188f0a56d5eca3e67bded3210b6ecadd9b487f20
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6 Contributed by Michael Tiemann (tiemann@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "intl.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37
38 static int is_subobject_of_p (tree, tree);
39 static tree dfs_lookup_base (tree, void *);
40 static tree dfs_dcast_hint_pre (tree, void *);
41 static tree dfs_dcast_hint_post (tree, void *);
42 static tree dfs_debug_mark (tree, void *);
43 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44 tree (*post_fn) (tree, void *), void *data);
45 static void dfs_unmark_r (tree);
46 static int check_hidden_convs (tree, int, int, tree, tree, tree);
47 static tree split_conversions (tree, tree, tree, tree);
48 static int lookup_conversions_r (tree, int, int,
49 tree, tree, tree, tree, tree *, tree *);
50 static int look_for_overrides_r (tree, tree);
51 static tree lookup_field_r (tree, void *);
52 static tree dfs_accessible_post (tree, void *);
53 static tree dfs_walk_once_accessible_r (tree, bool, bool,
54 tree (*pre_fn) (tree, void *),
55 tree (*post_fn) (tree, void *),
56 void *data);
57 static tree dfs_walk_once_accessible (tree, bool,
58 tree (*pre_fn) (tree, void *),
59 tree (*post_fn) (tree, void *),
60 void *data);
61 static tree dfs_access_in_type (tree, void *);
62 static access_kind access_in_type (tree, tree);
63 static int protected_accessible_p (tree, tree, tree);
64 static int friend_accessible_p (tree, tree, tree);
65 static tree dfs_get_pure_virtuals (tree, void *);
66
67 \f
68 /* Variables for gathering statistics. */
69 #ifdef GATHER_STATISTICS
70 static int n_fields_searched;
71 static int n_calls_lookup_field, n_calls_lookup_field_1;
72 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
73 static int n_calls_get_base_type;
74 static int n_outer_fields_searched;
75 static int n_contexts_saved;
76 #endif /* GATHER_STATISTICS */
77
78 \f
79 /* Data for lookup_base and its workers. */
80
81 struct lookup_base_data_s
82 {
83 tree t; /* type being searched. */
84 tree base; /* The base type we're looking for. */
85 tree binfo; /* Found binfo. */
86 bool via_virtual; /* Found via a virtual path. */
87 bool ambiguous; /* Found multiply ambiguous */
88 bool repeated_base; /* Whether there are repeated bases in the
89 hierarchy. */
90 bool want_any; /* Whether we want any matching binfo. */
91 };
92
93 /* Worker function for lookup_base. See if we've found the desired
94 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
95
96 static tree
97 dfs_lookup_base (tree binfo, void *data_)
98 {
99 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
100
101 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
102 {
103 if (!data->binfo)
104 {
105 data->binfo = binfo;
106 data->via_virtual
107 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
108
109 if (!data->repeated_base)
110 /* If there are no repeated bases, we can stop now. */
111 return binfo;
112
113 if (data->want_any && !data->via_virtual)
114 /* If this is a non-virtual base, then we can't do
115 better. */
116 return binfo;
117
118 return dfs_skip_bases;
119 }
120 else
121 {
122 gcc_assert (binfo != data->binfo);
123
124 /* We've found more than one matching binfo. */
125 if (!data->want_any)
126 {
127 /* This is immediately ambiguous. */
128 data->binfo = NULL_TREE;
129 data->ambiguous = true;
130 return error_mark_node;
131 }
132
133 /* Prefer one via a non-virtual path. */
134 if (!binfo_via_virtual (binfo, data->t))
135 {
136 data->binfo = binfo;
137 data->via_virtual = false;
138 return binfo;
139 }
140
141 /* There must be repeated bases, otherwise we'd have stopped
142 on the first base we found. */
143 return dfs_skip_bases;
144 }
145 }
146
147 return NULL_TREE;
148 }
149
150 /* Returns true if type BASE is accessible in T. (BASE is known to be
151 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
152 true, consider any special access of the current scope, or access
153 bestowed by friendship. */
154
155 bool
156 accessible_base_p (tree t, tree base, bool consider_local_p)
157 {
158 tree decl;
159
160 /* [class.access.base]
161
162 A base class is said to be accessible if an invented public
163 member of the base class is accessible.
164
165 If BASE is a non-proper base, this condition is trivially
166 true. */
167 if (same_type_p (t, base))
168 return true;
169 /* Rather than inventing a public member, we use the implicit
170 public typedef created in the scope of every class. */
171 decl = TYPE_FIELDS (base);
172 while (!DECL_SELF_REFERENCE_P (decl))
173 decl = DECL_CHAIN (decl);
174 while (ANON_AGGR_TYPE_P (t))
175 t = TYPE_CONTEXT (t);
176 return accessible_p (t, decl, consider_local_p);
177 }
178
179 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
180 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
181 non-NULL, fill with information about what kind of base we
182 discovered.
183
184 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
185 not set in ACCESS, then an error is issued and error_mark_node is
186 returned. If the ba_quiet bit is set, then no error is issued and
187 NULL_TREE is returned. */
188
189 tree
190 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
191 {
192 tree binfo;
193 tree t_binfo;
194 base_kind bk;
195
196 if (t == error_mark_node || base == error_mark_node)
197 {
198 if (kind_ptr)
199 *kind_ptr = bk_not_base;
200 return error_mark_node;
201 }
202 gcc_assert (TYPE_P (base));
203
204 if (!TYPE_P (t))
205 {
206 t_binfo = t;
207 t = BINFO_TYPE (t);
208 }
209 else
210 {
211 t = complete_type (TYPE_MAIN_VARIANT (t));
212 t_binfo = TYPE_BINFO (t);
213 }
214
215 base = TYPE_MAIN_VARIANT (base);
216
217 /* If BASE is incomplete, it can't be a base of T--and instantiating it
218 might cause an error. */
219 if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
220 {
221 struct lookup_base_data_s data;
222
223 data.t = t;
224 data.base = base;
225 data.binfo = NULL_TREE;
226 data.ambiguous = data.via_virtual = false;
227 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
228 data.want_any = access == ba_any;
229
230 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
231 binfo = data.binfo;
232
233 if (!binfo)
234 bk = data.ambiguous ? bk_ambig : bk_not_base;
235 else if (binfo == t_binfo)
236 bk = bk_same_type;
237 else if (data.via_virtual)
238 bk = bk_via_virtual;
239 else
240 bk = bk_proper_base;
241 }
242 else
243 {
244 binfo = NULL_TREE;
245 bk = bk_not_base;
246 }
247
248 /* Check that the base is unambiguous and accessible. */
249 if (access != ba_any)
250 switch (bk)
251 {
252 case bk_not_base:
253 break;
254
255 case bk_ambig:
256 if (!(access & ba_quiet))
257 {
258 error ("%qT is an ambiguous base of %qT", base, t);
259 binfo = error_mark_node;
260 }
261 break;
262
263 default:
264 if ((access & ba_check_bit)
265 /* If BASE is incomplete, then BASE and TYPE are probably
266 the same, in which case BASE is accessible. If they
267 are not the same, then TYPE is invalid. In that case,
268 there's no need to issue another error here, and
269 there's no implicit typedef to use in the code that
270 follows, so we skip the check. */
271 && COMPLETE_TYPE_P (base)
272 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
273 {
274 if (!(access & ba_quiet))
275 {
276 error ("%qT is an inaccessible base of %qT", base, t);
277 binfo = error_mark_node;
278 }
279 else
280 binfo = NULL_TREE;
281 bk = bk_inaccessible;
282 }
283 break;
284 }
285
286 if (kind_ptr)
287 *kind_ptr = bk;
288
289 return binfo;
290 }
291
292 /* Data for dcast_base_hint walker. */
293
294 struct dcast_data_s
295 {
296 tree subtype; /* The base type we're looking for. */
297 int virt_depth; /* Number of virtual bases encountered from most
298 derived. */
299 tree offset; /* Best hint offset discovered so far. */
300 bool repeated_base; /* Whether there are repeated bases in the
301 hierarchy. */
302 };
303
304 /* Worker for dcast_base_hint. Search for the base type being cast
305 from. */
306
307 static tree
308 dfs_dcast_hint_pre (tree binfo, void *data_)
309 {
310 struct dcast_data_s *data = (struct dcast_data_s *) data_;
311
312 if (BINFO_VIRTUAL_P (binfo))
313 data->virt_depth++;
314
315 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
316 {
317 if (data->virt_depth)
318 {
319 data->offset = ssize_int (-1);
320 return data->offset;
321 }
322 if (data->offset)
323 data->offset = ssize_int (-3);
324 else
325 data->offset = BINFO_OFFSET (binfo);
326
327 return data->repeated_base ? dfs_skip_bases : data->offset;
328 }
329
330 return NULL_TREE;
331 }
332
333 /* Worker for dcast_base_hint. Track the virtual depth. */
334
335 static tree
336 dfs_dcast_hint_post (tree binfo, void *data_)
337 {
338 struct dcast_data_s *data = (struct dcast_data_s *) data_;
339
340 if (BINFO_VIRTUAL_P (binfo))
341 data->virt_depth--;
342
343 return NULL_TREE;
344 }
345
346 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
347 started from is related to the required TARGET type, in order to optimize
348 the inheritance graph search. This information is independent of the
349 current context, and ignores private paths, hence get_base_distance is
350 inappropriate. Return a TREE specifying the base offset, BOFF.
