semantics.c (finish_pseudo_destructor_expr): Allow differing cv-qualification between...
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
38
39 /* Obstack used for remembering decision points of breadth-first. */
40
41 static struct obstack search_obstack;
42
43 /* Methods for pushing and popping objects to and from obstacks. */
44
45 struct stack_level *
46 push_stack_level (struct obstack *obstack, char *tp,/* Sony NewsOS 5.0 compiler doesn't like void * here. */
47 int size)
48 {
49 struct stack_level *stack;
50 obstack_grow (obstack, tp, size);
51 stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
52 obstack_finish (obstack);
53 stack->obstack = obstack;
54 stack->first = (tree *) obstack_base (obstack);
55 stack->limit = obstack_room (obstack) / sizeof (tree *);
56 return stack;
57 }
58
59 struct stack_level *
60 pop_stack_level (struct stack_level *stack)
61 {
62 struct stack_level *tem = stack;
63 struct obstack *obstack = tem->obstack;
64 stack = tem->prev;
65 obstack_free (obstack, tem);
66 return stack;
67 }
68
69 #define search_level stack_level
70 static struct search_level *search_stack;
71
72 struct vbase_info
73 {
74 /* The class dominating the hierarchy. */
75 tree type;
76 /* A pointer to a complete object of the indicated TYPE. */
77 tree decl_ptr;
78 tree inits;
79 };
80
81 static tree dfs_check_overlap (tree, void *);
82 static tree dfs_no_overlap_yet (tree, int, void *);
83 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
84 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
85 static tree marked_pushdecls_p (tree, int, void *);
86 static tree unmarked_pushdecls_p (tree, int, void *);
87 static tree dfs_debug_unmarkedp (tree, int, void *);
88 static tree dfs_debug_mark (tree, void *);
89 static tree dfs_push_type_decls (tree, void *);
90 static tree dfs_push_decls (tree, void *);
91 static tree dfs_unuse_fields (tree, void *);
92 static tree add_conversions (tree, void *);
93 static int look_for_overrides_r (tree, tree);
94 static struct search_level *push_search_level (struct stack_level *,
95 struct obstack *);
96 static struct search_level *pop_search_level (struct stack_level *);
97 static tree bfs_walk (tree, tree (*) (tree, void *),
98 tree (*) (tree, int, void *), void *);
99 static tree lookup_field_queue_p (tree, int, void *);
100 static int shared_member_p (tree);
101 static tree lookup_field_r (tree, void *);
102 static tree dfs_accessible_queue_p (tree, int, void *);
103 static tree dfs_accessible_p (tree, void *);
104 static tree dfs_access_in_type (tree, void *);
105 static access_kind access_in_type (tree, tree);
106 static int protected_accessible_p (tree, tree, tree);
107 static int friend_accessible_p (tree, tree, tree);
108 static void setup_class_bindings (tree, int);
109 static int template_self_reference_p (tree, tree);
110 static tree dfs_get_pure_virtuals (tree, void *);
111
112 /* Allocate a level of searching. */
113
114 static struct search_level *
115 push_search_level (struct stack_level *stack, struct obstack *obstack)
116 {
117 struct search_level tem;
118
119 tem.prev = stack;
120 return push_stack_level (obstack, (char *)&tem, sizeof (tem));
121 }
122
123 /* Discard a level of search allocation. */
124
125 static struct search_level *
126 pop_search_level (struct stack_level *obstack)
127 {
128 struct search_level *stack = pop_stack_level (obstack);
129
130 return stack;
131 }
132 \f
133 /* Variables for gathering statistics. */
134 #ifdef GATHER_STATISTICS
135 static int n_fields_searched;
136 static int n_calls_lookup_field, n_calls_lookup_field_1;
137 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
138 static int n_calls_get_base_type;
139 static int n_outer_fields_searched;
140 static int n_contexts_saved;
141 #endif /* GATHER_STATISTICS */
142
143 \f
144 /* Worker for lookup_base. BINFO is the binfo we are searching at,
145 BASE is the RECORD_TYPE we are searching for. ACCESS is the
146 required access checks. IS_VIRTUAL indicates if BINFO is morally
147 virtual.
148
149 If BINFO is of the required type, then *BINFO_PTR is examined to
150 compare with any other instance of BASE we might have already
151 discovered. *BINFO_PTR is initialized and a base_kind return value
152 indicates what kind of base was located.
153
154 Otherwise BINFO's bases are searched. */
155
156 static base_kind
157 lookup_base_r (tree binfo, tree base, base_access access,
158 bool is_virtual, /* inside a virtual part */
159 tree *binfo_ptr)
160 {
161 int i;
162 tree bases, accesses;
163 base_kind found = bk_not_base;
164
165 if (same_type_p (BINFO_TYPE (binfo), base))
166 {
167 /* We have found a base. Check against what we have found
168 already. */
169 found = bk_same_type;
170 if (is_virtual)
171 found = bk_via_virtual;
172
173 if (!*binfo_ptr)
174 *binfo_ptr = binfo;
175 else if (binfo != *binfo_ptr)
176 {
177 if (access != ba_any)
178 *binfo_ptr = NULL;
179 else if (!is_virtual)
180 /* Prefer a non-virtual base. */
181 *binfo_ptr = binfo;
182 found = bk_ambig;
183 }
184
185 return found;
186 }
187
188 bases = BINFO_BASETYPES (binfo);
189 accesses = BINFO_BASEACCESSES (binfo);
190 if (!bases)
191 return bk_not_base;
192
193 for (i = TREE_VEC_LENGTH (bases); i--;)
194 {
195 tree base_binfo = TREE_VEC_ELT (bases, i);
196 base_kind bk;
197
198 bk = lookup_base_r (base_binfo, base,
199 access,
200 is_virtual || TREE_VIA_VIRTUAL (base_binfo),
201 binfo_ptr);
202
203 switch (bk)
204 {
205 case bk_ambig:
206 if (access != ba_any)
207 return bk;
208 found = bk;
209 break;
210
211 case bk_same_type:
212 bk = bk_proper_base;
213 /* Fall through. */
214 case bk_proper_base:
215 my_friendly_assert (found == bk_not_base, 20010723);
216 found = bk;
217 break;
218
219 case bk_via_virtual:
220 if (found != bk_ambig)
221 found = bk;
222 break;
223
224 case bk_not_base:
225 break;
226
227 default:
228 abort ();
229 }
230 }
231 return found;
232 }
233
234 /* Returns true if type BASE is accessible in T. (BASE is known to be
235 a (possibly non-proper) base class of T.) */
236
237 bool
238 accessible_base_p (tree t, tree base)
239 {
240 tree decl;
241
242 /* [class.access.base]
243
244 A base class is said to be accessible if an invented public
245 member of the base class is accessible.
246
247 If BASE is a non-proper base, this condition is trivially
248 true. */
249 if (same_type_p (t, base))
250 return true;
251 /* Rather than inventing a public member, we use the implicit
252 public typedef created in the scope of every class. */
253 decl = TYPE_FIELDS (base);
254 while (!DECL_SELF_REFERENCE_P (decl))
255 decl = TREE_CHAIN (decl);
256 while (ANON_AGGR_TYPE_P (t))
257 t = TYPE_CONTEXT (t);
258 return accessible_p (t, decl);
259 }
260
261 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
262 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
263 non-NULL, fill with information about what kind of base we
264 discovered.
