
11365 static tree
11366 cp_parser_parameter_declaration (cp_parser *parser,
11367 bool template_parm_p,
11368 bool *parenthesized_p)
11369 {
11370 int declares_class_or_enum;
11371 bool greater_than_is_operator_p;
11372 tree decl_specifiers;
11373 tree attributes;
11374 tree declarator;
11375 tree default_argument;
11376 tree parameter;
11377 cp_token *token;
11378 const char *saved_message;
11379
11380 /* In a template parameter, `>' is not an operator.
11381
11382 [temp.param]
11383
11384 When parsing a default template-argument for a non-type
11385 template-parameter, the first non-nested `>' is taken as the end
11386 of the template parameter-list rather than a greater-than
11387 operator. */
11388 greater_than_is_operator_p = !template_parm_p;
11389
11390 /* Type definitions may not appear in parameter types. */
11391 saved_message = parser->type_definition_forbidden_message;
11392 parser->type_definition_forbidden_message
11393 = "types may not be defined in parameter types";
11394
11395 /* Parse the declaration-specifiers. */
11396 decl_specifiers
11397 = cp_parser_decl_specifier_seq (parser,
11398 CP_PARSER_FLAGS_NONE,
11399 &attributes,
11400 &declares_class_or_enum);
11401 /* If an error occurred, there's no reason to attempt to parse the
11402 rest of the declaration. */
11403 if (cp_parser_error_occurred (parser))
11404 {
11405 parser->type_definition_forbidden_message = saved_message;
11406 return error_mark_node;
11407 }
11408
11409 /* Peek at the next token. */
11410 token = cp_lexer_peek_token (parser->lexer);
11411 /* If the next token is a `)', `,', `=', `>', or `...', then there
11412 is no declarator. */
11413 if (token->type == CPP_CLOSE_PAREN
11414 || token->type == CPP_COMMA
11415 || token->type == CPP_EQ
11416 || token->type == CPP_ELLIPSIS
11417 || token->type == CPP_GREATER)
11418 {
11419 declarator = NULL_TREE;
11420 if (parenthesized_p)
11421 *parenthesized_p = false;
11422 }
11423 /* Otherwise, there should be a declarator. */
11424 else
11425 {
11426 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11427 parser->default_arg_ok_p = false;
11428
11429 /* After seeing a decl-specifier-seq, if the next token is not a
11430 "(", there is no possibility that the code is a valid
11431 expression. Therefore, if parsing tentatively, we commit at
11432 this point. */
11433 if (!parser->in_template_argument_list_p
11434 /* In an expression context, having seen:
11435
11436 (int((char ...
11437
11438 we cannot be sure whether we are looking at a
11439 function-type (taking a "char" as a parameter) or a cast
11440 of some object of type "char" to "int". */
11441 && !parser->in_type_id_in_expr_p
11442 && cp_parser_parsing_tentatively (parser)
11443 && !cp_parser_committed_to_tentative_parse (parser)
11444 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
11445 cp_parser_commit_to_tentative_parse (parser);
11446 /* Parse the declarator. */
11447 declarator = cp_parser_declarator (parser,
11448 CP_PARSER_DECLARATOR_EITHER,
11449 /*ctor_dtor_or_conv_p=*/NULL,
11450 parenthesized_p);
11451 parser->default_arg_ok_p = saved_default_arg_ok_p;
11452 /* After the declarator, allow more attributes. */
11453 attributes = chainon (attributes, cp_parser_attributes_opt (parser));
11454 }
11455
11456 /* The restriction on defining new types applies only to the type
11457 of the parameter, not to the default argument. */
11458 parser->type_definition_forbidden_message = saved_message;
11459
11460 /* If the next token is `=', then process a default argument. */
11461 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
11462 {
11463 bool saved_greater_than_is_operator_p;
11464 /* Consume the `='. */
11465 cp_lexer_consume_token (parser->lexer);
11466
11467 /* If we are defining a class, then the tokens that make up the
11468 default argument must be saved and processed later. */
11469 if (!template_parm_p && at_class_scope_p ()
11470 && TYPE_BEING_DEFINED (current_class_type))
11471 {
11472 unsigned depth = 0;
11473
11474 /* Create a DEFAULT_ARG to represented the unparsed default
11475 argument. */
11476 default_argument = make_node (DEFAULT_ARG);
11477 DEFARG_TOKENS (default_argument) = cp_token_cache_new ();
11478
11479 /* Add tokens until we have processed the entire default
11480 argument. */
11481 while (true)
11482 {
11483 bool done = false;
11484 cp_token *token;
11485
11486 /* Peek at the next token. */
11487 token = cp_lexer_peek_token (parser->lexer);
11488 /* What we do depends on what token we have. */
11489 switch (token->type)
11490 {
11491 /* In valid code, a default argument must be
11492 immediately followed by a `,' `)', or `...'. */
11493 case CPP_COMMA:
11494 case CPP_CLOSE_PAREN:
11495 case CPP_ELLIPSIS:
11496 /* If we run into a non-nested `;', `}', or `]',
11497 then the code is invalid -- but the default
11498 argument is certainly over. */
11499 case CPP_SEMICOLON:
11500 case CPP_CLOSE_BRACE:
11501 case CPP_CLOSE_SQUARE:
11502 if (depth == 0)
11503 done = true;
11504 /* Update DEPTH, if necessary. */
11505 else if (token->type == CPP_CLOSE_PAREN
11506 || token->type == CPP_CLOSE_BRACE
11507 || token->type == CPP_CLOSE_SQUARE)
11508 --depth;
11509 break;
11510
11511 case CPP_OPEN_PAREN:
11512 case CPP_OPEN_SQUARE:
11513 case CPP_OPEN_BRACE:
11514 ++depth;
11515 break;
11516
11517 case CPP_GREATER:
11518 /* If we see a non-nested `>', and `>' is not an
11519 operator, then it marks the end of the default
11520 argument. */
11521 if (!depth && !greater_than_is_operator_p)
11522 done = true;
11523 break;
11524
11525 /* If we run out of tokens, issue an error message. */
11526 case CPP_EOF:
11527 error ("file ends in default argument");
11528 done = true;
11529 break;
11530
11531 case CPP_NAME:
11532 case CPP_SCOPE:
11533 /* In these cases, we should look for template-ids.
11534 For example, if the default argument is
11535 `X<int, double>()', we need to do name lookup to
11536 figure out whether or not `X' is a template; if
11537 so, the `,' does not end the default argument.
11538
11539 That is not yet done. */
11540 break;
11541
11542 default:
11543 break;
11544 }
11545
11546 /* If we've reached the end, stop. */
11547 if (done)
11548 break;
11549
11550 /* Add the token to the token block. */
11551 token = cp_lexer_consume_token (parser->lexer);
11552 cp_token_cache_push_token (DEFARG_TOKENS (default_argument),
11553 token);
11554 }
11555 }
11556 /* Outside of a class definition, we can just parse the
11557 assignment-expression. */
11558 else
11559 {
11560 bool saved_local_variables_forbidden_p;
11561
11562 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
11563 set correctly. */
11564 saved_greater_than_is_operator_p
11565 = parser->greater_than_is_operator_p;
11566 parser->greater_than_is_operator_p = greater_than_is_operator_p;
11567 /* Local variable names (and the `this' keyword) may not
11568 appear in a default argument. */
11569 saved_local_variables_forbidden_p
11570 = parser->local_variables_forbidden_p;
11571 parser->local_variables_forbidden_p = true;
11572 /* Parse the assignment-expression. */
11573 default_argument = cp_parser_assignment_expression (parser);
11574 /* Restore saved state. */
11575 parser->greater_than_is_operator_p
11576 = saved_greater_than_is_operator_p;
11577 parser->local_variables_forbidden_p
11578 = saved_local_variables_forbidden_p;
11579 }
11580 if (!parser->default_arg_ok_p)
11581 {
11582 if (!flag_pedantic_errors)
11583 warning ("deprecated use of default argument for parameter of non-function");
11584 else
11585 {
11586 error ("default arguments are only permitted for function parameters");
11587 default_argument = NULL_TREE;
11588 }
11589 }
11590 }
11591 else
11592 default_argument = NULL_TREE;
11593
11594 /* Create the representation of the parameter. */
11595 if (attributes)
11596 decl_specifiers = tree_cons (attributes, NULL_TREE, decl_specifiers);
11597 parameter = build_tree_list (default_argument,
11598 build_tree_list (decl_specifiers,
11599 declarator));
11600
11601 return parameter;
11602 }
11603
11604 /* Parse a function-body.
11605
11606 function-body:
11607 compound_statement */
11608
11609 static void
11610 cp_parser_function_body (cp_parser *parser)
11611 {
11612 cp_parser_compound_statement (parser, NULL, false);
11613 }
11614
11615 /* Parse a ctor-initializer-opt followed by a function-body. Return
11616 true if a ctor-initializer was present. */
11617
11618 static bool
11619 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
11620 {
11621 tree body;
11622 bool ctor_initializer_p;
11623
11624 /* Begin the function body. */
11625 body = begin_function_body ();
11626 /* Parse the optional ctor-initializer. */
11627 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
11628 /* Parse the function-body. */
11629 cp_parser_function_body (parser);
11630 /* Finish the function body. */
11631 finish_function_body (body);
11632
11633 return ctor_initializer_p;
11634 }
11635
11636 /* Parse an initializer.
11637
11638 initializer:
11639 = initializer-clause
11640 ( expression-list )
11641
11642 Returns a expression representing the initializer. If no
11643 initializer is present, NULL_TREE is returned.
11644
11645 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
11646 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
11647 set to FALSE if there is no initializer present. If there is an
11648 initializer, and it is not a constant-expression, *NON_CONSTANT_P
11649 is set to true; otherwise it is set to false. */
11650
11651 static tree
11652 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
11653 bool* non_constant_p)
11654 {
11655 cp_token *token;
11656 tree init;
11657
11658 /* Peek at the next token. */
11659 token = cp_lexer_peek_token (parser->lexer);
11660
11661 /* Let our caller know whether or not this initializer was
11662 parenthesized. */
11663 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
11664 /* Assume that the initializer is constant. */
11665 *non_constant_p = false;
11666
11667 if (token->type == CPP_EQ)
11668 {
11669 /* Consume the `='. */
11670 cp_lexer_consume_token (parser->lexer);
11671 /* Parse the initializer-clause. */
11672 init = cp_parser_initializer_clause (parser, non_constant_p);
11673 }
11674 else if (token->type == CPP_OPEN_PAREN)
11675 init = cp_parser_parenthesized_expression_list (parser, false,
11676 non_constant_p);
11677 else
11678 {
11679 /* Anything else is an error. */
11680 cp_parser_error (parser, "expected initializer");
11681 init = error_mark_node;
11682 }
11683
11684 return init;
11685 }
11686
11687 /* Parse an initializer-clause.
11688
11689 initializer-clause:
11690 assignment-expression
11691 { initializer-list , [opt] }
11692 { }
11693
11694 Returns an expression representing the initializer.
11695
11696 If the `assignment-expression' production is used the value
11697 returned is simply a representation for the expression.
11698
11699 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
11700 the elements of the initializer-list (or NULL_TREE, if the last
11701 production is used). The TREE_TYPE for the CONSTRUCTOR will be
11702 NULL_TREE. There is no way to detect whether or not the optional
11703 trailing `,' was provided. NON_CONSTANT_P is as for
11704 cp_parser_initializer. */
11705
11706 static tree
11707 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
11708 {
11709 tree initializer;
11710
11711 /* If it is not a `{', then we are looking at an
11712 assignment-expression. */
11713 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
11714 {
11715 initializer
11716 = cp_parser_constant_expression (parser,
11717 /*allow_non_constant_p=*/true,
11718 non_constant_p);
11719 if (!*non_constant_p)
11720 initializer = fold_non_dependent_expr (initializer);
11721 }
11722 else
11723 {
11724 /* Consume the `{' token. */
11725 cp_lexer_consume_token (parser->lexer);
11726 /* Create a CONSTRUCTOR to represent the braced-initializer. */
11727 initializer = make_node (CONSTRUCTOR);
11728 /* If it's not a `}', then there is a non-trivial initializer. */
11729 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
11730 {
11731 /* Parse the initializer list. */
11732 CONSTRUCTOR_ELTS (initializer)
11733 = cp_parser_initializer_list (parser, non_constant_p);
11734 /* A trailing `,' token is allowed. */
11735 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11736 cp_lexer_consume_token (parser->lexer);
11737 }
11738 /* Now, there should be a trailing `}'. */
11739 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
11740 }
11741
11742 return initializer;
11743 }
11744
11745 /* Parse an initializer-list.
11746
11747 initializer-list:
11748 initializer-clause
11749 initializer-list , initializer-clause
11750
11751 GNU Extension:
11752
11753 initializer-list:
11754 identifier : initializer-clause
11755 initializer-list, identifier : initializer-clause
11756
11757 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
11758 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
11759 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
11760 as for cp_parser_initializer. */
11761
11762 static tree
11763 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
11764 {
11765 tree initializers = NULL_TREE;
11766
11767 /* Assume all of the expressions are constant. */
11768 *non_constant_p = false;
11769
11770 /* Parse the rest of the list. */
11771 while (true)
11772 {
11773 cp_token *token;
11774 tree identifier;
11775 tree initializer;
11776 bool clause_non_constant_p;
11777
11778 /* If the next token is an identifier and the following one is a
11779 colon, we are looking at the GNU designated-initializer
11780 syntax. */
11781 if (cp_parser_allow_gnu_extensions_p (parser)
11782 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
11783 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
11784 {
11785 /* Consume the identifier. */
11786 identifier = cp_lexer_consume_token (parser->lexer)->value;
11787 /* Consume the `:'. */
11788 cp_lexer_consume_token (parser->lexer);
11789 }
11790 else
11791 identifier = NULL_TREE;
11792
11793 /* Parse the initializer. */
11794 initializer = cp_parser_initializer_clause (parser,
11795 &clause_non_constant_p);
11796 /* If any clause is non-constant, so is the entire initializer. */
11797 if (clause_non_constant_p)
11798 *non_constant_p = true;
11799 /* Add it to the list. */
11800 initializers = tree_cons (identifier, initializer, initializers);
11801
11802 /* If the next token is not a comma, we have reached the end of
11803 the list. */
11804 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
11805 break;
11806
11807 /* Peek at the next token. */
11808 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11809 /* If the next token is a `}', then we're still done. An
11810 initializer-clause can have a trailing `,' after the
11811 initializer-list and before the closing `}'. */
11812 if (token->type == CPP_CLOSE_BRACE)
11813 break;
11814
11815 /* Consume the `,' token. */
11816 cp_lexer_consume_token (parser->lexer);
11817 }
11818
11819 /* The initializers were built up in reverse order, so we need to
11820 reverse them now. */
11821 return nreverse (initializers);
11822 }
11823
11824 /* Classes [gram.class] */
11825
11826 /* Parse a class-name.
11827
11828 class-name:
11829 identifier
11830 template-id
11831
11832 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
11833 to indicate that names looked up in dependent types should be
11834 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
11835 keyword has been used to indicate that the name that appears next
11836 is a template. TYPE_P is true iff the next name should be treated
11837 as class-name, even if it is declared to be some other kind of name
11838 as well. If CHECK_DEPENDENCY_P is FALSE, names are looked up in
11839 dependent scopes. If CLASS_HEAD_P is TRUE, this class is the class
11840 being defined in a class-head.
11841
11842 Returns the TYPE_DECL representing the class. */
11843
11844 static tree
11845 cp_parser_class_name (cp_parser *parser,
11846 bool typename_keyword_p,
11847 bool template_keyword_p,
11848 bool type_p,
11849 bool check_dependency_p,
11850 bool class_head_p,
11851 bool is_declaration)
11852 {
11853 tree decl;
11854 tree scope;
11855 bool typename_p;
11856 cp_token *token;
11857
11858 /* All class-names start with an identifier. */
11859 token = cp_lexer_peek_token (parser->lexer);
11860 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
11861 {
11862 cp_parser_error (parser, "expected class-name");
11863 return error_mark_node;
11864 }
11865
11866 /* PARSER->SCOPE can be cleared when parsing the template-arguments
11867 to a template-id, so we save it here. */
11868 scope = parser->scope;
11869 if (scope == error_mark_node)
11870 return error_mark_node;
11871
11872 /* Any name names a type if we're following the `typename' keyword
11873 in a qualified name where the enclosing scope is type-dependent. */
11874 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
11875 && dependent_type_p (scope));
11876 /* Handle the common case (an identifier, but not a template-id)
11877 efficiently. */
11878 if (token->type == CPP_NAME
11879 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
11880 {
11881 tree identifier;
11882
11883 /* Look for the identifier. */
11884 identifier = cp_parser_identifier (parser);
11885 /* If the next token isn't an identifier, we are certainly not
11886 looking at a class-name. */
11887 if (identifier == error_mark_node)
11888 decl = error_mark_node;
11889 /* If we know this is a type-name, there's no need to look it
11890 up. */
11891 else if (typename_p)
11892 decl = identifier;
11893 else
11894 {
11895 /* If the next token is a `::', then the name must be a type
11896 name.