351 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
352 and there are no public virtual SUBTYPE bases.
353 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
354 BOFF == -2, SUBTYPE is not a public base.
355 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
356
357 tree
358 dcast_base_hint (tree subtype, tree target)
359 {
360 struct dcast_data_s data;
361
362 data.subtype = subtype;
363 data.virt_depth = 0;
364 data.offset = NULL_TREE;
365 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
366
367 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
368 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
369 return data.offset ? data.offset : ssize_int (-2);
370 }
371
372 /* Search for a member with name NAME in a multiple inheritance
373 lattice specified by TYPE. If it does not exist, return NULL_TREE.
374 If the member is ambiguously referenced, return `error_mark_node'.
375 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
376 true, type declarations are preferred. */
377
378 /* Do a 1-level search for NAME as a member of TYPE. The caller must
379 figure out whether it can access this field. (Since it is only one
380 level, this is reasonable.) */
381
382 tree
383 lookup_field_1 (tree type, tree name, bool want_type)
384 {
385 tree field;
386
387 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
388 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
389 || TREE_CODE (type) == TYPENAME_TYPE)
390 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
391 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
392 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
393 the code often worked even when we treated the index as a list
394 of fields!)
395 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
396 return NULL_TREE;
397
398 if (CLASSTYPE_SORTED_FIELDS (type))
399 {
400 tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
401 int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
402 int i;
403
404 while (lo < hi)
405 {
406 i = (lo + hi) / 2;
407
408 #ifdef GATHER_STATISTICS
409 n_fields_searched++;
410 #endif /* GATHER_STATISTICS */
411
412 if (DECL_NAME (fields[i]) > name)
413 hi = i;
414 else if (DECL_NAME (fields[i]) < name)
415 lo = i + 1;
416 else
417 {
418 field = NULL_TREE;
419
420 /* We might have a nested class and a field with the
421 same name; we sorted them appropriately via
422 field_decl_cmp, so just look for the first or last
423 field with this name. */
424 if (want_type)
425 {
426 do
427 field = fields[i--];
428 while (i >= lo && DECL_NAME (fields[i]) == name);
429 if (TREE_CODE (field) != TYPE_DECL
430 && !DECL_CLASS_TEMPLATE_P (field))
431 field = NULL_TREE;
432 }
433 else
434 {
435 do
436 field = fields[i++];
437 while (i < hi && DECL_NAME (fields[i]) == name);
438 }
439 return field;
440 }
441 }
442 return NULL_TREE;
443 }
444
445 field = TYPE_FIELDS (type);
446
447 #ifdef GATHER_STATISTICS
448 n_calls_lookup_field_1++;
449 #endif /* GATHER_STATISTICS */
450 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
451 {
452 #ifdef GATHER_STATISTICS
453 n_fields_searched++;
454 #endif /* GATHER_STATISTICS */
455 gcc_assert (DECL_P (field));
456 if (DECL_NAME (field) == NULL_TREE
457 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
458 {
459 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
460 if (temp)
461 return temp;
462 }
463 if (TREE_CODE (field) == USING_DECL)
464 {
465 /* We generally treat class-scope using-declarations as
466 ARM-style access specifications, because support for the
467 ISO semantics has not been implemented. So, in general,
468 there's no reason to return a USING_DECL, and the rest of
469 the compiler cannot handle that. Once the class is
470 defined, USING_DECLs are purged from TYPE_FIELDS; see
471 handle_using_decl. However, we make special efforts to
472 make using-declarations in class templates and class
473 template partial specializations work correctly. */
474 if (!DECL_DEPENDENT_P (field))
475 continue;
476 }
477
478 if (DECL_NAME (field) == name
479 && (!want_type
480 || TREE_CODE (field) == TYPE_DECL
481 || DECL_CLASS_TEMPLATE_P (field)))
482 return field;
483 }
484 /* Not found. */
485 if (name == vptr_identifier)
486 {
487 /* Give the user what s/he thinks s/he wants. */
488 if (TYPE_POLYMORPHIC_P (type))
489 return TYPE_VFIELD (type);
490 }
491 return NULL_TREE;
492 }
493
494 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
495 NAMESPACE_DECL corresponding to the innermost non-block scope. */
496
497 tree
498 current_scope (void)
499 {
500 /* There are a number of cases we need to be aware of here:
501 current_class_type current_function_decl
502 global NULL NULL
503 fn-local NULL SET
504 class-local SET NULL
505 class->fn SET SET
506 fn->class SET SET
507
508 Those last two make life interesting. If we're in a function which is
509 itself inside a class, we need decls to go into the fn's decls (our
510 second case below). But if we're in a class and the class itself is
511 inside a function, we need decls to go into the decls for the class. To
512 achieve this last goal, we must see if, when both current_class_ptr and
513 current_function_decl are set, the class was declared inside that
514 function. If so, we know to put the decls into the class's scope. */
515 if (current_function_decl && current_class_type
516 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
517 && same_type_p (DECL_CONTEXT (current_function_decl),
518 current_class_type))
519 || (DECL_FRIEND_CONTEXT (current_function_decl)
520 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
521 current_class_type))))
522 return current_function_decl;
523 if (current_class_type)
524 return current_class_type;
525 if (current_function_decl)
526 return current_function_decl;
527 return current_namespace;
528 }
529
530 /* Returns nonzero if we are currently in a function scope. Note
531 that this function returns zero if we are within a local class, but
532 not within a member function body of the local class. */
533
534 int
535 at_function_scope_p (void)
536 {
537 tree cs = current_scope ();
538 return cs && TREE_CODE (cs) == FUNCTION_DECL;
539 }
540
541 /* Returns true if the innermost active scope is a class scope. */
542
543 bool
544 at_class_scope_p (void)
545 {
546 tree cs = current_scope ();
547 return cs && TYPE_P (cs);
548 }
549
550 /* Returns true if the innermost active scope is a namespace scope. */
551
552 bool
553 at_namespace_scope_p (void)
554 {
555 tree cs = current_scope ();
556 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
557 }
558
559 /* Return the scope of DECL, as appropriate when doing name-lookup. */
560
561 tree
562 context_for_name_lookup (tree decl)
563 {
564 /* [class.union]
565
566 For the purposes of name lookup, after the anonymous union
567 definition, the members of the anonymous union are considered to
568 have been defined in the scope in which the anonymous union is
569 declared. */
570 tree context = DECL_CONTEXT (decl);
571
572 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
573 context = TYPE_CONTEXT (context);
574 if (!context)
575 context = global_namespace;
576
577 return context;
578 }
579
580 /* The accessibility routines use BINFO_ACCESS for scratch space
581 during the computation of the accessibility of some declaration. */
582
583 #define BINFO_ACCESS(NODE) \
584 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
585
586 /* Set the access associated with NODE to ACCESS. */
587
588 #define SET_BINFO_ACCESS(NODE, ACCESS) \
589 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
590 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
591
592 /* Called from access_in_type via dfs_walk. Calculate the access to
593 DATA (which is really a DECL) in BINFO. */
594
595 static tree
596 dfs_access_in_type (tree binfo, void *data)
597 {
598 tree decl = (tree) data;
599 tree type = BINFO_TYPE (binfo);
600 access_kind access = ak_none;
601
602 if (context_for_name_lookup (decl) == type)
603 {
604 /* If we have descended to the scope of DECL, just note the
605 appropriate access. */
606 if (TREE_PRIVATE (decl))
607 access = ak_private;
608 else if (TREE_PROTECTED (decl))
609 access = ak_protected;
610 else
611 access = ak_public;
612 }
613 else
614 {
615 /* First, check for an access-declaration that gives us more
616 access to the DECL. The CONST_DECL for an enumeration
617 constant will not have DECL_LANG_SPECIFIC, and thus no
618 DECL_ACCESS. */
619 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
620 {
621 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
622
623 if (decl_access)
624 {
625 decl_access = TREE_VALUE (decl_access);
626
627 if (decl_access == access_public_node)
628 access = ak_public;
629 else if (decl_access == access_protected_node)
630 access = ak_protected;
631 else if (decl_access == access_private_node)
632 access = ak_private;
633 else
634 gcc_unreachable ();
635 }
636 }
637
638 if (!access)
639 {
640 int i;
641 tree base_binfo;
642 VEC(tree,gc) *accesses;
643
644 /* Otherwise, scan our baseclasses, and pick the most favorable
645 access. */
646 accesses = BINFO_BASE_ACCESSES (binfo);
647 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
648 {
649 tree base_access = VEC_index (tree, accesses, i);
650 access_kind base_access_now = BINFO_ACCESS (base_binfo);
651
652 if (base_access_now == ak_none || base_access_now == ak_private)
653 /* If it was not accessible in the base, or only
654 accessible as a private member, we can't access it
655 all. */
656 base_access_now = ak_none;
657 else if (base_access == access_protected_node)
658 /* Public and protected members in the base become
659 protected here. */
660 base_access_now = ak_protected;
661 else if (base_access == access_private_node)
662 /* Public and protected members in the base become
663 private here. */
664 base_access_now = ak_private;
665
666 /* See if the new access, via this base, gives more
667 access than our previous best access. */
668 if (base_access_now != ak_none
669 && (access == ak_none || base_access_now < access))
670 {
671 access = base_access_now;
672
673 /* If the new access is public, we can't do better. */
674 if (access == ak_public)
675 break;
676 }
677 }
678 }
679 }
680
681 /* Note the access to DECL in TYPE. */
682 SET_BINFO_ACCESS (binfo, access);
683
684 return NULL_TREE;
685 }
686
687 /* Return the access to DECL in TYPE. */
688
689 static access_kind
690 access_in_type (tree type, tree decl)
691 {
692 tree binfo = TYPE_BINFO (type);
693
694 /* We must take into account
695
696 [class.paths]
697
698 If a name can be reached by several paths through a multiple
699 inheritance graph, the access is that of the path that gives
700 most access.