265
266 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
267 not set in ACCESS, then an error is issued and error_mark_node is
268 returned. If the ba_quiet bit is set, then no error is issued and
269 NULL_TREE is returned. */
270
271 tree
272 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
273 {
274 tree binfo = NULL; /* The binfo we've found so far. */
275 tree t_binfo = NULL;
276 base_kind bk;
277
278 if (t == error_mark_node || base == error_mark_node)
279 {
280 if (kind_ptr)
281 *kind_ptr = bk_not_base;
282 return error_mark_node;
283 }
284 my_friendly_assert (TYPE_P (base), 20011127);
285
286 if (!TYPE_P (t))
287 {
288 t_binfo = t;
289 t = BINFO_TYPE (t);
290 }
291 else
292 t_binfo = TYPE_BINFO (t);
293
294 /* Ensure that the types are instantiated. */
295 t = complete_type (TYPE_MAIN_VARIANT (t));
296 base = complete_type (TYPE_MAIN_VARIANT (base));
297
298 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
299
300 /* Check that the base is unambiguous and accessible. */
301 if (access != ba_any)
302 switch (bk)
303 {
304 case bk_not_base:
305 break;
306
307 case bk_ambig:
308 binfo = NULL_TREE;
309 if (!(access & ba_quiet))
310 {
311 error ("`%T' is an ambiguous base of `%T'", base, t);
312 binfo = error_mark_node;
313 }
314 break;
315
316 default:
317 if ((access & ~ba_quiet) != ba_ignore
318 /* If BASE is incomplete, then BASE and TYPE are probably
319 the same, in which case BASE is accessible. If they
320 are not the same, then TYPE is invalid. In that case,
321 there's no need to issue another error here, and
322 there's no implicit typedef to use in the code that
323 follows, so we skip the check. */
324 && COMPLETE_TYPE_P (base)
325 && !accessible_base_p (t, base))
326 {
327 if (!(access & ba_quiet))
328 {
329 error ("`%T' is an inaccessible base of `%T'", base, t);
330 binfo = error_mark_node;
331 }
332 else
333 binfo = NULL_TREE;
334 bk = bk_inaccessible;
335 }
336 break;
337 }
338
339 if (kind_ptr)
340 *kind_ptr = bk;
341
342 return binfo;
343 }
344
345 /* Worker function for get_dynamic_cast_base_type. */
346
347 static int
348 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
349 tree *offset_ptr)
350 {
351 tree binfos, accesses;
352 int i, n_baselinks;
353 int worst = -2;
354
355 if (BINFO_TYPE (binfo) == subtype)
356 {
357 if (is_via_virtual)
358 return -1;
359 else
360 {
361 *offset_ptr = BINFO_OFFSET (binfo);
362 return 0;
363 }
364 }
365
366 binfos = BINFO_BASETYPES (binfo);
367 accesses = BINFO_BASEACCESSES (binfo);
368 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
369 for (i = 0; i < n_baselinks; i++)
370 {
371 tree base_binfo = TREE_VEC_ELT (binfos, i);
372 tree base_access = TREE_VEC_ELT (accesses, i);
373 int rval;
374
375 if (base_access != access_public_node)
376 continue;
377 rval = dynamic_cast_base_recurse
378 (subtype, base_binfo,
379 is_via_virtual || TREE_VIA_VIRTUAL (base_binfo), offset_ptr);
380 if (worst == -2)
381 worst = rval;
382 else if (rval >= 0)
383 worst = worst >= 0 ? -3 : worst;
384 else if (rval == -1)
385 worst = -1;
386 else if (rval == -3 && worst != -1)
387 worst = -3;
388 }
389 return worst;
390 }
391
392 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
393 started from is related to the required TARGET type, in order to optimize
394 the inheritance graph search. This information is independent of the
395 current context, and ignores private paths, hence get_base_distance is
396 inappropriate. Return a TREE specifying the base offset, BOFF.
397 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
398 and there are no public virtual SUBTYPE bases.
399 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
400 BOFF == -2, SUBTYPE is not a public base.
401 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
402
403 tree
404 get_dynamic_cast_base_type (tree subtype, tree target)
405 {
406 tree offset = NULL_TREE;
407 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
408 false, &offset);
409
410 if (!boff)
411 return offset;
412 offset = build_int_2 (boff, -1);
413 TREE_TYPE (offset) = ssizetype;
414 return offset;
415 }
416
417 /* Search for a member with name NAME in a multiple inheritance
418 lattice specified by TYPE. If it does not exist, return NULL_TREE.
419 If the member is ambiguously referenced, return `error_mark_node'.
420 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
421 true, type declarations are preferred. */
422
423 /* Do a 1-level search for NAME as a member of TYPE. The caller must
424 figure out whether it can access this field. (Since it is only one
425 level, this is reasonable.) */
426
427 tree
428 lookup_field_1 (tree type, tree name, bool want_type)
429 {
430 tree field;
431
432 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
433 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
434 || TREE_CODE (type) == TYPENAME_TYPE)
435 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
436 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
437 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
438 the code often worked even when we treated the index as a list
439 of fields!)
440 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
441 return NULL_TREE;
442
443 if (TYPE_NAME (type)
444 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
445 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
446 {
447 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
448 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
449 int i;
450
451 while (lo < hi)
452 {
453 i = (lo + hi) / 2;
454
455 #ifdef GATHER_STATISTICS
456 n_fields_searched++;
457 #endif /* GATHER_STATISTICS */
458
459 if (DECL_NAME (fields[i]) > name)
460 hi = i;
461 else if (DECL_NAME (fields[i]) < name)
462 lo = i + 1;
463 else
464 {
465 field = NULL_TREE;
466
467 /* We might have a nested class and a field with the
468 same name; we sorted them appropriately via
469 field_decl_cmp, so just look for the first or last
470 field with this name. */
471 if (want_type)
472 {
473 do
474 field = fields[i--];
475 while (i >= lo && DECL_NAME (fields[i]) == name);
476 if (TREE_CODE (field) != TYPE_DECL
477 && !DECL_CLASS_TEMPLATE_P (field))
478 field = NULL_TREE;
479 }
480 else
481 {
482 do
483 field = fields[i++];
484 while (i < hi && DECL_NAME (fields[i]) == name);
485 }
486 return field;
487 }
488 }
489 return NULL_TREE;
490 }
491
492 field = TYPE_FIELDS (type);
493
494 #ifdef GATHER_STATISTICS
495 n_calls_lookup_field_1++;
496 #endif /* GATHER_STATISTICS */
497 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
498 {
499 #ifdef GATHER_STATISTICS
500 n_fields_searched++;
501 #endif /* GATHER_STATISTICS */
502 my_friendly_assert (DECL_P (field), 0);
503 if (DECL_NAME (field) == NULL_TREE
504 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
505 {
506 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
507 if (temp)
508 return temp;
509 }
510 if (TREE_CODE (field) == USING_DECL)
511 /* For now, we're just treating member using declarations as
512 old ARM-style access declarations. Thus, there's no reason
513 to return a USING_DECL, and the rest of the compiler can't
514 handle it. Once the class is defined, these are purged
515 from TYPE_FIELDS anyhow; see handle_using_decl. */
516 continue;
517
518 if (DECL_NAME (field) == name
519 && (!want_type
520 || TREE_CODE (field) == TYPE_DECL
521 || DECL_CLASS_TEMPLATE_P (field)))
522 return field;
523 }
524 /* Not found. */
525 if (name == vptr_identifier)
526 {
527 /* Give the user what s/he thinks s/he wants. */
528 if (TYPE_POLYMORPHIC_P (type))
529 return TYPE_VFIELD (type);
530 }
531 return NULL_TREE;
532 }
533
534 /* There are a number of cases we need to be aware of here:
535 current_class_type current_function_decl
536 global NULL NULL
537 fn-local NULL SET
538 class-local SET NULL
539 class->fn SET SET
540 fn->class SET SET
541
542 Those last two make life interesting. If we're in a function which is
543 itself inside a class, we need decls to go into the fn's decls (our
544 second case below). But if we're in a class and the class itself is