11897
11898 [basic.lookup.qual]
11899
11900 During the lookup for a name preceding the :: scope
11901 resolution operator, object, function, and enumerator
11902 names are ignored. */
11903 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
11904 type_p = true;
11905 /* Look up the name. */
11906 decl = cp_parser_lookup_name (parser, identifier,
11907 type_p,
11908 /*is_template=*/false,
11909 /*is_namespace=*/false,
11910 check_dependency_p);
11911 }
11912 }
11913 else
11914 {
11915 /* Try a template-id. */
11916 decl = cp_parser_template_id (parser, template_keyword_p,
11917 check_dependency_p,
11918 is_declaration);
11919 if (decl == error_mark_node)
11920 return error_mark_node;
11921 }
11922
11923 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
11924
11925 /* If this is a typename, create a TYPENAME_TYPE. */
11926 if (typename_p && decl != error_mark_node)
11927 {
11928 decl = make_typename_type (scope, decl, /*complain=*/1);
11929 if (decl != error_mark_node)
11930 decl = TYPE_NAME (decl);
11931 }
11932
11933 /* Check to see that it is really the name of a class. */
11934 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
11935 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
11936 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
11937 /* Situations like this:
11938
11939 template <typename T> struct A {
11940 typename T::template X<int>::I i;
11941 };
11942
11943 are problematic. Is `T::template X<int>' a class-name? The
11944 standard does not seem to be definitive, but there is no other
11945 valid interpretation of the following `::'. Therefore, those
11946 names are considered class-names. */
11947 decl = TYPE_NAME (make_typename_type (scope, decl, tf_error));
11948 else if (decl == error_mark_node
11949 || TREE_CODE (decl) != TYPE_DECL
11950 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
11951 {
11952 cp_parser_error (parser, "expected class-name");
11953 return error_mark_node;
11954 }
11955
11956 return decl;
11957 }
11958
11959 /* Parse a class-specifier.
11960
11961 class-specifier:
11962 class-head { member-specification [opt] }
11963
11964 Returns the TREE_TYPE representing the class. */
11965
11966 static tree
11967 cp_parser_class_specifier (cp_parser* parser)
11968 {
11969 cp_token *token;
11970 tree type;
11971 tree attributes = NULL_TREE;
11972 int has_trailing_semicolon;
11973 bool nested_name_specifier_p;
11974 unsigned saved_num_template_parameter_lists;
11975 bool pop_p = false;
11976
11977 push_deferring_access_checks (dk_no_deferred);
11978
11979 /* Parse the class-head. */
11980 type = cp_parser_class_head (parser,
11981 &nested_name_specifier_p,
11982 &attributes);
11983 /* If the class-head was a semantic disaster, skip the entire body
11984 of the class. */
11985 if (!type)
11986 {
11987 cp_parser_skip_to_end_of_block_or_statement (parser);
11988 pop_deferring_access_checks ();
11989 return error_mark_node;
11990 }
11991
11992 /* Look for the `{'. */
11993 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
11994 {
11995 pop_deferring_access_checks ();
11996 return error_mark_node;
11997 }
11998
11999 /* Issue an error message if type-definitions are forbidden here. */
12000 cp_parser_check_type_definition (parser);
12001 /* Remember that we are defining one more class. */
12002 ++parser->num_classes_being_defined;
12003 /* Inside the class, surrounding template-parameter-lists do not
12004 apply. */
12005 saved_num_template_parameter_lists
12006 = parser->num_template_parameter_lists;
12007 parser->num_template_parameter_lists = 0;
12008
12009 /* Start the class. */
12010 if (nested_name_specifier_p)
12011 pop_p = push_scope (CP_DECL_CONTEXT (TYPE_MAIN_DECL (type)));
12012 type = begin_class_definition (type);
12013 if (type == error_mark_node)
12014 /* If the type is erroneous, skip the entire body of the class. */
12015 cp_parser_skip_to_closing_brace (parser);
12016 else
12017 /* Parse the member-specification. */
12018 cp_parser_member_specification_opt (parser);
12019 /* Look for the trailing `}'. */
12020 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12021 /* We get better error messages by noticing a common problem: a
12022 missing trailing `;'. */
12023 token = cp_lexer_peek_token (parser->lexer);
12024 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12025 /* Look for trailing attributes to apply to this class. */
12026 if (cp_parser_allow_gnu_extensions_p (parser))
12027 {
12028 tree sub_attr = cp_parser_attributes_opt (parser);
12029 attributes = chainon (attributes, sub_attr);
12030 }
12031 if (type != error_mark_node)
12032 type = finish_struct (type, attributes);
12033 if (pop_p)
12034 pop_scope (CP_DECL_CONTEXT (TYPE_MAIN_DECL (type)));
12035 /* If this class is not itself within the scope of another class,
12036 then we need to parse the bodies of all of the queued function
12037 definitions. Note that the queued functions defined in a class
12038 are not always processed immediately following the
12039 class-specifier for that class. Consider:
12040
12041 struct A {
12042 struct B { void f() { sizeof (A); } };
12043 };
12044
12045 If `f' were processed before the processing of `A' were
12046 completed, there would be no way to compute the size of `A'.
12047 Note that the nesting we are interested in here is lexical --
12048 not the semantic nesting given by TYPE_CONTEXT. In particular,
12049 for:
12050
12051 struct A { struct B; };
12052 struct A::B { void f() { } };
12053
12054 there is no need to delay the parsing of `A::B::f'. */
12055 if (--parser->num_classes_being_defined == 0)
12056 {
12057 tree queue_entry;
12058 tree fn;
12059
12060 /* In a first pass, parse default arguments to the functions.
12061 Then, in a second pass, parse the bodies of the functions.
12062 This two-phased approach handles cases like:
12063
12064 struct S {
12065 void f() { g(); }
12066 void g(int i = 3);
12067 };
12068
12069 */
12070 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12071 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12072 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12073 TREE_PURPOSE (parser->unparsed_functions_queues)
12074 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12075 {
12076 fn = TREE_VALUE (queue_entry);
12077 /* Make sure that any template parameters are in scope. */
12078 maybe_begin_member_template_processing (fn);
12079 /* If there are default arguments that have not yet been processed,
12080 take care of them now. */
12081 cp_parser_late_parsing_default_args (parser, fn);
12082 /* Remove any template parameters from the symbol table. */
12083 maybe_end_member_template_processing ();
12084 }
12085 /* Now parse the body of the functions. */
12086 for (TREE_VALUE (parser->unparsed_functions_queues)
12087 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12088 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12089 TREE_VALUE (parser->unparsed_functions_queues)
12090 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12091 {
12092 /* Figure out which function we need to process. */
12093 fn = TREE_VALUE (queue_entry);
12094
12095 /* A hack to prevent garbage collection. */
12096 function_depth++;
12097
12098 /* Parse the function. */
12099 cp_parser_late_parsing_for_member (parser, fn);
12100 function_depth--;
12101 }
12102
12103 }
12104
12105 /* Put back any saved access checks. */
12106 pop_deferring_access_checks ();
12107
12108 /* Restore the count of active template-parameter-lists. */
12109 parser->num_template_parameter_lists
12110 = saved_num_template_parameter_lists;
12111
12112 return type;
12113 }
12114
12115 /* Parse a class-head.
12116
12117 class-head:
12118 class-key identifier [opt] base-clause [opt]
12119 class-key nested-name-specifier identifier base-clause [opt]
12120 class-key nested-name-specifier [opt] template-id
12121 base-clause [opt]
12122
12123 GNU Extensions:
12124 class-key attributes identifier [opt] base-clause [opt]
12125 class-key attributes nested-name-specifier identifier base-clause [opt]
12126 class-key attributes nested-name-specifier [opt] template-id
12127 base-clause [opt]
12128
12129 Returns the TYPE of the indicated class. Sets
12130 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12131 involving a nested-name-specifier was used, and FALSE otherwise.
12132
12133 Returns NULL_TREE if the class-head is syntactically valid, but
12134 semantically invalid in a way that means we should skip the entire
12135 body of the class. */
12136
12137 static tree
12138 cp_parser_class_head (cp_parser* parser,
12139 bool* nested_name_specifier_p,
12140 tree *attributes_p)
12141 {
12142 cp_token *token;
12143 tree nested_name_specifier;
12144 enum tag_types class_key;
12145 tree id = NULL_TREE;
12146 tree type = NULL_TREE;
12147 tree attributes;
12148 bool template_id_p = false;
12149 bool qualified_p = false;
12150 bool invalid_nested_name_p = false;
12151 bool invalid_explicit_specialization_p = false;
12152 bool pop_p = false;
12153 unsigned num_templates;
12154
12155 /* Assume no nested-name-specifier will be present. */
12156 *nested_name_specifier_p = false;
12157 /* Assume no template parameter lists will be used in defining the
12158 type. */
12159 num_templates = 0;
12160
12161 /* Look for the class-key. */
12162 class_key = cp_parser_class_key (parser);
12163 if (class_key == none_type)
12164 return error_mark_node;
12165
12166 /* Parse the attributes. */
12167 attributes = cp_parser_attributes_opt (parser);
12168
12169 /* If the next token is `::', that is invalid -- but sometimes
12170 people do try to write:
12171
12172 struct ::S {};
12173
12174 Handle this gracefully by accepting the extra qualifier, and then
12175 issuing an error about it later if this really is a
12176 class-head. If it turns out just to be an elaborated type
12177 specifier, remain silent. */
12178 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12179 qualified_p = true;
12180
12181 push_deferring_access_checks (dk_no_check);
12182
12183 /* Determine the name of the class. Begin by looking for an
12184 optional nested-name-specifier. */
12185 nested_name_specifier
12186 = cp_parser_nested_name_specifier_opt (parser,
12187 /*typename_keyword_p=*/false,
12188 /*check_dependency_p=*/false,
12189 /*type_p=*/false,
12190 /*is_declaration=*/false);
12191 /* If there was a nested-name-specifier, then there *must* be an
12192 identifier. */
12193 if (nested_name_specifier)
12194 {
12195 /* Although the grammar says `identifier', it really means
12196 `class-name' or `template-name'. You are only allowed to
12197 define a class that has already been declared with this
12198 syntax.
12199
12200 The proposed resolution for Core Issue 180 says that whever
12201 you see `class T::X' you should treat `X' as a type-name.
12202
12203 It is OK to define an inaccessible class; for example:
12204
12205 class A { class B; };
12206 class A::B {};
12207
12208 We do not know if we will see a class-name, or a
12209 template-name. We look for a class-name first, in case the
12210 class-name is a template-id; if we looked for the
12211 template-name first we would stop after the template-name. */
12212 cp_parser_parse_tentatively (parser);
12213 type = cp_parser_class_name (parser,
12214 /*typename_keyword_p=*/false,
12215 /*template_keyword_p=*/false,
12216 /*type_p=*/true,
12217 /*check_dependency_p=*/false,
12218 /*class_head_p=*/true,
12219 /*is_declaration=*/false);
12220 /* If that didn't work, ignore the nested-name-specifier. */
12221 if (!cp_parser_parse_definitely (parser))
12222 {
12223 invalid_nested_name_p = true;
12224 id = cp_parser_identifier (parser);
12225 if (id == error_mark_node)
12226 id = NULL_TREE;
12227 }
12228 /* If we could not find a corresponding TYPE, treat this
12229 declaration like an unqualified declaration. */
12230 if (type == error_mark_node)
12231 nested_name_specifier = NULL_TREE;
12232 /* Otherwise, count the number of templates used in TYPE and its
12233 containing scopes. */
12234 else
12235 {
12236 tree scope;
12237
12238 for (scope = TREE_TYPE (type);
12239 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12240 scope = (TYPE_P (scope)
12241 ? TYPE_CONTEXT (scope)
12242 : DECL_CONTEXT (scope)))
12243 if (TYPE_P (scope)
12244 && CLASS_TYPE_P (scope)
12245 && CLASSTYPE_TEMPLATE_INFO (scope)
12246 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12247 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12248 ++num_templates;
12249 }
12250 }
12251 /* Otherwise, the identifier is optional. */
12252 else
12253 {
12254 /* We don't know whether what comes next is a template-id,
12255 an identifier, or nothing at all. */
12256 cp_parser_parse_tentatively (parser);
12257 /* Check for a template-id. */
12258 id = cp_parser_template_id (parser,
12259 /*template_keyword_p=*/false,
12260 /*check_dependency_p=*/true,
12261 /*is_declaration=*/true);
12262 /* If that didn't work, it could still be an identifier. */
12263 if (!cp_parser_parse_definitely (parser))
12264 {
12265 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12266 id = cp_parser_identifier (parser);
12267 else
12268 id = NULL_TREE;
12269 }
12270 else
12271 {
12272 template_id_p = true;
12273 ++num_templates;
12274 }
12275 }
12276
12277 pop_deferring_access_checks ();
12278
12279 if (id)
12280 cp_parser_check_for_invalid_template_id (parser, id);
12281
12282 /* If it's not a `:' or a `{' then we can't really be looking at a
12283 class-head, since a class-head only appears as part of a
12284 class-specifier. We have to detect this situation before calling
12285 xref_tag, since that has irreversible side-effects. */
12286 if (!cp_parser_next_token_starts_class_definition_p (parser))
12287 {
12288 cp_parser_error (parser, "expected `{' or `:'");
12289 return error_mark_node;
12290 }
12291
12292 /* At this point, we're going ahead with the class-specifier, even
12293 if some other problem occurs. */
12294 cp_parser_commit_to_tentative_parse (parser);
12295 /* Issue the error about the overly-qualified name now. */
12296 if (qualified_p)
12297 cp_parser_error (parser,
12298 "global qualification of class name is invalid");
12299 else if (invalid_nested_name_p)
12300 cp_parser_error (parser,
12301 "qualified name does not name a class");
12302 else if (nested_name_specifier)
12303 {
12304 tree scope;
12305 /* Figure out in what scope the declaration is being placed. */
12306 scope = current_scope ();
12307 if (!scope)
12308 scope = current_namespace;
12309 /* If that scope does not contain the scope in which the
12310 class was originally declared, the program is invalid. */
12311 if (scope && !is_ancestor (scope, nested_name_specifier))
12312 {
12313 error ("declaration of `%D' in `%D' which does not "
12314 "enclose `%D'", type, scope, nested_name_specifier);
12315 type = NULL_TREE;
12316 goto done;
12317 }
12318 /* [dcl.meaning]
12319
12320 A declarator-id shall not be qualified exception of the
12321 definition of a ... nested class outside of its class
12322 ... [or] a the definition or explicit instantiation of a
12323 class member of a namespace outside of its namespace. */
12324 if (scope == nested_name_specifier)
12325 {
12326 pedwarn ("extra qualification ignored");
12327 nested_name_specifier = NULL_TREE;
12328 num_templates = 0;
12329 }
12330 }
12331 /* An explicit-specialization must be preceded by "template <>". If
12332 it is not, try to recover gracefully. */
12333 if (at_namespace_scope_p ()
12334 && parser->num_template_parameter_lists == 0
12335 && template_id_p)
12336 {
12337 error ("an explicit specialization must be preceded by 'template <>'");
12338 invalid_explicit_specialization_p = true;
12339 /* Take the same action that would have been taken by
12340 cp_parser_explicit_specialization. */
12341 ++parser->num_template_parameter_lists;
12342 begin_specialization ();
12343 }
12344 /* There must be no "return" statements between this point and the
12345 end of this function; set "type "to the correct return value and
12346 use "goto done;" to return. */
12347 /* Make sure that the right number of template parameters were
12348 present. */
12349 if (!cp_parser_check_template_parameters (parser, num_templates))
12350 {
12351 /* If something went wrong, there is no point in even trying to
12352 process the class-definition. */
12353 type = NULL_TREE;
12354 goto done;
12355 }
12356
12357 /* Look up the type. */
12358 if (template_id_p)
12359 {
12360 type = TREE_TYPE (id);
12361 maybe_process_partial_specialization (type);
12362 }
12363 else if (!nested_name_specifier)
12364 {
12365 /* If the class was unnamed, create a dummy name. */
12366 if (!id)
12367 id = make_anon_name ();
12368 type = xref_tag (class_key, id, /*globalize=*/false,
12369 parser->num_template_parameter_lists);
12370 }
12371 else
12372 {
12373 tree class_type;
12374 bool pop_p = false;
12375
12376 /* Given:
12377
12378 template <typename T> struct S { struct T };
12379 template <typename T> struct S<T>::T { };
12380
12381 we will get a TYPENAME_TYPE when processing the definition of
12382 `S::T'. We need to resolve it to the actual type before we
12383 try to define it. */
12384 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
12385 {
12386 class_type = resolve_typename_type (TREE_TYPE (type),
12387 /*only_current_p=*/false);
12388 if (class_type != error_mark_node)
12389 type = TYPE_NAME (class_type);
12390 else
12391 {
12392 cp_parser_error (parser, "could not resolve typename type");
12393 type = error_mark_node;
12394 }
12395 }
12396
12397 maybe_process_partial_specialization (TREE_TYPE (type));
12398 class_type = current_class_type;
12399 /* Enter the scope indicated by the nested-name-specifier. */
12400 if (nested_name_specifier)
12401 pop_p = push_scope (nested_name_specifier);
12402 /* Get the canonical version of this type. */
12403 type = TYPE_MAIN_DECL (TREE_TYPE (type));
12404 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
12405 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
12406 type = push_template_decl (type);
12407 type = TREE_TYPE (type);
12408 if (nested_name_specifier)
12409 {
12410 *nested_name_specifier_p = true;
12411 if (pop_p)
12412 pop_scope (nested_name_specifier);
12413 }
12414 }
12415 /* Indicate whether this class was declared as a `class' or as a
12416 `struct'. */
12417 if (TREE_CODE (type) == RECORD_TYPE)
12418 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
12419 cp_parser_check_class_key (class_key, type);
12420
12421 /* Enter the scope containing the class; the names of base classes
12422 should be looked up in that context. For example, given:
12423
12424 struct A { struct B {}; struct C; };
12425 struct A::C : B {};
12426
12427 is valid. */
12428 if (nested_name_specifier)
12429 pop_p = push_scope (nested_name_specifier);
12430 /* Now, look for the base-clause. */
12431 token = cp_lexer_peek_token (parser->lexer);
12432 if (token->type == CPP_COLON)
12433 {
12434 tree bases;
12435
12436 /* Get the list of base-classes. */
12437 bases = cp_parser_base_clause (parser);
12438 /* Process them. */
12439 xref_basetypes (type, bases);
12440 }
12441 /* Leave the scope given by the nested-name-specifier. We will
12442 enter the class scope itself while processing the members. */
12443 if (pop_p)
12444 pop_scope (nested_name_specifier);
12445
12446 done:
12447 if (invalid_explicit_specialization_p)
12448 {
12449 end_specialization ();
12450 --parser->num_template_parameter_lists;
12451 }
12452 *attributes_p = attributes;
12453 return type;
12454 }
12455
12456 /* Parse a class-key.
