re PR c++/27581 (ICE using this-pointer in static member function)
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37
38 static int is_subobject_of_p (tree, tree);
39 static tree dfs_lookup_base (tree, void *);
40 static tree dfs_dcast_hint_pre (tree, void *);
41 static tree dfs_dcast_hint_post (tree, void *);
42 static tree dfs_debug_mark (tree, void *);
43 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44 tree (*post_fn) (tree, void *), void *data);
45 static void dfs_unmark_r (tree);
46 static int check_hidden_convs (tree, int, int, tree, tree, tree);
47 static tree split_conversions (tree, tree, tree, tree);
48 static int lookup_conversions_r (tree, int, int,
49 tree, tree, tree, tree, tree *, tree *);
50 static int look_for_overrides_r (tree, tree);
51 static tree lookup_field_r (tree, void *);
52 static tree dfs_accessible_post (tree, void *);
53 static tree dfs_walk_once_accessible_r (tree, bool, bool,
54 tree (*pre_fn) (tree, void *),
55 tree (*post_fn) (tree, void *),
56 void *data);
57 static tree dfs_walk_once_accessible (tree, bool,
58 tree (*pre_fn) (tree, void *),
59 tree (*post_fn) (tree, void *),
60 void *data);
61 static tree dfs_access_in_type (tree, void *);
62 static access_kind access_in_type (tree, tree);
63 static int protected_accessible_p (tree, tree, tree);
64 static int friend_accessible_p (tree, tree, tree);
65 static int template_self_reference_p (tree, tree);
66 static tree dfs_get_pure_virtuals (tree, void *);
67
68 \f
69 /* Variables for gathering statistics. */
70 #ifdef GATHER_STATISTICS
71 static int n_fields_searched;
72 static int n_calls_lookup_field, n_calls_lookup_field_1;
73 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
74 static int n_calls_get_base_type;
75 static int n_outer_fields_searched;
76 static int n_contexts_saved;
77 #endif /* GATHER_STATISTICS */
78
79 \f
80 /* Data for lookup_base and its workers. */
81
82 struct lookup_base_data_s
83 {
84 tree t; /* type being searched. */
85 tree base; /* The base type we're looking for. */
86 tree binfo; /* Found binfo. */
87 bool via_virtual; /* Found via a virtual path. */
88 bool ambiguous; /* Found multiply ambiguous */
89 bool repeated_base; /* Whether there are repeated bases in the
90 hierarchy. */
91 bool want_any; /* Whether we want any matching binfo. */
92 };
93
94 /* Worker function for lookup_base. See if we've found the desired
95 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
96
97 static tree
98 dfs_lookup_base (tree binfo, void *data_)
99 {
100 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
101
102 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
103 {
104 if (!data->binfo)
105 {
106 data->binfo = binfo;
107 data->via_virtual
108 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
109
110 if (!data->repeated_base)
111 /* If there are no repeated bases, we can stop now. */
112 return binfo;
113
114 if (data->want_any && !data->via_virtual)
115 /* If this is a non-virtual base, then we can't do
116 better. */
117 return binfo;
118
119 return dfs_skip_bases;
120 }
121 else
122 {
123 gcc_assert (binfo != data->binfo);
124
125 /* We've found more than one matching binfo. */
126 if (!data->want_any)
127 {
128 /* This is immediately ambiguous. */
129 data->binfo = NULL_TREE;
130 data->ambiguous = true;
131 return error_mark_node;
132 }
133
134 /* Prefer one via a non-virtual path. */
135 if (!binfo_via_virtual (binfo, data->t))
136 {
137 data->binfo = binfo;
138 data->via_virtual = false;
139 return binfo;
140 }
141
142 /* There must be repeated bases, otherwise we'd have stopped
143 on the first base we found. */
144 return dfs_skip_bases;
145 }
146 }
147
148 return NULL_TREE;
149 }
150
151 /* Returns true if type BASE is accessible in T. (BASE is known to be
152 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
153 true, consider any special access of the current scope, or access
154 bestowed by friendship. */
155
156 bool
157 accessible_base_p (tree t, tree base, bool consider_local_p)
158 {
159 tree decl;
160
161 /* [class.access.base]
162
163 A base class is said to be accessible if an invented public
164 member of the base class is accessible.
165
166 If BASE is a non-proper base, this condition is trivially
167 true. */
168 if (same_type_p (t, base))
169 return true;
170 /* Rather than inventing a public member, we use the implicit
171 public typedef created in the scope of every class. */
172 decl = TYPE_FIELDS (base);
173 while (!DECL_SELF_REFERENCE_P (decl))
174 decl = TREE_CHAIN (decl);
175 while (ANON_AGGR_TYPE_P (t))
176 t = TYPE_CONTEXT (t);
177 return accessible_p (t, decl, consider_local_p);
178 }
179
180 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
181 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
182 non-NULL, fill with information about what kind of base we
183 discovered.
184
185 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
186 not set in ACCESS, then an error is issued and error_mark_node is
187 returned. If the ba_quiet bit is set, then no error is issued and
188 NULL_TREE is returned. */
189
190 tree
191 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
192 {
193 tree binfo;
194 tree t_binfo;
195 base_kind bk;
196
197 if (t == error_mark_node || base == error_mark_node)
198 {
199 if (kind_ptr)
200 *kind_ptr = bk_not_base;
201 return error_mark_node;
202 }
203 gcc_assert (TYPE_P (base));
204
205 if (!TYPE_P (t))
206 {
207 t_binfo = t;
208 t = BINFO_TYPE (t);
209 }
210 else
211 {
212 t = complete_type (TYPE_MAIN_VARIANT (t));
213 t_binfo = TYPE_BINFO (t);
214 }
215
216 base = complete_type (TYPE_MAIN_VARIANT (base));
217
218 if (t_binfo)
219 {
220 struct lookup_base_data_s data;
221
222 data.t = t;
223 data.base = base;
224 data.binfo = NULL_TREE;
225 data.ambiguous = data.via_virtual = false;
226 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
227 data.want_any = access == ba_any;
228
229 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
230 binfo = data.binfo;
231
232 if (!binfo)
233 bk = data.ambiguous ? bk_ambig : bk_not_base;
234 else if (binfo == t_binfo)
235 bk = bk_same_type;
236 else if (data.via_virtual)
237 bk = bk_via_virtual;
238 else
239 bk = bk_proper_base;
240 }
241 else
242 {
243 binfo = NULL_TREE;
244 bk = bk_not_base;
245 }
246
247 /* Check that the base is unambiguous and accessible. */
248 if (access != ba_any)
249 switch (bk)
250 {
251 case bk_not_base:
252 break;
253
254 case bk_ambig:
255 if (!(access & ba_quiet))
256 {
257 error ("%qT is an ambiguous base of %qT", base, t);
258 binfo = error_mark_node;
259 }
260 break;
261
262 default:
263 if ((access & ba_check_bit)
264 /* If BASE is incomplete, then BASE and TYPE are probably
265 the same, in which case BASE is accessible. If they
266 are not the same, then TYPE is invalid. In that case,
267 there's no need to issue another error here, and
268 there's no implicit typedef to use in the code that
269 follows, so we skip the check. */
270 && COMPLETE_TYPE_P (base)
271 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
272 {
273 if (!(access & ba_quiet))
274 {
275 error ("%qT is an inaccessible base of %qT", base, t);
276 binfo = error_mark_node;
277 }
278 else
279 binfo = NULL_TREE;
280 bk = bk_inaccessible;
281 }
282 break;
283 }
284
285 if (kind_ptr)
286 *kind_ptr = bk;
287
288 return binfo;
289 }
290
291 /* Data for dcast_base_hint walker. */
292
293 struct dcast_data_s
294 {
295 tree subtype; /* The base type we're looking for. */
296 int virt_depth; /* Number of virtual bases encountered from most
297 derived. */
298 tree offset; /* Best hint offset discovered so far. */
299 bool repeated_base; /* Whether there are repeated bases in the
300 hierarchy. */
301 };
302
303 /* Worker for dcast_base_hint. Search for the base type being cast
304 from. */
305
306 static tree
307 dfs_dcast_hint_pre (tree binfo, void *data_)
308 {
309 struct dcast_data_s *data = (struct dcast_data_s *) data_;
310
311 if (BINFO_VIRTUAL_P (binfo))
312 data->virt_depth++;
313
314 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
315 {
316 if (data->virt_depth)
317 {
318 data->offset = ssize_int (-1);
319 return data->offset;
320 }
321 if (data->offset)
322 data->offset = ssize_int (-3);
323 else
324 data->offset = BINFO_OFFSET (binfo);
325
326 return data->repeated_base ? dfs_skip_bases : data->offset;
327 }
328
329 return NULL_TREE;
330 }
331
332 /* Worker for dcast_base_hint. Track the virtual depth. */
333
334 static tree
335 dfs_dcast_hint_post (tree binfo, void *data_)
336 {
337 struct dcast_data_s *data = (struct dcast_data_s *) data_;
338
339 if (BINFO_VIRTUAL_P (binfo))
340 data->virt_depth--;
341
342 return NULL_TREE;
343 }
344
345 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
346 started from is related to the required TARGET type, in order to optimize
347 the inheritance graph search. This information is independent of the
348 current context, and ignores private paths, hence get_base_distance is
349 inappropriate. Return a TREE specifying the base offset, BOFF.