545 inside a function, we need decls to go into the decls for the class. To
546 achieve this last goal, we must see if, when both current_class_ptr and
547 current_function_decl are set, the class was declared inside that
548 function. If so, we know to put the decls into the class's scope. */
549
550 tree
551 current_scope (void)
552 {
553 if (current_function_decl == NULL_TREE)
554 return current_class_type;
555 if (current_class_type == NULL_TREE)
556 return current_function_decl;
557 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
558 && same_type_p (DECL_CONTEXT (current_function_decl),
559 current_class_type))
560 || (DECL_FRIEND_CONTEXT (current_function_decl)
561 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
562 current_class_type)))
563 return current_function_decl;
564
565 return current_class_type;
566 }
567
568 /* Returns nonzero if we are currently in a function scope. Note
569 that this function returns zero if we are within a local class, but
570 not within a member function body of the local class. */
571
572 int
573 at_function_scope_p (void)
574 {
575 tree cs = current_scope ();
576 return cs && TREE_CODE (cs) == FUNCTION_DECL;
577 }
578
579 /* Returns true if the innermost active scope is a class scope. */
580
581 bool
582 at_class_scope_p (void)
583 {
584 tree cs = current_scope ();
585 return cs && TYPE_P (cs);
586 }
587
588 /* Returns true if the innermost active scope is a namespace scope. */
589
590 bool
591 at_namespace_scope_p (void)
592 {
593 /* We are in a namespace scope if we are not it a class scope or a
594 function scope. */
595 return !current_scope();
596 }
597
598 /* Return the scope of DECL, as appropriate when doing name-lookup. */
599
600 tree
601 context_for_name_lookup (tree decl)
602 {
603 /* [class.union]
604
605 For the purposes of name lookup, after the anonymous union
606 definition, the members of the anonymous union are considered to
607 have been defined in the scope in which the anonymous union is
608 declared. */
609 tree context = DECL_CONTEXT (decl);
610
611 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
612 context = TYPE_CONTEXT (context);
613 if (!context)
614 context = global_namespace;
615
616 return context;
617 }
618
619 /* The accessibility routines use BINFO_ACCESS for scratch space
620 during the computation of the accessibility of some declaration. */
621
622 #define BINFO_ACCESS(NODE) \
623 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
624
625 /* Set the access associated with NODE to ACCESS. */
626
627 #define SET_BINFO_ACCESS(NODE, ACCESS) \
628 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
629 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
630
631 /* Called from access_in_type via dfs_walk. Calculate the access to
632 DATA (which is really a DECL) in BINFO. */
633
634 static tree
635 dfs_access_in_type (tree binfo, void *data)
636 {
637 tree decl = (tree) data;
638 tree type = BINFO_TYPE (binfo);
639 access_kind access = ak_none;
640
641 if (context_for_name_lookup (decl) == type)
642 {
643 /* If we have descended to the scope of DECL, just note the
644 appropriate access. */
645 if (TREE_PRIVATE (decl))
646 access = ak_private;
647 else if (TREE_PROTECTED (decl))
648 access = ak_protected;
649 else
650 access = ak_public;
651 }
652 else
653 {
654 /* First, check for an access-declaration that gives us more
655 access to the DECL. The CONST_DECL for an enumeration
656 constant will not have DECL_LANG_SPECIFIC, and thus no
657 DECL_ACCESS. */
658 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
659 {
660 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
661
662 if (decl_access)
663 {
664 decl_access = TREE_VALUE (decl_access);
665
666 if (decl_access == access_public_node)
667 access = ak_public;
668 else if (decl_access == access_protected_node)
669 access = ak_protected;
670 else if (decl_access == access_private_node)
671 access = ak_private;
672 else
673 my_friendly_assert (false, 20030217);
674 }
675 }
676
677 if (!access)
678 {
679 int i;
680 int n_baselinks;
681 tree binfos, accesses;
682
683 /* Otherwise, scan our baseclasses, and pick the most favorable
684 access. */
685 binfos = BINFO_BASETYPES (binfo);
686 accesses = BINFO_BASEACCESSES (binfo);
687 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
688 for (i = 0; i < n_baselinks; ++i)
689 {
690 tree base_binfo = TREE_VEC_ELT (binfos, i);
691 tree base_access = TREE_VEC_ELT (accesses, i);
692 access_kind base_access_now = BINFO_ACCESS (base_binfo);
693
694 if (base_access_now == ak_none || base_access_now == ak_private)
695 /* If it was not accessible in the base, or only
696 accessible as a private member, we can't access it
697 all. */
698 base_access_now = ak_none;
699 else if (base_access == access_protected_node)
700 /* Public and protected members in the base become
701 protected here. */
702 base_access_now = ak_protected;
703 else if (base_access == access_private_node)
704 /* Public and protected members in the base become
705 private here. */
706 base_access_now = ak_private;
707
708 /* See if the new access, via this base, gives more
709 access than our previous best access. */
710 if (base_access_now != ak_none
711 && (access == ak_none || base_access_now < access))
712 {
713 access = base_access_now;
714
715 /* If the new access is public, we can't do better. */
716 if (access == ak_public)
717 break;
718 }
719 }
720 }
721 }
722
723 /* Note the access to DECL in TYPE. */
724 SET_BINFO_ACCESS (binfo, access);
725
726 /* Mark TYPE as visited so that if we reach it again we do not
727 duplicate our efforts here. */
728 BINFO_MARKED (binfo) = 1;
729
730 return NULL_TREE;
731 }
732
733 /* Return the access to DECL in TYPE. */
734
735 static access_kind
736 access_in_type (tree type, tree decl)
737 {
738 tree binfo = TYPE_BINFO (type);
739
740 /* We must take into account
741
742 [class.paths]
743
744 If a name can be reached by several paths through a multiple
745 inheritance graph, the access is that of the path that gives
746 most access.
747
748 The algorithm we use is to make a post-order depth-first traversal
749 of the base-class hierarchy. As we come up the tree, we annotate
750 each node with the most lenient access. */
751 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
752 dfs_walk (binfo, dfs_unmark, markedp, 0);
753
754 return BINFO_ACCESS (binfo);
755 }
756
757 /* Called from accessible_p via dfs_walk. */
758
759 static tree
760 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
761 {
762 tree binfo = BINFO_BASETYPE (derived, ix);
763
764 if (BINFO_MARKED (binfo))
765 return NULL_TREE;
766
767 /* If this class is inherited via private or protected inheritance,
768 then we can't see it, unless we are a friend of the derived class. */
769 if (BINFO_BASEACCESS (derived, ix) != access_public_node
770 && !is_friend (BINFO_TYPE (derived), current_scope ()))
771 return NULL_TREE;
772
773 return binfo;
774 }
775
776 /* Called from accessible_p via dfs_walk. */
777
778 static tree
779 dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
780 {
781 access_kind access;
782
783 BINFO_MARKED (binfo) = 1;
784 access = BINFO_ACCESS (binfo);
785 if (access != ak_none
786 && is_friend (BINFO_TYPE (binfo), current_scope ()))
787 return binfo;
788
789 return NULL_TREE;
790 }
791
792 /* Returns nonzero if it is OK to access DECL through an object
793 indicated by BINFO in the context of DERIVED. */
794
795 static int
796 protected_accessible_p (tree decl, tree derived, tree binfo)
797 {
798 access_kind access;
799
800 /* We're checking this clause from [class.access.base]
801
802 m as a member of N is protected, and the reference occurs in a
803 member or friend of class N, or in a member or friend of a
804 class P derived from N, where m as a member of P is private or
805 protected.
806
807 Here DERIVED is a possible P and DECL is m. accessible_p will
808 iterate over various values of N, but the access to m in DERIVED
809 does not change.
