8e29e244f71afdc10a69562ed40d40e5ebe78193
[gcc.git] / gcc / cp / pt.c
1 /* Handle parameterized types (templates) for GNU C++.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Written by Ken Raeburn (raeburn@cygnus.com) while at Watchmaker Computing.
5 Rewritten by Jason Merrill (jason@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Known bugs or deficiencies include:
25
26 all methods must be provided in header files; can't use a source
27 file that contains only the method templates and "just win". */
28
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "obstack.h"
34 #include "tree.h"
35 #include "flags.h"
36 #include "cp-tree.h"
37 #include "tree-inline.h"
38 #include "decl.h"
39 #include "lex.h"
40 #include "output.h"
41 #include "except.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "timevar.h"
45
46 /* The type of functions taking a tree, and some additional data, and
47 returning an int. */
48 typedef int (*tree_fn_t) (tree, void*);
49
50 /* The PENDING_TEMPLATES is a TREE_LIST of templates whose
51 instantiations have been deferred, either because their definitions
52 were not yet available, or because we were putting off doing the work.
53 The TREE_PURPOSE of each entry is either a DECL (for a function or
54 static data member), or a TYPE (for a class) indicating what we are
55 hoping to instantiate. The TREE_VALUE is not used. */
56 static GTY(()) tree pending_templates;
57 static GTY(()) tree last_pending_template;
58
59 int processing_template_parmlist;
60 static int template_header_count;
61
62 static GTY(()) tree saved_trees;
63 static GTY(()) varray_type inline_parm_levels;
64 static size_t inline_parm_levels_used;
65
66 static GTY(()) tree current_tinst_level;
67
68 static GTY(()) tree saved_access_scope;
69
70 /* A map from local variable declarations in the body of the template
71 presently being instantiated to the corresponding instantiated
72 local variables. */
73 static htab_t local_specializations;
74
75 #define UNIFY_ALLOW_NONE 0
76 #define UNIFY_ALLOW_MORE_CV_QUAL 1
77 #define UNIFY_ALLOW_LESS_CV_QUAL 2
78 #define UNIFY_ALLOW_DERIVED 4
79 #define UNIFY_ALLOW_INTEGER 8
80 #define UNIFY_ALLOW_OUTER_LEVEL 16
81 #define UNIFY_ALLOW_OUTER_MORE_CV_QUAL 32
82 #define UNIFY_ALLOW_OUTER_LESS_CV_QUAL 64
83 #define UNIFY_ALLOW_MAX_CORRECTION 128
84
85 #define GTB_VIA_VIRTUAL 1 /* The base class we are examining is
86 virtual, or a base class of a virtual
87 base. */
88 #define GTB_IGNORE_TYPE 2 /* We don't need to try to unify the current
89 type with the desired type. */
90
91 static void push_access_scope (tree);
92 static void pop_access_scope (tree);
93 static int resolve_overloaded_unification (tree, tree, tree, tree,
94 unification_kind_t, int);
95 static int try_one_overload (tree, tree, tree, tree, tree,
96 unification_kind_t, int, bool);
97 static int unify (tree, tree, tree, tree, int);
98 static void add_pending_template (tree);
99 static void reopen_tinst_level (tree);
100 static tree classtype_mangled_name (tree);
101 static char* mangle_class_name_for_template (const char *, tree, tree);
102 static tree tsubst_initializer_list (tree, tree);
103 static tree get_class_bindings (tree, tree, tree);
104 static tree coerce_template_parms (tree, tree, tree, tsubst_flags_t, int);
105 static void tsubst_enum (tree, tree, tree);
106 static tree add_to_template_args (tree, tree);
107 static tree add_outermost_template_args (tree, tree);
108 static bool check_instantiated_args (tree, tree, tsubst_flags_t);
109 static int maybe_adjust_types_for_deduction (unification_kind_t, tree*, tree*);
110 static int type_unification_real (tree, tree, tree, tree,
111 int, unification_kind_t, int, int);
112 static void note_template_header (int);
113 static tree convert_nontype_argument (tree, tree);
114 static tree convert_template_argument (tree, tree, tree,
115 tsubst_flags_t, int, tree);
116 static tree get_bindings_overload (tree, tree, tree);
117 static int for_each_template_parm (tree, tree_fn_t, void*, htab_t);
118 static tree build_template_parm_index (int, int, int, tree, tree);
119 static int inline_needs_template_parms (tree);
120 static void push_inline_template_parms_recursive (tree, int);
121 static tree retrieve_specialization (tree, tree);
122 static tree retrieve_local_specialization (tree);
123 static tree register_specialization (tree, tree, tree);
124 static void register_local_specialization (tree, tree);
125 static tree reduce_template_parm_level (tree, tree, int);
126 static tree build_template_decl (tree, tree);
127 static int mark_template_parm (tree, void *);
128 static int template_parm_this_level_p (tree, void *);
129 static tree tsubst_friend_function (tree, tree);
130 static tree tsubst_friend_class (tree, tree);
131 static int can_complete_type_without_circularity (tree);
132 static tree get_bindings (tree, tree, tree);
133 static tree get_bindings_real (tree, tree, tree, int, int, int);
134 static int template_decl_level (tree);
135 static int check_cv_quals_for_unify (int, tree, tree);
136 static tree tsubst_template_arg (tree, tree, tsubst_flags_t, tree);
137 static tree tsubst_template_args (tree, tree, tsubst_flags_t, tree);
138 static tree tsubst_template_parms (tree, tree, tsubst_flags_t);
139 static void regenerate_decl_from_template (tree, tree);
140 static tree most_specialized (tree, tree, tree);
141 static tree most_specialized_class (tree, tree);
142 static int template_class_depth_real (tree, int);
143 static tree tsubst_aggr_type (tree, tree, tsubst_flags_t, tree, int);
144 static tree tsubst_decl (tree, tree, tree, tsubst_flags_t);
145 static tree tsubst_arg_types (tree, tree, tsubst_flags_t, tree);
146 static tree tsubst_function_type (tree, tree, tsubst_flags_t, tree);
147 static void check_specialization_scope (void);
148 static tree process_partial_specialization (tree);
149 static void set_current_access_from_decl (tree);
150 static void check_default_tmpl_args (tree, tree, int, int);
151 static tree tsubst_call_declarator_parms (tree, tree, tsubst_flags_t, tree);
152 static tree get_template_base_recursive (tree, tree, tree, tree, tree, int);
153 static tree get_template_base (tree, tree, tree, tree);
154 static int verify_class_unification (tree, tree, tree);
155 static tree try_class_unification (tree, tree, tree, tree);
156 static int coerce_template_template_parms (tree, tree, tsubst_flags_t,
157 tree, tree);
158 static tree determine_specialization (tree, tree, tree *, int);
159 static int template_args_equal (tree, tree);
160 static void tsubst_default_arguments (tree);
161 static tree for_each_template_parm_r (tree *, int *, void *);
162 static tree copy_default_args_to_explicit_spec_1 (tree, tree);
163 static void copy_default_args_to_explicit_spec (tree);
164 static int invalid_nontype_parm_type_p (tree, tsubst_flags_t);
165 static int eq_local_specializations (const void *, const void *);
166 static bool dependent_type_p_r (tree);
167 static tree tsubst (tree, tree, tsubst_flags_t, tree);
168 static tree tsubst_expr (tree, tree, tsubst_flags_t, tree);
169 static tree tsubst_copy (tree, tree, tsubst_flags_t, tree);
170
171 /* Make the current scope suitable for access checking when we are
172 processing T. T can be FUNCTION_DECL for instantiated function
173 template, or VAR_DECL for static member variable (need by
174 instantiate_decl). */
175
176 static void
177 push_access_scope (tree t)
178 {
179 my_friendly_assert (TREE_CODE (t) == FUNCTION_DECL
180 || TREE_CODE (t) == VAR_DECL,
181 0);
182
183 if (DECL_CLASS_SCOPE_P (t))
184 push_nested_class (DECL_CONTEXT (t));
185 else
186 push_to_top_level ();
187
188 if (TREE_CODE (t) == FUNCTION_DECL)
189 {
190 saved_access_scope = tree_cons
191 (NULL_TREE, current_function_decl, saved_access_scope);
192 current_function_decl = t;
193 }
194 }
195
196 /* Restore the scope set up by push_access_scope. T is the node we
197 are processing. */
198
199 static void
200 pop_access_scope (tree t)
201 {
202 if (TREE_CODE (t) == FUNCTION_DECL)
203 {
204 current_function_decl = TREE_VALUE (saved_access_scope);
205 saved_access_scope = TREE_CHAIN (saved_access_scope);
206 }
207
208 if (DECL_CLASS_SCOPE_P (t))
209 pop_nested_class ();
210 else
211 pop_from_top_level ();
212 }
213
214 /* Do any processing required when DECL (a member template
215 declaration) is finished. Returns the TEMPLATE_DECL corresponding
216 to DECL, unless it is a specialization, in which case the DECL
217 itself is returned. */
218
219 tree
220 finish_member_template_decl (tree decl)
221 {
222 if (decl == error_mark_node)
223 return error_mark_node;
224
225 my_friendly_assert (DECL_P (decl), 20020812);
226
227 if (TREE_CODE (decl) == TYPE_DECL)
228 {
229 tree type;
230
231 type = TREE_TYPE (decl);
232 if (IS_AGGR_TYPE (type)
233 && CLASSTYPE_TEMPLATE_INFO (type)
234 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (type))
235 {
236 tree tmpl = CLASSTYPE_TI_TEMPLATE (type);
237 check_member_template (tmpl);
238 return tmpl;
239 }
240 return NULL_TREE;
241 }
242 else if (TREE_CODE (decl) == FIELD_DECL)
243 error ("data member `%D' cannot be a member template", decl);
244 else if (DECL_TEMPLATE_INFO (decl))
245 {
246 if (!DECL_TEMPLATE_SPECIALIZATION (decl))
247 {
248 check_member_template (DECL_TI_TEMPLATE (decl));
249 return DECL_TI_TEMPLATE (decl);
250 }
251 else
252 return decl;
253 }
254 else
255 error ("invalid member template declaration `%D'", decl);
256
257 return error_mark_node;
258 }
259
260 /* Returns the template nesting level of the indicated class TYPE.
261
262 For example, in:
263 template <class T>
264 struct A
265 {
266 template <class U>
267 struct B {};
268 };
269
270 A<T>::B<U> has depth two, while A<T> has depth one.
271 Both A<T>::B<int> and A<int>::B<U> have depth one, if
272 COUNT_SPECIALIZATIONS is 0 or if they are instantiations, not
273 specializations.
274
275 This function is guaranteed to return 0 if passed NULL_TREE so
276 that, for example, `template_class_depth (current_class_type)' is
277 always safe. */
278
279 static int
280 template_class_depth_real (tree type, int count_specializations)
281 {
282 int depth;
283
284 for (depth = 0;
285 type && TREE_CODE (type) != NAMESPACE_DECL;
286 type = (TREE_CODE (type) == FUNCTION_DECL)
287 ? CP_DECL_CONTEXT (type) : TYPE_CONTEXT (type))
288 {
289 if (TREE_CODE (type) != FUNCTION_DECL)
290 {
291 if (CLASSTYPE_TEMPLATE_INFO (type)
292 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
293 && ((count_specializations
294 && CLASSTYPE_TEMPLATE_SPECIALIZATION (type))
295 || uses_template_parms (CLASSTYPE_TI_ARGS (type))))
296 ++depth;
297 }
298 else
299 {
300 if (DECL_TEMPLATE_INFO (type)
301 && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (type))
302 && ((count_specializations
303 && DECL_TEMPLATE_SPECIALIZATION (type))
304 || uses_template_parms (DECL_TI_ARGS (type))))
305 ++depth;
306 }
307 }
308
309 return depth;
310 }
311
312 /* Returns the template nesting level of the indicated class TYPE.
313 Like template_class_depth_real, but instantiations do not count in
314 the depth. */
315
316 int
317 template_class_depth (tree type)
318 {
319 return template_class_depth_real (type, /*count_specializations=*/0);
320 }
321
322 /* Returns 1 if processing DECL as part of do_pending_inlines
323 needs us to push template parms. */
324
325 static int
326 inline_needs_template_parms (tree decl)
327 {
328 if (! DECL_TEMPLATE_INFO (decl))
329 return 0;
330
331 return (TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (most_general_template (decl)))
332 > (processing_template_decl + DECL_TEMPLATE_SPECIALIZATION (decl)));
333 }
334
335 /* Subroutine of maybe_begin_member_template_processing.
336 Push the template parms in PARMS, starting from LEVELS steps into the
337 chain, and ending at the beginning, since template parms are listed
338 innermost first. */
339
340 static void
341 push_inline_template_parms_recursive (tree parmlist, int levels)
342 {
343 tree parms = TREE_VALUE (parmlist);
344 int i;
345
346 if (levels > 1)
347 push_inline_template_parms_recursive (TREE_CHAIN (parmlist), levels - 1);
348
349 ++processing_template_decl;
350 current_template_parms
351 = tree_cons (size_int (processing_template_decl),
352 parms, current_template_parms);
353 TEMPLATE_PARMS_FOR_INLINE (current_template_parms) = 1;
354
355 begin_scope (TREE_VEC_LENGTH (parms) ? sk_template_parms : sk_template_spec,
356 NULL);
357 for (i = 0; i < TREE_VEC_LENGTH (parms); ++i)
358 {
359 tree parm = TREE_VALUE (TREE_VEC_ELT (parms, i));
360 my_friendly_assert (DECL_P (parm), 0);
361
362 switch (TREE_CODE (parm))
363 {
364 case TYPE_DECL:
365 case TEMPLATE_DECL:
366 pushdecl (parm);
367 break;
368
369 case PARM_DECL:
370 {
371 /* Make a CONST_DECL as is done in process_template_parm.
372 It is ugly that we recreate this here; the original
373 version built in process_template_parm is no longer
374 available. */
375 tree decl = build_decl (CONST_DECL, DECL_NAME (parm),
376 TREE_TYPE (parm));
377 DECL_ARTIFICIAL (decl) = 1;
378 TREE_CONSTANT (decl) = 1;
379 TREE_INVARIANT (decl) = 1;
380 TREE_READONLY (decl) = 1;
381 DECL_INITIAL (decl) = DECL_INITIAL (parm);
382 SET_DECL_TEMPLATE_PARM_P (decl);
383 pushdecl (decl);
384 }
385 break;
386
387 default:
388 abort ();
389 }
390 }
391 }
392
393 /* Restore the template parameter context for a member template or
394 a friend template defined in a class definition. */
395
396 void
397 maybe_begin_member_template_processing (tree decl)
398 {
399 tree parms;
400 int levels = 0;
401
402 if (inline_needs_template_parms (decl))
403 {
404 parms = DECL_TEMPLATE_PARMS (most_general_template (decl));
405 levels = TMPL_PARMS_DEPTH (parms) - processing_template_decl;
406
407 if (DECL_TEMPLATE_SPECIALIZATION (decl))
408 {
409 --levels;
410 parms = TREE_CHAIN (parms);
411 }
412
413 push_inline_template_parms_recursive (parms, levels);
414 }
415
416 /* Remember how many levels of template parameters we pushed so that
417 we can pop them later. */
418 if (!inline_parm_levels)
419 VARRAY_INT_INIT (inline_parm_levels, 4, "inline_parm_levels");
420 if (inline_parm_levels_used == inline_parm_levels->num_elements)
421 VARRAY_GROW (inline_parm_levels, 2 * inline_parm_levels_used);
422 VARRAY_INT (inline_parm_levels, inline_parm_levels_used) = levels;
423 ++inline_parm_levels_used;
424 }
425
426 /* Undo the effects of begin_member_template_processing. */
427
428 void
429 maybe_end_member_template_processing (void)
430 {
431 int i;
432
433 if (!inline_parm_levels_used)
434 return;
435
436 --inline_parm_levels_used;
437 for (i = 0;
438 i < VARRAY_INT (inline_parm_levels, inline_parm_levels_used);
439 ++i)
440 {
441 --processing_template_decl;
442 current_template_parms = TREE_CHAIN (current_template_parms);
443 poplevel (0, 0, 0);
444 }
445 }
446
447 /* Returns nonzero iff T is a member template function. We must be
448 careful as in
449
450 template <class T> class C { void f(); }
451
452 Here, f is a template function, and a member, but not a member
453 template. This function does not concern itself with the origin of
454 T, only its present state. So if we have
455
456 template <class T> class C { template <class U> void f(U); }
457
458 then neither C<int>::f<char> nor C<T>::f<double> is considered
459 to be a member template. But, `template <class U> void
460 C<int>::f(U)' is considered a member template. */
461
462 int
463 is_member_template (tree t)
464 {
465 if (!DECL_FUNCTION_TEMPLATE_P (t))
466 /* Anything that isn't a function or a template function is
467 certainly not a member template. */
468 return 0;
469
470 /* A local class can't have member templates. */
471 if (decl_function_context (t))
472 return 0;
473
474 return (DECL_FUNCTION_MEMBER_P (DECL_TEMPLATE_RESULT (t))
475 /* If there are more levels of template parameters than
476 there are template classes surrounding the declaration,
477 then we have a member template. */
478 && (TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (t)) >
479 template_class_depth (DECL_CONTEXT (t))));
480 }
481
482 #if 0 /* UNUSED */
483 /* Returns nonzero iff T is a member template class. See
484 is_member_template for a description of what precisely constitutes
485 a member template. */
486
487 int
488 is_member_template_class (tree t)
489 {
490 if (!DECL_CLASS_TEMPLATE_P (t))
491 /* Anything that isn't a class template, is certainly not a member
492 template. */
493 return 0;
494
495 if (!DECL_CLASS_SCOPE_P (t))
496 /* Anything whose context isn't a class type is surely not a
497 member template. */
498 return 0;
499
500 /* If there are more levels of template parameters than there are
501 template classes surrounding the declaration, then we have a
502 member template. */
503 return (TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (t)) >
504 template_class_depth (DECL_CONTEXT (t)));
505 }
506 #endif
507
508 /* Return a new template argument vector which contains all of ARGS,
509 but has as its innermost set of arguments the EXTRA_ARGS. */
510
511 static tree
512 add_to_template_args (tree args, tree extra_args)
513 {
514 tree new_args;
515 int extra_depth;
516 int i;
517 int j;
518
519 extra_depth = TMPL_ARGS_DEPTH (extra_args);
520 new_args = make_tree_vec (TMPL_ARGS_DEPTH (args) + extra_depth);
521
522 for (i = 1; i <= TMPL_ARGS_DEPTH (args); ++i)
523 SET_TMPL_ARGS_LEVEL (new_args, i, TMPL_ARGS_LEVEL (args, i));
524
525 for (j = 1; j <= extra_depth; ++j, ++i)
526 SET_TMPL_ARGS_LEVEL (new_args, i, TMPL_ARGS_LEVEL (extra_args, j));
527
528 return new_args;
529 }
530
531 /* Like add_to_template_args, but only the outermost ARGS are added to
532 the EXTRA_ARGS. In particular, all but TMPL_ARGS_DEPTH
533 (EXTRA_ARGS) levels are added. This function is used to combine
534 the template arguments from a partial instantiation with the
535 template arguments used to attain the full instantiation from the
536 partial instantiation. */
537
538 static tree
539 add_outermost_template_args (tree args, tree extra_args)
540 {
541 tree new_args;
542
543 /* If there are more levels of EXTRA_ARGS than there are ARGS,
544 something very fishy is going on. */
545 my_friendly_assert (TMPL_ARGS_DEPTH (args) >= TMPL_ARGS_DEPTH (extra_args),
546 0);
547
548 /* If *all* the new arguments will be the EXTRA_ARGS, just return
549 them. */
550 if (TMPL_ARGS_DEPTH (args) == TMPL_ARGS_DEPTH (extra_args))
551 return extra_args;
552
553 /* For the moment, we make ARGS look like it contains fewer levels. */
554 TREE_VEC_LENGTH (args) -= TMPL_ARGS_DEPTH (extra_args);
555
556 new_args = add_to_template_args (args, extra_args);
557
558 /* Now, we restore ARGS to its full dimensions. */
559 TREE_VEC_LENGTH (args) += TMPL_ARGS_DEPTH (extra_args);
560
561 return new_args;
562 }
563
564 /* Return the N levels of innermost template arguments from the ARGS. */
565
566 tree
567 get_innermost_template_args (tree args, int n)
568 {
569 tree new_args;
570 int extra_levels;
571 int i;
572
573 my_friendly_assert (n >= 0, 20000603);
574
575 /* If N is 1, just return the innermost set of template arguments. */
576 if (n == 1)
577 return TMPL_ARGS_LEVEL (args, TMPL_ARGS_DEPTH (args));
578
579 /* If we're not removing anything, just return the arguments we were
580 given. */
581 extra_levels = TMPL_ARGS_DEPTH (args) - n;
582 my_friendly_assert (extra_levels >= 0, 20000603);
583 if (extra_levels == 0)
584 return args;
585
586 /* Make a new set of arguments, not containing the outer arguments. */
587 new_args = make_tree_vec (n);
588 for (i = 1; i <= n; ++i)
589 SET_TMPL_ARGS_LEVEL (new_args, i,
590 TMPL_ARGS_LEVEL (args, i + extra_levels));
591
592 return new_args;
593 }
594
595 /* We've got a template header coming up; push to a new level for storing
596 the parms. */
597
598 void
599 begin_template_parm_list (void)
600 {
601 /* We use a non-tag-transparent scope here, which causes pushtag to
602 put tags in this scope, rather than in the enclosing class or
603 namespace scope. This is the right thing, since we want
604 TEMPLATE_DECLS, and not TYPE_DECLS for template classes. For a
605 global template class, push_template_decl handles putting the
606 TEMPLATE_DECL into top-level scope. For a nested template class,
607 e.g.:
608
609 template <class T> struct S1 {
610 template <class T> struct S2 {};
611 };
612
613 pushtag contains special code to call pushdecl_with_scope on the
614 TEMPLATE_DECL for S2. */
615 begin_scope (sk_template_parms, NULL);
616 ++processing_template_decl;
617 ++processing_template_parmlist;
618 note_template_header (0);
619 }
620
621 /* This routine is called when a specialization is declared. If it is
622 invalid to declare a specialization here, an error is reported. */
623
624 static void
625 check_specialization_scope (void)
626 {
627 tree scope = current_scope ();
628
629 /* [temp.expl.spec]
630
631 An explicit specialization shall be declared in the namespace of
632 which the template is a member, or, for member templates, in the
633 namespace of which the enclosing class or enclosing class
634 template is a member. An explicit specialization of a member
635 function, member class or static data member of a class template
636 shall be declared in the namespace of which the class template
637 is a member. */
638 if (scope && TREE_CODE (scope) != NAMESPACE_DECL)
639 error ("explicit specialization in non-namespace scope `%D'",
640 scope);
641
642 /* [temp.expl.spec]
643
644 In an explicit specialization declaration for a member of a class
645 template or a member template that appears in namespace scope,
646 the member template and some of its enclosing class templates may
647 remain unspecialized, except that the declaration shall not
648 explicitly specialize a class member template if its enclosing
649 class templates are not explicitly specialized as well. */
650 if (current_template_parms)
651 error ("enclosing class templates are not explicitly specialized");
652 }
653
654 /* We've just seen template <>. */
655
656 void
657 begin_specialization (void)
658 {
659 begin_scope (sk_template_spec, NULL);
660 note_template_header (1);
661 check_specialization_scope ();
662 }
663
664 /* Called at then end of processing a declaration preceded by
665 template<>. */
666
667 void
668 end_specialization (void)
669 {
670 finish_scope ();
671 reset_specialization ();
672 }
673
674 /* Any template <>'s that we have seen thus far are not referring to a
675 function specialization. */
676
677 void
678 reset_specialization (void)
679 {
680 processing_specialization = 0;
681 template_header_count = 0;
682 }
683
684 /* We've just seen a template header. If SPECIALIZATION is nonzero,
685 it was of the form template <>. */
686
687 static void
688 note_template_header (int specialization)
689 {
690 processing_specialization = specialization;
691 template_header_count++;
692 }
693
694 /* We're beginning an explicit instantiation. */
695
696 void
697 begin_explicit_instantiation (void)
698 {
699 my_friendly_assert (!processing_explicit_instantiation, 20020913);
700 processing_explicit_instantiation = true;
701 }
702
703
704 void
705 end_explicit_instantiation (void)
706 {
707 my_friendly_assert(processing_explicit_instantiation, 20020913);
708 processing_explicit_instantiation = false;
709 }
710
711 /* The TYPE is being declared. If it is a template type, that means it
712 is a partial specialization. Do appropriate error-checking. */
713
714 void
715 maybe_process_partial_specialization (tree type)
716 {
717 /* TYPE maybe an ERROR_MARK_NODE. */
718 tree context = TYPE_P (type) ? TYPE_CONTEXT (type) : NULL_TREE;
719
720 if (CLASS_TYPE_P (type) && CLASSTYPE_USE_TEMPLATE (type))
721 {
722 /* This is for ordinary explicit specialization and partial
723 specialization of a template class such as:
724
725 template <> class C<int>;
726
727 or:
728
729 template <class T> class C<T*>;
730
731 Make sure that `C<int>' and `C<T*>' are implicit instantiations. */
732
733 if (CLASSTYPE_IMPLICIT_INSTANTIATION (type)
734 && !COMPLETE_TYPE_P (type))
735 {
736 tree tpl_ns = decl_namespace_context (CLASSTYPE_TI_TEMPLATE (type));
737 if (is_associated_namespace (current_namespace, tpl_ns))
738 /* Same or super-using namespace. */;
739 else
740 {
741 pedwarn ("specializing `%#T' in different namespace", type);
742 cp_pedwarn_at (" from definition of `%#D'",
743 CLASSTYPE_TI_TEMPLATE (type));
744 }
745 SET_CLASSTYPE_TEMPLATE_SPECIALIZATION (type);
746 if (processing_template_decl)
747 push_template_decl (TYPE_MAIN_DECL (type));
748 }
749 else if (CLASSTYPE_TEMPLATE_INSTANTIATION (type))
750 error ("specialization of `%T' after instantiation", type);
751 }
752 else if (CLASS_TYPE_P (type)
753 && !CLASSTYPE_USE_TEMPLATE (type)
754 && CLASSTYPE_TEMPLATE_INFO (type)
755 && context && CLASS_TYPE_P (context)
756 && CLASSTYPE_TEMPLATE_INFO (context))
757 {
758 /* This is for an explicit specialization of member class
759 template according to [temp.expl.spec/18]:
760
761 template <> template <class U> class C<int>::D;
762
763 The context `C<int>' must be an implicit instantiation.
764 Otherwise this is just a member class template declared
765 earlier like:
766
767 template <> class C<int> { template <class U> class D; };
768 template <> template <class U> class C<int>::D;
769
770 In the first case, `C<int>::D' is a specialization of `C<T>::D'
771 while in the second case, `C<int>::D' is a primary template
772 and `C<T>::D' may not exist. */
773
774 if (CLASSTYPE_IMPLICIT_INSTANTIATION (context)
775 && !COMPLETE_TYPE_P (type))
776 {
777 tree t;
778
779 if (current_namespace
780 != decl_namespace_context (CLASSTYPE_TI_TEMPLATE (type)))
781 {
782 pedwarn ("specializing `%#T' in different namespace", type);
783 cp_pedwarn_at (" from definition of `%#D'",
784 CLASSTYPE_TI_TEMPLATE (type));
785 }
786
787 /* Check for invalid specialization after instantiation:
788
789 template <> template <> class C<int>::D<int>;
790 template <> template <class U> class C<int>::D; */
791
792 for (t = DECL_TEMPLATE_INSTANTIATIONS
793 (most_general_template (CLASSTYPE_TI_TEMPLATE (type)));
794 t; t = TREE_CHAIN (t))
795 if (TREE_VALUE (t) != type
796 && TYPE_CONTEXT (TREE_VALUE (t)) == context)
797 error ("specialization `%T' after instantiation `%T'",
798 type, TREE_VALUE (t));
799
800 /* Mark TYPE as a specialization. And as a result, we only
801 have one level of template argument for the innermost
802 class template. */
803 SET_CLASSTYPE_TEMPLATE_SPECIALIZATION (type);
804 CLASSTYPE_TI_ARGS (type)
805 = INNERMOST_TEMPLATE_ARGS (CLASSTYPE_TI_ARGS (type));
806 }
807 }
808 else if (processing_specialization)
809 error ("explicit specialization of non-template `%T'", type);
810 }
811
812 /* Retrieve the specialization (in the sense of [temp.spec] - a
813 specialization is either an instantiation or an explicit
814 specialization) of TMPL for the given template ARGS. If there is
815 no such specialization, return NULL_TREE. The ARGS are a vector of
816 arguments, or a vector of vectors of arguments, in the case of
817 templates with more than one level of parameters. */
818
819 static tree
820 retrieve_specialization (tree tmpl, tree args)
821 {
822 tree s;
823
824 my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 0);
825
826 /* There should be as many levels of arguments as there are
827 levels of parameters. */
828 my_friendly_assert (TMPL_ARGS_DEPTH (args)
829 == TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl)),
830 0);
831
832 for (s = DECL_TEMPLATE_SPECIALIZATIONS (tmpl);
833 s != NULL_TREE;
834 s = TREE_CHAIN (s))
835 if (comp_template_args (TREE_PURPOSE (s), args))
836 return TREE_VALUE (s);
837
838 return NULL_TREE;
839 }
840
841 /* Like retrieve_specialization, but for local declarations. */
842
843 static tree
844 retrieve_local_specialization (tree tmpl)
845 {
846 tree spec = htab_find_with_hash (local_specializations, tmpl,
847 htab_hash_pointer (tmpl));
848 return spec ? TREE_PURPOSE (spec) : NULL_TREE;
849 }
850
851 /* Returns nonzero iff DECL is a specialization of TMPL. */
852
853 int
854 is_specialization_of (tree decl, tree tmpl)
855 {
856 tree t;
857
858 if (TREE_CODE (decl) == FUNCTION_DECL)
859 {
860 for (t = decl;
861 t != NULL_TREE;
862 t = DECL_TEMPLATE_INFO (t) ? DECL_TI_TEMPLATE (t) : NULL_TREE)
863 if (t == tmpl)
864 return 1;
865 }
866 else
867 {
868 my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 0);
869
870 for (t = TREE_TYPE (decl);
871 t != NULL_TREE;
872 t = CLASSTYPE_USE_TEMPLATE (t)
873 ? TREE_TYPE (CLASSTYPE_TI_TEMPLATE (t)) : NULL_TREE)
874 if (same_type_ignoring_top_level_qualifiers_p (t, TREE_TYPE (tmpl)))
875 return 1;
876 }
877
878 return 0;
879 }
880
881 /* Returns nonzero iff DECL is a specialization of friend declaration
882 FRIEND according to [temp.friend]. */
883
884 bool
885 is_specialization_of_friend (tree decl, tree friend)
886 {
887 bool need_template = true;
888 int template_depth;
889
890 my_friendly_assert (TREE_CODE (decl) == FUNCTION_DECL, 0);
891
892 /* For [temp.friend/6] when FRIEND is an ordinary member function
893 of a template class, we want to check if DECL is a specialization
894 if this. */
895 if (TREE_CODE (friend) == FUNCTION_DECL
896 && DECL_TEMPLATE_INFO (friend)
897 && !DECL_USE_TEMPLATE (friend))
898 {
899 friend = DECL_TI_TEMPLATE (friend);
900 need_template = false;
901 }
902
903 /* There is nothing to do if this is not a template friend. */
904 if (TREE_CODE (friend) != TEMPLATE_DECL)
905 return 0;
906
907 if (is_specialization_of (decl, friend))
908 return 1;
909
910 /* [temp.friend/6]
911 A member of a class template may be declared to be a friend of a
912 non-template class. In this case, the corresponding member of
913 every specialization of the class template is a friend of the
914 class granting friendship.
915
916 For example, given a template friend declaration
917
918 template <class T> friend void A<T>::f();
919
920 the member function below is considered a friend
921
922 template <> struct A<int> {
923 void f();
924 };
925
926 For this type of template friend, TEMPLATE_DEPTH below will be
927 nonzero. To determine if DECL is a friend of FRIEND, we first
928 check if the enclosing class is a specialization of another. */
929
930 template_depth = template_class_depth (DECL_CONTEXT (friend));
931 if (template_depth
932 && DECL_CLASS_SCOPE_P (decl)
933 && is_specialization_of (TYPE_NAME (DECL_CONTEXT (decl)),
934 CLASSTYPE_TI_TEMPLATE (DECL_CONTEXT (friend))))
935 {
936 /* Next, we check the members themselves. In order to handle
937 a few tricky cases like
938
939 template <class T> friend void A<T>::g(T t);
940 template <class T> template <T t> friend void A<T>::h();
941
942 we need to figure out what ARGS is (corresponding to `T' in above
943 examples) from DECL for later processing. */
944
945 tree context = DECL_CONTEXT (decl);
946 tree args = NULL_TREE;
947 int current_depth = 0;
948 while (current_depth < template_depth)
949 {
950 if (CLASSTYPE_TEMPLATE_INFO (context))
951 {
952 if (current_depth == 0)
953 args = TYPE_TI_ARGS (context);
954 else
955 args = add_to_template_args (TYPE_TI_ARGS (context), args);
956 current_depth++;
957 }
958 context = TYPE_CONTEXT (context);
959 }
960
961 if (TREE_CODE (decl) == FUNCTION_DECL)
962 {
963 bool is_template;
964 tree friend_type;
965 tree decl_type;
966 tree friend_args_type;
967 tree decl_args_type;
968
969 /* Make sure that both DECL and FRIEND are templates or
970 non-templates. */
971 is_template = DECL_TEMPLATE_INFO (decl)
972 && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (decl));
973 if (need_template ^ is_template)
974 return 0;
975 else if (is_template)
976 {
977 /* If both are templates, check template parameter list. */
978 tree friend_parms
979 = tsubst_template_parms (DECL_TEMPLATE_PARMS (friend),
980 args, tf_none);
981 if (!comp_template_parms
982 (DECL_TEMPLATE_PARMS (DECL_TI_TEMPLATE (decl)),
983 friend_parms))
984 return 0;
985
986 decl_type = TREE_TYPE (DECL_TI_TEMPLATE (decl));
987 }
988 else
989 decl_type = TREE_TYPE (decl);
990
991 friend_type = tsubst_function_type (TREE_TYPE (friend), args,
992 tf_none, NULL_TREE);
993 if (friend_type == error_mark_node)
994 return 0;
995
996 /* Check if return types match. */
997 if (!same_type_p (TREE_TYPE (decl_type), TREE_TYPE (friend_type)))
998 return 0;
999
1000 /* Check if function parameter types match, ignoring the
1001 `this' parameter. */
1002 friend_args_type = TYPE_ARG_TYPES (friend_type);
1003 decl_args_type = TYPE_ARG_TYPES (decl_type);
1004 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (friend))
1005 friend_args_type = TREE_CHAIN (friend_args_type);
1006 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
1007 decl_args_type = TREE_CHAIN (decl_args_type);
1008 if (compparms (decl_args_type, friend_args_type))
1009 return 1;
1010 }
1011 }
1012 return 0;
1013 }
1014
1015 /* Register the specialization SPEC as a specialization of TMPL with
1016 the indicated ARGS. Returns SPEC, or an equivalent prior
1017 declaration, if available. */
1018
1019 static tree
1020 register_specialization (tree spec, tree tmpl, tree args)
1021 {
1022 tree s;
1023
1024 my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 0);
1025
1026 if (TREE_CODE (spec) == FUNCTION_DECL
1027 && uses_template_parms (DECL_TI_ARGS (spec)))
1028 /* This is the FUNCTION_DECL for a partial instantiation. Don't
1029 register it; we want the corresponding TEMPLATE_DECL instead.
1030 We use `uses_template_parms (DECL_TI_ARGS (spec))' rather than
1031 the more obvious `uses_template_parms (spec)' to avoid problems
1032 with default function arguments. In particular, given
1033 something like this:
1034
1035 template <class T> void f(T t1, T t = T())
1036
1037 the default argument expression is not substituted for in an
1038 instantiation unless and until it is actually needed. */
1039 return spec;
1040
1041 /* There should be as many levels of arguments as there are
1042 levels of parameters. */
1043 my_friendly_assert (TMPL_ARGS_DEPTH (args)
1044 == TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl)),
1045 0);
1046
1047 for (s = DECL_TEMPLATE_SPECIALIZATIONS (tmpl);
1048 s != NULL_TREE;
1049 s = TREE_CHAIN (s))
1050 {
1051 tree fn = TREE_VALUE (s);
1052
1053 /* We can sometimes try to re-register a specialization that we've
1054 already got. In particular, regenerate_decl_from_template
1055 calls duplicate_decls which will update the specialization
1056 list. But, we'll still get called again here anyhow. It's
1057 more convenient to simply allow this than to try to prevent it. */
1058 if (fn == spec)
1059 return spec;
1060 else if (comp_template_args (TREE_PURPOSE (s), args))
1061 {
1062 if (DECL_TEMPLATE_SPECIALIZATION (spec))
1063 {
1064 if (DECL_TEMPLATE_INSTANTIATION (fn))
1065 {
1066 if (TREE_USED (fn)
1067 || DECL_EXPLICIT_INSTANTIATION (fn))
1068 {
1069 error ("specialization of %D after instantiation",
1070 fn);
1071 return spec;
1072 }
1073 else
1074 {
1075 /* This situation should occur only if the first
1076 specialization is an implicit instantiation,
1077 the second is an explicit specialization, and
1078 the implicit instantiation has not yet been
1079 used. That situation can occur if we have
1080 implicitly instantiated a member function and
1081 then specialized it later.
1082
1083 We can also wind up here if a friend
1084 declaration that looked like an instantiation
1085 turns out to be a specialization:
1086
1087 template <class T> void foo(T);
1088 class S { friend void foo<>(int) };
1089 template <> void foo(int);
1090
1091 We transform the existing DECL in place so that
1092 any pointers to it become pointers to the
1093 updated declaration.
1094
1095 If there was a definition for the template, but
1096 not for the specialization, we want this to
1097 look as if there were no definition, and vice
1098 versa. */
1099 DECL_INITIAL (fn) = NULL_TREE;
1100 duplicate_decls (spec, fn);
1101
1102 return fn;
1103 }
1104 }
1105 else if (DECL_TEMPLATE_SPECIALIZATION (fn))
1106 {
1107 if (!duplicate_decls (spec, fn) && DECL_INITIAL (spec))
1108 /* Dup decl failed, but this is a new
1109 definition. Set the line number so any errors
1110 match this new definition. */
1111 DECL_SOURCE_LOCATION (fn) = DECL_SOURCE_LOCATION (spec);
1112
1113 return fn;
1114 }
1115 }
1116 }
1117 }
1118
1119 DECL_TEMPLATE_SPECIALIZATIONS (tmpl)
1120 = tree_cons (args, spec, DECL_TEMPLATE_SPECIALIZATIONS (tmpl));
1121
1122 return spec;
1123 }
1124
1125 /* Unregister the specialization SPEC as a specialization of TMPL.
1126 Replace it with NEW_SPEC, if NEW_SPEC is non-NULL. Returns true
1127 if the SPEC was listed as a specialization of TMPL. */
1128
1129 bool
1130 reregister_specialization (tree spec, tree tmpl, tree new_spec)
1131 {
1132 tree* s;
1133
1134 for (s = &DECL_TEMPLATE_SPECIALIZATIONS (tmpl);
1135 *s != NULL_TREE;
1136 s = &TREE_CHAIN (*s))
1137 if (TREE_VALUE (*s) == spec)
1138 {
1139 if (!new_spec)
1140 *s = TREE_CHAIN (*s);
1141 else
1142 TREE_VALUE (*s) = new_spec;
1143 return 1;
1144 }
1145
1146 return 0;
1147 }
1148
1149 /* Compare an entry in the local specializations hash table P1 (which
1150 is really a pointer to a TREE_LIST) with P2 (which is really a
1151 DECL). */
1152
1153 static int
1154 eq_local_specializations (const void *p1, const void *p2)
1155 {
1156 return TREE_VALUE ((tree) p1) == (tree) p2;
1157 }
1158
1159 /* Hash P1, an entry in the local specializations table. */
1160
1161 static hashval_t
1162 hash_local_specialization (const void* p1)
1163 {
1164 return htab_hash_pointer (TREE_VALUE ((tree) p1));
1165 }
1166
1167 /* Like register_specialization, but for local declarations. We are
1168 registering SPEC, an instantiation of TMPL. */
1169
1170 static void
1171 register_local_specialization (tree spec, tree tmpl)
1172 {
1173 void **slot;
1174
1175 slot = htab_find_slot_with_hash (local_specializations, tmpl,
1176 htab_hash_pointer (tmpl), INSERT);
1177 *slot = build_tree_list (spec, tmpl);
1178 }
1179
1180 /* Print the list of candidate FNS in an error message. */
1181
1182 void
1183 print_candidates (tree fns)
1184 {
1185 tree fn;
1186
1187 const char *str = "candidates are:";
1188
1189 for (fn = fns; fn != NULL_TREE; fn = TREE_CHAIN (fn))
1190 {
1191 tree f;
1192
1193 for (f = TREE_VALUE (fn); f; f = OVL_NEXT (f))
1194 cp_error_at ("%s %+#D", str, OVL_CURRENT (f));
1195 str = " ";
1196 }
1197 }
1198
1199 /* Returns the template (one of the functions given by TEMPLATE_ID)
1200 which can be specialized to match the indicated DECL with the
1201 explicit template args given in TEMPLATE_ID. The DECL may be
1202 NULL_TREE if none is available. In that case, the functions in
1203 TEMPLATE_ID are non-members.
1204
1205 If NEED_MEMBER_TEMPLATE is nonzero the function is known to be a
1206 specialization of a member template.
1207
1208 The template args (those explicitly specified and those deduced)
1209 are output in a newly created vector *TARGS_OUT.
1210
1211 If it is impossible to determine the result, an error message is
1212 issued. The error_mark_node is returned to indicate failure. */
1213
1214 static tree
1215 determine_specialization (tree template_id,
1216 tree decl,
1217 tree* targs_out,
1218 int need_member_template)
1219 {
1220 tree fns;
1221 tree targs;
1222 tree explicit_targs;
1223 tree candidates = NULL_TREE;
1224 tree templates = NULL_TREE;
1225
1226 *targs_out = NULL_TREE;
1227
1228 if (template_id == error_mark_node)
1229 return error_mark_node;
1230
1231 fns = TREE_OPERAND (template_id, 0);
1232 explicit_targs = TREE_OPERAND (template_id, 1);
1233
1234 if (fns == error_mark_node)
1235 return error_mark_node;
1236
1237 /* Check for baselinks. */
1238 if (BASELINK_P (fns))
1239 fns = BASELINK_FUNCTIONS (fns);
1240
1241 if (!is_overloaded_fn (fns))
1242 {
1243 error ("`%D' is not a function template", fns);
1244 return error_mark_node;
1245 }
1246
1247 for (; fns; fns = OVL_NEXT (fns))
1248 {
1249 tree fn = OVL_CURRENT (fns);
1250
1251 if (TREE_CODE (fn) == TEMPLATE_DECL)
1252 {
1253 tree decl_arg_types;
1254 tree fn_arg_types;
1255
1256 /* DECL might be a specialization of FN. */
1257
1258 /* Adjust the type of DECL in case FN is a static member. */
1259 decl_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
1260 if (DECL_STATIC_FUNCTION_P (fn)
1261 && DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
1262 decl_arg_types = TREE_CHAIN (decl_arg_types);
1263
1264 /* Check that the number of function parameters matches.
1265 For example,
1266 template <class T> void f(int i = 0);
1267 template <> void f<int>();
1268 The specialization f<int> is invalid but is not caught
1269 by get_bindings below. */
1270
1271 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn));
1272 if (list_length (fn_arg_types) != list_length (decl_arg_types))
1273 continue;
1274
1275 /* For a non-static member function, we need to make sure that
1276 the const qualification is the same. This can be done by
1277 checking the 'this' in the argument list. */
1278 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
1279 && !same_type_p (TREE_VALUE (fn_arg_types),
1280 TREE_VALUE (decl_arg_types)))
1281 continue;
1282
1283 /* See whether this function might be a specialization of this
1284 template. */
1285 targs = get_bindings (fn, decl, explicit_targs);
1286
1287 if (!targs)
1288 /* We cannot deduce template arguments that when used to
1289 specialize TMPL will produce DECL. */
1290 continue;
1291
1292 /* Save this template, and the arguments deduced. */
1293 templates = tree_cons (targs, fn, templates);
1294 }
1295 else if (need_member_template)
1296 /* FN is an ordinary member function, and we need a
1297 specialization of a member template. */
1298 ;
1299 else if (TREE_CODE (fn) != FUNCTION_DECL)
1300 /* We can get IDENTIFIER_NODEs here in certain erroneous
1301 cases. */
1302 ;
1303 else if (!DECL_FUNCTION_MEMBER_P (fn))
1304 /* This is just an ordinary non-member function. Nothing can
1305 be a specialization of that. */
1306 ;
1307 else if (DECL_ARTIFICIAL (fn))
1308 /* Cannot specialize functions that are created implicitly. */
1309 ;
1310 else
1311 {
1312 tree decl_arg_types;
1313
1314 /* This is an ordinary member function. However, since
1315 we're here, we can assume it's enclosing class is a
1316 template class. For example,
1317
1318 template <typename T> struct S { void f(); };
1319 template <> void S<int>::f() {}
1320
1321 Here, S<int>::f is a non-template, but S<int> is a
1322 template class. If FN has the same type as DECL, we
1323 might be in business. */
1324
1325 if (!DECL_TEMPLATE_INFO (fn))
1326 /* Its enclosing class is an explicit specialization
1327 of a template class. This is not a candidate. */
1328 continue;
1329
1330 if (!same_type_p (TREE_TYPE (TREE_TYPE (decl)),
1331 TREE_TYPE (TREE_TYPE (fn))))
1332 /* The return types differ. */
1333 continue;
1334
1335 /* Adjust the type of DECL in case FN is a static member. */
1336 decl_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
1337 if (DECL_STATIC_FUNCTION_P (fn)
1338 && DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
1339 decl_arg_types = TREE_CHAIN (decl_arg_types);
1340
1341 if (compparms (TYPE_ARG_TYPES (TREE_TYPE (fn)),
1342 decl_arg_types))
1343 /* They match! */
1344 candidates = tree_cons (NULL_TREE, fn, candidates);
1345 }
1346 }
1347
1348 if (templates && TREE_CHAIN (templates))
1349 {
1350 /* We have:
1351
1352 [temp.expl.spec]
1353
1354 It is possible for a specialization with a given function
1355 signature to be instantiated from more than one function
1356 template. In such cases, explicit specification of the
1357 template arguments must be used to uniquely identify the
1358 function template specialization being specialized.
1359
1360 Note that here, there's no suggestion that we're supposed to
1361 determine which of the candidate templates is most
1362 specialized. However, we, also have:
1363
1364 [temp.func.order]
1365
1366 Partial ordering of overloaded function template
1367 declarations is used in the following contexts to select
1368 the function template to which a function template
1369 specialization refers:
1370
1371 -- when an explicit specialization refers to a function
1372 template.
1373
1374 So, we do use the partial ordering rules, at least for now.
1375 This extension can only serve to make invalid programs valid,
1376 so it's safe. And, there is strong anecdotal evidence that
1377 the committee intended the partial ordering rules to apply;
1378 the EDG front-end has that behavior, and John Spicer claims
1379 that the committee simply forgot to delete the wording in
1380 [temp.expl.spec]. */
1381 tree tmpl = most_specialized (templates, decl, explicit_targs);
1382 if (tmpl && tmpl != error_mark_node)
1383 {
1384 targs = get_bindings (tmpl, decl, explicit_targs);
1385 templates = tree_cons (targs, tmpl, NULL_TREE);
1386 }
1387 }
1388
1389 if (templates == NULL_TREE && candidates == NULL_TREE)
1390 {
1391 cp_error_at ("template-id `%D' for `%+D' does not match any template declaration",
1392 template_id, decl);
1393 return error_mark_node;
1394 }
1395 else if ((templates && TREE_CHAIN (templates))
1396 || (candidates && TREE_CHAIN (candidates))
1397 || (templates && candidates))
1398 {
1399 cp_error_at ("ambiguous template specialization `%D' for `%+D'",
1400 template_id, decl);
1401 chainon (candidates, templates);
1402 print_candidates (candidates);
1403 return error_mark_node;
1404 }
1405
1406 /* We have one, and exactly one, match. */
1407 if (candidates)
1408 {
1409 /* It was a specialization of an ordinary member function in a
1410 template class. */
1411 *targs_out = copy_node (DECL_TI_ARGS (TREE_VALUE (candidates)));
1412 return DECL_TI_TEMPLATE (TREE_VALUE (candidates));
1413 }
1414
1415 /* It was a specialization of a template. */
1416 targs = DECL_TI_ARGS (DECL_TEMPLATE_RESULT (TREE_VALUE (templates)));
1417 if (TMPL_ARGS_HAVE_MULTIPLE_LEVELS (targs))
1418 {
1419 *targs_out = copy_node (targs);
1420 SET_TMPL_ARGS_LEVEL (*targs_out,
1421 TMPL_ARGS_DEPTH (*targs_out),
1422 TREE_PURPOSE (templates));
1423 }
1424 else
1425 *targs_out = TREE_PURPOSE (templates);
1426 return TREE_VALUE (templates);
1427 }
1428
1429 /* Returns a chain of parameter types, exactly like the SPEC_TYPES,
1430 but with the default argument values filled in from those in the
1431 TMPL_TYPES. */
1432
1433 static tree
1434 copy_default_args_to_explicit_spec_1 (tree spec_types,
1435 tree tmpl_types)
1436 {
1437 tree new_spec_types;
1438
1439 if (!spec_types)
1440 return NULL_TREE;
1441
1442 if (spec_types == void_list_node)
1443 return void_list_node;
1444
1445 /* Substitute into the rest of the list. */
1446 new_spec_types =
1447 copy_default_args_to_explicit_spec_1 (TREE_CHAIN (spec_types),
1448 TREE_CHAIN (tmpl_types));
1449
1450 /* Add the default argument for this parameter. */
1451 return hash_tree_cons (TREE_PURPOSE (tmpl_types),
1452 TREE_VALUE (spec_types),
1453 new_spec_types);
1454 }
1455
1456 /* DECL is an explicit specialization. Replicate default arguments
1457 from the template it specializes. (That way, code like:
1458
1459 template <class T> void f(T = 3);
1460 template <> void f(double);
1461 void g () { f (); }
1462
1463 works, as required.) An alternative approach would be to look up
1464 the correct default arguments at the call-site, but this approach
1465 is consistent with how implicit instantiations are handled. */
1466
1467 static void
1468 copy_default_args_to_explicit_spec (tree decl)
1469 {
1470 tree tmpl;
1471 tree spec_types;
1472 tree tmpl_types;
1473 tree new_spec_types;
1474 tree old_type;
1475 tree new_type;
1476 tree t;
1477 tree object_type = NULL_TREE;
1478 tree in_charge = NULL_TREE;
1479 tree vtt = NULL_TREE;
1480
1481 /* See if there's anything we need to do. */
1482 tmpl = DECL_TI_TEMPLATE (decl);
1483 tmpl_types = TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (tmpl)));
1484 for (t = tmpl_types; t; t = TREE_CHAIN (t))
1485 if (TREE_PURPOSE (t))
1486 break;
1487 if (!t)
1488 return;
1489
1490 old_type = TREE_TYPE (decl);
1491 spec_types = TYPE_ARG_TYPES (old_type);
1492
1493 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
1494 {
1495 /* Remove the this pointer, but remember the object's type for
1496 CV quals. */
1497 object_type = TREE_TYPE (TREE_VALUE (spec_types));
1498 spec_types = TREE_CHAIN (spec_types);
1499 tmpl_types = TREE_CHAIN (tmpl_types);
1500
1501 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
1502 {
1503 /* DECL may contain more parameters than TMPL due to the extra
1504 in-charge parameter in constructors and destructors. */
1505 in_charge = spec_types;
1506 spec_types = TREE_CHAIN (spec_types);
1507 }
1508 if (DECL_HAS_VTT_PARM_P (decl))
1509 {
1510 vtt = spec_types;
1511 spec_types = TREE_CHAIN (spec_types);
1512 }
1513 }
1514
1515 /* Compute the merged default arguments. */
1516 new_spec_types =
1517 copy_default_args_to_explicit_spec_1 (spec_types, tmpl_types);
1518
1519 /* Compute the new FUNCTION_TYPE. */
1520 if (object_type)
1521 {
1522 if (vtt)
1523 new_spec_types = hash_tree_cons (TREE_PURPOSE (vtt),
1524 TREE_VALUE (vtt),
1525 new_spec_types);
1526
1527 if (in_charge)
1528 /* Put the in-charge parameter back. */
1529 new_spec_types = hash_tree_cons (TREE_PURPOSE (in_charge),
1530 TREE_VALUE (in_charge),
1531 new_spec_types);
1532
1533 new_type = build_method_type_directly (object_type,
1534 TREE_TYPE (old_type),
1535 new_spec_types);
1536 }
1537 else
1538 new_type = build_function_type (TREE_TYPE (old_type),
1539 new_spec_types);
1540 new_type = cp_build_type_attribute_variant (new_type,
1541 TYPE_ATTRIBUTES (old_type));
1542 new_type = build_exception_variant (new_type,
1543 TYPE_RAISES_EXCEPTIONS (old_type));
1544 TREE_TYPE (decl) = new_type;
1545 }
1546
1547 /* Check to see if the function just declared, as indicated in
1548 DECLARATOR, and in DECL, is a specialization of a function
1549 template. We may also discover that the declaration is an explicit
1550 instantiation at this point.
1551
1552 Returns DECL, or an equivalent declaration that should be used
1553 instead if all goes well. Issues an error message if something is
1554 amiss. Returns error_mark_node if the error is not easily
1555 recoverable.
1556
1557 FLAGS is a bitmask consisting of the following flags:
1558
1559 2: The function has a definition.
1560 4: The function is a friend.
1561
1562 The TEMPLATE_COUNT is the number of references to qualifying
1563 template classes that appeared in the name of the function. For
1564 example, in
1565
1566 template <class T> struct S { void f(); };
1567 void S<int>::f();
1568
1569 the TEMPLATE_COUNT would be 1. However, explicitly specialized
1570 classes are not counted in the TEMPLATE_COUNT, so that in
1571
1572 template <class T> struct S {};
1573 template <> struct S<int> { void f(); }
1574 template <> void S<int>::f();
1575
1576 the TEMPLATE_COUNT would be 0. (Note that this declaration is
1577 invalid; there should be no template <>.)