350 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
351 and there are no public virtual SUBTYPE bases.
352 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
353 BOFF == -2, SUBTYPE is not a public base.
354 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
355
356 tree
357 dcast_base_hint (tree subtype, tree target)
358 {
359 struct dcast_data_s data;
360
361 data.subtype = subtype;
362 data.virt_depth = 0;
363 data.offset = NULL_TREE;
364 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
365
366 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
367 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
368 return data.offset ? data.offset : ssize_int (-2);
369 }
370
371 /* Search for a member with name NAME in a multiple inheritance
372 lattice specified by TYPE. If it does not exist, return NULL_TREE.
373 If the member is ambiguously referenced, return `error_mark_node'.
374 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
375 true, type declarations are preferred. */
376
377 /* Do a 1-level search for NAME as a member of TYPE. The caller must
378 figure out whether it can access this field. (Since it is only one
379 level, this is reasonable.) */
380
381 tree
382 lookup_field_1 (tree type, tree name, bool want_type)
383 {
384 tree field;
385
386 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
387 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
388 || TREE_CODE (type) == TYPENAME_TYPE)
389 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
390 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
391 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
392 the code often worked even when we treated the index as a list
393 of fields!)
394 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
395 return NULL_TREE;
396
397 if (TYPE_NAME (type)
398 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
399 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
400 {
401 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
402 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
403 int i;
404
405 while (lo < hi)
406 {
407 i = (lo + hi) / 2;
408
409 #ifdef GATHER_STATISTICS
410 n_fields_searched++;
411 #endif /* GATHER_STATISTICS */
412
413 if (DECL_NAME (fields[i]) > name)
414 hi = i;
415 else if (DECL_NAME (fields[i]) < name)
416 lo = i + 1;
417 else
418 {
419 field = NULL_TREE;
420
421 /* We might have a nested class and a field with the
422 same name; we sorted them appropriately via
423 field_decl_cmp, so just look for the first or last
424 field with this name. */
425 if (want_type)
426 {
427 do
428 field = fields[i--];
429 while (i >= lo && DECL_NAME (fields[i]) == name);
430 if (TREE_CODE (field) != TYPE_DECL
431 && !DECL_CLASS_TEMPLATE_P (field))
432 field = NULL_TREE;
433 }
434 else
435 {
436 do
437 field = fields[i++];
438 while (i < hi && DECL_NAME (fields[i]) == name);
439 }
440 return field;
441 }
442 }
443 return NULL_TREE;
444 }
445
446 field = TYPE_FIELDS (type);
447
448 #ifdef GATHER_STATISTICS
449 n_calls_lookup_field_1++;
450 #endif /* GATHER_STATISTICS */
451 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
452 {
453 #ifdef GATHER_STATISTICS
454 n_fields_searched++;
455 #endif /* GATHER_STATISTICS */
456 gcc_assert (DECL_P (field));
457 if (DECL_NAME (field) == NULL_TREE
458 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
459 {
460 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
461 if (temp)
462 return temp;
463 }
464 if (TREE_CODE (field) == USING_DECL)
465 {
466 /* We generally treat class-scope using-declarations as
467 ARM-style access specifications, because support for the
468 ISO semantics has not been implemented. So, in general,
469 there's no reason to return a USING_DECL, and the rest of
470 the compiler cannot handle that. Once the class is
471 defined, USING_DECLs are purged from TYPE_FIELDS; see
472 handle_using_decl. However, we make special efforts to
473 make using-declarations in class templates and class
474 template partial specializations work correctly. */
475 if (!DECL_DEPENDENT_P (field))
476 continue;
477 }
478
479 if (DECL_NAME (field) == name
480 && (!want_type
481 || TREE_CODE (field) == TYPE_DECL
482 || DECL_CLASS_TEMPLATE_P (field)))
483 return field;
484 }
485 /* Not found. */
486 if (name == vptr_identifier)
487 {
488 /* Give the user what s/he thinks s/he wants. */
489 if (TYPE_POLYMORPHIC_P (type))
490 return TYPE_VFIELD (type);
491 }
492 return NULL_TREE;
493 }
494
495 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
496 NAMESPACE_DECL corresponding to the innermost non-block scope. */
497
498 tree
499 current_scope (void)
500 {
501 /* There are a number of cases we need to be aware of here:
502 current_class_type current_function_decl
503 global NULL NULL
504 fn-local NULL SET
505 class-local SET NULL
506 class->fn SET SET
507 fn->class SET SET
508
509 Those last two make life interesting. If we're in a function which is
510 itself inside a class, we need decls to go into the fn's decls (our
511 second case below). But if we're in a class and the class itself is
512 inside a function, we need decls to go into the decls for the class. To
513 achieve this last goal, we must see if, when both current_class_ptr and
514 current_function_decl are set, the class was declared inside that
515 function. If so, we know to put the decls into the class's scope. */
516 if (current_function_decl && current_class_type
517 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
518 && same_type_p (DECL_CONTEXT (current_function_decl),
519 current_class_type))
520 || (DECL_FRIEND_CONTEXT (current_function_decl)
521 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
522 current_class_type))))
523 return current_function_decl;
524 if (current_class_type)
525 return current_class_type;
526 if (current_function_decl)
527 return current_function_decl;
528 return current_namespace;
529 }
530
531 /* Returns nonzero if we are currently in a function scope. Note
532 that this function returns zero if we are within a local class, but
533 not within a member function body of the local class. */
534
535 int
536 at_function_scope_p (void)
537 {
538 tree cs = current_scope ();
539 return cs && TREE_CODE (cs) == FUNCTION_DECL;
540 }
541
542 /* Returns true if the innermost active scope is a class scope. */
543
544 bool
545 at_class_scope_p (void)
546 {
547 tree cs = current_scope ();
548 return cs && TYPE_P (cs);
549 }
550
551 /* Returns true if the innermost active scope is a namespace scope. */
552
553 bool
554 at_namespace_scope_p (void)
555 {
556 tree cs = current_scope ();
557 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
558 }
559
560 /* Return the scope of DECL, as appropriate when doing name-lookup. */
561
562 tree
563 context_for_name_lookup (tree decl)
564 {
565 /* [class.union]
566
567 For the purposes of name lookup, after the anonymous union
568 definition, the members of the anonymous union are considered to
569 have been defined in the scope in which the anonymous union is
570 declared. */
571 tree context = DECL_CONTEXT (decl);
572
573 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
574 context = TYPE_CONTEXT (context);
575 if (!context)
576 context = global_namespace;
577
578 return context;
579 }
580
581 /* The accessibility routines use BINFO_ACCESS for scratch space
582 during the computation of the accessibility of some declaration. */
583
584 #define BINFO_ACCESS(NODE) \
585 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
586
587 /* Set the access associated with NODE to ACCESS. */
588
589 #define SET_BINFO_ACCESS(NODE, ACCESS) \
590 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
591 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
592
593 /* Called from access_in_type via dfs_walk. Calculate the access to
594 DATA (which is really a DECL) in BINFO. */
595
596 static tree
597 dfs_access_in_type (tree binfo, void *data)
598 {
599 tree decl = (tree) data;
600 tree type = BINFO_TYPE (binfo);
601 access_kind access = ak_none;
602
603 if (context_for_name_lookup (decl) == type)
604 {
605 /* If we have descended to the scope of DECL, just note the
606 appropriate access. */
607 if (TREE_PRIVATE (decl))
608 access = ak_private;
609 else if (TREE_PROTECTED (decl))
610 access = ak_protected;
611 else
612 access = ak_public;
613 }
614 else
615 {
616 /* First, check for an access-declaration that gives us more
617 access to the DECL. The CONST_DECL for an enumeration
618 constant will not have DECL_LANG_SPECIFIC, and thus no
619 DECL_ACCESS. */
620 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
621 {
622 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
623
624 if (decl_access)
625 {
626 decl_access = TREE_VALUE (decl_access);
627
628 if (decl_access == access_public_node)
629 access = ak_public;
630 else if (decl_access == access_protected_node)
631 access = ak_protected;
632 else if (decl_access == access_private_node)
633 access = ak_private;
634 else
635 gcc_unreachable ();
636 }
637 }
638
639 if (!access)
640 {
641 int i;
642 tree base_binfo;
643 VEC(tree,gc) *accesses;
644
645 /* Otherwise, scan our baseclasses, and pick the most favorable
646 access. */
647 accesses = BINFO_BASE_ACCESSES (binfo);
648 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
649 {
650 tree base_access = VEC_index (tree, accesses, i);
651 access_kind base_access_now = BINFO_ACCESS (base_binfo);
652
653 if (base_access_now == ak_none || base_access_now == ak_private)
654 /* If it was not accessible in the base, or only
655 accessible as a private member, we can't access it
656 all. */
657 base_access_now = ak_none;
658 else if (base_access == access_protected_node)
659 /* Public and protected members in the base become
660 protected here. */
661 base_access_now = ak_protected;
662 else if (base_access == access_private_node)
663 /* Public and protected members in the base become
664 private here. */
665 base_access_now = ak_private;
666
667 /* See if the new access, via this base, gives more
668 access than our previous best access. */
669 if (base_access_now != ak_none
670 && (access == ak_none || base_access_now < access))
671 {
672 access = base_access_now;
673
674 /* If the new access is public, we can't do better. */
675 if (access == ak_public)
676 break;
677 }
678 }
679 }
680 }
681
682 /* Note the access to DECL in TYPE. */
683 SET_BINFO_ACCESS (binfo, access);
684
685 return NULL_TREE;
686 }
687
688 /* Return the access to DECL in TYPE. */
689
690 static access_kind
691 access_in_type (tree type, tree decl)
692 {
693 tree binfo = TYPE_BINFO (type);
694
695 /* We must take into account
696
697 [class.paths]
698
699 If a name can be reached by several paths through a multiple
700 inheritance graph, the access is that of the path that gives
701 most access.