701
702 The algorithm we use is to make a post-order depth-first traversal
703 of the base-class hierarchy. As we come up the tree, we annotate
704 each node with the most lenient access. */
705 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
706
707 return BINFO_ACCESS (binfo);
708 }
709
710 /* Returns nonzero if it is OK to access DECL through an object
711 indicated by BINFO in the context of DERIVED. */
712
713 static int
714 protected_accessible_p (tree decl, tree derived, tree binfo)
715 {
716 access_kind access;
717
718 /* We're checking this clause from [class.access.base]
719
720 m as a member of N is protected, and the reference occurs in a
721 member or friend of class N, or in a member or friend of a
722 class P derived from N, where m as a member of P is public, private
723 or protected.
724
725 Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */
726
727 /* If DERIVED isn't derived from N, then it can't be a P. */
728 if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived))
729 return 0;
730
731 access = access_in_type (derived, decl);
732
733 /* If m is inaccessible in DERIVED, then it's not a P. */
734 if (access == ak_none)
735 return 0;
736
737 /* [class.protected]
738
739 When a friend or a member function of a derived class references
740 a protected nonstatic member of a base class, an access check
741 applies in addition to those described earlier in clause
742 _class.access_) Except when forming a pointer to member
743 (_expr.unary.op_), the access must be through a pointer to,
744 reference to, or object of the derived class itself (or any class
745 derived from that class) (_expr.ref_). If the access is to form
746 a pointer to member, the nested-name-specifier shall name the
747 derived class (or any class derived from that class). */
748 if (DECL_NONSTATIC_MEMBER_P (decl))
749 {
750 /* We can tell through what the reference is occurring by
751 chasing BINFO up to the root. */
752 tree t = binfo;
753 while (BINFO_INHERITANCE_CHAIN (t))
754 t = BINFO_INHERITANCE_CHAIN (t);
755
756 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
757 return 0;
758 }
759
760 return 1;
761 }
762
763 /* Returns nonzero if SCOPE is a friend of a type which would be able
764 to access DECL through the object indicated by BINFO. */
765
766 static int
767 friend_accessible_p (tree scope, tree decl, tree binfo)
768 {
769 tree befriending_classes;
770 tree t;
771
772 if (!scope)
773 return 0;
774
775 if (TREE_CODE (scope) == FUNCTION_DECL
776 || DECL_FUNCTION_TEMPLATE_P (scope))
777 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
778 else if (TYPE_P (scope))
779 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
780 else
781 return 0;
782
783 for (t = befriending_classes; t; t = TREE_CHAIN (t))
784 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
785 return 1;
786
787 /* Nested classes have the same access as their enclosing types, as
788 per DR 45 (this is a change from the standard). */
789 if (TYPE_P (scope))
790 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
791 if (protected_accessible_p (decl, t, binfo))
792 return 1;
793
794 if (TREE_CODE (scope) == FUNCTION_DECL
795 || DECL_FUNCTION_TEMPLATE_P (scope))
796 {
797 /* Perhaps this SCOPE is a member of a class which is a
798 friend. */
799 if (DECL_CLASS_SCOPE_P (scope)
800 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
801 return 1;
802
803 /* Or an instantiation of something which is a friend. */
804 if (DECL_TEMPLATE_INFO (scope))
805 {
806 int ret;
807 /* Increment processing_template_decl to make sure that
808 dependent_type_p works correctly. */
809 ++processing_template_decl;
810 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
811 --processing_template_decl;
812 return ret;
813 }
814 }
815
816 return 0;
817 }
818
819 /* Called via dfs_walk_once_accessible from accessible_p */
820
821 static tree
822 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
823 {
824 if (BINFO_ACCESS (binfo) != ak_none)
825 {
826 tree scope = current_scope ();
827 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
828 && is_friend (BINFO_TYPE (binfo), scope))
829 return binfo;
830 }
831
832 return NULL_TREE;
833 }
834
835 /* DECL is a declaration from a base class of TYPE, which was the
836 class used to name DECL. Return nonzero if, in the current
837 context, DECL is accessible. If TYPE is actually a BINFO node,
838 then we can tell in what context the access is occurring by looking
839 at the most derived class along the path indicated by BINFO. If
840 CONSIDER_LOCAL is true, do consider special access the current
841 scope or friendship thereof we might have. */
842
843 int
844 accessible_p (tree type, tree decl, bool consider_local_p)
845 {
846 tree binfo;
847 tree scope;
848 access_kind access;
849
850 /* Nonzero if it's OK to access DECL if it has protected
851 accessibility in TYPE. */
852 int protected_ok = 0;
853
854 /* If this declaration is in a block or namespace scope, there's no
855 access control. */
856 if (!TYPE_P (context_for_name_lookup (decl)))
857 return 1;
858
859 /* There is no need to perform access checks inside a thunk. */
860 scope = current_scope ();
861 if (scope && DECL_THUNK_P (scope))
862 return 1;
863
864 /* In a template declaration, we cannot be sure whether the
865 particular specialization that is instantiated will be a friend
866 or not. Therefore, all access checks are deferred until
867 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
868 parameter list for a template (because we may see dependent types
869 in default arguments for template parameters), and access
870 checking should be performed in the outermost parameter list. */
871 if (processing_template_decl
872 && (!processing_template_parmlist || processing_template_decl > 1))
873 return 1;
874
875 if (!TYPE_P (type))
876 {
877 binfo = type;
878 type = BINFO_TYPE (type);
879 }
880 else
881 binfo = TYPE_BINFO (type);
882
883 /* [class.access.base]
884
885 A member m is accessible when named in class N if
886
887 --m as a member of N is public, or
888
889 --m as a member of N is private, and the reference occurs in a
890 member or friend of class N, or
891
892 --m as a member of N is protected, and the reference occurs in a
893 member or friend of class N, or in a member or friend of a
894 class P derived from N, where m as a member of P is private or
895 protected, or
896
897 --there exists a base class B of N that is accessible at the point
898 of reference, and m is accessible when named in class B.
899
900 We walk the base class hierarchy, checking these conditions. */
901
902 if (consider_local_p)
903 {
904 /* Figure out where the reference is occurring. Check to see if
905 DECL is private or protected in this scope, since that will
906 determine whether protected access is allowed. */
907 if (current_class_type)
908 protected_ok = protected_accessible_p (decl,
909 current_class_type, binfo);
910
911 /* Now, loop through the classes of which we are a friend. */
912 if (!protected_ok)
913 protected_ok = friend_accessible_p (scope, decl, binfo);
914 }
915
916 /* Standardize the binfo that access_in_type will use. We don't
917 need to know what path was chosen from this point onwards. */
918 binfo = TYPE_BINFO (type);
919
920 /* Compute the accessibility of DECL in the class hierarchy
921 dominated by type. */
922 access = access_in_type (type, decl);
923 if (access == ak_public
924 || (access == ak_protected && protected_ok))
925 return 1;
926
927 if (!consider_local_p)
928 return 0;
929
930 /* Walk the hierarchy again, looking for a base class that allows
931 access. */
932 return dfs_walk_once_accessible (binfo, /*friends=*/true,
933 NULL, dfs_accessible_post, NULL)
934 != NULL_TREE;
935 }
936
937 struct lookup_field_info {
938 /* The type in which we're looking. */
939 tree type;
940 /* The name of the field for which we're looking. */
941 tree name;
942 /* If non-NULL, the current result of the lookup. */
943 tree rval;
944 /* The path to RVAL. */
945 tree rval_binfo;
946 /* If non-NULL, the lookup was ambiguous, and this is a list of the
947 candidates. */
948 tree ambiguous;
949 /* If nonzero, we are looking for types, not data members. */
950 int want_type;
951 /* If something went wrong, a message indicating what. */
952 const char *errstr;
953 };
954
955 /* Nonzero for a class member means that it is shared between all objects
956 of that class.
957
958 [class.member.lookup]:If the resulting set of declarations are not all
959 from sub-objects of the same type, or the set has a nonstatic member
960 and includes members from distinct sub-objects, there is an ambiguity
961 and the program is ill-formed.