1578
1579 If the function is a specialization, it is marked as such via
1580 DECL_TEMPLATE_SPECIALIZATION. Furthermore, its DECL_TEMPLATE_INFO
1581 is set up correctly, and it is added to the list of specializations
1582 for that template. */
1583
1584 tree
1585 check_explicit_specialization (tree declarator,
1586 tree decl,
1587 int template_count,
1588 int flags)
1589 {
1590 int have_def = flags & 2;
1591 int is_friend = flags & 4;
1592 int specialization = 0;
1593 int explicit_instantiation = 0;
1594 int member_specialization = 0;
1595 tree ctype = DECL_CLASS_CONTEXT (decl);
1596 tree dname = DECL_NAME (decl);
1597 tmpl_spec_kind tsk;
1598
1599 tsk = current_tmpl_spec_kind (template_count);
1600
1601 switch (tsk)
1602 {
1603 case tsk_none:
1604 if (processing_specialization)
1605 {
1606 specialization = 1;
1607 SET_DECL_TEMPLATE_SPECIALIZATION (decl);
1608 }
1609 else if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
1610 {
1611 if (is_friend)
1612 /* This could be something like:
1613
1614 template <class T> void f(T);
1615 class S { friend void f<>(int); } */
1616 specialization = 1;
1617 else
1618 {
1619 /* This case handles bogus declarations like template <>
1620 template <class T> void f<int>(); */
1621
1622 error ("template-id `%D' in declaration of primary template",
1623 declarator);
1624 return decl;
1625 }
1626 }
1627 break;
1628
1629 case tsk_invalid_member_spec:
1630 /* The error has already been reported in
1631 check_specialization_scope. */
1632 return error_mark_node;
1633
1634 case tsk_invalid_expl_inst:
1635 error ("template parameter list used in explicit instantiation");
1636
1637 /* Fall through. */
1638
1639 case tsk_expl_inst:
1640 if (have_def)
1641 error ("definition provided for explicit instantiation");
1642
1643 explicit_instantiation = 1;
1644 break;
1645
1646 case tsk_excessive_parms:
1647 error ("too many template parameter lists in declaration of `%D'",
1648 decl);
1649 return error_mark_node;
1650
1651 /* Fall through. */
1652 case tsk_expl_spec:
1653 SET_DECL_TEMPLATE_SPECIALIZATION (decl);
1654 if (ctype)
1655 member_specialization = 1;
1656 else
1657 specialization = 1;
1658 break;
1659
1660 case tsk_insufficient_parms:
1661 if (template_header_count)
1662 {
1663 error("too few template parameter lists in declaration of `%D'",
1664 decl);
1665 return decl;
1666 }
1667 else if (ctype != NULL_TREE
1668 && !TYPE_BEING_DEFINED (ctype)
1669 && CLASSTYPE_TEMPLATE_INSTANTIATION (ctype)
1670 && !is_friend)
1671 {
1672 /* For backwards compatibility, we accept:
1673
1674 template <class T> struct S { void f(); };
1675 void S<int>::f() {} // Missing template <>
1676
1677 That used to be valid C++. */
1678 if (pedantic)
1679 pedwarn
1680 ("explicit specialization not preceded by `template <>'");
1681 specialization = 1;
1682 SET_DECL_TEMPLATE_SPECIALIZATION (decl);
1683 }
1684 break;
1685
1686 case tsk_template:
1687 if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
1688 {
1689 /* This case handles bogus declarations like template <>
1690 template <class T> void f<int>(); */
1691
1692 if (uses_template_parms (declarator))
1693 error ("partial specialization `%D' of function template",
1694 declarator);
1695 else
1696 error ("template-id `%D' in declaration of primary template",
1697 declarator);
1698 return decl;
1699 }
1700
1701 if (ctype && CLASSTYPE_TEMPLATE_INSTANTIATION (ctype))
1702 /* This is a specialization of a member template, without
1703 specialization the containing class. Something like:
1704
1705 template <class T> struct S {
1706 template <class U> void f (U);
1707 };
1708 template <> template <class U> void S<int>::f(U) {}
1709
1710 That's a specialization -- but of the entire template. */
1711 specialization = 1;
1712 break;
1713
1714 default:
1715 abort ();
1716 }
1717
1718 if (specialization || member_specialization)
1719 {
1720 tree t = TYPE_ARG_TYPES (TREE_TYPE (decl));
1721 for (; t; t = TREE_CHAIN (t))
1722 if (TREE_PURPOSE (t))
1723 {
1724 pedwarn
1725 ("default argument specified in explicit specialization");
1726 break;
1727 }
1728 if (current_lang_name == lang_name_c)
1729 error ("template specialization with C linkage");
1730 }
1731
1732 if (specialization || member_specialization || explicit_instantiation)
1733 {
1734 tree tmpl = NULL_TREE;
1735 tree targs = NULL_TREE;
1736
1737 /* Make sure that the declarator is a TEMPLATE_ID_EXPR. */
1738 if (TREE_CODE (declarator) != TEMPLATE_ID_EXPR)
1739 {
1740 tree fns;
1741
1742 my_friendly_assert (TREE_CODE (declarator) == IDENTIFIER_NODE, 0);
1743 if (ctype)
1744 fns = dname;
1745 else
1746 {
1747 /* If there is no class context, the explicit instantiation
1748 must be at namespace scope. */
1749 my_friendly_assert (DECL_NAMESPACE_SCOPE_P (decl), 20030625);
1750
1751 /* Find the namespace binding, using the declaration
1752 context. */
1753 fns = namespace_binding (dname, CP_DECL_CONTEXT (decl));
1754 }
1755
1756 declarator = lookup_template_function (fns, NULL_TREE);
1757 }
1758
1759 if (declarator == error_mark_node)
1760 return error_mark_node;
1761
1762 if (ctype != NULL_TREE && TYPE_BEING_DEFINED (ctype))
1763 {
1764 if (!explicit_instantiation)
1765 /* A specialization in class scope. This is invalid,
1766 but the error will already have been flagged by
1767 check_specialization_scope. */
1768 return error_mark_node;
1769 else
1770 {
1771 /* It's not valid to write an explicit instantiation in
1772 class scope, e.g.:
1773
1774 class C { template void f(); }
1775
1776 This case is caught by the parser. However, on
1777 something like:
1778
1779 template class C { void f(); };
1780
1781 (which is invalid) we can get here. The error will be
1782 issued later. */
1783 ;
1784 }
1785
1786 return decl;
1787 }
1788 else if (ctype != NULL_TREE
1789 && (TREE_CODE (TREE_OPERAND (declarator, 0)) ==
1790 IDENTIFIER_NODE))
1791 {
1792 /* Find the list of functions in ctype that have the same
1793 name as the declared function. */
1794 tree name = TREE_OPERAND (declarator, 0);
1795 tree fns = NULL_TREE;
1796 int idx;
1797
1798 if (constructor_name_p (name, ctype))
1799 {
1800 int is_constructor = DECL_CONSTRUCTOR_P (decl);
1801
1802 if (is_constructor ? !TYPE_HAS_CONSTRUCTOR (ctype)
1803 : !TYPE_HAS_DESTRUCTOR (ctype))
1804 {
1805 /* From [temp.expl.spec]:
1806
1807 If such an explicit specialization for the member
1808 of a class template names an implicitly-declared
1809 special member function (clause _special_), the
1810 program is ill-formed.
1811
1812 Similar language is found in [temp.explicit]. */
1813 error ("specialization of implicitly-declared special member function");
1814 return error_mark_node;
1815 }
1816
1817 name = is_constructor ? ctor_identifier : dtor_identifier;
1818 }
1819
1820 if (!DECL_CONV_FN_P (decl))
1821 {
1822 idx = lookup_fnfields_1 (ctype, name);
1823 if (idx >= 0)
1824 fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (ctype), idx);
1825 }
1826 else
1827 {
1828 tree methods;
1829
1830 /* For a type-conversion operator, we cannot do a
1831 name-based lookup. We might be looking for `operator
1832 int' which will be a specialization of `operator T'.
1833 So, we find *all* the conversion operators, and then
1834 select from them. */
1835 fns = NULL_TREE;
1836
1837 methods = CLASSTYPE_METHOD_VEC (ctype);
1838 if (methods)
1839 for (idx = CLASSTYPE_FIRST_CONVERSION_SLOT;
1840 idx < TREE_VEC_LENGTH (methods); ++idx)
1841 {
1842 tree ovl = TREE_VEC_ELT (methods, idx);
1843
1844 if (!ovl || !DECL_CONV_FN_P (OVL_CURRENT (ovl)))
1845 /* There are no more conversion functions. */
1846 break;
1847
1848 /* Glue all these conversion functions together
1849 with those we already have. */
1850 for (; ovl; ovl = OVL_NEXT (ovl))
1851 fns = ovl_cons (OVL_CURRENT (ovl), fns);
1852 }
1853 }
1854
1855 if (fns == NULL_TREE)
1856 {
1857 error ("no member function `%D' declared in `%T'",
1858 name, ctype);
1859 return error_mark_node;
1860 }
1861 else
1862 TREE_OPERAND (declarator, 0) = fns;
1863 }
1864
1865 /* Figure out what exactly is being specialized at this point.
1866 Note that for an explicit instantiation, even one for a
1867 member function, we cannot tell apriori whether the
1868 instantiation is for a member template, or just a member
1869 function of a template class. Even if a member template is
1870 being instantiated, the member template arguments may be
1871 elided if they can be deduced from the rest of the
1872 declaration. */
1873 tmpl = determine_specialization (declarator, decl,
1874 &targs,
1875 member_specialization);
1876
1877 if (!tmpl || tmpl == error_mark_node)
1878 /* We couldn't figure out what this declaration was
1879 specializing. */
1880 return error_mark_node;
1881 else
1882 {
1883 tree gen_tmpl = most_general_template (tmpl);
1884
1885 if (explicit_instantiation)
1886 {
1887 /* We don't set DECL_EXPLICIT_INSTANTIATION here; that
1888 is done by do_decl_instantiation later. */
1889
1890 int arg_depth = TMPL_ARGS_DEPTH (targs);
1891 int parm_depth = TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl));
1892
1893 if (arg_depth > parm_depth)
1894 {
1895 /* If TMPL is not the most general template (for
1896 example, if TMPL is a friend template that is
1897 injected into namespace scope), then there will
1898 be too many levels of TARGS. Remove some of them
1899 here. */
1900 int i;
1901 tree new_targs;
1902
1903 new_targs = make_tree_vec (parm_depth);
1904 for (i = arg_depth - parm_depth; i < arg_depth; ++i)
1905 TREE_VEC_ELT (new_targs, i - (arg_depth - parm_depth))
1906 = TREE_VEC_ELT (targs, i);
1907 targs = new_targs;
1908 }
1909
1910 return instantiate_template (tmpl, targs, tf_error);
1911 }
1912
1913 /* If we thought that the DECL was a member function, but it
1914 turns out to be specializing a static member function,
1915 make DECL a static member function as well. */
1916 if (DECL_STATIC_FUNCTION_P (tmpl)
1917 && DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
1918 revert_static_member_fn (decl);
1919
1920 /* If this is a specialization of a member template of a
1921 template class. In we want to return the TEMPLATE_DECL,
1922 not the specialization of it. */
1923 if (tsk == tsk_template)
1924 {
1925 SET_DECL_TEMPLATE_SPECIALIZATION (tmpl);
1926 DECL_INITIAL (DECL_TEMPLATE_RESULT (tmpl)) = NULL_TREE;
1927 if (have_def)
1928 {
1929 DECL_SOURCE_LOCATION (tmpl) = DECL_SOURCE_LOCATION (decl);
1930 DECL_SOURCE_LOCATION (DECL_TEMPLATE_RESULT (tmpl))
1931 = DECL_SOURCE_LOCATION (decl);
1932 }
1933 return tmpl;
1934 }
1935
1936 /* Set up the DECL_TEMPLATE_INFO for DECL. */
1937 DECL_TEMPLATE_INFO (decl) = tree_cons (tmpl, targs, NULL_TREE);
1938
1939 /* Inherit default function arguments from the template
1940 DECL is specializing. */
1941 copy_default_args_to_explicit_spec (decl);
1942
1943 /* This specialization has the same protection as the
1944 template it specializes. */
1945 TREE_PRIVATE (decl) = TREE_PRIVATE (gen_tmpl);
1946 TREE_PROTECTED (decl) = TREE_PROTECTED (gen_tmpl);
1947
1948 if (is_friend && !have_def)
1949 /* This is not really a declaration of a specialization.
1950 It's just the name of an instantiation. But, it's not
1951 a request for an instantiation, either. */
1952 SET_DECL_IMPLICIT_INSTANTIATION (decl);
1953 else if (DECL_CONSTRUCTOR_P (decl) || DECL_DESTRUCTOR_P (decl))
1954 /* This is indeed a specialization. In case of constructors
1955 and destructors, we need in-charge and not-in-charge
1956 versions in V3 ABI. */
1957 clone_function_decl (decl, /*update_method_vec_p=*/0);
1958
1959 /* Register this specialization so that we can find it
1960 again. */
1961 decl = register_specialization (decl, gen_tmpl, targs);
1962 }
1963 }
1964
1965 return decl;
1966 }
1967
1968 /* TYPE is being declared. Verify that the use of template headers
1969 and such is reasonable. Issue error messages if not. */
1970
1971 void
1972 maybe_check_template_type (tree type)
1973 {
1974 if (template_header_count)
1975 {
1976 /* We are in the scope of some `template <...>' header. */
1977
1978 int context_depth
1979 = template_class_depth_real (TYPE_CONTEXT (type),
1980 /*count_specializations=*/1);
1981
1982 if (template_header_count <= context_depth)
1983 /* This is OK; the template headers are for the context. We
1984 are actually too lenient here; like
1985 check_explicit_specialization we should consider the number
1986 of template types included in the actual declaration. For
1987 example,
1988
1989 template <class T> struct S {
1990 template <class U> template <class V>
1991 struct I {};
1992 };
1993
1994 is invalid, but:
1995
1996 template <class T> struct S {
1997 template <class U> struct I;
1998 };
1999
2000 template <class T> template <class U.
2001 struct S<T>::I {};
2002
2003 is not. */
2004 ;
2005 else if (template_header_count > context_depth + 1)
2006 /* There are two many template parameter lists. */
2007 error ("too many template parameter lists in declaration of `%T'", type);
2008 }
2009 }
2010
2011 /* Returns 1 iff PARMS1 and PARMS2 are identical sets of template
2012 parameters. These are represented in the same format used for
2013 DECL_TEMPLATE_PARMS. */
2014
2015 int comp_template_parms (tree parms1, tree parms2)
2016 {
2017 tree p1;
2018 tree p2;
2019
2020 if (parms1 == parms2)
2021 return 1;
2022
2023 for (p1 = parms1, p2 = parms2;
2024 p1 != NULL_TREE && p2 != NULL_TREE;
2025 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2))
2026 {
2027 tree t1 = TREE_VALUE (p1);
2028 tree t2 = TREE_VALUE (p2);
2029 int i;
2030
2031 my_friendly_assert (TREE_CODE (t1) == TREE_VEC, 0);
2032 my_friendly_assert (TREE_CODE (t2) == TREE_VEC, 0);
2033
2034 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
2035 return 0;
2036
2037 for (i = 0; i < TREE_VEC_LENGTH (t2); ++i)
2038 {
2039 tree parm1 = TREE_VALUE (TREE_VEC_ELT (t1, i));
2040 tree parm2 = TREE_VALUE (TREE_VEC_ELT (t2, i));
2041
2042 if (TREE_CODE (parm1) != TREE_CODE (parm2))
2043 return 0;
2044
2045 if (TREE_CODE (parm1) == TEMPLATE_TYPE_PARM)
2046 continue;
2047 else if (!same_type_p (TREE_TYPE (parm1), TREE_TYPE (parm2)))
2048 return 0;
2049 }
2050 }
2051
2052 if ((p1 != NULL_TREE) != (p2 != NULL_TREE))
2053 /* One set of parameters has more parameters lists than the
2054 other. */
2055 return 0;
2056
2057 return 1;
2058 }
2059
2060 /* Complain if DECL shadows a template parameter.
2061
2062 [temp.local]: A template-parameter shall not be redeclared within its
2063 scope (including nested scopes). */
2064
2065 void
2066 check_template_shadow (tree decl)
2067 {
2068 tree olddecl;
2069
2070 /* If we're not in a template, we can't possibly shadow a template
2071 parameter. */
2072 if (!current_template_parms)
2073 return;
2074
2075 /* Figure out what we're shadowing. */
2076 if (TREE_CODE (decl) == OVERLOAD)
2077 decl = OVL_CURRENT (decl);
2078 olddecl = IDENTIFIER_VALUE (DECL_NAME (decl));
2079
2080 /* If there's no previous binding for this name, we're not shadowing
2081 anything, let alone a template parameter. */
2082 if (!olddecl)
2083 return;
2084
2085 /* If we're not shadowing a template parameter, we're done. Note
2086 that OLDDECL might be an OVERLOAD (or perhaps even an
2087 ERROR_MARK), so we can't just blithely assume it to be a _DECL
2088 node. */
2089 if (!DECL_P (olddecl) || !DECL_TEMPLATE_PARM_P (olddecl))
2090 return;
2091
2092 /* We check for decl != olddecl to avoid bogus errors for using a
2093 name inside a class. We check TPFI to avoid duplicate errors for
2094 inline member templates. */
2095 if (decl == olddecl
2096 || TEMPLATE_PARMS_FOR_INLINE (current_template_parms))
2097 return;
2098
2099 cp_error_at ("declaration of `%#D'", decl);
2100 cp_error_at (" shadows template parm `%#D'", olddecl);
2101 }
2102
2103 /* Return a new TEMPLATE_PARM_INDEX with the indicated INDEX, LEVEL,
2104 ORIG_LEVEL, DECL, and TYPE. */
2105
2106 static tree
2107 build_template_parm_index (int index,
2108 int level,
2109 int orig_level,
2110 tree decl,
2111 tree type)
2112 {
2113 tree t = make_node (TEMPLATE_PARM_INDEX);
2114 TEMPLATE_PARM_IDX (t) = index;
2115 TEMPLATE_PARM_LEVEL (t) = level;
2116 TEMPLATE_PARM_ORIG_LEVEL (t) = orig_level;
2117 TEMPLATE_PARM_DECL (t) = decl;
2118 TREE_TYPE (t) = type;
2119 TREE_CONSTANT (t) = TREE_CONSTANT (decl);
2120 TREE_INVARIANT (t) = TREE_INVARIANT (decl);
2121 TREE_READONLY (t) = TREE_READONLY (decl);
2122
2123 return t;
2124 }
2125
2126 /* Return a TEMPLATE_PARM_INDEX, similar to INDEX, but whose
2127 TEMPLATE_PARM_LEVEL has been decreased by LEVELS. If such a
2128 TEMPLATE_PARM_INDEX already exists, it is returned; otherwise, a
2129 new one is created. */
2130
2131 static tree
2132 reduce_template_parm_level (tree index, tree type, int levels)
2133 {
2134 if (TEMPLATE_PARM_DESCENDANTS (index) == NULL_TREE
2135 || (TEMPLATE_PARM_LEVEL (TEMPLATE_PARM_DESCENDANTS (index))
2136 != TEMPLATE_PARM_LEVEL (index) - levels))
2137 {
2138 tree orig_decl = TEMPLATE_PARM_DECL (index);
2139 tree decl, t;
2140
2141 decl = build_decl (TREE_CODE (orig_decl), DECL_NAME (orig_decl), type);
2142 TREE_CONSTANT (decl) = TREE_CONSTANT (orig_decl);
2143 TREE_INVARIANT (decl) = TREE_INVARIANT (orig_decl);
2144 TREE_READONLY (decl) = TREE_READONLY (orig_decl);
2145 DECL_ARTIFICIAL (decl) = 1;
2146 SET_DECL_TEMPLATE_PARM_P (decl);
2147
2148 t = build_template_parm_index (TEMPLATE_PARM_IDX (index),
2149 TEMPLATE_PARM_LEVEL (index) - levels,
2150 TEMPLATE_PARM_ORIG_LEVEL (index),
2151 decl, type);
2152 TEMPLATE_PARM_DESCENDANTS (index) = t;
2153
2154 /* Template template parameters need this. */
2155 DECL_TEMPLATE_PARMS (decl)
2156 = DECL_TEMPLATE_PARMS (TEMPLATE_PARM_DECL (index));
2157 }
2158
2159 return TEMPLATE_PARM_DESCENDANTS (index);
2160 }
2161
2162 /* Process information from new template parameter NEXT and append it to the
2163 LIST being built. */
2164
2165 tree
2166 process_template_parm (tree list, tree next)
2167 {
2168 tree parm;
2169 tree decl = 0;
2170 tree defval;
2171 int is_type, idx;
2172
2173 parm = next;
2174 my_friendly_assert (TREE_CODE (parm) == TREE_LIST, 259);
2175 defval = TREE_PURPOSE (parm);
2176 parm = TREE_VALUE (parm);
2177 is_type = TREE_PURPOSE (parm) == class_type_node;
2178
2179 if (list)
2180 {
2181 tree p = TREE_VALUE (tree_last (list));
2182
2183 if (TREE_CODE (p) == TYPE_DECL || TREE_CODE (p) == TEMPLATE_DECL)
2184 idx = TEMPLATE_TYPE_IDX (TREE_TYPE (p));
2185 else
2186 idx = TEMPLATE_PARM_IDX (DECL_INITIAL (p));
2187 ++idx;
2188 }
2189 else
2190 idx = 0;
2191
2192 if (!is_type)
2193 {
2194 my_friendly_assert (TREE_CODE (TREE_PURPOSE (parm)) == TREE_LIST, 260);
2195 /* is a const-param */
2196 parm = grokdeclarator (TREE_VALUE (parm), TREE_PURPOSE (parm),
2197 PARM, 0, NULL);
2198 SET_DECL_TEMPLATE_PARM_P (parm);
2199
2200 /* [temp.param]
2201
2202 The top-level cv-qualifiers on the template-parameter are
2203 ignored when determining its type. */
2204 TREE_TYPE (parm) = TYPE_MAIN_VARIANT (TREE_TYPE (parm));
2205
2206 /* A template parameter is not modifiable. */
2207 TREE_CONSTANT (parm) = 1;
2208 TREE_INVARIANT (parm) = 1;
2209 TREE_READONLY (parm) = 1;
2210 if (invalid_nontype_parm_type_p (TREE_TYPE (parm), 1))
2211 TREE_TYPE (parm) = void_type_node;
2212 decl = build_decl (CONST_DECL, DECL_NAME (parm), TREE_TYPE (parm));
2213 TREE_CONSTANT (decl) = 1;
2214 TREE_INVARIANT (decl) = 1;
2215 TREE_READONLY (decl) = 1;
2216 DECL_INITIAL (parm) = DECL_INITIAL (decl)
2217 = build_template_parm_index (idx, processing_template_decl,
2218 processing_template_decl,
2219 decl, TREE_TYPE (parm));
2220 }
2221 else
2222 {
2223 tree t;
2224 parm = TREE_VALUE (parm);
2225
2226 if (parm && TREE_CODE (parm) == TEMPLATE_DECL)
2227 {
2228 t = make_aggr_type (TEMPLATE_TEMPLATE_PARM);
2229 /* This is for distinguishing between real templates and template
2230 template parameters */
2231 TREE_TYPE (parm) = t;
2232 TREE_TYPE (DECL_TEMPLATE_RESULT (parm)) = t;
2233 decl = parm;
2234 }
2235 else
2236 {
2237 t = make_aggr_type (TEMPLATE_TYPE_PARM);
2238 /* parm is either IDENTIFIER_NODE or NULL_TREE. */
2239 decl = build_decl (TYPE_DECL, parm, t);
2240 }
2241
2242 TYPE_NAME (t) = decl;
2243 TYPE_STUB_DECL (t) = decl;
2244 parm = decl;
2245 TEMPLATE_TYPE_PARM_INDEX (t)
2246 = build_template_parm_index (idx, processing_template_decl,
2247 processing_template_decl,
2248 decl, TREE_TYPE (parm));
2249 }
2250 DECL_ARTIFICIAL (decl) = 1;
2251 SET_DECL_TEMPLATE_PARM_P (decl);
2252 pushdecl (decl);
2253 parm = build_tree_list (defval, parm);
2254 return chainon (list, parm);
2255 }
2256
2257 /* The end of a template parameter list has been reached. Process the
2258 tree list into a parameter vector, converting each parameter into a more
2259 useful form. Type parameters are saved as IDENTIFIER_NODEs, and others
2260 as PARM_DECLs. */
2261
2262 tree
2263 end_template_parm_list (tree parms)
2264 {
2265 int nparms;
2266 tree parm, next;
2267 tree saved_parmlist = make_tree_vec (list_length (parms));
2268
2269 current_template_parms
2270 = tree_cons (size_int (processing_template_decl),
2271 saved_parmlist, current_template_parms);
2272
2273 for (parm = parms, nparms = 0; parm; parm = next, nparms++)
2274 {
2275 next = TREE_CHAIN (parm);
2276 TREE_VEC_ELT (saved_parmlist, nparms) = parm;
2277 TREE_CHAIN (parm) = NULL_TREE;
2278 }
2279
2280 --processing_template_parmlist;
2281
2282 return saved_parmlist;
2283 }
2284
2285 /* end_template_decl is called after a template declaration is seen. */
2286
2287 void
2288 end_template_decl (void)
2289 {
2290 reset_specialization ();
2291
2292 if (! processing_template_decl)
2293 return;
2294
2295 /* This matches the pushlevel in begin_template_parm_list. */
2296 finish_scope ();
2297
2298 --processing_template_decl;
2299 current_template_parms = TREE_CHAIN (current_template_parms);
2300 }
2301
2302 /* Given a template argument vector containing the template PARMS.
2303 The innermost PARMS are given first. */
2304
2305 tree
2306 current_template_args (void)
2307 {
2308 tree header;
2309 tree args = NULL_TREE;
2310 int length = TMPL_PARMS_DEPTH (current_template_parms);
2311 int l = length;
2312
2313 /* If there is only one level of template parameters, we do not
2314 create a TREE_VEC of TREE_VECs. Instead, we return a single
2315 TREE_VEC containing the arguments. */
2316 if (length > 1)
2317 args = make_tree_vec (length);
2318
2319 for (header = current_template_parms; header; header = TREE_CHAIN (header))
2320 {
2321 tree a = copy_node (TREE_VALUE (header));
2322 int i;
2323
2324 TREE_TYPE (a) = NULL_TREE;
2325 for (i = TREE_VEC_LENGTH (a) - 1; i >= 0; --i)
2326 {
2327 tree t = TREE_VEC_ELT (a, i);
2328
2329 /* T will be a list if we are called from within a
2330 begin/end_template_parm_list pair, but a vector directly
2331 if within a begin/end_member_template_processing pair. */
2332 if (TREE_CODE (t) == TREE_LIST)
2333 {
2334 t = TREE_VALUE (t);
2335
2336 if (TREE_CODE (t) == TYPE_DECL
2337 || TREE_CODE (t) == TEMPLATE_DECL)
2338 t = TREE_TYPE (t);
2339 else
2340 t = DECL_INITIAL (t);
2341 TREE_VEC_ELT (a, i) = t;
2342 }
2343 }
2344
2345 if (length > 1)
2346 TREE_VEC_ELT (args, --l) = a;
2347 else
2348 args = a;
2349 }
2350
2351 return args;
2352 }
2353
2354 /* Return a TEMPLATE_DECL corresponding to DECL, using the indicated
2355 template PARMS. Used by push_template_decl below. */
2356
2357 static tree
2358 build_template_decl (tree decl, tree parms)
2359 {
2360 tree tmpl = build_lang_decl (TEMPLATE_DECL, DECL_NAME (decl), NULL_TREE);
2361 DECL_TEMPLATE_PARMS (tmpl) = parms;
2362 DECL_CONTEXT (tmpl) = DECL_CONTEXT (decl);
2363 if (DECL_LANG_SPECIFIC (decl))
2364 {
2365 DECL_STATIC_FUNCTION_P (tmpl) = DECL_STATIC_FUNCTION_P (decl);
2366 DECL_CONSTRUCTOR_P (tmpl) = DECL_CONSTRUCTOR_P (decl);
2367 DECL_DESTRUCTOR_P (tmpl) = DECL_DESTRUCTOR_P (decl);
2368 DECL_NONCONVERTING_P (tmpl) = DECL_NONCONVERTING_P (decl);
2369 DECL_ASSIGNMENT_OPERATOR_P (tmpl) = DECL_ASSIGNMENT_OPERATOR_P (decl);
2370 if (DECL_OVERLOADED_OPERATOR_P (decl))
2371 SET_OVERLOADED_OPERATOR_CODE (tmpl,
2372 DECL_OVERLOADED_OPERATOR_P (decl));
2373 }
2374
2375 return tmpl;
2376 }
2377
2378 struct template_parm_data
2379 {
2380 /* The level of the template parameters we are currently
2381 processing. */
2382 int level;
2383
2384 /* The index of the specialization argument we are currently
2385 processing. */
2386 int current_arg;
2387
2388 /* An array whose size is the number of template parameters. The
2389 elements are nonzero if the parameter has been used in any one
2390 of the arguments processed so far. */
2391 int* parms;
2392
2393 /* An array whose size is the number of template arguments. The
2394 elements are nonzero if the argument makes use of template
2395 parameters of this level. */
2396 int* arg_uses_template_parms;
2397 };
2398
2399 /* Subroutine of push_template_decl used to see if each template
2400 parameter in a partial specialization is used in the explicit
2401 argument list. If T is of the LEVEL given in DATA (which is
2402 treated as a template_parm_data*), then DATA->PARMS is marked
2403 appropriately. */
2404
2405 static int
2406 mark_template_parm (tree t, void* data)
2407 {
2408 int level;
2409 int idx;
2410 struct template_parm_data* tpd = (struct template_parm_data*) data;
2411
2412 if (TREE_CODE (t) == TEMPLATE_PARM_INDEX)
2413 {
2414 level = TEMPLATE_PARM_LEVEL (t);
2415 idx = TEMPLATE_PARM_IDX (t);
2416 }
2417 else
2418 {
2419 level = TEMPLATE_TYPE_LEVEL (t);
2420 idx = TEMPLATE_TYPE_IDX (t);
2421 }
2422
2423 if (level == tpd->level)
2424 {
2425 tpd->parms[idx] = 1;
2426 tpd->arg_uses_template_parms[tpd->current_arg] = 1;
2427 }
2428
2429 /* Return zero so that for_each_template_parm will continue the
2430 traversal of the tree; we want to mark *every* template parm. */
2431 return 0;
2432 }
2433
2434 /* Process the partial specialization DECL. */
2435
2436 static tree
2437 process_partial_specialization (tree decl)
2438 {
2439 tree type = TREE_TYPE (decl);
2440 tree maintmpl = CLASSTYPE_TI_TEMPLATE (type);
2441 tree specargs = CLASSTYPE_TI_ARGS (type);
2442 tree inner_args = INNERMOST_TEMPLATE_ARGS (specargs);
2443 tree inner_parms = INNERMOST_TEMPLATE_PARMS (current_template_parms);
2444 tree main_inner_parms = DECL_INNERMOST_TEMPLATE_PARMS (maintmpl);
2445 int nargs = TREE_VEC_LENGTH (inner_args);
2446 int ntparms = TREE_VEC_LENGTH (inner_parms);
2447 int i;
2448 int did_error_intro = 0;
2449 struct template_parm_data tpd;
2450 struct template_parm_data tpd2;
2451
2452 /* We check that each of the template parameters given in the
2453 partial specialization is used in the argument list to the
2454 specialization. For example:
2455
2456 template <class T> struct S;
2457 template <class T> struct S<T*>;
2458
2459 The second declaration is OK because `T*' uses the template
2460 parameter T, whereas
2461
2462 template <class T> struct S<int>;
2463
2464 is no good. Even trickier is:
2465
2466 template <class T>
2467 struct S1
2468 {
2469 template <class U>
2470 struct S2;
2471 template <class U>
2472 struct S2<T>;
2473 };
2474
2475 The S2<T> declaration is actually invalid; it is a
2476 full-specialization. Of course,
2477
2478 template <class U>
2479 struct S2<T (*)(U)>;
2480
2481 or some such would have been OK. */
2482 tpd.level = TMPL_PARMS_DEPTH (current_template_parms);
2483 tpd.parms = alloca (sizeof (int) * ntparms);
2484 memset (tpd.parms, 0, sizeof (int) * ntparms);
2485
2486 tpd.arg_uses_template_parms = alloca (sizeof (int) * nargs);
2487 memset (tpd.arg_uses_template_parms, 0, sizeof (int) * nargs);
2488 for (i = 0; i < nargs; ++i)
2489 {
2490 tpd.current_arg = i;
2491 for_each_template_parm (TREE_VEC_ELT (inner_args, i),
2492 &mark_template_parm,
2493 &tpd,
2494 NULL);
2495 }
2496 for (i = 0; i < ntparms; ++i)
2497 if (tpd.parms[i] == 0)
2498 {
2499 /* One of the template parms was not used in the
2500 specialization. */
2501 if (!did_error_intro)
2502 {
2503 error ("template parameters not used in partial specialization:");
2504 did_error_intro = 1;
2505 }
2506
2507 error (" `%D'",
2508 TREE_VALUE (TREE_VEC_ELT (inner_parms, i)));
2509 }
2510
2511 /* [temp.class.spec]
2512
2513 The argument list of the specialization shall not be identical to
2514 the implicit argument list of the primary template. */
2515 if (comp_template_args
2516 (inner_args,
2517 INNERMOST_TEMPLATE_ARGS (CLASSTYPE_TI_ARGS (TREE_TYPE
2518 (maintmpl)))))
2519 error ("partial specialization `%T' does not specialize any template arguments", type);
2520
2521 /* [temp.class.spec]
2522
2523 A partially specialized non-type argument expression shall not
2524 involve template parameters of the partial specialization except
2525 when the argument expression is a simple identifier.
2526
2527 The type of a template parameter corresponding to a specialized
2528 non-type argument shall not be dependent on a parameter of the
2529 specialization. */
2530 my_friendly_assert (nargs == DECL_NTPARMS (maintmpl), 0);
2531 tpd2.parms = 0;
2532 for (i = 0; i < nargs; ++i)
2533 {
2534 tree arg = TREE_VEC_ELT (inner_args, i);
2535 if (/* These first two lines are the `non-type' bit. */
2536 !TYPE_P (arg)
2537 && TREE_CODE (arg) != TEMPLATE_DECL
2538 /* This next line is the `argument expression is not just a
2539 simple identifier' condition and also the `specialized
2540 non-type argument' bit. */
2541 && TREE_CODE (arg) != TEMPLATE_PARM_INDEX)
2542 {
2543 if (tpd.arg_uses_template_parms[i])
2544 error ("template argument `%E' involves template parameter(s)", arg);
2545 else
2546 {
2547 /* Look at the corresponding template parameter,
2548 marking which template parameters its type depends
2549 upon. */
2550 tree type =
2551 TREE_TYPE (TREE_VALUE (TREE_VEC_ELT (main_inner_parms,
2552 i)));
2553
2554 if (!tpd2.parms)
2555 {
2556 /* We haven't yet initialized TPD2. Do so now. */
2557 tpd2.arg_uses_template_parms
2558 = alloca (sizeof (int) * nargs);
2559 /* The number of parameters here is the number in the
2560 main template, which, as checked in the assertion
2561 above, is NARGS. */
2562 tpd2.parms = alloca (sizeof (int) * nargs);
2563 tpd2.level =
2564 TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (maintmpl));
2565 }
2566
2567 /* Mark the template parameters. But this time, we're
2568 looking for the template parameters of the main
2569 template, not in the specialization. */
2570 tpd2.current_arg = i;
2571 tpd2.arg_uses_template_parms[i] = 0;
2572 memset (tpd2.parms, 0, sizeof (int) * nargs);
2573 for_each_template_parm (type,
2574 &mark_template_parm,
2575 &tpd2,
2576 NULL);
2577
2578 if (tpd2.arg_uses_template_parms [i])
2579 {
2580 /* The type depended on some template parameters.
2581 If they are fully specialized in the
2582 specialization, that's OK. */
2583 int j;
2584 for (j = 0; j < nargs; ++j)
2585 if (tpd2.parms[j] != 0
2586 && tpd.arg_uses_template_parms [j])
2587 {
2588 error ("type `%T' of template argument `%E' depends on template parameter(s)",
2589 type,
2590 arg);
2591 break;
2592 }
2593 }
2594 }
2595 }
2596 }
2597
2598 if (retrieve_specialization (maintmpl, specargs))
2599 /* We've already got this specialization. */
2600 return decl;
2601
2602 DECL_TEMPLATE_SPECIALIZATIONS (maintmpl)
2603 = tree_cons (inner_args, inner_parms,
2604 DECL_TEMPLATE_SPECIALIZATIONS (maintmpl));
2605 TREE_TYPE (DECL_TEMPLATE_SPECIALIZATIONS (maintmpl)) = type;
2606 return decl;
2607 }
2608
2609 /* Check that a template declaration's use of default arguments is not
2610 invalid. Here, PARMS are the template parameters. IS_PRIMARY is
2611 nonzero if DECL is the thing declared by a primary template.
2612 IS_PARTIAL is nonzero if DECL is a partial specialization. */
2613
2614 static void
2615 check_default_tmpl_args (tree decl, tree parms, int is_primary, int is_partial)
2616 {
2617 const char *msg;
2618 int last_level_to_check;
2619 tree parm_level;
2620
2621 /* [temp.param]
2622
2623 A default template-argument shall not be specified in a
2624 function template declaration or a function template definition, nor
2625 in the template-parameter-list of the definition of a member of a
2626 class template. */
2627
2628 if (TREE_CODE (CP_DECL_CONTEXT (decl)) == FUNCTION_DECL)
2629 /* You can't have a function template declaration in a local
2630 scope, nor you can you define a member of a class template in a
2631 local scope. */
2632 return;
2633
2634 if (current_class_type
2635 && !TYPE_BEING_DEFINED (current_class_type)
2636 && DECL_LANG_SPECIFIC (decl)
2637 /* If this is either a friend defined in the scope of the class
2638 or a member function. */
2639 && (DECL_FUNCTION_MEMBER_P (decl)
2640 ? same_type_p (DECL_CONTEXT (decl), current_class_type)
2641 : DECL_FRIEND_CONTEXT (decl)
2642 ? same_type_p (DECL_FRIEND_CONTEXT (decl), current_class_type)
2643 : false)
2644 /* And, if it was a member function, it really was defined in
2645 the scope of the class. */
2646 && (!DECL_FUNCTION_MEMBER_P (decl)
2647 || DECL_INITIALIZED_IN_CLASS_P (decl)))
2648 /* We already checked these parameters when the template was
2649 declared, so there's no need to do it again now. This function
2650 was defined in class scope, but we're processing it's body now
2651 that the class is complete. */
2652 return;
2653
2654 /* [temp.param]
2655
2656 If a template-parameter has a default template-argument, all
2657 subsequent template-parameters shall have a default
2658 template-argument supplied. */
2659 for (parm_level = parms; parm_level; parm_level = TREE_CHAIN (parm_level))
2660 {
2661 tree inner_parms = TREE_VALUE (parm_level);
2662 int ntparms = TREE_VEC_LENGTH (inner_parms);
2663 int seen_def_arg_p = 0;
2664 int i;
2665
2666 for (i = 0; i < ntparms; ++i)
2667 {
2668 tree parm = TREE_VEC_ELT (inner_parms, i);
2669 if (TREE_PURPOSE (parm))
2670 seen_def_arg_p = 1;
2671 else if (seen_def_arg_p)
2672 {
2673 error ("no default argument for `%D'", TREE_VALUE (parm));
2674 /* For better subsequent error-recovery, we indicate that
2675 there should have been a default argument. */
2676 TREE_PURPOSE (parm) = error_mark_node;
2677 }
2678 }
2679 }
2680
2681 if (TREE_CODE (decl) != TYPE_DECL || is_partial || !is_primary)
2682 /* For an ordinary class template, default template arguments are
2683 allowed at the innermost level, e.g.:
2684 template <class T = int>
2685 struct S {};
2686 but, in a partial specialization, they're not allowed even
2687 there, as we have in [temp.class.spec]:
2688
2689 The template parameter list of a specialization shall not
2690 contain default template argument values.
2691
2692 So, for a partial specialization, or for a function template,
2693 we look at all of them. */
2694 ;
2695 else
2696 /* But, for a primary class template that is not a partial
2697 specialization we look at all template parameters except the
2698 innermost ones. */
2699 parms = TREE_CHAIN (parms);
2700
2701 /* Figure out what error message to issue. */
2702 if (TREE_CODE (decl) == FUNCTION_DECL)
2703 msg = "default template arguments may not be used in function templates";
2704 else if (is_partial)
2705 msg = "default template arguments may not be used in partial specializations";
2706 else
2707 msg = "default argument for template parameter for class enclosing `%D'";
2708
2709 if (current_class_type && TYPE_BEING_DEFINED (current_class_type))
2710 /* If we're inside a class definition, there's no need to
2711 examine the parameters to the class itself. On the one
2712 hand, they will be checked when the class is defined, and,
2713 on the other, default arguments are valid in things like:
2714 template <class T = double>
2715 struct S { template <class U> void f(U); };
2716 Here the default argument for `S' has no bearing on the
2717 declaration of `f'. */
2718 last_level_to_check = template_class_depth (current_class_type) + 1;
2719 else
2720 /* Check everything. */
2721 last_level_to_check = 0;
2722
2723 for (parm_level = parms;
2724 parm_level && TMPL_PARMS_DEPTH (parm_level) >= last_level_to_check;
2725 parm_level = TREE_CHAIN (parm_level))
2726 {
2727 tree inner_parms = TREE_VALUE (parm_level);
2728 int i;
2729 int ntparms;
2730
2731 ntparms = TREE_VEC_LENGTH (inner_parms);
2732 for (i = 0; i < ntparms; ++i)
2733 if (TREE_PURPOSE (TREE_VEC_ELT (inner_parms, i)))
2734 {
2735 if (msg)
2736 {
2737 error (msg, decl);
2738 msg = 0;
2739 }
2740
2741 /* Clear out the default argument so that we are not
2742 confused later. */
2743 TREE_PURPOSE (TREE_VEC_ELT (inner_parms, i)) = NULL_TREE;
2744 }
2745
2746 /* At this point, if we're still interested in issuing messages,
2747 they must apply to classes surrounding the object declared. */
2748 if (msg)
2749 msg = "default argument for template parameter for class enclosing `%D'";
2750 }
2751 }
2752
2753 /* Worker for push_template_decl_real, called via
2754 for_each_template_parm. DATA is really an int, indicating the
2755 level of the parameters we are interested in. If T is a template
2756 parameter of that level, return nonzero. */
2757
2758 static int
2759 template_parm_this_level_p (tree t, void* data)
2760 {
2761 int this_level = *(int *)data;
2762 int level;
2763
2764 if (TREE_CODE (t) == TEMPLATE_PARM_INDEX)
2765 level = TEMPLATE_PARM_LEVEL (t);
2766 else
2767 level = TEMPLATE_TYPE_LEVEL (t);
2768 return level == this_level;
2769 }
2770
2771 /* Creates a TEMPLATE_DECL for the indicated DECL using the template
2772 parameters given by current_template_args, or reuses a
2773 previously existing one, if appropriate. Returns the DECL, or an
2774 equivalent one, if it is replaced via a call to duplicate_decls.
2775
2776 If IS_FRIEND is nonzero, DECL is a friend declaration. */
2777
2778 tree
2779 push_template_decl_real (tree decl, int is_friend)
2780 {
2781 tree tmpl;
2782 tree args;
2783 tree info;
2784 tree ctx;
2785 int primary;
2786 int is_partial;
2787 int new_template_p = 0;
2788
2789 if (decl == error_mark_node)
2790 return decl;
2791
2792 /* See if this is a partial specialization. */
2793 is_partial = (DECL_IMPLICIT_TYPEDEF_P (decl)
2794 && TREE_CODE (TREE_TYPE (decl)) != ENUMERAL_TYPE
2795 && CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (decl)));
2796
2797 is_friend |= (TREE_CODE (decl) == FUNCTION_DECL && DECL_FRIEND_P (decl));
2798
2799 if (is_friend)
2800 /* For a friend, we want the context of the friend function, not
2801 the type of which it is a friend. */
2802 ctx = DECL_CONTEXT (decl);
2803 else if (CP_DECL_CONTEXT (decl)
2804 && TREE_CODE (CP_DECL_CONTEXT (decl)) != NAMESPACE_DECL)
2805 /* In the case of a virtual function, we want the class in which
2806 it is defined. */
2807 ctx = CP_DECL_CONTEXT (decl);
2808 else
2809 /* Otherwise, if we're currently defining some class, the DECL
2810 is assumed to be a member of the class. */
2811 ctx = current_scope ();
2812
2813 if (ctx && TREE_CODE (ctx) == NAMESPACE_DECL)
2814 ctx = NULL_TREE;
2815
2816 if (!DECL_CONTEXT (decl))
2817 DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
2818
2819 /* See if this is a primary template. */
2820 primary = template_parm_scope_p ();
2821
2822 if (primary)
2823 {
2824 if (current_lang_name == lang_name_c)
2825 error ("template with C linkage");
2826 else if (TREE_CODE (decl) == TYPE_DECL
2827 && ANON_AGGRNAME_P (DECL_NAME (decl)))
2828 error ("template class without a name");
2829 else if (TREE_CODE (decl) == FUNCTION_DECL
2830 && DECL_DESTRUCTOR_P (decl))
2831 {
2832 /* [temp.mem]
2833
2834 A destructor shall not be a member template. */
2835 error ("destructor `%D' declared as member template", decl);
2836 return error_mark_node;
2837 }
2838 else if ((DECL_IMPLICIT_TYPEDEF_P (decl)
2839 && CLASS_TYPE_P (TREE_TYPE (decl)))
2840 || (TREE_CODE (decl) == VAR_DECL && ctx && CLASS_TYPE_P (ctx))
2841 || TREE_CODE (decl) == FUNCTION_DECL)
2842 /* OK */;
2843 else
2844 {
2845 error ("template declaration of `%#D'", decl);
2846 return error_mark_node;
2847 }
2848 }
2849
2850 /* Check to see that the rules regarding the use of default
2851 arguments are not being violated. */
2852 check_default_tmpl_args (decl, current_template_parms,
2853 primary, is_partial);
2854
2855 if (is_partial)
2856 return process_partial_specialization (decl);
2857
2858 args = current_template_args ();
2859
2860 if (!ctx
2861 || TREE_CODE (ctx) == FUNCTION_DECL
2862 || (CLASS_TYPE_P (ctx) && TYPE_BEING_DEFINED (ctx))
2863 || (is_friend && !DECL_TEMPLATE_INFO (decl)))
2864 {
2865 if (DECL_LANG_SPECIFIC (decl)
2866 && DECL_TEMPLATE_INFO (decl)
2867 && DECL_TI_TEMPLATE (decl))
2868 tmpl = DECL_TI_TEMPLATE (decl);
2869 /* If DECL is a TYPE_DECL for a class-template, then there won't
2870 be DECL_LANG_SPECIFIC. The information equivalent to
2871 DECL_TEMPLATE_INFO is found in TYPE_TEMPLATE_INFO instead. */
2872 else if (DECL_IMPLICIT_TYPEDEF_P (decl)
2873 && TYPE_TEMPLATE_INFO (TREE_TYPE (decl))
2874 && TYPE_TI_TEMPLATE (TREE_TYPE (decl)))
2875 {
2876 /* Since a template declaration already existed for this
2877 class-type, we must be redeclaring it here. Make sure
2878 that the redeclaration is valid. */
2879 redeclare_class_template (TREE_TYPE (decl),
2880 current_template_parms);
2881 /* We don't need to create a new TEMPLATE_DECL; just use the
2882 one we already had. */
2883 tmpl = TYPE_TI_TEMPLATE (TREE_TYPE (decl));
2884 }
2885 else
2886 {
2887 tmpl = build_template_decl (decl, current_template_parms);
2888 new_template_p = 1;
2889
2890 if (DECL_LANG_SPECIFIC (decl)
2891 && DECL_TEMPLATE_SPECIALIZATION (decl))
2892 {
2893 /* A specialization of a member template of a template
2894 class. */
2895 SET_DECL_TEMPLATE_SPECIALIZATION (tmpl);
2896 DECL_TEMPLATE_INFO (tmpl) = DECL_TEMPLATE_INFO (decl);
2897 DECL_TEMPLATE_INFO (decl) = NULL_TREE;
2898 }
2899 }
2900 }
2901 else
2902 {
2903 tree a, t, current, parms;
2904 int i;
2905
2906 if (TREE_CODE (decl) == TYPE_DECL)
2907 {
2908 if ((IS_AGGR_TYPE_CODE (TREE_CODE (TREE_TYPE (decl)))
2909 || TREE_CODE (TREE_TYPE (decl)) == ENUMERAL_TYPE)
2910 && TYPE_TEMPLATE_INFO (TREE_TYPE (decl))
2911 && TYPE_TI_TEMPLATE (TREE_TYPE (decl)))
2912 tmpl = TYPE_TI_TEMPLATE (TREE_TYPE (decl));
2913 else
2914 {
2915 error ("`%D' does not declare a template type", decl);
2916 return decl;
2917 }
2918 }
2919 else if (!DECL_LANG_SPECIFIC (decl) || !DECL_TEMPLATE_INFO (decl))
2920 {
2921 error ("template definition of non-template `%#D'", decl);
2922 return decl;
2923 }
2924 else
2925 tmpl = DECL_TI_TEMPLATE (decl);
2926
2927 if (DECL_FUNCTION_TEMPLATE_P (tmpl)
2928 && DECL_TEMPLATE_INFO (decl) && DECL_TI_ARGS (decl)
2929 && DECL_TEMPLATE_SPECIALIZATION (decl)
2930 && is_member_template (tmpl))
2931 {
2932 tree new_tmpl;
2933
2934 /* The declaration is a specialization of a member
2935 template, declared outside the class. Therefore, the
2936 innermost template arguments will be NULL, so we
2937 replace them with the arguments determined by the
2938 earlier call to check_explicit_specialization. */
2939 args = DECL_TI_ARGS (decl);
2940
2941 new_tmpl
2942 = build_template_decl (decl, current_template_parms);
2943 DECL_TEMPLATE_RESULT (new_tmpl) = decl;
2944 TREE_TYPE (new_tmpl) = TREE_TYPE (decl);
2945 DECL_TI_TEMPLATE (decl) = new_tmpl;
2946 SET_DECL_TEMPLATE_SPECIALIZATION (new_tmpl);
2947 DECL_TEMPLATE_INFO (new_tmpl)
2948 = tree_cons (tmpl, args, NULL_TREE);
2949
2950 register_specialization (new_tmpl,
2951 most_general_template (tmpl),
2952 args);
2953 return decl;
2954 }
2955
2956 /* Make sure the template headers we got make sense. */
2957
2958 parms = DECL_TEMPLATE_PARMS (tmpl);
2959 i = TMPL_PARMS_DEPTH (parms);
2960 if (TMPL_ARGS_DEPTH (args) != i)
2961 {
2962 error ("expected %d levels of template parms for `%#D', got %d",
2963 i, decl, TMPL_ARGS_DEPTH (args));
2964 }
2965 else
2966 for (current = decl; i > 0; --i, parms = TREE_CHAIN (parms))
2967 {
2968 a = TMPL_ARGS_LEVEL (args, i);
2969 t = INNERMOST_TEMPLATE_PARMS (parms);
2970
2971 if (TREE_VEC_LENGTH (t) != TREE_VEC_LENGTH (a))
2972 {
2973 if (current == decl)
2974 error ("got %d template parameters for `%#D'",
2975 TREE_VEC_LENGTH (a), decl);
2976 else
2977 error ("got %d template parameters for `%#T'",
2978 TREE_VEC_LENGTH (a), current);
2979 error (" but %d required", TREE_VEC_LENGTH (t));
2980 }
2981
2982 /* Perhaps we should also check that the parms are used in the
2983 appropriate qualifying scopes in the declarator? */
2984
2985 if (current == decl)
2986 current = ctx;
2987 else
2988 current = TYPE_CONTEXT (current);
2989 }
2990 }
2991
2992 DECL_TEMPLATE_RESULT (tmpl) = decl;
2993 TREE_TYPE (tmpl) = TREE_TYPE (decl);
2994
2995 /* Push template declarations for global functions and types. Note
2996 that we do not try to push a global template friend declared in a
2997 template class; such a thing may well depend on the template
2998 parameters of the class. */
2999 if (new_template_p && !ctx
3000 && !(is_friend && template_class_depth (current_class_type) > 0))
3001 tmpl = pushdecl_namespace_level (tmpl);
3002
3003 if (primary)
3004 {
3005 DECL_PRIMARY_TEMPLATE (tmpl) = tmpl;
3006 if (DECL_CONV_FN_P (tmpl))
3007 {
3008 int depth = TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl));
3009
3010 /* It is a conversion operator. See if the type converted to
3011 depends on innermost template operands. */
3012
3013 if (uses_template_parms_level (TREE_TYPE (TREE_TYPE (tmpl)),
3014 depth))
3015 DECL_TEMPLATE_CONV_FN_P (tmpl) = 1;
3016 }
3017 }
3018
3019 /* The DECL_TI_ARGS of DECL contains full set of arguments referring
3020 back to its most general template. If TMPL is a specialization,
3021 ARGS may only have the innermost set of arguments. Add the missing
3022 argument levels if necessary. */
3023 if (DECL_TEMPLATE_INFO (tmpl))
3024 args = add_outermost_template_args (DECL_TI_ARGS (tmpl), args);
3025
3026 info = tree_cons (tmpl, args, NULL_TREE);
3027
3028 if (DECL_IMPLICIT_TYPEDEF_P (decl))
3029 {
3030 SET_TYPE_TEMPLATE_INFO (TREE_TYPE (tmpl), info);
3031 if ((!ctx || TREE_CODE (ctx) != FUNCTION_DECL)
3032 && TREE_CODE (TREE_TYPE (decl)) != ENUMERAL_TYPE
3033 /* Don't change the name if we've already set it up. */
3034 && !IDENTIFIER_TEMPLATE (DECL_NAME (decl)))
3035 DECL_NAME (decl) = classtype_mangled_name (TREE_TYPE (decl));
3036 }
3037 else if (DECL_LANG_SPECIFIC (decl))
3038 DECL_TEMPLATE_INFO (decl) = info;
3039
3040 return DECL_TEMPLATE_RESULT (tmpl);
3041 }
3042
3043 tree
3044 push_template_decl (tree decl)
3045 {
3046 return push_template_decl_real (decl, 0);
3047 }
3048
3049 /* Called when a class template TYPE is redeclared with the indicated
3050 template PARMS, e.g.:
3051
3052 template <class T> struct S;
3053 template <class T> struct S {}; */
3054
3055 void
3056 redeclare_class_template (tree type, tree parms)
3057 {
3058 tree tmpl;
3059 tree tmpl_parms;
3060 int i;
3061
3062 if (!TYPE_TEMPLATE_INFO (type))
3063 {
3064 error ("`%T' is not a template type", type);
3065 return;
3066 }
3067
3068 tmpl = TYPE_TI_TEMPLATE (type);
3069 if (!PRIMARY_TEMPLATE_P (tmpl))
3070 /* The type is nested in some template class. Nothing to worry
3071 about here; there are no new template parameters for the nested
3072 type. */
3073 return;
3074
3075 parms = INNERMOST_TEMPLATE_PARMS (parms);
3076 tmpl_parms = DECL_INNERMOST_TEMPLATE_PARMS (tmpl);
3077
3078 if (TREE_VEC_LENGTH (parms) != TREE_VEC_LENGTH (tmpl_parms))
3079 {
3080 cp_error_at ("previous declaration `%D'", tmpl);
3081 error ("used %d template parameter%s instead of %d",
3082 TREE_VEC_LENGTH (tmpl_parms),
3083 TREE_VEC_LENGTH (tmpl_parms) == 1 ? "" : "s",
3084 TREE_VEC_LENGTH (parms));
3085 return;
3086 }
3087
3088 for (i = 0; i < TREE_VEC_LENGTH (tmpl_parms); ++i)
3089 {
3090 tree tmpl_parm = TREE_VALUE (TREE_VEC_ELT (tmpl_parms, i));
3091 tree parm = TREE_VALUE (TREE_VEC_ELT (parms, i));
3092 tree tmpl_default = TREE_PURPOSE (TREE_VEC_ELT (tmpl_parms, i));
3093 tree parm_default = TREE_PURPOSE (TREE_VEC_ELT (parms, i));
3094
3095 if (TREE_CODE (tmpl_parm) != TREE_CODE (parm))
3096 {
3097 cp_error_at ("template parameter `%#D'", tmpl_parm);
3098 error ("redeclared here as `%#D'", parm);
3099 return;
3100 }
3101
3102 if (tmpl_default != NULL_TREE && parm_default != NULL_TREE)
3103 {
3104 /* We have in [temp.param]:
3105
3106 A template-parameter may not be given default arguments
3107 by two different declarations in the same scope. */
3108 error ("redefinition of default argument for `%#D'", parm);
3109 error ("%J original definition appeared here", tmpl_parm);
3110 return;
3111 }
3112
3113 if (parm_default != NULL_TREE)
3114 /* Update the previous template parameters (which are the ones
3115 that will really count) with the new default value. */
3116 TREE_PURPOSE (TREE_VEC_ELT (tmpl_parms, i)) = parm_default;
3117 else if (tmpl_default != NULL_TREE)
3118 /* Update the new parameters, too; they'll be used as the
3119 parameters for any members. */
3120 TREE_PURPOSE (TREE_VEC_ELT (parms, i)) = tmpl_default;
3121 }
3122 }
3123
3124 /* Simplify EXPR if it is a non-dependent expression. Returns the
3125 (possibly simplified) expression. */
3126
3127 tree
3128 fold_non_dependent_expr (tree expr)
3129 {
3130 /* If we're in a template, but EXPR isn't value dependent, simplify
3131 it. We're supposed to treat:
3132
3133 template <typename T> void f(T[1 + 1]);
3134 template <typename T> void f(T[2]);
3135
3136 as two declarations of the same function, for example. */
3137 if (processing_template_decl
3138 && !type_dependent_expression_p (expr)
3139 && !value_dependent_expression_p (expr))
3140 {
3141 HOST_WIDE_INT saved_processing_template_decl;
3142
3143 saved_processing_template_decl = processing_template_decl;
3144 processing_template_decl = 0;
3145 expr = tsubst_copy_and_build (expr,
3146 /*args=*/NULL_TREE,
3147 tf_error,
3148 /*in_decl=*/NULL_TREE,
3149 /*function_p=*/false);
3150 processing_template_decl = saved_processing_template_decl;
3151 }
3152 return expr;
3153 }
3154
3155 /* Attempt to convert the non-type template parameter EXPR to the
3156 indicated TYPE. If the conversion is successful, return the
3157 converted value. If the conversion is unsuccessful, return
3158 NULL_TREE if we issued an error message, or error_mark_node if we
3159 did not. We issue error messages for out-and-out bad template
3160 parameters, but not simply because the conversion failed, since we
3161 might be just trying to do argument deduction. Both TYPE and EXPR
3162 must be non-dependent. */
3163
3164 static tree
3165 convert_nontype_argument (tree type, tree expr)
3166 {
3167 tree expr_type;
3168
3169 /* If we are in a template, EXPR may be non-dependent, but still
3170 have a syntactic, rather than semantic, form. For example, EXPR
3171 might be a SCOPE_REF, rather than the VAR_DECL to which the
3172 SCOPE_REF refers. Preserving the qualifying scope is necessary
3173 so that access checking can be performed when the template is
3174 instantiated -- but here we need the resolved form so that we can
3175 convert the argument. */
3176 expr = fold_non_dependent_expr (expr);
3177 expr_type = TREE_TYPE (expr);
3178
3179 /* A template-argument for a non-type, non-template
3180 template-parameter shall be one of:
3181
3182 --an integral constant-expression of integral or enumeration
3183 type; or
3184
3185 --the name of a non-type template-parameter; or
3186
3187 --the name of an object or function with external linkage,
3188 including function templates and function template-ids but
3189 excluding non-static class members, expressed as id-expression;
3190 or
3191
3192 --the address of an object or function with external linkage,
3193 including function templates and function template-ids but
3194 excluding non-static class members, expressed as & id-expression
3195 where the & is optional if the name refers to a function or
3196 array; or
3197
3198 --a pointer to member expressed as described in _expr.unary.op_. */
3199
3200 /* An integral constant-expression can include const variables or
3201 . enumerators. Simplify things by folding them to their values,
3202 unless we're about to bind the declaration to a reference
3203 parameter. */
3204 if (INTEGRAL_TYPE_P (expr_type) && TREE_CODE (type) != REFERENCE_TYPE)
3205 while (true)
3206 {
3207 tree const_expr = decl_constant_value (expr);
3208 /* In a template, the initializer for a VAR_DECL may not be
3209 marked as TREE_CONSTANT, in which case decl_constant_value
3210 will not return the initializer. Handle that special case
3211 here. */
3212 if (expr == const_expr
3213 && TREE_CODE (expr) == VAR_DECL
3214 && DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (expr)
3215 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (expr))
3216 /* DECL_INITIAL can be NULL if we are processing a
3217 variable initialized to an expression involving itself.