702
703 The algorithm we use is to make a post-order depth-first traversal
704 of the base-class hierarchy. As we come up the tree, we annotate
705 each node with the most lenient access. */
706 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
707
708 return BINFO_ACCESS (binfo);
709 }
710
711 /* Returns nonzero if it is OK to access DECL through an object
712 indicated by BINFO in the context of DERIVED. */
713
714 static int
715 protected_accessible_p (tree decl, tree derived, tree binfo)
716 {
717 access_kind access;
718
719 /* We're checking this clause from [class.access.base]
720
721 m as a member of N is protected, and the reference occurs in a
722 member or friend of class N, or in a member or friend of a
723 class P derived from N, where m as a member of P is private or
724 protected.
725
726 Here DERIVED is a possible P and DECL is m. accessible_p will
727 iterate over various values of N, but the access to m in DERIVED
728 does not change.
729
730 Note that I believe that the passage above is wrong, and should read
731 "...is private or protected or public"; otherwise you get bizarre results
732 whereby a public using-decl can prevent you from accessing a protected
733 member of a base. (jason 2000/02/28) */
734
735 /* If DERIVED isn't derived from m's class, then it can't be a P. */
736 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
737 return 0;
738
739 access = access_in_type (derived, decl);
740
741 /* If m is inaccessible in DERIVED, then it's not a P. */
742 if (access == ak_none)
743 return 0;
744
745 /* [class.protected]
746
747 When a friend or a member function of a derived class references
748 a protected nonstatic member of a base class, an access check
749 applies in addition to those described earlier in clause
750 _class.access_) Except when forming a pointer to member
751 (_expr.unary.op_), the access must be through a pointer to,
752 reference to, or object of the derived class itself (or any class
753 derived from that class) (_expr.ref_). If the access is to form
754 a pointer to member, the nested-name-specifier shall name the
755 derived class (or any class derived from that class). */
756 if (DECL_NONSTATIC_MEMBER_P (decl))
757 {
758 /* We can tell through what the reference is occurring by
759 chasing BINFO up to the root. */
760 tree t = binfo;
761 while (BINFO_INHERITANCE_CHAIN (t))
762 t = BINFO_INHERITANCE_CHAIN (t);
763
764 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
765 return 0;
766 }
767
768 return 1;
769 }
770
771 /* Returns nonzero if SCOPE is a friend of a type which would be able
772 to access DECL through the object indicated by BINFO. */
773
774 static int
775 friend_accessible_p (tree scope, tree decl, tree binfo)
776 {
777 tree befriending_classes;
778 tree t;
779
780 if (!scope)
781 return 0;
782
783 if (TREE_CODE (scope) == FUNCTION_DECL
784 || DECL_FUNCTION_TEMPLATE_P (scope))
785 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
786 else if (TYPE_P (scope))
787 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
788 else
789 return 0;
790
791 for (t = befriending_classes; t; t = TREE_CHAIN (t))
792 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
793 return 1;
794
795 /* Nested classes are implicitly friends of their enclosing types, as
796 per core issue 45 (this is a change from the standard). */
797 if (TYPE_P (scope))
798 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
799 if (protected_accessible_p (decl, t, binfo))
800 return 1;
801
802 if (TREE_CODE (scope) == FUNCTION_DECL
803 || DECL_FUNCTION_TEMPLATE_P (scope))
804 {
805 /* Perhaps this SCOPE is a member of a class which is a
806 friend. */
807 if (DECL_CLASS_SCOPE_P (scope)
808 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
809 return 1;
810
811 /* Or an instantiation of something which is a friend. */
812 if (DECL_TEMPLATE_INFO (scope))
813 {
814 int ret;
815 /* Increment processing_template_decl to make sure that
816 dependent_type_p works correctly. */
817 ++processing_template_decl;
818 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
819 --processing_template_decl;
820 return ret;
821 }
822 }
823
824 return 0;
825 }
826
827 /* Called via dfs_walk_once_accessible from accessible_p */
828
829 static tree
830 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
831 {
832 if (BINFO_ACCESS (binfo) != ak_none)
833 {
834 tree scope = current_scope ();
835 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
836 && is_friend (BINFO_TYPE (binfo), scope))
837 return binfo;
838 }
839
840 return NULL_TREE;
841 }
842
843 /* DECL is a declaration from a base class of TYPE, which was the
844 class used to name DECL. Return nonzero if, in the current
845 context, DECL is accessible. If TYPE is actually a BINFO node,
846 then we can tell in what context the access is occurring by looking
847 at the most derived class along the path indicated by BINFO. If
848 CONSIDER_LOCAL is true, do consider special access the current
849 scope or friendship thereof we might have. */
850
851 int
852 accessible_p (tree type, tree decl, bool consider_local_p)
853 {
854 tree binfo;
855 tree scope;
856 access_kind access;
857
858 /* Nonzero if it's OK to access DECL if it has protected
859 accessibility in TYPE. */
860 int protected_ok = 0;
861
862 /* If this declaration is in a block or namespace scope, there's no
863 access control. */
864 if (!TYPE_P (context_for_name_lookup (decl)))
865 return 1;
866
867 /* There is no need to perform access checks inside a thunk. */
868 scope = current_scope ();
869 if (scope && DECL_THUNK_P (scope))
870 return 1;
871
872 /* In a template declaration, we cannot be sure whether the
873 particular specialization that is instantiated will be a friend
874 or not. Therefore, all access checks are deferred until
875 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
876 parameter list for a template (because we may see dependent types
877 in default arguments for template parameters), and access
878 checking should be performed in the outermost parameter list. */
879 if (processing_template_decl
880 && (!processing_template_parmlist || processing_template_decl > 1))
881 return 1;
882
883 if (!TYPE_P (type))
884 {
885 binfo = type;
886 type = BINFO_TYPE (type);
887 }
888 else
889 binfo = TYPE_BINFO (type);
890
891 /* [class.access.base]
892
893 A member m is accessible when named in class N if
894
895 --m as a member of N is public, or
896
897 --m as a member of N is private, and the reference occurs in a
898 member or friend of class N, or
899
900 --m as a member of N is protected, and the reference occurs in a
901 member or friend of class N, or in a member or friend of a
902 class P derived from N, where m as a member of P is private or
903 protected, or
904
905 --there exists a base class B of N that is accessible at the point
906 of reference, and m is accessible when named in class B.
907
908 We walk the base class hierarchy, checking these conditions. */
909
910 if (consider_local_p)
911 {
912 /* Figure out where the reference is occurring. Check to see if
913 DECL is private or protected in this scope, since that will
914 determine whether protected access is allowed. */
915 if (current_class_type)
916 protected_ok = protected_accessible_p (decl,
917 current_class_type, binfo);
918
919 /* Now, loop through the classes of which we are a friend. */
920 if (!protected_ok)
921 protected_ok = friend_accessible_p (scope, decl, binfo);
922 }
923
924 /* Standardize the binfo that access_in_type will use. We don't
925 need to know what path was chosen from this point onwards. */
926 binfo = TYPE_BINFO (type);
927
928 /* Compute the accessibility of DECL in the class hierarchy
929 dominated by type. */
930 access = access_in_type (type, decl);
931 if (access == ak_public
932 || (access == ak_protected && protected_ok))
933 return 1;
934
935 if (!consider_local_p)
936 return 0;
937
938 /* Walk the hierarchy again, looking for a base class that allows
939 access. */
940 return dfs_walk_once_accessible (binfo, /*friends=*/true,
941 NULL, dfs_accessible_post, NULL)
942 != NULL_TREE;
943 }
944
945 struct lookup_field_info {
946 /* The type in which we're looking. */
947 tree type;
948 /* The name of the field for which we're looking. */
949 tree name;
950 /* If non-NULL, the current result of the lookup. */
951 tree rval;
952 /* The path to RVAL. */
953 tree rval_binfo;
954 /* If non-NULL, the lookup was ambiguous, and this is a list of the
955 candidates. */
956 tree ambiguous;
957 /* If nonzero, we are looking for types, not data members. */
958 int want_type;
959 /* If something went wrong, a message indicating what. */
960 const char *errstr;
961 };
962
963 /* Within the scope of a template class, you can refer to the to the
964 current specialization with the name of the template itself. For
965 example:
966
967 template <typename T> struct S { S* sp; }
968
969 Returns nonzero if DECL is such a declaration in a class TYPE. */
970
971 static int
972 template_self_reference_p (tree type, tree decl)
973 {
974 return (CLASSTYPE_USE_TEMPLATE (type)
975 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
976 && TREE_CODE (decl) == TYPE_DECL
977 && DECL_ARTIFICIAL (decl)
978 && DECL_NAME (decl) == constructor_name (type));
979 }
980
981 /* Nonzero for a class member means that it is shared between all objects
982 of that class.