12457
12458 class-key:
12459 class
12460 struct
12461 union
12462
12463 Returns the kind of class-key specified, or none_type to indicate
12464 error. */
12465
12466 static enum tag_types
12467 cp_parser_class_key (cp_parser* parser)
12468 {
12469 cp_token *token;
12470 enum tag_types tag_type;
12471
12472 /* Look for the class-key. */
12473 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
12474 if (!token)
12475 return none_type;
12476
12477 /* Check to see if the TOKEN is a class-key. */
12478 tag_type = cp_parser_token_is_class_key (token);
12479 if (!tag_type)
12480 cp_parser_error (parser, "expected class-key");
12481 return tag_type;
12482 }
12483
12484 /* Parse an (optional) member-specification.
12485
12486 member-specification:
12487 member-declaration member-specification [opt]
12488 access-specifier : member-specification [opt] */
12489
12490 static void
12491 cp_parser_member_specification_opt (cp_parser* parser)
12492 {
12493 while (true)
12494 {
12495 cp_token *token;
12496 enum rid keyword;
12497
12498 /* Peek at the next token. */
12499 token = cp_lexer_peek_token (parser->lexer);
12500 /* If it's a `}', or EOF then we've seen all the members. */
12501 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
12502 break;
12503
12504 /* See if this token is a keyword. */
12505 keyword = token->keyword;
12506 switch (keyword)
12507 {
12508 case RID_PUBLIC:
12509 case RID_PROTECTED:
12510 case RID_PRIVATE:
12511 /* Consume the access-specifier. */
12512 cp_lexer_consume_token (parser->lexer);
12513 /* Remember which access-specifier is active. */
12514 current_access_specifier = token->value;
12515 /* Look for the `:'. */
12516 cp_parser_require (parser, CPP_COLON, "`:'");
12517 break;
12518
12519 default:
12520 /* Otherwise, the next construction must be a
12521 member-declaration. */
12522 cp_parser_member_declaration (parser);
12523 }
12524 }
12525 }
12526
12527 /* Parse a member-declaration.
12528
12529 member-declaration:
12530 decl-specifier-seq [opt] member-declarator-list [opt] ;
12531 function-definition ; [opt]
12532 :: [opt] nested-name-specifier template [opt] unqualified-id ;
12533 using-declaration
12534 template-declaration
12535
12536 member-declarator-list:
12537 member-declarator
12538 member-declarator-list , member-declarator
12539
12540 member-declarator:
12541 declarator pure-specifier [opt]
12542 declarator constant-initializer [opt]
12543 identifier [opt] : constant-expression
12544
12545 GNU Extensions:
12546
12547 member-declaration:
12548 __extension__ member-declaration
12549
12550 member-declarator:
12551 declarator attributes [opt] pure-specifier [opt]
12552 declarator attributes [opt] constant-initializer [opt]
12553 identifier [opt] attributes [opt] : constant-expression */
12554
12555 static void
12556 cp_parser_member_declaration (cp_parser* parser)
12557 {
12558 tree decl_specifiers;
12559 tree prefix_attributes;
12560 tree decl;
12561 int declares_class_or_enum;
12562 bool friend_p;
12563 cp_token *token;
12564 int saved_pedantic;
12565
12566 /* Check for the `__extension__' keyword. */
12567 if (cp_parser_extension_opt (parser, &saved_pedantic))
12568 {
12569 /* Recurse. */
12570 cp_parser_member_declaration (parser);
12571 /* Restore the old value of the PEDANTIC flag. */
12572 pedantic = saved_pedantic;
12573
12574 return;
12575 }
12576
12577 /* Check for a template-declaration. */
12578 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
12579 {
12580 /* Parse the template-declaration. */
12581 cp_parser_template_declaration (parser, /*member_p=*/true);
12582
12583 return;
12584 }
12585
12586 /* Check for a using-declaration. */
12587 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
12588 {
12589 /* Parse the using-declaration. */
12590 cp_parser_using_declaration (parser);
12591
12592 return;
12593 }
12594
12595 /* Parse the decl-specifier-seq. */
12596 decl_specifiers
12597 = cp_parser_decl_specifier_seq (parser,
12598 CP_PARSER_FLAGS_OPTIONAL,
12599 &prefix_attributes,
12600 &declares_class_or_enum);
12601 /* Check for an invalid type-name. */
12602 if (cp_parser_parse_and_diagnose_invalid_type_name (parser))
12603 return;
12604 /* If there is no declarator, then the decl-specifier-seq should
12605 specify a type. */
12606 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
12607 {
12608 /* If there was no decl-specifier-seq, and the next token is a
12609 `;', then we have something like:
12610
12611 struct S { ; };
12612
12613 [class.mem]
12614
12615 Each member-declaration shall declare at least one member
12616 name of the class. */
12617 if (!decl_specifiers)
12618 {
12619 if (pedantic)
12620 pedwarn ("extra semicolon");
12621 }
12622 else
12623 {
12624 tree type;
12625
12626 /* See if this declaration is a friend. */
12627 friend_p = cp_parser_friend_p (decl_specifiers);
12628 /* If there were decl-specifiers, check to see if there was
12629 a class-declaration. */
12630 type = check_tag_decl (decl_specifiers);
12631 /* Nested classes have already been added to the class, but
12632 a `friend' needs to be explicitly registered. */
12633 if (friend_p)
12634 {
12635 /* If the `friend' keyword was present, the friend must
12636 be introduced with a class-key. */
12637 if (!declares_class_or_enum)
12638 error ("a class-key must be used when declaring a friend");
12639 /* In this case:
12640
12641 template <typename T> struct A {
12642 friend struct A<T>::B;
12643 };
12644
12645 A<T>::B will be represented by a TYPENAME_TYPE, and
12646 therefore not recognized by check_tag_decl. */
12647 if (!type)
12648 {
12649 tree specifier;
12650
12651 for (specifier = decl_specifiers;
12652 specifier;
12653 specifier = TREE_CHAIN (specifier))
12654 {
12655 tree s = TREE_VALUE (specifier);
12656
12657 if (TREE_CODE (s) == IDENTIFIER_NODE)
12658 get_global_value_if_present (s, &type);
12659 if (TREE_CODE (s) == TYPE_DECL)
12660 s = TREE_TYPE (s);
12661 if (TYPE_P (s))
12662 {
12663 type = s;
12664 break;
12665 }
12666 }
12667 }
12668 if (!type || !TYPE_P (type))
12669 error ("friend declaration does not name a class or "
12670 "function");
12671 else
12672 make_friend_class (current_class_type, type,
12673 /*complain=*/true);
12674 }
12675 /* If there is no TYPE, an error message will already have
12676 been issued. */
12677 else if (!type)
12678 ;
12679 /* An anonymous aggregate has to be handled specially; such
12680 a declaration really declares a data member (with a
12681 particular type), as opposed to a nested class. */
12682 else if (ANON_AGGR_TYPE_P (type))
12683 {
12684 /* Remove constructors and such from TYPE, now that we
12685 know it is an anonymous aggregate. */
12686 fixup_anonymous_aggr (type);
12687 /* And make the corresponding data member. */
12688 decl = build_decl (FIELD_DECL, NULL_TREE, type);
12689 /* Add it to the class. */
12690 finish_member_declaration (decl);
12691 }
12692 else
12693 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
12694 }
12695 }
12696 else
12697 {
12698 /* See if these declarations will be friends. */
12699 friend_p = cp_parser_friend_p (decl_specifiers);
12700
12701 /* Keep going until we hit the `;' at the end of the
12702 declaration. */
12703 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
12704 {
12705 tree attributes = NULL_TREE;
12706 tree first_attribute;
12707
12708 /* Peek at the next token. */
12709 token = cp_lexer_peek_token (parser->lexer);
12710
12711 /* Check for a bitfield declaration. */
12712 if (token->type == CPP_COLON
12713 || (token->type == CPP_NAME
12714 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
12715 == CPP_COLON))
12716 {
12717 tree identifier;
12718 tree width;
12719
12720 /* Get the name of the bitfield. Note that we cannot just
12721 check TOKEN here because it may have been invalidated by
12722 the call to cp_lexer_peek_nth_token above. */
12723 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
12724 identifier = cp_parser_identifier (parser);
12725 else
12726 identifier = NULL_TREE;
12727
12728 /* Consume the `:' token. */
12729 cp_lexer_consume_token (parser->lexer);
12730 /* Get the width of the bitfield. */
12731 width
12732 = cp_parser_constant_expression (parser,
12733 /*allow_non_constant=*/false,
12734 NULL);
12735
12736 /* Look for attributes that apply to the bitfield. */
12737 attributes = cp_parser_attributes_opt (parser);
12738 /* Remember which attributes are prefix attributes and
12739 which are not. */
12740 first_attribute = attributes;
12741 /* Combine the attributes. */
12742 attributes = chainon (prefix_attributes, attributes);
12743
12744 /* Create the bitfield declaration. */
12745 decl = grokbitfield (identifier,
12746 decl_specifiers,
12747 width);
12748 /* Apply the attributes. */
12749 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
12750 }
12751 else
12752 {
12753 tree declarator;
12754 tree initializer;
12755 tree asm_specification;
12756 int ctor_dtor_or_conv_p;
12757
12758 /* Parse the declarator. */
12759 declarator
12760 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
12761 &ctor_dtor_or_conv_p,
12762 /*parenthesized_p=*/NULL);
12763
12764 /* If something went wrong parsing the declarator, make sure
12765 that we at least consume some tokens. */
12766 if (declarator == error_mark_node)
12767 {
12768 /* Skip to the end of the statement. */
12769 cp_parser_skip_to_end_of_statement (parser);
12770 /* If the next token is not a semicolon, that is
12771 probably because we just skipped over the body of
12772 a function. So, we consume a semicolon if
12773 present, but do not issue an error message if it
12774 is not present. */
12775 if (cp_lexer_next_token_is (parser->lexer,
12776 CPP_SEMICOLON))
12777 cp_lexer_consume_token (parser->lexer);
12778 return;
12779 }
12780
12781 cp_parser_check_for_definition_in_return_type
12782 (declarator, declares_class_or_enum);
12783
12784 /* Look for an asm-specification. */
12785 asm_specification = cp_parser_asm_specification_opt (parser);
12786 /* Look for attributes that apply to the declaration. */
12787 attributes = cp_parser_attributes_opt (parser);
12788 /* Remember which attributes are prefix attributes and
12789 which are not. */
12790 first_attribute = attributes;
12791 /* Combine the attributes. */
12792 attributes = chainon (prefix_attributes, attributes);
12793
12794 /* If it's an `=', then we have a constant-initializer or a
12795 pure-specifier. It is not correct to parse the
12796 initializer before registering the member declaration
12797 since the member declaration should be in scope while
12798 its initializer is processed. However, the rest of the
12799 front end does not yet provide an interface that allows
12800 us to handle this correctly. */
12801 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
12802 {
12803 /* In [class.mem]:
12804
12805 A pure-specifier shall be used only in the declaration of
12806 a virtual function.
12807
12808 A member-declarator can contain a constant-initializer
12809 only if it declares a static member of integral or
12810 enumeration type.
12811
12812 Therefore, if the DECLARATOR is for a function, we look
12813 for a pure-specifier; otherwise, we look for a
12814 constant-initializer. When we call `grokfield', it will
12815 perform more stringent semantics checks. */
12816 if (TREE_CODE (declarator) == CALL_EXPR)
12817 initializer = cp_parser_pure_specifier (parser);
12818 else
12819 /* Parse the initializer. */
12820 initializer = cp_parser_constant_initializer (parser);
12821 }
12822 /* Otherwise, there is no initializer. */
12823 else
12824 initializer = NULL_TREE;
12825
12826 /* See if we are probably looking at a function
12827 definition. We are certainly not looking at at a
12828 member-declarator. Calling `grokfield' has
12829 side-effects, so we must not do it unless we are sure
12830 that we are looking at a member-declarator. */
12831 if (cp_parser_token_starts_function_definition_p
12832 (cp_lexer_peek_token (parser->lexer)))
12833 {
12834 /* The grammar does not allow a pure-specifier to be
12835 used when a member function is defined. (It is
12836 possible that this fact is an oversight in the
12837 standard, since a pure function may be defined
12838 outside of the class-specifier. */
12839 if (initializer)
12840 error ("pure-specifier on function-definition");
12841 decl = cp_parser_save_member_function_body (parser,
12842 decl_specifiers,
12843 declarator,
12844 attributes);
12845 /* If the member was not a friend, declare it here. */
12846 if (!friend_p)
12847 finish_member_declaration (decl);
12848 /* Peek at the next token. */
12849 token = cp_lexer_peek_token (parser->lexer);
12850 /* If the next token is a semicolon, consume it. */
12851 if (token->type == CPP_SEMICOLON)
12852 cp_lexer_consume_token (parser->lexer);
12853 return;
12854 }
12855 else
12856 {
12857 /* Create the declaration. */
12858 decl = grokfield (declarator, decl_specifiers,
12859 initializer, asm_specification,
12860 attributes);
12861 /* Any initialization must have been from a
12862 constant-expression. */
12863 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
12864 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
12865 }
12866 }
12867
12868 /* Reset PREFIX_ATTRIBUTES. */
12869 while (attributes && TREE_CHAIN (attributes) != first_attribute)
12870 attributes = TREE_CHAIN (attributes);
12871 if (attributes)
12872 TREE_CHAIN (attributes) = NULL_TREE;
12873
12874 /* If there is any qualification still in effect, clear it
12875 now; we will be starting fresh with the next declarator. */
12876 parser->scope = NULL_TREE;
12877 parser->qualifying_scope = NULL_TREE;
12878 parser->object_scope = NULL_TREE;
12879 /* If it's a `,', then there are more declarators. */
12880 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12881 cp_lexer_consume_token (parser->lexer);
12882 /* If the next token isn't a `;', then we have a parse error. */
12883 else if (cp_lexer_next_token_is_not (parser->lexer,
12884 CPP_SEMICOLON))
12885 {
12886 cp_parser_error (parser, "expected `;'");
12887 /* Skip tokens until we find a `;'. */
12888 cp_parser_skip_to_end_of_statement (parser);
12889
12890 break;
12891 }
12892
12893 if (decl)
12894 {
12895 /* Add DECL to the list of members. */
12896 if (!friend_p)
12897 finish_member_declaration (decl);
12898
12899 if (TREE_CODE (decl) == FUNCTION_DECL)
12900 cp_parser_save_default_args (parser, decl);
12901 }
12902 }
12903 }
12904
12905 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
12906 }
12907
12908 /* Parse a pure-specifier.
12909
12910 pure-specifier:
12911 = 0
12912
12913 Returns INTEGER_ZERO_NODE if a pure specifier is found.
12914 Otherwise, ERROR_MARK_NODE is returned. */
12915
12916 static tree
12917 cp_parser_pure_specifier (cp_parser* parser)
12918 {
12919 cp_token *token;
12920
12921 /* Look for the `=' token. */
12922 if (!cp_parser_require (parser, CPP_EQ, "`='"))
12923 return error_mark_node;
12924 /* Look for the `0' token. */
12925 token = cp_parser_require (parser, CPP_NUMBER, "`0'");
12926 /* Unfortunately, this will accept `0L' and `0x00' as well. We need
12927 to get information from the lexer about how the number was
12928 spelled in order to fix this problem. */
12929 if (!token || !integer_zerop (token->value))
12930 return error_mark_node;
12931
12932 return integer_zero_node;
12933 }
12934
12935 /* Parse a constant-initializer.