3218 We know it is initialized to a constant -- but not what
3219 constant, yet. */
3220 && DECL_INITIAL (expr))
3221 const_expr = DECL_INITIAL (expr);
3222 if (expr == const_expr)
3223 break;
3224 expr = fold_non_dependent_expr (const_expr);
3225 }
3226
3227 if (is_overloaded_fn (expr))
3228 /* OK for now. We'll check that it has external linkage later.
3229 Check this first since if expr_type is the unknown_type_node
3230 we would otherwise complain below. */
3231 ;
3232 else if (TYPE_PTR_TO_MEMBER_P (expr_type))
3233 {
3234 if (TREE_CODE (expr) != PTRMEM_CST)
3235 goto bad_argument;
3236 }
3237 else if (TYPE_PTR_P (expr_type)
3238 || TREE_CODE (expr_type) == ARRAY_TYPE
3239 || TREE_CODE (type) == REFERENCE_TYPE
3240 /* If expr is the address of an overloaded function, we
3241 will get the unknown_type_node at this point. */
3242 || expr_type == unknown_type_node)
3243 {
3244 tree referent;
3245 tree e = expr;
3246 STRIP_NOPS (e);
3247
3248 if (TREE_CODE (expr_type) == ARRAY_TYPE
3249 || (TREE_CODE (type) == REFERENCE_TYPE
3250 && TREE_CODE (e) != ADDR_EXPR))
3251 referent = e;
3252 else
3253 {
3254 if (TREE_CODE (e) != ADDR_EXPR)
3255 {
3256 bad_argument:
3257 error ("`%E' is not a valid template argument", expr);
3258 if (TYPE_PTR_P (expr_type))
3259 {
3260 if (TREE_CODE (TREE_TYPE (expr_type)) == FUNCTION_TYPE)
3261 error ("it must be the address of a function with external linkage");
3262 else
3263 error ("it must be the address of an object with external linkage");
3264 }
3265 else if (TYPE_PTR_TO_MEMBER_P (expr_type))
3266 error ("it must be a pointer-to-member of the form `&X::Y'");
3267
3268 return NULL_TREE;
3269 }
3270
3271 referent = TREE_OPERAND (e, 0);
3272 STRIP_NOPS (referent);
3273 }
3274
3275 if (TREE_CODE (referent) == STRING_CST)
3276 {
3277 error ("string literal %E is not a valid template argument because it is the address of an object with static linkage",
3278 referent);
3279 return NULL_TREE;
3280 }
3281
3282 if (TREE_CODE (referent) == SCOPE_REF)
3283 referent = TREE_OPERAND (referent, 1);
3284
3285 if (is_overloaded_fn (referent))
3286 /* We'll check that it has external linkage later. */
3287 ;
3288 else if (TREE_CODE (referent) != VAR_DECL)
3289 goto bad_argument;
3290 else if (!DECL_EXTERNAL_LINKAGE_P (referent))
3291 {
3292 error ("address of non-extern `%E' cannot be used as template argument", referent);
3293 return error_mark_node;
3294 }
3295 }
3296 else if (INTEGRAL_TYPE_P (expr_type) || TYPE_PTR_TO_MEMBER_P (expr_type))
3297 {
3298 if (! TREE_CONSTANT (expr))
3299 {
3300 non_constant:
3301 error ("non-constant `%E' cannot be used as template argument",
3302 expr);
3303 return NULL_TREE;
3304 }
3305 }
3306 else
3307 {
3308 if (TYPE_P (expr))
3309 error ("type '%T' cannot be used as a value for a non-type "
3310 "template-parameter", expr);
3311 else if (DECL_P (expr))
3312 error ("invalid use of '%D' as a non-type template-argument", expr);
3313 else
3314 error ("invalid use of '%E' as a non-type template-argument", expr);
3315
3316 return NULL_TREE;
3317 }
3318
3319 switch (TREE_CODE (type))
3320 {
3321 case INTEGER_TYPE:
3322 case BOOLEAN_TYPE:
3323 case ENUMERAL_TYPE:
3324 /* For a non-type template-parameter of integral or enumeration
3325 type, integral promotions (_conv.prom_) and integral
3326 conversions (_conv.integral_) are applied. */
3327 if (!INTEGRAL_TYPE_P (expr_type))
3328 return error_mark_node;
3329
3330 /* It's safe to call digest_init in this case; we know we're
3331 just converting one integral constant expression to another. */
3332 expr = digest_init (type, expr, (tree*) 0);
3333
3334 if (TREE_CODE (expr) != INTEGER_CST)
3335 /* Curiously, some TREE_CONSTANT integral expressions do not
3336 simplify to integer constants. For example, `3 % 0',
3337 remains a TRUNC_MOD_EXPR. */
3338 goto non_constant;
3339
3340 return expr;
3341
3342 case OFFSET_TYPE:
3343 {
3344 tree e;
3345
3346 /* For a non-type template-parameter of type pointer to data
3347 member, qualification conversions (_conv.qual_) are
3348 applied. */
3349 e = perform_qualification_conversions (type, expr);
3350 if (TREE_CODE (e) == NOP_EXPR)
3351 /* The call to perform_qualification_conversions will
3352 insert a NOP_EXPR over EXPR to do express conversion,
3353 if necessary. But, that will confuse us if we use
3354 this (converted) template parameter to instantiate
3355 another template; then the thing will not look like a
3356 valid template argument. So, just make a new
3357 constant, of the appropriate type. */
3358 e = make_ptrmem_cst (type, PTRMEM_CST_MEMBER (expr));
3359 return e;
3360 }
3361
3362 case POINTER_TYPE:
3363 {
3364 tree type_pointed_to = TREE_TYPE (type);
3365
3366 if (TREE_CODE (type_pointed_to) == FUNCTION_TYPE)
3367 {
3368 /* For a non-type template-parameter of type pointer to
3369 function, only the function-to-pointer conversion
3370 (_conv.func_) is applied. If the template-argument
3371 represents a set of overloaded functions (or a pointer to
3372 such), the matching function is selected from the set
3373 (_over.over_). */
3374 tree fns;
3375 tree fn;
3376
3377 if (TREE_CODE (expr) == ADDR_EXPR)
3378 fns = TREE_OPERAND (expr, 0);
3379 else
3380 fns = expr;
3381
3382 fn = instantiate_type (type_pointed_to, fns, tf_none);
3383
3384 if (fn == error_mark_node)
3385 return error_mark_node;
3386
3387 if (!DECL_EXTERNAL_LINKAGE_P (fn))
3388 {
3389 if (really_overloaded_fn (fns))
3390 return error_mark_node;
3391 else
3392 goto bad_argument;
3393 }
3394
3395 expr = build_unary_op (ADDR_EXPR, fn, 0);
3396
3397 my_friendly_assert (same_type_p (type, TREE_TYPE (expr)),
3398 0);
3399 return expr;
3400 }
3401 else
3402 {
3403 /* For a non-type template-parameter of type pointer to
3404 object, qualification conversions (_conv.qual_) and the
3405 array-to-pointer conversion (_conv.array_) are applied.
3406 [Note: In particular, neither the null pointer conversion
3407 (_conv.ptr_) nor the derived-to-base conversion
3408 (_conv.ptr_) are applied. Although 0 is a valid
3409 template-argument for a non-type template-parameter of
3410 integral type, it is not a valid template-argument for a
3411 non-type template-parameter of pointer type.]
3412
3413 The call to decay_conversion performs the
3414 array-to-pointer conversion, if appropriate. */
3415 expr = decay_conversion (expr);
3416
3417 if (expr == error_mark_node)
3418 return error_mark_node;
3419 else
3420 return perform_qualification_conversions (type, expr);
3421 }
3422 }
3423 break;
3424
3425 case REFERENCE_TYPE:
3426 {
3427 tree type_referred_to = TREE_TYPE (type);
3428
3429 /* If this expression already has reference type, get the
3430 underlying object. */
3431 if (TREE_CODE (expr_type) == REFERENCE_TYPE)
3432 {
3433 if (TREE_CODE (expr) == NOP_EXPR
3434 && TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
3435 STRIP_NOPS (expr);
3436 my_friendly_assert (TREE_CODE (expr) == ADDR_EXPR, 20000604);
3437 expr = TREE_OPERAND (expr, 0);
3438 expr_type = TREE_TYPE (expr);
3439 }
3440
3441 if (TREE_CODE (type_referred_to) == FUNCTION_TYPE)
3442 {
3443 /* For a non-type template-parameter of type reference to
3444 function, no conversions apply. If the
3445 template-argument represents a set of overloaded
3446 functions, the matching function is selected from the
3447 set (_over.over_). */
3448 tree fn;
3449
3450 fn = instantiate_type (type_referred_to, expr, tf_none);
3451
3452 if (fn == error_mark_node)
3453 return error_mark_node;
3454
3455 if (!DECL_EXTERNAL_LINKAGE_P (fn))
3456 {
3457 if (really_overloaded_fn (expr))
3458 /* Don't issue an error here; we might get a different
3459 function if the overloading had worked out
3460 differently. */
3461 return error_mark_node;
3462 else
3463 goto bad_argument;
3464 }
3465
3466 my_friendly_assert (same_type_p (type_referred_to,
3467 TREE_TYPE (fn)),
3468 0);
3469
3470 expr = fn;
3471 }
3472 else
3473 {
3474 /* For a non-type template-parameter of type reference to
3475 object, no conversions apply. The type referred to by the
3476 reference may be more cv-qualified than the (otherwise
3477 identical) type of the template-argument. The
3478 template-parameter is bound directly to the
3479 template-argument, which must be an lvalue. */
3480 if (!same_type_p (TYPE_MAIN_VARIANT (expr_type),
3481 TYPE_MAIN_VARIANT (type_referred_to))
3482 || !at_least_as_qualified_p (type_referred_to,
3483 expr_type)
3484 || !real_lvalue_p (expr))
3485 return error_mark_node;
3486 }
3487
3488 cxx_mark_addressable (expr);
3489 return build_nop (type, build_address (expr));
3490 }
3491 break;
3492
3493 case RECORD_TYPE:
3494 {
3495 my_friendly_assert (TYPE_PTRMEMFUNC_P (type), 20010112);
3496
3497 /* For a non-type template-parameter of type pointer to member
3498 function, no conversions apply. If the template-argument
3499 represents a set of overloaded member functions, the
3500 matching member function is selected from the set
3501 (_over.over_). */
3502
3503 if (!TYPE_PTRMEMFUNC_P (expr_type) &&
3504 expr_type != unknown_type_node)
3505 return error_mark_node;
3506
3507 if (TREE_CODE (expr) == PTRMEM_CST)
3508 {
3509 /* A ptr-to-member constant. */
3510 if (!same_type_p (type, expr_type))
3511 return error_mark_node;
3512 else
3513 return expr;
3514 }
3515
3516 if (TREE_CODE (expr) != ADDR_EXPR)
3517 return error_mark_node;
3518
3519 expr = instantiate_type (type, expr, tf_none);
3520
3521 if (expr == error_mark_node)
3522 return error_mark_node;
3523
3524 if (!same_type_p (type, TREE_TYPE (expr)))
3525 return error_mark_node;
3526
3527 return expr;
3528 }
3529 break;
3530
3531 default:
3532 /* All non-type parameters must have one of these types. */
3533 abort ();
3534 break;
3535 }
3536
3537 return error_mark_node;
3538 }
3539
3540 /* Return 1 if PARM_PARMS and ARG_PARMS matches using rule for
3541 template template parameters. Both PARM_PARMS and ARG_PARMS are
3542 vectors of TREE_LIST nodes containing TYPE_DECL, TEMPLATE_DECL
3543 or PARM_DECL.
3544
3545 ARG_PARMS may contain more parameters than PARM_PARMS. If this is
3546 the case, then extra parameters must have default arguments.
3547
3548 Consider the example:
3549 template <class T, class Allocator = allocator> class vector;
3550 template<template <class U> class TT> class C;
3551
3552 C<vector> is a valid instantiation. PARM_PARMS for the above code
3553 contains a TYPE_DECL (for U), ARG_PARMS contains two TYPE_DECLs (for
3554 T and Allocator) and OUTER_ARGS contains the argument that is used to
3555 substitute the TT parameter. */
3556
3557 static int
3558 coerce_template_template_parms (tree parm_parms,
3559 tree arg_parms,
3560 tsubst_flags_t complain,
3561 tree in_decl,
3562 tree outer_args)
3563 {
3564 int nparms, nargs, i;
3565 tree parm, arg;
3566
3567 my_friendly_assert (TREE_CODE (parm_parms) == TREE_VEC, 0);
3568 my_friendly_assert (TREE_CODE (arg_parms) == TREE_VEC, 0);
3569
3570 nparms = TREE_VEC_LENGTH (parm_parms);
3571 nargs = TREE_VEC_LENGTH (arg_parms);
3572
3573 /* The rule here is opposite of coerce_template_parms. */
3574 if (nargs < nparms
3575 || (nargs > nparms
3576 && TREE_PURPOSE (TREE_VEC_ELT (arg_parms, nparms)) == NULL_TREE))
3577 return 0;
3578
3579 for (i = 0; i < nparms; ++i)
3580 {
3581 parm = TREE_VALUE (TREE_VEC_ELT (parm_parms, i));
3582 arg = TREE_VALUE (TREE_VEC_ELT (arg_parms, i));
3583
3584 if (arg == NULL_TREE || arg == error_mark_node
3585 || parm == NULL_TREE || parm == error_mark_node)
3586 return 0;
3587
3588 if (TREE_CODE (arg) != TREE_CODE (parm))
3589 return 0;
3590
3591 switch (TREE_CODE (parm))
3592 {
3593 case TYPE_DECL:
3594 break;
3595
3596 case TEMPLATE_DECL:
3597 /* We encounter instantiations of templates like
3598 template <template <template <class> class> class TT>
3599 class C; */
3600 {
3601 tree parmparm = DECL_INNERMOST_TEMPLATE_PARMS (parm);
3602 tree argparm = DECL_INNERMOST_TEMPLATE_PARMS (arg);
3603
3604 if (!coerce_template_template_parms
3605 (parmparm, argparm, complain, in_decl, outer_args))
3606 return 0;
3607 }
3608 break;
3609
3610 case PARM_DECL:
3611 /* The tsubst call is used to handle cases such as
3612 template <class T, template <T> class TT> class D;
3613 i.e. the parameter list of TT depends on earlier parameters. */
3614 if (!same_type_p
3615 (tsubst (TREE_TYPE (parm), outer_args, complain, in_decl),
3616 TREE_TYPE (arg)))
3617 return 0;
3618 break;
3619
3620 default:
3621 abort ();
3622 }
3623 }
3624 return 1;
3625 }
3626
3627 /* Convert the indicated template ARG as necessary to match the
3628 indicated template PARM. Returns the converted ARG, or
3629 error_mark_node if the conversion was unsuccessful. Error and
3630 warning messages are issued under control of COMPLAIN. This
3631 conversion is for the Ith parameter in the parameter list. ARGS is
3632 the full set of template arguments deduced so far. */
3633
3634 static tree
3635 convert_template_argument (tree parm,
3636 tree arg,
3637 tree args,
3638 tsubst_flags_t complain,
3639 int i,
3640 tree in_decl)
3641 {
3642 tree val;
3643 tree inner_args;
3644 int is_type, requires_type, is_tmpl_type, requires_tmpl_type;
3645
3646 inner_args = INNERMOST_TEMPLATE_ARGS (args);
3647
3648 if (TREE_CODE (arg) == TREE_LIST
3649 && TREE_CODE (TREE_VALUE (arg)) == OFFSET_REF)
3650 {
3651 /* The template argument was the name of some
3652 member function. That's usually
3653 invalid, but static members are OK. In any
3654 case, grab the underlying fields/functions
3655 and issue an error later if required. */
3656 arg = TREE_VALUE (arg);
3657 TREE_TYPE (arg) = unknown_type_node;
3658 }
3659
3660 requires_tmpl_type = TREE_CODE (parm) == TEMPLATE_DECL;
3661 requires_type = (TREE_CODE (parm) == TYPE_DECL
3662 || requires_tmpl_type);
3663
3664 is_tmpl_type = ((TREE_CODE (arg) == TEMPLATE_DECL
3665 && TREE_CODE (DECL_TEMPLATE_RESULT (arg)) == TYPE_DECL)
3666 || TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM
3667 || TREE_CODE (arg) == UNBOUND_CLASS_TEMPLATE);
3668
3669 if (is_tmpl_type
3670 && (TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM
3671 || TREE_CODE (arg) == UNBOUND_CLASS_TEMPLATE))
3672 arg = TYPE_STUB_DECL (arg);
3673
3674 is_type = TYPE_P (arg) || is_tmpl_type;
3675
3676 if (requires_type && ! is_type && TREE_CODE (arg) == SCOPE_REF
3677 && TREE_CODE (TREE_OPERAND (arg, 0)) == TEMPLATE_TYPE_PARM)
3678 {
3679 pedwarn ("to refer to a type member of a template parameter, use `typename %E'", arg);
3680
3681 arg = make_typename_type (TREE_OPERAND (arg, 0),
3682 TREE_OPERAND (arg, 1),
3683 complain & tf_error);
3684 is_type = 1;
3685 }
3686 if (is_type != requires_type)
3687 {
3688 if (in_decl)
3689 {
3690 if (complain & tf_error)
3691 {
3692 error ("type/value mismatch at argument %d in template parameter list for `%D'",
3693 i + 1, in_decl);
3694 if (is_type)
3695 error (" expected a constant of type `%T', got `%T'",
3696 TREE_TYPE (parm),
3697 (is_tmpl_type ? DECL_NAME (arg) : arg));
3698 else if (requires_tmpl_type)
3699 error (" expected a class template, got `%E'", arg);
3700 else
3701 error (" expected a type, got `%E'", arg);
3702 }
3703 }
3704 return error_mark_node;
3705 }
3706 if (is_tmpl_type ^ requires_tmpl_type)
3707 {
3708 if (in_decl && (complain & tf_error))
3709 {
3710 error ("type/value mismatch at argument %d in template parameter list for `%D'",
3711 i + 1, in_decl);
3712 if (is_tmpl_type)
3713 error (" expected a type, got `%T'", DECL_NAME (arg));
3714 else
3715 error (" expected a class template, got `%T'", arg);
3716 }
3717 return error_mark_node;
3718 }
3719
3720 if (is_type)
3721 {
3722 if (requires_tmpl_type)
3723 {
3724 if (TREE_CODE (TREE_TYPE (arg)) == UNBOUND_CLASS_TEMPLATE)
3725 /* The number of argument required is not known yet.
3726 Just accept it for now. */
3727 val = TREE_TYPE (arg);
3728 else
3729 {
3730 tree parmparm = DECL_INNERMOST_TEMPLATE_PARMS (parm);
3731 tree argparm = DECL_INNERMOST_TEMPLATE_PARMS (arg);
3732
3733 if (coerce_template_template_parms (parmparm, argparm,
3734 complain, in_decl,
3735 inner_args))
3736 {
3737 val = arg;
3738
3739 /* TEMPLATE_TEMPLATE_PARM node is preferred over
3740 TEMPLATE_DECL. */
3741 if (val != error_mark_node
3742 && DECL_TEMPLATE_TEMPLATE_PARM_P (val))
3743 val = TREE_TYPE (val);
3744 }
3745 else
3746 {
3747 if (in_decl && (complain & tf_error))
3748 {
3749 error ("type/value mismatch at argument %d in template parameter list for `%D'",
3750 i + 1, in_decl);
3751 error (" expected a template of type `%D', got `%D'", parm, arg);
3752 }
3753
3754 val = error_mark_node;
3755 }
3756 }
3757 }
3758 else
3759 val = groktypename (arg);
3760 }
3761 else
3762 {
3763 tree t = tsubst (TREE_TYPE (parm), args, complain, in_decl);
3764
3765 if (invalid_nontype_parm_type_p (t, complain))
3766 return error_mark_node;
3767
3768 if (!uses_template_parms (arg) && !uses_template_parms (t))
3769 /* We used to call digest_init here. However, digest_init
3770 will report errors, which we don't want when complain
3771 is zero. More importantly, digest_init will try too
3772 hard to convert things: for example, `0' should not be
3773 converted to pointer type at this point according to
3774 the standard. Accepting this is not merely an
3775 extension, since deciding whether or not these
3776 conversions can occur is part of determining which
3777 function template to call, or whether a given explicit
3778 argument specification is valid. */
3779 val = convert_nontype_argument (t, arg);
3780 else
3781 val = arg;
3782
3783 if (val == NULL_TREE)
3784 val = error_mark_node;
3785 else if (val == error_mark_node && (complain & tf_error))
3786 error ("could not convert template argument `%E' to `%T'",
3787 arg, t);
3788 }
3789
3790 return val;
3791 }
3792
3793 /* Convert all template arguments to their appropriate types, and
3794 return a vector containing the innermost resulting template
3795 arguments. If any error occurs, return error_mark_node. Error and
3796 warning messages are issued under control of COMPLAIN.
3797
3798 If REQUIRE_ALL_ARGUMENTS is nonzero, all arguments must be
3799 provided in ARGLIST, or else trailing parameters must have default
3800 values. If REQUIRE_ALL_ARGUMENTS is zero, we will attempt argument
3801 deduction for any unspecified trailing arguments. */
3802
3803 static tree
3804 coerce_template_parms (tree parms,
3805 tree args,
3806 tree in_decl,
3807 tsubst_flags_t complain,
3808 int require_all_arguments)
3809 {
3810 int nparms, nargs, i, lost = 0;
3811 tree inner_args;
3812 tree new_args;
3813 tree new_inner_args;
3814
3815 inner_args = INNERMOST_TEMPLATE_ARGS (args);
3816 nargs = inner_args ? NUM_TMPL_ARGS (inner_args) : 0;
3817 nparms = TREE_VEC_LENGTH (parms);
3818
3819 if (nargs > nparms
3820 || (nargs < nparms
3821 && require_all_arguments
3822 && TREE_PURPOSE (TREE_VEC_ELT (parms, nargs)) == NULL_TREE))
3823 {
3824 if (complain & tf_error)
3825 {
3826 error ("wrong number of template arguments (%d, should be %d)",
3827 nargs, nparms);
3828
3829 if (in_decl)
3830 cp_error_at ("provided for `%D'", in_decl);
3831 }
3832
3833 return error_mark_node;
3834 }
3835
3836 new_inner_args = make_tree_vec (nparms);
3837 new_args = add_outermost_template_args (args, new_inner_args);
3838 for (i = 0; i < nparms; i++)
3839 {
3840 tree arg;
3841 tree parm;
3842
3843 /* Get the Ith template parameter. */
3844 parm = TREE_VEC_ELT (parms, i);
3845
3846 /* Calculate the Ith argument. */
3847 if (i < nargs)
3848 arg = TREE_VEC_ELT (inner_args, i);
3849 else if (require_all_arguments)
3850 /* There must be a default arg in this case. */
3851 arg = tsubst_template_arg (TREE_PURPOSE (parm), new_args,
3852 complain, in_decl);
3853 else
3854 break;
3855
3856 my_friendly_assert (arg, 20030727);
3857 if (arg == error_mark_node)
3858 error ("template argument %d is invalid", i + 1);
3859 else
3860 arg = convert_template_argument (TREE_VALUE (parm),
3861 arg, new_args, complain, i,
3862 in_decl);
3863
3864 if (arg == error_mark_node)
3865 lost++;
3866 TREE_VEC_ELT (new_inner_args, i) = arg;
3867 }
3868
3869 if (lost)
3870 return error_mark_node;
3871
3872 return new_inner_args;
3873 }
3874
3875 /* Returns 1 if template args OT and NT are equivalent. */
3876
3877 static int
3878 template_args_equal (tree ot, tree nt)
3879 {
3880 if (nt == ot)
3881 return 1;
3882
3883 if (TREE_CODE (nt) == TREE_VEC)
3884 /* For member templates */
3885 return TREE_CODE (ot) == TREE_VEC && comp_template_args (ot, nt);
3886 else if (TYPE_P (nt))
3887 return TYPE_P (ot) && same_type_p (ot, nt);
3888 else if (TREE_CODE (ot) == TREE_VEC || TYPE_P (ot))
3889 return 0;
3890 else
3891 return cp_tree_equal (ot, nt);
3892 }
3893
3894 /* Returns 1 iff the OLDARGS and NEWARGS are in fact identical sets
3895 of template arguments. Returns 0 otherwise. */
3896
3897 int
3898 comp_template_args (tree oldargs, tree newargs)
3899 {
3900 int i;
3901
3902 if (TREE_VEC_LENGTH (oldargs) != TREE_VEC_LENGTH (newargs))
3903 return 0;
3904
3905 for (i = 0; i < TREE_VEC_LENGTH (oldargs); ++i)
3906 {
3907 tree nt = TREE_VEC_ELT (newargs, i);
3908 tree ot = TREE_VEC_ELT (oldargs, i);
3909
3910 if (! template_args_equal (ot, nt))
3911 return 0;
3912 }
3913 return 1;
3914 }
3915
3916 /* Given class template name and parameter list, produce a user-friendly name
3917 for the instantiation. */
3918
3919 static char *
3920 mangle_class_name_for_template (const char* name, tree parms, tree arglist)
3921 {
3922 static struct obstack scratch_obstack;
3923 static char *scratch_firstobj;
3924 int i, nparms;
3925
3926 if (!scratch_firstobj)
3927 gcc_obstack_init (&scratch_obstack);
3928 else
3929 obstack_free (&scratch_obstack, scratch_firstobj);
3930 scratch_firstobj = obstack_alloc (&scratch_obstack, 1);
3931
3932 #define ccat(C) obstack_1grow (&scratch_obstack, (C));
3933 #define cat(S) obstack_grow (&scratch_obstack, (S), strlen (S))
3934
3935 cat (name);
3936 ccat ('<');
3937 nparms = TREE_VEC_LENGTH (parms);
3938 arglist = INNERMOST_TEMPLATE_ARGS (arglist);
3939 my_friendly_assert (nparms == TREE_VEC_LENGTH (arglist), 268);
3940 for (i = 0; i < nparms; i++)
3941 {
3942 tree parm = TREE_VALUE (TREE_VEC_ELT (parms, i));
3943 tree arg = TREE_VEC_ELT (arglist, i);
3944
3945 if (i)
3946 ccat (',');
3947
3948 if (TREE_CODE (parm) == TYPE_DECL)
3949 {
3950 cat (type_as_string (arg, TFF_CHASE_TYPEDEF));
3951 continue;
3952 }
3953 else if (TREE_CODE (parm) == TEMPLATE_DECL)
3954 {
3955 if (TREE_CODE (arg) == TEMPLATE_DECL)
3956 {
3957 /* Already substituted with real template. Just output
3958 the template name here */
3959 tree context = DECL_CONTEXT (arg);
3960 if (context)
3961 {
3962 /* The template may be defined in a namespace, or
3963 may be a member template. */
3964 my_friendly_assert (TREE_CODE (context) == NAMESPACE_DECL
3965 || CLASS_TYPE_P (context),
3966 980422);
3967 cat(decl_as_string (DECL_CONTEXT (arg), TFF_PLAIN_IDENTIFIER));
3968 cat("::");
3969 }
3970 cat (IDENTIFIER_POINTER (DECL_NAME (arg)));
3971 }
3972 else
3973 /* Output the parameter declaration. */
3974 cat (type_as_string (arg, TFF_CHASE_TYPEDEF));
3975 continue;
3976 }
3977 else
3978 my_friendly_assert (TREE_CODE (parm) == PARM_DECL, 269);
3979
3980 /* No need to check arglist against parmlist here; we did that
3981 in coerce_template_parms, called from lookup_template_class. */
3982 cat (expr_as_string (arg, TFF_PLAIN_IDENTIFIER));
3983 }
3984 {
3985 char *bufp = obstack_next_free (&scratch_obstack);
3986 int offset = 0;
3987 while (bufp[offset - 1] == ' ')
3988 offset--;
3989 obstack_blank_fast (&scratch_obstack, offset);
3990
3991 /* B<C<char> >, not B<C<char>> */
3992 if (bufp[offset - 1] == '>')
3993 ccat (' ');
3994 }
3995 ccat ('>');
3996 ccat ('\0');
3997 return (char *) obstack_base (&scratch_obstack);
3998 }
3999
4000 static tree
4001 classtype_mangled_name (tree t)
4002 {
4003 if (CLASSTYPE_TEMPLATE_INFO (t)
4004 /* Specializations have already had their names set up in
4005 lookup_template_class. */
4006 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (t))
4007 {
4008 tree tmpl = most_general_template (CLASSTYPE_TI_TEMPLATE (t));
4009
4010 /* For non-primary templates, the template parameters are
4011 implicit from their surrounding context. */
4012 if (PRIMARY_TEMPLATE_P (tmpl))
4013 {
4014 tree name = DECL_NAME (tmpl);
4015 char *mangled_name = mangle_class_name_for_template
4016 (IDENTIFIER_POINTER (name),
4017 DECL_INNERMOST_TEMPLATE_PARMS (tmpl),
4018 CLASSTYPE_TI_ARGS (t));
4019 tree id = get_identifier (mangled_name);
4020 IDENTIFIER_TEMPLATE (id) = name;
4021 return id;
4022 }
4023 }
4024
4025 return TYPE_IDENTIFIER (t);
4026 }
4027
4028 static void
4029 add_pending_template (tree d)
4030 {
4031 tree ti = (TYPE_P (d)
4032 ? CLASSTYPE_TEMPLATE_INFO (d)
4033 : DECL_TEMPLATE_INFO (d));
4034 tree pt;
4035 int level;
4036
4037 if (TI_PENDING_TEMPLATE_FLAG (ti))
4038 return;
4039
4040 /* We are called both from instantiate_decl, where we've already had a
4041 tinst_level pushed, and instantiate_template, where we haven't.
4042 Compensate. */
4043 level = !(current_tinst_level && TINST_DECL (current_tinst_level) == d);
4044
4045 if (level)
4046 push_tinst_level (d);
4047
4048 pt = tree_cons (current_tinst_level, d, NULL_TREE);
4049 if (last_pending_template)
4050 TREE_CHAIN (last_pending_template) = pt;
4051 else
4052 pending_templates = pt;
4053
4054 last_pending_template = pt;
4055
4056 TI_PENDING_TEMPLATE_FLAG (ti) = 1;
4057
4058 if (level)
4059 pop_tinst_level ();
4060 }
4061
4062
4063 /* Return a TEMPLATE_ID_EXPR corresponding to the indicated FNS and
4064 ARGLIST. Valid choices for FNS are given in the cp-tree.def
4065 documentation for TEMPLATE_ID_EXPR. */
4066
4067 tree
4068 lookup_template_function (tree fns, tree arglist)
4069 {
4070 tree type;
4071
4072 if (fns == error_mark_node || arglist == error_mark_node)
4073 return error_mark_node;
4074
4075 my_friendly_assert (!arglist || TREE_CODE (arglist) == TREE_VEC, 20030726);
4076 if (fns == NULL_TREE
4077 || TREE_CODE (fns) == FUNCTION_DECL)
4078 {
4079 error ("non-template used as template");
4080 return error_mark_node;
4081 }
4082
4083 my_friendly_assert (TREE_CODE (fns) == TEMPLATE_DECL
4084 || TREE_CODE (fns) == OVERLOAD
4085 || BASELINK_P (fns)
4086 || TREE_CODE (fns) == IDENTIFIER_NODE,
4087 20020730);
4088
4089 if (BASELINK_P (fns))
4090 {
4091 BASELINK_FUNCTIONS (fns) = build (TEMPLATE_ID_EXPR,
4092 unknown_type_node,
4093 BASELINK_FUNCTIONS (fns),
4094 arglist);
4095 return fns;
4096 }
4097
4098 type = TREE_TYPE (fns);
4099 if (TREE_CODE (fns) == OVERLOAD || !type)
4100 type = unknown_type_node;
4101
4102 return build (TEMPLATE_ID_EXPR, type, fns, arglist);
4103 }
4104
4105 /* Within the scope of a template class S<T>, the name S gets bound
4106 (in build_self_reference) to a TYPE_DECL for the class, not a
4107 TEMPLATE_DECL. If DECL is a TYPE_DECL for current_class_type,
4108 or one of its enclosing classes, and that type is a template,
4109 return the associated TEMPLATE_DECL. Otherwise, the original
4110 DECL is returned. */
4111
4112 tree
4113 maybe_get_template_decl_from_type_decl (tree decl)
4114 {
4115 return (decl != NULL_TREE
4116 && TREE_CODE (decl) == TYPE_DECL
4117 && DECL_ARTIFICIAL (decl)
4118 && CLASS_TYPE_P (TREE_TYPE (decl))
4119 && CLASSTYPE_TEMPLATE_INFO (TREE_TYPE (decl)))
4120 ? CLASSTYPE_TI_TEMPLATE (TREE_TYPE (decl)) : decl;
4121 }
4122
4123 /* Given an IDENTIFIER_NODE (type TEMPLATE_DECL) and a chain of
4124 parameters, find the desired type.
4125
4126 D1 is the PTYPENAME terminal, and ARGLIST is the list of arguments.
4127
4128 IN_DECL, if non-NULL, is the template declaration we are trying to
4129 instantiate.
4130
4131 If ENTERING_SCOPE is nonzero, we are about to enter the scope of
4132 the class we are looking up.
4133
4134 Issue error and warning messages under control of COMPLAIN.
4135
4136 If the template class is really a local class in a template
4137 function, then the FUNCTION_CONTEXT is the function in which it is
4138 being instantiated. */
4139
4140 tree
4141 lookup_template_class (tree d1,
4142 tree arglist,
4143 tree in_decl,
4144 tree context,
4145 int entering_scope,
4146 tsubst_flags_t complain)
4147 {
4148 tree template = NULL_TREE, parmlist;
4149 tree t;
4150
4151 timevar_push (TV_NAME_LOOKUP);
4152
4153 if (TREE_CODE (d1) == IDENTIFIER_NODE)
4154 {
4155 if (IDENTIFIER_VALUE (d1)
4156 && DECL_TEMPLATE_TEMPLATE_PARM_P (IDENTIFIER_VALUE (d1)))
4157 template = IDENTIFIER_VALUE (d1);
4158 else
4159 {
4160 if (context)
4161 push_decl_namespace (context);
4162 template = lookup_name (d1, /*prefer_type=*/0);
4163 template = maybe_get_template_decl_from_type_decl (template);
4164 if (context)
4165 pop_decl_namespace ();
4166 }
4167 if (template)
4168 context = DECL_CONTEXT (template);
4169 }
4170 else if (TREE_CODE (d1) == TYPE_DECL && IS_AGGR_TYPE (TREE_TYPE (d1)))
4171 {
4172 tree type = TREE_TYPE (d1);
4173
4174 /* If we are declaring a constructor, say A<T>::A<T>, we will get
4175 an implicit typename for the second A. Deal with it. */
4176 if (TREE_CODE (type) == TYPENAME_TYPE && TREE_TYPE (type))
4177 type = TREE_TYPE (type);
4178
4179 if (CLASSTYPE_TEMPLATE_INFO (type))
4180 {
4181 template = CLASSTYPE_TI_TEMPLATE (type);
4182 d1 = DECL_NAME (template);
4183 }
4184 }
4185 else if (TREE_CODE (d1) == ENUMERAL_TYPE
4186 || (TYPE_P (d1) && IS_AGGR_TYPE (d1)))
4187 {
4188 template = TYPE_TI_TEMPLATE (d1);
4189 d1 = DECL_NAME (template);
4190 }
4191 else if (TREE_CODE (d1) == TEMPLATE_DECL
4192 && TREE_CODE (DECL_TEMPLATE_RESULT (d1)) == TYPE_DECL)
4193 {
4194 template = d1;
4195 d1 = DECL_NAME (template);
4196 context = DECL_CONTEXT (template);
4197 }
4198
4199 /* With something like `template <class T> class X class X { ... };'
4200 we could end up with D1 having nothing but an IDENTIFIER_VALUE.
4201 We don't want to do that, but we have to deal with the situation,
4202 so let's give them some syntax errors to chew on instead of a
4203 crash. Alternatively D1 might not be a template type at all. */
4204 if (! template)
4205 {
4206 if (complain & tf_error)
4207 error ("`%T' is not a template", d1);
4208 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
4209 }
4210
4211 if (TREE_CODE (template) != TEMPLATE_DECL
4212 /* Make sure it's a user visible template, if it was named by
4213 the user. */
4214 || ((complain & tf_user) && !DECL_TEMPLATE_PARM_P (template)
4215 && !PRIMARY_TEMPLATE_P (template)))
4216 {
4217 if (complain & tf_error)
4218 {
4219 error ("non-template type `%T' used as a template", d1);
4220 if (in_decl)
4221 cp_error_at ("for template declaration `%D'", in_decl);
4222 }
4223 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
4224 }
4225
4226 complain &= ~tf_user;
4227
4228 if (DECL_TEMPLATE_TEMPLATE_PARM_P (template))
4229 {
4230 /* Create a new TEMPLATE_DECL and TEMPLATE_TEMPLATE_PARM node to store
4231 template arguments */
4232
4233 tree parm;
4234 tree arglist2;
4235
4236 parmlist = DECL_INNERMOST_TEMPLATE_PARMS (template);
4237
4238 /* Consider an example where a template template parameter declared as
4239
4240 template <class T, class U = std::allocator<T> > class TT
4241
4242 The template parameter level of T and U are one level larger than
4243 of TT. To proper process the default argument of U, say when an
4244 instantiation `TT<int>' is seen, we need to build the full
4245 arguments containing {int} as the innermost level. Outer levels,
4246 available when not appearing as default template argument, can be
4247 obtained from `current_template_args ()'.
4248
4249 Suppose that TT is later substituted with std::vector. The above
4250 instantiation is `TT<int, std::allocator<T> >' with TT at
4251 level 1, and T at level 2, while the template arguments at level 1
4252 becomes {std::vector} and the inner level 2 is {int}. */
4253
4254 if (current_template_parms)
4255 arglist = add_to_template_args (current_template_args (), arglist);
4256
4257 arglist2 = coerce_template_parms (parmlist, arglist, template,
4258 complain, /*require_all_args=*/1);
4259 if (arglist2 == error_mark_node
4260 || (!uses_template_parms (arglist2)
4261 && check_instantiated_args (template, arglist2, complain)))
4262 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
4263
4264 parm = bind_template_template_parm (TREE_TYPE (template), arglist2);
4265 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, parm);
4266 }
4267 else
4268 {
4269 tree template_type = TREE_TYPE (template);
4270 tree gen_tmpl;
4271 tree type_decl;
4272 tree found = NULL_TREE;
4273 tree *tp;
4274 int arg_depth;
4275 int parm_depth;
4276 int is_partial_instantiation;
4277
4278 gen_tmpl = most_general_template (template);
4279 parmlist = DECL_TEMPLATE_PARMS (gen_tmpl);
4280 parm_depth = TMPL_PARMS_DEPTH (parmlist);
4281 arg_depth = TMPL_ARGS_DEPTH (arglist);
4282
4283 if (arg_depth == 1 && parm_depth > 1)
4284 {
4285 /* We've been given an incomplete set of template arguments.
4286 For example, given:
4287
4288 template <class T> struct S1 {
4289 template <class U> struct S2 {};
4290 template <class U> struct S2<U*> {};
4291 };
4292
4293 we will be called with an ARGLIST of `U*', but the
4294 TEMPLATE will be `template <class T> template
4295 <class U> struct S1<T>::S2'. We must fill in the missing
4296 arguments. */
4297 arglist
4298 = add_outermost_template_args (TYPE_TI_ARGS (TREE_TYPE (template)),
4299 arglist);
4300 arg_depth = TMPL_ARGS_DEPTH (arglist);
4301 }
4302
4303 /* Now we should have enough arguments. */
4304 my_friendly_assert (parm_depth == arg_depth, 0);
4305
4306 /* From here on, we're only interested in the most general
4307 template. */
4308 template = gen_tmpl;
4309
4310 /* Calculate the BOUND_ARGS. These will be the args that are
4311 actually tsubst'd into the definition to create the
4312 instantiation. */
4313 if (parm_depth > 1)
4314 {
4315 /* We have multiple levels of arguments to coerce, at once. */
4316 int i;
4317 int saved_depth = TMPL_ARGS_DEPTH (arglist);
4318
4319 tree bound_args = make_tree_vec (parm_depth);
4320
4321 for (i = saved_depth,
4322 t = DECL_TEMPLATE_PARMS (template);
4323 i > 0 && t != NULL_TREE;
4324 --i, t = TREE_CHAIN (t))
4325 {
4326 tree a = coerce_template_parms (TREE_VALUE (t),
4327 arglist, template,
4328 complain, /*require_all_args=*/1);
4329
4330 /* Don't process further if one of the levels fails. */
4331 if (a == error_mark_node)
4332 {
4333 /* Restore the ARGLIST to its full size. */
4334 TREE_VEC_LENGTH (arglist) = saved_depth;
4335 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
4336 }
4337
4338 SET_TMPL_ARGS_LEVEL (bound_args, i, a);
4339
4340 /* We temporarily reduce the length of the ARGLIST so
4341 that coerce_template_parms will see only the arguments
4342 corresponding to the template parameters it is
4343 examining. */
4344 TREE_VEC_LENGTH (arglist)--;
4345 }
4346
4347 /* Restore the ARGLIST to its full size. */
4348 TREE_VEC_LENGTH (arglist) = saved_depth;
4349
4350 arglist = bound_args;
4351 }
4352 else
4353 arglist
4354 = coerce_template_parms (INNERMOST_TEMPLATE_PARMS (parmlist),
4355 INNERMOST_TEMPLATE_ARGS (arglist),
4356 template,
4357 complain, /*require_all_args=*/1);
4358
4359 if (arglist == error_mark_node)
4360 /* We were unable to bind the arguments. */
4361 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
4362
4363 /* In the scope of a template class, explicit references to the
4364 template class refer to the type of the template, not any
4365 instantiation of it. For example, in:
4366
4367 template <class T> class C { void f(C<T>); }
4368
4369 the `C<T>' is just the same as `C'. Outside of the
4370 class, however, such a reference is an instantiation. */
4371 if (comp_template_args (TYPE_TI_ARGS (template_type),
4372 arglist))
4373 {
4374 found = template_type;
4375
4376 if (!entering_scope && PRIMARY_TEMPLATE_P (template))
4377 {
4378 tree ctx;
4379
4380 for (ctx = current_class_type;
4381 ctx && TREE_CODE (ctx) != NAMESPACE_DECL;
4382 ctx = (TYPE_P (ctx)
4383 ? TYPE_CONTEXT (ctx)
4384 : DECL_CONTEXT (ctx)))
4385 if (TYPE_P (ctx) && same_type_p (ctx, template_type))
4386 goto found_ctx;
4387
4388 /* We're not in the scope of the class, so the
4389 TEMPLATE_TYPE is not the type we want after all. */
4390 found = NULL_TREE;
4391 found_ctx:;
4392 }
4393 }
4394 if (found)
4395 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, found);
4396
4397 for (tp = &DECL_TEMPLATE_INSTANTIATIONS (template);
4398 *tp;
4399 tp = &TREE_CHAIN (*tp))
4400 if (comp_template_args (TREE_PURPOSE (*tp), arglist))
4401 {
4402 found = *tp;
4403
4404 /* Use the move-to-front heuristic to speed up future
4405 searches. */
4406 *tp = TREE_CHAIN (*tp);
4407 TREE_CHAIN (found)
4408 = DECL_TEMPLATE_INSTANTIATIONS (template);
4409 DECL_TEMPLATE_INSTANTIATIONS (template) = found;
4410
4411 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, TREE_VALUE (found));
4412 }
4413
4414 /* This type is a "partial instantiation" if any of the template
4415 arguments still involve template parameters. Note that we set
4416 IS_PARTIAL_INSTANTIATION for partial specializations as
4417 well. */
4418 is_partial_instantiation = uses_template_parms (arglist);
4419
4420 /* If the deduced arguments are invalid, then the binding
4421 failed. */
4422 if (!is_partial_instantiation
4423 && check_instantiated_args (template,
4424 INNERMOST_TEMPLATE_ARGS (arglist),
4425 complain))
4426 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
4427
4428 if (!is_partial_instantiation
4429 && !PRIMARY_TEMPLATE_P (template)
4430 && TREE_CODE (CP_DECL_CONTEXT (template)) == NAMESPACE_DECL)
4431 {
4432 found = xref_tag_from_type (TREE_TYPE (template),
4433 DECL_NAME (template),
4434 /*globalize=*/1);
4435 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, found);
4436 }
4437
4438 context = tsubst (DECL_CONTEXT (template), arglist,
4439 complain, in_decl);
4440 if (!context)
4441 context = global_namespace;
4442
4443 /* Create the type. */
4444 if (TREE_CODE (template_type) == ENUMERAL_TYPE)
4445 {
4446 if (!is_partial_instantiation)
4447 {
4448 set_current_access_from_decl (TYPE_NAME (template_type));
4449 t = start_enum (TYPE_IDENTIFIER (template_type));
4450 }
4451 else
4452 /* We don't want to call start_enum for this type, since
4453 the values for the enumeration constants may involve
4454 template parameters. And, no one should be interested
4455 in the enumeration constants for such a type. */
4456 t = make_node (ENUMERAL_TYPE);
4457 }
4458 else
4459 {
4460 t = make_aggr_type (TREE_CODE (template_type));
4461 CLASSTYPE_DECLARED_CLASS (t)
4462 = CLASSTYPE_DECLARED_CLASS (template_type);
4463 SET_CLASSTYPE_IMPLICIT_INSTANTIATION (t);
4464 TYPE_FOR_JAVA (t) = TYPE_FOR_JAVA (template_type);
4465
4466 /* A local class. Make sure the decl gets registered properly. */
4467 if (context == current_function_decl)
4468 pushtag (DECL_NAME (template), t, 0);
4469 }
4470
4471 /* If we called start_enum or pushtag above, this information
4472 will already be set up. */
4473 if (!TYPE_NAME (t))
4474 {
4475 TYPE_CONTEXT (t) = FROB_CONTEXT (context);
4476
4477 type_decl = create_implicit_typedef (DECL_NAME (template), t);
4478 DECL_CONTEXT (type_decl) = TYPE_CONTEXT (t);
4479 TYPE_STUB_DECL (t) = type_decl;
4480 DECL_SOURCE_LOCATION (type_decl)
4481 = DECL_SOURCE_LOCATION (TYPE_STUB_DECL (template_type));
4482 }
4483 else
4484 type_decl = TYPE_NAME (t);
4485
4486 TREE_PRIVATE (type_decl)
4487 = TREE_PRIVATE (TYPE_STUB_DECL (template_type));
4488 TREE_PROTECTED (type_decl)
4489 = TREE_PROTECTED (TYPE_STUB_DECL (template_type));
4490
4491 /* Set up the template information. We have to figure out which
4492 template is the immediate parent if this is a full
4493 instantiation. */
4494 if (parm_depth == 1 || is_partial_instantiation
4495 || !PRIMARY_TEMPLATE_P (template))
4496 /* This case is easy; there are no member templates involved. */
4497 found = template;
4498 else
4499 {
4500 /* This is a full instantiation of a member template. Look
4501 for a partial instantiation of which this is an instance. */
4502
4503 for (found = DECL_TEMPLATE_INSTANTIATIONS (template);
4504 found; found = TREE_CHAIN (found))
4505 {
4506 int success;
4507 tree tmpl = CLASSTYPE_TI_TEMPLATE (TREE_VALUE (found));
4508
4509 /* We only want partial instantiations, here, not
4510 specializations or full instantiations. */
4511 if (CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_VALUE (found))
4512 || !uses_template_parms (TREE_VALUE (found)))
4513 continue;
4514
4515 /* Temporarily reduce by one the number of levels in the
4516 ARGLIST and in FOUND so as to avoid comparing the
4517 last set of arguments. */
4518 TREE_VEC_LENGTH (arglist)--;
4519 TREE_VEC_LENGTH (TREE_PURPOSE (found)) --;
4520
4521 /* See if the arguments match. If they do, then TMPL is
4522 the partial instantiation we want. */
4523 success = comp_template_args (TREE_PURPOSE (found), arglist);
4524
4525 /* Restore the argument vectors to their full size. */
4526 TREE_VEC_LENGTH (arglist)++;
4527 TREE_VEC_LENGTH (TREE_PURPOSE (found))++;
4528
4529 if (success)
4530 {
4531 found = tmpl;
4532 break;
4533 }
4534 }
4535
4536 if (!found)
4537 {
4538 /* There was no partial instantiation. This happens
4539 where C<T> is a member template of A<T> and it's used
4540 in something like
4541
4542 template <typename T> struct B { A<T>::C<int> m; };
4543 B<float>;
4544
4545 Create the partial instantiation.
4546 */
4547 TREE_VEC_LENGTH (arglist)--;
4548 found = tsubst (template, arglist, complain, NULL_TREE);
4549 TREE_VEC_LENGTH (arglist)++;
4550 }
4551 }
4552
4553 SET_TYPE_TEMPLATE_INFO (t, tree_cons (found, arglist, NULL_TREE));
4554 DECL_TEMPLATE_INSTANTIATIONS (template)
4555 = tree_cons (arglist, t,
4556 DECL_TEMPLATE_INSTANTIATIONS (template));
4557
4558 if (TREE_CODE (t) == ENUMERAL_TYPE
4559 && !is_partial_instantiation)
4560 /* Now that the type has been registered on the instantiations
4561 list, we set up the enumerators. Because the enumeration
4562 constants may involve the enumeration type itself, we make
4563 sure to register the type first, and then create the
4564 constants. That way, doing tsubst_expr for the enumeration
4565 constants won't result in recursive calls here; we'll find
4566 the instantiation and exit above. */
4567 tsubst_enum (template_type, t, arglist);
4568
4569 /* Reset the name of the type, now that CLASSTYPE_TEMPLATE_INFO
4570 is set up. */
4571 if (TREE_CODE (t) != ENUMERAL_TYPE)
4572 DECL_NAME (type_decl) = classtype_mangled_name (t);
4573 if (is_partial_instantiation)
4574 /* If the type makes use of template parameters, the
4575 code that generates debugging information will crash. */
4576 DECL_IGNORED_P (TYPE_STUB_DECL (t)) = 1;
4577
4578 POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
4579 }
4580 timevar_pop (TV_NAME_LOOKUP);
4581 }
4582 \f
4583 struct pair_fn_data
4584 {
4585 tree_fn_t fn;
4586 void *data;
4587 htab_t visited;
4588 };
4589
4590 /* Called from for_each_template_parm via walk_tree. */
4591
4592 static tree
4593 for_each_template_parm_r (tree* tp, int* walk_subtrees, void* d)
4594 {
4595 tree t = *tp;
4596 struct pair_fn_data *pfd = (struct pair_fn_data *) d;
4597 tree_fn_t fn = pfd->fn;
4598 void *data = pfd->data;
4599
4600 if (TYPE_P (t)
4601 && for_each_template_parm (TYPE_CONTEXT (t), fn, data, pfd->visited))
4602 return error_mark_node;
4603
4604 switch (TREE_CODE (t))
4605 {
4606 case RECORD_TYPE:
4607 if (TYPE_PTRMEMFUNC_P (t))
4608 break;
4609 /* Fall through. */
4610
4611 case UNION_TYPE:
4612 case ENUMERAL_TYPE:
4613 if (!TYPE_TEMPLATE_INFO (t))
4614 *walk_subtrees = 0;
4615 else if (for_each_template_parm (TREE_VALUE (TYPE_TEMPLATE_INFO (t)),
4616 fn, data, pfd->visited))
4617 return error_mark_node;
4618 break;
4619
4620 case METHOD_TYPE:
4621 /* Since we're not going to walk subtrees, we have to do this
4622 explicitly here. */
4623 if (for_each_template_parm (TYPE_METHOD_BASETYPE (t), fn, data,
4624 pfd->visited))
4625 return error_mark_node;
4626 /* Fall through. */
4627
4628 case FUNCTION_TYPE:
4629 /* Check the return type. */
4630 if (for_each_template_parm (TREE_TYPE (t), fn, data, pfd->visited))
4631 return error_mark_node;
4632
4633 /* Check the parameter types. Since default arguments are not
4634 instantiated until they are needed, the TYPE_ARG_TYPES may
4635 contain expressions that involve template parameters. But,
4636 no-one should be looking at them yet. And, once they're
4637 instantiated, they don't contain template parameters, so
4638 there's no point in looking at them then, either. */
4639 {
4640 tree parm;
4641
4642 for (parm = TYPE_ARG_TYPES (t); parm; parm = TREE_CHAIN (parm))
4643 if (for_each_template_parm (TREE_VALUE (parm), fn, data,
4644 pfd->visited))
4645 return error_mark_node;
4646
4647 /* Since we've already handled the TYPE_ARG_TYPES, we don't
4648 want walk_tree walking into them itself. */
4649 *walk_subtrees = 0;
4650 }
4651 break;
4652
4653 case TYPEOF_TYPE:
4654 if (for_each_template_parm (TYPE_FIELDS (t), fn, data,
4655 pfd->visited))
4656 return error_mark_node;
4657 break;
4658
4659 case FUNCTION_DECL:
4660 case VAR_DECL:
4661 if (DECL_LANG_SPECIFIC (t) && DECL_TEMPLATE_INFO (t)
4662 && for_each_template_parm (DECL_TI_ARGS (t), fn, data,
4663 pfd->visited))
4664 return error_mark_node;
4665 /* Fall through. */
4666
4667 case PARM_DECL:
4668 case CONST_DECL:
4669 if (TREE_CODE (t) == CONST_DECL && DECL_TEMPLATE_PARM_P (t)
4670 && for_each_template_parm (DECL_INITIAL (t), fn, data,
4671 pfd->visited))
4672 return error_mark_node;
4673 if (DECL_CONTEXT (t)
4674 && for_each_template_parm (DECL_CONTEXT (t), fn, data,
4675 pfd->visited))
4676 return error_mark_node;
4677 break;
4678
4679 case BOUND_TEMPLATE_TEMPLATE_PARM:
4680 /* Record template parameters such as `T' inside `TT<T>'. */
4681 if (for_each_template_parm (TYPE_TI_ARGS (t), fn, data, pfd->visited))
4682 return error_mark_node;
4683 /* Fall through. */
4684
4685 case TEMPLATE_TEMPLATE_PARM:
4686 case TEMPLATE_TYPE_PARM:
4687 case TEMPLATE_PARM_INDEX:
4688 if (fn && (*fn)(t, data))
4689 return error_mark_node;
4690 else if (!fn)
4691 return error_mark_node;
4692 break;
4693
4694 case TEMPLATE_DECL:
4695 /* A template template parameter is encountered. */
4696 if (DECL_TEMPLATE_TEMPLATE_PARM_P (t)
4697 && for_each_template_parm (TREE_TYPE (t), fn, data, pfd->visited))
4698 return error_mark_node;
4699
4700 /* Already substituted template template parameter */
4701 *walk_subtrees = 0;
4702 break;
4703
4704 case TYPENAME_TYPE:
4705 if (!fn
4706 || for_each_template_parm (TYPENAME_TYPE_FULLNAME (t), fn,
4707 data, pfd->visited))
4708 return error_mark_node;
4709 break;
4710
4711 case CONSTRUCTOR:
4712 if (TREE_TYPE (t) && TYPE_PTRMEMFUNC_P (TREE_TYPE (t))
4713 && for_each_template_parm (TYPE_PTRMEMFUNC_FN_TYPE
4714 (TREE_TYPE (t)), fn, data,
4715 pfd->visited))
4716 return error_mark_node;
4717 break;
4718
4719 case INDIRECT_REF:
4720 case COMPONENT_REF:
4721 /* If there's no type, then this thing must be some expression
4722 involving template parameters. */
4723 if (!fn && !TREE_TYPE (t))
4724 return error_mark_node;
4725 break;
4726
4727 case MODOP_EXPR:
4728 case CAST_EXPR:
4729 case REINTERPRET_CAST_EXPR:
4730 case CONST_CAST_EXPR:
4731 case STATIC_CAST_EXPR:
4732 case DYNAMIC_CAST_EXPR:
4733 case ARROW_EXPR:
4734 case DOTSTAR_EXPR:
4735 case TYPEID_EXPR:
4736 case PSEUDO_DTOR_EXPR:
4737 if (!fn)
4738 return error_mark_node;
4739 break;
4740
4741 case BASELINK:
4742 /* If we do not handle this case specially, we end up walking
4743 the BINFO hierarchy, which is circular, and therefore
4744 confuses walk_tree. */
4745 *walk_subtrees = 0;
4746 if (for_each_template_parm (BASELINK_FUNCTIONS (*tp), fn, data,
4747 pfd->visited))
4748 return error_mark_node;
4749 break;
4750
4751 default:
4752 break;
4753 }
4754
4755 /* We didn't find any template parameters we liked. */
4756 return NULL_TREE;
4757 }
4758
4759 /* For each TEMPLATE_TYPE_PARM, TEMPLATE_TEMPLATE_PARM,
4760 BOUND_TEMPLATE_TEMPLATE_PARM or TEMPLATE_PARM_INDEX in T,
4761 call FN with the parameter and the DATA.