983
984 [class.member.lookup]:If the resulting set of declarations are not all
985 from sub-objects of the same type, or the set has a nonstatic member
986 and includes members from distinct sub-objects, there is an ambiguity
987 and the program is ill-formed.
988
989 This function checks that T contains no nonstatic members. */
990
991 int
992 shared_member_p (tree t)
993 {
994 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
995 || TREE_CODE (t) == CONST_DECL)
996 return 1;
997 if (is_overloaded_fn (t))
998 {
999 for (; t; t = OVL_NEXT (t))
1000 {
1001 tree fn = OVL_CURRENT (t);
1002 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1003 return 0;
1004 }
1005 return 1;
1006 }
1007 return 0;
1008 }
1009
1010 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1011 found as a base class and sub-object of the object denoted by
1012 BINFO. */
1013
1014 static int
1015 is_subobject_of_p (tree parent, tree binfo)
1016 {
1017 tree probe;
1018
1019 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1020 {
1021 if (probe == binfo)
1022 return 1;
1023 if (BINFO_VIRTUAL_P (probe))
1024 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1025 != NULL_TREE);
1026 }
1027 return 0;
1028 }
1029
1030 /* DATA is really a struct lookup_field_info. Look for a field with
1031 the name indicated there in BINFO. If this function returns a
1032 non-NULL value it is the result of the lookup. Called from
1033 lookup_field via breadth_first_search. */
1034
1035 static tree
1036 lookup_field_r (tree binfo, void *data)
1037 {
1038 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1039 tree type = BINFO_TYPE (binfo);
1040 tree nval = NULL_TREE;
1041
1042 /* If this is a dependent base, don't look in it. */
1043 if (BINFO_DEPENDENT_BASE_P (binfo))
1044 return NULL_TREE;
1045
1046 /* If this base class is hidden by the best-known value so far, we
1047 don't need to look. */
1048 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1049 && !BINFO_VIRTUAL_P (binfo))
1050 return dfs_skip_bases;
1051
1052 /* First, look for a function. There can't be a function and a data
1053 member with the same name, and if there's a function and a type
1054 with the same name, the type is hidden by the function. */
1055 if (!lfi->want_type)
1056 {
1057 int idx = lookup_fnfields_1 (type, lfi->name);
1058 if (idx >= 0)
1059 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1060 }
1061
1062 if (!nval)
1063 /* Look for a data member or type. */
1064 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1065
1066 /* If there is no declaration with the indicated name in this type,
1067 then there's nothing to do. */
1068 if (!nval)
1069 goto done;
1070
1071 /* If we're looking up a type (as with an elaborated type specifier)
1072 we ignore all non-types we find. */
1073 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1074 && !DECL_CLASS_TEMPLATE_P (nval))
1075 {
1076 if (lfi->name == TYPE_IDENTIFIER (type))
1077 {
1078 /* If the aggregate has no user defined constructors, we allow
1079 it to have fields with the same name as the enclosing type.
1080 If we are looking for that name, find the corresponding
1081 TYPE_DECL. */
1082 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1083 if (DECL_NAME (nval) == lfi->name
1084 && TREE_CODE (nval) == TYPE_DECL)
1085 break;
1086 }
1087 else
1088 nval = NULL_TREE;
1089 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1090 {
1091 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1092 lfi->name);
1093 if (e != NULL)
1094 nval = TYPE_MAIN_DECL (e->type);
1095 else
1096 goto done;
1097 }
1098 }
1099
1100 /* You must name a template base class with a template-id. */
1101 if (!same_type_p (type, lfi->type)
1102 && template_self_reference_p (type, nval))
1103 goto done;
1104
1105 /* If the lookup already found a match, and the new value doesn't
1106 hide the old one, we might have an ambiguity. */
1107 if (lfi->rval_binfo
1108 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1109
1110 {
1111 if (nval == lfi->rval && shared_member_p (nval))
1112 /* The two things are really the same. */
1113 ;
1114 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1115 /* The previous value hides the new one. */
1116 ;
1117 else
1118 {
1119 /* We have a real ambiguity. We keep a chain of all the
1120 candidates. */
1121 if (!lfi->ambiguous && lfi->rval)
1122 {
1123 /* This is the first time we noticed an ambiguity. Add
1124 what we previously thought was a reasonable candidate
1125 to the list. */
1126 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1127 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1128 }
1129
1130 /* Add the new value. */
1131 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1132 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1133 lfi->errstr = "request for member %qD is ambiguous";
1134 }
1135 }
1136 else
1137 {
1138 lfi->rval = nval;
1139 lfi->rval_binfo = binfo;
1140 }
1141
1142 done:
1143 /* Don't look for constructors or destructors in base classes. */
1144 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1145 return dfs_skip_bases;
1146 return NULL_TREE;
1147 }
1148
1149 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1150 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1151 FUNCTIONS, and OPTYPE respectively. */
1152
1153 tree
1154 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1155 {
1156 tree baselink;
1157
1158 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1159 || TREE_CODE (functions) == TEMPLATE_DECL
1160 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1161 || TREE_CODE (functions) == OVERLOAD);
1162 gcc_assert (!optype || TYPE_P (optype));
1163 gcc_assert (TREE_TYPE (functions));
1164
1165 baselink = make_node (BASELINK);
1166 TREE_TYPE (baselink) = TREE_TYPE (functions);
1167 BASELINK_BINFO (baselink) = binfo;
1168 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1169 BASELINK_FUNCTIONS (baselink) = functions;
1170 BASELINK_OPTYPE (baselink) = optype;
1171
1172 return baselink;
1173 }
1174
1175 /* Look for a member named NAME in an inheritance lattice dominated by
1176 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1177 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1178 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1179 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1180 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1181 TREE_VALUEs are the list of ambiguous candidates.
1182
1183 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1184
1185 If nothing can be found return NULL_TREE and do not issue an error. */
1186
1187 tree
1188 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1189 {
1190 tree rval, rval_binfo = NULL_TREE;
1191 tree type = NULL_TREE, basetype_path = NULL_TREE;
1192 struct lookup_field_info lfi;
1193
1194 /* rval_binfo is the binfo associated with the found member, note,
1195 this can be set with useful information, even when rval is not
1196 set, because it must deal with ALL members, not just non-function
1197 members. It is used for ambiguity checking and the hidden
1198 checks. Whereas rval is only set if a proper (not hidden)
1199 non-function member is found. */
1200
1201 const char *errstr = 0;
1202
1203 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1204
1205 if (TREE_CODE (xbasetype) == TREE_BINFO)
1206 {
1207 type = BINFO_TYPE (xbasetype);
1208 basetype_path = xbasetype;
1209 }
1210 else
1211 {
1212 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1213 type = xbasetype;
1214 xbasetype = NULL_TREE;
1215 }
1216
1217 type = complete_type (type);
1218 if (!basetype_path)
1219 basetype_path = TYPE_BINFO (type);
1220
1221 if (!basetype_path)
1222 return NULL_TREE;
1223
1224 #ifdef GATHER_STATISTICS
1225 n_calls_lookup_field++;
1226 #endif /* GATHER_STATISTICS */
1227
1228 memset (&lfi, 0, sizeof (lfi));
1229 lfi.type = type;
1230 lfi.name = name;
1231 lfi.want_type = want_type;
1232 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1233 rval = lfi.rval;
1234 rval_binfo = lfi.rval_binfo;
1235 if (rval_binfo)
1236 type = BINFO_TYPE (rval_binfo);
1237 errstr = lfi.errstr;
1238