12936
12937 constant-initializer:
12938 = constant-expression
12939
12940 Returns a representation of the constant-expression. */
12941
12942 static tree
12943 cp_parser_constant_initializer (cp_parser* parser)
12944 {
12945 /* Look for the `=' token. */
12946 if (!cp_parser_require (parser, CPP_EQ, "`='"))
12947 return error_mark_node;
12948
12949 /* It is invalid to write:
12950
12951 struct S { static const int i = { 7 }; };
12952
12953 */
12954 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
12955 {
12956 cp_parser_error (parser,
12957 "a brace-enclosed initializer is not allowed here");
12958 /* Consume the opening brace. */
12959 cp_lexer_consume_token (parser->lexer);
12960 /* Skip the initializer. */
12961 cp_parser_skip_to_closing_brace (parser);
12962 /* Look for the trailing `}'. */
12963 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12964
12965 return error_mark_node;
12966 }
12967
12968 return cp_parser_constant_expression (parser,
12969 /*allow_non_constant=*/false,
12970 NULL);
12971 }
12972
12973 /* Derived classes [gram.class.derived] */
12974
12975 /* Parse a base-clause.
12976
12977 base-clause:
12978 : base-specifier-list
12979
12980 base-specifier-list:
12981 base-specifier
12982 base-specifier-list , base-specifier
12983
12984 Returns a TREE_LIST representing the base-classes, in the order in
12985 which they were declared. The representation of each node is as
12986 described by cp_parser_base_specifier.
12987
12988 In the case that no bases are specified, this function will return
12989 NULL_TREE, not ERROR_MARK_NODE. */
12990
12991 static tree
12992 cp_parser_base_clause (cp_parser* parser)
12993 {
12994 tree bases = NULL_TREE;
12995
12996 /* Look for the `:' that begins the list. */
12997 cp_parser_require (parser, CPP_COLON, "`:'");
12998
12999 /* Scan the base-specifier-list. */
13000 while (true)
13001 {
13002 cp_token *token;
13003 tree base;
13004
13005 /* Look for the base-specifier. */
13006 base = cp_parser_base_specifier (parser);
13007 /* Add BASE to the front of the list. */
13008 if (base != error_mark_node)
13009 {
13010 TREE_CHAIN (base) = bases;
13011 bases = base;
13012 }
13013 /* Peek at the next token. */
13014 token = cp_lexer_peek_token (parser->lexer);
13015 /* If it's not a comma, then the list is complete. */
13016 if (token->type != CPP_COMMA)
13017 break;
13018 /* Consume the `,'. */
13019 cp_lexer_consume_token (parser->lexer);
13020 }
13021
13022 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13023 base class had a qualified name. However, the next name that
13024 appears is certainly not qualified. */
13025 parser->scope = NULL_TREE;
13026 parser->qualifying_scope = NULL_TREE;
13027 parser->object_scope = NULL_TREE;
13028
13029 return nreverse (bases);
13030 }
13031
13032 /* Parse a base-specifier.
13033
13034 base-specifier:
13035 :: [opt] nested-name-specifier [opt] class-name
13036 virtual access-specifier [opt] :: [opt] nested-name-specifier
13037 [opt] class-name
13038 access-specifier virtual [opt] :: [opt] nested-name-specifier
13039 [opt] class-name
13040
13041 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13042 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13043 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13044 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13045
13046 static tree
13047 cp_parser_base_specifier (cp_parser* parser)
13048 {
13049 cp_token *token;
13050 bool done = false;
13051 bool virtual_p = false;
13052 bool duplicate_virtual_error_issued_p = false;
13053 bool duplicate_access_error_issued_p = false;
13054 bool class_scope_p, template_p;
13055 tree access = access_default_node;
13056 tree type;
13057
13058 /* Process the optional `virtual' and `access-specifier'. */
13059 while (!done)
13060 {
13061 /* Peek at the next token. */
13062 token = cp_lexer_peek_token (parser->lexer);
13063 /* Process `virtual'. */
13064 switch (token->keyword)
13065 {
13066 case RID_VIRTUAL:
13067 /* If `virtual' appears more than once, issue an error. */
13068 if (virtual_p && !duplicate_virtual_error_issued_p)
13069 {
13070 cp_parser_error (parser,
13071 "`virtual' specified more than once in base-specified");
13072 duplicate_virtual_error_issued_p = true;
13073 }
13074
13075 virtual_p = true;
13076
13077 /* Consume the `virtual' token. */
13078 cp_lexer_consume_token (parser->lexer);
13079
13080 break;
13081
13082 case RID_PUBLIC:
13083 case RID_PROTECTED:
13084 case RID_PRIVATE:
13085 /* If more than one access specifier appears, issue an
13086 error. */
13087 if (access != access_default_node
13088 && !duplicate_access_error_issued_p)
13089 {
13090 cp_parser_error (parser,
13091 "more than one access specifier in base-specified");
13092 duplicate_access_error_issued_p = true;
13093 }
13094
13095 access = ridpointers[(int) token->keyword];
13096
13097 /* Consume the access-specifier. */
13098 cp_lexer_consume_token (parser->lexer);
13099
13100 break;
13101
13102 default:
13103 done = true;
13104 break;
13105 }
13106 }
13107 /* It is not uncommon to see programs mechanically, erroneously, use
13108 the 'typename' keyword to denote (dependent) qualified types
13109 as base classes. */
13110 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13111 {
13112 if (!processing_template_decl)
13113 error ("keyword `typename' not allowed outside of templates");
13114 else
13115 error ("keyword `typename' not allowed in this context "
13116 "(the base class is implicitly a type)");
13117 cp_lexer_consume_token (parser->lexer);
13118 }
13119
13120 /* Look for the optional `::' operator. */
13121 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13122 /* Look for the nested-name-specifier. The simplest way to
13123 implement:
13124
13125 [temp.res]
13126
13127 The keyword `typename' is not permitted in a base-specifier or
13128 mem-initializer; in these contexts a qualified name that
13129 depends on a template-parameter is implicitly assumed to be a
13130 type name.
13131
13132 is to pretend that we have seen the `typename' keyword at this
13133 point. */
13134 cp_parser_nested_name_specifier_opt (parser,
13135 /*typename_keyword_p=*/true,
13136 /*check_dependency_p=*/true,
13137 /*type_p=*/true,
13138 /*is_declaration=*/true);
13139 /* If the base class is given by a qualified name, assume that names
13140 we see are type names or templates, as appropriate. */
13141 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13142 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13143
13144 /* Finally, look for the class-name. */
13145 type = cp_parser_class_name (parser,
13146 class_scope_p,
13147 template_p,
13148 /*type_p=*/true,
13149 /*check_dependency_p=*/true,
13150 /*class_head_p=*/false,
13151 /*is_declaration=*/true);
13152
13153 if (type == error_mark_node)
13154 return error_mark_node;
13155
13156 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13157 }
13158
13159 /* Exception handling [gram.exception] */
13160
13161 /* Parse an (optional) exception-specification.
13162
13163 exception-specification:
13164 throw ( type-id-list [opt] )
13165
13166 Returns a TREE_LIST representing the exception-specification. The
13167 TREE_VALUE of each node is a type. */
13168
13169 static tree
13170 cp_parser_exception_specification_opt (cp_parser* parser)
13171 {
13172 cp_token *token;
13173 tree type_id_list;
13174
13175 /* Peek at the next token. */
13176 token = cp_lexer_peek_token (parser->lexer);
13177 /* If it's not `throw', then there's no exception-specification. */
13178 if (!cp_parser_is_keyword (token, RID_THROW))
13179 return NULL_TREE;
13180
13181 /* Consume the `throw'. */
13182 cp_lexer_consume_token (parser->lexer);
13183
13184 /* Look for the `('. */
13185 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13186
13187 /* Peek at the next token. */
13188 token = cp_lexer_peek_token (parser->lexer);
13189 /* If it's not a `)', then there is a type-id-list. */
13190 if (token->type != CPP_CLOSE_PAREN)
13191 {
13192 const char *saved_message;
13193
13194 /* Types may not be defined in an exception-specification. */
13195 saved_message = parser->type_definition_forbidden_message;
13196 parser->type_definition_forbidden_message
13197 = "types may not be defined in an exception-specification";
13198 /* Parse the type-id-list. */
13199 type_id_list = cp_parser_type_id_list (parser);
13200 /* Restore the saved message. */
13201 parser->type_definition_forbidden_message = saved_message;
13202 }
13203 else
13204 type_id_list = empty_except_spec;
13205
13206 /* Look for the `)'. */
13207 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13208
13209 return type_id_list;
13210 }
13211
13212 /* Parse an (optional) type-id-list.
13213
13214 type-id-list:
13215 type-id
13216 type-id-list , type-id
13217
13218 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13219 in the order that the types were presented. */
13220
13221 static tree
13222 cp_parser_type_id_list (cp_parser* parser)
13223 {
13224 tree types = NULL_TREE;
13225
13226 while (true)
13227 {
13228 cp_token *token;
13229 tree type;
13230
13231 /* Get the next type-id. */
13232 type = cp_parser_type_id (parser);
13233 /* Add it to the list. */
13234 types = add_exception_specifier (types, type, /*complain=*/1);
13235 /* Peek at the next token. */
13236 token = cp_lexer_peek_token (parser->lexer);
13237 /* If it is not a `,', we are done. */
13238 if (token->type != CPP_COMMA)
13239 break;
13240 /* Consume the `,'. */
13241 cp_lexer_consume_token (parser->lexer);
13242 }
13243
13244 return nreverse (types);
13245 }
13246
13247 /* Parse a try-block.
13248
13249 try-block:
13250 try compound-statement handler-seq */
13251
13252 static tree
13253 cp_parser_try_block (cp_parser* parser)
13254 {
13255 tree try_block;
13256
13257 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13258 try_block = begin_try_block ();
13259 cp_parser_compound_statement (parser, NULL, true);
13260 finish_try_block (try_block);
13261 cp_parser_handler_seq (parser);
13262 finish_handler_sequence (try_block);
13263
13264 return try_block;
13265 }
13266
13267 /* Parse a function-try-block.
13268
13269 function-try-block:
13270 try ctor-initializer [opt] function-body handler-seq */
13271
13272 static bool
13273 cp_parser_function_try_block (cp_parser* parser)
13274 {
13275 tree try_block;
13276 bool ctor_initializer_p;
13277
13278 /* Look for the `try' keyword. */
13279 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13280 return false;
13281 /* Let the rest of the front-end know where we are. */
13282 try_block = begin_function_try_block ();
13283 /* Parse the function-body. */
13284 ctor_initializer_p
13285 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13286 /* We're done with the `try' part. */
13287 finish_function_try_block (try_block);
13288 /* Parse the handlers. */
13289 cp_parser_handler_seq (parser);
13290 /* We're done with the handlers. */
13291 finish_function_handler_sequence (try_block);
13292
13293 return ctor_initializer_p;
13294 }
13295
13296 /* Parse a handler-seq.
13297
13298 handler-seq:
13299 handler handler-seq [opt] */
13300
13301 static void
13302 cp_parser_handler_seq (cp_parser* parser)
13303 {
13304 while (true)
13305 {
13306 cp_token *token;
13307
13308 /* Parse the handler. */
13309 cp_parser_handler (parser);
13310 /* Peek at the next token. */
13311 token = cp_lexer_peek_token (parser->lexer);
13312 /* If it's not `catch' then there are no more handlers. */
13313 if (!cp_parser_is_keyword (token, RID_CATCH))
13314 break;
13315 }
13316 }
13317
13318 /* Parse a handler.
13319
13320 handler:
13321 catch ( exception-declaration ) compound-statement */
13322
13323 static void
13324 cp_parser_handler (cp_parser* parser)
13325 {
13326 tree handler;
13327 tree declaration;
13328
13329 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13330 handler = begin_handler ();
13331 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13332 declaration = cp_parser_exception_declaration (parser);
13333 finish_handler_parms (declaration, handler);
13334 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13335 cp_parser_compound_statement (parser, NULL, false);
13336 finish_handler (handler);
13337 }
13338
13339 /* Parse an exception-declaration.
13340
13341 exception-declaration:
13342 type-specifier-seq declarator
13343 type-specifier-seq abstract-declarator
13344 type-specifier-seq
13345 ...
13346
13347 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13348 ellipsis variant is used. */
13349
13350 static tree
13351 cp_parser_exception_declaration (cp_parser* parser)
13352 {
13353 tree type_specifiers;
13354 tree declarator;
13355 const char *saved_message;
13356
13357 /* If it's an ellipsis, it's easy to handle. */
13358 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
13359 {
13360 /* Consume the `...' token. */
13361 cp_lexer_consume_token (parser->lexer);
13362 return NULL_TREE;
13363 }
13364
13365 /* Types may not be defined in exception-declarations. */
13366 saved_message = parser->type_definition_forbidden_message;
13367 parser->type_definition_forbidden_message
13368 = "types may not be defined in exception-declarations";
13369
13370 /* Parse the type-specifier-seq. */
13371 type_specifiers = cp_parser_type_specifier_seq (parser);
13372 /* If it's a `)', then there is no declarator. */
13373 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
13374 declarator = NULL_TREE;
13375 else
13376 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
13377 /*ctor_dtor_or_conv_p=*/NULL,
13378 /*parenthesized_p=*/NULL);
13379
13380 /* Restore the saved message. */
13381 parser->type_definition_forbidden_message = saved_message;
13382
13383 return start_handler_parms (type_specifiers, declarator);
13384 }
13385
13386 /* Parse a throw-expression.
13387
13388 throw-expression:
13389 throw assignment-expression [opt]
13390
13391 Returns a THROW_EXPR representing the throw-expression. */
13392
13393 static tree
13394 cp_parser_throw_expression (cp_parser* parser)
13395 {
13396 tree expression;
13397 cp_token* token;
13398
13399 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
13400 token = cp_lexer_peek_token (parser->lexer);
13401 /* Figure out whether or not there is an assignment-expression
13402 following the "throw" keyword. */
13403 if (token->type == CPP_COMMA
13404 || token->type == CPP_SEMICOLON
13405 || token->type == CPP_CLOSE_PAREN
13406 || token->type == CPP_CLOSE_SQUARE
13407 || token->type == CPP_CLOSE_BRACE
13408 || token->type == CPP_COLON)
13409 expression = NULL_TREE;
13410 else
13411 expression = cp_parser_assignment_expression (parser);
13412
13413 return build_throw (expression);
13414 }
13415
13416 /* GNU Extensions */
13417
13418 /* Parse an (optional) asm-specification.
13419
13420 asm-specification:
13421 asm ( string-literal )
13422
13423 If the asm-specification is present, returns a STRING_CST
13424 corresponding to the string-literal. Otherwise, returns
13425 NULL_TREE. */
13426
13427 static tree
13428 cp_parser_asm_specification_opt (cp_parser* parser)
13429 {
13430 cp_token *token;
13431 tree asm_specification;
13432
13433 /* Peek at the next token. */
13434 token = cp_lexer_peek_token (parser->lexer);
13435 /* If the next token isn't the `asm' keyword, then there's no
13436 asm-specification. */
13437 if (!cp_parser_is_keyword (token, RID_ASM))
13438 return NULL_TREE;
13439
13440 /* Consume the `asm' token. */
13441 cp_lexer_consume_token (parser->lexer);
13442 /* Look for the `('. */
13443 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13444
13445 /* Look for the string-literal. */
13446 token = cp_parser_require (parser, CPP_STRING, "string-literal");
13447 if (token)
13448 asm_specification = token->value;
13449 else
13450 asm_specification = NULL_TREE;
13451
13452 /* Look for the `)'. */
13453 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
13454
13455 return asm_specification;
13456 }
13457
13458 /* Parse an asm-operand-list.
13459
13460 asm-operand-list:
13461 asm-operand
13462 asm-operand-list , asm-operand
13463
13464 asm-operand:
13465 string-literal ( expression )
13466 [ string-literal ] string-literal ( expression )
13467
13468 Returns a TREE_LIST representing the operands. The TREE_VALUE of
13469 each node is the expression. The TREE_PURPOSE is itself a
13470 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
13471 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
13472 is a STRING_CST for the string literal before the parenthesis. */
13473
13474 static tree
13475 cp_parser_asm_operand_list (cp_parser* parser)
13476 {
13477 tree asm_operands = NULL_TREE;
13478
13479 while (true)
13480 {
13481 tree string_literal;
13482 tree expression;
13483 tree name;
13484 cp_token *token;
13485
13486 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
13487 {
13488 /* Consume the `[' token. */
13489 cp_lexer_consume_token (parser->lexer);
13490 /* Read the operand name. */
13491 name = cp_parser_identifier (parser);
13492 if (name != error_mark_node)
13493 name = build_string (IDENTIFIER_LENGTH (name),
13494 IDENTIFIER_POINTER (name));
13495 /* Look for the closing `]'. */
13496 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
13497 }
13498 else
13499 name = NULL_TREE;
13500 /* Look for the string-literal. */
13501 token = cp_parser_require (parser, CPP_STRING, "string-literal");
13502 string_literal = token ? token->value : error_mark_node;
13503 c_lex_string_translate = 1;
13504 /* Look for the `('. */
13505 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13506 /* Parse the expression. */
13507 expression = cp_parser_expression (parser);
13508 /* Look for the `)'. */
13509 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13510 c_lex_string_translate = 0;
13511 /* Add this operand to the list. */
13512 asm_operands = tree_cons (build_tree_list (name, string_literal),
13513 expression,
13514 asm_operands);
13515 /* If the next token is not a `,', there are no more
13516 operands. */
13517 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13518 break;
13519 /* Consume the `,'. */
13520 cp_lexer_consume_token (parser->lexer);
13521 }
13522
13523 return nreverse (asm_operands);
13524 }
13525
13526 /* Parse an asm-clobber-list.