962
963 This function checks that T contains no nonstatic members. */
964
965 int
966 shared_member_p (tree t)
967 {
968 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
969 || TREE_CODE (t) == CONST_DECL)
970 return 1;
971 if (is_overloaded_fn (t))
972 {
973 t = get_fns (t);
974 for (; t; t = OVL_NEXT (t))
975 {
976 tree fn = OVL_CURRENT (t);
977 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
978 return 0;
979 }
980 return 1;
981 }
982 return 0;
983 }
984
985 /* Routine to see if the sub-object denoted by the binfo PARENT can be
986 found as a base class and sub-object of the object denoted by
987 BINFO. */
988
989 static int
990 is_subobject_of_p (tree parent, tree binfo)
991 {
992 tree probe;
993
994 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
995 {
996 if (probe == binfo)
997 return 1;
998 if (BINFO_VIRTUAL_P (probe))
999 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1000 != NULL_TREE);
1001 }
1002 return 0;
1003 }
1004
1005 /* DATA is really a struct lookup_field_info. Look for a field with
1006 the name indicated there in BINFO. If this function returns a
1007 non-NULL value it is the result of the lookup. Called from
1008 lookup_field via breadth_first_search. */
1009
1010 static tree
1011 lookup_field_r (tree binfo, void *data)
1012 {
1013 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1014 tree type = BINFO_TYPE (binfo);
1015 tree nval = NULL_TREE;
1016
1017 /* If this is a dependent base, don't look in it. */
1018 if (BINFO_DEPENDENT_BASE_P (binfo))
1019 return NULL_TREE;
1020
1021 /* If this base class is hidden by the best-known value so far, we
1022 don't need to look. */
1023 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1024 && !BINFO_VIRTUAL_P (binfo))
1025 return dfs_skip_bases;
1026
1027 /* First, look for a function. There can't be a function and a data
1028 member with the same name, and if there's a function and a type
1029 with the same name, the type is hidden by the function. */
1030 if (!lfi->want_type)
1031 {
1032 int idx = lookup_fnfields_1 (type, lfi->name);
1033 if (idx >= 0)
1034 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1035 }
1036
1037 if (!nval)
1038 /* Look for a data member or type. */
1039 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1040
1041 /* If there is no declaration with the indicated name in this type,
1042 then there's nothing to do. */
1043 if (!nval)
1044 goto done;
1045
1046 /* If we're looking up a type (as with an elaborated type specifier)
1047 we ignore all non-types we find. */
1048 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1049 && !DECL_CLASS_TEMPLATE_P (nval))
1050 {
1051 if (lfi->name == TYPE_IDENTIFIER (type))
1052 {
1053 /* If the aggregate has no user defined constructors, we allow
1054 it to have fields with the same name as the enclosing type.
1055 If we are looking for that name, find the corresponding
1056 TYPE_DECL. */
1057 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1058 if (DECL_NAME (nval) == lfi->name
1059 && TREE_CODE (nval) == TYPE_DECL)
1060 break;
1061 }
1062 else
1063 nval = NULL_TREE;
1064 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1065 {
1066 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1067 lfi->name);
1068 if (e != NULL)
1069 nval = TYPE_MAIN_DECL (e->type);
1070 else
1071 goto done;
1072 }
1073 }
1074
1075 /* If the lookup already found a match, and the new value doesn't
1076 hide the old one, we might have an ambiguity. */
1077 if (lfi->rval_binfo
1078 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1079
1080 {
1081 if (nval == lfi->rval && shared_member_p (nval))
1082 /* The two things are really the same. */
1083 ;
1084 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1085 /* The previous value hides the new one. */
1086 ;
1087 else
1088 {
1089 /* We have a real ambiguity. We keep a chain of all the
1090 candidates. */
1091 if (!lfi->ambiguous && lfi->rval)
1092 {
1093 /* This is the first time we noticed an ambiguity. Add
1094 what we previously thought was a reasonable candidate
1095 to the list. */
1096 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1097 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1098 }
1099
1100 /* Add the new value. */
1101 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1102 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1103 lfi->errstr = G_("request for member %qD is ambiguous");
1104 }
1105 }
1106 else
1107 {
1108 lfi->rval = nval;
1109 lfi->rval_binfo = binfo;
1110 }
1111
1112 done:
1113 /* Don't look for constructors or destructors in base classes. */
1114 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1115 return dfs_skip_bases;
1116 return NULL_TREE;
1117 }
1118
1119 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1120 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1121 FUNCTIONS, and OPTYPE respectively. */
1122
1123 tree
1124 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1125 {
1126 tree baselink;
1127
1128 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1129 || TREE_CODE (functions) == TEMPLATE_DECL
1130 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1131 || TREE_CODE (functions) == OVERLOAD);
1132 gcc_assert (!optype || TYPE_P (optype));
1133 gcc_assert (TREE_TYPE (functions));
1134
1135 baselink = make_node (BASELINK);
1136 TREE_TYPE (baselink) = TREE_TYPE (functions);
1137 BASELINK_BINFO (baselink) = binfo;
1138 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1139 BASELINK_FUNCTIONS (baselink) = functions;
1140 BASELINK_OPTYPE (baselink) = optype;
1141
1142 return baselink;
1143 }
1144
1145 /* Look for a member named NAME in an inheritance lattice dominated by
1146 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1147 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1148 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1149 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1150 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1151 TREE_VALUEs are the list of ambiguous candidates.
1152
1153 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1154
1155 If nothing can be found return NULL_TREE and do not issue an error. */
1156
1157 tree
1158 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1159 {
1160 tree rval, rval_binfo = NULL_TREE;
1161 tree type = NULL_TREE, basetype_path = NULL_TREE;
1162 struct lookup_field_info lfi;
1163
1164 /* rval_binfo is the binfo associated with the found member, note,
1165 this can be set with useful information, even when rval is not
1166 set, because it must deal with ALL members, not just non-function
1167 members. It is used for ambiguity checking and the hidden
1168 checks. Whereas rval is only set if a proper (not hidden)
1169 non-function member is found. */
1170
1171 const char *errstr = 0;
1172
1173 if (name == error_mark_node)
1174 return NULL_TREE;
1175
1176 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1177
1178 if (TREE_CODE (xbasetype) == TREE_BINFO)
1179 {
1180 type = BINFO_TYPE (xbasetype);
1181 basetype_path = xbasetype;
1182 }
1183 else
1184 {
1185 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1186 return NULL_TREE;
1187 type = xbasetype;
1188 xbasetype = NULL_TREE;
1189 }
1190
1191 type = complete_type (type);
1192 if (!basetype_path)
1193 basetype_path = TYPE_BINFO (type);
1194
1195 if (!basetype_path)
1196 return NULL_TREE;
1197
1198 #ifdef GATHER_STATISTICS
1199 n_calls_lookup_field++;
1200 #endif /* GATHER_STATISTICS */
1201
1202 memset (&lfi, 0, sizeof (lfi));
1203 lfi.type = type;
1204 lfi.name = name;
1205 lfi.want_type = want_type;
1206 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1207 rval = lfi.rval;
1208 rval_binfo = lfi.rval_binfo;
1209 if (rval_binfo)
1210 type = BINFO_TYPE (rval_binfo);
1211 errstr = lfi.errstr;
1212
1213 /* If we are not interested in ambiguities, don't report them;
1214 just return NULL_TREE. */
1215 if (!protect && lfi.ambiguous)
1216 return NULL_TREE;
1217
1218 if (protect == 2)
1219 {
1220 if (lfi.ambiguous)
1221 return lfi.ambiguous;
1222 else
1223 protect = 0;
1224 }
1225
1226 /* [class.access]
1227
1228 In the case of overloaded function names, access control is
1229 applied to the function selected by overloaded resolution.
1230
1231 We cannot check here, even if RVAL is only a single non-static
1232 member function, since we do not know what the "this" pointer
1233 will be. For:
1234
1235 class A { protected: void f(); };
1236 class B : public A {
1237 void g(A *p) {
1238 f(); // OK
1239 p->f(); // Not OK.