4762 If FN returns nonzero, the iteration is terminated, and
4763 for_each_template_parm returns 1. Otherwise, the iteration
4764 continues. If FN never returns a nonzero value, the value
4765 returned by for_each_template_parm is 0. If FN is NULL, it is
4766 considered to be the function which always returns 1. */
4767
4768 static int
4769 for_each_template_parm (tree t, tree_fn_t fn, void* data, htab_t visited)
4770 {
4771 struct pair_fn_data pfd;
4772 int result;
4773
4774 /* Set up. */
4775 pfd.fn = fn;
4776 pfd.data = data;
4777
4778 /* Walk the tree. (Conceptually, we would like to walk without
4779 duplicates, but for_each_template_parm_r recursively calls
4780 for_each_template_parm, so we would need to reorganize a fair
4781 bit to use walk_tree_without_duplicates, so we keep our own
4782 visited list.) */
4783 if (visited)
4784 pfd.visited = visited;
4785 else
4786 pfd.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer,
4787 NULL);
4788 result = walk_tree (&t,
4789 for_each_template_parm_r,
4790 &pfd,
4791 pfd.visited) != NULL_TREE;
4792
4793 /* Clean up. */
4794 if (!visited)
4795 htab_delete (pfd.visited);
4796
4797 return result;
4798 }
4799
4800 /* Returns true if T depends on any template parameter. */
4801
4802 int
4803 uses_template_parms (tree t)
4804 {
4805 bool dependent_p;
4806 int saved_processing_template_decl;
4807
4808 saved_processing_template_decl = processing_template_decl;
4809 if (!saved_processing_template_decl)
4810 processing_template_decl = 1;
4811 if (TYPE_P (t))
4812 dependent_p = dependent_type_p (t);
4813 else if (TREE_CODE (t) == TREE_VEC)
4814 dependent_p = any_dependent_template_arguments_p (t);
4815 else if (TREE_CODE (t) == TREE_LIST)
4816 dependent_p = (uses_template_parms (TREE_VALUE (t))
4817 || uses_template_parms (TREE_CHAIN (t)));
4818 else if (DECL_P (t)
4819 || EXPR_P (t)
4820 || TREE_CODE (t) == TEMPLATE_PARM_INDEX
4821 || TREE_CODE (t) == OVERLOAD
4822 || TREE_CODE (t) == BASELINK
4823 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
4824 dependent_p = (type_dependent_expression_p (t)
4825 || value_dependent_expression_p (t));
4826 else if (t == error_mark_node)
4827 dependent_p = false;
4828 else
4829 abort ();
4830 processing_template_decl = saved_processing_template_decl;
4831
4832 return dependent_p;
4833 }
4834
4835 /* Returns true if T depends on any template parameter with level LEVEL. */
4836
4837 int
4838 uses_template_parms_level (tree t, int level)
4839 {
4840 return for_each_template_parm (t, template_parm_this_level_p, &level, NULL);
4841 }
4842
4843 static int tinst_depth;
4844 extern int max_tinst_depth;
4845 #ifdef GATHER_STATISTICS
4846 int depth_reached;
4847 #endif
4848 static int tinst_level_tick;
4849 static int last_template_error_tick;
4850
4851 /* We're starting to instantiate D; record the template instantiation context
4852 for diagnostics and to restore it later. */
4853
4854 int
4855 push_tinst_level (tree d)
4856 {
4857 tree new;
4858
4859 if (tinst_depth >= max_tinst_depth)
4860 {
4861 /* If the instantiation in question still has unbound template parms,
4862 we don't really care if we can't instantiate it, so just return.
4863 This happens with base instantiation for implicit `typename'. */
4864 if (uses_template_parms (d))
4865 return 0;
4866
4867 last_template_error_tick = tinst_level_tick;
4868 error ("template instantiation depth exceeds maximum of %d (use -ftemplate-depth-NN to increase the maximum) instantiating `%D'",
4869 max_tinst_depth, d);
4870
4871 print_instantiation_context ();
4872
4873 return 0;
4874 }
4875
4876 new = make_node (TINST_LEVEL);
4877 annotate_with_locus (new, input_location);
4878 TINST_DECL (new) = d;
4879 TREE_CHAIN (new) = current_tinst_level;
4880 current_tinst_level = new;
4881
4882 ++tinst_depth;
4883 #ifdef GATHER_STATISTICS
4884 if (tinst_depth > depth_reached)
4885 depth_reached = tinst_depth;
4886 #endif
4887
4888 ++tinst_level_tick;
4889 return 1;
4890 }
4891
4892 /* We're done instantiating this template; return to the instantiation
4893 context. */
4894
4895 void
4896 pop_tinst_level (void)
4897 {
4898 tree old = current_tinst_level;
4899
4900 /* Restore the filename and line number stashed away when we started
4901 this instantiation. */
4902 input_location = *EXPR_LOCUS (old);
4903 extract_interface_info ();
4904
4905 current_tinst_level = TREE_CHAIN (old);
4906 --tinst_depth;
4907 ++tinst_level_tick;
4908 }
4909
4910 /* We're instantiating a deferred template; restore the template
4911 instantiation context in which the instantiation was requested, which
4912 is one step out from LEVEL. */
4913
4914 static void
4915 reopen_tinst_level (tree level)
4916 {
4917 tree t;
4918
4919 tinst_depth = 0;
4920 for (t = level; t; t = TREE_CHAIN (t))
4921 ++tinst_depth;
4922
4923 current_tinst_level = level;
4924 pop_tinst_level ();
4925 }
4926
4927 /* Return the outermost template instantiation context, for use with
4928 -falt-external-templates. */
4929
4930 tree
4931 tinst_for_decl (void)
4932 {
4933 tree p = current_tinst_level;
4934
4935 if (p)
4936 for (; TREE_CHAIN (p) ; p = TREE_CHAIN (p))
4937 ;
4938 return p;
4939 }
4940
4941 /* DECL is a friend FUNCTION_DECL or TEMPLATE_DECL. ARGS is the
4942 vector of template arguments, as for tsubst.
4943
4944 Returns an appropriate tsubst'd friend declaration. */
4945
4946 static tree
4947 tsubst_friend_function (tree decl, tree args)
4948 {
4949 tree new_friend;
4950 location_t saved_loc = input_location;
4951
4952 input_location = DECL_SOURCE_LOCATION (decl);
4953
4954 if (TREE_CODE (decl) == FUNCTION_DECL
4955 && DECL_TEMPLATE_INSTANTIATION (decl)
4956 && TREE_CODE (DECL_TI_TEMPLATE (decl)) != TEMPLATE_DECL)
4957 /* This was a friend declared with an explicit template
4958 argument list, e.g.:
4959
4960 friend void f<>(T);
4961
4962 to indicate that f was a template instantiation, not a new
4963 function declaration. Now, we have to figure out what
4964 instantiation of what template. */
4965 {
4966 tree template_id, arglist, fns;
4967 tree new_args;
4968 tree tmpl;
4969 tree ns = decl_namespace_context (TYPE_MAIN_DECL (current_class_type));
4970
4971 /* Friend functions are looked up in the containing namespace scope.
4972 We must enter that scope, to avoid finding member functions of the
4973 current cless with same name. */
4974 push_nested_namespace (ns);
4975 fns = tsubst_expr (DECL_TI_TEMPLATE (decl), args,
4976 tf_error | tf_warning, NULL_TREE);
4977 pop_nested_namespace (ns);
4978 arglist = tsubst (DECL_TI_ARGS (decl), args,
4979 tf_error | tf_warning, NULL_TREE);
4980 template_id = lookup_template_function (fns, arglist);
4981
4982 new_friend = tsubst (decl, args, tf_error | tf_warning, NULL_TREE);
4983 tmpl = determine_specialization (template_id, new_friend,
4984 &new_args,
4985 /*need_member_template=*/0);
4986 new_friend = instantiate_template (tmpl, new_args, tf_error);
4987 goto done;
4988 }
4989
4990 new_friend = tsubst (decl, args, tf_error | tf_warning, NULL_TREE);
4991
4992 /* The NEW_FRIEND will look like an instantiation, to the
4993 compiler, but is not an instantiation from the point of view of
4994 the language. For example, we might have had:
4995
4996 template <class T> struct S {
4997 template <class U> friend void f(T, U);
4998 };
4999
5000 Then, in S<int>, template <class U> void f(int, U) is not an
5001 instantiation of anything. */
5002 if (new_friend == error_mark_node)
5003 return error_mark_node;
5004
5005 DECL_USE_TEMPLATE (new_friend) = 0;
5006 if (TREE_CODE (decl) == TEMPLATE_DECL)
5007 {
5008 DECL_USE_TEMPLATE (DECL_TEMPLATE_RESULT (new_friend)) = 0;
5009 DECL_SAVED_TREE (DECL_TEMPLATE_RESULT (new_friend))
5010 = DECL_SAVED_TREE (DECL_TEMPLATE_RESULT (decl));
5011 }
5012
5013 /* The mangled name for the NEW_FRIEND is incorrect. The function
5014 is not a template instantiation and should not be mangled like
5015 one. Therefore, we forget the mangling here; we'll recompute it
5016 later if we need it. */
5017 if (TREE_CODE (new_friend) != TEMPLATE_DECL)
5018 {
5019 SET_DECL_RTL (new_friend, NULL_RTX);
5020 SET_DECL_ASSEMBLER_NAME (new_friend, NULL_TREE);
5021 }
5022
5023 if (DECL_NAMESPACE_SCOPE_P (new_friend))
5024 {
5025 tree old_decl;
5026 tree new_friend_template_info;
5027 tree new_friend_result_template_info;
5028 tree ns;
5029 int new_friend_is_defn;
5030
5031 /* We must save some information from NEW_FRIEND before calling
5032 duplicate decls since that function will free NEW_FRIEND if
5033 possible. */
5034 new_friend_template_info = DECL_TEMPLATE_INFO (new_friend);
5035 new_friend_is_defn =
5036 (DECL_INITIAL (DECL_TEMPLATE_RESULT
5037 (template_for_substitution (new_friend)))
5038 != NULL_TREE);
5039 if (TREE_CODE (new_friend) == TEMPLATE_DECL)
5040 {
5041 /* This declaration is a `primary' template. */
5042 DECL_PRIMARY_TEMPLATE (new_friend) = new_friend;
5043
5044 new_friend_result_template_info
5045 = DECL_TEMPLATE_INFO (DECL_TEMPLATE_RESULT (new_friend));
5046 }
5047 else
5048 new_friend_result_template_info = NULL_TREE;
5049
5050 /* Inside pushdecl_namespace_level, we will push into the
5051 current namespace. However, the friend function should go
5052 into the namespace of the template. */
5053 ns = decl_namespace_context (new_friend);
5054 push_nested_namespace (ns);
5055 old_decl = pushdecl_namespace_level (new_friend);
5056 pop_nested_namespace (ns);
5057
5058 if (old_decl != new_friend)
5059 {
5060 /* This new friend declaration matched an existing
5061 declaration. For example, given:
5062
5063 template <class T> void f(T);
5064 template <class U> class C {
5065 template <class T> friend void f(T) {}
5066 };
5067
5068 the friend declaration actually provides the definition
5069 of `f', once C has been instantiated for some type. So,
5070 old_decl will be the out-of-class template declaration,
5071 while new_friend is the in-class definition.
5072
5073 But, if `f' was called before this point, the
5074 instantiation of `f' will have DECL_TI_ARGS corresponding
5075 to `T' but not to `U', references to which might appear
5076 in the definition of `f'. Previously, the most general
5077 template for an instantiation of `f' was the out-of-class
5078 version; now it is the in-class version. Therefore, we
5079 run through all specialization of `f', adding to their
5080 DECL_TI_ARGS appropriately. In particular, they need a
5081 new set of outer arguments, corresponding to the
5082 arguments for this class instantiation.
5083
5084 The same situation can arise with something like this:
5085
5086 friend void f(int);
5087 template <class T> class C {
5088 friend void f(T) {}
5089 };
5090
5091 when `C<int>' is instantiated. Now, `f(int)' is defined
5092 in the class. */
5093
5094 if (!new_friend_is_defn)
5095 /* On the other hand, if the in-class declaration does
5096 *not* provide a definition, then we don't want to alter
5097 existing definitions. We can just leave everything
5098 alone. */
5099 ;
5100 else
5101 {
5102 /* Overwrite whatever template info was there before, if
5103 any, with the new template information pertaining to
5104 the declaration. */
5105 DECL_TEMPLATE_INFO (old_decl) = new_friend_template_info;
5106
5107 if (TREE_CODE (old_decl) != TEMPLATE_DECL)
5108 reregister_specialization (new_friend,
5109 most_general_template (old_decl),
5110 old_decl);
5111 else
5112 {
5113 tree t;
5114 tree new_friend_args;
5115
5116 DECL_TEMPLATE_INFO (DECL_TEMPLATE_RESULT (old_decl))
5117 = new_friend_result_template_info;
5118
5119 new_friend_args = TI_ARGS (new_friend_template_info);
5120 for (t = DECL_TEMPLATE_SPECIALIZATIONS (old_decl);
5121 t != NULL_TREE;
5122 t = TREE_CHAIN (t))
5123 {
5124 tree spec = TREE_VALUE (t);
5125
5126 DECL_TI_ARGS (spec)
5127 = add_outermost_template_args (new_friend_args,
5128 DECL_TI_ARGS (spec));
5129 }
5130
5131 /* Now, since specializations are always supposed to
5132 hang off of the most general template, we must move
5133 them. */
5134 t = most_general_template (old_decl);
5135 if (t != old_decl)
5136 {
5137 DECL_TEMPLATE_SPECIALIZATIONS (t)
5138 = chainon (DECL_TEMPLATE_SPECIALIZATIONS (t),
5139 DECL_TEMPLATE_SPECIALIZATIONS (old_decl));
5140 DECL_TEMPLATE_SPECIALIZATIONS (old_decl) = NULL_TREE;
5141 }
5142 }
5143 }
5144
5145 /* The information from NEW_FRIEND has been merged into OLD_DECL
5146 by duplicate_decls. */
5147 new_friend = old_decl;
5148 }
5149 }
5150 else if (COMPLETE_TYPE_P (DECL_CONTEXT (new_friend)))
5151 {
5152 /* Check to see that the declaration is really present, and,
5153 possibly obtain an improved declaration. */
5154 tree fn = check_classfn (DECL_CONTEXT (new_friend),
5155 new_friend, NULL_TREE);
5156
5157 if (fn)
5158 new_friend = fn;
5159 }
5160
5161 done:
5162 input_location = saved_loc;
5163 return new_friend;
5164 }
5165
5166 /* FRIEND_TMPL is a friend TEMPLATE_DECL. ARGS is the vector of
5167 template arguments, as for tsubst.
5168
5169 Returns an appropriate tsubst'd friend type or error_mark_node on
5170 failure. */
5171
5172 static tree
5173 tsubst_friend_class (tree friend_tmpl, tree args)
5174 {
5175 tree friend_type;
5176 tree tmpl;
5177 tree context;
5178
5179 context = DECL_CONTEXT (friend_tmpl);
5180
5181 if (context)
5182 {
5183 if (TREE_CODE (context) == NAMESPACE_DECL)
5184 push_nested_namespace (context);
5185 else
5186 push_nested_class (tsubst (context, args, tf_none, NULL_TREE));
5187 }
5188
5189 /* First, we look for a class template. */
5190 tmpl = lookup_name (DECL_NAME (friend_tmpl), /*prefer_type=*/0);
5191
5192 /* But, if we don't find one, it might be because we're in a
5193 situation like this:
5194
5195 template <class T>
5196 struct S {
5197 template <class U>
5198 friend struct S;
5199 };
5200
5201 Here, in the scope of (say) S<int>, `S' is bound to a TYPE_DECL
5202 for `S<int>', not the TEMPLATE_DECL. */
5203 if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl))
5204 {
5205 tmpl = lookup_name (DECL_NAME (friend_tmpl), /*prefer_type=*/1);
5206 tmpl = maybe_get_template_decl_from_type_decl (tmpl);
5207 }
5208
5209 if (tmpl && DECL_CLASS_TEMPLATE_P (tmpl))
5210 {
5211 /* The friend template has already been declared. Just
5212 check to see that the declarations match, and install any new
5213 default parameters. We must tsubst the default parameters,
5214 of course. We only need the innermost template parameters
5215 because that is all that redeclare_class_template will look
5216 at. */
5217 if (TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (friend_tmpl))
5218 > TMPL_ARGS_DEPTH (args))
5219 {
5220 tree parms;
5221 parms = tsubst_template_parms (DECL_TEMPLATE_PARMS (friend_tmpl),
5222 args, tf_error | tf_warning);
5223 redeclare_class_template (TREE_TYPE (tmpl), parms);
5224 }
5225
5226 friend_type = TREE_TYPE (tmpl);
5227 }
5228 else
5229 {
5230 /* The friend template has not already been declared. In this
5231 case, the instantiation of the template class will cause the
5232 injection of this template into the global scope. */
5233 tmpl = tsubst (friend_tmpl, args, tf_error | tf_warning, NULL_TREE);
5234
5235 /* The new TMPL is not an instantiation of anything, so we
5236 forget its origins. We don't reset CLASSTYPE_TI_TEMPLATE for
5237 the new type because that is supposed to be the corresponding
5238 template decl, i.e., TMPL. */
5239 DECL_USE_TEMPLATE (tmpl) = 0;
5240 DECL_TEMPLATE_INFO (tmpl) = NULL_TREE;
5241 CLASSTYPE_USE_TEMPLATE (TREE_TYPE (tmpl)) = 0;
5242 CLASSTYPE_TI_ARGS (TREE_TYPE (tmpl))
5243 = INNERMOST_TEMPLATE_ARGS (CLASSTYPE_TI_ARGS (TREE_TYPE (tmpl)));
5244
5245 /* Inject this template into the global scope. */
5246 friend_type = TREE_TYPE (pushdecl_top_level (tmpl));
5247 }
5248
5249 if (context)
5250 {
5251 if (TREE_CODE (context) == NAMESPACE_DECL)
5252 pop_nested_namespace (context);
5253 else
5254 pop_nested_class ();
5255 }
5256
5257 return friend_type;
5258 }
5259
5260 /* Returns zero if TYPE cannot be completed later due to circularity.
5261 Otherwise returns one. */
5262
5263 static int
5264 can_complete_type_without_circularity (tree type)
5265 {
5266 if (type == NULL_TREE || type == error_mark_node)
5267 return 0;
5268 else if (COMPLETE_TYPE_P (type))
5269 return 1;
5270 else if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
5271 return can_complete_type_without_circularity (TREE_TYPE (type));
5272 else if (CLASS_TYPE_P (type)
5273 && TYPE_BEING_DEFINED (TYPE_MAIN_VARIANT (type)))
5274 return 0;
5275 else
5276 return 1;
5277 }
5278
5279 tree
5280 instantiate_class_template (tree type)
5281 {
5282 tree template, args, pattern, t, member;
5283 tree typedecl;
5284 tree pbinfo;
5285
5286 if (type == error_mark_node)
5287 return error_mark_node;
5288
5289 if (TYPE_BEING_DEFINED (type)
5290 || COMPLETE_TYPE_P (type)
5291 || dependent_type_p (type))
5292 return type;
5293
5294 /* Figure out which template is being instantiated. */
5295 template = most_general_template (CLASSTYPE_TI_TEMPLATE (type));
5296 my_friendly_assert (TREE_CODE (template) == TEMPLATE_DECL, 279);
5297
5298 /* Figure out which arguments are being used to do the
5299 instantiation. */
5300 args = CLASSTYPE_TI_ARGS (type);
5301
5302 /* Determine what specialization of the original template to
5303 instantiate. */
5304 t = most_specialized_class (template, args);
5305 if (t == error_mark_node)
5306 {
5307 const char *str = "candidates are:";
5308 error ("ambiguous class template instantiation for `%#T'", type);
5309 for (t = DECL_TEMPLATE_SPECIALIZATIONS (template); t;
5310 t = TREE_CHAIN (t))
5311 {
5312 if (get_class_bindings (TREE_VALUE (t), TREE_PURPOSE (t), args))
5313 {
5314 cp_error_at ("%s %+#T", str, TREE_TYPE (t));
5315 str = " ";
5316 }
5317 }
5318 TYPE_BEING_DEFINED (type) = 1;
5319 return error_mark_node;
5320 }
5321
5322 if (t)
5323 pattern = TREE_TYPE (t);
5324 else
5325 pattern = TREE_TYPE (template);
5326
5327 /* If the template we're instantiating is incomplete, then clearly
5328 there's nothing we can do. */
5329 if (!COMPLETE_TYPE_P (pattern))
5330 return type;
5331
5332 /* If we've recursively instantiated too many templates, stop. */
5333 if (! push_tinst_level (type))
5334 return type;
5335
5336 /* Now we're really doing the instantiation. Mark the type as in
5337 the process of being defined. */
5338 TYPE_BEING_DEFINED (type) = 1;
5339
5340 /* We may be in the middle of deferred access check. Disable
5341 it now. */
5342 push_deferring_access_checks (dk_no_deferred);
5343
5344 push_to_top_level ();
5345
5346 if (t)
5347 {
5348 /* This TYPE is actually an instantiation of a partial
5349 specialization. We replace the innermost set of ARGS with
5350 the arguments appropriate for substitution. For example,
5351 given:
5352
5353 template <class T> struct S {};
5354 template <class T> struct S<T*> {};
5355
5356 and supposing that we are instantiating S<int*>, ARGS will
5357 present be {int*} but we need {int}. */
5358 tree inner_args
5359 = get_class_bindings (TREE_VALUE (t), TREE_PURPOSE (t),
5360 args);
5361
5362 /* If there were multiple levels in ARGS, replacing the
5363 innermost level would alter CLASSTYPE_TI_ARGS, which we don't
5364 want, so we make a copy first. */
5365 if (TMPL_ARGS_HAVE_MULTIPLE_LEVELS (args))
5366 {
5367 args = copy_node (args);
5368 SET_TMPL_ARGS_LEVEL (args, TMPL_ARGS_DEPTH (args), inner_args);
5369 }
5370 else
5371 args = inner_args;
5372 }
5373
5374 SET_CLASSTYPE_INTERFACE_UNKNOWN (type);
5375
5376 /* Set the input location to the template definition. This is needed
5377 if tsubsting causes an error. */
5378 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (pattern));
5379
5380 TYPE_HAS_CONSTRUCTOR (type) = TYPE_HAS_CONSTRUCTOR (pattern);
5381 TYPE_HAS_DESTRUCTOR (type) = TYPE_HAS_DESTRUCTOR (pattern);
5382 TYPE_HAS_NEW_OPERATOR (type) = TYPE_HAS_NEW_OPERATOR (pattern);
5383 TYPE_HAS_ARRAY_NEW_OPERATOR (type) = TYPE_HAS_ARRAY_NEW_OPERATOR (pattern);
5384 TYPE_GETS_DELETE (type) = TYPE_GETS_DELETE (pattern);
5385 TYPE_HAS_ASSIGN_REF (type) = TYPE_HAS_ASSIGN_REF (pattern);
5386 TYPE_HAS_CONST_ASSIGN_REF (type) = TYPE_HAS_CONST_ASSIGN_REF (pattern);
5387 TYPE_HAS_ABSTRACT_ASSIGN_REF (type) = TYPE_HAS_ABSTRACT_ASSIGN_REF (pattern);
5388 TYPE_HAS_INIT_REF (type) = TYPE_HAS_INIT_REF (pattern);
5389 TYPE_HAS_CONST_INIT_REF (type) = TYPE_HAS_CONST_INIT_REF (pattern);
5390 TYPE_HAS_DEFAULT_CONSTRUCTOR (type) = TYPE_HAS_DEFAULT_CONSTRUCTOR (pattern);
5391 TYPE_HAS_CONVERSION (type) = TYPE_HAS_CONVERSION (pattern);
5392 TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (type)
5393 = TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (pattern);
5394 TYPE_USES_MULTIPLE_INHERITANCE (type)
5395 = TYPE_USES_MULTIPLE_INHERITANCE (pattern);
5396 TYPE_USES_VIRTUAL_BASECLASSES (type)
5397 = TYPE_USES_VIRTUAL_BASECLASSES (pattern);
5398 TYPE_PACKED (type) = TYPE_PACKED (pattern);
5399 TYPE_ALIGN (type) = TYPE_ALIGN (pattern);
5400 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (pattern);
5401 TYPE_FOR_JAVA (type) = TYPE_FOR_JAVA (pattern); /* For libjava's JArray<T> */
5402 if (ANON_AGGR_TYPE_P (pattern))
5403 SET_ANON_AGGR_TYPE_P (type);
5404
5405 pbinfo = TYPE_BINFO (pattern);
5406
5407 #ifdef ENABLE_CHECKING
5408 if (DECL_CLASS_SCOPE_P (TYPE_MAIN_DECL (pattern))
5409 && ! COMPLETE_TYPE_P (TYPE_CONTEXT (type))
5410 && ! TYPE_BEING_DEFINED (TYPE_CONTEXT (type)))
5411 /* We should never instantiate a nested class before its enclosing
5412 class; we need to look up the nested class by name before we can
5413 instantiate it, and that lookup should instantiate the enclosing
5414 class. */
5415 abort ();
5416 #endif
5417
5418 if (BINFO_BASETYPES (pbinfo))
5419 {
5420 tree base_list = NULL_TREE;
5421 tree pbases = BINFO_BASETYPES (pbinfo);
5422 tree paccesses = BINFO_BASEACCESSES (pbinfo);
5423 tree context = TYPE_CONTEXT (type);
5424 bool pop_p;
5425 int i;
5426
5427 /* We must enter the scope containing the type, as that is where
5428 the accessibility of types named in dependent bases are
5429 looked up from. */
5430 pop_p = push_scope (context ? context : global_namespace);
5431
5432 /* Substitute into each of the bases to determine the actual
5433 basetypes. */
5434 for (i = 0; i < TREE_VEC_LENGTH (pbases); ++i)
5435 {
5436 tree base;
5437 tree access;
5438 tree pbase;
5439
5440 pbase = TREE_VEC_ELT (pbases, i);
5441 access = TREE_VEC_ELT (paccesses, i);
5442
5443 /* Substitute to figure out the base class. */
5444 base = tsubst (BINFO_TYPE (pbase), args, tf_error, NULL_TREE);
5445 if (base == error_mark_node)
5446 continue;
5447
5448 base_list = tree_cons (access, base, base_list);
5449 TREE_VIA_VIRTUAL (base_list) = TREE_VIA_VIRTUAL (pbase);
5450 }
5451
5452 /* The list is now in reverse order; correct that. */
5453 base_list = nreverse (base_list);
5454
5455 /* Now call xref_basetypes to set up all the base-class
5456 information. */
5457 xref_basetypes (type, base_list);
5458
5459 if (pop_p)
5460 pop_scope (context ? context : global_namespace);
5461 }
5462
5463 /* Now that our base classes are set up, enter the scope of the
5464 class, so that name lookups into base classes, etc. will work
5465 correctly. This is precisely analogous to what we do in
5466 begin_class_definition when defining an ordinary non-template
5467 class. */
5468 pushclass (type);
5469
5470 /* Now members are processed in the order of declaration. */
5471 for (member = CLASSTYPE_DECL_LIST (pattern);
5472 member; member = TREE_CHAIN (member))
5473 {
5474 tree t = TREE_VALUE (member);
5475
5476 if (TREE_PURPOSE (member))
5477 {
5478 if (TYPE_P (t))
5479 {
5480 /* Build new CLASSTYPE_NESTED_UTDS. */
5481
5482 tree tag = t;
5483 tree name = TYPE_IDENTIFIER (tag);
5484 tree newtag;
5485
5486 newtag = tsubst (tag, args, tf_error, NULL_TREE);
5487 if (newtag == error_mark_node)
5488 continue;
5489
5490 if (TREE_CODE (newtag) != ENUMERAL_TYPE)
5491 {
5492 if (TYPE_LANG_SPECIFIC (tag) && CLASSTYPE_IS_TEMPLATE (tag))
5493 /* Unfortunately, lookup_template_class sets
5494 CLASSTYPE_IMPLICIT_INSTANTIATION for a partial
5495 instantiation (i.e., for the type of a member
5496 template class nested within a template class.)
5497 This behavior is required for
5498 maybe_process_partial_specialization to work
5499 correctly, but is not accurate in this case;
5500 the TAG is not an instantiation of anything.
5501 (The corresponding TEMPLATE_DECL is an
5502 instantiation, but the TYPE is not.) */
5503 CLASSTYPE_USE_TEMPLATE (newtag) = 0;
5504
5505 /* Now, we call pushtag to put this NEWTAG into the scope of
5506 TYPE. We first set up the IDENTIFIER_TYPE_VALUE to avoid
5507 pushtag calling push_template_decl. We don't have to do
5508 this for enums because it will already have been done in
5509 tsubst_enum. */
5510 if (name)
5511 SET_IDENTIFIER_TYPE_VALUE (name, newtag);
5512 pushtag (name, newtag, /*globalize=*/0);
5513 }
5514 }
5515 else if (TREE_CODE (t) == FUNCTION_DECL
5516 || DECL_FUNCTION_TEMPLATE_P (t))
5517 {
5518 /* Build new TYPE_METHODS. */
5519 tree r;
5520
5521 if (TREE_CODE (t) == TEMPLATE_DECL)
5522 ++processing_template_decl;
5523 r = tsubst (t, args, tf_error, NULL_TREE);
5524 if (TREE_CODE (t) == TEMPLATE_DECL)
5525 --processing_template_decl;
5526 set_current_access_from_decl (r);
5527 grok_special_member_properties (r);
5528 finish_member_declaration (r);
5529 }
5530 else
5531 {
5532 /* Build new TYPE_FIELDS. */
5533
5534 if (TREE_CODE (t) != CONST_DECL)
5535 {
5536 tree r;
5537
5538 /* The the file and line for this declaration, to
5539 assist in error message reporting. Since we
5540 called push_tinst_level above, we don't need to
5541 restore these. */
5542 input_location = DECL_SOURCE_LOCATION (t);
5543
5544 if (TREE_CODE (t) == TEMPLATE_DECL)
5545 ++processing_template_decl;
5546 r = tsubst (t, args, tf_error | tf_warning, NULL_TREE);
5547 if (TREE_CODE (t) == TEMPLATE_DECL)
5548 --processing_template_decl;
5549 if (TREE_CODE (r) == VAR_DECL)
5550 {
5551 tree init;
5552
5553 if (DECL_INITIALIZED_IN_CLASS_P (r))
5554 init = tsubst_expr (DECL_INITIAL (t), args,
5555 tf_error | tf_warning, NULL_TREE);
5556 else
5557 init = NULL_TREE;
5558
5559 finish_static_data_member_decl
5560 (r, init, /*asmspec_tree=*/NULL_TREE, /*flags=*/0);
5561
5562 if (DECL_INITIALIZED_IN_CLASS_P (r))
5563 check_static_variable_definition (r, TREE_TYPE (r));
5564 }
5565 else if (TREE_CODE (r) == FIELD_DECL)
5566 {
5567 /* Determine whether R has a valid type and can be
5568 completed later. If R is invalid, then it is
5569 replaced by error_mark_node so that it will not be
5570 added to TYPE_FIELDS. */
5571 tree rtype = TREE_TYPE (r);
5572 if (can_complete_type_without_circularity (rtype))
5573 complete_type (rtype);
5574
5575 if (!COMPLETE_TYPE_P (rtype))
5576 {
5577 cxx_incomplete_type_error (r, rtype);
5578 r = error_mark_node;
5579 }
5580 }
5581
5582 /* If it is a TYPE_DECL for a class-scoped ENUMERAL_TYPE,
5583 such a thing will already have been added to the field
5584 list by tsubst_enum in finish_member_declaration in the
5585 CLASSTYPE_NESTED_UTDS case above. */
5586 if (!(TREE_CODE (r) == TYPE_DECL
5587 && TREE_CODE (TREE_TYPE (r)) == ENUMERAL_TYPE
5588 && DECL_ARTIFICIAL (r)))
5589 {
5590 set_current_access_from_decl (r);
5591 finish_member_declaration (r);
5592 }
5593 }
5594 }
5595 }
5596 else
5597 {
5598 if (TYPE_P (t) || DECL_CLASS_TEMPLATE_P (t))
5599 {
5600 /* Build new CLASSTYPE_FRIEND_CLASSES. */
5601
5602 tree friend_type = t;
5603 tree new_friend_type;
5604
5605 if (TREE_CODE (friend_type) == TEMPLATE_DECL)
5606 new_friend_type = tsubst_friend_class (friend_type, args);
5607 else if (uses_template_parms (friend_type))
5608 new_friend_type = tsubst (friend_type, args,
5609 tf_error | tf_warning, NULL_TREE);
5610 else if (CLASSTYPE_USE_TEMPLATE (friend_type))
5611 new_friend_type = friend_type;
5612 else
5613 {
5614 tree ns = decl_namespace_context (TYPE_MAIN_DECL (friend_type));
5615
5616 /* The call to xref_tag_from_type does injection for friend
5617 classes. */
5618 push_nested_namespace (ns);
5619 new_friend_type =
5620 xref_tag_from_type (friend_type, NULL_TREE, 1);
5621 pop_nested_namespace (ns);
5622 }
5623
5624 if (TREE_CODE (friend_type) == TEMPLATE_DECL)
5625 /* Trick make_friend_class into realizing that the friend
5626 we're adding is a template, not an ordinary class. It's
5627 important that we use make_friend_class since it will
5628 perform some error-checking and output cross-reference
5629 information. */
5630 ++processing_template_decl;
5631
5632 if (new_friend_type != error_mark_node)
5633 make_friend_class (type, new_friend_type,
5634 /*complain=*/false);
5635
5636 if (TREE_CODE (friend_type) == TEMPLATE_DECL)
5637 --processing_template_decl;
5638 }
5639 else
5640 {
5641 /* Build new DECL_FRIENDLIST. */
5642 tree r;
5643
5644 if (TREE_CODE (t) == TEMPLATE_DECL)
5645 ++processing_template_decl;
5646 r = tsubst_friend_function (t, args);
5647 if (TREE_CODE (t) == TEMPLATE_DECL)
5648 --processing_template_decl;
5649 add_friend (type, r, /*complain=*/false);
5650 }
5651 }
5652 }
5653
5654 /* Set the file and line number information to whatever is given for
5655 the class itself. This puts error messages involving generated
5656 implicit functions at a predictable point, and the same point
5657 that would be used for non-template classes. */
5658 typedecl = TYPE_MAIN_DECL (type);
5659 input_location = DECL_SOURCE_LOCATION (typedecl);
5660
5661 unreverse_member_declarations (type);
5662 finish_struct_1 (type);
5663
5664 /* Clear this now so repo_template_used is happy. */
5665 TYPE_BEING_DEFINED (type) = 0;
5666 repo_template_used (type);
5667
5668 /* Now that the class is complete, instantiate default arguments for
5669 any member functions. We don't do this earlier because the
5670 default arguments may reference members of the class. */
5671 if (!PRIMARY_TEMPLATE_P (template))
5672 for (t = TYPE_METHODS (type); t; t = TREE_CHAIN (t))
5673 if (TREE_CODE (t) == FUNCTION_DECL
5674 /* Implicitly generated member functions will not have template
5675 information; they are not instantiations, but instead are
5676 created "fresh" for each instantiation. */
5677 && DECL_TEMPLATE_INFO (t))
5678 tsubst_default_arguments (t);
5679
5680 popclass ();
5681 pop_from_top_level ();
5682 pop_deferring_access_checks ();
5683 pop_tinst_level ();
5684
5685 if (TYPE_CONTAINS_VPTR_P (type))
5686 keyed_classes = tree_cons (NULL_TREE, type, keyed_classes);
5687
5688 return type;
5689 }
5690
5691 static tree
5692 tsubst_template_arg (tree t, tree args, tsubst_flags_t complain, tree in_decl)
5693 {
5694 tree r;
5695
5696 if (!t)
5697 r = t;
5698 else if (TYPE_P (t))
5699 r = tsubst (t, args, complain, in_decl);
5700 else
5701 {
5702 r = tsubst_expr (t, args, complain, in_decl);
5703
5704 if (!uses_template_parms (r))
5705 {
5706 /* Sometimes, one of the args was an expression involving a
5707 template constant parameter, like N - 1. Now that we've
5708 tsubst'd, we might have something like 2 - 1. This will
5709 confuse lookup_template_class, so we do constant folding
5710 here. We have to unset processing_template_decl, to fool
5711 tsubst_copy_and_build() into building an actual tree. */
5712
5713 /* If the TREE_TYPE of ARG is not NULL_TREE, ARG is already
5714 as simple as it's going to get, and trying to reprocess
5715 the trees will break. Once tsubst_expr et al DTRT for
5716 non-dependent exprs, this code can go away, as the type
5717 will always be set. */
5718 if (!TREE_TYPE (r))
5719 {
5720 int saved_processing_template_decl = processing_template_decl;
5721 processing_template_decl = 0;
5722 r = tsubst_copy_and_build (r, /*args=*/NULL_TREE,
5723 tf_error, /*in_decl=*/NULL_TREE,
5724 /*function_p=*/false);
5725 processing_template_decl = saved_processing_template_decl;
5726 }
5727 r = fold (r);
5728 }
5729 }
5730 return r;
5731 }
5732
5733 /* Substitute ARGS into the vector or list of template arguments T. */
5734
5735 static tree
5736 tsubst_template_args (tree t, tree args, tsubst_flags_t complain, tree in_decl)
5737 {
5738 int len = TREE_VEC_LENGTH (t);
5739 int need_new = 0, i;
5740 tree *elts = alloca (len * sizeof (tree));
5741
5742 for (i = 0; i < len; i++)
5743 {
5744 tree orig_arg = TREE_VEC_ELT (t, i);
5745 tree new_arg;
5746
5747 if (TREE_CODE (orig_arg) == TREE_VEC)
5748 new_arg = tsubst_template_args (orig_arg, args, complain, in_decl);
5749 else
5750 new_arg = tsubst_template_arg (orig_arg, args, complain, in_decl);
5751
5752 if (new_arg == error_mark_node)
5753 return error_mark_node;
5754
5755 elts[i] = new_arg;
5756 if (new_arg != orig_arg)
5757 need_new = 1;
5758 }
5759
5760 if (!need_new)
5761 return t;
5762
5763 t = make_tree_vec (len);
5764 for (i = 0; i < len; i++)
5765 TREE_VEC_ELT (t, i) = elts[i];
5766
5767 return t;
5768 }
5769
5770 /* Return the result of substituting ARGS into the template parameters
5771 given by PARMS. If there are m levels of ARGS and m + n levels of
5772 PARMS, then the result will contain n levels of PARMS. For
5773 example, if PARMS is `template <class T> template <class U>
5774 template <T*, U, class V>' and ARGS is {{int}, {double}} then the
5775 result will be `template <int*, double, class V>'. */
5776
5777 static tree
5778 tsubst_template_parms (tree parms, tree args, tsubst_flags_t complain)
5779 {
5780 tree r = NULL_TREE;
5781 tree* new_parms;
5782
5783 for (new_parms = &r;
5784 TMPL_PARMS_DEPTH (parms) > TMPL_ARGS_DEPTH (args);
5785 new_parms = &(TREE_CHAIN (*new_parms)),
5786 parms = TREE_CHAIN (parms))
5787 {
5788 tree new_vec =
5789 make_tree_vec (TREE_VEC_LENGTH (TREE_VALUE (parms)));
5790 int i;
5791
5792 for (i = 0; i < TREE_VEC_LENGTH (new_vec); ++i)
5793 {
5794 tree tuple = TREE_VEC_ELT (TREE_VALUE (parms), i);
5795 tree default_value = TREE_PURPOSE (tuple);
5796 tree parm_decl = TREE_VALUE (tuple);
5797
5798 parm_decl = tsubst (parm_decl, args, complain, NULL_TREE);
5799 default_value = tsubst_template_arg (default_value, args,
5800 complain, NULL_TREE);
5801
5802 tuple = build_tree_list (default_value, parm_decl);
5803 TREE_VEC_ELT (new_vec, i) = tuple;
5804 }
5805
5806 *new_parms =
5807 tree_cons (size_int (TMPL_PARMS_DEPTH (parms)
5808 - TMPL_ARGS_DEPTH (args)),
5809 new_vec, NULL_TREE);
5810 }
5811
5812 return r;
5813 }
5814
5815 /* Substitute the ARGS into the indicated aggregate (or enumeration)
5816 type T. If T is not an aggregate or enumeration type, it is
5817 handled as if by tsubst. IN_DECL is as for tsubst. If
5818 ENTERING_SCOPE is nonzero, T is the context for a template which
5819 we are presently tsubst'ing. Return the substituted value. */
5820
5821 static tree
5822 tsubst_aggr_type (tree t,
5823 tree args,
5824 tsubst_flags_t complain,
5825 tree in_decl,
5826 int entering_scope)
5827 {
5828 if (t == NULL_TREE)
5829 return NULL_TREE;
5830
5831 switch (TREE_CODE (t))
5832 {
5833 case RECORD_TYPE:
5834 if (TYPE_PTRMEMFUNC_P (t))
5835 return tsubst (TYPE_PTRMEMFUNC_FN_TYPE (t), args, complain, in_decl);
5836
5837 /* Else fall through. */
5838 case ENUMERAL_TYPE:
5839 case UNION_TYPE:
5840 if (TYPE_TEMPLATE_INFO (t))
5841 {
5842 tree argvec;
5843 tree context;
5844 tree r;
5845
5846 /* First, determine the context for the type we are looking
5847 up. */
5848 context = TYPE_CONTEXT (t);
5849 if (context)
5850 context = tsubst_aggr_type (context, args, complain,
5851 in_decl, /*entering_scope=*/1);
5852
5853 /* Then, figure out what arguments are appropriate for the
5854 type we are trying to find. For example, given:
5855
5856 template <class T> struct S;
5857 template <class T, class U> void f(T, U) { S<U> su; }
5858
5859 and supposing that we are instantiating f<int, double>,
5860 then our ARGS will be {int, double}, but, when looking up
5861 S we only want {double}. */
5862 argvec = tsubst_template_args (TYPE_TI_ARGS (t), args,
5863 complain, in_decl);
5864 if (argvec == error_mark_node)
5865 return error_mark_node;
5866
5867 r = lookup_template_class (t, argvec, in_decl, context,
5868 entering_scope, complain);
5869
5870 return cp_build_qualified_type_real (r, TYPE_QUALS (t), complain);
5871 }
5872 else
5873 /* This is not a template type, so there's nothing to do. */
5874 return t;
5875
5876 default:
5877 return tsubst (t, args, complain, in_decl);
5878 }
5879 }
5880
5881 /* Substitute into the default argument ARG (a default argument for
5882 FN), which has the indicated TYPE. */
5883
5884 tree
5885 tsubst_default_argument (tree fn, tree type, tree arg)
5886 {
5887 /* This default argument came from a template. Instantiate the
5888 default argument here, not in tsubst. In the case of
5889 something like:
5890
5891 template <class T>
5892 struct S {
5893 static T t();
5894 void f(T = t());
5895 };
5896
5897 we must be careful to do name lookup in the scope of S<T>,
5898 rather than in the current class. */
5899 push_access_scope (fn);
5900 /* The default argument expression should not be considered to be
5901 within the scope of FN. Since push_access_scope sets
5902 current_function_decl, we must explicitly clear it here. */
5903 current_function_decl = NULL_TREE;
5904
5905 push_deferring_access_checks(dk_no_deferred);
5906 arg = tsubst_expr (arg, DECL_TI_ARGS (fn),
5907 tf_error | tf_warning, NULL_TREE);
5908 pop_deferring_access_checks();
5909
5910 pop_access_scope (fn);
5911
5912 /* Make sure the default argument is reasonable. */
5913 arg = check_default_argument (type, arg);
5914
5915 return arg;
5916 }
5917
5918 /* Substitute into all the default arguments for FN. */
5919
5920 static void
5921 tsubst_default_arguments (tree fn)
5922 {
5923 tree arg;
5924 tree tmpl_args;
5925
5926 tmpl_args = DECL_TI_ARGS (fn);
5927
5928 /* If this function is not yet instantiated, we certainly don't need
5929 its default arguments. */
5930 if (uses_template_parms (tmpl_args))
5931 return;
5932
5933 for (arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
5934 arg;
5935 arg = TREE_CHAIN (arg))
5936 if (TREE_PURPOSE (arg))
5937 TREE_PURPOSE (arg) = tsubst_default_argument (fn,
5938 TREE_VALUE (arg),
5939 TREE_PURPOSE (arg));
5940 }
5941
5942 /* Substitute the ARGS into the T, which is a _DECL. TYPE is the
5943 (already computed) substitution of ARGS into TREE_TYPE (T), if
5944 appropriate. Return the result of the substitution. Issue error
5945 and warning messages under control of COMPLAIN. */
5946
5947 static tree
5948 tsubst_decl (tree t, tree args, tree type, tsubst_flags_t complain)
5949 {
5950 location_t saved_loc;
5951 tree r = NULL_TREE;
5952 tree in_decl = t;
5953
5954 /* Set the filename and linenumber to improve error-reporting. */
5955 saved_loc = input_location;
5956 input_location = DECL_SOURCE_LOCATION (t);
5957
5958 switch (TREE_CODE (t))
5959 {
5960 case TEMPLATE_DECL:
5961 {
5962 /* We can get here when processing a member template function
5963 of a template class. */
5964 tree decl = DECL_TEMPLATE_RESULT (t);
5965 tree spec;
5966 int is_template_template_parm = DECL_TEMPLATE_TEMPLATE_PARM_P (t);
5967
5968 if (!is_template_template_parm)
5969 {
5970 /* We might already have an instance of this template.
5971 The ARGS are for the surrounding class type, so the
5972 full args contain the tsubst'd args for the context,
5973 plus the innermost args from the template decl. */
5974 tree tmpl_args = DECL_CLASS_TEMPLATE_P (t)
5975 ? CLASSTYPE_TI_ARGS (TREE_TYPE (t))
5976 : DECL_TI_ARGS (DECL_TEMPLATE_RESULT (t));
5977 tree full_args;
5978
5979 full_args = tsubst_template_args (tmpl_args, args,
5980 complain, in_decl);
5981
5982 /* tsubst_template_args doesn't copy the vector if
5983 nothing changed. But, *something* should have
5984 changed. */
5985 my_friendly_assert (full_args != tmpl_args, 0);
5986
5987 spec = retrieve_specialization (t, full_args);
5988 if (spec != NULL_TREE)
5989 {
5990 r = spec;
5991 break;
5992 }
5993 }
5994
5995 /* Make a new template decl. It will be similar to the
5996 original, but will record the current template arguments.
5997 We also create a new function declaration, which is just
5998 like the old one, but points to this new template, rather
5999 than the old one. */
6000 r = copy_decl (t);
6001 my_friendly_assert (DECL_LANG_SPECIFIC (r) != 0, 0);
6002 TREE_CHAIN (r) = NULL_TREE;
6003
6004 if (is_template_template_parm)
6005 {
6006 tree new_decl = tsubst (decl, args, complain, in_decl);
6007 DECL_TEMPLATE_RESULT (r) = new_decl;
6008 TREE_TYPE (r) = TREE_TYPE (new_decl);
6009 break;
6010 }
6011
6012 DECL_CONTEXT (r)
6013 = tsubst_aggr_type (DECL_CONTEXT (t), args,
6014 complain, in_decl,
6015 /*entering_scope=*/1);
6016 DECL_TEMPLATE_INFO (r) = build_tree_list (t, args);
6017
6018 if (TREE_CODE (decl) == TYPE_DECL)
6019 {
6020 tree new_type = tsubst (TREE_TYPE (t), args, complain, in_decl);
6021 if (new_type == error_mark_node)
6022 return error_mark_node;
6023
6024 TREE_TYPE (r) = new_type;
6025 CLASSTYPE_TI_TEMPLATE (new_type) = r;
6026 DECL_TEMPLATE_RESULT (r) = TYPE_MAIN_DECL (new_type);
6027 DECL_TI_ARGS (r) = CLASSTYPE_TI_ARGS (new_type);
6028 }
6029 else
6030 {
6031 tree new_decl = tsubst (decl, args, complain, in_decl);
6032 if (new_decl == error_mark_node)
6033 return error_mark_node;
6034
6035 DECL_TEMPLATE_RESULT (r) = new_decl;
6036 DECL_TI_TEMPLATE (new_decl) = r;
6037 TREE_TYPE (r) = TREE_TYPE (new_decl);
6038 DECL_TI_ARGS (r) = DECL_TI_ARGS (new_decl);
6039 }
6040
6041 SET_DECL_IMPLICIT_INSTANTIATION (r);
6042 DECL_TEMPLATE_INSTANTIATIONS (r) = NULL_TREE;
6043 DECL_TEMPLATE_SPECIALIZATIONS (r) = NULL_TREE;
6044
6045 /* The template parameters for this new template are all the
6046 template parameters for the old template, except the
6047 outermost level of parameters. */
6048 DECL_TEMPLATE_PARMS (r)
6049 = tsubst_template_parms (DECL_TEMPLATE_PARMS (t), args,
6050 complain);
6051
6052 if (PRIMARY_TEMPLATE_P (t))
6053 DECL_PRIMARY_TEMPLATE (r) = r;
6054
6055 if (TREE_CODE (decl) != TYPE_DECL)
6056 /* Record this non-type partial instantiation. */
6057 register_specialization (r, t,
6058 DECL_TI_ARGS (DECL_TEMPLATE_RESULT (r)));
6059 }
6060 break;
6061
6062 case FUNCTION_DECL:
6063 {
6064 tree ctx;
6065 tree argvec = NULL_TREE;
6066 tree *friends;
6067 tree gen_tmpl;
6068 int member;
6069 int args_depth;
6070 int parms_depth;
6071
6072 /* Nobody should be tsubst'ing into non-template functions. */
6073 my_friendly_assert (DECL_TEMPLATE_INFO (t) != NULL_TREE, 0);
6074
6075 if (TREE_CODE (DECL_TI_TEMPLATE (t)) == TEMPLATE_DECL)
6076 {
6077 tree spec;
6078 bool dependent_p;
6079
6080 /* If T is not dependent, just return it. We have to
6081 increment PROCESSING_TEMPLATE_DECL because
6082 value_dependent_expression_p assumes that nothing is
6083 dependent when PROCESSING_TEMPLATE_DECL is zero. */
6084 ++processing_template_decl;
6085 dependent_p = value_dependent_expression_p (t);
6086 --processing_template_decl;
6087 if (!dependent_p)
6088 return t;
6089
6090 /* Calculate the most general template of which R is a
6091 specialization, and the complete set of arguments used to
6092 specialize R. */
6093 gen_tmpl = most_general_template (DECL_TI_TEMPLATE (t));
6094 argvec = tsubst_template_args (DECL_TI_ARGS
6095 (DECL_TEMPLATE_RESULT (gen_tmpl)),
6096 args, complain, in_decl);
6097
6098 /* Check to see if we already have this specialization. */
6099 spec = retrieve_specialization (gen_tmpl, argvec);
6100
6101 if (spec)
6102 {
6103 r = spec;
6104 break;
6105 }
6106
6107 /* We can see more levels of arguments than parameters if
6108 there was a specialization of a member template, like
6109 this:
6110
6111 template <class T> struct S { template <class U> void f(); }
6112 template <> template <class U> void S<int>::f(U);
6113
6114 Here, we'll be substituting into the specialization,
6115 because that's where we can find the code we actually
6116 want to generate, but we'll have enough arguments for
6117 the most general template.