13527
13528 asm-clobber-list:
13529 string-literal
13530 asm-clobber-list , string-literal
13531
13532 Returns a TREE_LIST, indicating the clobbers in the order that they
13533 appeared. The TREE_VALUE of each node is a STRING_CST. */
13534
13535 static tree
13536 cp_parser_asm_clobber_list (cp_parser* parser)
13537 {
13538 tree clobbers = NULL_TREE;
13539
13540 while (true)
13541 {
13542 cp_token *token;
13543 tree string_literal;
13544
13545 /* Look for the string literal. */
13546 token = cp_parser_require (parser, CPP_STRING, "string-literal");
13547 string_literal = token ? token->value : error_mark_node;
13548 /* Add it to the list. */
13549 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
13550 /* If the next token is not a `,', then the list is
13551 complete. */
13552 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13553 break;
13554 /* Consume the `,' token. */
13555 cp_lexer_consume_token (parser->lexer);
13556 }
13557
13558 return clobbers;
13559 }
13560
13561 /* Parse an (optional) series of attributes.
13562
13563 attributes:
13564 attributes attribute
13565
13566 attribute:
13567 __attribute__ (( attribute-list [opt] ))
13568
13569 The return value is as for cp_parser_attribute_list. */
13570
13571 static tree
13572 cp_parser_attributes_opt (cp_parser* parser)
13573 {
13574 tree attributes = NULL_TREE;
13575
13576 while (true)
13577 {
13578 cp_token *token;
13579 tree attribute_list;
13580
13581 /* Peek at the next token. */
13582 token = cp_lexer_peek_token (parser->lexer);
13583 /* If it's not `__attribute__', then we're done. */
13584 if (token->keyword != RID_ATTRIBUTE)
13585 break;
13586
13587 /* Consume the `__attribute__' keyword. */
13588 cp_lexer_consume_token (parser->lexer);
13589 /* Look for the two `(' tokens. */
13590 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13591 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13592
13593 /* Peek at the next token. */
13594 token = cp_lexer_peek_token (parser->lexer);
13595 if (token->type != CPP_CLOSE_PAREN)
13596 /* Parse the attribute-list. */
13597 attribute_list = cp_parser_attribute_list (parser);
13598 else
13599 /* If the next token is a `)', then there is no attribute
13600 list. */
13601 attribute_list = NULL;
13602
13603 /* Look for the two `)' tokens. */
13604 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13605 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13606
13607 /* Add these new attributes to the list. */
13608 attributes = chainon (attributes, attribute_list);
13609 }
13610
13611 return attributes;
13612 }
13613
13614 /* Parse an attribute-list.
13615
13616 attribute-list:
13617 attribute
13618 attribute-list , attribute
13619
13620 attribute:
13621 identifier
13622 identifier ( identifier )
13623 identifier ( identifier , expression-list )
13624 identifier ( expression-list )
13625
13626 Returns a TREE_LIST. Each node corresponds to an attribute. THe
13627 TREE_PURPOSE of each node is the identifier indicating which
13628 attribute is in use. The TREE_VALUE represents the arguments, if
13629 any. */
13630
13631 static tree
13632 cp_parser_attribute_list (cp_parser* parser)
13633 {
13634 tree attribute_list = NULL_TREE;
13635
13636 c_lex_string_translate = 0;
13637 while (true)
13638 {
13639 cp_token *token;
13640 tree identifier;
13641 tree attribute;
13642
13643 /* Look for the identifier. We also allow keywords here; for
13644 example `__attribute__ ((const))' is legal. */
13645 token = cp_lexer_peek_token (parser->lexer);
13646 if (token->type != CPP_NAME
13647 && token->type != CPP_KEYWORD)
13648 return error_mark_node;
13649 /* Consume the token. */
13650 token = cp_lexer_consume_token (parser->lexer);
13651
13652 /* Save away the identifier that indicates which attribute this is. */
13653 identifier = token->value;
13654 attribute = build_tree_list (identifier, NULL_TREE);
13655
13656 /* Peek at the next token. */
13657 token = cp_lexer_peek_token (parser->lexer);
13658 /* If it's an `(', then parse the attribute arguments. */
13659 if (token->type == CPP_OPEN_PAREN)
13660 {
13661 tree arguments;
13662
13663 arguments = (cp_parser_parenthesized_expression_list
13664 (parser, true, /*non_constant_p=*/NULL));
13665 /* Save the identifier and arguments away. */
13666 TREE_VALUE (attribute) = arguments;
13667 }
13668
13669 /* Add this attribute to the list. */
13670 TREE_CHAIN (attribute) = attribute_list;
13671 attribute_list = attribute;
13672
13673 /* Now, look for more attributes. */
13674 token = cp_lexer_peek_token (parser->lexer);
13675 /* If the next token isn't a `,', we're done. */
13676 if (token->type != CPP_COMMA)
13677 break;
13678
13679 /* Consume the comma and keep going. */
13680 cp_lexer_consume_token (parser->lexer);
13681 }
13682 c_lex_string_translate = 1;
13683
13684 /* We built up the list in reverse order. */
13685 return nreverse (attribute_list);
13686 }
13687
13688 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
13689 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
13690 current value of the PEDANTIC flag, regardless of whether or not
13691 the `__extension__' keyword is present. The caller is responsible
13692 for restoring the value of the PEDANTIC flag. */
13693
13694 static bool
13695 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
13696 {
13697 /* Save the old value of the PEDANTIC flag. */
13698 *saved_pedantic = pedantic;
13699
13700 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
13701 {
13702 /* Consume the `__extension__' token. */
13703 cp_lexer_consume_token (parser->lexer);
13704 /* We're not being pedantic while the `__extension__' keyword is
13705 in effect. */
13706 pedantic = 0;
13707
13708 return true;
13709 }
13710
13711 return false;
13712 }
13713
13714 /* Parse a label declaration.
13715
13716 label-declaration:
13717 __label__ label-declarator-seq ;
13718
13719 label-declarator-seq:
13720 identifier , label-declarator-seq
13721 identifier */
13722
13723 static void
13724 cp_parser_label_declaration (cp_parser* parser)
13725 {
13726 /* Look for the `__label__' keyword. */
13727 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
13728
13729 while (true)
13730 {
13731 tree identifier;
13732
13733 /* Look for an identifier. */
13734 identifier = cp_parser_identifier (parser);
13735 /* Declare it as a lobel. */
13736 finish_label_decl (identifier);
13737 /* If the next token is a `;', stop. */
13738 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
13739 break;
13740 /* Look for the `,' separating the label declarations. */
13741 cp_parser_require (parser, CPP_COMMA, "`,'");
13742 }
13743
13744 /* Look for the final `;'. */
13745 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13746 }
13747
13748 /* Support Functions */
13749
13750 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
13751 NAME should have one of the representations used for an
13752 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
13753 is returned. If PARSER->SCOPE is a dependent type, then a
13754 SCOPE_REF is returned.
13755
13756 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
13757 returned; the name was already resolved when the TEMPLATE_ID_EXPR
13758 was formed. Abstractly, such entities should not be passed to this
13759 function, because they do not need to be looked up, but it is
13760 simpler to check for this special case here, rather than at the
13761 call-sites.
13762
13763 In cases not explicitly covered above, this function returns a
13764 DECL, OVERLOAD, or baselink representing the result of the lookup.
13765 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
13766 is returned.
13767
13768 If IS_TYPE is TRUE, bindings that do not refer to types are
13769 ignored.
13770
13771 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
13772 ignored.
13773
13774 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
13775 are ignored.
13776
13777 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
13778 types. */
13779
13780 static tree
13781 cp_parser_lookup_name (cp_parser *parser, tree name,
13782 bool is_type, bool is_template, bool is_namespace,
13783 bool check_dependency)
13784 {
13785 tree decl;
13786 tree object_type = parser->context->object_type;
13787
13788 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
13789 no longer valid. Note that if we are parsing tentatively, and
13790 the parse fails, OBJECT_TYPE will be automatically restored. */
13791 parser->context->object_type = NULL_TREE;
13792
13793 if (name == error_mark_node)
13794 return error_mark_node;
13795
13796 /* A template-id has already been resolved; there is no lookup to
13797 do. */
13798 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
13799 return name;
13800 if (BASELINK_P (name))
13801 {
13802 my_friendly_assert ((TREE_CODE (BASELINK_FUNCTIONS (name))
13803 == TEMPLATE_ID_EXPR),
13804 20020909);
13805 return name;
13806 }
13807
13808 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
13809 it should already have been checked to make sure that the name
13810 used matches the type being destroyed. */
13811 if (TREE_CODE (name) == BIT_NOT_EXPR)
13812 {
13813 tree type;
13814
13815 /* Figure out to which type this destructor applies. */
13816 if (parser->scope)
13817 type = parser->scope;
13818 else if (object_type)
13819 type = object_type;
13820 else
13821 type = current_class_type;
13822 /* If that's not a class type, there is no destructor. */
13823 if (!type || !CLASS_TYPE_P (type))
13824 return error_mark_node;
13825 if (!CLASSTYPE_DESTRUCTORS (type))
13826 return error_mark_node;
13827 /* If it was a class type, return the destructor. */
13828 return CLASSTYPE_DESTRUCTORS (type);
13829 }
13830
13831 /* By this point, the NAME should be an ordinary identifier. If
13832 the id-expression was a qualified name, the qualifying scope is
13833 stored in PARSER->SCOPE at this point. */
13834 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE,
13835 20000619);
13836
13837 /* Perform the lookup. */
13838 if (parser->scope)
13839 {
13840 bool dependent_p;
13841
13842 if (parser->scope == error_mark_node)
13843 return error_mark_node;
13844
13845 /* If the SCOPE is dependent, the lookup must be deferred until
13846 the template is instantiated -- unless we are explicitly
13847 looking up names in uninstantiated templates. Even then, we
13848 cannot look up the name if the scope is not a class type; it
13849 might, for example, be a template type parameter. */
13850 dependent_p = (TYPE_P (parser->scope)
13851 && !(parser->in_declarator_p
13852 && currently_open_class (parser->scope))
13853 && dependent_type_p (parser->scope));
13854 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
13855 && dependent_p)
13856 {
13857 if (is_type)
13858 /* The resolution to Core Issue 180 says that `struct A::B'
13859 should be considered a type-name, even if `A' is
13860 dependent. */
13861 decl = TYPE_NAME (make_typename_type (parser->scope,
13862 name,
13863 /*complain=*/1));
13864 else if (is_template)
13865 decl = make_unbound_class_template (parser->scope,
13866 name,
13867 /*complain=*/1);
13868 else
13869 decl = build_nt (SCOPE_REF, parser->scope, name);
13870 }
13871 else
13872 {
13873 bool pop_p = false;
13874
13875 /* If PARSER->SCOPE is a dependent type, then it must be a
13876 class type, and we must not be checking dependencies;
13877 otherwise, we would have processed this lookup above. So
13878 that PARSER->SCOPE is not considered a dependent base by
13879 lookup_member, we must enter the scope here. */
13880 if (dependent_p)
13881 pop_p = push_scope (parser->scope);
13882 /* If the PARSER->SCOPE is a a template specialization, it
13883 may be instantiated during name lookup. In that case,
13884 errors may be issued. Even if we rollback the current
13885 tentative parse, those errors are valid. */
13886 decl = lookup_qualified_name (parser->scope, name, is_type,
13887 /*complain=*/true);
13888 if (pop_p)
13889 pop_scope (parser->scope);
13890 }
13891 parser->qualifying_scope = parser->scope;
13892 parser->object_scope = NULL_TREE;
13893 }
13894 else if (object_type)
13895 {
13896 tree object_decl = NULL_TREE;
13897 /* Look up the name in the scope of the OBJECT_TYPE, unless the
13898 OBJECT_TYPE is not a class. */
13899 if (CLASS_TYPE_P (object_type))
13900 /* If the OBJECT_TYPE is a template specialization, it may
13901 be instantiated during name lookup. In that case, errors
13902 may be issued. Even if we rollback the current tentative
13903 parse, those errors are valid. */
13904 object_decl = lookup_member (object_type,
13905 name,
13906 /*protect=*/0, is_type);
13907 /* Look it up in the enclosing context, too. */
13908 decl = lookup_name_real (name, is_type, /*nonclass=*/0,
13909 is_namespace,
13910 /*flags=*/0);
13911 parser->object_scope = object_type;
13912 parser->qualifying_scope = NULL_TREE;
13913 if (object_decl)
13914 decl = object_decl;
13915 }
13916 else
13917 {
13918 decl = lookup_name_real (name, is_type, /*nonclass=*/0,
13919 is_namespace,
13920 /*flags=*/0);
13921 parser->qualifying_scope = NULL_TREE;
13922 parser->object_scope = NULL_TREE;
13923 }
13924
13925 /* If the lookup failed, let our caller know. */
13926 if (!decl
13927 || decl == error_mark_node
13928 || (TREE_CODE (decl) == FUNCTION_DECL
13929 && DECL_ANTICIPATED (decl)))
13930 return error_mark_node;
13931
13932 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
13933 if (TREE_CODE (decl) == TREE_LIST)
13934 {
13935 /* The error message we have to print is too complicated for
13936 cp_parser_error, so we incorporate its actions directly. */
13937 if (!cp_parser_simulate_error (parser))
13938 {
13939 error ("reference to `%D' is ambiguous", name);
13940 print_candidates (decl);
13941 }
13942 return error_mark_node;
13943 }
13944
13945 my_friendly_assert (DECL_P (decl)
13946 || TREE_CODE (decl) == OVERLOAD
13947 || TREE_CODE (decl) == SCOPE_REF
13948 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
13949 || BASELINK_P (decl),
13950 20000619);
13951
13952 /* If we have resolved the name of a member declaration, check to
13953 see if the declaration is accessible. When the name resolves to
13954 set of overloaded functions, accessibility is checked when
13955 overload resolution is done.
13956
13957 During an explicit instantiation, access is not checked at all,
13958 as per [temp.explicit]. */
13959 if (DECL_P (decl))
13960 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
13961
13962 return decl;
13963 }
13964
13965 /* Like cp_parser_lookup_name, but for use in the typical case where
13966 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
13967 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
13968
13969 static tree
13970 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
13971 {
13972 return cp_parser_lookup_name (parser, name,
13973 /*is_type=*/false,
13974 /*is_template=*/false,
13975 /*is_namespace=*/false,
13976 /*check_dependency=*/true);
13977 }
13978
13979 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
13980 the current context, return the TYPE_DECL. If TAG_NAME_P is
13981 true, the DECL indicates the class being defined in a class-head,
13982 or declared in an elaborated-type-specifier.