810
811 Note that I believe that the passage above is wrong, and should read
812 "...is private or protected or public"; otherwise you get bizarre results
813 whereby a public using-decl can prevent you from accessing a protected
814 member of a base. (jason 2000/02/28) */
815
816 /* If DERIVED isn't derived from m's class, then it can't be a P. */
817 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
818 return 0;
819
820 access = access_in_type (derived, decl);
821
822 /* If m is inaccessible in DERIVED, then it's not a P. */
823 if (access == ak_none)
824 return 0;
825
826 /* [class.protected]
827
828 When a friend or a member function of a derived class references
829 a protected nonstatic member of a base class, an access check
830 applies in addition to those described earlier in clause
831 _class.access_) Except when forming a pointer to member
832 (_expr.unary.op_), the access must be through a pointer to,
833 reference to, or object of the derived class itself (or any class
834 derived from that class) (_expr.ref_). If the access is to form
835 a pointer to member, the nested-name-specifier shall name the
836 derived class (or any class derived from that class). */
837 if (DECL_NONSTATIC_MEMBER_P (decl))
838 {
839 /* We can tell through what the reference is occurring by
840 chasing BINFO up to the root. */
841 tree t = binfo;
842 while (BINFO_INHERITANCE_CHAIN (t))
843 t = BINFO_INHERITANCE_CHAIN (t);
844
845 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
846 return 0;
847 }
848
849 return 1;
850 }
851
852 /* Returns nonzero if SCOPE is a friend of a type which would be able
853 to access DECL through the object indicated by BINFO. */
854
855 static int
856 friend_accessible_p (tree scope, tree decl, tree binfo)
857 {
858 tree befriending_classes;
859 tree t;
860
861 if (!scope)
862 return 0;
863
864 if (TREE_CODE (scope) == FUNCTION_DECL
865 || DECL_FUNCTION_TEMPLATE_P (scope))
866 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
867 else if (TYPE_P (scope))
868 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
869 else
870 return 0;
871
872 for (t = befriending_classes; t; t = TREE_CHAIN (t))
873 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
874 return 1;
875
876 /* Nested classes are implicitly friends of their enclosing types, as
877 per core issue 45 (this is a change from the standard). */
878 if (TYPE_P (scope))
879 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
880 if (protected_accessible_p (decl, t, binfo))
881 return 1;
882
883 if (TREE_CODE (scope) == FUNCTION_DECL
884 || DECL_FUNCTION_TEMPLATE_P (scope))
885 {
886 /* Perhaps this SCOPE is a member of a class which is a
887 friend. */
888 if (DECL_CLASS_SCOPE_P (decl)
889 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
890 return 1;
891
892 /* Or an instantiation of something which is a friend. */
893 if (DECL_TEMPLATE_INFO (scope))
894 return friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
895 }
896 else if (CLASSTYPE_TEMPLATE_INFO (scope))
897 return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
898
899 return 0;
900 }
901
902 /* DECL is a declaration from a base class of TYPE, which was the
903 class used to name DECL. Return nonzero if, in the current
904 context, DECL is accessible. If TYPE is actually a BINFO node,
905 then we can tell in what context the access is occurring by looking
906 at the most derived class along the path indicated by BINFO. */
907
908 int
909 accessible_p (tree type, tree decl)
910 {
911 tree binfo;
912 tree t;
913 tree scope;
914 access_kind access;
915
916 /* Nonzero if it's OK to access DECL if it has protected
917 accessibility in TYPE. */
918 int protected_ok = 0;
919
920 /* If this declaration is in a block or namespace scope, there's no
921 access control. */
922 if (!TYPE_P (context_for_name_lookup (decl)))
923 return 1;
924
925 /* There is no need to perform access checks inside a thunk. */
926 scope = current_scope ();
927 if (scope && DECL_THUNK_P (scope))
928 return 1;
929
930 /* In a template declaration, we cannot be sure whether the
931 particular specialization that is instantiated will be a friend
932 or not. Therefore, all access checks are deferred until
933 instantiation. */
934 if (processing_template_decl)
935 return 1;
936
937 if (!TYPE_P (type))
938 {
939 binfo = type;
940 type = BINFO_TYPE (type);
941 }
942 else
943 binfo = TYPE_BINFO (type);
944
945 /* [class.access.base]
946
947 A member m is accessible when named in class N if
948
949 --m as a member of N is public, or
950
951 --m as a member of N is private, and the reference occurs in a
952 member or friend of class N, or
953
954 --m as a member of N is protected, and the reference occurs in a
955 member or friend of class N, or in a member or friend of a
956 class P derived from N, where m as a member of P is private or
957 protected, or
958
959 --there exists a base class B of N that is accessible at the point
960 of reference, and m is accessible when named in class B.
961
962 We walk the base class hierarchy, checking these conditions. */
963
964 /* Figure out where the reference is occurring. Check to see if
965 DECL is private or protected in this scope, since that will
966 determine whether protected access is allowed. */
967 if (current_class_type)
968 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
969
970 /* Now, loop through the classes of which we are a friend. */
971 if (!protected_ok)
972 protected_ok = friend_accessible_p (scope, decl, binfo);
973
974 /* Standardize the binfo that access_in_type will use. We don't
975 need to know what path was chosen from this point onwards. */
976 binfo = TYPE_BINFO (type);
977
978 /* Compute the accessibility of DECL in the class hierarchy
979 dominated by type. */
980 access = access_in_type (type, decl);
981 if (access == ak_public
982 || (access == ak_protected && protected_ok))
983 return 1;
984 else
985 {
986 /* Walk the hierarchy again, looking for a base class that allows
987 access. */
988 t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
989 /* Clear any mark bits. Note that we have to walk the whole tree
990 here, since we have aborted the previous walk from some point
991 deep in the tree. */
992 dfs_walk (binfo, dfs_unmark, 0, 0);
993
994 return t != NULL_TREE;
995 }
996 }
997
998 struct lookup_field_info {
999 /* The type in which we're looking. */
1000 tree type;
1001 /* The name of the field for which we're looking. */
1002 tree name;
1003 /* If non-NULL, the current result of the lookup. */
1004 tree rval;
1005 /* The path to RVAL. */
1006 tree rval_binfo;
1007 /* If non-NULL, the lookup was ambiguous, and this is a list of the
1008 candidates. */
1009 tree ambiguous;
1010 /* If nonzero, we are looking for types, not data members. */
1011 int want_type;
1012 /* If something went wrong, a message indicating what. */
1013 const char *errstr;
1014 };
1015
1016 /* Returns nonzero if BINFO is not hidden by the value found by the
1017 lookup so far. If BINFO is hidden, then there's no need to look in
1018 it. DATA is really a struct lookup_field_info. Called from
1019 lookup_field via breadth_first_search. */
1020
1021 static tree
1022 lookup_field_queue_p (tree derived, int ix, void *data)
1023 {
1024 tree binfo = BINFO_BASETYPE (derived, ix);
1025 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1026
1027 /* Don't look for constructors or destructors in base classes. */
1028 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1029 return NULL_TREE;
1030
1031 /* If this base class is hidden by the best-known value so far, we
1032 don't need to look. */
1033 if (lfi->rval_binfo && original_binfo (binfo, lfi->rval_binfo))
1034 return NULL_TREE;
1035
1036 /* If this is a dependent base, don't look in it. */
1037 if (BINFO_DEPENDENT_BASE_P (binfo))
1038 return NULL_TREE;
1039
1040 return binfo;
1041 }
1042
1043 /* Within the scope of a template class, you can refer to the to the
1044 current specialization with the name of the template itself. For
1045 example:
1046
1047 template <typename T> struct S { S* sp; }
1048
1049 Returns nonzero if DECL is such a declaration in a class TYPE. */
1050
1051 static int
1052 template_self_reference_p (tree type, tree decl)
1053 {
1054 return (CLASSTYPE_USE_TEMPLATE (type)
1055 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1056 && TREE_CODE (decl) == TYPE_DECL
1057 && DECL_ARTIFICIAL (decl)
1058 && DECL_NAME (decl) == constructor_name (type));
1059 }
1060
1061
1062 /* Nonzero for a class member means that it is shared between all objects
1063 of that class.
1064
1065 [class.member.lookup]:If the resulting set of declarations are not all
1066 from sub-objects of the same type, or the set has a nonstatic member
1067 and includes members from distinct sub-objects, there is an ambiguity
1068 and the program is ill-formed.
1069
1070 This function checks that T contains no nonstatic members. */
1071
1072 static int
1073 shared_member_p (tree t)
1074 {
1075 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1076 || TREE_CODE (t) == CONST_DECL)
1077 return 1;
1078 if (is_overloaded_fn (t))
1079 {
1080 for (; t; t = OVL_NEXT (t))
1081 {
1082 tree fn = OVL_CURRENT (t);
1083 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1084 return 0;
1085 }
1086 return 1;
1087 }
1088 return 0;
1089 }
1090
1091 /* DATA is really a struct lookup_field_info. Look for a field with
1092 the name indicated there in BINFO. If this function returns a
1093 non-NULL value it is the result of the lookup. Called from
1094 lookup_field via breadth_first_search. */
1095
1096 static tree
1097 lookup_field_r (tree binfo, void *data)
1098 {
1099 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1100 tree type = BINFO_TYPE (binfo);
1101 tree nval = NULL_TREE;
1102
1103 /* First, look for a function. There can't be a function and a data
1104 member with the same name, and if there's a function and a type
1105 with the same name, the type is hidden by the function. */
1106 if (!lfi->want_type)
1107 {
1108 int idx = lookup_fnfields_1 (type, lfi->name);
1109 if (idx >= 0)
1110 nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
1111 }
1112
1113 if (!nval)
1114 /* Look for a data member or type. */
1115 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1116
1117 /* If there is no declaration with the indicated name in this type,
1118 then there's nothing to do. */
1119 if (!nval)
1120 return NULL_TREE;
1121
1122 /* If we're looking up a type (as with an elaborated type specifier)
1123 we ignore all non-types we find. */
1124 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1125 && !DECL_CLASS_TEMPLATE_P (nval))
1126 {
1127 if (lfi->name == TYPE_IDENTIFIER (type))
1128 {
1129 /* If the aggregate has no user defined constructors, we allow
1130 it to have fields with the same name as the enclosing type.