1240 }
1241 };
1242
1243 only the first call to "f" is valid. However, if the function is
1244 static, we can check. */
1245 if (rval && protect
1246 && !really_overloaded_fn (rval)
1247 && !(TREE_CODE (rval) == FUNCTION_DECL
1248 && DECL_NONSTATIC_MEMBER_FUNCTION_P (rval)))
1249 perform_or_defer_access_check (basetype_path, rval, rval);
1250
1251 if (errstr && protect)
1252 {
1253 error (errstr, name, type);
1254 if (lfi.ambiguous)
1255 print_candidates (lfi.ambiguous);
1256 rval = error_mark_node;
1257 }
1258
1259 if (rval && is_overloaded_fn (rval))
1260 rval = build_baselink (rval_binfo, basetype_path, rval,
1261 (IDENTIFIER_TYPENAME_P (name)
1262 ? TREE_TYPE (name): NULL_TREE));
1263 return rval;
1264 }
1265
1266 /* Like lookup_member, except that if we find a function member we
1267 return NULL_TREE. */
1268
1269 tree
1270 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1271 {
1272 tree rval = lookup_member (xbasetype, name, protect, want_type);
1273
1274 /* Ignore functions, but propagate the ambiguity list. */
1275 if (!error_operand_p (rval)
1276 && (rval && BASELINK_P (rval)))
1277 return NULL_TREE;
1278
1279 return rval;
1280 }
1281
1282 /* Like lookup_member, except that if we find a non-function member we
1283 return NULL_TREE. */
1284
1285 tree
1286 lookup_fnfields (tree xbasetype, tree name, int protect)
1287 {
1288 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1289
1290 /* Ignore non-functions, but propagate the ambiguity list. */
1291 if (!error_operand_p (rval)
1292 && (rval && !BASELINK_P (rval)))
1293 return NULL_TREE;
1294
1295 return rval;
1296 }
1297
1298 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1299 corresponding to "operator TYPE ()", or -1 if there is no such
1300 operator. Only CLASS_TYPE itself is searched; this routine does
1301 not scan the base classes of CLASS_TYPE. */
1302
1303 static int
1304 lookup_conversion_operator (tree class_type, tree type)
1305 {
1306 int tpl_slot = -1;
1307
1308 if (TYPE_HAS_CONVERSION (class_type))
1309 {
1310 int i;
1311 tree fn;
1312 VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1313
1314 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1315 VEC_iterate (tree, methods, i, fn); ++i)
1316 {
1317 /* All the conversion operators come near the beginning of
1318 the class. Therefore, if FN is not a conversion
1319 operator, there is no matching conversion operator in
1320 CLASS_TYPE. */
1321 fn = OVL_CURRENT (fn);
1322 if (!DECL_CONV_FN_P (fn))
1323 break;
1324
1325 if (TREE_CODE (fn) == TEMPLATE_DECL)
1326 /* All the templated conversion functions are on the same
1327 slot, so remember it. */
1328 tpl_slot = i;
1329 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1330 return i;
1331 }
1332 }
1333
1334 return tpl_slot;
1335 }
1336
1337 /* TYPE is a class type. Return the index of the fields within
1338 the method vector with name NAME, or -1 if no such field exists. */
1339
1340 int
1341 lookup_fnfields_1 (tree type, tree name)
1342 {
1343 VEC(tree,gc) *method_vec;
1344 tree fn;
1345 tree tmp;
1346 size_t i;
1347
1348 if (!CLASS_TYPE_P (type))
1349 return -1;
1350
1351 if (COMPLETE_TYPE_P (type))
1352 {
1353 if ((name == ctor_identifier
1354 || name == base_ctor_identifier
1355 || name == complete_ctor_identifier))
1356 {
1357 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1358 lazily_declare_fn (sfk_constructor, type);
1359 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1360 lazily_declare_fn (sfk_copy_constructor, type);
1361 if (CLASSTYPE_LAZY_MOVE_CTOR (type))
1362 lazily_declare_fn (sfk_move_constructor, type);
1363 }
1364 else if (name == ansi_assopname (NOP_EXPR))
1365 {
1366 if (CLASSTYPE_LAZY_COPY_ASSIGN (type))
1367 lazily_declare_fn (sfk_copy_assignment, type);
1368 if (CLASSTYPE_LAZY_MOVE_ASSIGN (type))
1369 lazily_declare_fn (sfk_move_assignment, type);
1370 }
1371 else if ((name == dtor_identifier
1372 || name == base_dtor_identifier
1373 || name == complete_dtor_identifier
1374 || name == deleting_dtor_identifier)
1375 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1376 lazily_declare_fn (sfk_destructor, type);
1377 }
1378
1379 method_vec = CLASSTYPE_METHOD_VEC (type);
1380 if (!method_vec)
1381 return -1;
1382
1383 #ifdef GATHER_STATISTICS
1384 n_calls_lookup_fnfields_1++;
1385 #endif /* GATHER_STATISTICS */
1386
1387 /* Constructors are first... */
1388 if (name == ctor_identifier)
1389 {
1390 fn = CLASSTYPE_CONSTRUCTORS (type);
1391 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1392 }
1393 /* and destructors are second. */
1394 if (name == dtor_identifier)
1395 {
1396 fn = CLASSTYPE_DESTRUCTORS (type);
1397 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1398 }
1399 if (IDENTIFIER_TYPENAME_P (name))
1400 return lookup_conversion_operator (type, TREE_TYPE (name));
1401
1402 /* Skip the conversion operators. */
1403 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1404 VEC_iterate (tree, method_vec, i, fn);
1405 ++i)
1406 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1407 break;
1408
1409 /* If the type is complete, use binary search. */
1410 if (COMPLETE_TYPE_P (type))
1411 {
1412 int lo;
1413 int hi;
1414
1415 lo = i;
1416 hi = VEC_length (tree, method_vec);
1417 while (lo < hi)
1418 {
1419 i = (lo + hi) / 2;
1420
1421 #ifdef GATHER_STATISTICS
1422 n_outer_fields_searched++;
1423 #endif /* GATHER_STATISTICS */
1424
1425 tmp = VEC_index (tree, method_vec, i);
1426 tmp = DECL_NAME (OVL_CURRENT (tmp));
1427 if (tmp > name)
1428 hi = i;
1429 else if (tmp < name)
1430 lo = i + 1;
1431 else
1432 return i;
1433 }
1434 }
1435 else
1436 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1437 {
1438 #ifdef GATHER_STATISTICS
1439 n_outer_fields_searched++;
1440 #endif /* GATHER_STATISTICS */
1441 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1442 return i;
1443 }
1444
1445 return -1;
1446 }
1447
1448 /* TYPE is a class type. Return the field within the method vector with
1449 name NAME, or NULL_TREE if no such field exists. */
1450
1451 tree
1452 lookup_fnfields_slot (tree type, tree name)
1453 {
1454 int ix = lookup_fnfields_1 (type, name);
1455 if (ix < 0)
1456 return NULL_TREE;
1457 return VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1458 }
1459
1460 /* Like lookup_fnfields_1, except that the name is extracted from
1461 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1462
1463 int
1464 class_method_index_for_fn (tree class_type, tree function)
1465 {
1466 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1467 || DECL_FUNCTION_TEMPLATE_P (function));
1468
1469 return lookup_fnfields_1 (class_type,
1470 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1471 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1472 DECL_NAME (function));
1473 }
1474
1475
1476 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1477 the class or namespace used to qualify the name. CONTEXT_CLASS is
1478 the class corresponding to the object in which DECL will be used.
1479 Return a possibly modified version of DECL that takes into account
1480 the CONTEXT_CLASS.
1481
1482 In particular, consider an expression like `B::m' in the context of
1483 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1484 then the most derived class indicated by the BASELINK_BINFO will be
1485 `B', not `D'. This function makes that adjustment. */
1486
1487 tree
1488 adjust_result_of_qualified_name_lookup (tree decl,
1489 tree qualifying_scope,
1490 tree context_class)
1491 {
1492 if (context_class && context_class != error_mark_node
1493 && CLASS_TYPE_P (context_class)
1494 && CLASS_TYPE_P (qualifying_scope)
1495 && DERIVED_FROM_P (qualifying_scope, context_class)
1496 && BASELINK_P (decl))
1497 {
1498 tree base;
1499
1500 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1501 Because we do not yet know which function will be chosen by
1502 overload resolution, we cannot yet check either accessibility
1503 or ambiguity -- in either case, the choice of a static member
1504 function might make the usage valid. */
1505 base = lookup_base (context_class, qualifying_scope,
1506 ba_unique | ba_quiet, NULL);
1507 if (base)
1508 {
1509 BASELINK_ACCESS_BINFO (decl) = base;
1510 BASELINK_BINFO (decl)
1511 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1512 ba_unique | ba_quiet,
1513 NULL);
1514 }
1515 }
1516
1517 return decl;
1518 }
1519
1520 \f
1521 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1522 PRE_FN is called in preorder, while POST_FN is called in postorder.