1239 /* If we are not interested in ambiguities, don't report them;
1240 just return NULL_TREE. */
1241 if (!protect && lfi.ambiguous)
1242 return NULL_TREE;
1243
1244 if (protect == 2)
1245 {
1246 if (lfi.ambiguous)
1247 return lfi.ambiguous;
1248 else
1249 protect = 0;
1250 }
1251
1252 /* [class.access]
1253
1254 In the case of overloaded function names, access control is
1255 applied to the function selected by overloaded resolution. */
1256 if (rval && protect && !is_overloaded_fn (rval))
1257 perform_or_defer_access_check (basetype_path, rval);
1258
1259 if (errstr && protect)
1260 {
1261 error (errstr, name, type);
1262 if (lfi.ambiguous)
1263 print_candidates (lfi.ambiguous);
1264 rval = error_mark_node;
1265 }
1266
1267 if (rval && is_overloaded_fn (rval))
1268 rval = build_baselink (rval_binfo, basetype_path, rval,
1269 (IDENTIFIER_TYPENAME_P (name)
1270 ? TREE_TYPE (name): NULL_TREE));
1271 return rval;
1272 }
1273
1274 /* Like lookup_member, except that if we find a function member we
1275 return NULL_TREE. */
1276
1277 tree
1278 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1279 {
1280 tree rval = lookup_member (xbasetype, name, protect, want_type);
1281
1282 /* Ignore functions, but propagate the ambiguity list. */
1283 if (!error_operand_p (rval)
1284 && (rval && BASELINK_P (rval)))
1285 return NULL_TREE;
1286
1287 return rval;
1288 }
1289
1290 /* Like lookup_member, except that if we find a non-function member we
1291 return NULL_TREE. */
1292
1293 tree
1294 lookup_fnfields (tree xbasetype, tree name, int protect)
1295 {
1296 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1297
1298 /* Ignore non-functions, but propagate the ambiguity list. */
1299 if (!error_operand_p (rval)
1300 && (rval && !BASELINK_P (rval)))
1301 return NULL_TREE;
1302
1303 return rval;
1304 }
1305
1306 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1307 corresponding to "operator TYPE ()", or -1 if there is no such
1308 operator. Only CLASS_TYPE itself is searched; this routine does
1309 not scan the base classes of CLASS_TYPE. */
1310
1311 static int
1312 lookup_conversion_operator (tree class_type, tree type)
1313 {
1314 int tpl_slot = -1;
1315
1316 if (TYPE_HAS_CONVERSION (class_type))
1317 {
1318 int i;
1319 tree fn;
1320 VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1321
1322 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1323 VEC_iterate (tree, methods, i, fn); ++i)
1324 {
1325 /* All the conversion operators come near the beginning of
1326 the class. Therefore, if FN is not a conversion
1327 operator, there is no matching conversion operator in
1328 CLASS_TYPE. */
1329 fn = OVL_CURRENT (fn);
1330 if (!DECL_CONV_FN_P (fn))
1331 break;
1332
1333 if (TREE_CODE (fn) == TEMPLATE_DECL)
1334 /* All the templated conversion functions are on the same
1335 slot, so remember it. */
1336 tpl_slot = i;
1337 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1338 return i;
1339 }
1340 }
1341
1342 return tpl_slot;
1343 }
1344
1345 /* TYPE is a class type. Return the index of the fields within
1346 the method vector with name NAME, or -1 is no such field exists. */
1347
1348 int
1349 lookup_fnfields_1 (tree type, tree name)
1350 {
1351 VEC(tree,gc) *method_vec;
1352 tree fn;
1353 tree tmp;
1354 size_t i;
1355
1356 if (!CLASS_TYPE_P (type))
1357 return -1;
1358
1359 if (COMPLETE_TYPE_P (type))
1360 {
1361 if ((name == ctor_identifier
1362 || name == base_ctor_identifier
1363 || name == complete_ctor_identifier))
1364 {
1365 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1366 lazily_declare_fn (sfk_constructor, type);
1367 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1368 lazily_declare_fn (sfk_copy_constructor, type);
1369 }
1370 else if (name == ansi_assopname(NOP_EXPR)
1371 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1372 lazily_declare_fn (sfk_assignment_operator, type);
1373 else if ((name == dtor_identifier
1374 || name == base_dtor_identifier
1375 || name == complete_dtor_identifier
1376 || name == deleting_dtor_identifier)
1377 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1378 lazily_declare_fn (sfk_destructor, type);
1379 }
1380
1381 method_vec = CLASSTYPE_METHOD_VEC (type);
1382 if (!method_vec)
1383 return -1;
1384
1385 #ifdef GATHER_STATISTICS
1386 n_calls_lookup_fnfields_1++;
1387 #endif /* GATHER_STATISTICS */
1388
1389 /* Constructors are first... */
1390 if (name == ctor_identifier)
1391 {
1392 fn = CLASSTYPE_CONSTRUCTORS (type);
1393 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1394 }
1395 /* and destructors are second. */
1396 if (name == dtor_identifier)
1397 {
1398 fn = CLASSTYPE_DESTRUCTORS (type);
1399 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1400 }
1401 if (IDENTIFIER_TYPENAME_P (name))
1402 return lookup_conversion_operator (type, TREE_TYPE (name));
1403
1404 /* Skip the conversion operators. */
1405 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1406 VEC_iterate (tree, method_vec, i, fn);
1407 ++i)
1408 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1409 break;
1410
1411 /* If the type is complete, use binary search. */
1412 if (COMPLETE_TYPE_P (type))
1413 {
1414 int lo;
1415 int hi;
1416
1417 lo = i;
1418 hi = VEC_length (tree, method_vec);
1419 while (lo < hi)
1420 {
1421 i = (lo + hi) / 2;
1422
1423 #ifdef GATHER_STATISTICS
1424 n_outer_fields_searched++;
1425 #endif /* GATHER_STATISTICS */
1426
1427 tmp = VEC_index (tree, method_vec, i);
1428 tmp = DECL_NAME (OVL_CURRENT (tmp));
1429 if (tmp > name)
1430 hi = i;
1431 else if (tmp < name)
1432 lo = i + 1;
1433 else
1434 return i;
1435 }
1436 }
1437 else
1438 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1439 {
1440 #ifdef GATHER_STATISTICS
1441 n_outer_fields_searched++;
1442 #endif /* GATHER_STATISTICS */
1443 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1444 return i;
1445 }
1446
1447 return -1;
1448 }
1449
1450 /* Like lookup_fnfields_1, except that the name is extracted from
1451 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1452
1453 int
1454 class_method_index_for_fn (tree class_type, tree function)
1455 {
1456 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1457 || DECL_FUNCTION_TEMPLATE_P (function));
1458
1459 return lookup_fnfields_1 (class_type,
1460 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1461 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1462 DECL_NAME (function));
1463 }
1464
1465
1466 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1467 the class or namespace used to qualify the name. CONTEXT_CLASS is
1468 the class corresponding to the object in which DECL will be used.
1469 Return a possibly modified version of DECL that takes into account
1470 the CONTEXT_CLASS.
1471
1472 In particular, consider an expression like `B::m' in the context of
1473 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1474 then the most derived class indicated by the BASELINK_BINFO will be
1475 `B', not `D'. This function makes that adjustment. */
1476
1477 tree
1478 adjust_result_of_qualified_name_lookup (tree decl,
1479 tree qualifying_scope,
1480 tree context_class)
1481 {
1482 if (context_class && context_class != error_mark_node
1483 && CLASS_TYPE_P (qualifying_scope)
1484 && DERIVED_FROM_P (qualifying_scope, context_class)
1485 && BASELINK_P (decl))
1486 {
1487 tree base;
1488
1489 gcc_assert (CLASS_TYPE_P (context_class));
1490
1491 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1492 Because we do not yet know which function will be chosen by
1493 overload resolution, we cannot yet check either accessibility
1494 or ambiguity -- in either case, the choice of a static member
1495 function might make the usage valid. */
1496 base = lookup_base (context_class, qualifying_scope,
1497 ba_unique | ba_quiet, NULL);
1498 if (base)
1499 {
1500 BASELINK_ACCESS_BINFO (decl) = base;
1501 BASELINK_BINFO (decl)
1502 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1503 ba_unique | ba_quiet,
1504 NULL);
1505 }
1506 }
1507
1508 return decl;
1509 }
1510
1511 \f
1512 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1513 PRE_FN is called in preorder, while POST_FN is called in postorder.