1131 If we are looking for that name, find the corresponding
1132 TYPE_DECL. */
1133 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1134 if (DECL_NAME (nval) == lfi->name
1135 && TREE_CODE (nval) == TYPE_DECL)
1136 break;
1137 }
1138 else
1139 nval = NULL_TREE;
1140 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1141 {
1142 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1143 lfi->name);
1144 if (e != NULL)
1145 nval = TYPE_MAIN_DECL (e->type);
1146 else
1147 return NULL_TREE;
1148 }
1149 }
1150
1151 /* You must name a template base class with a template-id. */
1152 if (!same_type_p (type, lfi->type)
1153 && template_self_reference_p (type, nval))
1154 return NULL_TREE;
1155
1156 /* If the lookup already found a match, and the new value doesn't
1157 hide the old one, we might have an ambiguity. */
1158 if (lfi->rval_binfo && !original_binfo (lfi->rval_binfo, binfo))
1159 {
1160 if (nval == lfi->rval && shared_member_p (nval))
1161 /* The two things are really the same. */
1162 ;
1163 else if (original_binfo (binfo, lfi->rval_binfo))
1164 /* The previous value hides the new one. */
1165 ;
1166 else
1167 {
1168 /* We have a real ambiguity. We keep a chain of all the
1169 candidates. */
1170 if (!lfi->ambiguous && lfi->rval)
1171 {
1172 /* This is the first time we noticed an ambiguity. Add
1173 what we previously thought was a reasonable candidate
1174 to the list. */
1175 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1176 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1177 }
1178
1179 /* Add the new value. */
1180 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1181 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1182 lfi->errstr = "request for member `%D' is ambiguous";
1183 }
1184 }
1185 else
1186 {
1187 lfi->rval = nval;
1188 lfi->rval_binfo = binfo;
1189 }
1190
1191 return NULL_TREE;
1192 }
1193
1194 /* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1195 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1196 FUNCTIONS, and OPTYPE respectively. */
1197
1198 tree
1199 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1200 {
1201 tree baselink;
1202
1203 my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
1204 || TREE_CODE (functions) == TEMPLATE_DECL
1205 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1206 || TREE_CODE (functions) == OVERLOAD,
1207 20020730);
1208 my_friendly_assert (!optype || TYPE_P (optype), 20020730);
1209 my_friendly_assert (TREE_TYPE (functions), 20020805);
1210
1211 baselink = make_node (BASELINK);
1212 TREE_TYPE (baselink) = TREE_TYPE (functions);
1213 BASELINK_BINFO (baselink) = binfo;
1214 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1215 BASELINK_FUNCTIONS (baselink) = functions;
1216 BASELINK_OPTYPE (baselink) = optype;
1217
1218 return baselink;
1219 }
1220
1221 /* Look for a member named NAME in an inheritance lattice dominated by
1222 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1223 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1224 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1225 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1226 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1227 TREE_VALUEs are the list of ambiguous candidates.
1228
1229 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1230
1231 If nothing can be found return NULL_TREE and do not issue an error. */
1232
1233 tree
1234 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1235 {
1236 tree rval, rval_binfo = NULL_TREE;
1237 tree type = NULL_TREE, basetype_path = NULL_TREE;
1238 struct lookup_field_info lfi;
1239
1240 /* rval_binfo is the binfo associated with the found member, note,
1241 this can be set with useful information, even when rval is not
1242 set, because it must deal with ALL members, not just non-function
1243 members. It is used for ambiguity checking and the hidden
1244 checks. Whereas rval is only set if a proper (not hidden)
1245 non-function member is found. */
1246
1247 const char *errstr = 0;
1248
1249 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 20030624);
1250
1251 if (TREE_CODE (xbasetype) == TREE_VEC)
1252 {
1253 type = BINFO_TYPE (xbasetype);
1254 basetype_path = xbasetype;
1255 }
1256 else
1257 {
1258 my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)), 20030624);
1259 type = xbasetype;
1260 basetype_path = TYPE_BINFO (type);
1261 my_friendly_assert (!BINFO_INHERITANCE_CHAIN (basetype_path), 980827);
1262 }
1263
1264 if (type == current_class_type && TYPE_BEING_DEFINED (type)
1265 && IDENTIFIER_CLASS_VALUE (name))
1266 {
1267 tree field = IDENTIFIER_CLASS_VALUE (name);
1268 if (! is_overloaded_fn (field)
1269 && ! (want_type && TREE_CODE (field) != TYPE_DECL))
1270 /* We're in the scope of this class, and the value has already
1271 been looked up. Just return the cached value. */
1272 return field;
1273 }
1274
1275 complete_type (type);
1276
1277 #ifdef GATHER_STATISTICS
1278 n_calls_lookup_field++;
1279 #endif /* GATHER_STATISTICS */
1280
1281 memset (&lfi, 0, sizeof (lfi));
1282 lfi.type = type;
1283 lfi.name = name;
1284 lfi.want_type = want_type;
1285 bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
1286 rval = lfi.rval;
1287 rval_binfo = lfi.rval_binfo;
1288 if (rval_binfo)
1289 type = BINFO_TYPE (rval_binfo);
1290 errstr = lfi.errstr;
1291
1292 /* If we are not interested in ambiguities, don't report them;
1293 just return NULL_TREE. */
1294 if (!protect && lfi.ambiguous)
1295 return NULL_TREE;
1296
1297 if (protect == 2)
1298 {
1299 if (lfi.ambiguous)
1300 return lfi.ambiguous;
1301 else
1302 protect = 0;
1303 }
1304
1305 /* [class.access]
1306
1307 In the case of overloaded function names, access control is
1308 applied to the function selected by overloaded resolution. */
1309 if (rval && protect && !is_overloaded_fn (rval))
1310 perform_or_defer_access_check (basetype_path, rval);
1311
1312 if (errstr && protect)
1313 {
1314 error (errstr, name, type);
1315 if (lfi.ambiguous)
1316 print_candidates (lfi.ambiguous);
1317 rval = error_mark_node;
1318 }
1319
1320 if (rval && is_overloaded_fn (rval))
1321 rval = build_baselink (rval_binfo, basetype_path, rval,
1322 (IDENTIFIER_TYPENAME_P (name)
1323 ? TREE_TYPE (name): NULL_TREE));
1324 return rval;
1325 }
1326
1327 /* Like lookup_member, except that if we find a function member we
1328 return NULL_TREE. */
1329
1330 tree
1331 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1332 {
1333 tree rval = lookup_member (xbasetype, name, protect, want_type);
1334
1335 /* Ignore functions. */
1336 if (rval && BASELINK_P (rval))
1337 return NULL_TREE;
1338
1339 return rval;
1340 }
1341
1342 /* Like lookup_member, except that if we find a non-function member we
1343 return NULL_TREE. */
1344
1345 tree
1346 lookup_fnfields (tree xbasetype, tree name, int protect)
1347 {
1348 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1349
1350 /* Ignore non-functions. */
1351 if (rval && !BASELINK_P (rval))
1352 return NULL_TREE;
1353
1354 return rval;
1355 }
1356
1357 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1358 corresponding to "operator TYPE ()", or -1 if there is no such
1359 operator. Only CLASS_TYPE itself is searched; this routine does
1360 not scan the base classes of CLASS_TYPE. */
1361
1362 static int
1363 lookup_conversion_operator (tree class_type, tree type)
1364 {
1365 int pass;
1366 int i;
1367
1368 tree methods = CLASSTYPE_METHOD_VEC (class_type);
1369
1370 for (pass = 0; pass < 2; ++pass)
1371 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1372 i < TREE_VEC_LENGTH (methods);
1373 ++i)
1374 {
1375 tree fn = TREE_VEC_ELT (methods, i);
1376 /* The size of the vector may have some unused slots at the
1377 end. */
1378 if (!fn)
1379 break;
1380
1381 /* All the conversion operators come near the beginning of the
1382 class. Therefore, if FN is not a conversion operator, there
1383 is no matching conversion operator in CLASS_TYPE. */
1384 fn = OVL_CURRENT (fn);