6118
6119 We also deal with the peculiar case:
6120
6121 template <class T> struct S {
6122 template <class U> friend void f();
6123 };
6124 template <class U> void f() {}
6125 template S<int>;
6126 template void f<double>();
6127
6128 Here, the ARGS for the instantiation of will be {int,
6129 double}. But, we only need as many ARGS as there are
6130 levels of template parameters in CODE_PATTERN. We are
6131 careful not to get fooled into reducing the ARGS in
6132 situations like:
6133
6134 template <class T> struct S { template <class U> void f(U); }
6135 template <class T> template <> void S<T>::f(int) {}
6136
6137 which we can spot because the pattern will be a
6138 specialization in this case. */
6139 args_depth = TMPL_ARGS_DEPTH (args);
6140 parms_depth =
6141 TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (DECL_TI_TEMPLATE (t)));
6142 if (args_depth > parms_depth
6143 && !DECL_TEMPLATE_SPECIALIZATION (t))
6144 args = get_innermost_template_args (args, parms_depth);
6145 }
6146 else
6147 {
6148 /* This special case arises when we have something like this:
6149
6150 template <class T> struct S {
6151 friend void f<int>(int, double);
6152 };
6153
6154 Here, the DECL_TI_TEMPLATE for the friend declaration
6155 will be an IDENTIFIER_NODE. We are being called from
6156 tsubst_friend_function, and we want only to create a
6157 new decl (R) with appropriate types so that we can call
6158 determine_specialization. */
6159 gen_tmpl = NULL_TREE;
6160 }
6161
6162 if (DECL_CLASS_SCOPE_P (t))
6163 {
6164 if (DECL_NAME (t) == constructor_name (DECL_CONTEXT (t)))
6165 member = 2;
6166 else
6167 member = 1;
6168 ctx = tsubst_aggr_type (DECL_CONTEXT (t), args,
6169 complain, t, /*entering_scope=*/1);
6170 }
6171 else
6172 {
6173 member = 0;
6174 ctx = DECL_CONTEXT (t);
6175 }
6176 type = tsubst (type, args, complain, in_decl);
6177 if (type == error_mark_node)
6178 return error_mark_node;
6179
6180 /* We do NOT check for matching decls pushed separately at this
6181 point, as they may not represent instantiations of this
6182 template, and in any case are considered separate under the
6183 discrete model. */
6184 r = copy_decl (t);
6185 DECL_USE_TEMPLATE (r) = 0;
6186 TREE_TYPE (r) = type;
6187 /* Clear out the mangled name and RTL for the instantiation. */
6188 SET_DECL_ASSEMBLER_NAME (r, NULL_TREE);
6189 SET_DECL_RTL (r, NULL_RTX);
6190 DECL_INITIAL (r) = NULL_TREE;
6191 DECL_CONTEXT (r) = ctx;
6192
6193 if (member && DECL_CONV_FN_P (r))
6194 /* Type-conversion operator. Reconstruct the name, in
6195 case it's the name of one of the template's parameters. */
6196 DECL_NAME (r) = mangle_conv_op_name_for_type (TREE_TYPE (type));
6197
6198 DECL_ARGUMENTS (r) = tsubst (DECL_ARGUMENTS (t), args,
6199 complain, t);
6200 DECL_RESULT (r) = NULL_TREE;
6201
6202 TREE_STATIC (r) = 0;
6203 TREE_PUBLIC (r) = TREE_PUBLIC (t);
6204 DECL_EXTERNAL (r) = 1;
6205 DECL_INTERFACE_KNOWN (r) = 0;
6206 DECL_DEFER_OUTPUT (r) = 0;
6207 TREE_CHAIN (r) = NULL_TREE;
6208 DECL_PENDING_INLINE_INFO (r) = 0;
6209 DECL_PENDING_INLINE_P (r) = 0;
6210 DECL_SAVED_TREE (r) = NULL_TREE;
6211 TREE_USED (r) = 0;
6212 if (DECL_CLONED_FUNCTION (r))
6213 {
6214 DECL_CLONED_FUNCTION (r) = tsubst (DECL_CLONED_FUNCTION (t),
6215 args, complain, t);
6216 TREE_CHAIN (r) = TREE_CHAIN (DECL_CLONED_FUNCTION (r));
6217 TREE_CHAIN (DECL_CLONED_FUNCTION (r)) = r;
6218 }
6219
6220 /* Set up the DECL_TEMPLATE_INFO for R. There's no need to do
6221 this in the special friend case mentioned above where
6222 GEN_TMPL is NULL. */
6223 if (gen_tmpl)
6224 {
6225 DECL_TEMPLATE_INFO (r)
6226 = tree_cons (gen_tmpl, argvec, NULL_TREE);
6227 SET_DECL_IMPLICIT_INSTANTIATION (r);
6228 register_specialization (r, gen_tmpl, argvec);
6229
6230 /* We're not supposed to instantiate default arguments
6231 until they are called, for a template. But, for a
6232 declaration like:
6233
6234 template <class T> void f ()
6235 { extern void g(int i = T()); }
6236
6237 we should do the substitution when the template is
6238 instantiated. We handle the member function case in
6239 instantiate_class_template since the default arguments
6240 might refer to other members of the class. */
6241 if (!member
6242 && !PRIMARY_TEMPLATE_P (gen_tmpl)
6243 && !uses_template_parms (argvec))
6244 tsubst_default_arguments (r);
6245 }
6246
6247 /* Copy the list of befriending classes. */
6248 for (friends = &DECL_BEFRIENDING_CLASSES (r);
6249 *friends;
6250 friends = &TREE_CHAIN (*friends))
6251 {
6252 *friends = copy_node (*friends);
6253 TREE_VALUE (*friends) = tsubst (TREE_VALUE (*friends),
6254 args, complain,
6255 in_decl);
6256 }
6257
6258 if (DECL_CONSTRUCTOR_P (r) || DECL_DESTRUCTOR_P (r))
6259 {
6260 maybe_retrofit_in_chrg (r);
6261 if (DECL_CONSTRUCTOR_P (r))
6262 grok_ctor_properties (ctx, r);
6263 /* If this is an instantiation of a member template, clone it.
6264 If it isn't, that'll be handled by
6265 clone_constructors_and_destructors. */
6266 if (PRIMARY_TEMPLATE_P (gen_tmpl))
6267 clone_function_decl (r, /*update_method_vec_p=*/0);
6268 }
6269 else if (IDENTIFIER_OPNAME_P (DECL_NAME (r)))
6270 grok_op_properties (r, DECL_FRIEND_P (r),
6271 (complain & tf_error) != 0);
6272
6273 if (DECL_FRIEND_P (t) && DECL_FRIEND_CONTEXT (t))
6274 SET_DECL_FRIEND_CONTEXT (r,
6275 tsubst (DECL_FRIEND_CONTEXT (t),
6276 args, complain, in_decl));
6277 }
6278 break;
6279
6280 case PARM_DECL:
6281 {
6282 r = copy_node (t);
6283 if (DECL_TEMPLATE_PARM_P (t))
6284 SET_DECL_TEMPLATE_PARM_P (r);
6285
6286 TREE_TYPE (r) = type;
6287 c_apply_type_quals_to_decl (cp_type_quals (type), r);
6288
6289 if (DECL_INITIAL (r))
6290 {
6291 if (TREE_CODE (DECL_INITIAL (r)) != TEMPLATE_PARM_INDEX)
6292 DECL_INITIAL (r) = TREE_TYPE (r);
6293 else
6294 DECL_INITIAL (r) = tsubst (DECL_INITIAL (r), args,
6295 complain, in_decl);
6296 }
6297
6298 DECL_CONTEXT (r) = NULL_TREE;
6299
6300 if (!DECL_TEMPLATE_PARM_P (r))
6301 DECL_ARG_TYPE (r) = type_passed_as (type);
6302 if (TREE_CHAIN (t))
6303 TREE_CHAIN (r) = tsubst (TREE_CHAIN (t), args,
6304 complain, TREE_CHAIN (t));
6305 }
6306 break;
6307
6308 case FIELD_DECL:
6309 {
6310 r = copy_decl (t);
6311 TREE_TYPE (r) = type;
6312 c_apply_type_quals_to_decl (cp_type_quals (type), r);
6313
6314 /* We don't have to set DECL_CONTEXT here; it is set by
6315 finish_member_declaration. */
6316 DECL_INITIAL (r) = tsubst_expr (DECL_INITIAL (t), args,
6317 complain, in_decl);
6318 TREE_CHAIN (r) = NULL_TREE;
6319 if (VOID_TYPE_P (type))
6320 cp_error_at ("instantiation of `%D' as type `%T'", r, type);
6321 }
6322 break;
6323
6324 case USING_DECL:
6325 {
6326 r = copy_node (t);
6327 /* It is not a dependent using decl any more. */
6328 TREE_TYPE (r) = void_type_node;
6329 DECL_INITIAL (r)
6330 = tsubst_copy (DECL_INITIAL (t), args, complain, in_decl);
6331 DECL_NAME (r)
6332 = tsubst_copy (DECL_NAME (t), args, complain, in_decl);
6333 TREE_CHAIN (r) = NULL_TREE;
6334 }
6335 break;
6336
6337 case TYPE_DECL:
6338 if (TREE_CODE (type) == TEMPLATE_TEMPLATE_PARM
6339 || t == TYPE_MAIN_DECL (TREE_TYPE (t)))
6340 {
6341 /* If this is the canonical decl, we don't have to mess with
6342 instantiations, and often we can't (for typename, template
6343 type parms and such). Note that TYPE_NAME is not correct for
6344 the above test if we've copied the type for a typedef. */
6345 r = TYPE_NAME (type);
6346 break;
6347 }
6348
6349 /* Fall through. */
6350
6351 case VAR_DECL:
6352 {
6353 tree argvec = NULL_TREE;
6354 tree gen_tmpl = NULL_TREE;
6355 tree spec;
6356 tree tmpl = NULL_TREE;
6357 tree ctx;
6358 int local_p;
6359
6360 /* Assume this is a non-local variable. */
6361 local_p = 0;
6362
6363 if (TYPE_P (CP_DECL_CONTEXT (t)))
6364 ctx = tsubst_aggr_type (DECL_CONTEXT (t), args,
6365 complain,
6366 in_decl, /*entering_scope=*/1);
6367 else if (DECL_NAMESPACE_SCOPE_P (t))
6368 ctx = DECL_CONTEXT (t);
6369 else
6370 {
6371 /* Subsequent calls to pushdecl will fill this in. */
6372 ctx = NULL_TREE;
6373 local_p = 1;
6374 }
6375
6376 /* Check to see if we already have this specialization. */
6377 if (!local_p)
6378 {
6379 tmpl = DECL_TI_TEMPLATE (t);
6380 gen_tmpl = most_general_template (tmpl);
6381 argvec = tsubst (DECL_TI_ARGS (t), args, complain, in_decl);
6382 spec = retrieve_specialization (gen_tmpl, argvec);
6383 }
6384 else
6385 spec = retrieve_local_specialization (t);
6386
6387 if (spec)
6388 {
6389 r = spec;
6390 break;
6391 }
6392
6393 r = copy_decl (t);
6394 if (TREE_CODE (r) == VAR_DECL)
6395 {
6396 type = complete_type (type);
6397 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (r)
6398 = DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (t);
6399 }
6400 else if (DECL_SELF_REFERENCE_P (t))
6401 SET_DECL_SELF_REFERENCE_P (r);
6402 TREE_TYPE (r) = type;
6403 c_apply_type_quals_to_decl (cp_type_quals (type), r);
6404 DECL_CONTEXT (r) = ctx;
6405 /* Clear out the mangled name and RTL for the instantiation. */
6406 SET_DECL_ASSEMBLER_NAME (r, NULL_TREE);
6407 SET_DECL_RTL (r, NULL_RTX);
6408
6409 /* Don't try to expand the initializer until someone tries to use
6410 this variable; otherwise we run into circular dependencies. */
6411 DECL_INITIAL (r) = NULL_TREE;
6412 SET_DECL_RTL (r, NULL_RTX);
6413 DECL_SIZE (r) = DECL_SIZE_UNIT (r) = 0;
6414
6415 /* Even if the original location is out of scope, the newly
6416 substituted one is not. */
6417 if (TREE_CODE (r) == VAR_DECL)
6418 {
6419 DECL_DEAD_FOR_LOCAL (r) = 0;
6420 DECL_INITIALIZED_P (r) = 0;
6421 }
6422
6423 if (!local_p)
6424 {
6425 /* A static data member declaration is always marked
6426 external when it is declared in-class, even if an
6427 initializer is present. We mimic the non-template
6428 processing here. */
6429 DECL_EXTERNAL (r) = 1;
6430
6431 register_specialization (r, gen_tmpl, argvec);
6432 DECL_TEMPLATE_INFO (r) = tree_cons (tmpl, argvec, NULL_TREE);
6433 SET_DECL_IMPLICIT_INSTANTIATION (r);
6434 }
6435 else
6436 register_local_specialization (r, t);
6437
6438 TREE_CHAIN (r) = NULL_TREE;
6439 if (TREE_CODE (r) == VAR_DECL && VOID_TYPE_P (type))
6440 cp_error_at ("instantiation of `%D' as type `%T'", r, type);
6441 /* Compute the size, alignment, etc. of R. */
6442 layout_decl (r, 0);
6443 }
6444 break;
6445
6446 default:
6447 abort ();
6448 }
6449
6450 /* Restore the file and line information. */
6451 input_location = saved_loc;
6452
6453 return r;
6454 }
6455
6456 /* Substitute into the ARG_TYPES of a function type. */
6457
6458 static tree
6459 tsubst_arg_types (tree arg_types,
6460 tree args,
6461 tsubst_flags_t complain,
6462 tree in_decl)
6463 {
6464 tree remaining_arg_types;
6465 tree type;
6466
6467 if (!arg_types || arg_types == void_list_node)
6468 return arg_types;
6469
6470 remaining_arg_types = tsubst_arg_types (TREE_CHAIN (arg_types),
6471 args, complain, in_decl);
6472 if (remaining_arg_types == error_mark_node)
6473 return error_mark_node;
6474
6475 type = tsubst (TREE_VALUE (arg_types), args, complain, in_decl);
6476 if (type == error_mark_node)
6477 return error_mark_node;
6478 if (VOID_TYPE_P (type))
6479 {
6480 if (complain & tf_error)
6481 {
6482 error ("invalid parameter type `%T'", type);
6483 if (in_decl)
6484 cp_error_at ("in declaration `%D'", in_decl);
6485 }
6486 return error_mark_node;
6487 }
6488
6489 /* Do array-to-pointer, function-to-pointer conversion, and ignore
6490 top-level qualifiers as required. */
6491 type = TYPE_MAIN_VARIANT (type_decays_to (type));
6492
6493 /* Note that we do not substitute into default arguments here. The
6494 standard mandates that they be instantiated only when needed,
6495 which is done in build_over_call. */
6496 return hash_tree_cons (TREE_PURPOSE (arg_types), type,
6497 remaining_arg_types);
6498
6499 }
6500
6501 /* Substitute into a FUNCTION_TYPE or METHOD_TYPE. This routine does
6502 *not* handle the exception-specification for FNTYPE, because the
6503 initial substitution of explicitly provided template parameters
6504 during argument deduction forbids substitution into the
6505 exception-specification:
6506
6507 [temp.deduct]
6508
6509 All references in the function type of the function template to the
6510 corresponding template parameters are replaced by the specified tem-
6511 plate argument values. If a substitution in a template parameter or
6512 in the function type of the function template results in an invalid
6513 type, type deduction fails. [Note: The equivalent substitution in
6514 exception specifications is done only when the function is instanti-
6515 ated, at which point a program is ill-formed if the substitution
6516 results in an invalid type.] */
6517
6518 static tree
6519 tsubst_function_type (tree t,
6520 tree args,
6521 tsubst_flags_t complain,
6522 tree in_decl)
6523 {
6524 tree return_type;
6525 tree arg_types;
6526 tree fntype;
6527
6528 /* The TYPE_CONTEXT is not used for function/method types. */
6529 my_friendly_assert (TYPE_CONTEXT (t) == NULL_TREE, 0);
6530
6531 /* Substitute the return type. */
6532 return_type = tsubst (TREE_TYPE (t), args, complain, in_decl);
6533 if (return_type == error_mark_node)
6534 return error_mark_node;
6535
6536 /* Substitute the argument types. */
6537 arg_types = tsubst_arg_types (TYPE_ARG_TYPES (t), args,
6538 complain, in_decl);
6539 if (arg_types == error_mark_node)
6540 return error_mark_node;
6541
6542 /* Construct a new type node and return it. */
6543 if (TREE_CODE (t) == FUNCTION_TYPE)
6544 fntype = build_function_type (return_type, arg_types);
6545 else
6546 {
6547 tree r = TREE_TYPE (TREE_VALUE (arg_types));
6548 if (! IS_AGGR_TYPE (r))
6549 {
6550 /* [temp.deduct]
6551
6552 Type deduction may fail for any of the following
6553 reasons:
6554
6555 -- Attempting to create "pointer to member of T" when T
6556 is not a class type. */
6557 if (complain & tf_error)
6558 error ("creating pointer to member function of non-class type `%T'",
6559 r);
6560 return error_mark_node;
6561 }
6562
6563 fntype = build_method_type_directly (r, return_type,
6564 TREE_CHAIN (arg_types));
6565 }
6566 fntype = cp_build_qualified_type_real (fntype, TYPE_QUALS (t), complain);
6567 fntype = cp_build_type_attribute_variant (fntype, TYPE_ATTRIBUTES (t));
6568
6569 return fntype;
6570 }
6571
6572 /* Substitute into the PARMS of a call-declarator. */
6573
6574 static tree
6575 tsubst_call_declarator_parms (tree parms,
6576 tree args,
6577 tsubst_flags_t complain,
6578 tree in_decl)
6579 {
6580 tree new_parms;
6581 tree type;
6582 tree defarg;
6583
6584 if (!parms || parms == void_list_node)
6585 return parms;
6586
6587 new_parms = tsubst_call_declarator_parms (TREE_CHAIN (parms),
6588 args, complain, in_decl);
6589
6590 /* Figure out the type of this parameter. */
6591 type = tsubst (TREE_VALUE (parms), args, complain, in_decl);
6592
6593 /* Figure out the default argument as well. Note that we use
6594 tsubst_expr since the default argument is really an expression. */
6595 defarg = tsubst_expr (TREE_PURPOSE (parms), args, complain, in_decl);
6596
6597 /* Chain this parameter on to the front of those we have already
6598 processed. We don't use hash_tree_cons because that function
6599 doesn't check TREE_PARMLIST. */
6600 new_parms = tree_cons (defarg, type, new_parms);
6601
6602 /* And note that these are parameters. */
6603 TREE_PARMLIST (new_parms) = 1;
6604
6605 return new_parms;
6606 }
6607
6608 /* Take the tree structure T and replace template parameters used
6609 therein with the argument vector ARGS. IN_DECL is an associated
6610 decl for diagnostics. If an error occurs, returns ERROR_MARK_NODE.
6611 Issue error and warning messages under control of COMPLAIN. Note
6612 that we must be relatively non-tolerant of extensions here, in
6613 order to preserve conformance; if we allow substitutions that
6614 should not be allowed, we may allow argument deductions that should
6615 not succeed, and therefore report ambiguous overload situations
6616 where there are none. In theory, we could allow the substitution,
6617 but indicate that it should have failed, and allow our caller to
6618 make sure that the right thing happens, but we don't try to do this
6619 yet.
6620
6621 This function is used for dealing with types, decls and the like;
6622 for expressions, use tsubst_expr or tsubst_copy. */
6623
6624 static tree
6625 tsubst (tree t, tree args, tsubst_flags_t complain, tree in_decl)
6626 {
6627 tree type, r;
6628
6629 if (t == NULL_TREE || t == error_mark_node
6630 || t == integer_type_node
6631 || t == void_type_node
6632 || t == char_type_node
6633 || TREE_CODE (t) == NAMESPACE_DECL)
6634 return t;
6635
6636 if (TREE_CODE (t) == IDENTIFIER_NODE)
6637 type = IDENTIFIER_TYPE_VALUE (t);
6638 else
6639 type = TREE_TYPE (t);
6640
6641 my_friendly_assert (type != unknown_type_node, 20030716);
6642
6643 if (type && TREE_CODE (t) != FUNCTION_DECL
6644 && TREE_CODE (t) != TYPENAME_TYPE
6645 && TREE_CODE (t) != TEMPLATE_DECL
6646 && TREE_CODE (t) != IDENTIFIER_NODE
6647 && TREE_CODE (t) != FUNCTION_TYPE
6648 && TREE_CODE (t) != METHOD_TYPE)
6649 type = tsubst (type, args, complain, in_decl);
6650 if (type == error_mark_node)
6651 return error_mark_node;
6652
6653 if (DECL_P (t))
6654 return tsubst_decl (t, args, type, complain);
6655
6656 switch (TREE_CODE (t))
6657 {
6658 case RECORD_TYPE:
6659 case UNION_TYPE:
6660 case ENUMERAL_TYPE:
6661 return tsubst_aggr_type (t, args, complain, in_decl,
6662 /*entering_scope=*/0);
6663
6664 case ERROR_MARK:
6665 case IDENTIFIER_NODE:
6666 case VOID_TYPE:
6667 case REAL_TYPE:
6668 case COMPLEX_TYPE:
6669 case VECTOR_TYPE:
6670 case BOOLEAN_TYPE:
6671 case INTEGER_CST:
6672 case REAL_CST:
6673 case STRING_CST:
6674 return t;
6675
6676 case INTEGER_TYPE:
6677 if (t == integer_type_node)
6678 return t;
6679
6680 if (TREE_CODE (TYPE_MIN_VALUE (t)) == INTEGER_CST
6681 && TREE_CODE (TYPE_MAX_VALUE (t)) == INTEGER_CST)
6682 return t;
6683
6684 {
6685 tree max, omax = TREE_OPERAND (TYPE_MAX_VALUE (t), 0);
6686
6687 /* The array dimension behaves like a non-type template arg,
6688 in that we want to fold it as much as possible. */
6689 max = tsubst_template_arg (omax, args, complain, in_decl);
6690 if (!processing_template_decl)
6691 max = decl_constant_value (max);
6692
6693 if (integer_zerop (omax))
6694 {
6695 /* Still allow an explicit array of size zero. */
6696 if (pedantic)
6697 pedwarn ("creating array with size zero");
6698 }
6699 else if (integer_zerop (max)
6700 || (TREE_CODE (max) == INTEGER_CST
6701 && INT_CST_LT (max, integer_zero_node)))
6702 {
6703 /* [temp.deduct]
6704
6705 Type deduction may fail for any of the following
6706 reasons:
6707
6708 Attempting to create an array with a size that is
6709 zero or negative. */
6710 if (complain & tf_error)
6711 error ("creating array with size zero (`%E')", max);
6712
6713 return error_mark_node;
6714 }
6715
6716 return compute_array_index_type (NULL_TREE, max);
6717 }
6718
6719 case TEMPLATE_TYPE_PARM:
6720 case TEMPLATE_TEMPLATE_PARM:
6721 case BOUND_TEMPLATE_TEMPLATE_PARM:
6722 case TEMPLATE_PARM_INDEX:
6723 {
6724 int idx;
6725 int level;
6726 int levels;
6727
6728 r = NULL_TREE;
6729
6730 if (TREE_CODE (t) == TEMPLATE_TYPE_PARM
6731 || TREE_CODE (t) == TEMPLATE_TEMPLATE_PARM
6732 || TREE_CODE (t) == BOUND_TEMPLATE_TEMPLATE_PARM)
6733 {
6734 idx = TEMPLATE_TYPE_IDX (t);
6735 level = TEMPLATE_TYPE_LEVEL (t);
6736 }
6737 else
6738 {
6739 idx = TEMPLATE_PARM_IDX (t);
6740 level = TEMPLATE_PARM_LEVEL (t);
6741 }
6742
6743 if (TREE_VEC_LENGTH (args) > 0)
6744 {
6745 tree arg = NULL_TREE;
6746
6747 levels = TMPL_ARGS_DEPTH (args);
6748 if (level <= levels)
6749 arg = TMPL_ARG (args, level, idx);
6750
6751 if (arg == error_mark_node)
6752 return error_mark_node;
6753 else if (arg != NULL_TREE)
6754 {
6755 if (TREE_CODE (t) == TEMPLATE_TYPE_PARM)
6756 {
6757 my_friendly_assert (TYPE_P (arg), 0);
6758 return cp_build_qualified_type_real
6759 (arg, cp_type_quals (arg) | cp_type_quals (t),
6760 complain | tf_ignore_bad_quals);
6761 }
6762 else if (TREE_CODE (t) == BOUND_TEMPLATE_TEMPLATE_PARM)
6763 {
6764 /* We are processing a type constructed from
6765 a template template parameter. */
6766 tree argvec = tsubst (TYPE_TI_ARGS (t),
6767 args, complain, in_decl);
6768 if (argvec == error_mark_node)
6769 return error_mark_node;
6770
6771 /* We can get a TEMPLATE_TEMPLATE_PARM here when
6772 we are resolving nested-types in the signature of
6773 a member function templates.
6774 Otherwise ARG is a TEMPLATE_DECL and is the real
6775 template to be instantiated. */
6776 if (TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM)
6777 arg = TYPE_NAME (arg);
6778
6779 r = lookup_template_class (arg,
6780 argvec, in_decl,
6781 DECL_CONTEXT (arg),
6782 /*entering_scope=*/0,
6783 complain);
6784 return cp_build_qualified_type_real
6785 (r, TYPE_QUALS (t), complain);
6786 }
6787 else
6788 /* TEMPLATE_TEMPLATE_PARM or TEMPLATE_PARM_INDEX. */
6789 return arg;
6790 }
6791 }
6792 else
6793 abort ();
6794
6795 if (level == 1)
6796 /* This can happen during the attempted tsubst'ing in
6797 unify. This means that we don't yet have any information
6798 about the template parameter in question. */
6799 return t;
6800
6801 /* If we get here, we must have been looking at a parm for a
6802 more deeply nested template. Make a new version of this
6803 template parameter, but with a lower level. */
6804 switch (TREE_CODE (t))
6805 {
6806 case TEMPLATE_TYPE_PARM:
6807 case TEMPLATE_TEMPLATE_PARM:
6808 case BOUND_TEMPLATE_TEMPLATE_PARM:
6809 if (cp_type_quals (t))
6810 {
6811 r = tsubst (TYPE_MAIN_VARIANT (t), args, complain, in_decl);
6812 r = cp_build_qualified_type_real
6813 (r, cp_type_quals (t),
6814 complain | (TREE_CODE (t) == TEMPLATE_TYPE_PARM
6815 ? tf_ignore_bad_quals : 0));
6816 }
6817 else
6818 {
6819 r = copy_type (t);
6820 TEMPLATE_TYPE_PARM_INDEX (r)
6821 = reduce_template_parm_level (TEMPLATE_TYPE_PARM_INDEX (t),
6822 r, levels);
6823 TYPE_STUB_DECL (r) = TYPE_NAME (r) = TEMPLATE_TYPE_DECL (r);
6824 TYPE_MAIN_VARIANT (r) = r;
6825 TYPE_POINTER_TO (r) = NULL_TREE;
6826 TYPE_REFERENCE_TO (r) = NULL_TREE;
6827
6828 if (TREE_CODE (t) == BOUND_TEMPLATE_TEMPLATE_PARM)
6829 {
6830 tree argvec = tsubst (TYPE_TI_ARGS (t), args,
6831 complain, in_decl);
6832 if (argvec == error_mark_node)
6833 return error_mark_node;
6834
6835 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (r)
6836 = tree_cons (TYPE_TI_TEMPLATE (t), argvec, NULL_TREE);
6837 }
6838 }
6839 break;
6840
6841 case TEMPLATE_PARM_INDEX:
6842 r = reduce_template_parm_level (t, type, levels);
6843 break;
6844
6845 default:
6846 abort ();
6847 }
6848
6849 return r;
6850 }
6851
6852 case TREE_LIST:
6853 {
6854 tree purpose, value, chain, result;
6855
6856 if (t == void_list_node)
6857 return t;
6858
6859 purpose = TREE_PURPOSE (t);
6860 if (purpose)
6861 {
6862 purpose = tsubst (purpose, args, complain, in_decl);
6863 if (purpose == error_mark_node)
6864 return error_mark_node;
6865 }
6866 value = TREE_VALUE (t);
6867 if (value)
6868 {
6869 value = tsubst (value, args, complain, in_decl);
6870 if (value == error_mark_node)
6871 return error_mark_node;
6872 }
6873 chain = TREE_CHAIN (t);
6874 if (chain && chain != void_type_node)
6875 {
6876 chain = tsubst (chain, args, complain, in_decl);
6877 if (chain == error_mark_node)
6878 return error_mark_node;
6879 }
6880 if (purpose == TREE_PURPOSE (t)
6881 && value == TREE_VALUE (t)
6882 && chain == TREE_CHAIN (t))
6883 return t;
6884 if (TREE_PARMLIST (t))
6885 {
6886 result = tree_cons (purpose, value, chain);
6887 TREE_PARMLIST (result) = 1;
6888 }
6889 else
6890 result = hash_tree_cons (purpose, value, chain);
6891 return result;
6892 }
6893 case TREE_VEC:
6894 if (type != NULL_TREE)
6895 {
6896 /* A binfo node. We always need to make a copy, of the node
6897 itself and of its BINFO_BASETYPES. */
6898
6899 t = copy_node (t);
6900
6901 /* Make sure type isn't a typedef copy. */
6902 type = BINFO_TYPE (TYPE_BINFO (type));
6903
6904 TREE_TYPE (t) = complete_type (type);
6905 if (IS_AGGR_TYPE (type))
6906 {
6907 BINFO_VTABLE (t) = TYPE_BINFO_VTABLE (type);
6908 BINFO_VIRTUALS (t) = TYPE_BINFO_VIRTUALS (type);
6909 if (TYPE_BINFO_BASETYPES (type) != NULL_TREE)
6910 BINFO_BASETYPES (t) = copy_node (TYPE_BINFO_BASETYPES (type));
6911 }
6912 return t;
6913 }
6914
6915 /* Otherwise, a vector of template arguments. */
6916 return tsubst_template_args (t, args, complain, in_decl);
6917
6918 case POINTER_TYPE:
6919 case REFERENCE_TYPE:
6920 {
6921 enum tree_code code;
6922
6923 if (type == TREE_TYPE (t) && TREE_CODE (type) != METHOD_TYPE)
6924 return t;
6925
6926 code = TREE_CODE (t);
6927
6928
6929 /* [temp.deduct]
6930
6931 Type deduction may fail for any of the following
6932 reasons:
6933
6934 -- Attempting to create a pointer to reference type.
6935 -- Attempting to create a reference to a reference type or
6936 a reference to void. */
6937 if (TREE_CODE (type) == REFERENCE_TYPE
6938 || (code == REFERENCE_TYPE && TREE_CODE (type) == VOID_TYPE))
6939 {
6940 static location_t last_loc;
6941
6942 /* We keep track of the last time we issued this error
6943 message to avoid spewing a ton of messages during a
6944 single bad template instantiation. */
6945 if (complain & tf_error
6946 && (last_loc.line != input_line
6947 || last_loc.file != input_filename))
6948 {
6949 if (TREE_CODE (type) == VOID_TYPE)
6950 error ("forming reference to void");
6951 else
6952 error ("forming %s to reference type `%T'",
6953 (code == POINTER_TYPE) ? "pointer" : "reference",
6954 type);
6955 last_loc = input_location;
6956 }
6957
6958 return error_mark_node;
6959 }
6960 else if (code == POINTER_TYPE)
6961 {
6962 r = build_pointer_type (type);
6963 if (TREE_CODE (type) == METHOD_TYPE)
6964 r = build_ptrmemfunc_type (r);
6965 }
6966 else
6967 r = build_reference_type (type);
6968 r = cp_build_qualified_type_real (r, TYPE_QUALS (t), complain);
6969
6970 if (r != error_mark_node)
6971 /* Will this ever be needed for TYPE_..._TO values? */
6972 layout_type (r);
6973
6974 return r;
6975 }
6976 case OFFSET_TYPE:
6977 {
6978 r = tsubst (TYPE_OFFSET_BASETYPE (t), args, complain, in_decl);
6979 if (r == error_mark_node || !IS_AGGR_TYPE (r))
6980 {
6981 /* [temp.deduct]
6982
6983 Type deduction may fail for any of the following
6984 reasons:
6985
6986 -- Attempting to create "pointer to member of T" when T
6987 is not a class type. */
6988 if (complain & tf_error)
6989 error ("creating pointer to member of non-class type `%T'", r);
6990 return error_mark_node;
6991 }
6992 if (TREE_CODE (type) == REFERENCE_TYPE)
6993 {
6994 if (complain & tf_error)
6995 error ("creating pointer to member reference type `%T'", type);
6996
6997 return error_mark_node;
6998 }
6999 my_friendly_assert (TREE_CODE (type) != METHOD_TYPE, 20011231);
7000 if (TREE_CODE (type) == FUNCTION_TYPE)
7001 {
7002 /* This is really a method type. The cv qualifiers of the
7003 this pointer should _not_ be determined by the cv
7004 qualifiers of the class type. They should be held
7005 somewhere in the FUNCTION_TYPE, but we don't do that at
7006 the moment. Consider
7007 typedef void (Func) () const;
7008
7009 template <typename T1> void Foo (Func T1::*);
7010
7011 */
7012 tree method_type;
7013
7014 method_type = build_method_type_directly (TYPE_MAIN_VARIANT (r),
7015 TREE_TYPE (type),
7016 TYPE_ARG_TYPES (type));
7017 return build_ptrmemfunc_type (build_pointer_type (method_type));
7018 }
7019 else
7020 return cp_build_qualified_type_real (build_ptrmem_type (r, type),
7021 TYPE_QUALS (t),
7022 complain);
7023 }
7024 case FUNCTION_TYPE:
7025 case METHOD_TYPE:
7026 {
7027 tree fntype;
7028 tree raises;
7029
7030 fntype = tsubst_function_type (t, args, complain, in_decl);
7031 if (fntype == error_mark_node)
7032 return error_mark_node;
7033
7034 /* Substitute the exception specification. */
7035 raises = TYPE_RAISES_EXCEPTIONS (t);
7036 if (raises)
7037 {
7038 tree list = NULL_TREE;
7039
7040 if (! TREE_VALUE (raises))
7041 list = raises;
7042 else
7043 for (; raises != NULL_TREE; raises = TREE_CHAIN (raises))
7044 {
7045 tree spec = TREE_VALUE (raises);
7046
7047 spec = tsubst (spec, args, complain, in_decl);
7048 if (spec == error_mark_node)
7049 return spec;
7050 list = add_exception_specifier (list, spec, complain);
7051 }
7052 fntype = build_exception_variant (fntype, list);
7053 }
7054 return fntype;
7055 }
7056 case ARRAY_TYPE:
7057 {
7058 tree domain = tsubst (TYPE_DOMAIN (t), args, complain, in_decl);
7059 if (domain == error_mark_node)
7060 return error_mark_node;
7061
7062 /* As an optimization, we avoid regenerating the array type if
7063 it will obviously be the same as T. */
7064 if (type == TREE_TYPE (t) && domain == TYPE_DOMAIN (t))
7065 return t;
7066
7067 /* These checks should match the ones in grokdeclarator.
7068
7069 [temp.deduct]
7070
7071 The deduction may fail for any of the following reasons:
7072
7073 -- Attempting to create an array with an element type that
7074 is void, a function type, or a reference type, or [DR337]
7075 an abstract class type. */
7076 if (TREE_CODE (type) == VOID_TYPE
7077 || TREE_CODE (type) == FUNCTION_TYPE
7078 || TREE_CODE (type) == REFERENCE_TYPE)
7079 {
7080 if (complain & tf_error)
7081 error ("creating array of `%T'", type);
7082 return error_mark_node;
7083 }
7084 if (CLASS_TYPE_P (type) && CLASSTYPE_PURE_VIRTUALS (type))
7085 {
7086 if (complain & tf_error)
7087 error ("creating array of `%T', which is an abstract class type",
7088 type);
7089 return error_mark_node;
7090 }
7091
7092 r = build_cplus_array_type (type, domain);
7093 return r;
7094 }
7095
7096 case PLUS_EXPR:
7097 case MINUS_EXPR:
7098 {
7099 tree e1 = tsubst (TREE_OPERAND (t, 0), args, complain, in_decl);
7100 tree e2 = tsubst (TREE_OPERAND (t, 1), args, complain, in_decl);
7101
7102 if (e1 == error_mark_node || e2 == error_mark_node)
7103 return error_mark_node;
7104
7105 return fold (build (TREE_CODE (t), TREE_TYPE (t), e1, e2));
7106 }
7107
7108 case NEGATE_EXPR:
7109 case NOP_EXPR:
7110 {
7111 tree e = tsubst (TREE_OPERAND (t, 0), args, complain, in_decl);
7112 if (e == error_mark_node)
7113 return error_mark_node;
7114
7115 return fold (build (TREE_CODE (t), TREE_TYPE (t), e));
7116 }
7117
7118 case TYPENAME_TYPE:
7119 {
7120 tree ctx = tsubst_aggr_type (TYPE_CONTEXT (t), args, complain,
7121 in_decl, /*entering_scope=*/1);
7122 tree f = tsubst_copy (TYPENAME_TYPE_FULLNAME (t), args,
7123 complain, in_decl);
7124
7125 if (ctx == error_mark_node || f == error_mark_node)
7126 return error_mark_node;
7127
7128 if (!IS_AGGR_TYPE (ctx))
7129 {
7130 if (complain & tf_error)
7131 error ("`%T' is not a class, struct, or union type",
7132 ctx);
7133 return error_mark_node;
7134 }
7135 else if (!uses_template_parms (ctx) && !TYPE_BEING_DEFINED (ctx))
7136 {
7137 /* Normally, make_typename_type does not require that the CTX
7138 have complete type in order to allow things like:
7139
7140 template <class T> struct S { typename S<T>::X Y; };
7141
7142 But, such constructs have already been resolved by this
7143 point, so here CTX really should have complete type, unless
7144 it's a partial instantiation. */
7145 ctx = complete_type (ctx);
7146 if (!COMPLETE_TYPE_P (ctx))
7147 {
7148 if (complain & tf_error)
7149 cxx_incomplete_type_error (NULL_TREE, ctx);
7150 return error_mark_node;
7151 }
7152 }
7153
7154 f = make_typename_type (ctx, f,
7155 (complain & tf_error) | tf_keep_type_decl);
7156 if (f == error_mark_node)
7157 return f;
7158 if (TREE_CODE (f) == TYPE_DECL)
7159 {
7160 complain |= tf_ignore_bad_quals;
7161 f = TREE_TYPE (f);
7162 }
7163
7164 return cp_build_qualified_type_real
7165 (f, cp_type_quals (f) | cp_type_quals (t), complain);
7166 }
7167
7168 case UNBOUND_CLASS_TEMPLATE:
7169 {
7170 tree ctx = tsubst_aggr_type (TYPE_CONTEXT (t), args, complain,
7171 in_decl, /*entering_scope=*/1);
7172 tree name = TYPE_IDENTIFIER (t);
7173
7174 if (ctx == error_mark_node || name == error_mark_node)
7175 return error_mark_node;
7176
7177 return make_unbound_class_template (ctx, name, complain);
7178 }
7179
7180 case INDIRECT_REF:
7181 {
7182 tree e = tsubst (TREE_OPERAND (t, 0), args, complain, in_decl);
7183 if (e == error_mark_node)
7184 return error_mark_node;
7185 return make_pointer_declarator (type, e);
7186 }
7187
7188 case ADDR_EXPR:
7189 {
7190 tree e = tsubst (TREE_OPERAND (t, 0), args, complain, in_decl);
7191 if (e == error_mark_node)
7192 return error_mark_node;
7193 return make_reference_declarator (type, e);
7194 }
7195
7196 case ARRAY_REF:
7197 {
7198 tree e1 = tsubst (TREE_OPERAND (t, 0), args, complain, in_decl);
7199 tree e2 = tsubst_expr (TREE_OPERAND (t, 1), args, complain, in_decl);
7200 if (e1 == error_mark_node || e2 == error_mark_node)
7201 return error_mark_node;
7202
7203 return build_nt (ARRAY_REF, e1, e2);
7204 }
7205
7206 case CALL_EXPR:
7207 {
7208 tree e1 = tsubst (TREE_OPERAND (t, 0), args, complain, in_decl);
7209 tree e2 = (tsubst_call_declarator_parms
7210 (CALL_DECLARATOR_PARMS (t), args, complain, in_decl));
7211 tree e3 = tsubst (CALL_DECLARATOR_EXCEPTION_SPEC (t), args,
7212 complain, in_decl);
7213
7214 if (e1 == error_mark_node || e2 == error_mark_node
7215 || e3 == error_mark_node)
7216 return error_mark_node;
7217
7218 return make_call_declarator (e1, e2, CALL_DECLARATOR_QUALS (t), e3);
7219 }
7220
7221 case SCOPE_REF:
7222 {
7223 tree e1 = tsubst (TREE_OPERAND (t, 0), args, complain, in_decl);
7224 tree e2 = tsubst (TREE_OPERAND (t, 1), args, complain, in_decl);
7225 if (e1 == error_mark_node || e2 == error_mark_node)
7226 return error_mark_node;
7227
7228 return build_nt (TREE_CODE (t), e1, e2);
7229 }
7230
7231 case TYPEOF_TYPE:
7232 {
7233 tree type;
7234
7235 type = finish_typeof (tsubst_expr (TYPEOF_TYPE_EXPR (t), args,
7236 complain, in_decl));
7237 return cp_build_qualified_type_real (type,
7238 cp_type_quals (t)
7239 | cp_type_quals (type),
7240 complain);
7241 }
7242
7243 default:
7244 sorry ("use of `%s' in template",
7245 tree_code_name [(int) TREE_CODE (t)]);
7246 return error_mark_node;
7247 }
7248 }
7249
7250 /* Like tsubst_expr for a BASELINK. OBJECT_TYPE, if non-NULL, is the
7251 type of the expression on the left-hand side of the "." or "->"
7252 operator. */
7253
7254 static tree
7255 tsubst_baselink (tree baselink, tree object_type,
7256 tree args, tsubst_flags_t complain, tree in_decl)
7257 {
7258 tree name;
7259 tree qualifying_scope;
7260 tree fns;
7261 tree template_args = 0;
7262 bool template_id_p = false;
7263
7264 /* A baselink indicates a function from a base class. The
7265 BASELINK_ACCESS_BINFO and BASELINK_BINFO are going to have
7266 non-dependent types; otherwise, the lookup could not have
7267 succeeded. However, they may indicate bases of the template
7268 class, rather than the instantiated class.
7269
7270 In addition, lookups that were not ambiguous before may be
7271 ambiguous now. Therefore, we perform the lookup again. */
7272 qualifying_scope = BINFO_TYPE (BASELINK_ACCESS_BINFO (baselink));
7273 fns = BASELINK_FUNCTIONS (baselink);
7274 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
7275 {
7276 template_id_p = true;
7277 template_args = TREE_OPERAND (fns, 1);
7278 fns = TREE_OPERAND (fns, 0);
7279 if (template_args)
7280 template_args = tsubst_template_args (template_args, args,
7281 complain, in_decl);
7282 }
7283 name = DECL_NAME (get_first_fn (fns));
7284 baselink = lookup_fnfields (qualifying_scope, name, /*protect=*/1);
7285 if (BASELINK_P (baselink) && template_id_p)
7286 BASELINK_FUNCTIONS (baselink)
7287 = build_nt (TEMPLATE_ID_EXPR,
7288 BASELINK_FUNCTIONS (baselink),
7289 template_args);
7290 if (!object_type)
7291 object_type = current_class_type;
7292 return adjust_result_of_qualified_name_lookup (baselink,
7293 qualifying_scope,
7294 object_type);
7295 }
7296
7297 /* Like tsubst_expr for a SCOPE_REF, given by QUALIFIED_ID. DONE is
7298 true if the qualified-id will be a postfix-expression in-and-of
7299 itself; false if more of the postfix-expression follows the
7300 QUALIFIED_ID. ADDRESS_P is true if the qualified-id is the operand
7301 of "&". */
7302
7303 static tree
7304 tsubst_qualified_id (tree qualified_id, tree args,
7305 tsubst_flags_t complain, tree in_decl,
7306 bool done, bool address_p)
7307 {
7308 tree expr;
7309 tree scope;
7310 tree name;
7311 bool is_template;
7312 tree template_args;
7313
7314 my_friendly_assert (TREE_CODE (qualified_id) == SCOPE_REF, 20030706);
7315
7316 /* Figure out what name to look up. */
7317 name = TREE_OPERAND (qualified_id, 1);
7318 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
7319 {
7320 is_template = true;
7321 template_args = TREE_OPERAND (name, 1);
7322 if (template_args)
7323 template_args = tsubst_template_args (template_args, args,
7324 complain, in_decl);
7325 name = TREE_OPERAND (name, 0);
7326 }
7327 else
7328 {
7329 is_template = false;
7330 template_args = NULL_TREE;
7331 }
7332
7333 /* Substitute into the qualifying scope. When there are no ARGS, we
7334 are just trying to simplify a non-dependent expression. In that
7335 case the qualifying scope may be dependent, and, in any case,
7336 substituting will not help. */
7337 scope = TREE_OPERAND (qualified_id, 0);
7338 if (args)
7339 {
7340 scope = tsubst (scope, args, complain, in_decl);
7341 expr = tsubst_copy (name, args, complain, in_decl);
7342 }
7343 else
7344 expr = name;
7345
7346 if (dependent_type_p (scope))
7347 return build_nt (SCOPE_REF, scope, expr);
7348
7349 if (!BASELINK_P (name) && !DECL_P (expr))
7350 {
7351 expr = lookup_qualified_name (scope, expr, /*is_type_p=*/0, false);
7352 if (TREE_CODE (TREE_CODE (expr) == TEMPLATE_DECL
7353 ? DECL_TEMPLATE_RESULT (expr) : expr) == TYPE_DECL)
7354 {
7355 if (complain & tf_error)
7356 {
7357 error ("dependent-name `%E' is parsed as a non-type, but "
7358 "instantiation yields a type", qualified_id);
7359 inform ("say `typename %E' if a type is meant", qualified_id);
7360 }
7361 return error_mark_node;
7362 }
7363 }
7364
7365 if (DECL_P (expr))
7366 check_accessibility_of_qualified_id (expr, /*object_type=*/NULL_TREE,
7367 scope);
7368
7369 /* Remember that there was a reference to this entity. */
7370 if (DECL_P (expr))
7371 mark_used (expr);
7372
7373 if (is_template)
7374 expr = lookup_template_function (expr, template_args);
7375
7376 if (expr == error_mark_node && complain & tf_error)
7377 qualified_name_lookup_error (scope, TREE_OPERAND (qualified_id, 1));
7378 else if (TYPE_P (scope))
7379 {
7380 expr = (adjust_result_of_qualified_name_lookup
7381 (expr, scope, current_class_type));
7382 expr = finish_qualified_id_expr (scope, expr, done, address_p);
7383 }
7384
7385 return expr;
7386 }
7387
7388 /* Like tsubst, but deals with expressions. This function just replaces
7389 template parms; to finish processing the resultant expression, use
7390 tsubst_expr. */
7391
7392 static tree
7393 tsubst_copy (tree t, tree args, tsubst_flags_t complain, tree in_decl)
7394 {
7395 enum tree_code code;
7396 tree r;
7397
7398 if (t == NULL_TREE || t == error_mark_node)
7399 return t;
7400
7401 code = TREE_CODE (t);
7402
7403 switch (code)
7404 {
7405 case PARM_DECL:
7406 r = retrieve_local_specialization (t);
7407 my_friendly_assert (r != NULL, 20020903);
7408 mark_used (r);
7409 return r;
7410
7411 case CONST_DECL:
7412 {
7413 tree enum_type;
7414 tree v;
7415
7416 if (DECL_TEMPLATE_PARM_P (t))
7417 return tsubst_copy (DECL_INITIAL (t), args, complain, in_decl);
7418 /* There is no need to substitute into namespace-scope
7419 enumerators. */
7420 if (DECL_NAMESPACE_SCOPE_P (t))
7421 return t;
7422 /* If ARGS is NULL, then T is known to be non-dependent. */
7423 if (args == NULL_TREE)
7424 return t;
7425
7426 /* Unfortunately, we cannot just call lookup_name here.