13983
13984 Otherwise, return DECL. */
13985
13986 static tree
13987 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
13988 {
13989 /* If the TEMPLATE_DECL is being declared as part of a class-head,
13990 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
13991
13992 struct A {
13993 template <typename T> struct B;
13994 };
13995
13996 template <typename T> struct A::B {};
13997
13998 Similarly, in a elaborated-type-specifier:
13999
14000 namespace N { struct X{}; }
14001
14002 struct A {
14003 template <typename T> friend struct N::X;
14004 };
14005
14006 However, if the DECL refers to a class type, and we are in
14007 the scope of the class, then the name lookup automatically
14008 finds the TYPE_DECL created by build_self_reference rather
14009 than a TEMPLATE_DECL. For example, in:
14010
14011 template <class T> struct S {
14012 S s;
14013 };
14014
14015 there is no need to handle such case. */
14016
14017 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14018 return DECL_TEMPLATE_RESULT (decl);
14019
14020 return decl;
14021 }
14022
14023 /* If too many, or too few, template-parameter lists apply to the
14024 declarator, issue an error message. Returns TRUE if all went well,
14025 and FALSE otherwise. */
14026
14027 static bool
14028 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14029 tree declarator)
14030 {
14031 unsigned num_templates;
14032
14033 /* We haven't seen any classes that involve template parameters yet. */
14034 num_templates = 0;
14035
14036 switch (TREE_CODE (declarator))
14037 {
14038 case CALL_EXPR:
14039 case ARRAY_REF:
14040 case INDIRECT_REF:
14041 case ADDR_EXPR:
14042 {
14043 tree main_declarator = TREE_OPERAND (declarator, 0);
14044 return
14045 cp_parser_check_declarator_template_parameters (parser,
14046 main_declarator);
14047 }
14048
14049 case SCOPE_REF:
14050 {
14051 tree scope;
14052 tree member;
14053
14054 scope = TREE_OPERAND (declarator, 0);
14055 member = TREE_OPERAND (declarator, 1);
14056
14057 /* If this is a pointer-to-member, then we are not interested
14058 in the SCOPE, because it does not qualify the thing that is
14059 being declared. */
14060 if (TREE_CODE (member) == INDIRECT_REF)
14061 return (cp_parser_check_declarator_template_parameters
14062 (parser, member));
14063
14064 while (scope && CLASS_TYPE_P (scope))
14065 {
14066 /* You're supposed to have one `template <...>'
14067 for every template class, but you don't need one
14068 for a full specialization. For example:
14069
14070 template <class T> struct S{};
14071 template <> struct S<int> { void f(); };
14072 void S<int>::f () {}
14073
14074 is correct; there shouldn't be a `template <>' for
14075 the definition of `S<int>::f'. */
14076 if (CLASSTYPE_TEMPLATE_INFO (scope)
14077 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14078 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14079 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14080 ++num_templates;
14081
14082 scope = TYPE_CONTEXT (scope);
14083 }
14084 }
14085
14086 /* Fall through. */
14087
14088 default:
14089 /* If the DECLARATOR has the form `X<y>' then it uses one
14090 additional level of template parameters. */
14091 if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
14092 ++num_templates;
14093
14094 return cp_parser_check_template_parameters (parser,
14095 num_templates);
14096 }
14097 }
14098
14099 /* NUM_TEMPLATES were used in the current declaration. If that is
14100 invalid, return FALSE and issue an error messages. Otherwise,
14101 return TRUE. */
14102
14103 static bool
14104 cp_parser_check_template_parameters (cp_parser* parser,
14105 unsigned num_templates)
14106 {
14107 /* If there are more template classes than parameter lists, we have
14108 something like:
14109
14110 template <class T> void S<T>::R<T>::f (); */
14111 if (parser->num_template_parameter_lists < num_templates)
14112 {
14113 error ("too few template-parameter-lists");
14114 return false;
14115 }
14116 /* If there are the same number of template classes and parameter
14117 lists, that's OK. */
14118 if (parser->num_template_parameter_lists == num_templates)
14119 return true;
14120 /* If there are more, but only one more, then we are referring to a
14121 member template. That's OK too. */
14122 if (parser->num_template_parameter_lists == num_templates + 1)
14123 return true;
14124 /* Otherwise, there are too many template parameter lists. We have
14125 something like:
14126
14127 template <class T> template <class U> void S::f(); */
14128 error ("too many template-parameter-lists");
14129 return false;
14130 }
14131
14132 /* Parse a binary-expression of the general form:
14133
14134 binary-expression:
14135 <expr>
14136 binary-expression <token> <expr>
14137
14138 The TOKEN_TREE_MAP maps <token> types to <expr> codes. FN is used
14139 to parser the <expr>s. If the first production is used, then the
14140 value returned by FN is returned directly. Otherwise, a node with
14141 the indicated EXPR_TYPE is returned, with operands corresponding to
14142 the two sub-expressions. */
14143
14144 static tree
14145 cp_parser_binary_expression (cp_parser* parser,
14146 const cp_parser_token_tree_map token_tree_map,
14147 cp_parser_expression_fn fn)
14148 {
14149 tree lhs;
14150
14151 /* Parse the first expression. */
14152 lhs = (*fn) (parser);
14153 /* Now, look for more expressions. */
14154 while (true)
14155 {
14156 cp_token *token;
14157 const cp_parser_token_tree_map_node *map_node;
14158 tree rhs;
14159
14160 /* Peek at the next token. */
14161 token = cp_lexer_peek_token (parser->lexer);
14162 /* If the token is `>', and that's not an operator at the
14163 moment, then we're done. */
14164 if (token->type == CPP_GREATER
14165 && !parser->greater_than_is_operator_p)
14166 break;
14167 /* If we find one of the tokens we want, build the corresponding
14168 tree representation. */
14169 for (map_node = token_tree_map;
14170 map_node->token_type != CPP_EOF;
14171 ++map_node)
14172 if (map_node->token_type == token->type)
14173 {
14174 /* Assume that an overloaded operator will not be used. */
14175 bool overloaded_p = false;
14176
14177 /* Consume the operator token. */
14178 cp_lexer_consume_token (parser->lexer);
14179 /* Parse the right-hand side of the expression. */
14180 rhs = (*fn) (parser);
14181 /* Build the binary tree node. */
14182 lhs = build_x_binary_op (map_node->tree_type, lhs, rhs,
14183 &overloaded_p);
14184 /* If the binary operator required the use of an
14185 overloaded operator, then this expression cannot be an
14186 integral constant-expression. An overloaded operator
14187 can be used even if both operands are otherwise
14188 permissible in an integral constant-expression if at
14189 least one of the operands is of enumeration type. */
14190 if (overloaded_p
14191 && (cp_parser_non_integral_constant_expression
14192 (parser, "calls to overloaded operators")))
14193 lhs = error_mark_node;
14194 break;
14195 }
14196
14197 /* If the token wasn't one of the ones we want, we're done. */
14198 if (map_node->token_type == CPP_EOF)
14199 break;
14200 }
14201
14202 return lhs;
14203 }
14204
14205 /* Parse an optional `::' token indicating that the following name is
14206 from the global namespace. If so, PARSER->SCOPE is set to the
14207 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14208 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14209 Returns the new value of PARSER->SCOPE, if the `::' token is
14210 present, and NULL_TREE otherwise. */
14211
14212 static tree
14213 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14214 {
14215 cp_token *token;
14216
14217 /* Peek at the next token. */
14218 token = cp_lexer_peek_token (parser->lexer);
14219 /* If we're looking at a `::' token then we're starting from the
14220 global namespace, not our current location. */
14221 if (token->type == CPP_SCOPE)
14222 {
14223 /* Consume the `::' token. */
14224 cp_lexer_consume_token (parser->lexer);
14225 /* Set the SCOPE so that we know where to start the lookup. */
14226 parser->scope = global_namespace;
14227 parser->qualifying_scope = global_namespace;
14228 parser->object_scope = NULL_TREE;
14229
14230 return parser->scope;
14231 }
14232 else if (!current_scope_valid_p)
14233 {
14234 parser->scope = NULL_TREE;
14235 parser->qualifying_scope = NULL_TREE;
14236 parser->object_scope = NULL_TREE;
14237 }
14238
14239 return NULL_TREE;
14240 }
14241
14242 /* Returns TRUE if the upcoming token sequence is the start of a
14243 constructor declarator. If FRIEND_P is true, the declarator is
14244 preceded by the `friend' specifier. */
14245
14246 static bool
14247 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14248 {
14249 bool constructor_p;
14250 tree type_decl = NULL_TREE;
14251 bool nested_name_p;
14252 cp_token *next_token;
14253
14254 /* The common case is that this is not a constructor declarator, so
14255 try to avoid doing lots of work if at all possible. It's not
14256 valid declare a constructor at function scope. */
14257 if (at_function_scope_p ())
14258 return false;
14259 /* And only certain tokens can begin a constructor declarator. */
14260 next_token = cp_lexer_peek_token (parser->lexer);
14261 if (next_token->type != CPP_NAME
14262 && next_token->type != CPP_SCOPE
14263 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14264 && next_token->type != CPP_TEMPLATE_ID)
14265 return false;
14266
14267 /* Parse tentatively; we are going to roll back all of the tokens
14268 consumed here. */
14269 cp_parser_parse_tentatively (parser);
14270 /* Assume that we are looking at a constructor declarator. */
14271 constructor_p = true;
14272
14273 /* Look for the optional `::' operator. */
14274 cp_parser_global_scope_opt (parser,
14275 /*current_scope_valid_p=*/false);
14276 /* Look for the nested-name-specifier. */
14277 nested_name_p
14278 = (cp_parser_nested_name_specifier_opt (parser,
14279 /*typename_keyword_p=*/false,
14280 /*check_dependency_p=*/false,
14281 /*type_p=*/false,
14282 /*is_declaration=*/false)
14283 != NULL_TREE);
14284 /* Outside of a class-specifier, there must be a
14285 nested-name-specifier. */
14286 if (!nested_name_p &&
14287 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14288 || friend_p))
14289 constructor_p = false;
14290 /* If we still think that this might be a constructor-declarator,
14291 look for a class-name. */
14292 if (constructor_p)
14293 {
14294 /* If we have:
14295
14296 template <typename T> struct S { S(); };
14297 template <typename T> S<T>::S ();
14298
14299 we must recognize that the nested `S' names a class.
14300 Similarly, for:
14301
14302 template <typename T> S<T>::S<T> ();
14303
14304 we must recognize that the nested `S' names a template. */
14305 type_decl = cp_parser_class_name (parser,
14306 /*typename_keyword_p=*/false,
14307 /*template_keyword_p=*/false,
14308 /*type_p=*/false,
14309 /*check_dependency_p=*/false,
14310 /*class_head_p=*/false,
14311 /*is_declaration=*/false);
14312 /* If there was no class-name, then this is not a constructor. */
14313 constructor_p = !cp_parser_error_occurred (parser);
14314 }
14315
14316 /* If we're still considering a constructor, we have to see a `(',
14317 to begin the parameter-declaration-clause, followed by either a
14318 `)', an `...', or a decl-specifier. We need to check for a
14319 type-specifier to avoid being fooled into thinking that:
14320
14321 S::S (f) (int);
14322
14323 is a constructor. (It is actually a function named `f' that
14324 takes one parameter (of type `int') and returns a value of type
14325 `S::S'. */
14326 if (constructor_p
14327 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14328 {
14329 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14330 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14331 /* A parameter declaration begins with a decl-specifier,
14332 which is either the "attribute" keyword, a storage class
14333 specifier, or (usually) a type-specifier. */
14334 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14335 && !cp_parser_storage_class_specifier_opt (parser))
14336 {
14337 tree type;
14338 bool pop_p = false;
14339 unsigned saved_num_template_parameter_lists;
14340
14341 /* Names appearing in the type-specifier should be looked up
14342 in the scope of the class. */
14343 if (current_class_type)
14344 type = NULL_TREE;
14345 else
14346 {
14347 type = TREE_TYPE (type_decl);
14348 if (TREE_CODE (type) == TYPENAME_TYPE)
14349 {
14350 type = resolve_typename_type (type,
14351 /*only_current_p=*/false);
14352 if (type == error_mark_node)
14353 {
14354 cp_parser_abort_tentative_parse (parser);
14355 return false;
14356 }
14357 }
14358 pop_p = push_scope (type);
14359 }
14360
14361 /* Inside the constructor parameter list, surrounding
14362 template-parameter-lists do not apply. */
14363 saved_num_template_parameter_lists
14364 = parser->num_template_parameter_lists;
14365 parser->num_template_parameter_lists = 0;
14366
14367 /* Look for the type-specifier. */
14368 cp_parser_type_specifier (parser,
14369 CP_PARSER_FLAGS_NONE,
14370 /*is_friend=*/false,
14371 /*is_declarator=*/true,
14372 /*declares_class_or_enum=*/NULL,
14373 /*is_cv_qualifier=*/NULL);
14374
14375 parser->num_template_parameter_lists
14376 = saved_num_template_parameter_lists;
14377
14378 /* Leave the scope of the class. */
14379 if (pop_p)
14380 pop_scope (type);
14381
14382 constructor_p = !cp_parser_error_occurred (parser);
14383 }
14384 }
14385 else
14386 constructor_p = false;
14387 /* We did not really want to consume any tokens. */
14388 cp_parser_abort_tentative_parse (parser);
14389
14390 return constructor_p;
14391 }
14392
14393 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14394 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14395 they must be performed once we are in the scope of the function.
14396
14397 Returns the function defined. */
14398
14399 static tree
14400 cp_parser_function_definition_from_specifiers_and_declarator
14401 (cp_parser* parser,
14402 tree decl_specifiers,
14403 tree attributes,
14404 tree declarator)
14405 {
14406 tree fn;
14407 bool success_p;
14408
14409 /* Begin the function-definition. */
14410 success_p = begin_function_definition (decl_specifiers,
14411 attributes,
14412 declarator);
14413
14414 /* If there were names looked up in the decl-specifier-seq that we
14415 did not check, check them now. We must wait until we are in the
14416 scope of the function to perform the checks, since the function
14417 might be a friend. */
14418 perform_deferred_access_checks ();
14419
14420 if (!success_p)
14421 {
14422 /* If begin_function_definition didn't like the definition, skip
14423 the entire function. */
14424 error ("invalid function declaration");
14425 cp_parser_skip_to_end_of_block_or_statement (parser);
14426 fn = error_mark_node;
14427 }
14428 else
14429 fn = cp_parser_function_definition_after_declarator (parser,
14430 /*inline_p=*/false);
14431
14432 return fn;
14433 }
14434
14435 /* Parse the part of a function-definition that follows the
14436 declarator. INLINE_P is TRUE iff this function is an inline
14437 function defined with a class-specifier.
14438
14439 Returns the function defined. */
14440
14441 static tree
14442 cp_parser_function_definition_after_declarator (cp_parser* parser,
14443 bool inline_p)
14444 {
14445 tree fn;
14446 bool ctor_initializer_p = false;
14447 bool saved_in_unbraced_linkage_specification_p;
14448 unsigned saved_num_template_parameter_lists;
14449
14450 /* If the next token is `return', then the code may be trying to
14451 make use of the "named return value" extension that G++ used to
14452 support. */
14453 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
14454 {
14455 /* Consume the `return' keyword. */
14456 cp_lexer_consume_token (parser->lexer);
14457 /* Look for the identifier that indicates what value is to be
14458 returned. */
14459 cp_parser_identifier (parser);
14460 /* Issue an error message. */
14461 error ("named return values are no longer supported");
14462 /* Skip tokens until we reach the start of the function body. */
14463 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
14464 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
14465 cp_lexer_consume_token (parser->lexer);
14466 }
14467 /* The `extern' in `extern "C" void f () { ... }' does not apply to
14468 anything declared inside `f'. */
14469 saved_in_unbraced_linkage_specification_p
14470 = parser->in_unbraced_linkage_specification_p;
14471 parser->in_unbraced_linkage_specification_p = false;
14472 /* Inside the function, surrounding template-parameter-lists do not
14473 apply. */
14474 saved_num_template_parameter_lists
14475 = parser->num_template_parameter_lists;
14476 parser->num_template_parameter_lists = 0;
14477 /* If the next token is `try', then we are looking at a
14478 function-try-block. */
14479 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
14480 ctor_initializer_p = cp_parser_function_try_block (parser);
14481 /* A function-try-block includes the function-body, so we only do
14482 this next part if we're not processing a function-try-block. */
14483 else
14484 ctor_initializer_p
14485 = cp_parser_ctor_initializer_opt_and_function_body (parser);
14486
14487 /* Finish the function. */
14488 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
14489 (inline_p ? 2 : 0));
14490 /* Generate code for it, if necessary. */
14491 expand_or_defer_fn (fn);
14492 /* Restore the saved values. */
14493 parser->in_unbraced_linkage_specification_p
14494 = saved_in_unbraced_linkage_specification_p;
14495 parser->num_template_parameter_lists
14496 = saved_num_template_parameter_lists;
14497
14498 return fn;
14499 }
14500
14501 /* Parse a template-declaration, assuming that the `export' (and
14502 `extern') keywords, if present, has already been scanned. MEMBER_P
14503 is as for cp_parser_template_declaration. */
14504
14505 static void
14506 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
14507 {
14508 tree decl = NULL_TREE;
14509 tree parameter_list;
14510 bool friend_p = false;
14511
14512 /* Look for the `template' keyword. */
14513 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
14514 return;
14515
14516 /* And the `<'. */
14517 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
14518 return;
14519
14520 /* If the next token is `>', then we have an invalid
14521 specialization. Rather than complain about an invalid template
14522 parameter, issue an error message here. */
14523 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
14524 {
14525 cp_parser_error (parser, "invalid explicit specialization");
14526 begin_specialization ();
14527 parameter_list = NULL_TREE;
14528 }
14529 else
14530 {
14531 /* Parse the template parameters. */
14532 begin_template_parm_list ();
14533 parameter_list = cp_parser_template_parameter_list (parser);
14534 parameter_list = end_template_parm_list (parameter_list);
14535 }
14536
14537 /* Look for the `>'. */
14538 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
14539 /* We just processed one more parameter list. */
14540 ++parser->num_template_parameter_lists;
14541 /* If the next token is `template', there are more template
14542 parameters. */
14543 if (cp_lexer_next_token_is_keyword (parser->lexer,
14544 RID_TEMPLATE))
14545 cp_parser_template_declaration_after_export (parser, member_p);
14546 else
14547 {
14548 decl = cp_parser_single_declaration (parser,
14549 member_p,
14550 &friend_p);
14551
14552 /* If this is a member template declaration, let the front
14553 end know. */
14554 if (member_p && !friend_p && decl)
14555 {
14556 if (TREE_CODE (decl) == TYPE_DECL)
14557 cp_parser_check_access_in_redeclaration (decl);
14558
14559 decl = finish_member_template_decl (decl);
14560 }
14561 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
14562 make_friend_class (current_class_type, TREE_TYPE (decl),
14563 /*complain=*/true);
14564 }
14565 /* We are done with the current parameter list. */
14566 --parser->num_template_parameter_lists;
14567
14568 /* Finish up. */
14569 finish_template_decl (parameter_list);
14570
14571 /* Register member declarations. */
14572 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
14573 finish_member_declaration (decl);
14574
14575 /* If DECL is a function template, we must return to parse it later.