1385 if (!DECL_CONV_FN_P (fn))
1386 break;
1387
1388 if (pass == 0)
1389 {
1390 /* On the first pass we only consider exact matches. If
1391 the types match, this slot is the one where the right
1392 conversion operators can be found. */
1393 if (TREE_CODE (fn) != TEMPLATE_DECL
1394 && same_type_p (DECL_CONV_FN_TYPE (fn), type))
1395 return i;
1396 }
1397 else
1398 {
1399 /* On the second pass we look for template conversion
1400 operators. It may be possible to instantiate the
1401 template to get the type desired. All of the template
1402 conversion operators share a slot. By looking for
1403 templates second we ensure that specializations are
1404 preferred over templates. */
1405 if (TREE_CODE (fn) == TEMPLATE_DECL)
1406 return i;
1407 }
1408 }
1409
1410 return -1;
1411 }
1412
1413 /* TYPE is a class type. Return the index of the fields within
1414 the method vector with name NAME, or -1 is no such field exists. */
1415
1416 int
1417 lookup_fnfields_1 (tree type, tree name)
1418 {
1419 tree method_vec;
1420 tree *methods;
1421 tree tmp;
1422 int i;
1423 int len;
1424
1425 if (!CLASS_TYPE_P (type))
1426 return -1;
1427
1428 method_vec = CLASSTYPE_METHOD_VEC (type);
1429
1430 if (!method_vec)
1431 return -1;
1432
1433 methods = &TREE_VEC_ELT (method_vec, 0);
1434 len = TREE_VEC_LENGTH (method_vec);
1435
1436 #ifdef GATHER_STATISTICS
1437 n_calls_lookup_fnfields_1++;
1438 #endif /* GATHER_STATISTICS */
1439
1440 /* Constructors are first... */
1441 if (name == ctor_identifier)
1442 return (methods[CLASSTYPE_CONSTRUCTOR_SLOT]
1443 ? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
1444 /* and destructors are second. */
1445 if (name == dtor_identifier)
1446 return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
1447 ? CLASSTYPE_DESTRUCTOR_SLOT : -1);
1448 if (IDENTIFIER_TYPENAME_P (name))
1449 return lookup_conversion_operator (type, TREE_TYPE (name));
1450
1451 /* Skip the conversion operators. */
1452 i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1453 while (i < len && methods[i] && DECL_CONV_FN_P (OVL_CURRENT (methods[i])))
1454 i++;
1455
1456 /* If the type is complete, use binary search. */
1457 if (COMPLETE_TYPE_P (type))
1458 {
1459 int lo = i;
1460 int hi = len;
1461
1462 while (lo < hi)
1463 {
1464 i = (lo + hi) / 2;
1465
1466 #ifdef GATHER_STATISTICS
1467 n_outer_fields_searched++;
1468 #endif /* GATHER_STATISTICS */
1469
1470 tmp = methods[i];
1471 /* This slot may be empty; we allocate more slots than we
1472 need. In that case, the entry we're looking for is
1473 closer to the beginning of the list. */
1474 if (tmp)
1475 tmp = DECL_NAME (OVL_CURRENT (tmp));
1476 if (!tmp || tmp > name)
1477 hi = i;
1478 else if (tmp < name)
1479 lo = i + 1;
1480 else
1481 return i;
1482 }
1483 }
1484 else
1485 for (; i < len && methods[i]; ++i)
1486 {
1487 #ifdef GATHER_STATISTICS
1488 n_outer_fields_searched++;
1489 #endif /* GATHER_STATISTICS */
1490
1491 tmp = OVL_CURRENT (methods[i]);
1492 if (DECL_NAME (tmp) == name)
1493 return i;
1494 }
1495
1496 return -1;
1497 }
1498
1499 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1500 the class or namespace used to qualify the name. CONTEXT_CLASS is
1501 the class corresponding to the object in which DECL will be used.
1502 Return a possibly modified version of DECL that takes into account
1503 the CONTEXT_CLASS.
1504
1505 In particular, consider an expression like `B::m' in the context of
1506 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1507 then the most derived class indicated by the BASELINK_BINFO will be
1508 `B', not `D'. This function makes that adjustment. */
1509
1510 tree
1511 adjust_result_of_qualified_name_lookup (tree decl,
1512 tree qualifying_scope,
1513 tree context_class)
1514 {
1515 if (context_class && CLASS_TYPE_P (qualifying_scope)
1516 && DERIVED_FROM_P (qualifying_scope, context_class)
1517 && BASELINK_P (decl))
1518 {
1519 tree base;
1520
1521 my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);
1522
1523 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1524 Because we do not yet know which function will be chosen by
1525 overload resolution, we cannot yet check either accessibility
1526 or ambiguity -- in either case, the choice of a static member
1527 function might make the usage valid. */
1528 base = lookup_base (context_class, qualifying_scope,
1529 ba_ignore | ba_quiet, NULL);
1530 if (base)
1531 {
1532 BASELINK_ACCESS_BINFO (decl) = base;
1533 BASELINK_BINFO (decl)
1534 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1535 ba_ignore | ba_quiet,
1536 NULL);
1537 }
1538 }
1539
1540 return decl;
1541 }
1542
1543 \f
1544 /* Walk the class hierarchy dominated by TYPE. FN is called for each
1545 type in the hierarchy, in a breadth-first preorder traversal.
1546 If it ever returns a non-NULL value, that value is immediately
1547 returned and the walk is terminated. At each node, FN is passed a
1548 BINFO indicating the path from the currently visited base-class to
1549 TYPE. Before each base-class is walked QFN is called. If the
1550 value returned is nonzero, the base-class is walked; otherwise it
1551 is not. If QFN is NULL, it is treated as a function which always
1552 returns 1. Both FN and QFN are passed the DATA whenever they are
1553 called.
1554
1555 Implementation notes: Uses a circular queue, which starts off on
1556 the stack but gets moved to the malloc arena if it needs to be
1557 enlarged. The underflow and overflow conditions are
1558 indistinguishable except by context: if head == tail and we just
1559 moved the head pointer, the queue is empty, but if we just moved
1560 the tail pointer, the queue is full.
1561 Start with enough room for ten concurrent base classes. That
1562 will be enough for most hierarchies. */
1563 #define BFS_WALK_INITIAL_QUEUE_SIZE 10
1564
1565 static tree
1566 bfs_walk (tree binfo,
1567 tree (*fn) (tree, void *),
1568 tree (*qfn) (tree, int, void *),
1569 void *data)
1570 {
1571 tree rval = NULL_TREE;
1572
1573 tree bases_initial[BFS_WALK_INITIAL_QUEUE_SIZE];
1574 /* A circular queue of the base classes of BINFO. These will be
1575 built up in breadth-first order, except where QFN prunes the
1576 search. */
1577 size_t head, tail;
1578 size_t base_buffer_size = BFS_WALK_INITIAL_QUEUE_SIZE;
1579 tree *base_buffer = bases_initial;
1580
1581 head = tail = 0;
1582 base_buffer[tail++] = binfo;
1583
1584 while (head != tail)
1585 {
1586 int n_bases, ix;
1587 tree binfo = base_buffer[head++];
1588 if (head == base_buffer_size)
1589 head = 0;
1590
1591 /* Is this the one we're looking for? If so, we're done. */
1592 rval = fn (binfo, data);
1593 if (rval)
1594 goto done;
1595
1596 n_bases = BINFO_N_BASETYPES (binfo);
1597 for (ix = 0; ix != n_bases; ix++)
1598 {
1599 tree base_binfo;
1600
1601 if (qfn)
1602 base_binfo = (*qfn) (binfo, ix, data);
1603 else
1604 base_binfo = BINFO_BASETYPE (binfo, ix);
1605
1606 if (base_binfo)
1607 {
1608 base_buffer[tail++] = base_binfo;
1609 if (tail == base_buffer_size)
1610 tail = 0;
1611 if (tail == head)
1612 {
1613 tree *new_buffer = xmalloc (2 * base_buffer_size
1614 * sizeof (tree));
1615 memcpy (&new_buffer[0], &base_buffer[0],
1616 tail * sizeof (tree));
1617 memcpy (&new_buffer[head + base_buffer_size],
1618 &base_buffer[head],
1619 (base_buffer_size - head) * sizeof (tree));
1620 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1621 free (base_buffer);
1622 base_buffer = new_buffer;
1623 head += base_buffer_size;
1624 base_buffer_size *= 2;
1625 }
1626 }
1627 }
1628 }
1629
1630 done:
1631 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1632 free (base_buffer);
1633 return rval;
1634 }
1635
1636 /* Exactly like bfs_walk, except that a depth-first traversal is
1637 performed, and PREFN is called in preorder, while POSTFN is called
1638 in postorder. */
1639
1640 tree
1641 dfs_walk_real (tree binfo,
1642 tree (*prefn) (tree, void *),
1643 tree (*postfn) (tree, void *),