1514 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1515 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1516 that value is immediately returned and the walk is terminated. One
1517 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1518 POST_FN are passed the binfo to examine and the caller's DATA
1519 value. All paths are walked, thus virtual and morally virtual
1520 binfos can be multiply walked. */
1521
1522 tree
1523 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1524 tree (*post_fn) (tree, void *), void *data)
1525 {
1526 tree rval;
1527 unsigned ix;
1528 tree base_binfo;
1529
1530 /* Call the pre-order walking function. */
1531 if (pre_fn)
1532 {
1533 rval = pre_fn (binfo, data);
1534 if (rval)
1535 {
1536 if (rval == dfs_skip_bases)
1537 goto skip_bases;
1538 return rval;
1539 }
1540 }
1541
1542 /* Find the next child binfo to walk. */
1543 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1544 {
1545 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1546 if (rval)
1547 return rval;
1548 }
1549
1550 skip_bases:
1551 /* Call the post-order walking function. */
1552 if (post_fn)
1553 {
1554 rval = post_fn (binfo, data);
1555 gcc_assert (rval != dfs_skip_bases);
1556 return rval;
1557 }
1558
1559 return NULL_TREE;
1560 }
1561
1562 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1563 that binfos are walked at most once. */
1564
1565 static tree
1566 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1567 tree (*post_fn) (tree, void *), void *data)
1568 {
1569 tree rval;
1570 unsigned ix;
1571 tree base_binfo;
1572
1573 /* Call the pre-order walking function. */
1574 if (pre_fn)
1575 {
1576 rval = pre_fn (binfo, data);
1577 if (rval)
1578 {
1579 if (rval == dfs_skip_bases)
1580 goto skip_bases;
1581
1582 return rval;
1583 }
1584 }
1585
1586 /* Find the next child binfo to walk. */
1587 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1588 {
1589 if (BINFO_VIRTUAL_P (base_binfo))
1590 {
1591 if (BINFO_MARKED (base_binfo))
1592 continue;
1593 BINFO_MARKED (base_binfo) = 1;
1594 }
1595
1596 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1597 if (rval)
1598 return rval;
1599 }
1600
1601 skip_bases:
1602 /* Call the post-order walking function. */
1603 if (post_fn)
1604 {
1605 rval = post_fn (binfo, data);
1606 gcc_assert (rval != dfs_skip_bases);
1607 return rval;
1608 }
1609
1610 return NULL_TREE;
1611 }
1612
1613 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1614 BINFO. */
1615
1616 static void
1617 dfs_unmark_r (tree binfo)
1618 {
1619 unsigned ix;
1620 tree base_binfo;
1621
1622 /* Process the basetypes. */
1623 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1624 {
1625 if (BINFO_VIRTUAL_P (base_binfo))
1626 {
1627 if (!BINFO_MARKED (base_binfo))
1628 continue;
1629 BINFO_MARKED (base_binfo) = 0;
1630 }
1631 /* Only walk, if it can contain more virtual bases. */
1632 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1633 dfs_unmark_r (base_binfo);
1634 }
1635 }
1636
1637 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1638 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1639 For diamond shaped hierarchies we must mark the virtual bases, to
1640 avoid multiple walks. */
1641
1642 tree
1643 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1644 tree (*post_fn) (tree, void *), void *data)
1645 {
1646 static int active = 0; /* We must not be called recursively. */
1647 tree rval;
1648
1649 gcc_assert (pre_fn || post_fn);
1650 gcc_assert (!active);
1651 active++;
1652
1653 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1654 /* We are not diamond shaped, and therefore cannot encounter the
1655 same binfo twice. */
1656 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1657 else
1658 {
1659 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1660 if (!BINFO_INHERITANCE_CHAIN (binfo))
1661 {
1662 /* We are at the top of the hierarchy, and can use the
1663 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1664 bases. */
1665 VEC(tree,gc) *vbases;
1666 unsigned ix;
1667 tree base_binfo;
1668
1669 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1670 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1671 BINFO_MARKED (base_binfo) = 0;
1672 }
1673 else
1674 dfs_unmark_r (binfo);
1675 }
1676
1677 active--;
1678
1679 return rval;
1680 }
1681
1682 /* Worker function for dfs_walk_once_accessible. Behaves like
1683 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1684 access given by the current context should be considered, (b) ONCE
1685 indicates whether bases should be marked during traversal. */
1686
1687 static tree
1688 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1689 tree (*pre_fn) (tree, void *),
1690 tree (*post_fn) (tree, void *), void *data)
1691 {
1692 tree rval = NULL_TREE;
1693 unsigned ix;
1694 tree base_binfo;
1695
1696 /* Call the pre-order walking function. */
1697 if (pre_fn)
1698 {
1699 rval = pre_fn (binfo, data);
1700 if (rval)
1701 {
1702 if (rval == dfs_skip_bases)
1703 goto skip_bases;
1704
1705 return rval;
1706 }
1707 }
1708
1709 /* Find the next child binfo to walk. */
1710 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1711 {
1712 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1713
1714 if (mark && BINFO_MARKED (base_binfo))
1715 continue;
1716
1717 /* If the base is inherited via private or protected
1718 inheritance, then we can't see it, unless we are a friend of
1719 the current binfo. */
1720 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1721 {
1722 tree scope;
1723 if (!friends_p)
1724 continue;
1725 scope = current_scope ();
1726 if (!scope
1727 || TREE_CODE (scope) == NAMESPACE_DECL
1728 || !is_friend (BINFO_TYPE (binfo), scope))
1729 continue;
1730 }
1731
1732 if (mark)
1733 BINFO_MARKED (base_binfo) = 1;
1734
1735 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1736 pre_fn, post_fn, data);
1737 if (rval)
1738 return rval;
1739 }
1740
1741 skip_bases:
1742 /* Call the post-order walking function. */
1743 if (post_fn)
1744 {
1745 rval = post_fn (binfo, data);
1746 gcc_assert (rval != dfs_skip_bases);
1747 return rval;
1748 }
1749
1750 return NULL_TREE;
1751 }
1752
1753 /* Like dfs_walk_once except that only accessible bases are walked.
1754 FRIENDS_P indicates whether friendship of the local context
1755 should be considered when determining accessibility. */
1756
1757 static tree
1758 dfs_walk_once_accessible (tree binfo, bool friends_p,
1759 tree (*pre_fn) (tree, void *),
1760 tree (*post_fn) (tree, void *), void *data)
1761 {
1762 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1763 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1764 pre_fn, post_fn, data);
1765
1766 if (diamond_shaped)
1767 {
1768 if (!BINFO_INHERITANCE_CHAIN (binfo))
1769 {
1770 /* We are at the top of the hierarchy, and can use the
1771 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1772 bases. */
1773 VEC(tree,gc) *vbases;
1774 unsigned ix;
1775 tree base_binfo;
1776
1777 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1778 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1779 BINFO_MARKED (base_binfo) = 0;
1780 }
1781 else
1782 dfs_unmark_r (binfo);
1783 }
1784 return rval;
1785 }
1786
1787 /* Check that virtual overrider OVERRIDER is acceptable for base function
1788 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1789
1790 static int
1791 check_final_overrider (tree overrider, tree basefn)
1792 {
1793 tree over_type = TREE_TYPE (overrider);
1794 tree base_type = TREE_TYPE (basefn);
1795 tree over_return = TREE_TYPE (over_type);
1796 tree base_return = TREE_TYPE (base_type);
1797 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1798 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1799 int fail = 0;
1800
1801 if (DECL_INVALID_OVERRIDER_P (overrider))
1802 return 0;
1803
1804 if (same_type_p (base_return, over_return))
1805 /* OK */;
1806 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1807 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1808 && POINTER_TYPE_P (base_return)))
1809 {
1810 /* Potentially covariant. */
1811 unsigned base_quals, over_quals;
1812
1813 fail = !POINTER_TYPE_P (base_return);
1814 if (!fail)
1815 {
1816 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1817
1818 base_return = TREE_TYPE (base_return);
1819 over_return = TREE_TYPE (over_return);
1820 }
1821 base_quals = cp_type_quals (base_return);
1822 over_quals = cp_type_quals (over_return);
1823
1824 if ((base_quals & over_quals) != over_quals)
1825 fail = 1;
1826
1827 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1828 {
1829 tree binfo = lookup_base (over_return, base_return,
1830 ba_check | ba_quiet, NULL);
1831
1832 if (!binfo)
1833 fail = 1;
1834 }
1835 else if (!pedantic
1836 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1837 /* GNU extension, allow trivial pointer conversions such as
1838 converting to void *, or qualification conversion. */
1839 {
1840 /* can_convert will permit user defined conversion from a
1841 (reference to) class type. We must reject them. */
1842 over_return = non_reference (TREE_TYPE (over_type));
1843 if (CLASS_TYPE_P (over_return))
1844 fail = 2;
1845 else
1846 {
1847 warning (0, "deprecated covariant return type for %q+#D",
1848 overrider);
1849 warning (0, " overriding %q+#D", basefn);
1850 }
1851 }
1852 else
1853 fail = 2;
1854 }
1855 else
1856 fail = 2;
1857 if (!fail)
1858 /* OK */;
1859 else
1860 {
1861 if (fail == 1)
1862 {
1863 error ("invalid covariant return type for %q+#D", overrider);
1864 error (" overriding %q+#D", basefn);
1865 }
1866 else
1867 {
1868 error ("conflicting return type specified for %q+#D", overrider);
1869 error (" overriding %q+#D", basefn);
1870 }
1871 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1872 return 0;
1873 }
1874
1875 /* Check throw specifier is at least as strict. */
1876 if (!comp_except_specs (base_throw, over_throw, 0))
1877 {
1878 error ("looser throw specifier for %q+#F", overrider);
1879 error (" overriding %q+#F", basefn);
1880 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1881 return 0;
1882 }
1883
1884 return 1;
1885 }
1886
1887 /* Given a class TYPE, and a function decl FNDECL, look for
1888 virtual functions in TYPE's hierarchy which FNDECL overrides.
1889 We do not look in TYPE itself, only its bases.
1890
1891 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1892 find that it overrides anything.