1523 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1524 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1525 that value is immediately returned and the walk is terminated. One
1526 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1527 POST_FN are passed the binfo to examine and the caller's DATA
1528 value. All paths are walked, thus virtual and morally virtual
1529 binfos can be multiply walked. */
1530
1531 tree
1532 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1533 tree (*post_fn) (tree, void *), void *data)
1534 {
1535 tree rval;
1536 unsigned ix;
1537 tree base_binfo;
1538
1539 /* Call the pre-order walking function. */
1540 if (pre_fn)
1541 {
1542 rval = pre_fn (binfo, data);
1543 if (rval)
1544 {
1545 if (rval == dfs_skip_bases)
1546 goto skip_bases;
1547 return rval;
1548 }
1549 }
1550
1551 /* Find the next child binfo to walk. */
1552 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1553 {
1554 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1555 if (rval)
1556 return rval;
1557 }
1558
1559 skip_bases:
1560 /* Call the post-order walking function. */
1561 if (post_fn)
1562 {
1563 rval = post_fn (binfo, data);
1564 gcc_assert (rval != dfs_skip_bases);
1565 return rval;
1566 }
1567
1568 return NULL_TREE;
1569 }
1570
1571 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1572 that binfos are walked at most once. */
1573
1574 static tree
1575 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1576 tree (*post_fn) (tree, void *), void *data)
1577 {
1578 tree rval;
1579 unsigned ix;
1580 tree base_binfo;
1581
1582 /* Call the pre-order walking function. */
1583 if (pre_fn)
1584 {
1585 rval = pre_fn (binfo, data);
1586 if (rval)
1587 {
1588 if (rval == dfs_skip_bases)
1589 goto skip_bases;
1590
1591 return rval;
1592 }
1593 }
1594
1595 /* Find the next child binfo to walk. */
1596 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1597 {
1598 if (BINFO_VIRTUAL_P (base_binfo))
1599 {
1600 if (BINFO_MARKED (base_binfo))
1601 continue;
1602 BINFO_MARKED (base_binfo) = 1;
1603 }
1604
1605 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1606 if (rval)
1607 return rval;
1608 }
1609
1610 skip_bases:
1611 /* Call the post-order walking function. */
1612 if (post_fn)
1613 {
1614 rval = post_fn (binfo, data);
1615 gcc_assert (rval != dfs_skip_bases);
1616 return rval;
1617 }
1618
1619 return NULL_TREE;
1620 }
1621
1622 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1623 BINFO. */
1624
1625 static void
1626 dfs_unmark_r (tree binfo)
1627 {
1628 unsigned ix;
1629 tree base_binfo;
1630
1631 /* Process the basetypes. */
1632 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1633 {
1634 if (BINFO_VIRTUAL_P (base_binfo))
1635 {
1636 if (!BINFO_MARKED (base_binfo))
1637 continue;
1638 BINFO_MARKED (base_binfo) = 0;
1639 }
1640 /* Only walk, if it can contain more virtual bases. */
1641 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1642 dfs_unmark_r (base_binfo);
1643 }
1644 }
1645
1646 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1647 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1648 For diamond shaped hierarchies we must mark the virtual bases, to
1649 avoid multiple walks. */
1650
1651 tree
1652 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1653 tree (*post_fn) (tree, void *), void *data)
1654 {
1655 static int active = 0; /* We must not be called recursively. */
1656 tree rval;
1657
1658 gcc_assert (pre_fn || post_fn);
1659 gcc_assert (!active);
1660 active++;
1661
1662 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1663 /* We are not diamond shaped, and therefore cannot encounter the
1664 same binfo twice. */
1665 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1666 else
1667 {
1668 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1669 if (!BINFO_INHERITANCE_CHAIN (binfo))
1670 {
1671 /* We are at the top of the hierarchy, and can use the
1672 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1673 bases. */
1674 VEC(tree,gc) *vbases;
1675 unsigned ix;
1676 tree base_binfo;
1677
1678 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1679 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1680 BINFO_MARKED (base_binfo) = 0;
1681 }
1682 else
1683 dfs_unmark_r (binfo);
1684 }
1685
1686 active--;
1687
1688 return rval;
1689 }
1690
1691 /* Worker function for dfs_walk_once_accessible. Behaves like
1692 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1693 access given by the current context should be considered, (b) ONCE
1694 indicates whether bases should be marked during traversal. */
1695
1696 static tree
1697 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1698 tree (*pre_fn) (tree, void *),
1699 tree (*post_fn) (tree, void *), void *data)
1700 {
1701 tree rval = NULL_TREE;
1702 unsigned ix;
1703 tree base_binfo;
1704
1705 /* Call the pre-order walking function. */
1706 if (pre_fn)
1707 {
1708 rval = pre_fn (binfo, data);
1709 if (rval)
1710 {
1711 if (rval == dfs_skip_bases)
1712 goto skip_bases;
1713
1714 return rval;
1715 }
1716 }
1717
1718 /* Find the next child binfo to walk. */
1719 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1720 {
1721 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1722
1723 if (mark && BINFO_MARKED (base_binfo))
1724 continue;
1725
1726 /* If the base is inherited via private or protected
1727 inheritance, then we can't see it, unless we are a friend of
1728 the current binfo. */
1729 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1730 {
1731 tree scope;
1732 if (!friends_p)
1733 continue;
1734 scope = current_scope ();
1735 if (!scope
1736 || TREE_CODE (scope) == NAMESPACE_DECL
1737 || !is_friend (BINFO_TYPE (binfo), scope))
1738 continue;
1739 }
1740
1741 if (mark)
1742 BINFO_MARKED (base_binfo) = 1;
1743
1744 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1745 pre_fn, post_fn, data);
1746 if (rval)
1747 return rval;
1748 }
1749
1750 skip_bases:
1751 /* Call the post-order walking function. */
1752 if (post_fn)
1753 {
1754 rval = post_fn (binfo, data);
1755 gcc_assert (rval != dfs_skip_bases);
1756 return rval;
1757 }
1758
1759 return NULL_TREE;
1760 }
1761
1762 /* Like dfs_walk_once except that only accessible bases are walked.
1763 FRIENDS_P indicates whether friendship of the local context
1764 should be considered when determining accessibility. */
1765
1766 static tree
1767 dfs_walk_once_accessible (tree binfo, bool friends_p,
1768 tree (*pre_fn) (tree, void *),
1769 tree (*post_fn) (tree, void *), void *data)
1770 {
1771 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1772 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1773 pre_fn, post_fn, data);
1774
1775 if (diamond_shaped)
1776 {
1777 if (!BINFO_INHERITANCE_CHAIN (binfo))
1778 {
1779 /* We are at the top of the hierarchy, and can use the
1780 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1781 bases. */
1782 VEC(tree,gc) *vbases;
1783 unsigned ix;
1784 tree base_binfo;
1785
1786 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1787 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1788 BINFO_MARKED (base_binfo) = 0;
1789 }
1790 else
1791 dfs_unmark_r (binfo);
1792 }
1793 return rval;
1794 }
1795
1796 /* Check that virtual overrider OVERRIDER is acceptable for base function
1797 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1798
1799 static int
1800 check_final_overrider (tree overrider, tree basefn)
1801 {
1802 tree over_type = TREE_TYPE (overrider);
1803 tree base_type = TREE_TYPE (basefn);
1804 tree over_return = TREE_TYPE (over_type);
1805 tree base_return = TREE_TYPE (base_type);
1806 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1807 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1808 int fail = 0;
1809
1810 if (DECL_INVALID_OVERRIDER_P (overrider))
1811 return 0;
1812
1813 if (same_type_p (base_return, over_return))
1814 /* OK */;
1815 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1816 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1817 && POINTER_TYPE_P (base_return)))
1818 {
1819 /* Potentially covariant. */
1820 unsigned base_quals, over_quals;
1821
1822 fail = !POINTER_TYPE_P (base_return);
1823 if (!fail)
1824 {
1825 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1826
1827 base_return = TREE_TYPE (base_return);
1828 over_return = TREE_TYPE (over_return);
1829 }
1830 base_quals = cp_type_quals (base_return);
1831 over_quals = cp_type_quals (over_return);
1832
1833 if ((base_quals & over_quals) != over_quals)
1834 fail = 1;
1835
1836 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1837 {
1838 tree binfo = lookup_base (over_return, base_return,
1839 ba_check | ba_quiet, NULL);
1840
1841 if (!binfo)
1842 fail = 1;
1843 }
1844 else if (!pedantic
1845 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1846 /* GNU extension, allow trivial pointer conversions such as
1847 converting to void *, or qualification conversion. */
1848 {
1849 /* can_convert will permit user defined conversion from a
1850 (reference to) class type. We must reject them. */
1851 over_return = non_reference (TREE_TYPE (over_type));
1852 if (CLASS_TYPE_P (over_return))
1853 fail = 2;
1854 else
1855 {
1856 warning (0, "deprecated covariant return type for %q+#D",
1857 overrider);
1858 warning (0, " overriding %q+#D", basefn);
1859 }
1860 }
1861 else
1862 fail = 2;
1863 }
1864 else
1865 fail = 2;
1866 if (!fail)
1867 /* OK */;
1868 else
1869 {
1870 if (fail == 1)
1871 {
1872 error ("invalid covariant return type for %q+#D", overrider);
1873 error (" overriding %q+#D", basefn);
1874 }
1875 else
1876 {
1877 error ("conflicting return type specified for %q+#D", overrider);
1878 error (" overriding %q+#D", basefn);
1879 }
1880 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1881 return 0;
1882 }
1883
1884 /* Check throw specifier is at least as strict. */
1885 if (!comp_except_specs (base_throw, over_throw, ce_derived))
1886 {
1887 error ("looser throw specifier for %q+#F", overrider);
1888 error (" overriding %q+#F", basefn);
1889 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1890 return 0;
1891 }
1892
1893 /* Check for conflicting type attributes. */
1894 if (!targetm.comp_type_attributes (over_type, base_type))
1895 {
1896 error ("conflicting type attributes specified for %q+#D", overrider);
1897 error (" overriding %q+#D", basefn);
1898 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1899 return 0;
1900 }
1901
1902 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
1903 {
1904 if (DECL_DELETED_FN (overrider))
1905 {
1906 error ("deleted function %q+D", overrider);
1907 error ("overriding non-deleted function %q+D", basefn);
1908 maybe_explain_implicit_delete (overrider);
1909 }
1910 else
1911 {
1912 error ("non-deleted function %q+D", overrider);
1913 error ("overriding deleted function %q+D", basefn);
1914 }
1915 return 0;
1916 }
1917 return 1;
1918 }
1919
1920 /* Given a class TYPE, and a function decl FNDECL, look for
1921 virtual functions in TYPE's hierarchy which FNDECL overrides.
1922 We do not look in TYPE itself, only its bases.
1923
1924 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1925 find that it overrides anything.