7427 Consider:
7428
7429 template <int I> int f() {
7430 enum E { a = I };
7431 struct S { void g() { E e = a; } };
7432 };
7433
7434 When we instantiate f<7>::S::g(), say, lookup_name is not
7435 clever enough to find f<7>::a. */
7436 enum_type
7437 = tsubst_aggr_type (TREE_TYPE (t), args, complain, in_decl,
7438 /*entering_scope=*/0);
7439
7440 for (v = TYPE_VALUES (enum_type);
7441 v != NULL_TREE;
7442 v = TREE_CHAIN (v))
7443 if (TREE_PURPOSE (v) == DECL_NAME (t))
7444 return TREE_VALUE (v);
7445
7446 /* We didn't find the name. That should never happen; if
7447 name-lookup found it during preliminary parsing, we
7448 should find it again here during instantiation. */
7449 abort ();
7450 }
7451 return t;
7452
7453 case FIELD_DECL:
7454 if (DECL_CONTEXT (t))
7455 {
7456 tree ctx;
7457
7458 ctx = tsubst_aggr_type (DECL_CONTEXT (t), args, complain, in_decl,
7459 /*entering_scope=*/1);
7460 if (ctx != DECL_CONTEXT (t))
7461 return lookup_field (ctx, DECL_NAME (t), 0, false);
7462 }
7463 return t;
7464
7465 case VAR_DECL:
7466 case FUNCTION_DECL:
7467 if ((DECL_LANG_SPECIFIC (t) && DECL_TEMPLATE_INFO (t))
7468 || local_variable_p (t))
7469 t = tsubst (t, args, complain, in_decl);
7470 mark_used (t);
7471 return t;
7472
7473 case BASELINK:
7474 return tsubst_baselink (t, current_class_type, args, complain, in_decl);
7475
7476 case TEMPLATE_DECL:
7477 if (DECL_TEMPLATE_TEMPLATE_PARM_P (t))
7478 return tsubst (TREE_TYPE (DECL_TEMPLATE_RESULT (t)),
7479 args, complain, in_decl);
7480 else if (is_member_template (t))
7481 return tsubst (t, args, complain, in_decl);
7482 else if (DECL_CLASS_SCOPE_P (t)
7483 && uses_template_parms (DECL_CONTEXT (t)))
7484 {
7485 /* Template template argument like the following example need
7486 special treatment:
7487
7488 template <template <class> class TT> struct C {};
7489 template <class T> struct D {
7490 template <class U> struct E {};
7491 C<E> c; // #1
7492 };
7493 D<int> d; // #2
7494
7495 We are processing the template argument `E' in #1 for
7496 the template instantiation #2. Originally, `E' is a
7497 TEMPLATE_DECL with `D<T>' as its DECL_CONTEXT. Now we
7498 have to substitute this with one having context `D<int>'. */
7499
7500 tree context = tsubst (DECL_CONTEXT (t), args, complain, in_decl);
7501 return lookup_field (context, DECL_NAME(t), 0, false);
7502 }
7503 else
7504 /* Ordinary template template argument. */
7505 return t;
7506
7507 case CAST_EXPR:
7508 case REINTERPRET_CAST_EXPR:
7509 case CONST_CAST_EXPR:
7510 case STATIC_CAST_EXPR:
7511 case DYNAMIC_CAST_EXPR:
7512 case NOP_EXPR:
7513 return build1
7514 (code, tsubst (TREE_TYPE (t), args, complain, in_decl),
7515 tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl));
7516
7517 case INDIRECT_REF:
7518 case NEGATE_EXPR:
7519 case TRUTH_NOT_EXPR:
7520 case BIT_NOT_EXPR:
7521 case ADDR_EXPR:
7522 case CONVERT_EXPR: /* Unary + */
7523 case SIZEOF_EXPR:
7524 case ALIGNOF_EXPR:
7525 case ARROW_EXPR:
7526 case THROW_EXPR:
7527 case TYPEID_EXPR:
7528 case REALPART_EXPR:
7529 case IMAGPART_EXPR:
7530 return build1
7531 (code, tsubst (TREE_TYPE (t), args, complain, in_decl),
7532 tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl));
7533
7534 case COMPONENT_REF:
7535 {
7536 tree object;
7537 tree name;
7538
7539 object = tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl);
7540 name = TREE_OPERAND (t, 1);
7541 if (TREE_CODE (name) == BIT_NOT_EXPR)
7542 {
7543 name = tsubst_copy (TREE_OPERAND (name, 0), args,
7544 complain, in_decl);
7545 name = build1 (BIT_NOT_EXPR, NULL_TREE, name);
7546 }
7547 else if (TREE_CODE (name) == SCOPE_REF
7548 && TREE_CODE (TREE_OPERAND (name, 1)) == BIT_NOT_EXPR)
7549 {
7550 tree base = tsubst_copy (TREE_OPERAND (name, 0), args,
7551 complain, in_decl);
7552 name = TREE_OPERAND (name, 1);
7553 name = tsubst_copy (TREE_OPERAND (name, 0), args,
7554 complain, in_decl);
7555 name = build1 (BIT_NOT_EXPR, NULL_TREE, name);
7556 name = build_nt (SCOPE_REF, base, name);
7557 }
7558 else if (TREE_CODE (name) == BASELINK)
7559 name = tsubst_baselink (name,
7560 non_reference (TREE_TYPE (object)),
7561 args, complain,
7562 in_decl);
7563 else
7564 name = tsubst_copy (name, args, complain, in_decl);
7565 return build_nt (COMPONENT_REF, object, name);
7566 }
7567
7568 case PLUS_EXPR:
7569 case MINUS_EXPR:
7570 case MULT_EXPR:
7571 case TRUNC_DIV_EXPR:
7572 case CEIL_DIV_EXPR:
7573 case FLOOR_DIV_EXPR:
7574 case ROUND_DIV_EXPR:
7575 case EXACT_DIV_EXPR:
7576 case BIT_AND_EXPR:
7577 case BIT_IOR_EXPR:
7578 case BIT_XOR_EXPR:
7579 case TRUNC_MOD_EXPR:
7580 case FLOOR_MOD_EXPR:
7581 case TRUTH_ANDIF_EXPR:
7582 case TRUTH_ORIF_EXPR:
7583 case TRUTH_AND_EXPR:
7584 case TRUTH_OR_EXPR:
7585 case RSHIFT_EXPR:
7586 case LSHIFT_EXPR:
7587 case RROTATE_EXPR:
7588 case LROTATE_EXPR:
7589 case EQ_EXPR:
7590 case NE_EXPR:
7591 case MAX_EXPR:
7592 case MIN_EXPR:
7593 case LE_EXPR:
7594 case GE_EXPR:
7595 case LT_EXPR:
7596 case GT_EXPR:
7597 case ARRAY_REF:
7598 case COMPOUND_EXPR:
7599 case SCOPE_REF:
7600 case DOTSTAR_EXPR:
7601 case MEMBER_REF:
7602 case PREDECREMENT_EXPR:
7603 case PREINCREMENT_EXPR:
7604 case POSTDECREMENT_EXPR:
7605 case POSTINCREMENT_EXPR:
7606 return build_nt
7607 (code, tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl),
7608 tsubst_copy (TREE_OPERAND (t, 1), args, complain, in_decl));
7609
7610 case CALL_EXPR:
7611 return build_nt (code,
7612 tsubst_copy (TREE_OPERAND (t, 0), args,
7613 complain, in_decl),
7614 tsubst_copy (TREE_OPERAND (t, 1), args, complain,
7615 in_decl),
7616 NULL_TREE);
7617
7618 case STMT_EXPR:
7619 /* This processing should really occur in tsubst_expr. However,
7620 tsubst_expr does not recurse into expressions, since it
7621 assumes that there aren't any statements inside them. So, we
7622 need to expand the STMT_EXPR here. */
7623 if (!processing_template_decl)
7624 {
7625 tree stmt_expr = begin_stmt_expr ();
7626
7627 tsubst_expr (STMT_EXPR_STMT (t), args,
7628 complain | tf_stmt_expr_cmpd, in_decl);
7629 return finish_stmt_expr (stmt_expr, false);
7630 }
7631
7632 return t;
7633
7634 case COND_EXPR:
7635 case MODOP_EXPR:
7636 case PSEUDO_DTOR_EXPR:
7637 {
7638 r = build_nt
7639 (code, tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl),
7640 tsubst_copy (TREE_OPERAND (t, 1), args, complain, in_decl),
7641 tsubst_copy (TREE_OPERAND (t, 2), args, complain, in_decl));
7642 return r;
7643 }
7644
7645 case NEW_EXPR:
7646 {
7647 r = build_nt
7648 (code, tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl),
7649 tsubst_copy (TREE_OPERAND (t, 1), args, complain, in_decl),
7650 tsubst_copy (TREE_OPERAND (t, 2), args, complain, in_decl));
7651 NEW_EXPR_USE_GLOBAL (r) = NEW_EXPR_USE_GLOBAL (t);
7652 return r;
7653 }
7654
7655 case DELETE_EXPR:
7656 {
7657 r = build_nt
7658 (code, tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl),
7659 tsubst_copy (TREE_OPERAND (t, 1), args, complain, in_decl));
7660 DELETE_EXPR_USE_GLOBAL (r) = DELETE_EXPR_USE_GLOBAL (t);
7661 DELETE_EXPR_USE_VEC (r) = DELETE_EXPR_USE_VEC (t);
7662 return r;
7663 }
7664
7665 case TEMPLATE_ID_EXPR:
7666 {
7667 /* Substituted template arguments */
7668 tree fn = TREE_OPERAND (t, 0);
7669 tree targs = TREE_OPERAND (t, 1);
7670
7671 fn = tsubst_copy (fn, args, complain, in_decl);
7672 if (targs)
7673 targs = tsubst_template_args (targs, args, complain, in_decl);
7674
7675 return lookup_template_function (fn, targs);
7676 }
7677
7678 case TREE_LIST:
7679 {
7680 tree purpose, value, chain;
7681
7682 if (t == void_list_node)
7683 return t;
7684
7685 purpose = TREE_PURPOSE (t);
7686 if (purpose)
7687 purpose = tsubst_copy (purpose, args, complain, in_decl);
7688 value = TREE_VALUE (t);
7689 if (value)
7690 value = tsubst_copy (value, args, complain, in_decl);
7691 chain = TREE_CHAIN (t);
7692 if (chain && chain != void_type_node)
7693 chain = tsubst_copy (chain, args, complain, in_decl);
7694 if (purpose == TREE_PURPOSE (t)
7695 && value == TREE_VALUE (t)
7696 && chain == TREE_CHAIN (t))
7697 return t;
7698 return tree_cons (purpose, value, chain);
7699 }
7700
7701 case RECORD_TYPE:
7702 case UNION_TYPE:
7703 case ENUMERAL_TYPE:
7704 case INTEGER_TYPE:
7705 case TEMPLATE_TYPE_PARM:
7706 case TEMPLATE_TEMPLATE_PARM:
7707 case BOUND_TEMPLATE_TEMPLATE_PARM:
7708 case TEMPLATE_PARM_INDEX:
7709 case POINTER_TYPE:
7710 case REFERENCE_TYPE:
7711 case OFFSET_TYPE:
7712 case FUNCTION_TYPE:
7713 case METHOD_TYPE:
7714 case ARRAY_TYPE:
7715 case TYPENAME_TYPE:
7716 case UNBOUND_CLASS_TEMPLATE:
7717 case TYPEOF_TYPE:
7718 case TYPE_DECL:
7719 return tsubst (t, args, complain, in_decl);
7720
7721 case IDENTIFIER_NODE:
7722 if (IDENTIFIER_TYPENAME_P (t))
7723 {
7724 tree new_type = tsubst (TREE_TYPE (t), args, complain, in_decl);
7725 return mangle_conv_op_name_for_type (new_type);
7726 }
7727 else
7728 return t;
7729
7730 case CONSTRUCTOR:
7731 {
7732 r = build_constructor
7733 (tsubst (TREE_TYPE (t), args, complain, in_decl),
7734 tsubst_copy (CONSTRUCTOR_ELTS (t), args, complain, in_decl));
7735 TREE_HAS_CONSTRUCTOR (r) = TREE_HAS_CONSTRUCTOR (t);
7736 return r;
7737 }
7738
7739 case VA_ARG_EXPR:
7740 return build_x_va_arg (tsubst_copy (TREE_OPERAND (t, 0), args, complain,
7741 in_decl),
7742 tsubst (TREE_TYPE (t), args, complain, in_decl));
7743
7744 default:
7745 return t;
7746 }
7747 }
7748
7749 /* Like tsubst_copy for expressions, etc. but also does semantic
7750 processing. */
7751
7752 static tree
7753 tsubst_expr (tree t, tree args, tsubst_flags_t complain, tree in_decl)
7754 {
7755 tree stmt, tmp;
7756 tsubst_flags_t stmt_expr
7757 = complain & (tf_stmt_expr_cmpd | tf_stmt_expr_body);
7758
7759 complain ^= stmt_expr;
7760 if (t == NULL_TREE || t == error_mark_node)
7761 return t;
7762
7763 if (!STATEMENT_CODE_P (TREE_CODE (t)))
7764 return tsubst_copy_and_build (t, args, complain, in_decl,
7765 /*function_p=*/false);
7766
7767 switch (TREE_CODE (t))
7768 {
7769 case CTOR_INITIALIZER:
7770 prep_stmt (t);
7771 finish_mem_initializers (tsubst_initializer_list
7772 (TREE_OPERAND (t, 0), args));
7773 break;
7774
7775 case RETURN_STMT:
7776 prep_stmt (t);
7777 finish_return_stmt (tsubst_expr (RETURN_STMT_EXPR (t),
7778 args, complain, in_decl));
7779 break;
7780
7781 case EXPR_STMT:
7782 {
7783 tree r;
7784
7785 prep_stmt (t);
7786
7787 r = tsubst_expr (EXPR_STMT_EXPR (t), args, complain, in_decl);
7788 if (stmt_expr & tf_stmt_expr_body && !TREE_CHAIN (t))
7789 finish_stmt_expr_expr (r);
7790 else
7791 finish_expr_stmt (r);
7792 break;
7793 }
7794
7795 case USING_STMT:
7796 prep_stmt (t);
7797 do_using_directive (tsubst_expr (USING_STMT_NAMESPACE (t),
7798 args, complain, in_decl));
7799 break;
7800
7801 case DECL_STMT:
7802 {
7803 tree decl;
7804 tree init;
7805
7806 prep_stmt (t);
7807 decl = DECL_STMT_DECL (t);
7808 if (TREE_CODE (decl) == LABEL_DECL)
7809 finish_label_decl (DECL_NAME (decl));
7810 else if (TREE_CODE (decl) == USING_DECL)
7811 {
7812 tree scope = DECL_INITIAL (decl);
7813 tree name = DECL_NAME (decl);
7814 tree decl;
7815
7816 scope = tsubst_expr (scope, args, complain, in_decl);
7817 decl = lookup_qualified_name (scope, name,
7818 /*is_type_p=*/false,
7819 /*complain=*/false);
7820 if (decl == error_mark_node)
7821 qualified_name_lookup_error (scope, name);
7822 else
7823 do_local_using_decl (decl, scope, name);
7824 }
7825 else
7826 {
7827 init = DECL_INITIAL (decl);
7828 decl = tsubst (decl, args, complain, in_decl);
7829 if (decl != error_mark_node)
7830 {
7831 if (init)
7832 DECL_INITIAL (decl) = error_mark_node;
7833 /* By marking the declaration as instantiated, we avoid
7834 trying to instantiate it. Since instantiate_decl can't
7835 handle local variables, and since we've already done
7836 all that needs to be done, that's the right thing to
7837 do. */
7838 if (TREE_CODE (decl) == VAR_DECL)
7839 DECL_TEMPLATE_INSTANTIATED (decl) = 1;
7840 if (TREE_CODE (decl) == VAR_DECL
7841 && ANON_AGGR_TYPE_P (TREE_TYPE (decl)))
7842 /* Anonymous aggregates are a special case. */
7843 finish_anon_union (decl);
7844 else
7845 {
7846 maybe_push_decl (decl);
7847 if (TREE_CODE (decl) == VAR_DECL
7848 && DECL_PRETTY_FUNCTION_P (decl))
7849 {
7850 /* For __PRETTY_FUNCTION__ we have to adjust the
7851 initializer. */
7852 const char *const name
7853 = cxx_printable_name (current_function_decl, 2);
7854 init = cp_fname_init (name, &TREE_TYPE (decl));
7855 }
7856 else
7857 init = tsubst_expr (init, args, complain, in_decl);
7858 cp_finish_decl (decl, init, NULL_TREE, 0);
7859 }
7860 }
7861 }
7862
7863 /* A DECL_STMT can also be used as an expression, in the condition
7864 clause of an if/for/while construct. If we aren't followed by
7865 another statement, return our decl. */
7866 if (TREE_CHAIN (t) == NULL_TREE)
7867 return decl;
7868 }
7869 break;
7870
7871 case FOR_STMT:
7872 {
7873 prep_stmt (t);
7874
7875 stmt = begin_for_stmt ();
7876 tsubst_expr (FOR_INIT_STMT (t), args, complain, in_decl);
7877 finish_for_init_stmt (stmt);
7878 finish_for_cond (tsubst_expr (FOR_COND (t),
7879 args, complain, in_decl),
7880 stmt);
7881 tmp = tsubst_expr (FOR_EXPR (t), args, complain, in_decl);
7882 finish_for_expr (tmp, stmt);
7883 tsubst_expr (FOR_BODY (t), args, complain, in_decl);
7884 finish_for_stmt (stmt);
7885 }
7886 break;
7887
7888 case WHILE_STMT:
7889 {
7890 prep_stmt (t);
7891 stmt = begin_while_stmt ();
7892 finish_while_stmt_cond (tsubst_expr (WHILE_COND (t),
7893 args, complain, in_decl),
7894 stmt);
7895 tsubst_expr (WHILE_BODY (t), args, complain, in_decl);
7896 finish_while_stmt (stmt);
7897 }
7898 break;
7899
7900 case DO_STMT:
7901 {
7902 prep_stmt (t);
7903 stmt = begin_do_stmt ();
7904 tsubst_expr (DO_BODY (t), args, complain, in_decl);
7905 finish_do_body (stmt);
7906 finish_do_stmt (tsubst_expr (DO_COND (t),
7907 args, complain, in_decl),
7908 stmt);
7909 }
7910 break;
7911
7912 case IF_STMT:
7913 {
7914 prep_stmt (t);
7915 stmt = begin_if_stmt ();
7916 finish_if_stmt_cond (tsubst_expr (IF_COND (t),
7917 args, complain, in_decl),
7918 stmt);
7919
7920 if (tmp = THEN_CLAUSE (t), tmp)
7921 {
7922 tsubst_expr (tmp, args, complain, in_decl);
7923 finish_then_clause (stmt);
7924 }
7925
7926 if (tmp = ELSE_CLAUSE (t), tmp)
7927 {
7928 begin_else_clause ();
7929 tsubst_expr (tmp, args, complain, in_decl);
7930 finish_else_clause (stmt);
7931 }
7932
7933 finish_if_stmt ();
7934 }
7935 break;
7936
7937 case COMPOUND_STMT:
7938 {
7939 prep_stmt (t);
7940 if (COMPOUND_STMT_BODY_BLOCK (t))
7941 stmt = begin_function_body ();
7942 else
7943 stmt = begin_compound_stmt (COMPOUND_STMT_NO_SCOPE (t));
7944
7945 tsubst_expr (COMPOUND_BODY (t), args,
7946 complain | ((stmt_expr & tf_stmt_expr_cmpd) << 1),
7947 in_decl);
7948
7949 if (COMPOUND_STMT_BODY_BLOCK (t))
7950 finish_function_body (stmt);
7951 else
7952 finish_compound_stmt (stmt);
7953 }
7954 break;
7955
7956 case BREAK_STMT:
7957 prep_stmt (t);
7958 finish_break_stmt ();
7959 break;
7960
7961 case CONTINUE_STMT:
7962 prep_stmt (t);
7963 finish_continue_stmt ();
7964 break;
7965
7966 case SWITCH_STMT:
7967 {
7968 tree val;
7969
7970 prep_stmt (t);
7971 stmt = begin_switch_stmt ();
7972 val = tsubst_expr (SWITCH_COND (t), args, complain, in_decl);
7973 finish_switch_cond (val, stmt);
7974 tsubst_expr (SWITCH_BODY (t), args, complain, in_decl);
7975 finish_switch_stmt (stmt);
7976 }
7977 break;
7978
7979 case CASE_LABEL:
7980 prep_stmt (t);
7981 finish_case_label (tsubst_expr (CASE_LOW (t), args, complain, in_decl),
7982 tsubst_expr (CASE_HIGH (t), args, complain,
7983 in_decl));
7984 break;
7985
7986 case LABEL_STMT:
7987 prep_stmt (t);
7988 finish_label_stmt (DECL_NAME (LABEL_STMT_LABEL (t)));
7989 break;
7990
7991 case GOTO_STMT:
7992 prep_stmt (t);
7993 tmp = GOTO_DESTINATION (t);
7994 if (TREE_CODE (tmp) != LABEL_DECL)
7995 /* Computed goto's must be tsubst'd into. On the other hand,
7996 non-computed gotos must not be; the identifier in question
7997 will have no binding. */
7998 tmp = tsubst_expr (tmp, args, complain, in_decl);
7999 else
8000 tmp = DECL_NAME (tmp);
8001 finish_goto_stmt (tmp);
8002 break;
8003
8004 case ASM_STMT:
8005 prep_stmt (t);
8006 tmp = finish_asm_stmt
8007 (ASM_VOLATILE_P (t),
8008 tsubst_expr (ASM_STRING (t), args, complain, in_decl),
8009 tsubst_expr (ASM_OUTPUTS (t), args, complain, in_decl),
8010 tsubst_expr (ASM_INPUTS (t), args, complain, in_decl),
8011 tsubst_expr (ASM_CLOBBERS (t), args, complain, in_decl));
8012 ASM_INPUT_P (tmp) = ASM_INPUT_P (t);
8013 break;
8014
8015 case TRY_BLOCK:
8016 prep_stmt (t);
8017 if (CLEANUP_P (t))
8018 {
8019 stmt = begin_try_block ();
8020 tsubst_expr (TRY_STMTS (t), args, complain, in_decl);
8021 finish_cleanup_try_block (stmt);
8022 finish_cleanup (tsubst_expr (TRY_HANDLERS (t), args,
8023 complain, in_decl),
8024 stmt);
8025 }
8026 else
8027 {
8028 if (FN_TRY_BLOCK_P (t))
8029 stmt = begin_function_try_block ();
8030 else
8031 stmt = begin_try_block ();
8032
8033 tsubst_expr (TRY_STMTS (t), args, complain, in_decl);
8034
8035 if (FN_TRY_BLOCK_P (t))
8036 finish_function_try_block (stmt);
8037 else
8038 finish_try_block (stmt);
8039
8040 tsubst_expr (TRY_HANDLERS (t), args, complain, in_decl);
8041 if (FN_TRY_BLOCK_P (t))
8042 finish_function_handler_sequence (stmt);
8043 else
8044 finish_handler_sequence (stmt);
8045 }
8046 break;
8047
8048 case HANDLER:
8049 {
8050 tree decl;
8051
8052 prep_stmt (t);
8053 stmt = begin_handler ();
8054 if (HANDLER_PARMS (t))
8055 {
8056 decl = DECL_STMT_DECL (HANDLER_PARMS (t));
8057 decl = tsubst (decl, args, complain, in_decl);
8058 /* Prevent instantiate_decl from trying to instantiate
8059 this variable. We've already done all that needs to be
8060 done. */
8061 DECL_TEMPLATE_INSTANTIATED (decl) = 1;
8062 }
8063 else
8064 decl = NULL_TREE;
8065 finish_handler_parms (decl, stmt);
8066 tsubst_expr (HANDLER_BODY (t), args, complain, in_decl);
8067 finish_handler (stmt);
8068 }
8069 break;
8070
8071 case TAG_DEFN:
8072 prep_stmt (t);
8073 tsubst (TREE_TYPE (t), args, complain, NULL_TREE);
8074 break;
8075
8076 default:
8077 abort ();
8078 }
8079
8080 return tsubst_expr (TREE_CHAIN (t), args, complain | stmt_expr, in_decl);
8081 }
8082
8083 /* T is a postfix-expression that is not being used in a function
8084 call. Return the substituted version of T. */
8085
8086 static tree
8087 tsubst_non_call_postfix_expression (tree t, tree args,
8088 tsubst_flags_t complain,
8089 tree in_decl)
8090 {
8091 if (TREE_CODE (t) == SCOPE_REF)
8092 t = tsubst_qualified_id (t, args, complain, in_decl,
8093 /*done=*/false, /*address_p=*/false);
8094 else
8095 t = tsubst_copy_and_build (t, args, complain, in_decl,
8096 /*function_p=*/false);
8097
8098 return t;
8099 }
8100
8101 /* Like tsubst but deals with expressions and performs semantic
8102 analysis. FUNCTION_P is true if T is the "F" in "F (ARGS)". */
8103
8104 tree
8105 tsubst_copy_and_build (tree t,
8106 tree args,
8107 tsubst_flags_t complain,
8108 tree in_decl,
8109 bool function_p)
8110 {
8111 #define RECUR(NODE) \
8112 tsubst_copy_and_build (NODE, args, complain, in_decl, /*function_p=*/false)
8113
8114 tree op1;
8115
8116 if (t == NULL_TREE || t == error_mark_node)
8117 return t;
8118
8119 switch (TREE_CODE (t))
8120 {
8121 case USING_DECL:
8122 t = DECL_NAME (t);
8123 /* Fall through. */
8124 case IDENTIFIER_NODE:
8125 {
8126 tree decl;
8127 cp_id_kind idk;
8128 tree qualifying_class;
8129 bool non_integral_constant_expression_p;
8130 const char *error_msg;
8131
8132 if (IDENTIFIER_TYPENAME_P (t))
8133 {
8134 tree new_type = tsubst (TREE_TYPE (t), args, complain, in_decl);
8135 t = mangle_conv_op_name_for_type (new_type);
8136 }
8137
8138 /* Look up the name. */
8139 decl = lookup_name (t, 0);
8140
8141 /* By convention, expressions use ERROR_MARK_NODE to indicate
8142 failure, not NULL_TREE. */
8143 if (decl == NULL_TREE)
8144 decl = error_mark_node;
8145
8146 decl = finish_id_expression (t, decl, NULL_TREE,
8147 &idk,
8148 &qualifying_class,
8149 /*integral_constant_expression_p=*/false,
8150 /*allow_non_integral_constant_expression_p=*/false,
8151 &non_integral_constant_expression_p,
8152 &error_msg);
8153 if (error_msg)
8154 error (error_msg);
8155 if (!function_p && TREE_CODE (decl) == IDENTIFIER_NODE)
8156 decl = unqualified_name_lookup_error (decl);
8157 return decl;
8158 }
8159
8160 case TEMPLATE_ID_EXPR:
8161 {
8162 tree object;
8163 tree template = RECUR (TREE_OPERAND (t, 0));
8164 tree targs = TREE_OPERAND (t, 1);
8165
8166 if (targs)
8167 targs = tsubst_template_args (targs, args, complain, in_decl);
8168
8169 if (TREE_CODE (template) == COMPONENT_REF)
8170 {
8171 object = TREE_OPERAND (template, 0);
8172 template = TREE_OPERAND (template, 1);
8173 }
8174 else
8175 object = NULL_TREE;
8176 template = lookup_template_function (template, targs);
8177
8178 if (object)
8179 return build (COMPONENT_REF, TREE_TYPE (template),
8180 object, template);
8181 else
8182 return template;
8183 }
8184
8185 case INDIRECT_REF:
8186 return build_x_indirect_ref (RECUR (TREE_OPERAND (t, 0)), "unary *");
8187
8188 case NOP_EXPR:
8189 return build_nop
8190 (tsubst (TREE_TYPE (t), args, complain, in_decl),
8191 RECUR (TREE_OPERAND (t, 0)));
8192
8193 case CAST_EXPR:
8194 return build_functional_cast
8195 (tsubst (TREE_TYPE (t), args, complain, in_decl),
8196 RECUR (TREE_OPERAND (t, 0)));
8197
8198 case REINTERPRET_CAST_EXPR:
8199 return build_reinterpret_cast
8200 (tsubst (TREE_TYPE (t), args, complain, in_decl),
8201 RECUR (TREE_OPERAND (t, 0)));
8202
8203 case CONST_CAST_EXPR:
8204 return build_const_cast
8205 (tsubst (TREE_TYPE (t), args, complain, in_decl),
8206 RECUR (TREE_OPERAND (t, 0)));
8207
8208 case DYNAMIC_CAST_EXPR:
8209 return build_dynamic_cast
8210 (tsubst (TREE_TYPE (t), args, complain, in_decl),
8211 RECUR (TREE_OPERAND (t, 0)));
8212
8213 case STATIC_CAST_EXPR:
8214 return build_static_cast
8215 (tsubst (TREE_TYPE (t), args, complain, in_decl),
8216 RECUR (TREE_OPERAND (t, 0)));
8217
8218 case POSTDECREMENT_EXPR:
8219 case POSTINCREMENT_EXPR:
8220 op1 = tsubst_non_call_postfix_expression (TREE_OPERAND (t, 0),
8221 args, complain, in_decl);
8222 return build_x_unary_op (TREE_CODE (t), op1);
8223
8224 case PREDECREMENT_EXPR:
8225 case PREINCREMENT_EXPR:
8226 case NEGATE_EXPR:
8227 case BIT_NOT_EXPR:
8228 case ABS_EXPR:
8229 case TRUTH_NOT_EXPR:
8230 case CONVERT_EXPR: /* Unary + */
8231 case REALPART_EXPR:
8232 case IMAGPART_EXPR:
8233 return build_x_unary_op (TREE_CODE (t), RECUR (TREE_OPERAND (t, 0)));
8234
8235 case ADDR_EXPR:
8236 op1 = TREE_OPERAND (t, 0);
8237 if (TREE_CODE (op1) == SCOPE_REF)
8238 op1 = tsubst_qualified_id (op1, args, complain, in_decl,
8239 /*done=*/true, /*address_p=*/true);
8240 else
8241 op1 = tsubst_non_call_postfix_expression (op1, args, complain,
8242 in_decl);
8243 if (TREE_CODE (op1) == LABEL_DECL)
8244 return finish_label_address_expr (DECL_NAME (op1));
8245 return build_x_unary_op (ADDR_EXPR, op1);
8246
8247 case PLUS_EXPR:
8248 case MINUS_EXPR:
8249 case MULT_EXPR:
8250 case TRUNC_DIV_EXPR:
8251 case CEIL_DIV_EXPR:
8252 case FLOOR_DIV_EXPR:
8253 case ROUND_DIV_EXPR:
8254 case EXACT_DIV_EXPR:
8255 case BIT_AND_EXPR:
8256 case BIT_IOR_EXPR:
8257 case BIT_XOR_EXPR:
8258 case TRUNC_MOD_EXPR:
8259 case FLOOR_MOD_EXPR:
8260 case TRUTH_ANDIF_EXPR:
8261 case TRUTH_ORIF_EXPR:
8262 case TRUTH_AND_EXPR:
8263 case TRUTH_OR_EXPR:
8264 case RSHIFT_EXPR:
8265 case LSHIFT_EXPR:
8266 case RROTATE_EXPR:
8267 case LROTATE_EXPR:
8268 case EQ_EXPR:
8269 case NE_EXPR:
8270 case MAX_EXPR:
8271 case MIN_EXPR:
8272 case LE_EXPR:
8273 case GE_EXPR:
8274 case LT_EXPR:
8275 case GT_EXPR:
8276 case MEMBER_REF:
8277 case DOTSTAR_EXPR:
8278 return build_x_binary_op
8279 (TREE_CODE (t),
8280 RECUR (TREE_OPERAND (t, 0)),
8281 RECUR (TREE_OPERAND (t, 1)),
8282 /*overloaded_p=*/NULL);
8283
8284 case SCOPE_REF:
8285 return tsubst_qualified_id (t, args, complain, in_decl, /*done=*/true,
8286 /*address_p=*/false);
8287
8288 case ARRAY_REF:
8289 if (tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl)
8290 == NULL_TREE)
8291 /* new-type-id */
8292 return build_nt (ARRAY_REF, NULL_TREE, RECUR (TREE_OPERAND (t, 1)));
8293
8294 op1 = tsubst_non_call_postfix_expression (TREE_OPERAND (t, 0),
8295 args, complain, in_decl);
8296 /* Remember that there was a reference to this entity. */
8297 if (DECL_P (op1))
8298 mark_used (op1);
8299 return grok_array_decl (op1, RECUR (TREE_OPERAND (t, 1)));
8300
8301 case SIZEOF_EXPR:
8302 case ALIGNOF_EXPR:
8303 op1 = TREE_OPERAND (t, 0);
8304 if (!args)
8305 {
8306 /* When there are no ARGS, we are trying to evaluate a
8307 non-dependent expression from the parser. Trying to do
8308 the substitutions may not work. */
8309 if (!TYPE_P (op1))
8310 op1 = TREE_TYPE (op1);
8311 }
8312 else
8313 {
8314 ++skip_evaluation;
8315 op1 = RECUR (op1);
8316 --skip_evaluation;
8317 }
8318 if (TYPE_P (op1))
8319 return cxx_sizeof_or_alignof_type (op1, TREE_CODE (t), true);
8320 else
8321 return cxx_sizeof_or_alignof_expr (op1, TREE_CODE (t));
8322
8323 case MODOP_EXPR:
8324 return build_x_modify_expr
8325 (RECUR (TREE_OPERAND (t, 0)),
8326 TREE_CODE (TREE_OPERAND (t, 1)),
8327 RECUR (TREE_OPERAND (t, 2)));
8328
8329 case ARROW_EXPR:
8330 op1 = tsubst_non_call_postfix_expression (TREE_OPERAND (t, 0),
8331 args, complain, in_decl);
8332 /* Remember that there was a reference to this entity. */
8333 if (DECL_P (op1))
8334 mark_used (op1);
8335 return build_x_arrow (op1);
8336
8337 case NEW_EXPR:
8338 return build_new
8339 (RECUR (TREE_OPERAND (t, 0)),
8340 RECUR (TREE_OPERAND (t, 1)),
8341 RECUR (TREE_OPERAND (t, 2)),
8342 NEW_EXPR_USE_GLOBAL (t));
8343
8344 case DELETE_EXPR:
8345 return delete_sanity
8346 (RECUR (TREE_OPERAND (t, 0)),
8347 RECUR (TREE_OPERAND (t, 1)),
8348 DELETE_EXPR_USE_VEC (t),
8349 DELETE_EXPR_USE_GLOBAL (t));
8350
8351 case COMPOUND_EXPR:
8352 return build_x_compound_expr (RECUR (TREE_OPERAND (t, 0)),
8353 RECUR (TREE_OPERAND (t, 1)));
8354
8355 case CALL_EXPR:
8356 {
8357 tree function;
8358 tree call_args;
8359 bool qualified_p;
8360 bool koenig_p;
8361
8362 function = TREE_OPERAND (t, 0);
8363 /* When we parsed the expression, we determined whether or
8364 not Koenig lookup should be performed. */
8365 koenig_p = KOENIG_LOOKUP_P (t);
8366 if (TREE_CODE (function) == SCOPE_REF)
8367 {
8368 qualified_p = true;
8369 function = tsubst_qualified_id (function, args, complain, in_decl,
8370 /*done=*/false,
8371 /*address_p=*/false);
8372 }
8373 else
8374 {
8375 qualified_p = (TREE_CODE (function) == COMPONENT_REF
8376 && (TREE_CODE (TREE_OPERAND (function, 1))
8377 == SCOPE_REF));
8378 function = tsubst_copy_and_build (function, args, complain,
8379 in_decl,
8380 !qualified_p);
8381 if (BASELINK_P (function))
8382 qualified_p = true;
8383 }
8384
8385 call_args = RECUR (TREE_OPERAND (t, 1));
8386
8387 /* We do not perform argument-dependent lookup if normal
8388 lookup finds a non-function, in accordance with the
8389 expected resolution of DR 218. */
8390 if (koenig_p
8391 && (is_overloaded_fn (function)
8392 || TREE_CODE (function) == IDENTIFIER_NODE))
8393 function = perform_koenig_lookup (function, call_args);
8394
8395 if (TREE_CODE (function) == IDENTIFIER_NODE)
8396 {
8397 unqualified_name_lookup_error (function);
8398 return error_mark_node;
8399 }
8400
8401 /* Remember that there was a reference to this entity. */
8402 if (DECL_P (function))
8403 mark_used (function);
8404
8405 function = convert_from_reference (function);
8406
8407 if (TREE_CODE (function) == OFFSET_REF)
8408 return build_offset_ref_call_from_tree (function, call_args);
8409 if (TREE_CODE (function) == COMPONENT_REF)
8410 {
8411 if (!BASELINK_P (TREE_OPERAND (function, 1)))
8412 return finish_call_expr (function, call_args,
8413 /*disallow_virtual=*/false,
8414 /*koenig_p=*/false);
8415 else
8416 return (build_new_method_call
8417 (TREE_OPERAND (function, 0),
8418 TREE_OPERAND (function, 1),
8419 call_args, NULL_TREE,
8420 qualified_p ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL));
8421 }
8422 return finish_call_expr (function, call_args,
8423 /*disallow_virtual=*/qualified_p,
8424 koenig_p);
8425 }
8426
8427 case COND_EXPR:
8428 return build_x_conditional_expr
8429 (RECUR (TREE_OPERAND (t, 0)),
8430 RECUR (TREE_OPERAND (t, 1)),
8431 RECUR (TREE_OPERAND (t, 2)));
8432
8433 case PSEUDO_DTOR_EXPR:
8434 return finish_pseudo_destructor_expr
8435 (RECUR (TREE_OPERAND (t, 0)),
8436 RECUR (TREE_OPERAND (t, 1)),
8437 RECUR (TREE_OPERAND (t, 2)));
8438
8439 case TREE_LIST:
8440 {
8441 tree purpose, value, chain;
8442
8443 if (t == void_list_node)
8444 return t;
8445
8446 purpose = TREE_PURPOSE (t);
8447 if (purpose)
8448 purpose = RECUR (purpose);
8449 value = TREE_VALUE (t);
8450 if (value)
8451 value = RECUR (value);
8452 chain = TREE_CHAIN (t);
8453 if (chain && chain != void_type_node)
8454 chain = RECUR (chain);
8455 if (purpose == TREE_PURPOSE (t)
8456 && value == TREE_VALUE (t)
8457 && chain == TREE_CHAIN (t))
8458 return t;
8459 return tree_cons (purpose, value, chain);
8460 }
8461
8462 case COMPONENT_REF:
8463 {
8464 tree object;
8465 tree member;
8466
8467 object = tsubst_non_call_postfix_expression (TREE_OPERAND (t, 0),
8468 args, complain, in_decl);
8469 /* Remember that there was a reference to this entity. */
8470 if (DECL_P (object))
8471 mark_used (object);
8472
8473 member = TREE_OPERAND (t, 1);
8474 if (BASELINK_P (member))
8475 member = tsubst_baselink (member,
8476 non_reference (TREE_TYPE (object)),
8477 args, complain, in_decl);
8478 else
8479 member = tsubst_copy (member, args, complain, in_decl);
8480
8481 if (!CLASS_TYPE_P (TREE_TYPE (object)))
8482 {
8483 if (TREE_CODE (member) == BIT_NOT_EXPR)
8484 return finish_pseudo_destructor_expr (object,
8485 NULL_TREE,
8486 TREE_TYPE (object));
8487 else if (TREE_CODE (member) == SCOPE_REF
8488 && (TREE_CODE (TREE_OPERAND (member, 1)) == BIT_NOT_EXPR))
8489 return finish_pseudo_destructor_expr (object,
8490 object,
8491 TREE_TYPE (object));
8492 }
8493 else if (TREE_CODE (member) == SCOPE_REF
8494 && TREE_CODE (TREE_OPERAND (member, 1)) == TEMPLATE_ID_EXPR)
8495 {
8496 tree tmpl;
8497 tree args;
8498
8499 /* Lookup the template functions now that we know what the
8500 scope is. */
8501 tmpl = TREE_OPERAND (TREE_OPERAND (member, 1), 0);
8502 args = TREE_OPERAND (TREE_OPERAND (member, 1), 1);
8503 member = lookup_qualified_name (TREE_OPERAND (member, 0), tmpl,
8504 /*is_type_p=*/false,
8505 /*complain=*/false);
8506 if (BASELINK_P (member))
8507 BASELINK_FUNCTIONS (member)
8508 = build_nt (TEMPLATE_ID_EXPR, BASELINK_FUNCTIONS (member),
8509 args);
8510 else
8511 {
8512 qualified_name_lookup_error (TREE_TYPE (object), tmpl);
8513 return error_mark_node;
8514 }
8515 }
8516 else if (TREE_CODE (member) == FIELD_DECL)
8517 return finish_non_static_data_member (member, object, NULL_TREE);
8518
8519 return finish_class_member_access_expr (object, member);
8520 }
8521
8522 case THROW_EXPR:
8523 return build_throw
8524 (RECUR (TREE_OPERAND (t, 0)));
8525
8526 case CONSTRUCTOR:
8527 {
8528 tree r;
8529 tree elts;
8530 tree type = tsubst (TREE_TYPE (t), args, complain, in_decl);
8531 bool purpose_p;
8532
8533 /* digest_init will do the wrong thing if we let it. */
8534 if (type && TYPE_PTRMEMFUNC_P (type))
8535 return t;
8536
8537 r = NULL_TREE;
8538 /* We do not want to process the purpose of aggregate
8539 initializers as they are identifier nodes which will be
8540 looked up by digest_init. */
8541 purpose_p = !(type && IS_AGGR_TYPE (type));
8542 for (elts = CONSTRUCTOR_ELTS (t);
8543 elts;
8544 elts = TREE_CHAIN (elts))
8545 {
8546 tree purpose = TREE_PURPOSE (elts);
8547 tree value = TREE_VALUE (elts);
8548
8549 if (purpose && purpose_p)
8550 purpose = RECUR (purpose);
8551 value = RECUR (value);
8552 r = tree_cons (purpose, value, r);
8553 }
8554
8555 r = build_constructor (NULL_TREE, nreverse (r));
8556 TREE_HAS_CONSTRUCTOR (r) = TREE_HAS_CONSTRUCTOR (t);
8557
8558 if (type)
8559 return digest_init (type, r, 0);
8560 return r;
8561 }
8562
8563 case TYPEID_EXPR:
8564 {
8565 tree operand_0 = RECUR (TREE_OPERAND (t, 0));
8566 if (TYPE_P (operand_0))
8567 return get_typeid (operand_0);
8568 return build_typeid (operand_0);
8569 }
8570
8571 case PARM_DECL:
8572 return convert_from_reference (tsubst_copy (t, args, complain, in_decl));
8573
8574 case VAR_DECL:
8575 if (args)
8576 t = tsubst_copy (t, args, complain, in_decl);
8577 return convert_from_reference (t);
8578
8579 case VA_ARG_EXPR:
8580 return build_x_va_arg (RECUR (TREE_OPERAND (t, 0)),
8581 tsubst_copy (TREE_TYPE (t), args, complain,
8582 in_decl));
8583
8584 default:
8585 return tsubst_copy (t, args, complain, in_decl);
8586 }
8587
8588 #undef RECUR
8589 }
8590
8591 /* Verify that the instantiated ARGS are valid. For type arguments,
8592 make sure that the type's linkage is ok. For non-type arguments,
8593 make sure they are constants if they are integral or enumerations.
8594 Emit an error under control of COMPLAIN, and return TRUE on error. */
8595
8596 static bool
8597 check_instantiated_args (tree tmpl, tree args, tsubst_flags_t complain)
8598 {
8599 int ix, len = DECL_NTPARMS (tmpl);
8600 bool result = false;
8601
8602 for (ix = 0; ix != len; ix++)
8603 {
8604 tree t = TREE_VEC_ELT (args, ix);
8605
8606 if (TYPE_P (t))
8607 {
8608 /* [basic.link]: A name with no linkage (notably, the name
8609 of a class or enumeration declared in a local scope)
8610 shall not be used to declare an entity with linkage.
8611 This implies that names with no linkage cannot be used as
8612 template arguments. */
8613 tree nt = no_linkage_check (t);
8614
8615 if (nt)
8616 {
8617 if (!(complain & tf_error))
8618 /*OK*/;
8619 else if (TYPE_ANONYMOUS_P (nt))
8620 error ("`%T' uses anonymous type", t);
8621 else
8622 error ("`%T' uses local type `%T'", t, nt);
8623 result = true;
8624 }
8625 /* In order to avoid all sorts of complications, we do not
8626 allow variably-modified types as template arguments. */
8627 else if (variably_modified_type_p (t))
8628 {
8629 if (complain & tf_error)
8630 error ("`%T' is a variably modified type", t);
8631 result = true;
8632 }
8633 }
8634 /* A non-type argument of integral or enumerated type must be a
8635 constant. */
8636 else if (TREE_TYPE (t)
8637 && INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (t))
8638 && !TREE_CONSTANT (t))
8639 {
8640 if (complain & tf_error)
8641 error ("integral expression `%E' is not constant", t);
8642 result = true;
8643 }
8644 }
8645 if (result && complain & tf_error)
8646 error (" trying to instantiate `%D'", tmpl);
8647 return result;
8648 }
8649
8650 /* Instantiate the indicated variable or function template TMPL with
8651 the template arguments in TARG_PTR. */
8652
8653 tree
8654 instantiate_template (tree tmpl, tree targ_ptr, tsubst_flags_t complain)
8655 {
8656 tree fndecl;
8657 tree gen_tmpl;
8658 tree spec;
8659
8660 if (tmpl == error_mark_node)
8661 return error_mark_node;
8662
8663 my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 283);
8664
8665 /* If this function is a clone, handle it specially. */
8666 if (DECL_CLONED_FUNCTION_P (tmpl))
8667 {
8668 tree spec;
8669 tree clone;
8670
8671 spec = instantiate_template (DECL_CLONED_FUNCTION (tmpl), targ_ptr,
8672 complain);
8673 if (spec == error_mark_node)
8674 return error_mark_node;
8675
8676 /* Look for the clone. */
8677 for (clone = TREE_CHAIN (spec);
8678 clone && DECL_CLONED_FUNCTION_P (clone);
8679 clone = TREE_CHAIN (clone))
8680 if (DECL_NAME (clone) == DECL_NAME (tmpl))
8681 return clone;
8682 /* We should always have found the clone by now. */
8683 abort ();
8684 return NULL_TREE;
8685 }
8686
8687 /* Check to see if we already have this specialization. */
8688 spec = retrieve_specialization (tmpl, targ_ptr);
8689 if (spec != NULL_TREE)
8690 return spec;
8691
8692 gen_tmpl = most_general_template (tmpl);
8693 if (tmpl != gen_tmpl)
8694 {
8695 /* The TMPL is a partial instantiation. To get a full set of
8696 arguments we must add the arguments used to perform the
8697 partial instantiation. */
8698 targ_ptr = add_outermost_template_args (DECL_TI_ARGS (tmpl),
8699 targ_ptr);
8700
8701 /* Check to see if we already have this specialization. */
8702 spec = retrieve_specialization (gen_tmpl, targ_ptr);
8703 if (spec != NULL_TREE)
8704 return spec;
8705 }
8706
8707 if (check_instantiated_args (gen_tmpl, INNERMOST_TEMPLATE_ARGS (targ_ptr),
8708 complain))
8709 return error_mark_node;
8710
8711 /* We are building a FUNCTION_DECL, during which the access of its
8712 parameters and return types have to be checked. However this
8713 FUNCTION_DECL which is the desired context for access checking
8714 is not built yet. We solve this chicken-and-egg problem by
8715 deferring all checks until we have the FUNCTION_DECL. */
8716 push_deferring_access_checks (dk_deferred);
8717
8718 /* Substitute template parameters. */
8719 fndecl = tsubst (DECL_TEMPLATE_RESULT (gen_tmpl),
8720 targ_ptr, complain, gen_tmpl);
8721
8722 /* Now we know the specialization, compute access previously
8723 deferred. */
8724 push_access_scope (fndecl);
8725 perform_deferred_access_checks ();
8726 pop_access_scope (fndecl);
8727 pop_deferring_access_checks ();
8728
8729 /* The DECL_TI_TEMPLATE should always be the immediate parent
8730 template, not the most general template. */
8731 DECL_TI_TEMPLATE (fndecl) = tmpl;
8732
8733 /* If we've just instantiated the main entry point for a function,
8734 instantiate all the alternate entry points as well. We do this
8735 by cloning the instantiation of the main entry point, not by
8736 instantiating the template clones. */
8737 if (TREE_CHAIN (gen_tmpl) && DECL_CLONED_FUNCTION_P (TREE_CHAIN (gen_tmpl)))
8738 clone_function_decl (fndecl, /*update_method_vec_p=*/0);
8739
8740 return fndecl;
8741 }
8742
8743 /* The FN is a TEMPLATE_DECL for a function. The ARGS are the
8744 arguments that are being used when calling it. TARGS is a vector
8745 into which the deduced template arguments are placed.
8746
8747 Return zero for success, 2 for an incomplete match that doesn't resolve
8748 all the types, and 1 for complete failure. An error message will be
8749 printed only for an incomplete match.
8750
8751 If FN is a conversion operator, or we are trying to produce a specific
8752 specialization, RETURN_TYPE is the return type desired.
8753
8754 The EXPLICIT_TARGS are explicit template arguments provided via a
8755 template-id.
8756
8757 The parameter STRICT is one of:
8758
8759 DEDUCE_CALL:
8760 We are deducing arguments for a function call, as in
8761 [temp.deduct.call].
8762
8763 DEDUCE_CONV:
8764 We are deducing arguments for a conversion function, as in
8765 [temp.deduct.conv].
8766
8767 DEDUCE_EXACT:
8768 We are deducing arguments when doing an explicit instantiation
8769 as in [temp.explicit], when determining an explicit specialization
8770 as in [temp.expl.spec], or when taking the address of a function
8771 template, as in [temp.deduct.funcaddr].
8772
8773 DEDUCE_ORDER:
8774 We are deducing arguments when calculating the partial
8775 ordering between specializations of function or class
8776 templates, as in [temp.func.order] and [temp.class.order].
8777
8778 LEN is the number of parms to consider before returning success, or -1
8779 for all. This is used in partial ordering to avoid comparing parms for
8780 which no actual argument was passed, since they are not considered in
8781 overload resolution (and are explicitly excluded from consideration in
8782 partial ordering in [temp.func.order]/6). */
8783
8784 int
8785 fn_type_unification (tree fn,
8786 tree explicit_targs,
8787 tree targs,
8788 tree args,
8789 tree return_type,
8790 unification_kind_t strict,
8791 int len)
8792 {
8793 tree parms;
8794 tree fntype;
8795 int result;
8796
8797 my_friendly_assert (TREE_CODE (fn) == TEMPLATE_DECL, 0);
8798
8799 fntype = TREE_TYPE (fn);
8800 if (explicit_targs)
8801 {
8802 /* [temp.deduct]
8803
8804 The specified template arguments must match the template
8805 parameters in kind (i.e., type, nontype, template), and there
8806 must not be more arguments than there are parameters;
8807 otherwise type deduction fails.
8808
8809 Nontype arguments must match the types of the corresponding
8810 nontype template parameters, or must be convertible to the
8811 types of the corresponding nontype parameters as specified in
8812 _temp.arg.nontype_, otherwise type deduction fails.
8813
8814 All references in the function type of the function template
8815 to the corresponding template parameters are replaced by the
8816 specified template argument values. If a substitution in a
8817 template parameter or in the function type of the function
8818 template results in an invalid type, type deduction fails. */
8819 int i;
8820 tree converted_args;
8821 bool incomplete;
8822
8823 converted_args
8824 = (coerce_template_parms (DECL_INNERMOST_TEMPLATE_PARMS (fn),
8825 explicit_targs, NULL_TREE, tf_none,
8826 /*require_all_arguments=*/0));
8827 if (converted_args == error_mark_node)
8828 return 1;
8829
8830 /* Substitute the explicit args into the function type. This is
8831 necessary so that, for instance, explicitly declared function
8832 arguments can match null pointed constants. If we were given
8833 an incomplete set of explicit args, we must not do semantic
8834 processing during substitution as we could create partial
8835 instantiations. */
8836 incomplete = NUM_TMPL_ARGS (explicit_targs) != NUM_TMPL_ARGS (targs);
8837 processing_template_decl += incomplete;
8838 fntype = tsubst (fntype, converted_args, tf_none, NULL_TREE);
8839 processing_template_decl -= incomplete;
8840
8841 if (fntype == error_mark_node)
8842 return 1;
8843
8844 /* Place the explicitly specified arguments in TARGS. */
8845 for (i = NUM_TMPL_ARGS (converted_args); i--;)
8846 TREE_VEC_ELT (targs, i) = TREE_VEC_ELT (converted_args, i);
8847 }
8848
8849 parms = TYPE_ARG_TYPES (fntype);
8850 /* Never do unification on the 'this' parameter. */
8851 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
8852 parms = TREE_CHAIN (parms);
8853
8854 if (return_type)
8855 {
8856 /* We've been given a return type to match, prepend it. */
8857 parms = tree_cons (NULL_TREE, TREE_TYPE (fntype), parms);
8858 args = tree_cons (NULL_TREE, return_type, args);
8859 if (len >= 0)
8860 ++len;
8861 }
8862
8863 /* We allow incomplete unification without an error message here
8864 because the standard doesn't seem to explicitly prohibit it. Our
8865 callers must be ready to deal with unification failures in any
8866 event. */
8867 result = type_unification_real (DECL_INNERMOST_TEMPLATE_PARMS (fn),
8868 targs, parms, args, /*subr=*/0,
8869 strict, /*allow_incomplete*/1, len);
8870
8871 if (result == 0)
8872 /* All is well so far. Now, check:
8873
8874 [temp.deduct]
8875
8876 When all template arguments have been deduced, all uses of
8877 template parameters in nondeduced contexts are replaced with
8878 the corresponding deduced argument values. If the
8879 substitution results in an invalid type, as described above,
8880 type deduction fails. */
8881 if (tsubst (TREE_TYPE (fn), targs, tf_none, NULL_TREE)
8882 == error_mark_node)
8883 return 1;
8884
8885 return result;
8886 }
8887
8888 /* Adjust types before performing type deduction, as described in
8889 [temp.deduct.call] and [temp.deduct.conv]. The rules in these two
8890 sections are symmetric. PARM is the type of a function parameter
8891 or the return type of the conversion function. ARG is the type of
8892 the argument passed to the call, or the type of the value
8893 initialized with the result of the conversion function. */
8894
8895 static int
8896 maybe_adjust_types_for_deduction (unification_kind_t strict,
8897 tree* parm,
8898 tree* arg)
8899 {
8900 int result = 0;
8901
8902 switch (strict)
8903 {
8904 case DEDUCE_CALL:
8905 break;
8906
8907 case DEDUCE_CONV:
8908 {
8909 /* Swap PARM and ARG throughout the remainder of this
8910 function; the handling is precisely symmetric since PARM
8911 will initialize ARG rather than vice versa. */
8912 tree* temp = parm;
8913 parm = arg;
8914 arg = temp;
8915 break;
8916 }
8917
8918 case DEDUCE_EXACT:
8919 /* There is nothing to do in this case. */
8920 return 0;
8921
8922 case DEDUCE_ORDER:
8923 /* DR 214. [temp.func.order] is underspecified, and leads to no
8924 ordering between things like `T *' and `T const &' for `U *'.
8925 The former has T=U and the latter T=U*. The former looks more
8926 specialized and John Spicer considers it well-formed (the EDG
8927 compiler accepts it).
8928
8929 John also confirms that deduction should proceed as in a function
8930 call. Which implies the usual ARG and PARM conversions as DEDUCE_CALL.
8931 However, in ordering, ARG can have REFERENCE_TYPE, but no argument
8932 to an actual call can have such a type.
8933
8934 If both ARG and PARM are REFERENCE_TYPE, we change neither.
8935 If only ARG is a REFERENCE_TYPE, we look through that and then
8936 proceed as with DEDUCE_CALL (which could further convert it). */
8937 if (TREE_CODE (*arg) == REFERENCE_TYPE)
8938 {
8939 if (TREE_CODE (*parm) == REFERENCE_TYPE)
8940 return 0;
8941 *arg = TREE_TYPE (*arg);
8942 }
8943 break;
8944 default:
8945 abort ();
8946 }
8947
8948 if (TREE_CODE (*parm) != REFERENCE_TYPE)
8949 {
8950 /* [temp.deduct.call]
8951
8952 If P is not a reference type:
8953
8954 --If A is an array type, the pointer type produced by the
8955 array-to-pointer standard conversion (_conv.array_) is
8956 used in place of A for type deduction; otherwise,
8957
8958 --If A is a function type, the pointer type produced by
8959 the function-to-pointer standard conversion
8960 (_conv.func_) is used in place of A for type deduction;
8961 otherwise,
8962
8963 --If A is a cv-qualified type, the top level
8964 cv-qualifiers of A's type are ignored for type
8965 deduction. */
8966 if (TREE_CODE (*arg) == ARRAY_TYPE)
8967 *arg = build_pointer_type (TREE_TYPE (*arg));
8968 else if (TREE_CODE (*arg) == FUNCTION_TYPE)
8969 *arg = build_pointer_type (*arg);
8970 else
8971 *arg = TYPE_MAIN_VARIANT (*arg);
8972 }
8973
8974 /* [temp.deduct.call]
8975
8976 If P is a cv-qualified type, the top level cv-qualifiers
8977 of P's type are ignored for type deduction. If P is a
8978 reference type, the type referred to by P is used for
8979 type deduction. */
8980 *parm = TYPE_MAIN_VARIANT (*parm);
8981 if (TREE_CODE (*parm) == REFERENCE_TYPE)
8982 {
8983 *parm = TREE_TYPE (*parm);
8984 result |= UNIFY_ALLOW_OUTER_MORE_CV_QUAL;
8985 }
8986
8987 /* DR 322. For conversion deduction, remove a reference type on parm
8988 too (which has been swapped into ARG). */
8989 if (strict == DEDUCE_CONV && TREE_CODE (*arg) == REFERENCE_TYPE)
8990 *arg = TREE_TYPE (*arg);
8991
8992 return result;
8993 }
8994
8995 /* Most parms like fn_type_unification.
8996
8997 If SUBR is 1, we're being called recursively (to unify the
8998 arguments of a function or method parameter of a function
8999 template). */
9000
9001 static int
9002 type_unification_real (tree tparms,
9003 tree targs,
9004 tree xparms,
9005 tree xargs,
9006 int subr,
9007 unification_kind_t strict,
9008 int allow_incomplete,
9009 int xlen)
9010 {
9011 tree parm, arg;
9012 int i;
9013 int ntparms = TREE_VEC_LENGTH (tparms);
9014 int sub_strict;
9015 int saw_undeduced = 0;
9016 tree parms, args;
9017 int len;
9018
9019 my_friendly_assert (TREE_CODE (tparms) == TREE_VEC, 289);
9020 my_friendly_assert (xparms == NULL_TREE
9021 || TREE_CODE (xparms) == TREE_LIST, 290);
9022 my_friendly_assert (!xargs || TREE_CODE (xargs) == TREE_LIST, 291);
9023 my_friendly_assert (ntparms > 0, 292);
9024
9025 switch (strict)
9026 {
9027 case DEDUCE_CALL:
9028 sub_strict = (UNIFY_ALLOW_OUTER_LEVEL | UNIFY_ALLOW_MORE_CV_QUAL
9029 | UNIFY_ALLOW_DERIVED);
9030 break;
9031
9032 case DEDUCE_CONV:
9033 sub_strict = UNIFY_ALLOW_LESS_CV_QUAL;
9034 break;
9035
9036 case DEDUCE_EXACT:
9037 sub_strict = UNIFY_ALLOW_NONE;
9038 break;
9039
9040 case DEDUCE_ORDER:
9041 sub_strict = UNIFY_ALLOW_NONE;
9042 break;
9043
9044 default:
9045 abort ();
9046 }
9047
9048 if (xlen == 0)
9049 return 0;
9050
9051 again:
9052 parms = xparms;
9053 args = xargs;
9054 len = xlen;
9055
9056 while (parms
9057 && parms != void_list_node
9058 && args
9059 && args != void_list_node)
9060 {
9061 parm = TREE_VALUE (parms);
9062 parms = TREE_CHAIN (parms);
9063 arg = TREE_VALUE (args);
9064 args = TREE_CHAIN (args);
9065
9066 if (arg == error_mark_node)
9067 return 1;
9068 if (arg == unknown_type_node)
9069 /* We can't deduce anything from this, but we might get all the
9070 template args from other function args. */
9071 continue;
9072
9073 /* Conversions will be performed on a function argument that
9074 corresponds with a function parameter that contains only
9075 non-deducible template parameters and explicitly specified
9076 template parameters. */
9077 if (!uses_template_parms (parm))
9078 {
9079 tree type;
9080
9081 if (!TYPE_P (arg))
9082 type = TREE_TYPE (arg);
9083 else
9084 type = arg;
9085
9086 if (strict == DEDUCE_EXACT || strict == DEDUCE_ORDER)
9087 {
9088 if (same_type_p (parm, type))
9089 continue;
9090 }
9091 else
9092 /* It might work; we shouldn't check now, because we might
9093 get into infinite recursion. Overload resolution will
9094 handle it. */
9095 continue;
9096
9097 return 1;
9098 }
9099
9100 if (!TYPE_P (arg))
9101 {
9102 my_friendly_assert (TREE_TYPE (arg) != NULL_TREE, 293);
9103 if (type_unknown_p (arg))
9104 {
9105 /* [temp.deduct.type] A template-argument can be deduced from
9106 a pointer to function or pointer to member function
9107 argument if the set of overloaded functions does not
9108 contain function templates and at most one of a set of
9109 overloaded functions provides a unique match. */
9110
9111 if (resolve_overloaded_unification
9112 (tparms, targs, parm, arg, strict, sub_strict)
9113 != 0)
9114 return 1;
9115 continue;
9116 }
9117 arg = TREE_TYPE (arg);
9118 if (arg == error_mark_node)
9119 return 1;
9120 }
9121
9122 {
9123 int arg_strict = sub_strict;
9124
9125 if (!subr)
9126 arg_strict |= maybe_adjust_types_for_deduction (strict, &parm, &arg);
9127
9128 if (unify (tparms, targs, parm, arg, arg_strict))
9129 return 1;
9130 }
9131
9132 /* Are we done with the interesting parms? */
9133 if (--len == 0)
9134 goto done;
9135 }
9136 /* Fail if we've reached the end of the parm list, and more args
9137 are present, and the parm list isn't variadic. */
9138 if (args && args != void_list_node && parms == void_list_node)
9139 return 1;
9140 /* Fail if parms are left and they don't have default values. */
9141 if (parms
9142 && parms != void_list_node
9143 && TREE_PURPOSE (parms) == NULL_TREE)
9144 return 1;
9145
9146 done:
9147 if (!subr)
9148 for (i = 0; i < ntparms; i++)
9149 if (TREE_VEC_ELT (targs, i) == NULL_TREE)
9150 {
9151 tree tparm = TREE_VALUE (TREE_VEC_ELT (tparms, i));
9152
9153 /* If this is an undeduced nontype parameter that depends on
9154 a type parameter, try another pass; its type may have been
9155 deduced from a later argument than the one from which
9156 this parameter can be deduced. */
9157 if (TREE_CODE (tparm) == PARM_DECL
9158 && uses_template_parms (TREE_TYPE (tparm))
9159 && !saw_undeduced++)
9160 goto again;
9161
9162 if (!allow_incomplete)
9163 error ("incomplete type unification");
9164 return 2;
9165 }
9166 return 0;
9167 }
9168
9169 /* Subroutine of type_unification_real. Args are like the variables at the
9170 call site. ARG is an overloaded function (or template-id); we try
9171 deducing template args from each of the overloads, and if only one
9172 succeeds, we go with that. Modifies TARGS and returns 0 on success. */
9173
9174 static int
9175 resolve_overloaded_unification (tree tparms,
9176 tree targs,
9177 tree parm,
9178 tree arg,
9179 unification_kind_t strict,
9180 int sub_strict)
9181 {
9182 tree tempargs = copy_node (targs);
9183 int good = 0;
9184 bool addr_p;
9185
9186 if (TREE_CODE (arg) == ADDR_EXPR)
9187 {
9188 arg = TREE_OPERAND (arg, 0);
9189 addr_p = true;
9190 }
9191 else
9192 addr_p = false;
9193
9194 if (TREE_CODE (arg) == COMPONENT_REF)
9195 /* Handle `&x' where `x' is some static or non-static member
9196 function name. */
9197 arg = TREE_OPERAND (arg, 1);
9198
9199 if (TREE_CODE (arg) == OFFSET_REF)
9200 arg = TREE_OPERAND (arg, 1);
9201
9202 /* Strip baselink information. */
9203 if (BASELINK_P (arg))
9204 arg = BASELINK_FUNCTIONS (arg);
9205
9206 if (TREE_CODE (arg) == TEMPLATE_ID_EXPR)
9207 {
9208 /* If we got some explicit template args, we need to plug them into
9209 the affected templates before we try to unify, in case the
9210 explicit args will completely resolve the templates in question. */
9211
9212 tree expl_subargs = TREE_OPERAND (arg, 1);
9213 arg = TREE_OPERAND (arg, 0);
9214
9215 for (; arg; arg = OVL_NEXT (arg))
9216 {
9217 tree fn = OVL_CURRENT (arg);
9218 tree subargs, elem;
9219
9220 if (TREE_CODE (fn) != TEMPLATE_DECL)
9221 continue;
9222
9223 subargs = get_bindings_overload (fn, DECL_TEMPLATE_RESULT (fn),
9224 expl_subargs);
9225 if (subargs)
9226 {
9227 elem = tsubst (TREE_TYPE (fn), subargs, tf_none, NULL_TREE);
9228 good += try_one_overload (tparms, targs, tempargs, parm,
9229 elem, strict, sub_strict, addr_p);
9230 }
9231 }
9232 }
9233 else if (TREE_CODE (arg) == OVERLOAD
9234 || TREE_CODE (arg) == FUNCTION_DECL)
9235 {
9236 for (; arg; arg = OVL_NEXT (arg))
9237 good += try_one_overload (tparms, targs, tempargs, parm,
9238 TREE_TYPE (OVL_CURRENT (arg)),
9239 strict, sub_strict, addr_p);
9240 }
9241 else
9242 abort ();
9243
9244 /* [temp.deduct.type] A template-argument can be deduced from a pointer
9245 to function or pointer to member function argument if the set of
9246 overloaded functions does not contain function templates and at most
9247 one of a set of overloaded functions provides a unique match.
9248
9249 So if we found multiple possibilities, we return success but don't
9250 deduce anything. */
9251
9252 if (good == 1)
9253 {
9254 int i = TREE_VEC_LENGTH (targs);
9255 for (; i--; )
9256 if (TREE_VEC_ELT (tempargs, i))
9257 TREE_VEC_ELT (targs, i) = TREE_VEC_ELT (tempargs, i);
9258 }
9259 if (good)
9260 return 0;
9261
9262 return 1;
9263 }
9264
9265 /* Subroutine of resolve_overloaded_unification; does deduction for a single
9266 overload. Fills TARGS with any deduced arguments, or error_mark_node if
9267 different overloads deduce different arguments for a given parm.
9268 ADDR_P is true if the expression for which deduction is being
9269 performed was of the form "& fn" rather than simply "fn".