1893
1894 We check that every function which is overridden, is correctly
1895 overridden. */
1896
1897 int
1898 look_for_overrides (tree type, tree fndecl)
1899 {
1900 tree binfo = TYPE_BINFO (type);
1901 tree base_binfo;
1902 int ix;
1903 int found = 0;
1904
1905 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1906 {
1907 tree basetype = BINFO_TYPE (base_binfo);
1908
1909 if (TYPE_POLYMORPHIC_P (basetype))
1910 found += look_for_overrides_r (basetype, fndecl);
1911 }
1912 return found;
1913 }
1914
1915 /* Look in TYPE for virtual functions with the same signature as
1916 FNDECL. */
1917
1918 tree
1919 look_for_overrides_here (tree type, tree fndecl)
1920 {
1921 int ix;
1922
1923 /* If there are no methods in TYPE (meaning that only implicitly
1924 declared methods will ever be provided for TYPE), then there are
1925 no virtual functions. */
1926 if (!CLASSTYPE_METHOD_VEC (type))
1927 return NULL_TREE;
1928
1929 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1930 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1931 else
1932 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1933 if (ix >= 0)
1934 {
1935 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1936
1937 for (; fns; fns = OVL_NEXT (fns))
1938 {
1939 tree fn = OVL_CURRENT (fns);
1940
1941 if (!DECL_VIRTUAL_P (fn))
1942 /* Not a virtual. */;
1943 else if (DECL_CONTEXT (fn) != type)
1944 /* Introduced with a using declaration. */;
1945 else if (DECL_STATIC_FUNCTION_P (fndecl))
1946 {
1947 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1948 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1949 if (compparms (TREE_CHAIN (btypes), dtypes))
1950 return fn;
1951 }
1952 else if (same_signature_p (fndecl, fn))
1953 return fn;
1954 }
1955 }
1956 return NULL_TREE;
1957 }
1958
1959 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1960 TYPE itself and its bases. */
1961
1962 static int
1963 look_for_overrides_r (tree type, tree fndecl)
1964 {
1965 tree fn = look_for_overrides_here (type, fndecl);
1966 if (fn)
1967 {
1968 if (DECL_STATIC_FUNCTION_P (fndecl))
1969 {
1970 /* A static member function cannot match an inherited
1971 virtual member function. */
1972 error ("%q+#D cannot be declared", fndecl);
1973 error (" since %q+#D declared in base class", fn);
1974 }
1975 else
1976 {
1977 /* It's definitely virtual, even if not explicitly set. */
1978 DECL_VIRTUAL_P (fndecl) = 1;
1979 check_final_overrider (fndecl, fn);
1980 }
1981 return 1;
1982 }
1983
1984 /* We failed to find one declared in this class. Look in its bases. */
1985 return look_for_overrides (type, fndecl);
1986 }
1987
1988 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1989
1990 static tree
1991 dfs_get_pure_virtuals (tree binfo, void *data)
1992 {
1993 tree type = (tree) data;
1994
1995 /* We're not interested in primary base classes; the derived class
1996 of which they are a primary base will contain the information we
1997 need. */
1998 if (!BINFO_PRIMARY_P (binfo))
1999 {
2000 tree virtuals;
2001
2002 for (virtuals = BINFO_VIRTUALS (binfo);
2003 virtuals;
2004 virtuals = TREE_CHAIN (virtuals))
2005 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2006 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2007 BV_FN (virtuals));
2008 }
2009
2010 return NULL_TREE;
2011 }
2012
2013 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2014
2015 void
2016 get_pure_virtuals (tree type)
2017 {
2018 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2019 is going to be overridden. */
2020 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2021 /* Now, run through all the bases which are not primary bases, and
2022 collect the pure virtual functions. We look at the vtable in
2023 each class to determine what pure virtual functions are present.
2024 (A primary base is not interesting because the derived class of
2025 which it is a primary base will contain vtable entries for the
2026 pure virtuals in the base class. */
2027 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2028 }
2029 \f
2030 /* Debug info for C++ classes can get very large; try to avoid
2031 emitting it everywhere.
2032
2033 Note that this optimization wins even when the target supports
2034 BINCL (if only slightly), and reduces the amount of work for the
2035 linker. */
2036
2037 void
2038 maybe_suppress_debug_info (tree t)
2039 {
2040 if (write_symbols == NO_DEBUG)
2041 return;
2042
2043 /* We might have set this earlier in cp_finish_decl. */
2044 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2045
2046 /* Always emit the information for each class every time. */
2047 if (flag_emit_class_debug_always)
2048 return;
2049
2050 /* If we already know how we're handling this class, handle debug info
2051 the same way. */
2052 if (CLASSTYPE_INTERFACE_KNOWN (t))
2053 {
2054 if (CLASSTYPE_INTERFACE_ONLY (t))
2055 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2056 /* else don't set it. */
2057 }
2058 /* If the class has a vtable, write out the debug info along with
2059 the vtable. */
2060 else if (TYPE_CONTAINS_VPTR_P (t))
2061 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2062
2063 /* Otherwise, just emit the debug info normally. */
2064 }
2065
2066 /* Note that we want debugging information for a base class of a class
2067 whose vtable is being emitted. Normally, this would happen because
2068 calling the constructor for a derived class implies calling the
2069 constructors for all bases, which involve initializing the
2070 appropriate vptr with the vtable for the base class; but in the
2071 presence of optimization, this initialization may be optimized
2072 away, so we tell finish_vtable_vardecl that we want the debugging
2073 information anyway. */
2074
2075 static tree
2076 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2077 {
2078 tree t = BINFO_TYPE (binfo);
2079
2080 if (CLASSTYPE_DEBUG_REQUESTED (t))
2081 return dfs_skip_bases;
2082
2083 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2084
2085 return NULL_TREE;
2086 }
2087
2088 /* Write out the debugging information for TYPE, whose vtable is being
2089 emitted. Also walk through our bases and note that we want to
2090 write out information for them. This avoids the problem of not
2091 writing any debug info for intermediate basetypes whose
2092 constructors, and thus the references to their vtables, and thus
2093 the vtables themselves, were optimized away. */
2094
2095 void
2096 note_debug_info_needed (tree type)
2097 {
2098 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2099 {
2100 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2101 rest_of_type_compilation (type, toplevel_bindings_p ());
2102 }
2103
2104 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2105 }
2106 \f
2107 void
2108 print_search_statistics (void)
2109 {
2110 #ifdef GATHER_STATISTICS
2111 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2112 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2113 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2114 n_outer_fields_searched, n_calls_lookup_fnfields);
2115 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2116 #else /* GATHER_STATISTICS */
2117 fprintf (stderr, "no search statistics\n");
2118 #endif /* GATHER_STATISTICS */
2119 }
2120
2121 void
2122 reinit_search_statistics (void)
2123 {
2124 #ifdef GATHER_STATISTICS
2125 n_fields_searched = 0;
2126 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2127 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2128 n_calls_get_base_type = 0;
2129 n_outer_fields_searched = 0;
2130 n_contexts_saved = 0;
2131 #endif /* GATHER_STATISTICS */
2132 }
2133
2134 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2135 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2136 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2137 bases have been encountered already in the tree walk. PARENT_CONVS
2138 is the list of lists of conversion functions that could hide CONV
2139 and OTHER_CONVS is the list of lists of conversion functions that
2140 could hide or be hidden by CONV, should virtualness be involved in
2141 the hierarchy. Merely checking the conversion op's name is not
2142 enough because two conversion operators to the same type can have
2143 different names. Return nonzero if we are visible. */
2144
2145 static int
2146 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2147 tree to_type, tree parent_convs, tree other_convs)
2148 {
2149 tree level, probe;
2150
2151 /* See if we are hidden by a parent conversion. */
2152 for (level = parent_convs; level; level = TREE_CHAIN (level))
2153 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2154 if (same_type_p (to_type, TREE_TYPE (probe)))
2155 return 0;
2156
2157 if (virtual_depth || virtualness)
2158 {
2159 /* In a virtual hierarchy, we could be hidden, or could hide a
2160 conversion function on the other_convs list. */
2161 for (level = other_convs; level; level = TREE_CHAIN (level))
2162 {
2163 int we_hide_them;
2164 int they_hide_us;
2165 tree *prev, other;
2166
2167 if (!(virtual_depth || TREE_STATIC (level)))
2168 /* Neither is morally virtual, so cannot hide each other. */
2169 continue;
2170
2171 if (!TREE_VALUE (level))
2172 /* They evaporated away already. */
2173 continue;
2174
2175 they_hide_us = (virtual_depth
2176 && original_binfo (binfo, TREE_PURPOSE (level)));
2177 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2178 && original_binfo (TREE_PURPOSE (level), binfo));
2179
2180 if (!(we_hide_them || they_hide_us))
2181 /* Neither is within the other, so no hiding can occur. */
2182 continue;
2183
2184 for (prev = &TREE_VALUE (level), other = *prev; other;)
2185 {
2186 if (same_type_p (to_type, TREE_TYPE (other)))
2187 {
2188 if (they_hide_us)
2189 /* We are hidden. */
2190 return 0;
2191
2192 if (we_hide_them)
2193 {
2194 /* We hide the other one. */
2195 other = TREE_CHAIN (other);
2196 *prev = other;
2197 continue;
2198 }
2199 }
2200 prev = &TREE_CHAIN (other);
2201 other = *prev;
2202 }
2203 }
2204 }
2205 return 1;
2206 }
2207
2208 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2209 of conversion functions, the first slot will be for the current
2210 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2211 of conversion functions from children of the current binfo,
2212 concatenated with conversions from elsewhere in the hierarchy --
2213 that list begins with OTHER_CONVS. Return a single list of lists
2214 containing only conversions from the current binfo and its
2215 children. */
2216
2217 static tree
2218 split_conversions (tree my_convs, tree parent_convs,
2219 tree child_convs, tree other_convs)
2220 {
2221 tree t;
2222 tree prev;
2223
2224 /* Remove the original other_convs portion from child_convs. */
2225 for (prev = NULL, t = child_convs;
2226 t != other_convs; prev = t, t = TREE_CHAIN (t))
2227 continue;
2228
2229 if (prev)
2230 TREE_CHAIN (prev) = NULL_TREE;
2231 else
2232 child_convs = NULL_TREE;
2233
2234 /* Attach the child convs to any we had at this level. */
2235 if (my_convs)
2236 {
2237 my_convs = parent_convs;
2238 TREE_CHAIN (my_convs) = child_convs;
2239 }
2240 else
2241 my_convs = child_convs;
2242
2243 return my_convs;
2244 }
2245
2246 /* Worker for lookup_conversions. Lookup conversion functions in
2247 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2248 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2249 encountered virtual bases already in the tree walk. PARENT_CONVS &
2250 PARENT_TPL_CONVS are lists of list of conversions within parent
2251 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2252 elsewhere in the tree. Return the conversions found within this
2253 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2254 encountered virtualness. We keep template and non-template
2255 conversions separate, to avoid unnecessary type comparisons.