1926
1927 We check that every function which is overridden, is correctly
1928 overridden. */
1929
1930 int
1931 look_for_overrides (tree type, tree fndecl)
1932 {
1933 tree binfo = TYPE_BINFO (type);
1934 tree base_binfo;
1935 int ix;
1936 int found = 0;
1937
1938 /* A constructor for a class T does not override a function T
1939 in a base class. */
1940 if (DECL_CONSTRUCTOR_P (fndecl))
1941 return 0;
1942
1943 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1944 {
1945 tree basetype = BINFO_TYPE (base_binfo);
1946
1947 if (TYPE_POLYMORPHIC_P (basetype))
1948 found += look_for_overrides_r (basetype, fndecl);
1949 }
1950 return found;
1951 }
1952
1953 /* Look in TYPE for virtual functions with the same signature as
1954 FNDECL. */
1955
1956 tree
1957 look_for_overrides_here (tree type, tree fndecl)
1958 {
1959 int ix;
1960
1961 /* If there are no methods in TYPE (meaning that only implicitly
1962 declared methods will ever be provided for TYPE), then there are
1963 no virtual functions. */
1964 if (!CLASSTYPE_METHOD_VEC (type))
1965 return NULL_TREE;
1966
1967 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1968 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1969 else
1970 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1971 if (ix >= 0)
1972 {
1973 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1974
1975 for (; fns; fns = OVL_NEXT (fns))
1976 {
1977 tree fn = OVL_CURRENT (fns);
1978
1979 if (!DECL_VIRTUAL_P (fn))
1980 /* Not a virtual. */;
1981 else if (DECL_CONTEXT (fn) != type)
1982 /* Introduced with a using declaration. */;
1983 else if (DECL_STATIC_FUNCTION_P (fndecl))
1984 {
1985 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1986 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1987 if (compparms (TREE_CHAIN (btypes), dtypes))
1988 return fn;
1989 }
1990 else if (same_signature_p (fndecl, fn))
1991 return fn;
1992 }
1993 }
1994 return NULL_TREE;
1995 }
1996
1997 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1998 TYPE itself and its bases. */
1999
2000 static int
2001 look_for_overrides_r (tree type, tree fndecl)
2002 {
2003 tree fn = look_for_overrides_here (type, fndecl);
2004 if (fn)
2005 {
2006 if (DECL_STATIC_FUNCTION_P (fndecl))
2007 {
2008 /* A static member function cannot match an inherited
2009 virtual member function. */
2010 error ("%q+#D cannot be declared", fndecl);
2011 error (" since %q+#D declared in base class", fn);
2012 }
2013 else
2014 {
2015 /* It's definitely virtual, even if not explicitly set. */
2016 DECL_VIRTUAL_P (fndecl) = 1;
2017 check_final_overrider (fndecl, fn);
2018 }
2019 return 1;
2020 }
2021
2022 /* We failed to find one declared in this class. Look in its bases. */
2023 return look_for_overrides (type, fndecl);
2024 }
2025
2026 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2027
2028 static tree
2029 dfs_get_pure_virtuals (tree binfo, void *data)
2030 {
2031 tree type = (tree) data;
2032
2033 /* We're not interested in primary base classes; the derived class
2034 of which they are a primary base will contain the information we
2035 need. */
2036 if (!BINFO_PRIMARY_P (binfo))
2037 {
2038 tree virtuals;
2039
2040 for (virtuals = BINFO_VIRTUALS (binfo);
2041 virtuals;
2042 virtuals = TREE_CHAIN (virtuals))
2043 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2044 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2045 BV_FN (virtuals));
2046 }
2047
2048 return NULL_TREE;
2049 }
2050
2051 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2052
2053 void
2054 get_pure_virtuals (tree type)
2055 {
2056 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2057 is going to be overridden. */
2058 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2059 /* Now, run through all the bases which are not primary bases, and
2060 collect the pure virtual functions. We look at the vtable in
2061 each class to determine what pure virtual functions are present.
2062 (A primary base is not interesting because the derived class of
2063 which it is a primary base will contain vtable entries for the
2064 pure virtuals in the base class. */
2065 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2066 }
2067 \f
2068 /* Debug info for C++ classes can get very large; try to avoid
2069 emitting it everywhere.
2070
2071 Note that this optimization wins even when the target supports
2072 BINCL (if only slightly), and reduces the amount of work for the
2073 linker. */
2074
2075 void
2076 maybe_suppress_debug_info (tree t)
2077 {
2078 if (write_symbols == NO_DEBUG)
2079 return;
2080
2081 /* We might have set this earlier in cp_finish_decl. */
2082 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2083
2084 /* Always emit the information for each class every time. */
2085 if (flag_emit_class_debug_always)
2086 return;
2087
2088 /* If we already know how we're handling this class, handle debug info
2089 the same way. */
2090 if (CLASSTYPE_INTERFACE_KNOWN (t))
2091 {
2092 if (CLASSTYPE_INTERFACE_ONLY (t))
2093 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2094 /* else don't set it. */
2095 }
2096 /* If the class has a vtable, write out the debug info along with
2097 the vtable. */
2098 else if (TYPE_CONTAINS_VPTR_P (t))
2099 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2100
2101 /* Otherwise, just emit the debug info normally. */
2102 }
2103
2104 /* Note that we want debugging information for a base class of a class
2105 whose vtable is being emitted. Normally, this would happen because
2106 calling the constructor for a derived class implies calling the
2107 constructors for all bases, which involve initializing the
2108 appropriate vptr with the vtable for the base class; but in the
2109 presence of optimization, this initialization may be optimized
2110 away, so we tell finish_vtable_vardecl that we want the debugging
2111 information anyway. */
2112
2113 static tree
2114 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2115 {
2116 tree t = BINFO_TYPE (binfo);
2117
2118 if (CLASSTYPE_DEBUG_REQUESTED (t))
2119 return dfs_skip_bases;
2120
2121 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2122
2123 return NULL_TREE;
2124 }
2125
2126 /* Write out the debugging information for TYPE, whose vtable is being
2127 emitted. Also walk through our bases and note that we want to
2128 write out information for them. This avoids the problem of not
2129 writing any debug info for intermediate basetypes whose
2130 constructors, and thus the references to their vtables, and thus
2131 the vtables themselves, were optimized away. */
2132
2133 void
2134 note_debug_info_needed (tree type)
2135 {
2136 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2137 {
2138 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2139 rest_of_type_compilation (type, toplevel_bindings_p ());
2140 }
2141
2142 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2143 }
2144 \f
2145 void
2146 print_search_statistics (void)
2147 {
2148 #ifdef GATHER_STATISTICS
2149 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2150 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2151 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2152 n_outer_fields_searched, n_calls_lookup_fnfields);
2153 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2154 #else /* GATHER_STATISTICS */
2155 fprintf (stderr, "no search statistics\n");
2156 #endif /* GATHER_STATISTICS */
2157 }
2158
2159 void
2160 reinit_search_statistics (void)
2161 {
2162 #ifdef GATHER_STATISTICS
2163 n_fields_searched = 0;
2164 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2165 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2166 n_calls_get_base_type = 0;
2167 n_outer_fields_searched = 0;
2168 n_contexts_saved = 0;
2169 #endif /* GATHER_STATISTICS */
2170 }
2171
2172 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2173 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2174 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2175 bases have been encountered already in the tree walk. PARENT_CONVS
2176 is the list of lists of conversion functions that could hide CONV
2177 and OTHER_CONVS is the list of lists of conversion functions that
2178 could hide or be hidden by CONV, should virtualness be involved in
2179 the hierarchy. Merely checking the conversion op's name is not
2180 enough because two conversion operators to the same type can have
2181 different names. Return nonzero if we are visible. */
2182
2183 static int
2184 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2185 tree to_type, tree parent_convs, tree other_convs)
2186 {
2187 tree level, probe;
2188
2189 /* See if we are hidden by a parent conversion. */
2190 for (level = parent_convs; level; level = TREE_CHAIN (level))
2191 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2192 if (same_type_p (to_type, TREE_TYPE (probe)))
2193 return 0;
2194
2195 if (virtual_depth || virtualness)
2196 {
2197 /* In a virtual hierarchy, we could be hidden, or could hide a
2198 conversion function on the other_convs list. */
2199 for (level = other_convs; level; level = TREE_CHAIN (level))
2200 {
2201 int we_hide_them;
2202 int they_hide_us;
2203 tree *prev, other;
2204
2205 if (!(virtual_depth || TREE_STATIC (level)))
2206 /* Neither is morally virtual, so cannot hide each other. */
2207 continue;
2208
2209 if (!TREE_VALUE (level))
2210 /* They evaporated away already. */
2211 continue;
2212
2213 they_hide_us = (virtual_depth
2214 && original_binfo (binfo, TREE_PURPOSE (level)));
2215 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2216 && original_binfo (TREE_PURPOSE (level), binfo));
2217
2218 if (!(we_hide_them || they_hide_us))
2219 /* Neither is within the other, so no hiding can occur. */
2220 continue;
2221
2222 for (prev = &TREE_VALUE (level), other = *prev; other;)
2223 {
2224 if (same_type_p (to_type, TREE_TYPE (other)))
2225 {
2226 if (they_hide_us)
2227 /* We are hidden. */
2228 return 0;
2229
2230 if (we_hide_them)
2231 {
2232 /* We hide the other one. */
2233 other = TREE_CHAIN (other);
2234 *prev = other;
2235 continue;
2236 }
2237 }
2238 prev = &TREE_CHAIN (other);
2239 other = *prev;
2240 }
2241 }
2242 }
2243 return 1;
2244 }
2245
2246 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2247 of conversion functions, the first slot will be for the current
2248 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2249 of conversion functions from children of the current binfo,
2250 concatenated with conversions from elsewhere in the hierarchy --
2251 that list begins with OTHER_CONVS. Return a single list of lists
2252 containing only conversions from the current binfo and its
2253 children. */
2254
2255 static tree
2256 split_conversions (tree my_convs, tree parent_convs,
2257 tree child_convs, tree other_convs)
2258 {
2259 tree t;
2260 tree prev;
2261
2262 /* Remove the original other_convs portion from child_convs. */
2263 for (prev = NULL, t = child_convs;
2264 t != other_convs; prev = t, t = TREE_CHAIN (t))
2265 continue;
2266
2267 if (prev)
2268 TREE_CHAIN (prev) = NULL_TREE;
2269 else
2270 child_convs = NULL_TREE;
2271
2272 /* Attach the child convs to any we had at this level. */
2273 if (my_convs)
2274 {
2275 my_convs = parent_convs;
2276 TREE_CHAIN (my_convs) = child_convs;
2277 }
2278 else
2279 my_convs = child_convs;
2280
2281 return my_convs;
2282 }
2283
2284 /* Worker for lookup_conversions. Lookup conversion functions in
2285 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2286 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2287 encountered virtual bases already in the tree walk. PARENT_CONVS &
2288 PARENT_TPL_CONVS are lists of list of conversions within parent
2289 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2290 elsewhere in the tree. Return the conversions found within this
2291 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2292 encountered virtualness. We keep template and non-template
2293 conversions separate, to avoid unnecessary type comparisons.