1644 tree (*qfn) (tree, int, void *),
1645 void *data)
1646 {
1647 tree rval = NULL_TREE;
1648
1649 /* Call the pre-order walking function. */
1650 if (prefn)
1651 {
1652 rval = (*prefn) (binfo, data);
1653 if (rval)
1654 return rval;
1655 }
1656
1657 /* Process the basetypes. */
1658 if (BINFO_BASETYPES (binfo))
1659 {
1660 int i, n = TREE_VEC_LENGTH (BINFO_BASETYPES (binfo));
1661 for (i = 0; i != n; i++)
1662 {
1663 tree base_binfo;
1664
1665 if (qfn)
1666 base_binfo = (*qfn) (binfo, i, data);
1667 else
1668 base_binfo = BINFO_BASETYPE (binfo, i);
1669
1670 if (base_binfo)
1671 {
1672 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1673 if (rval)
1674 return rval;
1675 }
1676 }
1677 }
1678
1679 /* Call the post-order walking function. */
1680 if (postfn)
1681 rval = (*postfn) (binfo, data);
1682
1683 return rval;
1684 }
1685
1686 /* Exactly like bfs_walk, except that a depth-first post-order traversal is
1687 performed. */
1688
1689 tree
1690 dfs_walk (tree binfo,
1691 tree (*fn) (tree, void *),
1692 tree (*qfn) (tree, int, void *),
1693 void *data)
1694 {
1695 return dfs_walk_real (binfo, 0, fn, qfn, data);
1696 }
1697
1698 /* Check that virtual overrider OVERRIDER is acceptable for base function
1699 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1700
1701 int
1702 check_final_overrider (tree overrider, tree basefn)
1703 {
1704 tree over_type = TREE_TYPE (overrider);
1705 tree base_type = TREE_TYPE (basefn);
1706 tree over_return = TREE_TYPE (over_type);
1707 tree base_return = TREE_TYPE (base_type);
1708 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1709 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1710 int fail = 0;
1711
1712 if (DECL_INVALID_OVERRIDER_P (overrider))
1713 return 0;
1714
1715 if (same_type_p (base_return, over_return))
1716 /* OK */;
1717 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1718 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1719 && POINTER_TYPE_P (base_return)))
1720 {
1721 /* Potentially covariant. */
1722 unsigned base_quals, over_quals;
1723
1724 fail = !POINTER_TYPE_P (base_return);
1725 if (!fail)
1726 {
1727 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1728
1729 base_return = TREE_TYPE (base_return);
1730 over_return = TREE_TYPE (over_return);
1731 }
1732 base_quals = cp_type_quals (base_return);
1733 over_quals = cp_type_quals (over_return);
1734
1735 if ((base_quals & over_quals) != over_quals)
1736 fail = 1;
1737
1738 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1739 {
1740 tree binfo = lookup_base (over_return, base_return,
1741 ba_check | ba_quiet, NULL);
1742
1743 if (!binfo)
1744 fail = 1;
1745 }
1746 else if (!pedantic
1747 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1748 /* GNU extension, allow trivial pointer conversions such as
1749 converting to void *, or qualification conversion. */
1750 {
1751 /* can_convert will permit user defined conversion from a
1752 (reference to) class type. We must reject them. */
1753 over_return = non_reference (TREE_TYPE (over_type));
1754 if (CLASS_TYPE_P (over_return))
1755 fail = 2;
1756 }
1757 else
1758 fail = 2;
1759 }
1760 else
1761 fail = 2;
1762 if (!fail)
1763 /* OK */;
1764 else
1765 {
1766 if (fail == 1)
1767 {
1768 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1769 cp_error_at (" overriding `%#D'", basefn);
1770 }
1771 else
1772 {
1773 cp_error_at ("conflicting return type specified for `%#D'",
1774 overrider);
1775 cp_error_at (" overriding `%#D'", basefn);
1776 }
1777 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1778 return 0;
1779 }
1780
1781 /* Check throw specifier is at least as strict. */
1782 if (!comp_except_specs (base_throw, over_throw, 0))
1783 {
1784 cp_error_at ("looser throw specifier for `%#F'", overrider);
1785 cp_error_at (" overriding `%#F'", basefn);
1786 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1787 return 0;
1788 }
1789
1790 return 1;
1791 }
1792
1793 /* Given a class TYPE, and a function decl FNDECL, look for
1794 virtual functions in TYPE's hierarchy which FNDECL overrides.
1795 We do not look in TYPE itself, only its bases.
1796
1797 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1798 find that it overrides anything.
1799
1800 We check that every function which is overridden, is correctly
1801 overridden. */
1802
1803 int
1804 look_for_overrides (tree type, tree fndecl)
1805 {
1806 tree binfo = TYPE_BINFO (type);
1807 tree basebinfos = BINFO_BASETYPES (binfo);
1808 int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
1809 int ix;
1810 int found = 0;
1811
1812 for (ix = 0; ix != nbasebinfos; ix++)
1813 {
1814 tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
1815
1816 if (TYPE_POLYMORPHIC_P (basetype))
1817 found += look_for_overrides_r (basetype, fndecl);
1818 }
1819 return found;
1820 }
1821
1822 /* Look in TYPE for virtual functions with the same signature as
1823 FNDECL. */
1824
1825 tree
1826 look_for_overrides_here (tree type, tree fndecl)
1827 {
1828 int ix;
1829
1830 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1831 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1832 else
1833 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1834 if (ix >= 0)
1835 {
1836 tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
1837
1838 for (; fns; fns = OVL_NEXT (fns))
1839 {
1840 tree fn = OVL_CURRENT (fns);
1841
1842 if (!DECL_VIRTUAL_P (fn))
1843 /* Not a virtual. */;
1844 else if (DECL_CONTEXT (fn) != type)
1845 /* Introduced with a using declaration. */;
1846 else if (DECL_STATIC_FUNCTION_P (fndecl))
1847 {
1848 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1849 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1850 if (compparms (TREE_CHAIN (btypes), dtypes))
1851 return fn;
1852 }
1853 else if (same_signature_p (fndecl, fn))
1854 return fn;
1855 }
1856 }
1857 return NULL_TREE;
1858 }
1859
1860 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1861 TYPE itself and its bases. */
1862
1863 static int
1864 look_for_overrides_r (tree type, tree fndecl)
1865 {
1866 tree fn = look_for_overrides_here (type, fndecl);
1867 if (fn)
1868 {
1869 if (DECL_STATIC_FUNCTION_P (fndecl))
1870 {
1871 /* A static member function cannot match an inherited
1872 virtual member function. */
1873 cp_error_at ("`%#D' cannot be declared", fndecl);
1874 cp_error_at (" since `%#D' declared in base class", fn);
1875 }
1876 else
1877 {
1878 /* It's definitely virtual, even if not explicitly set. */
1879 DECL_VIRTUAL_P (fndecl) = 1;
1880 check_final_overrider (fndecl, fn);
1881 }
1882 return 1;
1883 }
1884
1885 /* We failed to find one declared in this class. Look in its bases. */
1886 return look_for_overrides (type, fndecl);
1887 }
1888
1889 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1890
1891 static tree
1892 dfs_get_pure_virtuals (tree binfo, void *data)
1893 {
1894 tree type = (tree) data;
1895
1896 /* We're not interested in primary base classes; the derived class
1897 of which they are a primary base will contain the information we
1898 need. */
1899 if (!BINFO_PRIMARY_P (binfo))
1900 {
1901 tree virtuals;
1902
1903 for (virtuals = BINFO_VIRTUALS (binfo);
1904 virtuals;
1905 virtuals = TREE_CHAIN (virtuals))
1906 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1907 CLASSTYPE_PURE_VIRTUALS (type)
1908 = tree_cons (NULL_TREE, BV_FN (virtuals),
1909 CLASSTYPE_PURE_VIRTUALS (type));
1910 }
1911
1912 BINFO_MARKED (binfo) = 1;
1913
1914 return NULL_TREE;
1915 }
1916
1917 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1918
1919 void
1920 get_pure_virtuals (tree type)
1921 {
1922 tree vbases;
1923
1924 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1925 is going to be overridden. */
1926 CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
1927 /* Now, run through all the bases which are not primary bases, and
1928 collect the pure virtual functions. We look at the vtable in
1929 each class to determine what pure virtual functions are present.