2256
2257 The located conversion functions are held in lists of lists. The
2258 TREE_VALUE of the outer list is the list of conversion functions
2259 found in a particular binfo. The TREE_PURPOSE of both the outer
2260 and inner lists is the binfo at which those conversions were
2261 found. TREE_STATIC is set for those lists within of morally
2262 virtual binfos. The TREE_VALUE of the inner list is the conversion
2263 function or overload itself. The TREE_TYPE of each inner list node
2264 is the converted-to type. */
2265
2266 static int
2267 lookup_conversions_r (tree binfo,
2268 int virtual_depth, int virtualness,
2269 tree parent_convs, tree parent_tpl_convs,
2270 tree other_convs, tree other_tpl_convs,
2271 tree *convs, tree *tpl_convs)
2272 {
2273 int my_virtualness = 0;
2274 tree my_convs = NULL_TREE;
2275 tree my_tpl_convs = NULL_TREE;
2276 tree child_convs = NULL_TREE;
2277 tree child_tpl_convs = NULL_TREE;
2278 unsigned i;
2279 tree base_binfo;
2280 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2281 tree conv;
2282
2283 /* If we have no conversion operators, then don't look. */
2284 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2285 {
2286 *convs = *tpl_convs = NULL_TREE;
2287
2288 return 0;
2289 }
2290
2291 if (BINFO_VIRTUAL_P (binfo))
2292 virtual_depth++;
2293
2294 /* First, locate the unhidden ones at this level. */
2295 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2296 VEC_iterate (tree, method_vec, i, conv);
2297 ++i)
2298 {
2299 tree cur = OVL_CURRENT (conv);
2300
2301 if (!DECL_CONV_FN_P (cur))
2302 break;
2303
2304 if (TREE_CODE (cur) == TEMPLATE_DECL)
2305 {
2306 /* Only template conversions can be overloaded, and we must
2307 flatten them out and check each one individually. */
2308 tree tpls;
2309
2310 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2311 {
2312 tree tpl = OVL_CURRENT (tpls);
2313 tree type = DECL_CONV_FN_TYPE (tpl);
2314
2315 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2316 type, parent_tpl_convs, other_tpl_convs))
2317 {
2318 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2319 TREE_TYPE (my_tpl_convs) = type;
2320 if (virtual_depth)
2321 {
2322 TREE_STATIC (my_tpl_convs) = 1;
2323 my_virtualness = 1;
2324 }
2325 }
2326 }
2327 }
2328 else
2329 {
2330 tree name = DECL_NAME (cur);
2331
2332 if (!IDENTIFIER_MARKED (name))
2333 {
2334 tree type = DECL_CONV_FN_TYPE (cur);
2335
2336 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2337 type, parent_convs, other_convs))
2338 {
2339 my_convs = tree_cons (binfo, conv, my_convs);
2340 TREE_TYPE (my_convs) = type;
2341 if (virtual_depth)
2342 {
2343 TREE_STATIC (my_convs) = 1;
2344 my_virtualness = 1;
2345 }
2346 IDENTIFIER_MARKED (name) = 1;
2347 }
2348 }
2349 }
2350 }
2351
2352 if (my_convs)
2353 {
2354 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2355 if (virtual_depth)
2356 TREE_STATIC (parent_convs) = 1;
2357 }
2358
2359 if (my_tpl_convs)
2360 {
2361 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2362 if (virtual_depth)
2363 TREE_STATIC (parent_tpl_convs) = 1;
2364 }
2365
2366 child_convs = other_convs;
2367 child_tpl_convs = other_tpl_convs;
2368
2369 /* Now iterate over each base, looking for more conversions. */
2370 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2371 {
2372 tree base_convs, base_tpl_convs;
2373 unsigned base_virtualness;
2374
2375 base_virtualness = lookup_conversions_r (base_binfo,
2376 virtual_depth, virtualness,
2377 parent_convs, parent_tpl_convs,
2378 child_convs, child_tpl_convs,
2379 &base_convs, &base_tpl_convs);
2380 if (base_virtualness)
2381 my_virtualness = virtualness = 1;
2382 child_convs = chainon (base_convs, child_convs);
2383 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2384 }
2385
2386 /* Unmark the conversions found at this level */
2387 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2388 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2389
2390 *convs = split_conversions (my_convs, parent_convs,
2391 child_convs, other_convs);
2392 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2393 child_tpl_convs, other_tpl_convs);
2394
2395 return my_virtualness;
2396 }
2397
2398 /* Return a TREE_LIST containing all the non-hidden user-defined
2399 conversion functions for TYPE (and its base-classes). The
2400 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2401 function. The TREE_PURPOSE is the BINFO from which the conversion
2402 functions in this node were selected. This function is effectively
2403 performing a set of member lookups as lookup_fnfield does, but
2404 using the type being converted to as the unique key, rather than the
2405 field name. */
2406
2407 tree
2408 lookup_conversions (tree type)
2409 {
2410 tree convs, tpl_convs;
2411 tree list = NULL_TREE;
2412
2413 complete_type (type);
2414 if (!TYPE_BINFO (type))
2415 return NULL_TREE;
2416
2417 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2418 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2419 &convs, &tpl_convs);
2420
2421 /* Flatten the list-of-lists */
2422 for (; convs; convs = TREE_CHAIN (convs))
2423 {
2424 tree probe, next;
2425
2426 for (probe = TREE_VALUE (convs); probe; probe = next)
2427 {
2428 next = TREE_CHAIN (probe);
2429
2430 TREE_CHAIN (probe) = list;
2431 list = probe;
2432 }
2433 }
2434
2435 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2436 {
2437 tree probe, next;
2438
2439 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2440 {
2441 next = TREE_CHAIN (probe);
2442
2443 TREE_CHAIN (probe) = list;
2444 list = probe;
2445 }
2446 }
2447
2448 return list;
2449 }
2450
2451 /* Returns the binfo of the first direct or indirect virtual base derived
2452 from BINFO, or NULL if binfo is not via virtual. */
2453
2454 tree
2455 binfo_from_vbase (tree binfo)
2456 {
2457 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2458 {
2459 if (BINFO_VIRTUAL_P (binfo))
2460 return binfo;
2461 }
2462 return NULL_TREE;
2463 }
2464
2465 /* Returns the binfo of the first direct or indirect virtual base derived
2466 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2467 via virtual. */
2468
2469 tree
2470 binfo_via_virtual (tree binfo, tree limit)
2471 {
2472 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2473 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2474 return NULL_TREE;
2475
2476 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2477 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2478 {
2479 if (BINFO_VIRTUAL_P (binfo))
2480 return binfo;
2481 }
2482 return NULL_TREE;
2483 }
2484
2485 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2486 Find the equivalent binfo within whatever graph HERE is located.
2487 This is the inverse of original_binfo. */
2488
2489 tree
2490 copied_binfo (tree binfo, tree here)
2491 {
2492 tree result = NULL_TREE;
2493
2494 if (BINFO_VIRTUAL_P (binfo))
2495 {
2496 tree t;
2497
2498 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2499 t = BINFO_INHERITANCE_CHAIN (t))
2500 continue;
2501
2502 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2503 }
2504 else if (BINFO_INHERITANCE_CHAIN (binfo))
2505 {
2506 tree cbinfo;
2507 tree base_binfo;
2508 int ix;
2509
2510 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2511 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2512 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2513 {
2514 result = base_binfo;
2515 break;
2516 }
2517 }
2518 else
2519 {
2520 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2521 result = here;
2522 }
2523
2524 gcc_assert (result);
2525 return result;
2526 }
2527
2528 tree
2529 binfo_for_vbase (tree base, tree t)
2530 {
2531 unsigned ix;
2532 tree binfo;
2533 VEC(tree,gc) *vbases;
2534
2535 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2536 VEC_iterate (tree, vbases, ix, binfo); ix++)
2537 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2538 return binfo;
2539 return NULL;
2540 }
2541
2542 /* BINFO is some base binfo of HERE, within some other
2543 hierarchy. Return the equivalent binfo, but in the hierarchy
2544 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2545 is not a base binfo of HERE, returns NULL_TREE. */
2546
2547 tree
2548 original_binfo (tree binfo, tree here)
2549 {
2550 tree result = NULL;
2551
2552 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2553 result = here;
2554 else if (BINFO_VIRTUAL_P (binfo))
2555 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2556 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2557 : NULL_TREE);
2558 else if (BINFO_INHERITANCE_CHAIN (binfo))
2559 {
2560 tree base_binfos;
2561
2562 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2563 if (base_binfos)
2564 {
2565 int ix;
2566 tree base_binfo;
2567
2568 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2569 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2570 BINFO_TYPE (binfo)))
2571 {
2572 result = base_binfo;
2573 break;
2574 }
2575 }
2576 }
2577
2578 return result;
2579 }
2580