2294
2295 The located conversion functions are held in lists of lists. The
2296 TREE_VALUE of the outer list is the list of conversion functions
2297 found in a particular binfo. The TREE_PURPOSE of both the outer
2298 and inner lists is the binfo at which those conversions were
2299 found. TREE_STATIC is set for those lists within of morally
2300 virtual binfos. The TREE_VALUE of the inner list is the conversion
2301 function or overload itself. The TREE_TYPE of each inner list node
2302 is the converted-to type. */
2303
2304 static int
2305 lookup_conversions_r (tree binfo,
2306 int virtual_depth, int virtualness,
2307 tree parent_convs, tree parent_tpl_convs,
2308 tree other_convs, tree other_tpl_convs,
2309 tree *convs, tree *tpl_convs)
2310 {
2311 int my_virtualness = 0;
2312 tree my_convs = NULL_TREE;
2313 tree my_tpl_convs = NULL_TREE;
2314 tree child_convs = NULL_TREE;
2315 tree child_tpl_convs = NULL_TREE;
2316 unsigned i;
2317 tree base_binfo;
2318 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2319 tree conv;
2320
2321 /* If we have no conversion operators, then don't look. */
2322 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2323 {
2324 *convs = *tpl_convs = NULL_TREE;
2325
2326 return 0;
2327 }
2328
2329 if (BINFO_VIRTUAL_P (binfo))
2330 virtual_depth++;
2331
2332 /* First, locate the unhidden ones at this level. */
2333 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2334 VEC_iterate (tree, method_vec, i, conv);
2335 ++i)
2336 {
2337 tree cur = OVL_CURRENT (conv);
2338
2339 if (!DECL_CONV_FN_P (cur))
2340 break;
2341
2342 if (TREE_CODE (cur) == TEMPLATE_DECL)
2343 {
2344 /* Only template conversions can be overloaded, and we must
2345 flatten them out and check each one individually. */
2346 tree tpls;
2347
2348 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2349 {
2350 tree tpl = OVL_CURRENT (tpls);
2351 tree type = DECL_CONV_FN_TYPE (tpl);
2352
2353 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2354 type, parent_tpl_convs, other_tpl_convs))
2355 {
2356 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2357 TREE_TYPE (my_tpl_convs) = type;
2358 if (virtual_depth)
2359 {
2360 TREE_STATIC (my_tpl_convs) = 1;
2361 my_virtualness = 1;
2362 }
2363 }
2364 }
2365 }
2366 else
2367 {
2368 tree name = DECL_NAME (cur);
2369
2370 if (!IDENTIFIER_MARKED (name))
2371 {
2372 tree type = DECL_CONV_FN_TYPE (cur);
2373
2374 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2375 type, parent_convs, other_convs))
2376 {
2377 my_convs = tree_cons (binfo, conv, my_convs);
2378 TREE_TYPE (my_convs) = type;
2379 if (virtual_depth)
2380 {
2381 TREE_STATIC (my_convs) = 1;
2382 my_virtualness = 1;
2383 }
2384 IDENTIFIER_MARKED (name) = 1;
2385 }
2386 }
2387 }
2388 }
2389
2390 if (my_convs)
2391 {
2392 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2393 if (virtual_depth)
2394 TREE_STATIC (parent_convs) = 1;
2395 }
2396
2397 if (my_tpl_convs)
2398 {
2399 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2400 if (virtual_depth)
2401 TREE_STATIC (parent_tpl_convs) = 1;
2402 }
2403
2404 child_convs = other_convs;
2405 child_tpl_convs = other_tpl_convs;
2406
2407 /* Now iterate over each base, looking for more conversions. */
2408 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2409 {
2410 tree base_convs, base_tpl_convs;
2411 unsigned base_virtualness;
2412
2413 base_virtualness = lookup_conversions_r (base_binfo,
2414 virtual_depth, virtualness,
2415 parent_convs, parent_tpl_convs,
2416 child_convs, child_tpl_convs,
2417 &base_convs, &base_tpl_convs);
2418 if (base_virtualness)
2419 my_virtualness = virtualness = 1;
2420 child_convs = chainon (base_convs, child_convs);
2421 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2422 }
2423
2424 /* Unmark the conversions found at this level */
2425 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2426 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2427
2428 *convs = split_conversions (my_convs, parent_convs,
2429 child_convs, other_convs);
2430 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2431 child_tpl_convs, other_tpl_convs);
2432
2433 return my_virtualness;
2434 }
2435
2436 /* Return a TREE_LIST containing all the non-hidden user-defined
2437 conversion functions for TYPE (and its base-classes). The
2438 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2439 function. The TREE_PURPOSE is the BINFO from which the conversion
2440 functions in this node were selected. This function is effectively
2441 performing a set of member lookups as lookup_fnfield does, but
2442 using the type being converted to as the unique key, rather than the
2443 field name. */
2444
2445 tree
2446 lookup_conversions (tree type)
2447 {
2448 tree convs, tpl_convs;
2449 tree list = NULL_TREE;
2450
2451 complete_type (type);
2452 if (!TYPE_BINFO (type))
2453 return NULL_TREE;
2454
2455 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2456 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2457 &convs, &tpl_convs);
2458
2459 /* Flatten the list-of-lists */
2460 for (; convs; convs = TREE_CHAIN (convs))
2461 {
2462 tree probe, next;
2463
2464 for (probe = TREE_VALUE (convs); probe; probe = next)
2465 {
2466 next = TREE_CHAIN (probe);
2467
2468 TREE_CHAIN (probe) = list;
2469 list = probe;
2470 }
2471 }
2472
2473 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2474 {
2475 tree probe, next;
2476
2477 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2478 {
2479 next = TREE_CHAIN (probe);
2480
2481 TREE_CHAIN (probe) = list;
2482 list = probe;
2483 }
2484 }
2485
2486 return list;
2487 }
2488
2489 /* Returns the binfo of the first direct or indirect virtual base derived
2490 from BINFO, or NULL if binfo is not via virtual. */
2491
2492 tree
2493 binfo_from_vbase (tree binfo)
2494 {
2495 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2496 {
2497 if (BINFO_VIRTUAL_P (binfo))
2498 return binfo;
2499 }
2500 return NULL_TREE;
2501 }
2502
2503 /* Returns the binfo of the first direct or indirect virtual base derived
2504 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2505 via virtual. */
2506
2507 tree
2508 binfo_via_virtual (tree binfo, tree limit)
2509 {
2510 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2511 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2512 return NULL_TREE;
2513
2514 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2515 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2516 {
2517 if (BINFO_VIRTUAL_P (binfo))
2518 return binfo;
2519 }
2520 return NULL_TREE;
2521 }
2522
2523 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2524 Find the equivalent binfo within whatever graph HERE is located.
2525 This is the inverse of original_binfo. */
2526
2527 tree
2528 copied_binfo (tree binfo, tree here)
2529 {
2530 tree result = NULL_TREE;
2531
2532 if (BINFO_VIRTUAL_P (binfo))
2533 {
2534 tree t;
2535
2536 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2537 t = BINFO_INHERITANCE_CHAIN (t))
2538 continue;
2539
2540 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2541 }
2542 else if (BINFO_INHERITANCE_CHAIN (binfo))
2543 {
2544 tree cbinfo;
2545 tree base_binfo;
2546 int ix;
2547
2548 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2549 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2550 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2551 {
2552 result = base_binfo;
2553 break;
2554 }
2555 }
2556 else
2557 {
2558 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2559 result = here;
2560 }
2561
2562 gcc_assert (result);
2563 return result;
2564 }
2565
2566 tree
2567 binfo_for_vbase (tree base, tree t)
2568 {
2569 unsigned ix;
2570 tree binfo;
2571 VEC(tree,gc) *vbases;
2572
2573 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2574 VEC_iterate (tree, vbases, ix, binfo); ix++)
2575 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2576 return binfo;
2577 return NULL;
2578 }
2579
2580 /* BINFO is some base binfo of HERE, within some other
2581 hierarchy. Return the equivalent binfo, but in the hierarchy
2582 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2583 is not a base binfo of HERE, returns NULL_TREE. */
2584
2585 tree
2586 original_binfo (tree binfo, tree here)
2587 {
2588 tree result = NULL;
2589
2590 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2591 result = here;
2592 else if (BINFO_VIRTUAL_P (binfo))
2593 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2594 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2595 : NULL_TREE);
2596 else if (BINFO_INHERITANCE_CHAIN (binfo))
2597 {
2598 tree base_binfos;
2599
2600 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2601 if (base_binfos)
2602 {
2603 int ix;
2604 tree base_binfo;
2605
2606 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2607 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2608 BINFO_TYPE (binfo)))
2609 {
2610 result = base_binfo;
2611 break;
2612 }
2613 }
2614 }
2615
2616 return result;
2617 }
2618