9270
9271 Returns 1 on success. */
9272
9273 static int
9274 try_one_overload (tree tparms,
9275 tree orig_targs,
9276 tree targs,
9277 tree parm,
9278 tree arg,
9279 unification_kind_t strict,
9280 int sub_strict,
9281 bool addr_p)
9282 {
9283 int nargs;
9284 tree tempargs;
9285 int i;
9286
9287 /* [temp.deduct.type] A template-argument can be deduced from a pointer
9288 to function or pointer to member function argument if the set of
9289 overloaded functions does not contain function templates and at most
9290 one of a set of overloaded functions provides a unique match.
9291
9292 So if this is a template, just return success. */
9293
9294 if (uses_template_parms (arg))
9295 return 1;
9296
9297 if (TREE_CODE (arg) == METHOD_TYPE)
9298 arg = build_ptrmemfunc_type (build_pointer_type (arg));
9299 else if (addr_p)
9300 arg = build_pointer_type (arg);
9301
9302 sub_strict |= maybe_adjust_types_for_deduction (strict, &parm, &arg);
9303
9304 /* We don't copy orig_targs for this because if we have already deduced
9305 some template args from previous args, unify would complain when we
9306 try to deduce a template parameter for the same argument, even though
9307 there isn't really a conflict. */
9308 nargs = TREE_VEC_LENGTH (targs);
9309 tempargs = make_tree_vec (nargs);
9310
9311 if (unify (tparms, tempargs, parm, arg, sub_strict) != 0)
9312 return 0;
9313
9314 /* First make sure we didn't deduce anything that conflicts with
9315 explicitly specified args. */
9316 for (i = nargs; i--; )
9317 {
9318 tree elt = TREE_VEC_ELT (tempargs, i);
9319 tree oldelt = TREE_VEC_ELT (orig_targs, i);
9320
9321 if (elt == NULL_TREE)
9322 continue;
9323 else if (uses_template_parms (elt))
9324 {
9325 /* Since we're unifying against ourselves, we will fill in template
9326 args used in the function parm list with our own template parms.
9327 Discard them. */
9328 TREE_VEC_ELT (tempargs, i) = NULL_TREE;
9329 continue;
9330 }
9331 else if (oldelt && ! template_args_equal (oldelt, elt))
9332 return 0;
9333 }
9334
9335 for (i = nargs; i--; )
9336 {
9337 tree elt = TREE_VEC_ELT (tempargs, i);
9338
9339 if (elt)
9340 TREE_VEC_ELT (targs, i) = elt;
9341 }
9342
9343 return 1;
9344 }
9345
9346 /* Verify that nondeduce template argument agrees with the type
9347 obtained from argument deduction. Return nonzero if the
9348 verification fails.
9349
9350 For example:
9351
9352 struct A { typedef int X; };
9353 template <class T, class U> struct C {};
9354 template <class T> struct C<T, typename T::X> {};
9355
9356 Then with the instantiation `C<A, int>', we can deduce that
9357 `T' is `A' but unify () does not check whether `typename T::X'
9358 is `int'. This function ensure that they agree.
9359
9360 TARGS, PARMS are the same as the arguments of unify.
9361 ARGS contains template arguments from all levels. */
9362
9363 static int
9364 verify_class_unification (tree targs, tree parms, tree args)
9365 {
9366 parms = tsubst (parms, add_outermost_template_args (args, targs),
9367 tf_none, NULL_TREE);
9368 if (parms == error_mark_node)
9369 return 1;
9370
9371 return !comp_template_args (parms, INNERMOST_TEMPLATE_ARGS (args));
9372 }
9373
9374 /* PARM is a template class (perhaps with unbound template
9375 parameters). ARG is a fully instantiated type. If ARG can be
9376 bound to PARM, return ARG, otherwise return NULL_TREE. TPARMS and
9377 TARGS are as for unify. */
9378
9379 static tree
9380 try_class_unification (tree tparms, tree targs, tree parm, tree arg)
9381 {
9382 tree copy_of_targs;
9383
9384 if (!CLASSTYPE_TEMPLATE_INFO (arg)
9385 || (most_general_template (CLASSTYPE_TI_TEMPLATE (arg))
9386 != most_general_template (CLASSTYPE_TI_TEMPLATE (parm))))
9387 return NULL_TREE;
9388
9389 /* We need to make a new template argument vector for the call to
9390 unify. If we used TARGS, we'd clutter it up with the result of
9391 the attempted unification, even if this class didn't work out.
9392 We also don't want to commit ourselves to all the unifications
9393 we've already done, since unification is supposed to be done on
9394 an argument-by-argument basis. In other words, consider the
9395 following pathological case:
9396
9397 template <int I, int J, int K>
9398 struct S {};
9399
9400 template <int I, int J>
9401 struct S<I, J, 2> : public S<I, I, I>, S<J, J, J> {};
9402
9403 template <int I, int J, int K>
9404 void f(S<I, J, K>, S<I, I, I>);
9405
9406 void g() {
9407 S<0, 0, 0> s0;
9408 S<0, 1, 2> s2;
9409
9410 f(s0, s2);
9411 }
9412
9413 Now, by the time we consider the unification involving `s2', we
9414 already know that we must have `f<0, 0, 0>'. But, even though
9415 `S<0, 1, 2>' is derived from `S<0, 0, 0>', the code is invalid
9416 because there are two ways to unify base classes of S<0, 1, 2>
9417 with S<I, I, I>. If we kept the already deduced knowledge, we
9418 would reject the possibility I=1. */
9419 copy_of_targs = make_tree_vec (TREE_VEC_LENGTH (targs));
9420
9421 /* If unification failed, we're done. */
9422 if (unify (tparms, copy_of_targs, CLASSTYPE_TI_ARGS (parm),
9423 CLASSTYPE_TI_ARGS (arg), UNIFY_ALLOW_NONE))
9424 return NULL_TREE;
9425
9426 return arg;
9427 }
9428
9429 /* Subroutine of get_template_base. RVAL, if non-NULL, is a base we
9430 have already discovered to be satisfactory. ARG_BINFO is the binfo
9431 for the base class of ARG that we are currently examining. */
9432
9433 static tree
9434 get_template_base_recursive (tree tparms,
9435 tree targs,
9436 tree parm,
9437 tree arg_binfo,
9438 tree rval,
9439 int flags)
9440 {
9441 tree binfos;
9442 int i, n_baselinks;
9443 tree arg = BINFO_TYPE (arg_binfo);
9444
9445 if (!(flags & GTB_IGNORE_TYPE))
9446 {
9447 tree r = try_class_unification (tparms, targs,
9448 parm, arg);
9449
9450 /* If there is more than one satisfactory baseclass, then:
9451
9452 [temp.deduct.call]
9453
9454 If they yield more than one possible deduced A, the type
9455 deduction fails.
9456
9457 applies. */
9458 if (r && rval && !same_type_p (r, rval))
9459 return error_mark_node;
9460 else if (r)
9461 rval = r;
9462 }
9463
9464 binfos = BINFO_BASETYPES (arg_binfo);
9465 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
9466
9467 /* Process base types. */
9468 for (i = 0; i < n_baselinks; i++)
9469 {
9470 tree base_binfo = TREE_VEC_ELT (binfos, i);
9471 int this_virtual;
9472
9473 /* Skip this base, if we've already seen it. */
9474 if (BINFO_MARKED (base_binfo))
9475 continue;
9476
9477 this_virtual =
9478 (flags & GTB_VIA_VIRTUAL) || TREE_VIA_VIRTUAL (base_binfo);
9479
9480 /* When searching for a non-virtual, we cannot mark virtually
9481 found binfos. */
9482 if (! this_virtual)
9483 BINFO_MARKED (base_binfo) = 1;
9484
9485 rval = get_template_base_recursive (tparms, targs,
9486 parm,
9487 base_binfo,
9488 rval,
9489 GTB_VIA_VIRTUAL * this_virtual);
9490
9491 /* If we discovered more than one matching base class, we can
9492 stop now. */
9493 if (rval == error_mark_node)
9494 return error_mark_node;
9495 }
9496
9497 return rval;
9498 }
9499
9500 /* Given a template type PARM and a class type ARG, find the unique
9501 base type in ARG that is an instance of PARM. We do not examine
9502 ARG itself; only its base-classes. If there is no appropriate base
9503 class, return NULL_TREE. If there is more than one, return
9504 error_mark_node. PARM may be the type of a partial specialization,
9505 as well as a plain template type. Used by unify. */
9506
9507 static tree
9508 get_template_base (tree tparms, tree targs, tree parm, tree arg)
9509 {
9510 tree rval;
9511 tree arg_binfo;
9512
9513 my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (arg)), 92);
9514
9515 arg_binfo = TYPE_BINFO (complete_type (arg));
9516 rval = get_template_base_recursive (tparms, targs,
9517 parm, arg_binfo,
9518 NULL_TREE,
9519 GTB_IGNORE_TYPE);
9520
9521 /* Since get_template_base_recursive marks the bases classes, we
9522 must unmark them here. */
9523 dfs_walk (arg_binfo, dfs_unmark, markedp, 0);
9524
9525 return rval;
9526 }
9527
9528 /* Returns the level of DECL, which declares a template parameter. */
9529
9530 static int
9531 template_decl_level (tree decl)
9532 {
9533 switch (TREE_CODE (decl))
9534 {
9535 case TYPE_DECL:
9536 case TEMPLATE_DECL:
9537 return TEMPLATE_TYPE_LEVEL (TREE_TYPE (decl));
9538
9539 case PARM_DECL:
9540 return TEMPLATE_PARM_LEVEL (DECL_INITIAL (decl));
9541
9542 default:
9543 abort ();
9544 return 0;
9545 }
9546 }
9547
9548 /* Decide whether ARG can be unified with PARM, considering only the
9549 cv-qualifiers of each type, given STRICT as documented for unify.
9550 Returns nonzero iff the unification is OK on that basis. */
9551
9552 static int
9553 check_cv_quals_for_unify (int strict, tree arg, tree parm)
9554 {
9555 int arg_quals = cp_type_quals (arg);
9556 int parm_quals = cp_type_quals (parm);
9557
9558 if (TREE_CODE (parm) == TEMPLATE_TYPE_PARM
9559 && !(strict & UNIFY_ALLOW_OUTER_MORE_CV_QUAL))
9560 {
9561 /* Although a CVR qualifier is ignored when being applied to a
9562 substituted template parameter ([8.3.2]/1 for example), that
9563 does not apply during deduction [14.8.2.4]/1, (even though
9564 that is not explicitly mentioned, [14.8.2.4]/9 indicates
9565 this). Except when we're allowing additional CV qualifiers
9566 at the outer level [14.8.2.1]/3,1st bullet. */
9567 if ((TREE_CODE (arg) == REFERENCE_TYPE
9568 || TREE_CODE (arg) == FUNCTION_TYPE
9569 || TREE_CODE (arg) == METHOD_TYPE)
9570 && (parm_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)))
9571 return 0;
9572
9573 if ((!POINTER_TYPE_P (arg) && TREE_CODE (arg) != TEMPLATE_TYPE_PARM)
9574 && (parm_quals & TYPE_QUAL_RESTRICT))
9575 return 0;
9576 }
9577
9578 if (!(strict & (UNIFY_ALLOW_MORE_CV_QUAL | UNIFY_ALLOW_OUTER_MORE_CV_QUAL))
9579 && (arg_quals & parm_quals) != parm_quals)
9580 return 0;
9581
9582 if (!(strict & (UNIFY_ALLOW_LESS_CV_QUAL | UNIFY_ALLOW_OUTER_LESS_CV_QUAL))
9583 && (parm_quals & arg_quals) != arg_quals)
9584 return 0;
9585
9586 return 1;
9587 }
9588
9589 /* Takes parameters as for type_unification. Returns 0 if the
9590 type deduction succeeds, 1 otherwise. The parameter STRICT is a
9591 bitwise or of the following flags:
9592
9593 UNIFY_ALLOW_NONE:
9594 Require an exact match between PARM and ARG.
9595 UNIFY_ALLOW_MORE_CV_QUAL:
9596 Allow the deduced ARG to be more cv-qualified (by qualification
9597 conversion) than ARG.
9598 UNIFY_ALLOW_LESS_CV_QUAL:
9599 Allow the deduced ARG to be less cv-qualified than ARG.
9600 UNIFY_ALLOW_DERIVED:
9601 Allow the deduced ARG to be a template base class of ARG,
9602 or a pointer to a template base class of the type pointed to by
9603 ARG.
9604 UNIFY_ALLOW_INTEGER:
9605 Allow any integral type to be deduced. See the TEMPLATE_PARM_INDEX
9606 case for more information.
9607 UNIFY_ALLOW_OUTER_LEVEL:
9608 This is the outermost level of a deduction. Used to determine validity
9609 of qualification conversions. A valid qualification conversion must
9610 have const qualified pointers leading up to the inner type which
9611 requires additional CV quals, except at the outer level, where const
9612 is not required [conv.qual]. It would be normal to set this flag in
9613 addition to setting UNIFY_ALLOW_MORE_CV_QUAL.
9614 UNIFY_ALLOW_OUTER_MORE_CV_QUAL:
9615 This is the outermost level of a deduction, and PARM can be more CV
9616 qualified at this point.
9617 UNIFY_ALLOW_OUTER_LESS_CV_QUAL:
9618 This is the outermost level of a deduction, and PARM can be less CV
9619 qualified at this point.
9620 UNIFY_ALLOW_MAX_CORRECTION:
9621 This is an INTEGER_TYPE's maximum value. Used if the range may
9622 have been derived from a size specification, such as an array size.
9623 If the size was given by a nontype template parameter N, the maximum
9624 value will have the form N-1. The flag says that we can (and indeed
9625 must) unify N with (ARG + 1), an exception to the normal rules on
9626 folding PARM. */
9627
9628 static int
9629 unify (tree tparms, tree targs, tree parm, tree arg, int strict)
9630 {
9631 int idx;
9632 tree targ;
9633 tree tparm;
9634 int strict_in = strict;
9635
9636 /* I don't think this will do the right thing with respect to types.
9637 But the only case I've seen it in so far has been array bounds, where
9638 signedness is the only information lost, and I think that will be
9639 okay. */
9640 while (TREE_CODE (parm) == NOP_EXPR)
9641 parm = TREE_OPERAND (parm, 0);
9642
9643 if (arg == error_mark_node)
9644 return 1;
9645 if (arg == unknown_type_node)
9646 /* We can't deduce anything from this, but we might get all the
9647 template args from other function args. */
9648 return 0;
9649
9650 /* If PARM uses template parameters, then we can't bail out here,
9651 even if ARG == PARM, since we won't record unifications for the
9652 template parameters. We might need them if we're trying to
9653 figure out which of two things is more specialized. */
9654 if (arg == parm && !uses_template_parms (parm))
9655 return 0;
9656
9657 /* Immediately reject some pairs that won't unify because of
9658 cv-qualification mismatches. */
9659 if (TREE_CODE (arg) == TREE_CODE (parm)
9660 && TYPE_P (arg)
9661 /* It is the elements of the array which hold the cv quals of an array
9662 type, and the elements might be template type parms. We'll check
9663 when we recurse. */
9664 && TREE_CODE (arg) != ARRAY_TYPE
9665 /* We check the cv-qualifiers when unifying with template type
9666 parameters below. We want to allow ARG `const T' to unify with
9667 PARM `T' for example, when computing which of two templates
9668 is more specialized, for example. */
9669 && TREE_CODE (arg) != TEMPLATE_TYPE_PARM
9670 && !check_cv_quals_for_unify (strict_in, arg, parm))
9671 return 1;
9672
9673 if (!(strict & UNIFY_ALLOW_OUTER_LEVEL)
9674 && TYPE_P (parm) && !CP_TYPE_CONST_P (parm))
9675 strict &= ~UNIFY_ALLOW_MORE_CV_QUAL;
9676 strict &= ~UNIFY_ALLOW_OUTER_LEVEL;
9677 strict &= ~UNIFY_ALLOW_DERIVED;
9678 strict &= ~UNIFY_ALLOW_OUTER_MORE_CV_QUAL;
9679 strict &= ~UNIFY_ALLOW_OUTER_LESS_CV_QUAL;
9680 strict &= ~UNIFY_ALLOW_MAX_CORRECTION;
9681
9682 switch (TREE_CODE (parm))
9683 {
9684 case TYPENAME_TYPE:
9685 case SCOPE_REF:
9686 case UNBOUND_CLASS_TEMPLATE:
9687 /* In a type which contains a nested-name-specifier, template
9688 argument values cannot be deduced for template parameters used
9689 within the nested-name-specifier. */
9690 return 0;
9691
9692 case TEMPLATE_TYPE_PARM:
9693 case TEMPLATE_TEMPLATE_PARM:
9694 case BOUND_TEMPLATE_TEMPLATE_PARM:
9695 tparm = TREE_VALUE (TREE_VEC_ELT (tparms, 0));
9696
9697 if (TEMPLATE_TYPE_LEVEL (parm)
9698 != template_decl_level (tparm))
9699 /* The PARM is not one we're trying to unify. Just check
9700 to see if it matches ARG. */
9701 return (TREE_CODE (arg) == TREE_CODE (parm)
9702 && same_type_p (parm, arg)) ? 0 : 1;
9703 idx = TEMPLATE_TYPE_IDX (parm);
9704 targ = TREE_VEC_ELT (targs, idx);
9705 tparm = TREE_VALUE (TREE_VEC_ELT (tparms, idx));
9706
9707 /* Check for mixed types and values. */
9708 if ((TREE_CODE (parm) == TEMPLATE_TYPE_PARM
9709 && TREE_CODE (tparm) != TYPE_DECL)
9710 || (TREE_CODE (parm) == TEMPLATE_TEMPLATE_PARM
9711 && TREE_CODE (tparm) != TEMPLATE_DECL))
9712 return 1;
9713
9714 if (TREE_CODE (parm) == BOUND_TEMPLATE_TEMPLATE_PARM)
9715 {
9716 /* ARG must be constructed from a template class or a template
9717 template parameter. */
9718 if (TREE_CODE (arg) != BOUND_TEMPLATE_TEMPLATE_PARM
9719 && (TREE_CODE (arg) != RECORD_TYPE || !CLASSTYPE_TEMPLATE_INFO (arg)))
9720 return 1;
9721
9722 {
9723 tree parmtmpl = TYPE_TI_TEMPLATE (parm);
9724 tree parmvec = TYPE_TI_ARGS (parm);
9725 tree argvec = TYPE_TI_ARGS (arg);
9726 tree argtmplvec
9727 = DECL_INNERMOST_TEMPLATE_PARMS (TYPE_TI_TEMPLATE (arg));
9728 int i;
9729
9730 /* The parameter and argument roles have to be switched here
9731 in order to handle default arguments properly. For example,
9732 template<template <class> class TT> void f(TT<int>)
9733 should be able to accept vector<int> which comes from
9734 template <class T, class Allocator = allocator>
9735 class vector. */
9736
9737 if (coerce_template_parms (argtmplvec, parmvec, parmtmpl, 0, 1)
9738 == error_mark_node)
9739 return 1;
9740
9741 /* Deduce arguments T, i from TT<T> or TT<i>.
9742 We check each element of PARMVEC and ARGVEC individually
9743 rather than the whole TREE_VEC since they can have
9744 different number of elements. */
9745
9746 for (i = 0; i < TREE_VEC_LENGTH (parmvec); ++i)
9747 {
9748 tree t = TREE_VEC_ELT (parmvec, i);
9749
9750 if (unify (tparms, targs, t,
9751 TREE_VEC_ELT (argvec, i),
9752 UNIFY_ALLOW_NONE))
9753 return 1;
9754 }
9755 }
9756 arg = TYPE_TI_TEMPLATE (arg);
9757
9758 /* Fall through to deduce template name. */
9759 }
9760
9761 if (TREE_CODE (parm) == TEMPLATE_TEMPLATE_PARM
9762 || TREE_CODE (parm) == BOUND_TEMPLATE_TEMPLATE_PARM)
9763 {
9764 /* Deduce template name TT from TT, TT<>, TT<T> and TT<i>. */
9765
9766 /* Simple cases: Value already set, does match or doesn't. */
9767 if (targ != NULL_TREE && template_args_equal (targ, arg))
9768 return 0;
9769 else if (targ)
9770 return 1;
9771 }
9772 else
9773 {
9774 /* If PARM is `const T' and ARG is only `int', we don't have
9775 a match unless we are allowing additional qualification.
9776 If ARG is `const int' and PARM is just `T' that's OK;
9777 that binds `const int' to `T'. */
9778 if (!check_cv_quals_for_unify (strict_in | UNIFY_ALLOW_LESS_CV_QUAL,
9779 arg, parm))
9780 return 1;
9781
9782 /* Consider the case where ARG is `const volatile int' and
9783 PARM is `const T'. Then, T should be `volatile int'. */
9784 arg = cp_build_qualified_type_real
9785 (arg, cp_type_quals (arg) & ~cp_type_quals (parm), tf_none);
9786 if (arg == error_mark_node)
9787 return 1;
9788
9789 /* Simple cases: Value already set, does match or doesn't. */
9790 if (targ != NULL_TREE && same_type_p (targ, arg))
9791 return 0;
9792 else if (targ)
9793 return 1;
9794
9795 /* Make sure that ARG is not a variable-sized array. (Note
9796 that were talking about variable-sized arrays (like
9797 `int[n]'), rather than arrays of unknown size (like
9798 `int[]').) We'll get very confused by such a type since
9799 the bound of the array will not be computable in an
9800 instantiation. Besides, such types are not allowed in
9801 ISO C++, so we can do as we please here. */
9802 if (variably_modified_type_p (arg))
9803 return 1;
9804 }
9805
9806 TREE_VEC_ELT (targs, idx) = arg;
9807 return 0;
9808
9809 case TEMPLATE_PARM_INDEX:
9810 tparm = TREE_VALUE (TREE_VEC_ELT (tparms, 0));
9811
9812 if (TEMPLATE_PARM_LEVEL (parm)
9813 != template_decl_level (tparm))
9814 /* The PARM is not one we're trying to unify. Just check
9815 to see if it matches ARG. */
9816 return !(TREE_CODE (arg) == TREE_CODE (parm)
9817 && cp_tree_equal (parm, arg));
9818
9819 idx = TEMPLATE_PARM_IDX (parm);
9820 targ = TREE_VEC_ELT (targs, idx);
9821
9822 if (targ)
9823 return !cp_tree_equal (targ, arg);
9824
9825 /* [temp.deduct.type] If, in the declaration of a function template
9826 with a non-type template-parameter, the non-type
9827 template-parameter is used in an expression in the function
9828 parameter-list and, if the corresponding template-argument is
9829 deduced, the template-argument type shall match the type of the
9830 template-parameter exactly, except that a template-argument
9831 deduced from an array bound may be of any integral type.
9832 The non-type parameter might use already deduced type parameters. */
9833 tparm = tsubst (TREE_TYPE (parm), targs, 0, NULL_TREE);
9834 if (!TREE_TYPE (arg))
9835 /* Template-parameter dependent expression. Just accept it for now.
9836 It will later be processed in convert_template_argument. */
9837 ;
9838 else if (same_type_p (TREE_TYPE (arg), tparm))
9839 /* OK */;
9840 else if ((strict & UNIFY_ALLOW_INTEGER)
9841 && (TREE_CODE (tparm) == INTEGER_TYPE
9842 || TREE_CODE (tparm) == BOOLEAN_TYPE))
9843 /* OK */;
9844 else if (uses_template_parms (tparm))
9845 /* We haven't deduced the type of this parameter yet. Try again
9846 later. */
9847 return 0;
9848 else
9849 return 1;
9850
9851 TREE_VEC_ELT (targs, idx) = arg;
9852 return 0;
9853
9854 case PTRMEM_CST:
9855 {
9856 /* A pointer-to-member constant can be unified only with
9857 another constant. */
9858 if (TREE_CODE (arg) != PTRMEM_CST)
9859 return 1;
9860
9861 /* Just unify the class member. It would be useless (and possibly
9862 wrong, depending on the strict flags) to unify also
9863 PTRMEM_CST_CLASS, because we want to be sure that both parm and
9864 arg refer to the same variable, even if through different
9865 classes. For instance:
9866
9867 struct A { int x; };
9868 struct B : A { };
9869
9870 Unification of &A::x and &B::x must succeed. */
9871 return unify (tparms, targs, PTRMEM_CST_MEMBER (parm),
9872 PTRMEM_CST_MEMBER (arg), strict);
9873 }
9874
9875 case POINTER_TYPE:
9876 {
9877 if (TREE_CODE (arg) != POINTER_TYPE)
9878 return 1;
9879
9880 /* [temp.deduct.call]
9881
9882 A can be another pointer or pointer to member type that can
9883 be converted to the deduced A via a qualification
9884 conversion (_conv.qual_).
9885
9886 We pass down STRICT here rather than UNIFY_ALLOW_NONE.
9887 This will allow for additional cv-qualification of the
9888 pointed-to types if appropriate. */
9889
9890 if (TREE_CODE (TREE_TYPE (arg)) == RECORD_TYPE)
9891 /* The derived-to-base conversion only persists through one
9892 level of pointers. */
9893 strict |= (strict_in & UNIFY_ALLOW_DERIVED);
9894
9895 return unify (tparms, targs, TREE_TYPE (parm),
9896 TREE_TYPE (arg), strict);
9897 }
9898
9899 case REFERENCE_TYPE:
9900 if (TREE_CODE (arg) != REFERENCE_TYPE)
9901 return 1;
9902 return unify (tparms, targs, TREE_TYPE (parm), TREE_TYPE (arg),
9903 strict & UNIFY_ALLOW_MORE_CV_QUAL);
9904
9905 case ARRAY_TYPE:
9906 if (TREE_CODE (arg) != ARRAY_TYPE)
9907 return 1;
9908 if ((TYPE_DOMAIN (parm) == NULL_TREE)
9909 != (TYPE_DOMAIN (arg) == NULL_TREE))
9910 return 1;
9911 if (TYPE_DOMAIN (parm) != NULL_TREE
9912 && unify (tparms, targs, TYPE_DOMAIN (parm),
9913 TYPE_DOMAIN (arg), UNIFY_ALLOW_NONE) != 0)
9914 return 1;
9915 return unify (tparms, targs, TREE_TYPE (parm), TREE_TYPE (arg),
9916 strict & UNIFY_ALLOW_MORE_CV_QUAL);
9917
9918 case REAL_TYPE:
9919 case COMPLEX_TYPE:
9920 case VECTOR_TYPE:
9921 case INTEGER_TYPE:
9922 case BOOLEAN_TYPE:
9923 case VOID_TYPE:
9924 if (TREE_CODE (arg) != TREE_CODE (parm))
9925 return 1;
9926
9927 if (TREE_CODE (parm) == INTEGER_TYPE
9928 && TREE_CODE (TYPE_MAX_VALUE (parm)) != INTEGER_CST)
9929 {
9930 if (TYPE_MIN_VALUE (parm) && TYPE_MIN_VALUE (arg)
9931 && unify (tparms, targs, TYPE_MIN_VALUE (parm),
9932 TYPE_MIN_VALUE (arg), UNIFY_ALLOW_INTEGER))
9933 return 1;
9934 if (TYPE_MAX_VALUE (parm) && TYPE_MAX_VALUE (arg)
9935 && unify (tparms, targs, TYPE_MAX_VALUE (parm),
9936 TYPE_MAX_VALUE (arg),
9937 UNIFY_ALLOW_INTEGER | UNIFY_ALLOW_MAX_CORRECTION))
9938 return 1;
9939 }
9940 /* We have already checked cv-qualification at the top of the
9941 function. */
9942 else if (!same_type_ignoring_top_level_qualifiers_p (arg, parm))
9943 return 1;
9944
9945 /* As far as unification is concerned, this wins. Later checks
9946 will invalidate it if necessary. */
9947 return 0;
9948
9949 /* Types INTEGER_CST and MINUS_EXPR can come from array bounds. */
9950 /* Type INTEGER_CST can come from ordinary constant template args. */
9951 case INTEGER_CST:
9952 while (TREE_CODE (arg) == NOP_EXPR)
9953 arg = TREE_OPERAND (arg, 0);
9954
9955 if (TREE_CODE (arg) != INTEGER_CST)
9956 return 1;
9957 return !tree_int_cst_equal (parm, arg);
9958
9959 case TREE_VEC:
9960 {
9961 int i;
9962 if (TREE_CODE (arg) != TREE_VEC)
9963 return 1;
9964 if (TREE_VEC_LENGTH (parm) != TREE_VEC_LENGTH (arg))
9965 return 1;
9966 for (i = 0; i < TREE_VEC_LENGTH (parm); ++i)
9967 if (unify (tparms, targs,
9968 TREE_VEC_ELT (parm, i), TREE_VEC_ELT (arg, i),
9969 UNIFY_ALLOW_NONE))
9970 return 1;
9971 return 0;
9972 }
9973
9974 case RECORD_TYPE:
9975 case UNION_TYPE:
9976 if (TREE_CODE (arg) != TREE_CODE (parm))
9977 return 1;
9978
9979 if (TYPE_PTRMEMFUNC_P (parm))
9980 {
9981 if (!TYPE_PTRMEMFUNC_P (arg))
9982 return 1;
9983
9984 return unify (tparms, targs,
9985 TYPE_PTRMEMFUNC_FN_TYPE (parm),
9986 TYPE_PTRMEMFUNC_FN_TYPE (arg),
9987 strict);
9988 }
9989
9990 if (CLASSTYPE_TEMPLATE_INFO (parm))
9991 {
9992 tree t = NULL_TREE;
9993
9994 if (strict_in & UNIFY_ALLOW_DERIVED)
9995 {
9996 /* First, we try to unify the PARM and ARG directly. */
9997 t = try_class_unification (tparms, targs,
9998 parm, arg);
9999
10000 if (!t)
10001 {
10002 /* Fallback to the special case allowed in
10003 [temp.deduct.call]:
10004
10005 If P is a class, and P has the form
10006 template-id, then A can be a derived class of
10007 the deduced A. Likewise, if P is a pointer to
10008 a class of the form template-id, A can be a
10009 pointer to a derived class pointed to by the
10010 deduced A. */
10011 t = get_template_base (tparms, targs,
10012 parm, arg);
10013
10014 if (! t || t == error_mark_node)
10015 return 1;
10016 }
10017 }
10018 else if (CLASSTYPE_TEMPLATE_INFO (arg)
10019 && (CLASSTYPE_TI_TEMPLATE (parm)
10020 == CLASSTYPE_TI_TEMPLATE (arg)))
10021 /* Perhaps PARM is something like S<U> and ARG is S<int>.
10022 Then, we should unify `int' and `U'. */
10023 t = arg;
10024 else
10025 /* There's no chance of unification succeeding. */
10026 return 1;
10027
10028 return unify (tparms, targs, CLASSTYPE_TI_ARGS (parm),
10029 CLASSTYPE_TI_ARGS (t), UNIFY_ALLOW_NONE);
10030 }
10031 else if (!same_type_ignoring_top_level_qualifiers_p (parm, arg))
10032 return 1;
10033 return 0;
10034
10035 case METHOD_TYPE:
10036 case FUNCTION_TYPE:
10037 if (TREE_CODE (arg) != TREE_CODE (parm))
10038 return 1;
10039
10040 if (unify (tparms, targs, TREE_TYPE (parm),
10041 TREE_TYPE (arg), UNIFY_ALLOW_NONE))
10042 return 1;
10043 return type_unification_real (tparms, targs, TYPE_ARG_TYPES (parm),
10044 TYPE_ARG_TYPES (arg), 1,
10045 DEDUCE_EXACT, 0, -1);
10046
10047 case OFFSET_TYPE:
10048 if (TREE_CODE (arg) != OFFSET_TYPE)
10049 return 1;
10050 if (unify (tparms, targs, TYPE_OFFSET_BASETYPE (parm),
10051 TYPE_OFFSET_BASETYPE (arg), UNIFY_ALLOW_NONE))
10052 return 1;
10053 return unify (tparms, targs, TREE_TYPE (parm), TREE_TYPE (arg),
10054 strict);
10055
10056 case CONST_DECL:
10057 if (DECL_TEMPLATE_PARM_P (parm))
10058 return unify (tparms, targs, DECL_INITIAL (parm), arg, strict);
10059 if (arg != decl_constant_value (parm))
10060 return 1;
10061 return 0;
10062
10063 case FIELD_DECL:
10064 case TEMPLATE_DECL:
10065 /* Matched cases are handled by the ARG == PARM test above. */
10066 return 1;
10067
10068 case MINUS_EXPR:
10069 if (tree_int_cst_equal (TREE_OPERAND (parm, 1), integer_one_node)
10070 && (strict_in & UNIFY_ALLOW_MAX_CORRECTION))
10071 {
10072 /* We handle this case specially, since it comes up with
10073 arrays. In particular, something like:
10074
10075 template <int N> void f(int (&x)[N]);
10076
10077 Here, we are trying to unify the range type, which
10078 looks like [0 ... (N - 1)]. */
10079 tree t, t1, t2;
10080 t1 = TREE_OPERAND (parm, 0);
10081 t2 = TREE_OPERAND (parm, 1);
10082
10083 t = fold (build (PLUS_EXPR, integer_type_node, arg, t2));
10084
10085 return unify (tparms, targs, t1, t, strict);
10086 }
10087 /* Else fall through. */
10088
10089 default:
10090 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (parm))))
10091 {
10092
10093 /* We're looking at an expression. This can happen with
10094 something like:
10095
10096 template <int I>
10097 void foo(S<I>, S<I + 2>);
10098
10099 This is a "nondeduced context":
10100
10101 [deduct.type]
10102
10103 The nondeduced contexts are:
10104
10105 --A type that is a template-id in which one or more of
10106 the template-arguments is an expression that references
10107 a template-parameter.
10108
10109 In these cases, we assume deduction succeeded, but don't
10110 actually infer any unifications. */
10111
10112 if (!uses_template_parms (parm)
10113 && !template_args_equal (parm, arg))
10114 return 1;
10115 else
10116 return 0;
10117 }
10118 else
10119 sorry ("use of `%s' in template type unification",
10120 tree_code_name [(int) TREE_CODE (parm)]);
10121
10122 return 1;
10123 }
10124 }
10125 \f
10126 /* Called if RESULT is explicitly instantiated, or is a member of an
10127 explicitly instantiated class, or if using -frepo and the
10128 instantiation of RESULT has been assigned to this file. */
10129
10130 void
10131 mark_decl_instantiated (tree result, int extern_p)
10132 {
10133 SET_DECL_EXPLICIT_INSTANTIATION (result);
10134
10135 /* If this entity has already been written out, it's too late to
10136 make any modifications. */
10137 if (TREE_ASM_WRITTEN (result))
10138 return;
10139
10140 if (TREE_CODE (result) != FUNCTION_DECL)
10141 /* The TREE_PUBLIC flag for function declarations will have been
10142 set correctly by tsubst. */
10143 TREE_PUBLIC (result) = 1;
10144
10145 /* This might have been set by an earlier implicit instantiation. */
10146 DECL_COMDAT (result) = 0;
10147
10148 if (! extern_p)
10149 {
10150 DECL_INTERFACE_KNOWN (result) = 1;
10151 DECL_NOT_REALLY_EXTERN (result) = 1;
10152
10153 /* Always make artificials weak. */
10154 if (DECL_ARTIFICIAL (result) && flag_weak)
10155 comdat_linkage (result);
10156 /* For WIN32 we also want to put explicit instantiations in
10157 linkonce sections. */
10158 else if (TREE_PUBLIC (result))
10159 maybe_make_one_only (result);
10160 }
10161
10162 if (TREE_CODE (result) == FUNCTION_DECL
10163 && (DECL_ARTIFICIAL (result)
10164 || (DECL_DECLARED_INLINE_P (result) && TREE_USED (result))))
10165 defer_fn (result);
10166 }
10167
10168 /* Given two function templates PAT1 and PAT2, return:
10169
10170 DEDUCE should be DEDUCE_EXACT or DEDUCE_ORDER.
10171
10172 1 if PAT1 is more specialized than PAT2 as described in [temp.func.order].
10173 -1 if PAT2 is more specialized than PAT1.
10174 0 if neither is more specialized.
10175
10176 LEN is passed through to fn_type_unification. */
10177
10178 int
10179 more_specialized (tree pat1, tree pat2, int deduce, int len)
10180 {
10181 tree targs;
10182 int winner = 0;
10183
10184 /* If template argument deduction succeeds, we substitute the
10185 resulting arguments into non-deduced contexts. While doing that,
10186 we must be aware that we may encounter dependent types. */
10187 ++processing_template_decl;
10188 targs = get_bindings_real (pat1, DECL_TEMPLATE_RESULT (pat2),
10189 NULL_TREE, 0, deduce, len);
10190 if (targs)
10191 --winner;
10192
10193 targs = get_bindings_real (pat2, DECL_TEMPLATE_RESULT (pat1),
10194 NULL_TREE, 0, deduce, len);
10195 if (targs)
10196 ++winner;
10197 --processing_template_decl;
10198
10199 return winner;
10200 }
10201
10202 /* Given two class template specialization list nodes PAT1 and PAT2, return:
10203
10204 1 if PAT1 is more specialized than PAT2 as described in [temp.class.order].
10205 -1 if PAT2 is more specialized than PAT1.
10206 0 if neither is more specialized.
10207
10208 FULL_ARGS is the full set of template arguments that triggers this
10209 partial ordering. */
10210
10211 int
10212 more_specialized_class (tree pat1, tree pat2, tree full_args)
10213 {
10214 tree targs;
10215 int winner = 0;
10216
10217 /* Just like what happens for functions, if we are ordering between
10218 different class template specializations, we may encounter dependent
10219 types in the arguments, and we need our dependency check functions
10220 to behave correctly. */
10221 ++processing_template_decl;
10222 targs = get_class_bindings (TREE_VALUE (pat1), TREE_PURPOSE (pat1),
10223 add_outermost_template_args (full_args, TREE_PURPOSE (pat2)));
10224 if (targs)
10225 --winner;
10226
10227 targs = get_class_bindings (TREE_VALUE (pat2), TREE_PURPOSE (pat2),
10228 add_outermost_template_args (full_args, TREE_PURPOSE (pat1)));
10229 if (targs)
10230 ++winner;
10231 --processing_template_decl;
10232
10233 return winner;
10234 }
10235
10236 /* Return the template arguments that will produce the function signature
10237 DECL from the function template FN, with the explicit template
10238 arguments EXPLICIT_ARGS. If CHECK_RETTYPE is 1, the return type must
10239 also match. Return NULL_TREE if no satisfactory arguments could be
10240 found. DEDUCE and LEN are passed through to fn_type_unification. */
10241
10242 static tree
10243 get_bindings_real (tree fn,
10244 tree decl,
10245 tree explicit_args,
10246 int check_rettype,
10247 int deduce,
10248 int len)
10249 {
10250 int ntparms = DECL_NTPARMS (fn);
10251 tree targs = make_tree_vec (ntparms);
10252 tree decl_type;
10253 tree decl_arg_types;
10254 int i;
10255
10256 /* Substitute the explicit template arguments into the type of DECL.
10257 The call to fn_type_unification will handle substitution into the
10258 FN. */
10259 decl_type = TREE_TYPE (decl);
10260 if (explicit_args && uses_template_parms (decl_type))
10261 {
10262 tree tmpl;
10263 tree converted_args;
10264
10265 if (DECL_TEMPLATE_INFO (decl))
10266 tmpl = DECL_TI_TEMPLATE (decl);
10267 else
10268 /* We can get here for some invalid specializations. */
10269 return NULL_TREE;
10270
10271 converted_args
10272 = (coerce_template_parms (DECL_INNERMOST_TEMPLATE_PARMS (tmpl),
10273 explicit_args, NULL_TREE,
10274 tf_none, /*require_all_arguments=*/0));
10275 if (converted_args == error_mark_node)
10276 return NULL_TREE;
10277
10278 decl_type = tsubst (decl_type, converted_args, tf_none, NULL_TREE);
10279 if (decl_type == error_mark_node)
10280 return NULL_TREE;
10281 }
10282
10283 decl_arg_types = TYPE_ARG_TYPES (decl_type);
10284 /* Never do unification on the 'this' parameter. */
10285 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
10286 decl_arg_types = TREE_CHAIN (decl_arg_types);
10287
10288 i = fn_type_unification (fn, explicit_args, targs,
10289 decl_arg_types,
10290 (check_rettype || DECL_CONV_FN_P (fn)
10291 ? TREE_TYPE (decl_type) : NULL_TREE),
10292 deduce, len);
10293
10294 if (i != 0)
10295 return NULL_TREE;
10296
10297 return targs;
10298 }
10299
10300 /* For most uses, we want to check the return type. */
10301
10302 static tree
10303 get_bindings (tree fn, tree decl, tree explicit_args)
10304 {
10305 return get_bindings_real (fn, decl, explicit_args, 1, DEDUCE_EXACT, -1);
10306 }
10307
10308 /* But for resolve_overloaded_unification, we only care about the parameter
10309 types. */
10310
10311 static tree
10312 get_bindings_overload (tree fn, tree decl, tree explicit_args)
10313 {
10314 return get_bindings_real (fn, decl, explicit_args, 0, DEDUCE_EXACT, -1);
10315 }
10316
10317 /* Return the innermost template arguments that, when applied to a
10318 template specialization whose innermost template parameters are
10319 TPARMS, and whose specialization arguments are PARMS, yield the
10320 ARGS.
10321
10322 For example, suppose we have:
10323
10324 template <class T, class U> struct S {};
10325 template <class T> struct S<T*, int> {};
10326
10327 Then, suppose we want to get `S<double*, int>'. The TPARMS will be
10328 {T}, the PARMS will be {T*, int} and the ARGS will be {double*,
10329 int}. The resulting vector will be {double}, indicating that `T'
10330 is bound to `double'. */
10331
10332 static tree
10333 get_class_bindings (tree tparms, tree parms, tree args)
10334 {
10335 int i, ntparms = TREE_VEC_LENGTH (tparms);
10336 tree vec = make_tree_vec (ntparms);
10337
10338 if (unify (tparms, vec, parms, INNERMOST_TEMPLATE_ARGS (args),
10339 UNIFY_ALLOW_NONE))
10340 return NULL_TREE;
10341
10342 for (i = 0; i < ntparms; ++i)
10343 if (! TREE_VEC_ELT (vec, i))
10344 return NULL_TREE;
10345
10346 if (verify_class_unification (vec, parms, args))
10347 return NULL_TREE;
10348
10349 return vec;
10350 }
10351
10352 /* In INSTANTIATIONS is a list of <INSTANTIATION, TEMPLATE> pairs.
10353 Pick the most specialized template, and return the corresponding
10354 instantiation, or if there is no corresponding instantiation, the
10355 template itself. If there is no most specialized template,
10356 error_mark_node is returned. If there are no templates at all,
10357 NULL_TREE is returned. */
10358
10359 tree
10360 most_specialized_instantiation (tree instantiations)
10361 {
10362 tree fn, champ;
10363 int fate;
10364
10365 if (!instantiations)
10366 return NULL_TREE;
10367
10368 champ = instantiations;
10369 for (fn = TREE_CHAIN (instantiations); fn; fn = TREE_CHAIN (fn))
10370 {
10371 fate = more_specialized (TREE_VALUE (champ), TREE_VALUE (fn),
10372 DEDUCE_EXACT, -1);
10373 if (fate == 1)
10374 ;
10375 else
10376 {
10377 if (fate == 0)
10378 {
10379 fn = TREE_CHAIN (fn);
10380 if (! fn)
10381 return error_mark_node;
10382 }
10383 champ = fn;
10384 }
10385 }
10386
10387 for (fn = instantiations; fn && fn != champ; fn = TREE_CHAIN (fn))
10388 {
10389 fate = more_specialized (TREE_VALUE (champ), TREE_VALUE (fn),
10390 DEDUCE_EXACT, -1);
10391 if (fate != 1)
10392 return error_mark_node;
10393 }
10394
10395 return TREE_PURPOSE (champ) ? TREE_PURPOSE (champ) : TREE_VALUE (champ);
10396 }
10397
10398 /* Return the most specialized of the list of templates in FNS that can
10399 produce an instantiation matching DECL, given the explicit template
10400 arguments EXPLICIT_ARGS. */
10401
10402 static tree
10403 most_specialized (tree fns, tree decl, tree explicit_args)
10404 {
10405 tree candidates = NULL_TREE;
10406 tree fn, args;
10407
10408 for (fn = fns; fn; fn = TREE_CHAIN (fn))
10409 {
10410 tree candidate = TREE_VALUE (fn);
10411
10412 args = get_bindings (candidate, decl, explicit_args);
10413 if (args)
10414 candidates = tree_cons (NULL_TREE, candidate, candidates);
10415 }
10416
10417 return most_specialized_instantiation (candidates);
10418 }
10419
10420 /* If DECL is a specialization of some template, return the most
10421 general such template. Otherwise, returns NULL_TREE.
10422
10423 For example, given:
10424
10425 template <class T> struct S { template <class U> void f(U); };
10426
10427 if TMPL is `template <class U> void S<int>::f(U)' this will return
10428 the full template. This function will not trace past partial
10429 specializations, however. For example, given in addition:
10430
10431 template <class T> struct S<T*> { template <class U> void f(U); };
10432
10433 if TMPL is `template <class U> void S<int*>::f(U)' this will return
10434 `template <class T> template <class U> S<T*>::f(U)'. */
10435
10436 tree
10437 most_general_template (tree decl)
10438 {
10439 /* If DECL is a FUNCTION_DECL, find the TEMPLATE_DECL of which it is
10440 an immediate specialization. */
10441 if (TREE_CODE (decl) == FUNCTION_DECL)
10442 {
10443 if (DECL_TEMPLATE_INFO (decl)) {
10444 decl = DECL_TI_TEMPLATE (decl);
10445
10446 /* The DECL_TI_TEMPLATE can be an IDENTIFIER_NODE for a
10447 template friend. */
10448 if (TREE_CODE (decl) != TEMPLATE_DECL)
10449 return NULL_TREE;
10450 } else
10451 return NULL_TREE;
10452 }
10453
10454 /* Look for more and more general templates. */
10455 while (DECL_TEMPLATE_INFO (decl))
10456 {
10457 /* The DECL_TI_TEMPLATE can be an IDENTIFIER_NODE in some cases.
10458 (See cp-tree.h for details.) */
10459 if (TREE_CODE (DECL_TI_TEMPLATE (decl)) != TEMPLATE_DECL)
10460 break;
10461
10462 if (CLASS_TYPE_P (TREE_TYPE (decl))
10463 && CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (decl)))
10464 break;
10465
10466 /* Stop if we run into an explicitly specialized class template. */
10467 if (!DECL_NAMESPACE_SCOPE_P (decl)
10468 && DECL_CONTEXT (decl)
10469 && CLASSTYPE_TEMPLATE_SPECIALIZATION (DECL_CONTEXT (decl)))
10470 break;
10471
10472 decl = DECL_TI_TEMPLATE (decl);
10473 }
10474
10475 return decl;
10476 }
10477
10478 /* Return the most specialized of the class template specializations
10479 of TMPL which can produce an instantiation matching ARGS, or
10480 error_mark_node if the choice is ambiguous. */
10481
10482 static tree
10483 most_specialized_class (tree tmpl, tree args)
10484 {
10485 tree list = NULL_TREE;
10486 tree t;
10487 tree champ;
10488 int fate;
10489
10490 tmpl = most_general_template (tmpl);
10491 for (t = DECL_TEMPLATE_SPECIALIZATIONS (tmpl); t; t = TREE_CHAIN (t))
10492 {
10493 tree spec_args
10494 = get_class_bindings (TREE_VALUE (t), TREE_PURPOSE (t), args);
10495 if (spec_args)
10496 {
10497 list = tree_cons (TREE_PURPOSE (t), TREE_VALUE (t), list);
10498 TREE_TYPE (list) = TREE_TYPE (t);
10499 }
10500 }
10501
10502 if (! list)
10503 return NULL_TREE;
10504
10505 t = list;
10506 champ = t;
10507 t = TREE_CHAIN (t);
10508 for (; t; t = TREE_CHAIN (t))
10509 {
10510 fate = more_specialized_class (champ, t, args);
10511 if (fate == 1)
10512 ;
10513 else
10514 {
10515 if (fate == 0)
10516 {
10517 t = TREE_CHAIN (t);
10518 if (! t)
10519 return error_mark_node;
10520 }
10521 champ = t;
10522 }
10523 }
10524
10525 for (t = list; t && t != champ; t = TREE_CHAIN (t))
10526 {
10527 fate = more_specialized_class (champ, t, args);
10528 if (fate != 1)
10529 return error_mark_node;
10530 }
10531
10532 return champ;
10533 }
10534
10535 /* Explicitly instantiate DECL. */
10536
10537 void
10538 do_decl_instantiation (tree decl, tree storage)
10539 {
10540 tree result = NULL_TREE;
10541 int extern_p = 0;
10542
10543 if (!decl)
10544 /* An error occurred, for which grokdeclarator has already issued
10545 an appropriate message. */
10546 return;
10547 else if (! DECL_LANG_SPECIFIC (decl))
10548 {
10549 error ("explicit instantiation of non-template `%#D'", decl);
10550 return;
10551 }
10552 else if (TREE_CODE (decl) == VAR_DECL)
10553 {
10554 /* There is an asymmetry here in the way VAR_DECLs and
10555 FUNCTION_DECLs are handled by grokdeclarator. In the case of
10556 the latter, the DECL we get back will be marked as a
10557 template instantiation, and the appropriate
10558 DECL_TEMPLATE_INFO will be set up. This does not happen for
10559 VAR_DECLs so we do the lookup here. Probably, grokdeclarator
10560 should handle VAR_DECLs as it currently handles
10561 FUNCTION_DECLs. */
10562 result = lookup_field (DECL_CONTEXT (decl), DECL_NAME (decl), 0, false);
10563 if (!result || TREE_CODE (result) != VAR_DECL)
10564 {
10565 error ("no matching template for `%D' found", decl);
10566 return;
10567 }
10568 }
10569 else if (TREE_CODE (decl) != FUNCTION_DECL)
10570 {
10571 error ("explicit instantiation of `%#D'", decl);
10572 return;
10573 }
10574 else
10575 result = decl;
10576
10577 /* Check for various error cases. Note that if the explicit
10578 instantiation is valid the RESULT will currently be marked as an
10579 *implicit* instantiation; DECL_EXPLICIT_INSTANTIATION is not set
10580 until we get here. */
10581
10582 if (DECL_TEMPLATE_SPECIALIZATION (result))
10583 {
10584 /* DR 259 [temp.spec].
10585
10586 Both an explicit instantiation and a declaration of an explicit
10587 specialization shall not appear in a program unless the explicit
10588 instantiation follows a declaration of the explicit specialization.
10589
10590 For a given set of template parameters, if an explicit
10591 instantiation of a template appears after a declaration of an
10592 explicit specialization for that template, the explicit
10593 instantiation has no effect. */
10594 return;
10595 }
10596 else if (DECL_EXPLICIT_INSTANTIATION (result))
10597 {
10598 /* [temp.spec]
10599
10600 No program shall explicitly instantiate any template more
10601 than once.
10602
10603 We check DECL_INTERFACE_KNOWN so as not to complain when the first
10604 instantiation was `extern' and the second is not, and EXTERN_P for
10605 the opposite case. If -frepo, chances are we already got marked
10606 as an explicit instantiation because of the repo file. */
10607 if (DECL_INTERFACE_KNOWN (result) && !extern_p && !flag_use_repository)
10608 pedwarn ("duplicate explicit instantiation of `%#D'", result);
10609
10610 /* If we've already instantiated the template, just return now. */
10611 if (DECL_INTERFACE_KNOWN (result))
10612 return;
10613 }
10614 else if (!DECL_IMPLICIT_INSTANTIATION (result))
10615 {
10616 error ("no matching template for `%D' found", result);
10617 return;
10618 }
10619 else if (!DECL_TEMPLATE_INFO (result))
10620 {
10621 pedwarn ("explicit instantiation of non-template `%#D'", result);
10622 return;
10623 }
10624
10625 if (storage == NULL_TREE)
10626 ;
10627 else if (storage == ridpointers[(int) RID_EXTERN])
10628 {
10629 if (pedantic && !in_system_header)
10630 pedwarn ("ISO C++ forbids the use of `extern' on explicit instantiations");
10631 extern_p = 1;
10632 }
10633 else
10634 error ("storage class `%D' applied to template instantiation",
10635 storage);
10636
10637 mark_decl_instantiated (result, extern_p);
10638 repo_template_instantiated (result, extern_p);
10639 if (! extern_p)
10640 instantiate_decl (result, /*defer_ok=*/1, /*undefined_ok=*/0);
10641 }
10642
10643 void
10644 mark_class_instantiated (tree t, int extern_p)
10645 {
10646 SET_CLASSTYPE_EXPLICIT_INSTANTIATION (t);
10647 SET_CLASSTYPE_INTERFACE_KNOWN (t);
10648 CLASSTYPE_INTERFACE_ONLY (t) = extern_p;
10649 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (t)) = extern_p;
10650 if (! extern_p)
10651 {
10652 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
10653 rest_of_type_compilation (t, 1);
10654 }
10655 }
10656
10657 /* Called from do_type_instantiation through binding_table_foreach to
10658 do recursive instantiation for the type bound in ENTRY. */
10659 static void
10660 bt_instantiate_type_proc (binding_entry entry, void *data)
10661 {
10662 tree storage = *(tree *) data;
10663
10664 if (IS_AGGR_TYPE (entry->type)
10665 && !uses_template_parms (CLASSTYPE_TI_ARGS (entry->type)))
10666 do_type_instantiation (TYPE_MAIN_DECL (entry->type), storage, 0);
10667 }
10668
10669 /* Called from do_type_instantiation to instantiate a member
10670 (a member function or a static member variable) of an
10671 explicitly instantiated class template. */
10672 static void
10673 instantiate_class_member (tree decl, int extern_p)
10674 {
10675 mark_decl_instantiated (decl, extern_p);
10676 repo_template_instantiated (decl, extern_p);
10677 if (! extern_p)
10678 instantiate_decl (decl, /*defer_ok=*/1, /* undefined_ok=*/1);
10679 }
10680
10681 /* Perform an explicit instantiation of template class T. STORAGE, if
10682 non-null, is the RID for extern, inline or static. COMPLAIN is
10683 nonzero if this is called from the parser, zero if called recursively,
10684 since the standard is unclear (as detailed below). */
10685
10686 void
10687 do_type_instantiation (tree t, tree storage, tsubst_flags_t complain)
10688 {
10689 int extern_p = 0;
10690 int nomem_p = 0;
10691 int static_p = 0;
10692 int previous_instantiation_extern_p = 0;
10693
10694 if (TREE_CODE (t) == TYPE_DECL)
10695 t = TREE_TYPE (t);
10696
10697 if (! CLASS_TYPE_P (t) || ! CLASSTYPE_TEMPLATE_INFO (t))
10698 {
10699 error ("explicit instantiation of non-template type `%T'", t);
10700 return;
10701 }
10702
10703 complete_type (t);
10704
10705 if (!COMPLETE_TYPE_P (t))
10706 {
10707 if (complain & tf_error)
10708 error ("explicit instantiation of `%#T' before definition of template",
10709 t);
10710 return;
10711 }
10712
10713 if (storage != NULL_TREE)
10714 {
10715 if (pedantic && !in_system_header)
10716 pedwarn("ISO C++ forbids the use of `%E' on explicit instantiations",
10717 storage);
10718
10719 if (storage == ridpointers[(int) RID_INLINE])
10720 nomem_p = 1;
10721 else if (storage == ridpointers[(int) RID_EXTERN])
10722 extern_p = 1;
10723 else if (storage == ridpointers[(int) RID_STATIC])
10724 static_p = 1;
10725 else
10726 {
10727 error ("storage class `%D' applied to template instantiation",
10728 storage);
10729 extern_p = 0;
10730 }
10731 }
10732
10733 if (CLASSTYPE_TEMPLATE_SPECIALIZATION (t))
10734 {
10735 /* DR 259 [temp.spec].
10736
10737 Both an explicit instantiation and a declaration of an explicit
10738 specialization shall not appear in a program unless the explicit
10739 instantiation follows a declaration of the explicit specialization.
10740
10741 For a given set of template parameters, if an explicit
10742 instantiation of a template appears after a declaration of an
10743 explicit specialization for that template, the explicit
10744 instantiation has no effect. */
10745 return;
10746 }
10747 else if (CLASSTYPE_EXPLICIT_INSTANTIATION (t))
10748 {
10749 /* [temp.spec]
10750
10751 No program shall explicitly instantiate any template more
10752 than once.
10753
10754 If PREVIOUS_INSTANTIATION_EXTERN_P, then the first explicit
10755 instantiation was `extern'. If EXTERN_P then the second is.