14576 (Even though there is no definition, there might be default
14577 arguments that need handling.) */
14578 if (member_p && decl
14579 && (TREE_CODE (decl) == FUNCTION_DECL
14580 || DECL_FUNCTION_TEMPLATE_P (decl)))
14581 TREE_VALUE (parser->unparsed_functions_queues)
14582 = tree_cons (NULL_TREE, decl,
14583 TREE_VALUE (parser->unparsed_functions_queues));
14584 }
14585
14586 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
14587 `function-definition' sequence. MEMBER_P is true, this declaration
14588 appears in a class scope.
14589
14590 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
14591 *FRIEND_P is set to TRUE iff the declaration is a friend. */
14592
14593 static tree
14594 cp_parser_single_declaration (cp_parser* parser,
14595 bool member_p,
14596 bool* friend_p)
14597 {
14598 int declares_class_or_enum;
14599 tree decl = NULL_TREE;
14600 tree decl_specifiers;
14601 tree attributes;
14602 bool function_definition_p = false;
14603
14604 /* Defer access checks until we know what is being declared. */
14605 push_deferring_access_checks (dk_deferred);
14606
14607 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
14608 alternative. */
14609 decl_specifiers
14610 = cp_parser_decl_specifier_seq (parser,
14611 CP_PARSER_FLAGS_OPTIONAL,
14612 &attributes,
14613 &declares_class_or_enum);
14614 if (friend_p)
14615 *friend_p = cp_parser_friend_p (decl_specifiers);
14616 /* Gather up the access checks that occurred the
14617 decl-specifier-seq. */
14618 stop_deferring_access_checks ();
14619
14620 /* Check for the declaration of a template class. */
14621 if (declares_class_or_enum)
14622 {
14623 if (cp_parser_declares_only_class_p (parser))
14624 {
14625 decl = shadow_tag (decl_specifiers);
14626 if (decl)
14627 decl = TYPE_NAME (decl);
14628 else
14629 decl = error_mark_node;
14630 }
14631 }
14632 else
14633 decl = NULL_TREE;
14634 /* If it's not a template class, try for a template function. If
14635 the next token is a `;', then this declaration does not declare
14636 anything. But, if there were errors in the decl-specifiers, then
14637 the error might well have come from an attempted class-specifier.
14638 In that case, there's no need to warn about a missing declarator. */
14639 if (!decl
14640 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
14641 || !value_member (error_mark_node, decl_specifiers)))
14642 decl = cp_parser_init_declarator (parser,
14643 decl_specifiers,
14644 attributes,
14645 /*function_definition_allowed_p=*/true,
14646 member_p,
14647 declares_class_or_enum,
14648 &function_definition_p);
14649
14650 pop_deferring_access_checks ();
14651
14652 /* Clear any current qualification; whatever comes next is the start
14653 of something new. */
14654 parser->scope = NULL_TREE;
14655 parser->qualifying_scope = NULL_TREE;
14656 parser->object_scope = NULL_TREE;
14657 /* Look for a trailing `;' after the declaration. */
14658 if (!function_definition_p
14659 && !cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
14660 cp_parser_skip_to_end_of_block_or_statement (parser);
14661
14662 return decl;
14663 }
14664
14665 /* Parse a cast-expression that is not the operand of a unary "&". */
14666
14667 static tree
14668 cp_parser_simple_cast_expression (cp_parser *parser)
14669 {
14670 return cp_parser_cast_expression (parser, /*address_p=*/false);
14671 }
14672
14673 /* Parse a functional cast to TYPE. Returns an expression
14674 representing the cast. */
14675
14676 static tree
14677 cp_parser_functional_cast (cp_parser* parser, tree type)
14678 {
14679 tree expression_list;
14680 tree cast;
14681
14682 expression_list
14683 = cp_parser_parenthesized_expression_list (parser, false,
14684 /*non_constant_p=*/NULL);
14685
14686 cast = build_functional_cast (type, expression_list);
14687 /* [expr.const]/1: In an integral constant expression "only type
14688 conversions to integral or enumeration type can be used". */
14689 if (cast != error_mark_node && !type_dependent_expression_p (type)
14690 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
14691 {
14692 if (cp_parser_non_integral_constant_expression
14693 (parser, "a call to a constructor"))
14694 return error_mark_node;
14695 }
14696 return cast;
14697 }
14698
14699 /* Save the tokens that make up the body of a member function defined
14700 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
14701 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
14702 specifiers applied to the declaration. Returns the FUNCTION_DECL
14703 for the member function. */
14704
14705 static tree
14706 cp_parser_save_member_function_body (cp_parser* parser,
14707 tree decl_specifiers,
14708 tree declarator,
14709 tree attributes)
14710 {
14711 cp_token_cache *cache;
14712 tree fn;
14713
14714 /* Create the function-declaration. */
14715 fn = start_method (decl_specifiers, declarator, attributes);
14716 /* If something went badly wrong, bail out now. */
14717 if (fn == error_mark_node)
14718 {
14719 /* If there's a function-body, skip it. */
14720 if (cp_parser_token_starts_function_definition_p
14721 (cp_lexer_peek_token (parser->lexer)))
14722 cp_parser_skip_to_end_of_block_or_statement (parser);
14723 return error_mark_node;
14724 }
14725
14726 /* Remember it, if there default args to post process. */
14727 cp_parser_save_default_args (parser, fn);
14728
14729 /* Create a token cache. */
14730 cache = cp_token_cache_new ();
14731 /* Save away the tokens that make up the body of the
14732 function. */
14733 cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, /*depth=*/0);
14734 /* Handle function try blocks. */
14735 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
14736 cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, /*depth=*/0);
14737
14738 /* Save away the inline definition; we will process it when the
14739 class is complete. */
14740 DECL_PENDING_INLINE_INFO (fn) = cache;
14741 DECL_PENDING_INLINE_P (fn) = 1;
14742
14743 /* We need to know that this was defined in the class, so that
14744 friend templates are handled correctly. */
14745 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
14746
14747 /* We're done with the inline definition. */
14748 finish_method (fn);
14749
14750 /* Add FN to the queue of functions to be parsed later. */
14751 TREE_VALUE (parser->unparsed_functions_queues)
14752 = tree_cons (NULL_TREE, fn,
14753 TREE_VALUE (parser->unparsed_functions_queues));
14754
14755 return fn;
14756 }
14757
14758 /* Parse a template-argument-list, as well as the trailing ">" (but
14759 not the opening ">"). See cp_parser_template_argument_list for the
14760 return value. */
14761
14762 static tree
14763 cp_parser_enclosed_template_argument_list (cp_parser* parser)
14764 {
14765 tree arguments;
14766 tree saved_scope;
14767 tree saved_qualifying_scope;
14768 tree saved_object_scope;
14769 bool saved_greater_than_is_operator_p;
14770
14771 /* [temp.names]
14772
14773 When parsing a template-id, the first non-nested `>' is taken as
14774 the end of the template-argument-list rather than a greater-than
14775 operator. */
14776 saved_greater_than_is_operator_p
14777 = parser->greater_than_is_operator_p;
14778 parser->greater_than_is_operator_p = false;
14779 /* Parsing the argument list may modify SCOPE, so we save it
14780 here. */
14781 saved_scope = parser->scope;
14782 saved_qualifying_scope = parser->qualifying_scope;
14783 saved_object_scope = parser->object_scope;
14784 /* Parse the template-argument-list itself. */
14785 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
14786 arguments = NULL_TREE;
14787 else
14788 arguments = cp_parser_template_argument_list (parser);
14789 /* Look for the `>' that ends the template-argument-list. If we find
14790 a '>>' instead, it's probably just a typo. */
14791 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
14792 {
14793 if (!saved_greater_than_is_operator_p)
14794 {
14795 /* If we're in a nested template argument list, the '>>' has to be
14796 a typo for '> >'. We emit the error message, but we continue
14797 parsing and we push a '>' as next token, so that the argument
14798 list will be parsed correctly.. */
14799 cp_token* token;
14800 error ("`>>' should be `> >' within a nested template argument list");
14801 token = cp_lexer_peek_token (parser->lexer);
14802 token->type = CPP_GREATER;
14803 }
14804 else
14805 {
14806 /* If this is not a nested template argument list, the '>>' is
14807 a typo for '>'. Emit an error message and continue. */
14808 error ("spurious `>>', use `>' to terminate a template argument list");
14809 cp_lexer_consume_token (parser->lexer);
14810 }
14811 }
14812 else if (!cp_parser_require (parser, CPP_GREATER, "`>'"))
14813 error ("missing `>' to terminate the template argument list");
14814 /* The `>' token might be a greater-than operator again now. */
14815 parser->greater_than_is_operator_p
14816 = saved_greater_than_is_operator_p;
14817 /* Restore the SAVED_SCOPE. */
14818 parser->scope = saved_scope;
14819 parser->qualifying_scope = saved_qualifying_scope;
14820 parser->object_scope = saved_object_scope;
14821
14822 return arguments;
14823 }
14824
14825 /* MEMBER_FUNCTION is a member function, or a friend. If default
14826 arguments, or the body of the function have not yet been parsed,
14827 parse them now. */
14828
14829 static void
14830 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
14831 {
14832 cp_lexer *saved_lexer;
14833
14834 /* If this member is a template, get the underlying
14835 FUNCTION_DECL. */
14836 if (DECL_FUNCTION_TEMPLATE_P (member_function))
14837 member_function = DECL_TEMPLATE_RESULT (member_function);
14838
14839 /* There should not be any class definitions in progress at this
14840 point; the bodies of members are only parsed outside of all class
14841 definitions. */
14842 my_friendly_assert (parser->num_classes_being_defined == 0, 20010816);
14843 /* While we're parsing the member functions we might encounter more
14844 classes. We want to handle them right away, but we don't want
14845 them getting mixed up with functions that are currently in the
14846 queue. */
14847 parser->unparsed_functions_queues
14848 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
14849
14850 /* Make sure that any template parameters are in scope. */
14851 maybe_begin_member_template_processing (member_function);
14852
14853 /* If the body of the function has not yet been parsed, parse it
14854 now. */
14855 if (DECL_PENDING_INLINE_P (member_function))
14856 {
14857 tree function_scope;
14858 cp_token_cache *tokens;
14859
14860 /* The function is no longer pending; we are processing it. */
14861 tokens = DECL_PENDING_INLINE_INFO (member_function);
14862 DECL_PENDING_INLINE_INFO (member_function) = NULL;
14863 DECL_PENDING_INLINE_P (member_function) = 0;
14864 /* If this was an inline function in a local class, enter the scope
14865 of the containing function. */
14866 function_scope = decl_function_context (member_function);
14867 if (function_scope)
14868 push_function_context_to (function_scope);
14869
14870 /* Save away the current lexer. */
14871 saved_lexer = parser->lexer;
14872 /* Make a new lexer to feed us the tokens saved for this function. */
14873 parser->lexer = cp_lexer_new_from_tokens (tokens);
14874 parser->lexer->next = saved_lexer;
14875
14876 /* Set the current source position to be the location of the first
14877 token in the saved inline body. */
14878 cp_lexer_peek_token (parser->lexer);
14879
14880 /* Let the front end know that we going to be defining this
14881 function. */
14882 start_function (NULL_TREE, member_function, NULL_TREE,
14883 SF_PRE_PARSED | SF_INCLASS_INLINE);
14884
14885 /* Now, parse the body of the function. */
14886 cp_parser_function_definition_after_declarator (parser,
14887 /*inline_p=*/true);
14888
14889 /* Leave the scope of the containing function. */
14890 if (function_scope)
14891 pop_function_context_from (function_scope);
14892 /* Restore the lexer. */
14893 parser->lexer = saved_lexer;
14894 }
14895
14896 /* Remove any template parameters from the symbol table. */
14897 maybe_end_member_template_processing ();
14898
14899 /* Restore the queue. */
14900 parser->unparsed_functions_queues
14901 = TREE_CHAIN (parser->unparsed_functions_queues);
14902 }
14903
14904 /* If DECL contains any default args, remember it on the unparsed
14905 functions queue. */
14906
14907 static void
14908 cp_parser_save_default_args (cp_parser* parser, tree decl)
14909 {
14910 tree probe;
14911
14912 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
14913 probe;
14914 probe = TREE_CHAIN (probe))
14915 if (TREE_PURPOSE (probe))
14916 {
14917 TREE_PURPOSE (parser->unparsed_functions_queues)
14918 = tree_cons (NULL_TREE, decl,
14919 TREE_PURPOSE (parser->unparsed_functions_queues));
14920 break;
14921 }
14922 return;
14923 }
14924
14925 /* FN is a FUNCTION_DECL which may contains a parameter with an
14926 unparsed DEFAULT_ARG. Parse the default args now. */
14927
14928 static void
14929 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
14930 {
14931 cp_lexer *saved_lexer;
14932 cp_token_cache *tokens;
14933 bool saved_local_variables_forbidden_p;
14934 tree parameters;
14935
14936 /* While we're parsing the default args, we might (due to the
14937 statement expression extension) encounter more classes. We want
14938 to handle them right away, but we don't want them getting mixed
14939 up with default args that are currently in the queue. */
14940 parser->unparsed_functions_queues
14941 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
14942
14943 for (parameters = TYPE_ARG_TYPES (TREE_TYPE (fn));
14944 parameters;
14945 parameters = TREE_CHAIN (parameters))
14946 {
14947 if (!TREE_PURPOSE (parameters)
14948 || TREE_CODE (TREE_PURPOSE (parameters)) != DEFAULT_ARG)
14949 continue;
14950
14951 /* Save away the current lexer. */
14952 saved_lexer = parser->lexer;
14953 /* Create a new one, using the tokens we have saved. */
14954 tokens = DEFARG_TOKENS (TREE_PURPOSE (parameters));
14955 parser->lexer = cp_lexer_new_from_tokens (tokens);
14956
14957 /* Set the current source position to be the location of the
14958 first token in the default argument. */
14959 cp_lexer_peek_token (parser->lexer);
14960
14961 /* Local variable names (and the `this' keyword) may not appear
14962 in a default argument. */
14963 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
14964 parser->local_variables_forbidden_p = true;
14965 /* Parse the assignment-expression. */
14966 if (DECL_CLASS_SCOPE_P (fn))
14967 push_nested_class (DECL_CONTEXT (fn));
14968 TREE_PURPOSE (parameters) = cp_parser_assignment_expression (parser);
14969 if (DECL_CLASS_SCOPE_P (fn))
14970 pop_nested_class ();
14971
14972 /* If the token stream has not been completely used up, then
14973 there was extra junk after the end of the default
14974 argument. */
14975 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
14976 cp_parser_error (parser, "expected `,'");
14977
14978 /* Restore saved state. */
14979 parser->lexer = saved_lexer;
14980 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
14981 }
14982
14983 /* Restore the queue. */
14984 parser->unparsed_functions_queues
14985 = TREE_CHAIN (parser->unparsed_functions_queues);
14986 }
14987
14988 /* Parse the operand of `sizeof' (or a similar operator). Returns
14989 either a TYPE or an expression, depending on the form of the
14990 input. The KEYWORD indicates which kind of expression we have
14991 encountered. */
14992
14993 static tree
14994 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
14995 {
14996 static const char *format;
14997 tree expr = NULL_TREE;
14998 const char *saved_message;
14999 bool saved_integral_constant_expression_p;
15000
15001 /* Initialize FORMAT the first time we get here. */
15002 if (!format)
15003 format = "types may not be defined in `%s' expressions";
15004
15005 /* Types cannot be defined in a `sizeof' expression. Save away the
15006 old message. */
15007 saved_message = parser->type_definition_forbidden_message;
15008 /* And create the new one. */
15009 parser->type_definition_forbidden_message
15010 = xmalloc (strlen (format)
15011 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15012 + 1 /* `\0' */);
15013 sprintf ((char *) parser->type_definition_forbidden_message,
15014 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15015
15016 /* The restrictions on constant-expressions do not apply inside
15017 sizeof expressions. */
15018 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
15019 parser->integral_constant_expression_p = false;
15020
15021 /* Do not actually evaluate the expression. */
15022 ++skip_evaluation;
15023 /* If it's a `(', then we might be looking at the type-id
15024 construction. */
15025 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15026 {
15027 tree type;
15028 bool saved_in_type_id_in_expr_p;
15029
15030 /* We can't be sure yet whether we're looking at a type-id or an
15031 expression. */
15032 cp_parser_parse_tentatively (parser);
15033 /* Consume the `('. */
15034 cp_lexer_consume_token (parser->lexer);
15035 /* Parse the type-id. */
15036 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15037 parser->in_type_id_in_expr_p = true;
15038 type = cp_parser_type_id (parser);
15039 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15040 /* Now, look for the trailing `)'. */
15041 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
15042 /* If all went well, then we're done. */
15043 if (cp_parser_parse_definitely (parser))
15044 {
15045 /* Build a list of decl-specifiers; right now, we have only
15046 a single type-specifier. */
15047 type = build_tree_list (NULL_TREE,
15048 type);
15049
15050 /* Call grokdeclarator to figure out what type this is. */
15051 expr = grokdeclarator (NULL_TREE,
15052 type,
15053 TYPENAME,
15054 /*initialized=*/0,
15055 /*attrlist=*/NULL);
15056 }
15057 }
15058
15059 /* If the type-id production did not work out, then we must be
15060 looking at the unary-expression production. */
15061 if (!expr)
15062 expr = cp_parser_unary_expression (parser, /*address_p=*/false);
15063 /* Go back to evaluating expressions. */
15064 --skip_evaluation;
15065
15066 /* Free the message we created. */
15067 free ((char *) parser->type_definition_forbidden_message);
15068 /* And restore the old one. */
15069 parser->type_definition_forbidden_message = saved_message;
15070 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
15071
15072 return expr;
15073 }
15074
15075 /* If the current declaration has no declarator, return true. */
15076
15077 static bool
15078 cp_parser_declares_only_class_p (cp_parser *parser)
15079 {
15080 /* If the next token is a `;' or a `,' then there is no
15081 declarator. */
15082 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15083 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15084 }
15085
15086 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15087 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15088
15089 static bool
15090 cp_parser_friend_p (tree decl_specifiers)
15091 {
15092 while (decl_specifiers)
15093 {
15094 /* See if this decl-specifier is `friend'. */
15095 if (TREE_CODE (TREE_VALUE (decl_specifiers)) == IDENTIFIER_NODE
15096 && C_RID_CODE (TREE_VALUE (decl_specifiers)) == RID_FRIEND)
15097 return true;
15098
15099 /* Go on to the next decl-specifier. */
15100 decl_specifiers = TREE_CHAIN (decl_specifiers);
15101 }
15102
15103 return false;
15104 }
15105
15106 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15107 issue an error message indicating that TOKEN_DESC was expected.
15108
15109 Returns the token consumed, if the token had the appropriate type.
15110 Otherwise, returns NULL. */
15111
15112 static cp_token *
15113 cp_parser_require (cp_parser* parser,
15114 enum cpp_ttype type,
15115 const char* token_desc)
15116 {
15117 if (cp_lexer_next_token_is (parser->lexer, type))
15118 return cp_lexer_consume_token (parser->lexer);
15119 else
15120 {
15121 /* Output the MESSAGE -- unless we're parsing tentatively. */
15122 if (!cp_parser_simulate_error (parser))
15123 {
15124 char *message = concat ("expected ", token_desc, NULL);
15125 cp_parser_error (parser, message);
15126 free (message);
15127 }
15128 return NULL;
15129 }
15130 }
15131
15132 /* Like cp_parser_require, except that tokens will be skipped until
15133 the desired token is found. An error message is still produced if
15134 the next token is not as expected. */
15135
15136 static void
15137 cp_parser_skip_until_found (cp_parser* parser,
15138 enum cpp_ttype type,
15139 const char* token_desc)
15140 {
15141 cp_token *token;
15142 unsigned nesting_depth = 0;
15143
15144 if (cp_parser_require (parser, type, token_desc))
15145 return;
15146
15147 /* Skip tokens until the desired token is found. */
15148 while (true)
15149 {
15150 /* Peek at the next token. */
15151 token = cp_lexer_peek_token (parser->lexer);
15152 /* If we've reached the token we want, consume it and
15153 stop. */
15154 if (token->type == type && !nesting_depth)
15155 {
15156 cp_lexer_consume_token (parser->lexer);
15157 return;
15158 }
15159 /* If we've run out of tokens, stop. */
15160 if (token->type == CPP_EOF)
15161 return;
15162 if (token->type == CPP_OPEN_BRACE
15163 || token->type == CPP_OPEN_PAREN
15164 || token->type == CPP_OPEN_SQUARE)
15165 ++nesting_depth;
15166 else if (token->type == CPP_CLOSE_BRACE
15167 || token->type == CPP_CLOSE_PAREN
15168 || token->type == CPP_CLOSE_SQUARE)
15169 {
15170 if (nesting_depth-- == 0)
15171 return;
15172 }
15173 /* Consume this token. */
15174 cp_lexer_consume_token (parser->lexer);
15175 }
15176 }
15177
15178 /* If the next token is the indicated keyword, consume it. Otherwise,
15179 issue an error message indicating that TOKEN_DESC was expected.
15180
15181 Returns the token consumed, if the token had the appropriate type.
15182 Otherwise, returns NULL. */
15183
15184 static cp_token *
15185 cp_parser_require_keyword (cp_parser* parser,
15186 enum rid keyword,
15187 const char* token_desc)
15188 {
15189 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15190
15191 if (token && token->keyword != keyword)
15192 {
15193 dyn_string_t error_msg;
15194
15195 /* Format the error message. */
15196 error_msg = dyn_string_new (0);
15197 dyn_string_append_cstr (error_msg, "expected ");
15198 dyn_string_append_cstr (error_msg, token_desc);
15199 cp_parser_error (parser, error_msg->s);
15200 dyn_string_delete (error_msg);
15201 return NULL;
15202 }
15203
15204 return token;
15205 }
15206
15207 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15208 function-definition. */
15209
15210 static bool
15211 cp_parser_token_starts_function_definition_p (cp_token* token)
15212 {
15213 return (/* An ordinary function-body begins with an `{'. */
15214 token->type == CPP_OPEN_BRACE
15215 /* A ctor-initializer begins with a `:'. */
15216 || token->type == CPP_COLON
15217 /* A function-try-block begins with `try'. */
15218 || token->keyword == RID_TRY
15219 /* The named return value extension begins with `return'. */
15220 || token->keyword == RID_RETURN);
15221 }
15222
15223 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15224 definition. */
15225
15226 static bool
15227 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15228 {
15229 cp_token *token;
15230
15231 token = cp_lexer_peek_token (parser->lexer);
15232 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15233 }
15234
15235 /* Returns TRUE iff the next token is the "," or ">" ending a
15236 template-argument. ">>" is also accepted (after the full
15237 argument was parsed) because it's probably a typo for "> >",
15238 and there is a specific diagnostic for this. */
15239
15240 static bool
15241 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15242 {
15243 cp_token *token;
15244
15245 token = cp_lexer_peek_token (parser->lexer);
15246 return (token->type == CPP_COMMA || token->type == CPP_GREATER
15247 || token->type == CPP_RSHIFT);
15248 }
15249
15250 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15251 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15252
15253 static bool
15254 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15255 size_t n)
15256 {
15257 cp_token *token;
15258
15259 token = cp_lexer_peek_nth_token (parser->lexer, n);
15260 if (token->type == CPP_LESS)
15261 return true;
15262 /* Check for the sequence `<::' in the original code. It would be lexed as
15263 `[:', where `[' is a digraph, and there is no whitespace before
15264 `:'. */
15265 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15266 {
15267 cp_token *token2;
15268 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15269 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15270 return true;
15271 }
15272 return false;
15273 }
15274
15275 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15276 or none_type otherwise. */
15277
15278 static enum tag_types
15279 cp_parser_token_is_class_key (cp_token* token)
15280 {
15281 switch (token->keyword)
15282 {
15283 case RID_CLASS:
15284 return class_type;
15285 case RID_STRUCT:
15286 return record_type;
15287 case RID_UNION:
15288 return union_type;
15289
15290 default:
15291 return none_type;
15292 }
15293 }
15294
15295 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
15296
15297 static void
15298 cp_parser_check_class_key (enum tag_types class_key, tree type)
15299 {
15300 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
15301 pedwarn ("`%s' tag used in naming `%#T'",
15302 class_key == union_type ? "union"
15303 : class_key == record_type ? "struct" : "class",
15304 type);
15305 }
15306
15307 /* Issue an error message if DECL is redeclared with different
15308 access than its original declaration [class.access.spec/3].
15309 This applies to nested classes and nested class templates.
15310 [class.mem/1]. */
15311
15312 static void cp_parser_check_access_in_redeclaration (tree decl)
15313 {
15314 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
15315 return;
15316
15317 if ((TREE_PRIVATE (decl)
15318 != (current_access_specifier == access_private_node))
15319 || (TREE_PROTECTED (decl)
15320 != (current_access_specifier == access_protected_node)))
15321 error ("%D redeclared with different access", decl);
15322 }
15323
15324 /* Look for the `template' keyword, as a syntactic disambiguator.
15325 Return TRUE iff it is present, in which case it will be
15326 consumed. */
15327
15328 static bool
15329 cp_parser_optional_template_keyword (cp_parser *parser)
15330 {
15331 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
15332 {
15333 /* The `template' keyword can only be used within templates;
15334 outside templates the parser can always figure out what is a
15335 template and what is not. */
15336 if (!processing_template_decl)
15337 {
15338 error ("`template' (as a disambiguator) is only allowed "
15339 "within templates");
15340 /* If this part of the token stream is rescanned, the same
15341 error message would be generated. So, we purge the token
15342 from the stream. */
15343 cp_lexer_purge_token (parser->lexer);
15344 return false;
15345 }
15346 else
15347 {
15348 /* Consume the `template' keyword. */
15349 cp_lexer_consume_token (parser->lexer);
15350 return true;
15351 }
15352 }
15353
15354 return false;
15355 }
15356
15357 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
15358 set PARSER->SCOPE, and perform other related actions. */
15359
15360 static void
15361 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
15362 {
15363 tree value;
15364 tree check;
15365
15366 /* Get the stored value. */
15367 value = cp_lexer_consume_token (parser->lexer)->value;
15368 /* Perform any access checks that were deferred. */
15369 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
15370 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
15371 /* Set the scope from the stored value. */
15372 parser->scope = TREE_VALUE (value);
15373 parser->qualifying_scope = TREE_TYPE (value);
15374 parser->object_scope = NULL_TREE;
15375 }
15376
15377 /* Add tokens to CACHE until a non-nested END token appears. */
15378
15379 static void
15380 cp_parser_cache_group_1 (cp_parser *parser,
15381 cp_token_cache *cache,
15382 enum cpp_ttype end,
15383 unsigned depth)
15384 {
15385 while (true)
15386 {
15387 cp_token *token;
15388
15389 /* Abort a parenthesized expression if we encounter a brace. */
15390 if ((end == CPP_CLOSE_PAREN || depth == 0)
15391 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
15392 return;
15393 /* If we've reached the end of the file, stop. */
15394 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15395 return;
15396 /* Consume the next token. */
15397 token = cp_lexer_consume_token (parser->lexer);
15398 /* Add this token to the tokens we are saving. */
15399 cp_token_cache_push_token (cache, token);
15400 /* See if it starts a new group. */
15401 if (token->type == CPP_OPEN_BRACE)
15402 {
15403 cp_parser_cache_group_1 (parser, cache, CPP_CLOSE_BRACE, depth + 1);
15404 if (depth == 0)
15405 return;
15406 }
15407 else if (token->type == CPP_OPEN_PAREN)
15408 cp_parser_cache_group_1 (parser, cache, CPP_CLOSE_PAREN, depth + 1);
15409 else if (token->type == end)
15410 return;
15411 }
15412 }
15413
15414 /* Convenient interface for cp_parser_cache_group_1 that makes sure we
15415 preserve string tokens in both translated and untranslated
15416 forms. */
15417
15418 static void
15419 cp_parser_cache_group (cp_parser *parser,
15420 cp_token_cache *cache,
15421 enum cpp_ttype end,
15422 unsigned depth)
15423 {
15424 int saved_c_lex_string_translate;
15425
15426 saved_c_lex_string_translate = c_lex_string_translate;
15427 c_lex_string_translate = -1;
15428
15429 cp_parser_cache_group_1 (parser, cache, end, depth);
15430
15431 c_lex_string_translate = saved_c_lex_string_translate;
15432 }
15433
15434
15435 /* Begin parsing tentatively. We always save tokens while parsing
15436 tentatively so that if the tentative parsing fails we can restore the
15437 tokens. */
15438
15439 static void
15440 cp_parser_parse_tentatively (cp_parser* parser)
15441 {
15442 /* Enter a new parsing context. */
15443 parser->context = cp_parser_context_new (parser->context);
15444 /* Begin saving tokens. */
15445 cp_lexer_save_tokens (parser->lexer);
15446 /* In order to avoid repetitive access control error messages,
15447 access checks are queued up until we are no longer parsing
15448 tentatively. */
15449 push_deferring_access_checks (dk_deferred);
15450 }
15451
15452 /* Commit to the currently active tentative parse. */
15453
15454 static void
15455 cp_parser_commit_to_tentative_parse (cp_parser* parser)
15456 {
15457 cp_parser_context *context;
15458 cp_lexer *lexer;
15459
15460 /* Mark all of the levels as committed. */
15461 lexer = parser->lexer;
15462 for (context = parser->context; context->next; context = context->next)
15463 {
15464 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
15465 break;
15466 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
15467 while (!cp_lexer_saving_tokens (lexer))
15468 lexer = lexer->next;
15469 cp_lexer_commit_tokens (lexer);
15470 }
15471 }
15472
15473 /* Abort the currently active tentative parse. All consumed tokens
15474 will be rolled back, and no diagnostics will be issued. */
15475
15476 static void
15477 cp_parser_abort_tentative_parse (cp_parser* parser)
15478 {
15479 cp_parser_simulate_error (parser);
15480 /* Now, pretend that we want to see if the construct was
15481 successfully parsed. */
15482 cp_parser_parse_definitely (parser);
15483 }
15484
15485 /* Stop parsing tentatively. If a parse error has occurred, restore the
15486 token stream. Otherwise, commit to the tokens we have consumed.
15487 Returns true if no error occurred; false otherwise. */
15488
15489 static bool
15490 cp_parser_parse_definitely (cp_parser* parser)
15491 {
15492 bool error_occurred;
15493 cp_parser_context *context;
15494
15495 /* Remember whether or not an error occurred, since we are about to
15496 destroy that information. */
15497 error_occurred = cp_parser_error_occurred (parser);
15498 /* Remove the topmost context from the stack. */
15499 context = parser->context;
15500 parser->context = context->next;
15501 /* If no parse errors occurred, commit to the tentative parse. */
15502 if (!error_occurred)
15503 {
15504 /* Commit to the tokens read tentatively, unless that was
15505 already done. */
15506 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
15507 cp_lexer_commit_tokens (parser->lexer);
15508
15509 pop_to_parent_deferring_access_checks ();
15510 }
15511 /* Otherwise, if errors occurred, roll back our state so that things
15512 are just as they were before we began the tentative parse. */
15513 else
15514 {
15515 cp_lexer_rollback_tokens (parser->lexer);
15516 pop_deferring_access_checks ();
15517 }
15518 /* Add the context to the front of the free list. */
15519 context->next = cp_parser_context_free_list;
15520 cp_parser_context_free_list = context;
15521
15522 return !error_occurred;
15523 }
15524
15525 /* Returns true if we are parsing tentatively -- but have decided that
15526 we will stick with this tentative parse, even if errors occur. */
15527
15528 static bool
15529 cp_parser_committed_to_tentative_parse (cp_parser* parser)
15530 {
15531 return (cp_parser_parsing_tentatively (parser)
15532 && parser->context->status == CP_PARSER_STATUS_KIND_COMMITTED);
15533 }
15534
15535 /* Returns nonzero iff an error has occurred during the most recent
15536 tentative parse. */
15537
15538 static bool
15539 cp_parser_error_occurred (cp_parser* parser)
15540 {
15541 return (cp_parser_parsing_tentatively (parser)
15542 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
15543 }
15544
15545 /* Returns nonzero if GNU extensions are allowed. */
15546
15547 static bool
15548 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
15549 {
15550 return parser->allow_gnu_extensions_p;
15551 }
15552
15553 \f
15554 /* The parser. */
15555
15556 static GTY (()) cp_parser *the_parser;
15557
15558 /* External interface. */
15559
15560 /* Parse one entire translation unit. */
15561
15562 void
15563 c_parse_file (void)
15564 {
15565 bool error_occurred;
15566 static bool already_called = false;
15567
15568 if (already_called)
15569 {
15570 sorry ("inter-module optimizations not implemented for C++");
15571 return;
15572 }
15573 already_called = true;
15574
15575 the_parser = cp_parser_new ();
15576 push_deferring_access_checks (flag_access_control
15577 ? dk_no_deferred : dk_no_check);
15578 error_occurred = cp_parser_translation_unit (the_parser);
15579 the_parser = NULL;
15580 }
15581
15582 /* This variable must be provided by every front end. */
15583
15584 int yydebug;
15585
15586 #include "gt-cp-parser.h"