10756 If -frepo, chances are we already got marked as an explicit
10757 instantiation because of the repo file. All these cases are
10758 OK. */
10759
10760 previous_instantiation_extern_p = CLASSTYPE_INTERFACE_ONLY (t);
10761
10762 if (!previous_instantiation_extern_p && !extern_p
10763 && !flag_use_repository
10764 && (complain & tf_error))
10765 pedwarn ("duplicate explicit instantiation of `%#T'", t);
10766
10767 /* If we've already instantiated the template, just return now. */
10768 if (!CLASSTYPE_INTERFACE_ONLY (t))
10769 return;
10770 }
10771
10772 mark_class_instantiated (t, extern_p);
10773 repo_template_instantiated (t, extern_p);
10774
10775 if (nomem_p)
10776 return;
10777
10778 {
10779 tree tmp;
10780
10781 /* In contrast to implicit instantiation, where only the
10782 declarations, and not the definitions, of members are
10783 instantiated, we have here:
10784
10785 [temp.explicit]
10786
10787 The explicit instantiation of a class template specialization
10788 implies the instantiation of all of its members not
10789 previously explicitly specialized in the translation unit
10790 containing the explicit instantiation.
10791
10792 Of course, we can't instantiate member template classes, since
10793 we don't have any arguments for them. Note that the standard
10794 is unclear on whether the instantiation of the members are
10795 *explicit* instantiations or not. However, the most natural
10796 interpretation is that it should be an explicit instantiation. */
10797
10798 if (! static_p)
10799 for (tmp = TYPE_METHODS (t); tmp; tmp = TREE_CHAIN (tmp))
10800 if (TREE_CODE (tmp) == FUNCTION_DECL
10801 && DECL_TEMPLATE_INSTANTIATION (tmp))
10802 instantiate_class_member (tmp, extern_p);
10803
10804 for (tmp = TYPE_FIELDS (t); tmp; tmp = TREE_CHAIN (tmp))
10805 if (TREE_CODE (tmp) == VAR_DECL && DECL_TEMPLATE_INSTANTIATION (tmp))
10806 instantiate_class_member (tmp, extern_p);
10807
10808 if (CLASSTYPE_NESTED_UTDS (t))
10809 binding_table_foreach (CLASSTYPE_NESTED_UTDS (t),
10810 bt_instantiate_type_proc, &storage);
10811 }
10812 }
10813
10814 /* Given a function DECL, which is a specialization of TMPL, modify
10815 DECL to be a re-instantiation of TMPL with the same template
10816 arguments. TMPL should be the template into which tsubst'ing
10817 should occur for DECL, not the most general template.
10818
10819 One reason for doing this is a scenario like this:
10820
10821 template <class T>
10822 void f(const T&, int i);
10823
10824 void g() { f(3, 7); }
10825
10826 template <class T>
10827 void f(const T& t, const int i) { }
10828
10829 Note that when the template is first instantiated, with
10830 instantiate_template, the resulting DECL will have no name for the
10831 first parameter, and the wrong type for the second. So, when we go
10832 to instantiate the DECL, we regenerate it. */
10833
10834 static void
10835 regenerate_decl_from_template (tree decl, tree tmpl)
10836 {
10837 /* The most general version of TMPL. */
10838 tree gen_tmpl;
10839 /* The arguments used to instantiate DECL, from the most general
10840 template. */
10841 tree args;
10842 tree code_pattern;
10843 tree new_decl;
10844 bool unregistered;
10845
10846 args = DECL_TI_ARGS (decl);
10847 code_pattern = DECL_TEMPLATE_RESULT (tmpl);
10848
10849 /* Unregister the specialization so that when we tsubst we will not
10850 just return DECL. We don't have to unregister DECL from TMPL
10851 because if would only be registered there if it were a partial
10852 instantiation of a specialization, which it isn't: it's a full
10853 instantiation. */
10854 gen_tmpl = most_general_template (tmpl);
10855 unregistered = reregister_specialization (decl, gen_tmpl,
10856 /*new_spec=*/NULL_TREE);
10857
10858 /* If the DECL was not unregistered then something peculiar is
10859 happening: we created a specialization but did not call
10860 register_specialization for it. */
10861 my_friendly_assert (unregistered, 0);
10862
10863 /* Make sure that we can see identifiers, and compute access
10864 correctly. */
10865 push_access_scope (decl);
10866
10867 /* Do the substitution to get the new declaration. */
10868 new_decl = tsubst (code_pattern, args, tf_error, NULL_TREE);
10869
10870 if (TREE_CODE (decl) == VAR_DECL)
10871 {
10872 /* Set up DECL_INITIAL, since tsubst doesn't. */
10873 if (!DECL_INITIALIZED_IN_CLASS_P (decl))
10874 DECL_INITIAL (new_decl) =
10875 tsubst_expr (DECL_INITIAL (code_pattern), args,
10876 tf_error, DECL_TI_TEMPLATE (decl));
10877 }
10878 else if (TREE_CODE (decl) == FUNCTION_DECL)
10879 {
10880 /* Convince duplicate_decls to use the DECL_ARGUMENTS from the
10881 new decl. */
10882 DECL_INITIAL (new_decl) = error_mark_node;
10883 /* And don't complain about a duplicate definition. */
10884 DECL_INITIAL (decl) = NULL_TREE;
10885 }
10886
10887 pop_access_scope (decl);
10888
10889 /* The immediate parent of the new template is still whatever it was
10890 before, even though tsubst sets DECL_TI_TEMPLATE up as the most
10891 general template. We also reset the DECL_ASSEMBLER_NAME since
10892 tsubst always calculates the name as if the function in question
10893 were really a template instance, and sometimes, with friend
10894 functions, this is not so. See tsubst_friend_function for
10895 details. */
10896 DECL_TI_TEMPLATE (new_decl) = DECL_TI_TEMPLATE (decl);
10897 COPY_DECL_ASSEMBLER_NAME (decl, new_decl);
10898 COPY_DECL_RTL (decl, new_decl);
10899 DECL_USE_TEMPLATE (new_decl) = DECL_USE_TEMPLATE (decl);
10900
10901 /* Call duplicate decls to merge the old and new declarations. */
10902 duplicate_decls (new_decl, decl);
10903
10904 /* Now, re-register the specialization. */
10905 register_specialization (decl, gen_tmpl, args);
10906 }
10907
10908 /* Return the TEMPLATE_DECL into which DECL_TI_ARGS(DECL) should be
10909 substituted to get DECL. */
10910
10911 tree
10912 template_for_substitution (tree decl)
10913 {
10914 tree tmpl = DECL_TI_TEMPLATE (decl);
10915
10916 /* Set TMPL to the template whose DECL_TEMPLATE_RESULT is the pattern
10917 for the instantiation. This is not always the most general
10918 template. Consider, for example:
10919
10920 template <class T>
10921 struct S { template <class U> void f();
10922 template <> void f<int>(); };
10923
10924 and an instantiation of S<double>::f<int>. We want TD to be the
10925 specialization S<T>::f<int>, not the more general S<T>::f<U>. */
10926 while (/* An instantiation cannot have a definition, so we need a
10927 more general template. */
10928 DECL_TEMPLATE_INSTANTIATION (tmpl)
10929 /* We must also deal with friend templates. Given:
10930
10931 template <class T> struct S {
10932 template <class U> friend void f() {};
10933 };
10934
10935 S<int>::f<U> say, is not an instantiation of S<T>::f<U>,
10936 so far as the language is concerned, but that's still
10937 where we get the pattern for the instantiation from. On
10938 other hand, if the definition comes outside the class, say:
10939
10940 template <class T> struct S {
10941 template <class U> friend void f();
10942 };
10943 template <class U> friend void f() {}
10944
10945 we don't need to look any further. That's what the check for
10946 DECL_INITIAL is for. */
10947 || (TREE_CODE (decl) == FUNCTION_DECL
10948 && DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (tmpl)
10949 && !DECL_INITIAL (DECL_TEMPLATE_RESULT (tmpl))))
10950 {
10951 /* The present template, TD, should not be a definition. If it
10952 were a definition, we should be using it! Note that we
10953 cannot restructure the loop to just keep going until we find
10954 a template with a definition, since that might go too far if
10955 a specialization was declared, but not defined. */
10956 my_friendly_assert (!(TREE_CODE (decl) == VAR_DECL
10957 && !DECL_IN_AGGR_P (DECL_TEMPLATE_RESULT (tmpl))),
10958 0);
10959
10960 /* Fetch the more general template. */
10961 tmpl = DECL_TI_TEMPLATE (tmpl);
10962 }
10963
10964 return tmpl;
10965 }
10966
10967 /* Produce the definition of D, a _DECL generated from a template. If
10968 DEFER_OK is nonzero, then we don't have to actually do the
10969 instantiation now; we just have to do it sometime. Normally it is
10970 an error if this is an explicit instantiation but D is undefined.
10971 If UNDEFINED_OK is nonzero, then instead we treat it as an implicit
10972 instantiation. UNDEFINED_OK is nonzero only if we are being used
10973 to instantiate the members of an explicitly instantiated class
10974 template. */
10975
10976
10977 tree
10978 instantiate_decl (tree d, int defer_ok, int undefined_ok)
10979 {
10980 tree tmpl = DECL_TI_TEMPLATE (d);
10981 tree gen_args;
10982 tree args;
10983 tree td;
10984 tree code_pattern;
10985 tree spec;
10986 tree gen_tmpl;
10987 int pattern_defined;
10988 int need_push;
10989 location_t saved_loc = input_location;
10990
10991 /* This function should only be used to instantiate templates for
10992 functions and static member variables. */
10993 my_friendly_assert (TREE_CODE (d) == FUNCTION_DECL
10994 || TREE_CODE (d) == VAR_DECL, 0);
10995
10996 /* Variables are never deferred; if instantiation is required, they
10997 are instantiated right away. That allows for better code in the
10998 case that an expression refers to the value of the variable --
10999 if the variable has a constant value the referring expression can
11000 take advantage of that fact. */
11001 if (TREE_CODE (d) == VAR_DECL)
11002 defer_ok = 0;
11003
11004 /* Don't instantiate cloned functions. Instead, instantiate the
11005 functions they cloned. */
11006 if (TREE_CODE (d) == FUNCTION_DECL && DECL_CLONED_FUNCTION_P (d))
11007 d = DECL_CLONED_FUNCTION (d);
11008
11009 if (DECL_TEMPLATE_INSTANTIATED (d))
11010 /* D has already been instantiated. It might seem reasonable to
11011 check whether or not D is an explicit instantiation, and, if so,
11012 stop here. But when an explicit instantiation is deferred
11013 until the end of the compilation, DECL_EXPLICIT_INSTANTIATION
11014 is set, even though we still need to do the instantiation. */
11015 return d;
11016
11017 /* If we already have a specialization of this declaration, then
11018 there's no reason to instantiate it. Note that
11019 retrieve_specialization gives us both instantiations and
11020 specializations, so we must explicitly check
11021 DECL_TEMPLATE_SPECIALIZATION. */
11022 gen_tmpl = most_general_template (tmpl);
11023 gen_args = DECL_TI_ARGS (d);
11024 spec = retrieve_specialization (gen_tmpl, gen_args);
11025 if (spec != NULL_TREE && DECL_TEMPLATE_SPECIALIZATION (spec))
11026 return spec;
11027
11028 /* This needs to happen before any tsubsting. */
11029 if (! push_tinst_level (d))
11030 return d;
11031
11032 timevar_push (TV_PARSE);
11033
11034 /* We may be in the middle of deferred access check. Disable it now. */
11035 push_deferring_access_checks (dk_no_deferred);
11036
11037 /* Set TD to the template whose DECL_TEMPLATE_RESULT is the pattern
11038 for the instantiation. */
11039 td = template_for_substitution (d);
11040 code_pattern = DECL_TEMPLATE_RESULT (td);
11041
11042 if ((DECL_NAMESPACE_SCOPE_P (d) && !DECL_INITIALIZED_IN_CLASS_P (d))
11043 || DECL_TEMPLATE_SPECIALIZATION (td))
11044 /* In the case of a friend template whose definition is provided
11045 outside the class, we may have too many arguments. Drop the
11046 ones we don't need. The same is true for specializations. */
11047 args = get_innermost_template_args
11048 (gen_args, TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (td)));
11049 else
11050 args = gen_args;
11051
11052 if (TREE_CODE (d) == FUNCTION_DECL)
11053 pattern_defined = (DECL_SAVED_TREE (code_pattern) != NULL_TREE);
11054 else
11055 pattern_defined = ! DECL_IN_AGGR_P (code_pattern);
11056
11057 input_location = DECL_SOURCE_LOCATION (d);
11058
11059 if (pattern_defined)
11060 {
11061 /* Let the repository code that this template definition is
11062 available.
11063
11064 The repository doesn't need to know about cloned functions
11065 because they never actually show up in the object file. It
11066 does need to know about the clones; those are the symbols
11067 that the linker will be emitting error messages about. */
11068 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (d)
11069 || DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (d))
11070 {
11071 tree t;
11072
11073 for (t = TREE_CHAIN (d);
11074 t && DECL_CLONED_FUNCTION_P (t);
11075 t = TREE_CHAIN (t))
11076 repo_template_used (t);
11077 }
11078 else
11079 repo_template_used (d);
11080
11081 if (at_eof)
11082 import_export_decl (d);
11083 }
11084
11085 if (! pattern_defined && DECL_EXPLICIT_INSTANTIATION (d) && undefined_ok)
11086 SET_DECL_IMPLICIT_INSTANTIATION (d);
11087
11088 if (!defer_ok)
11089 {
11090 /* Recheck the substitutions to obtain any warning messages
11091 about ignoring cv qualifiers. */
11092 tree gen = DECL_TEMPLATE_RESULT (gen_tmpl);
11093 tree type = TREE_TYPE (gen);
11094
11095 /* Make sure that we can see identifiers, and compute access
11096 correctly. D is already the target FUNCTION_DECL with the
11097 right context. */
11098 push_access_scope (d);
11099
11100 if (TREE_CODE (gen) == FUNCTION_DECL)
11101 {
11102 tsubst (DECL_ARGUMENTS (gen), gen_args, tf_error | tf_warning, d);
11103 tsubst (TYPE_RAISES_EXCEPTIONS (type), gen_args,
11104 tf_error | tf_warning, d);
11105 /* Don't simply tsubst the function type, as that will give
11106 duplicate warnings about poor parameter qualifications.
11107 The function arguments are the same as the decl_arguments
11108 without the top level cv qualifiers. */
11109 type = TREE_TYPE (type);
11110 }
11111 tsubst (type, gen_args, tf_error | tf_warning, d);
11112
11113 pop_access_scope (d);
11114 }
11115
11116 if (TREE_CODE (d) == VAR_DECL && DECL_INITIALIZED_IN_CLASS_P (d)
11117 && DECL_INITIAL (d) == NULL_TREE)
11118 /* We should have set up DECL_INITIAL in instantiate_class_template. */
11119 abort ();
11120 /* Reject all external templates except inline functions. */
11121 else if (DECL_INTERFACE_KNOWN (d)
11122 && ! DECL_NOT_REALLY_EXTERN (d)
11123 && ! (TREE_CODE (d) == FUNCTION_DECL
11124 && DECL_INLINE (d)))
11125 goto out;
11126 /* Defer all other templates, unless we have been explicitly
11127 forbidden from doing so. We restore the source position here
11128 because it's used by add_pending_template. */
11129 else if (! pattern_defined || defer_ok)
11130 {
11131 input_location = saved_loc;
11132
11133 if (at_eof && !pattern_defined
11134 && DECL_EXPLICIT_INSTANTIATION (d))
11135 /* [temp.explicit]
11136
11137 The definition of a non-exported function template, a
11138 non-exported member function template, or a non-exported
11139 member function or static data member of a class template
11140 shall be present in every translation unit in which it is
11141 explicitly instantiated. */
11142 pedwarn
11143 ("explicit instantiation of `%D' but no definition available", d);
11144
11145 add_pending_template (d);
11146 goto out;
11147 }
11148
11149 need_push = !cfun || !global_bindings_p ();
11150 if (need_push)
11151 push_to_top_level ();
11152
11153 /* Mark D as instantiated so that recursive calls to
11154 instantiate_decl do not try to instantiate it again. */
11155 DECL_TEMPLATE_INSTANTIATED (d) = 1;
11156
11157 /* Regenerate the declaration in case the template has been modified
11158 by a subsequent redeclaration. */
11159 regenerate_decl_from_template (d, td);
11160
11161 /* We already set the file and line above. Reset them now in case
11162 they changed as a result of calling regenerate_decl_from_template. */
11163 input_location = DECL_SOURCE_LOCATION (d);
11164
11165 if (TREE_CODE (d) == VAR_DECL)
11166 {
11167 /* Clear out DECL_RTL; whatever was there before may not be right
11168 since we've reset the type of the declaration. */
11169 SET_DECL_RTL (d, NULL_RTX);
11170
11171 DECL_IN_AGGR_P (d) = 0;
11172 import_export_decl (d);
11173 DECL_EXTERNAL (d) = ! DECL_NOT_REALLY_EXTERN (d);
11174
11175 if (DECL_EXTERNAL (d))
11176 {
11177 /* The fact that this code is executing indicates that:
11178
11179 (1) D is a template static data member, for which a
11180 definition is available.
11181
11182 (2) An implicit or explicit instantiation has occurred.
11183
11184 (3) We are not going to emit a definition of the static
11185 data member at this time.
11186
11187 This situation is peculiar, but it occurs on platforms
11188 without weak symbols when performing an implicit
11189 instantiation. There, we cannot implicitly instantiate a
11190 defined static data member in more than one translation
11191 unit, so import_export_decl marks the declaration as
11192 external; we must rely on explicit instantiation.
11193
11194 Reset instantiated marker to make sure that later
11195 explicit instantiation will be processed. */
11196 DECL_TEMPLATE_INSTANTIATED (d) = 0;
11197 }
11198 else
11199 {
11200 /* This is done in analogous to `start_decl'. It is
11201 required for correct access checking. */
11202 push_nested_class (DECL_CONTEXT (d));
11203 cp_finish_decl (d,
11204 (!DECL_INITIALIZED_IN_CLASS_P (d)
11205 ? DECL_INITIAL (d) : NULL_TREE),
11206 NULL_TREE, 0);
11207 /* Normally, pop_nested_class is called by cp_finish_decl
11208 above. But when instantiate_decl is triggered during
11209 instantiate_class_template processing, its DECL_CONTEXT
11210 is still not completed yet, and pop_nested_class isn't
11211 called. */
11212 if (!COMPLETE_TYPE_P (DECL_CONTEXT (d)))
11213 pop_nested_class ();
11214 }
11215 }
11216 else if (TREE_CODE (d) == FUNCTION_DECL)
11217 {
11218 htab_t saved_local_specializations;
11219 tree subst_decl;
11220 tree tmpl_parm;
11221 tree spec_parm;
11222
11223 /* Mark D as instantiated so that recursive calls to
11224 instantiate_decl do not try to instantiate it again. */
11225 DECL_TEMPLATE_INSTANTIATED (d) = 1;
11226
11227 /* Save away the current list, in case we are instantiating one
11228 template from within the body of another. */
11229 saved_local_specializations = local_specializations;
11230
11231 /* Set up the list of local specializations. */
11232 local_specializations = htab_create (37,
11233 hash_local_specialization,
11234 eq_local_specializations,
11235 NULL);
11236
11237 /* Set up context. */
11238 import_export_decl (d);
11239 start_function (NULL_TREE, d, NULL_TREE, SF_PRE_PARSED);
11240
11241 /* Create substitution entries for the parameters. */
11242 subst_decl = DECL_TEMPLATE_RESULT (template_for_substitution (d));
11243 tmpl_parm = DECL_ARGUMENTS (subst_decl);
11244 spec_parm = DECL_ARGUMENTS (d);
11245 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (d))
11246 {
11247 register_local_specialization (spec_parm, tmpl_parm);
11248 spec_parm = skip_artificial_parms_for (d, spec_parm);
11249 tmpl_parm = skip_artificial_parms_for (subst_decl, tmpl_parm);
11250 }
11251 while (tmpl_parm)
11252 {
11253 register_local_specialization (spec_parm, tmpl_parm);
11254 tmpl_parm = TREE_CHAIN (tmpl_parm);
11255 spec_parm = TREE_CHAIN (spec_parm);
11256 }
11257 my_friendly_assert (!spec_parm, 20020813);
11258
11259 /* Substitute into the body of the function. */
11260 tsubst_expr (DECL_SAVED_TREE (code_pattern), args,
11261 tf_error | tf_warning, tmpl);
11262
11263 /* We don't need the local specializations any more. */
11264 htab_delete (local_specializations);
11265 local_specializations = saved_local_specializations;
11266
11267 /* Finish the function. */
11268 d = finish_function (0);
11269 expand_or_defer_fn (d);
11270 }
11271
11272 /* We're not deferring instantiation any more. */
11273 TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (d)) = 0;
11274
11275 if (need_push)
11276 pop_from_top_level ();
11277
11278 out:
11279 input_location = saved_loc;
11280 pop_deferring_access_checks ();
11281 pop_tinst_level ();
11282
11283 timevar_pop (TV_PARSE);
11284
11285 return d;
11286 }
11287
11288 /* Run through the list of templates that we wish we could
11289 instantiate, and instantiate any we can. */
11290
11291 int
11292 instantiate_pending_templates (void)
11293 {
11294 tree *t;
11295 tree last = NULL_TREE;
11296 int instantiated_something = 0;
11297 int reconsider;
11298 location_t saved_loc = input_location;
11299
11300 do
11301 {
11302 reconsider = 0;
11303
11304 t = &pending_templates;
11305 while (*t)
11306 {
11307 tree instantiation = TREE_VALUE (*t);
11308
11309 reopen_tinst_level (TREE_PURPOSE (*t));
11310
11311 if (TYPE_P (instantiation))
11312 {
11313 tree fn;
11314
11315 if (!COMPLETE_TYPE_P (instantiation))
11316 {
11317 instantiate_class_template (instantiation);
11318 if (CLASSTYPE_TEMPLATE_INSTANTIATION (instantiation))
11319 for (fn = TYPE_METHODS (instantiation);
11320 fn;
11321 fn = TREE_CHAIN (fn))
11322 if (! DECL_ARTIFICIAL (fn))
11323 instantiate_decl (fn, /*defer_ok=*/0, /*undefined_ok=*/0);
11324 if (COMPLETE_TYPE_P (instantiation))
11325 {
11326 instantiated_something = 1;
11327 reconsider = 1;
11328 }
11329 }
11330
11331 if (COMPLETE_TYPE_P (instantiation))
11332 /* If INSTANTIATION has been instantiated, then we don't
11333 need to consider it again in the future. */
11334 *t = TREE_CHAIN (*t);
11335 else
11336 {
11337 last = *t;
11338 t = &TREE_CHAIN (*t);
11339 }
11340 }
11341 else
11342 {
11343 if (!DECL_TEMPLATE_SPECIALIZATION (instantiation)
11344 && !DECL_TEMPLATE_INSTANTIATED (instantiation))
11345 {
11346 instantiation = instantiate_decl (instantiation,
11347 /*defer_ok=*/0,
11348 /*undefined_ok=*/0);
11349 if (DECL_TEMPLATE_INSTANTIATED (instantiation))
11350 {
11351 instantiated_something = 1;
11352 reconsider = 1;
11353 }
11354 }
11355
11356 if (DECL_TEMPLATE_SPECIALIZATION (instantiation)
11357 || DECL_TEMPLATE_INSTANTIATED (instantiation))
11358 /* If INSTANTIATION has been instantiated, then we don't
11359 need to consider it again in the future. */
11360 *t = TREE_CHAIN (*t);
11361 else
11362 {
11363 last = *t;
11364 t = &TREE_CHAIN (*t);
11365 }
11366 }
11367 tinst_depth = 0;
11368 current_tinst_level = NULL_TREE;
11369 }
11370 last_pending_template = last;
11371 }
11372 while (reconsider);
11373
11374 input_location = saved_loc;
11375 return instantiated_something;
11376 }
11377
11378 /* Substitute ARGVEC into T, which is a list of initializers for
11379 either base class or a non-static data member. The TREE_PURPOSEs
11380 are DECLs, and the TREE_VALUEs are the initializer values. Used by
11381 instantiate_decl. */
11382
11383 static tree
11384 tsubst_initializer_list (tree t, tree argvec)
11385 {
11386 tree inits = NULL_TREE;
11387
11388 for (; t; t = TREE_CHAIN (t))
11389 {
11390 tree decl;
11391 tree init;
11392 tree val;
11393
11394 decl = tsubst_copy (TREE_PURPOSE (t), argvec, tf_error | tf_warning,
11395 NULL_TREE);
11396 decl = expand_member_init (decl);
11397 if (decl && !DECL_P (decl))
11398 in_base_initializer = 1;
11399
11400 init = tsubst_expr (TREE_VALUE (t), argvec, tf_error | tf_warning,
11401 NULL_TREE);
11402 if (!init)
11403 ;
11404 else if (TREE_CODE (init) == TREE_LIST)
11405 for (val = init; val; val = TREE_CHAIN (val))
11406 TREE_VALUE (val) = convert_from_reference (TREE_VALUE (val));
11407 else if (init != void_type_node)
11408 init = convert_from_reference (init);
11409
11410 in_base_initializer = 0;
11411
11412 if (decl)
11413 {
11414 init = build_tree_list (decl, init);
11415 TREE_CHAIN (init) = inits;
11416 inits = init;
11417 }
11418 }
11419 return inits;
11420 }
11421
11422 /* Set CURRENT_ACCESS_SPECIFIER based on the protection of DECL. */
11423
11424 static void
11425 set_current_access_from_decl (tree decl)
11426 {
11427 if (TREE_PRIVATE (decl))
11428 current_access_specifier = access_private_node;
11429 else if (TREE_PROTECTED (decl))
11430 current_access_specifier = access_protected_node;
11431 else
11432 current_access_specifier = access_public_node;
11433 }
11434
11435 /* Instantiate an enumerated type. TAG is the template type, NEWTAG
11436 is the instantiation (which should have been created with
11437 start_enum) and ARGS are the template arguments to use. */
11438
11439 static void
11440 tsubst_enum (tree tag, tree newtag, tree args)
11441 {
11442 tree e;
11443
11444 for (e = TYPE_VALUES (tag); e; e = TREE_CHAIN (e))
11445 {
11446 tree value;
11447 tree decl;
11448
11449 decl = TREE_VALUE (e);
11450 /* Note that in a template enum, the TREE_VALUE is the
11451 CONST_DECL, not the corresponding INTEGER_CST. */
11452 value = tsubst_expr (DECL_INITIAL (decl),
11453 args, tf_error | tf_warning,
11454 NULL_TREE);
11455
11456 /* Give this enumeration constant the correct access. */
11457 set_current_access_from_decl (decl);
11458
11459 /* Actually build the enumerator itself. */
11460 build_enumerator (DECL_NAME (decl), value, newtag);
11461 }
11462
11463 finish_enum (newtag);
11464 DECL_SOURCE_LOCATION (TYPE_NAME (newtag))
11465 = DECL_SOURCE_LOCATION (TYPE_NAME (tag));
11466 }
11467
11468 /* DECL is a FUNCTION_DECL that is a template specialization. Return
11469 its type -- but without substituting the innermost set of template
11470 arguments. So, innermost set of template parameters will appear in
11471 the type. */
11472
11473 tree
11474 get_mostly_instantiated_function_type (tree decl)
11475 {
11476 tree fn_type;
11477 tree tmpl;
11478 tree targs;
11479 tree tparms;
11480 int parm_depth;
11481
11482 tmpl = most_general_template (DECL_TI_TEMPLATE (decl));
11483 targs = DECL_TI_ARGS (decl);
11484 tparms = DECL_TEMPLATE_PARMS (tmpl);
11485 parm_depth = TMPL_PARMS_DEPTH (tparms);
11486
11487 /* There should be as many levels of arguments as there are levels
11488 of parameters. */
11489 my_friendly_assert (parm_depth == TMPL_ARGS_DEPTH (targs), 0);
11490
11491 fn_type = TREE_TYPE (tmpl);
11492
11493 if (parm_depth == 1)
11494 /* No substitution is necessary. */
11495 ;
11496 else
11497 {
11498 int i;
11499 tree partial_args;
11500
11501 /* Replace the innermost level of the TARGS with NULL_TREEs to
11502 let tsubst know not to substitute for those parameters. */
11503 partial_args = make_tree_vec (TREE_VEC_LENGTH (targs));
11504 for (i = 1; i < TMPL_ARGS_DEPTH (targs); ++i)
11505 SET_TMPL_ARGS_LEVEL (partial_args, i,
11506 TMPL_ARGS_LEVEL (targs, i));
11507 SET_TMPL_ARGS_LEVEL (partial_args,
11508 TMPL_ARGS_DEPTH (targs),
11509 make_tree_vec (DECL_NTPARMS (tmpl)));
11510
11511 /* Make sure that we can see identifiers, and compute access
11512 correctly. We can just use the context of DECL for the
11513 partial substitution here. It depends only on outer template
11514 parameters, regardless of whether the innermost level is
11515 specialized or not. */
11516 push_access_scope (decl);
11517
11518 ++processing_template_decl;
11519 /* Now, do the (partial) substitution to figure out the
11520 appropriate function type. */
11521 fn_type = tsubst (fn_type, partial_args, tf_error, NULL_TREE);
11522 --processing_template_decl;
11523
11524 /* Substitute into the template parameters to obtain the real
11525 innermost set of parameters. This step is important if the
11526 innermost set of template parameters contains value
11527 parameters whose types depend on outer template parameters. */
11528 TREE_VEC_LENGTH (partial_args)--;
11529 tparms = tsubst_template_parms (tparms, partial_args, tf_error);
11530
11531 pop_access_scope (decl);
11532 }
11533
11534 return fn_type;
11535 }
11536
11537 /* Return truthvalue if we're processing a template different from
11538 the last one involved in diagnostics. */
11539 int
11540 problematic_instantiation_changed (void)
11541 {
11542 return last_template_error_tick != tinst_level_tick;
11543 }
11544
11545 /* Remember current template involved in diagnostics. */
11546 void
11547 record_last_problematic_instantiation (void)
11548 {
11549 last_template_error_tick = tinst_level_tick;
11550 }
11551
11552 tree
11553 current_instantiation (void)
11554 {
11555 return current_tinst_level;
11556 }
11557
11558 /* [temp.param] Check that template non-type parm TYPE is of an allowable
11559 type. Return zero for ok, nonzero for disallowed. Issue error and
11560 warning messages under control of COMPLAIN. */
11561
11562 static int
11563 invalid_nontype_parm_type_p (tree type, tsubst_flags_t complain)
11564 {
11565 if (INTEGRAL_TYPE_P (type))
11566 return 0;
11567 else if (POINTER_TYPE_P (type))
11568 return 0;
11569 else if (TYPE_PTR_TO_MEMBER_P (type))
11570 return 0;
11571 else if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
11572 return 0;
11573 else if (TREE_CODE (type) == TYPENAME_TYPE)
11574 return 0;
11575
11576 if (complain & tf_error)
11577 error ("`%#T' is not a valid type for a template constant parameter",
11578 type);
11579 return 1;
11580 }
11581
11582 /* Returns TRUE if TYPE is dependent, in the sense of [temp.dep.type].
11583 Assumes that TYPE really is a type, and not the ERROR_MARK_NODE.*/
11584
11585 static bool
11586 dependent_type_p_r (tree type)
11587 {
11588 tree scope;
11589
11590 /* [temp.dep.type]
11591
11592 A type is dependent if it is:
11593
11594 -- a template parameter. Template template parameters are
11595 types for us (since TYPE_P holds true for them) so we
11596 handle them here. */
11597 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
11598 || TREE_CODE (type) == TEMPLATE_TEMPLATE_PARM)
11599 return true;
11600 /* -- a qualified-id with a nested-name-specifier which contains a
11601 class-name that names a dependent type or whose unqualified-id
11602 names a dependent type. */
11603 if (TREE_CODE (type) == TYPENAME_TYPE)
11604 return true;
11605 /* -- a cv-qualified type where the cv-unqualified type is
11606 dependent. */
11607 type = TYPE_MAIN_VARIANT (type);
11608 /* -- a compound type constructed from any dependent type. */
11609 if (TYPE_PTR_TO_MEMBER_P (type))
11610 return (dependent_type_p (TYPE_PTRMEM_CLASS_TYPE (type))
11611 || dependent_type_p (TYPE_PTRMEM_POINTED_TO_TYPE
11612 (type)));
11613 else if (TREE_CODE (type) == POINTER_TYPE
11614 || TREE_CODE (type) == REFERENCE_TYPE)
11615 return dependent_type_p (TREE_TYPE (type));
11616 else if (TREE_CODE (type) == FUNCTION_TYPE
11617 || TREE_CODE (type) == METHOD_TYPE)
11618 {
11619 tree arg_type;
11620
11621 if (dependent_type_p (TREE_TYPE (type)))
11622 return true;
11623 for (arg_type = TYPE_ARG_TYPES (type);
11624 arg_type;
11625 arg_type = TREE_CHAIN (arg_type))
11626 if (dependent_type_p (TREE_VALUE (arg_type)))
11627 return true;
11628 return false;
11629 }
11630 /* -- an array type constructed from any dependent type or whose
11631 size is specified by a constant expression that is
11632 value-dependent. */
11633 if (TREE_CODE (type) == ARRAY_TYPE)
11634 {
11635 if (TYPE_DOMAIN (type)
11636 && ((value_dependent_expression_p
11637 (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
11638 || (type_dependent_expression_p
11639 (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))))
11640 return true;
11641 return dependent_type_p (TREE_TYPE (type));
11642 }
11643
11644 /* -- a template-id in which either the template name is a template
11645 parameter ... */
11646 if (TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
11647 return true;
11648 /* ... or any of the template arguments is a dependent type or
11649 an expression that is type-dependent or value-dependent. */
11650 else if (CLASS_TYPE_P (type) && CLASSTYPE_TEMPLATE_INFO (type)
11651 && (any_dependent_template_arguments_p
11652 (INNERMOST_TEMPLATE_ARGS (CLASSTYPE_TI_ARGS (type)))))
11653 return true;
11654
11655 /* All TYPEOF_TYPEs are dependent; if the argument of the `typeof'
11656 expression is not type-dependent, then it should already been
11657 have resolved. */
11658 if (TREE_CODE (type) == TYPEOF_TYPE)
11659 return true;
11660
11661 /* The standard does not specifically mention types that are local
11662 to template functions or local classes, but they should be
11663 considered dependent too. For example:
11664
11665 template <int I> void f() {
11666 enum E { a = I };
11667 S<sizeof (E)> s;
11668 }
11669
11670 The size of `E' cannot be known until the value of `I' has been
11671 determined. Therefore, `E' must be considered dependent. */
11672 scope = TYPE_CONTEXT (type);
11673 if (scope && TYPE_P (scope))
11674 return dependent_type_p (scope);
11675 else if (scope && TREE_CODE (scope) == FUNCTION_DECL)
11676 return type_dependent_expression_p (scope);
11677
11678 /* Other types are non-dependent. */
11679 return false;
11680 }
11681
11682 /* Returns TRUE if TYPE is dependent, in the sense of
11683 [temp.dep.type]. */
11684
11685 bool
11686 dependent_type_p (tree type)
11687 {
11688 /* If there are no template parameters in scope, then there can't be
11689 any dependent types. */
11690 if (!processing_template_decl)
11691 return false;
11692
11693 /* If the type is NULL, we have not computed a type for the entity
11694 in question; in that case, the type is dependent. */
11695 if (!type)
11696 return true;
11697
11698 /* Erroneous types can be considered non-dependent. */
11699 if (type == error_mark_node)
11700 return false;
11701
11702 /* If we have not already computed the appropriate value for TYPE,
11703 do so now. */
11704 if (!TYPE_DEPENDENT_P_VALID (type))
11705 {
11706 TYPE_DEPENDENT_P (type) = dependent_type_p_r (type);
11707 TYPE_DEPENDENT_P_VALID (type) = 1;
11708 }
11709
11710 return TYPE_DEPENDENT_P (type);
11711 }
11712
11713 /* Returns TRUE if EXPRESSION is dependent, according to CRITERION. */
11714
11715 static bool
11716 dependent_scope_ref_p (tree expression, bool criterion (tree))
11717 {
11718 tree scope;
11719 tree name;
11720
11721 my_friendly_assert (TREE_CODE (expression) == SCOPE_REF, 20030714);
11722
11723 if (!TYPE_P (TREE_OPERAND (expression, 0)))
11724 return true;
11725
11726 scope = TREE_OPERAND (expression, 0);
11727 name = TREE_OPERAND (expression, 1);
11728
11729 /* [temp.dep.expr]
11730
11731 An id-expression is type-dependent if it contains a
11732 nested-name-specifier that contains a class-name that names a
11733 dependent type. */
11734 /* The suggested resolution to Core Issue 2 implies that if the
11735 qualifying type is the current class, then we must peek
11736 inside it. */
11737 if (DECL_P (name)
11738 && currently_open_class (scope)
11739 && !criterion (name))
11740 return false;
11741 if (dependent_type_p (scope))
11742 return true;
11743
11744 return false;
11745 }
11746
11747 /* Returns TRUE if the EXPRESSION is value-dependent, in the sense of
11748 [temp.dep.constexpr] */
11749
11750 bool
11751 value_dependent_expression_p (tree expression)
11752 {
11753 if (!processing_template_decl)
11754 return false;
11755
11756 /* A name declared with a dependent type. */
11757 if (TREE_CODE (expression) == IDENTIFIER_NODE
11758 || (DECL_P (expression)
11759 && type_dependent_expression_p (expression)))
11760 return true;
11761 /* A non-type template parameter. */
11762 if ((TREE_CODE (expression) == CONST_DECL
11763 && DECL_TEMPLATE_PARM_P (expression))
11764 || TREE_CODE (expression) == TEMPLATE_PARM_INDEX)
11765 return true;
11766 /* A constant with integral or enumeration type and is initialized
11767 with an expression that is value-dependent. */
11768 if (TREE_CODE (expression) == VAR_DECL
11769 && DECL_INITIAL (expression)
11770 && INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (expression))
11771 && value_dependent_expression_p (DECL_INITIAL (expression)))
11772 return true;
11773 /* These expressions are value-dependent if the type to which the
11774 cast occurs is dependent or the expression being casted is
11775 value-dependent. */
11776 if (TREE_CODE (expression) == DYNAMIC_CAST_EXPR
11777 || TREE_CODE (expression) == STATIC_CAST_EXPR
11778 || TREE_CODE (expression) == CONST_CAST_EXPR
11779 || TREE_CODE (expression) == REINTERPRET_CAST_EXPR
11780 || TREE_CODE (expression) == CAST_EXPR)
11781 {
11782 tree type = TREE_TYPE (expression);
11783 if (dependent_type_p (type))
11784 return true;
11785 /* A functional cast has a list of operands. */
11786 expression = TREE_OPERAND (expression, 0);
11787 if (!expression)
11788 {
11789 /* If there are no operands, it must be an expression such
11790 as "int()". This should not happen for aggregate types
11791 because it would form non-constant expressions. */
11792 my_friendly_assert (INTEGRAL_OR_ENUMERATION_TYPE_P (type),
11793 20040318);
11794
11795 return false;
11796 }
11797 if (TREE_CODE (expression) == TREE_LIST)
11798 {
11799 do
11800 {
11801 if (value_dependent_expression_p (TREE_VALUE (expression)))
11802 return true;
11803 expression = TREE_CHAIN (expression);
11804 }
11805 while (expression);
11806 return false;
11807 }
11808 else
11809 return value_dependent_expression_p (expression);
11810 }
11811 /* A `sizeof' expression is value-dependent if the operand is
11812 type-dependent. */
11813 if (TREE_CODE (expression) == SIZEOF_EXPR
11814 || TREE_CODE (expression) == ALIGNOF_EXPR)
11815 {
11816 expression = TREE_OPERAND (expression, 0);
11817 if (TYPE_P (expression))
11818 return dependent_type_p (expression);
11819 return type_dependent_expression_p (expression);
11820 }
11821 if (TREE_CODE (expression) == SCOPE_REF)
11822 return dependent_scope_ref_p (expression, value_dependent_expression_p);
11823 if (TREE_CODE (expression) == COMPONENT_REF)
11824 return (value_dependent_expression_p (TREE_OPERAND (expression, 0))
11825 || value_dependent_expression_p (TREE_OPERAND (expression, 1)));
11826 /* A constant expression is value-dependent if any subexpression is
11827 value-dependent. */
11828 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (expression))))
11829 {
11830 switch (TREE_CODE_CLASS (TREE_CODE (expression)))
11831 {
11832 case '1':
11833 return (value_dependent_expression_p
11834 (TREE_OPERAND (expression, 0)));
11835 case '<':
11836 case '2':
11837 return ((value_dependent_expression_p
11838 (TREE_OPERAND (expression, 0)))
11839 || (value_dependent_expression_p
11840 (TREE_OPERAND (expression, 1))));
11841 case 'e':
11842 {
11843 int i;
11844 for (i = 0; i < first_rtl_op (TREE_CODE (expression)); ++i)
11845 /* In some cases, some of the operands may be missing.
11846 (For example, in the case of PREDECREMENT_EXPR, the
11847 amount to increment by may be missing.) That doesn't
11848 make the expression dependent. */
11849 if (TREE_OPERAND (expression, i)
11850 && (value_dependent_expression_p
11851 (TREE_OPERAND (expression, i))))
11852 return true;
11853 return false;
11854 }
11855 }
11856 }
11857
11858 /* The expression is not value-dependent. */
11859 return false;
11860 }
11861
11862 /* Returns TRUE if the EXPRESSION is type-dependent, in the sense of
11863 [temp.dep.expr]. */
11864
11865 bool
11866 type_dependent_expression_p (tree expression)
11867 {
11868 if (!processing_template_decl)
11869 return false;
11870
11871 if (expression == error_mark_node)
11872 return false;
11873
11874 /* An unresolved name is always dependent. */
11875 if (TREE_CODE (expression) == IDENTIFIER_NODE)
11876 return true;
11877
11878 /* Some expression forms are never type-dependent. */
11879 if (TREE_CODE (expression) == PSEUDO_DTOR_EXPR
11880 || TREE_CODE (expression) == SIZEOF_EXPR
11881 || TREE_CODE (expression) == ALIGNOF_EXPR
11882 || TREE_CODE (expression) == TYPEID_EXPR
11883 || TREE_CODE (expression) == DELETE_EXPR
11884 || TREE_CODE (expression) == VEC_DELETE_EXPR
11885 || TREE_CODE (expression) == THROW_EXPR)
11886 return false;
11887
11888 /* The types of these expressions depends only on the type to which
11889 the cast occurs. */
11890 if (TREE_CODE (expression) == DYNAMIC_CAST_EXPR
11891 || TREE_CODE (expression) == STATIC_CAST_EXPR
11892 || TREE_CODE (expression) == CONST_CAST_EXPR
11893 || TREE_CODE (expression) == REINTERPRET_CAST_EXPR
11894 || TREE_CODE (expression) == CAST_EXPR)
11895 return dependent_type_p (TREE_TYPE (expression));
11896
11897 /* The types of these expressions depends only on the type created
11898 by the expression. */
11899 if (TREE_CODE (expression) == NEW_EXPR
11900 || TREE_CODE (expression) == VEC_NEW_EXPR)
11901 {
11902 /* For NEW_EXPR tree nodes created inside a template, either
11903 the object type itself or a TREE_LIST may appear as the
11904 operand 1. */
11905 tree type = TREE_OPERAND (expression, 1);
11906 if (TREE_CODE (type) == TREE_LIST)
11907 /* This is an array type. We need to check array dimensions
11908 as well. */
11909 return dependent_type_p (TREE_VALUE (TREE_PURPOSE (type)))
11910 || value_dependent_expression_p
11911 (TREE_OPERAND (TREE_VALUE (type), 1));
11912 else
11913 return dependent_type_p (type);
11914 }
11915
11916 if (TREE_TYPE (expression) == unknown_type_node)
11917 {
11918 if (TREE_CODE (expression) == ADDR_EXPR)
11919 return type_dependent_expression_p (TREE_OPERAND (expression, 0));
11920 if (TREE_CODE (expression) == COMPONENT_REF
11921 || TREE_CODE (expression) == OFFSET_REF)
11922 {
11923 if (type_dependent_expression_p (TREE_OPERAND (expression, 0)))
11924 return true;
11925 expression = TREE_OPERAND (expression, 1);
11926 if (TREE_CODE (expression) == IDENTIFIER_NODE)
11927 return false;
11928 }
11929 if (TREE_CODE (expression) == SCOPE_REF)
11930 return false;
11931
11932 if (TREE_CODE (expression) == BASELINK)
11933 expression = BASELINK_FUNCTIONS (expression);
11934 if (TREE_CODE (expression) == TEMPLATE_ID_EXPR)
11935 {
11936 if (any_dependent_template_arguments_p
11937 (TREE_OPERAND (expression, 1)))
11938 return true;
11939 expression = TREE_OPERAND (expression, 0);
11940 }
11941 if (TREE_CODE (expression) == OVERLOAD)
11942 {
11943 while (expression)
11944 {
11945 if (type_dependent_expression_p (OVL_CURRENT (expression)))
11946 return true;
11947 expression = OVL_NEXT (expression);
11948 }
11949 return false;
11950 }
11951 abort ();
11952 }
11953
11954 if (TREE_CODE (expression) == SCOPE_REF
11955 && dependent_scope_ref_p (expression,
11956 type_dependent_expression_p))
11957 return true;
11958
11959 if (TREE_CODE (expression) == FUNCTION_DECL
11960 && DECL_LANG_SPECIFIC (expression)
11961 && DECL_TEMPLATE_INFO (expression)
11962 && (any_dependent_template_arguments_p
11963 (INNERMOST_TEMPLATE_ARGS (DECL_TI_ARGS (expression)))))
11964 return true;
11965
11966 if (TREE_CODE (expression) == TEMPLATE_DECL
11967 && !DECL_TEMPLATE_TEMPLATE_PARM_P (expression))
11968 return false;
11969
11970 return (dependent_type_p (TREE_TYPE (expression)));
11971 }
11972
11973 /* Returns TRUE if ARGS (a TREE_LIST of arguments to a function call)
11974 contains a type-dependent expression. */
11975
11976 bool
11977 any_type_dependent_arguments_p (tree args)
11978 {
11979 while (args)
11980 {
11981 tree arg = TREE_VALUE (args);
11982
11983 if (type_dependent_expression_p (arg))
11984 return true;
11985 args = TREE_CHAIN (args);
11986 }
11987 return false;
11988 }
11989
11990 /* Returns TRUE if the ARG (a template argument) is dependent. */
11991
11992 static bool
11993 dependent_template_arg_p (tree arg)
11994 {
11995 if (!processing_template_decl)
11996 return false;
11997
11998 if (TREE_CODE (arg) == TEMPLATE_DECL
11999 || TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM)
12000 return dependent_template_p (arg);
12001 else if (TYPE_P (arg))
12002 return dependent_type_p (arg);
12003 else
12004 return (type_dependent_expression_p (arg)
12005 || value_dependent_expression_p (arg));
12006 }
12007
12008 /* Returns true if ARGS (a collection of template arguments) contains
12009 any dependent arguments. */
12010
12011 bool
12012 any_dependent_template_arguments_p (tree args)
12013 {
12014 int i;
12015 int j;
12016
12017 if (!args)
12018 return false;
12019
12020 for (i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
12021 {
12022 tree level = TMPL_ARGS_LEVEL (args, i + 1);
12023 for (j = 0; j < TREE_VEC_LENGTH (level); ++j)
12024 if (dependent_template_arg_p (TREE_VEC_ELT (level, j)))
12025 return true;
12026 }
12027
12028 return false;
12029 }
12030
12031 /* Returns TRUE if the template TMPL is dependent. */
12032
12033 bool
12034 dependent_template_p (tree tmpl)
12035 {
12036 if (TREE_CODE (tmpl) == OVERLOAD)
12037 {
12038 while (tmpl)
12039 {
12040 if (dependent_template_p (OVL_FUNCTION (tmpl)))
12041 return true;
12042 tmpl = OVL_CHAIN (tmpl);
12043 }
12044 return false;
12045 }
12046
12047 /* Template template parameters are dependent. */
12048 if (DECL_TEMPLATE_TEMPLATE_PARM_P (tmpl)
12049 || TREE_CODE (tmpl) == TEMPLATE_TEMPLATE_PARM)
12050 return true;
12051 /* So are qualified names that have not been looked up. */
12052 if (TREE_CODE (tmpl) == SCOPE_REF)
12053 return true;
12054 /* So are member templates of dependent classes. */
12055 if (TYPE_P (CP_DECL_CONTEXT (tmpl)))
12056 return dependent_type_p (DECL_CONTEXT (tmpl));
12057 return false;
12058 }
12059
12060 /* Returns TRUE if the specialization TMPL<ARGS> is dependent. */
12061
12062 bool
12063 dependent_template_id_p (tree tmpl, tree args)
12064 {
12065 return (dependent_template_p (tmpl)
12066 || any_dependent_template_arguments_p (args));
12067 }
12068
12069 /* TYPE is a TYPENAME_TYPE. Returns the ordinary TYPE to which the
12070 TYPENAME_TYPE corresponds. Returns ERROR_MARK_NODE if no such TYPE
12071 can be found. Note that this function peers inside uninstantiated
12072 templates and therefore should be used only in extremely limited
12073 situations. */
12074
12075 tree
12076 resolve_typename_type (tree type, bool only_current_p)
12077 {
12078 tree scope;
12079 tree name;
12080 tree decl;
12081 int quals;
12082 bool pop_p;
12083
12084 my_friendly_assert (TREE_CODE (type) == TYPENAME_TYPE,
12085 20010702);
12086
12087 scope = TYPE_CONTEXT (type);
12088 name = TYPE_IDENTIFIER (type);
12089
12090 /* If the SCOPE is itself a TYPENAME_TYPE, then we need to resolve
12091 it first before we can figure out what NAME refers to. */
12092 if (TREE_CODE (scope) == TYPENAME_TYPE)
12093 scope = resolve_typename_type (scope, only_current_p);
12094 /* If we don't know what SCOPE refers to, then we cannot resolve the
12095 TYPENAME_TYPE. */
12096 if (scope == error_mark_node || TREE_CODE (scope) == TYPENAME_TYPE)
12097 return error_mark_node;
12098 /* If the SCOPE is a template type parameter, we have no way of
12099 resolving the name. */
12100 if (TREE_CODE (scope) == TEMPLATE_TYPE_PARM)
12101 return type;
12102 /* If the SCOPE is not the current instantiation, there's no reason
12103 to look inside it. */
12104 if (only_current_p && !currently_open_class (scope))
12105 return error_mark_node;
12106 /* If SCOPE is a partial instantiation, it will not have a valid
12107 TYPE_FIELDS list, so use the original template. */
12108 scope = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (scope);
12109 /* Enter the SCOPE so that name lookup will be resolved as if we
12110 were in the class definition. In particular, SCOPE will no
12111 longer be considered a dependent type. */
12112 pop_p = push_scope (scope);
12113 /* Look up the declaration. */
12114 decl = lookup_member (scope, name, /*protect=*/0, /*want_type=*/true);
12115 /* Obtain the set of qualifiers applied to the TYPE. */
12116 quals = cp_type_quals (type);
12117 /* For a TYPENAME_TYPE like "typename X::template Y<T>", we want to
12118 find a TEMPLATE_DECL. Otherwise, we want to find a TYPE_DECL. */
12119 if (!decl)
12120 type = error_mark_node;
12121 else if (TREE_CODE (TYPENAME_TYPE_FULLNAME (type)) == IDENTIFIER_NODE
12122 && TREE_CODE (decl) == TYPE_DECL)
12123 type = TREE_TYPE (decl);
12124 else if (TREE_CODE (TYPENAME_TYPE_FULLNAME (type)) == TEMPLATE_ID_EXPR
12125 && DECL_CLASS_TEMPLATE_P (decl))
12126 {
12127 tree tmpl;
12128 tree args;
12129 /* Obtain the template and the arguments. */
12130 tmpl = TREE_OPERAND (TYPENAME_TYPE_FULLNAME (type), 0);
12131 args = TREE_OPERAND (TYPENAME_TYPE_FULLNAME (type), 1);
12132 /* Instantiate the template. */
12133 type = lookup_template_class (tmpl, args, NULL_TREE, NULL_TREE,
12134 /*entering_scope=*/0, tf_error | tf_user);
12135 }
12136 else
12137 type = error_mark_node;
12138 /* Qualify the resulting type. */
12139 if (type != error_mark_node && quals)
12140 type = cp_build_qualified_type (type, quals);
12141 /* Leave the SCOPE. */
12142 if (pop_p)
12143 pop_scope (scope);
12144
12145 return type;
12146 }
12147
12148 /* EXPR is an expression which is not type-dependent. Return a proxy
12149 for EXPR that can be used to compute the types of larger
12150 expressions containing EXPR. */
12151
12152 tree
12153 build_non_dependent_expr (tree expr)
12154 {
12155 tree inner_expr;
12156
12157 /* Preserve null pointer constants so that the type of things like
12158 "p == 0" where "p" is a pointer can be determined. */
12159 if (null_ptr_cst_p (expr))
12160 return expr;
12161 /* Preserve OVERLOADs; the functions must be available to resolve
12162 types. */
12163 inner_expr = (TREE_CODE (expr) == ADDR_EXPR ?
12164 TREE_OPERAND (expr, 0) : expr);
12165 if (TREE_CODE (inner_expr) == OVERLOAD
12166 || TREE_CODE (inner_expr) == FUNCTION_DECL
12167 || TREE_CODE (inner_expr) == TEMPLATE_DECL
12168 || TREE_CODE (inner_expr) == TEMPLATE_ID_EXPR)
12169 return expr;
12170 /* Preserve string constants; conversions from string constants to
12171 "char *" are allowed, even though normally a "const char *"
12172 cannot be used to initialize a "char *". */
12173 if (TREE_CODE (expr) == STRING_CST)
12174 return expr;
12175 /* Preserve arithmetic constants, as an optimization -- there is no
12176 reason to create a new node. */
12177 if (TREE_CODE (expr) == INTEGER_CST || TREE_CODE (expr) == REAL_CST)
12178 return expr;
12179 /* Preserve THROW_EXPRs -- all throw-expressions have type "void".
12180 There is at least one place where we want to know that a
12181 particular expression is a throw-expression: when checking a ?:
12182 expression, there are special rules if the second or third
12183 argument is a throw-expression. */
12184 if (TREE_CODE (expr) == THROW_EXPR)
12185 return expr;
12186
12187 if (TREE_CODE (expr) == COND_EXPR)
12188 return build (COND_EXPR,
12189 TREE_TYPE (expr),
12190 TREE_OPERAND (expr, 0),
12191 (TREE_OPERAND (expr, 1)
12192 ? build_non_dependent_expr (TREE_OPERAND (expr, 1))
12193 : build_non_dependent_expr (TREE_OPERAND (expr, 0))),
12194 build_non_dependent_expr (TREE_OPERAND (expr, 2)));
12195 if (TREE_CODE (expr) == COMPOUND_EXPR
12196 && !COMPOUND_EXPR_OVERLOADED (expr))
12197 return build (COMPOUND_EXPR,
12198 TREE_TYPE (expr),
12199 TREE_OPERAND (expr, 0),
12200 build_non_dependent_expr (TREE_OPERAND (expr, 1)));
12201
12202 /* Otherwise, build a NON_DEPENDENT_EXPR.
12203
12204 REFERENCE_TYPEs are not stripped for expressions in templates
12205 because doing so would play havoc with mangling. Consider, for
12206 example:
12207
12208 template <typename T> void f<T& g>() { g(); }
12209
12210 In the body of "f", the expression for "g" will have
12211 REFERENCE_TYPE, even though the standard says that it should
12212 not. The reason is that we must preserve the syntactic form of
12213 the expression so that mangling (say) "f<g>" inside the body of
12214 "f" works out correctly. Therefore, the REFERENCE_TYPE is
12215 stripped here. */
12216 return build1 (NON_DEPENDENT_EXPR, non_reference (TREE_TYPE (expr)), expr);
12217 }
12218
12219 /* ARGS is a TREE_LIST of expressions as arguments to a function call.
12220 Return a new TREE_LIST with the various arguments replaced with
12221 equivalent non-dependent expressions. */
12222
12223 tree
12224 build_non_dependent_args (tree args)
12225 {
12226 tree a;
12227 tree new_args;
12228
12229 new_args = NULL_TREE;
12230 for (a = args; a; a = TREE_CHAIN (a))
12231 new_args = tree_cons (NULL_TREE,
12232 build_non_dependent_expr (TREE_VALUE (a)),
12233 new_args);
12234 return nreverse (new_args);
12235 }
12236
12237 #include "gt-cp-pt.h"