1930 (A primary base is not interesting because the derived class of
1931 which it is a primary base will contain vtable entries for the
1932 pure virtuals in the base class. */
1933 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1934 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1935
1936 /* Put the pure virtuals in dfs order. */
1937 CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));
1938
1939 for (vbases = CLASSTYPE_VBASECLASSES (type);
1940 vbases;
1941 vbases = TREE_CHAIN (vbases))
1942 {
1943 tree virtuals;
1944
1945 for (virtuals = BINFO_VIRTUALS (TREE_VALUE (vbases));
1946 virtuals;
1947 virtuals = TREE_CHAIN (virtuals))
1948 {
1949 tree base_fndecl = BV_FN (virtuals);
1950 if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
1951 error ("`%#D' needs a final overrider", base_fndecl);
1952 }
1953 }
1954 }
1955 \f
1956 /* DEPTH-FIRST SEARCH ROUTINES. */
1957
1958 tree
1959 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1960 {
1961 tree binfo = BINFO_BASETYPE (derived, ix);
1962
1963 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1964 }
1965
1966 tree
1967 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1968 {
1969 tree binfo = BINFO_BASETYPE (derived, ix);
1970
1971 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1972 }
1973
1974 static tree
1975 marked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1976 {
1977 tree binfo = BINFO_BASETYPE (derived, ix);
1978
1979 return (!BINFO_DEPENDENT_BASE_P (binfo)
1980 && BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1981 }
1982
1983 static tree
1984 unmarked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1985 {
1986 tree binfo = BINFO_BASETYPE (derived, ix);
1987
1988 return (!BINFO_DEPENDENT_BASE_P (binfo)
1989 && !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1990 }
1991
1992 /* The worker functions for `dfs_walk'. These do not need to
1993 test anything (vis a vis marking) if they are paired with
1994 a predicate function (above). */
1995
1996 tree
1997 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1998 {
1999 BINFO_MARKED (binfo) = 0;
2000 return NULL_TREE;
2001 }
2002
2003 \f
2004 /* Debug info for C++ classes can get very large; try to avoid
2005 emitting it everywhere.
2006
2007 Note that this optimization wins even when the target supports
2008 BINCL (if only slightly), and reduces the amount of work for the
2009 linker. */
2010
2011 void
2012 maybe_suppress_debug_info (tree t)
2013 {
2014 /* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
2015 does not support name references between translation units. It supports
2016 symbolic references between translation units, but only within a single
2017 executable or shared library.
2018
2019 For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
2020 that the type was never defined, so we only get the members we
2021 actually define. */
2022 if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
2023 return;
2024
2025 /* We might have set this earlier in cp_finish_decl. */
2026 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2027
2028 /* If we already know how we're handling this class, handle debug info
2029 the same way. */
2030 if (CLASSTYPE_INTERFACE_KNOWN (t))
2031 {
2032 if (CLASSTYPE_INTERFACE_ONLY (t))
2033 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2034 /* else don't set it. */
2035 }
2036 /* If the class has a vtable, write out the debug info along with
2037 the vtable. */
2038 else if (TYPE_CONTAINS_VPTR_P (t))
2039 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2040
2041 /* Otherwise, just emit the debug info normally. */
2042 }
2043
2044 /* Note that we want debugging information for a base class of a class
2045 whose vtable is being emitted. Normally, this would happen because
2046 calling the constructor for a derived class implies calling the
2047 constructors for all bases, which involve initializing the
2048 appropriate vptr with the vtable for the base class; but in the
2049 presence of optimization, this initialization may be optimized
2050 away, so we tell finish_vtable_vardecl that we want the debugging
2051 information anyway. */
2052
2053 static tree
2054 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2055 {
2056 tree t = BINFO_TYPE (binfo);
2057
2058 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2059
2060 return NULL_TREE;
2061 }
2062
2063 /* Returns BINFO if we haven't already noted that we want debugging
2064 info for this base class. */
2065
2066 static tree
2067 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2068 {
2069 tree binfo = BINFO_BASETYPE (derived, ix);
2070
2071 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
2072 ? binfo : NULL_TREE);
2073 }
2074
2075 /* Write out the debugging information for TYPE, whose vtable is being
2076 emitted. Also walk through our bases and note that we want to
2077 write out information for them. This avoids the problem of not
2078 writing any debug info for intermediate basetypes whose
2079 constructors, and thus the references to their vtables, and thus
2080 the vtables themselves, were optimized away. */
2081
2082 void
2083 note_debug_info_needed (tree type)
2084 {
2085 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2086 {
2087 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2088 rest_of_type_compilation (type, toplevel_bindings_p ());
2089 }
2090
2091 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
2092 }
2093 \f
2094 /* Subroutines of push_class_decls (). */
2095
2096 static void
2097 setup_class_bindings (tree name, int type_binding_p)
2098 {
2099 tree type_binding = NULL_TREE;
2100 tree value_binding;
2101
2102 /* If we've already done the lookup for this declaration, we're
2103 done. */
2104 if (IDENTIFIER_CLASS_VALUE (name))
2105 return;
2106
2107 /* First, deal with the type binding. */
2108 if (type_binding_p)
2109 {
2110 type_binding = lookup_member (current_class_type, name,
2111 /*protect=*/2, /*want_type=*/true);
2112 if (TREE_CODE (type_binding) == TREE_LIST
2113 && TREE_TYPE (type_binding) == error_mark_node)
2114 /* NAME is ambiguous. */
2115 push_class_level_binding (name, type_binding);
2116 else
2117 pushdecl_class_level (type_binding);
2118 }
2119
2120 /* Now, do the value binding. */
2121 value_binding = lookup_member (current_class_type, name,
2122 /*protect=*/2, /*want_type=*/false);
2123
2124 if (type_binding_p
2125 && (TREE_CODE (value_binding) == TYPE_DECL
2126 || DECL_CLASS_TEMPLATE_P (value_binding)
2127 || (TREE_CODE (value_binding) == TREE_LIST
2128 && TREE_TYPE (value_binding) == error_mark_node
2129 && (TREE_CODE (TREE_VALUE (value_binding))
2130 == TYPE_DECL))))
2131 /* We found a type-binding, even when looking for a non-type
2132 binding. This means that we already processed this binding
2133 above. */;
2134 else if (value_binding)
2135 {
2136 if (TREE_CODE (value_binding) == TREE_LIST
2137 && TREE_TYPE (value_binding) == error_mark_node)
2138 /* NAME is ambiguous. */
2139 push_class_level_binding (name, value_binding);
2140 else
2141 {
2142 if (BASELINK_P (value_binding))
2143 /* NAME is some overloaded functions. */
2144 value_binding = BASELINK_FUNCTIONS (value_binding);
2145 /* Two conversion operators that convert to the same type
2146 may have different names. (See
2147 mangle_conv_op_name_for_type.) To avoid recording the
2148 same conversion operator declaration more than once we
2149 must check to see that the same operator was not already
2150 found under another name. */
2151 if (IDENTIFIER_TYPENAME_P (name)
2152 && is_overloaded_fn (value_binding))
2153 {
2154 tree fns;
2155 for (fns = value_binding; fns; fns = OVL_NEXT (fns))
2156 if (IDENTIFIER_CLASS_VALUE (DECL_NAME (OVL_CURRENT (fns))))
2157 return;
2158 }
2159 pushdecl_class_level (value_binding);
2160 }
2161 }
2162 }
2163
2164 /* Push class-level declarations for any names appearing in BINFO that
2165 are TYPE_DECLS. */
2166
2167 static tree
2168 dfs_push_type_decls (tree binfo, void *data ATTRIBUTE_UNUSED)
2169 {
2170 tree type;
2171 tree fields;
2172
2173 type = BINFO_TYPE (binfo);
2174 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2175 if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
2176 && !(!same_type_p (type, current_class_type)
2177 && template_self_reference_p (type, fields)))
2178 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);
2179
2180 /* We can't just use BINFO_MARKED because envelope_add_decl uses
2181 DERIVED_FROM_P, which calls get_base_distance. */
2182 BINFO_PUSHDECLS_MARKED (binfo) = 1;
2183
2184 return NULL_TREE;
2185 }
2186
2187 /* Push class-level declarations for any names appearing in BINFO that
2188 are not TYPE_DECLS. */
2189
2190 static tree
2191 dfs_push_decls (tree binfo, void *data)
2192 {
2193 tree type = BINFO_TYPE (binfo);
2194 tree method_vec;
2195 tree fields;
2196
2197 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2198 if (DECL_NAME (fields)
2199 && TREE_CODE (fields) != TYPE_DECL
2200 && TREE_CODE (fields) != USING_DECL
2201 && !DECL_ARTIFICIAL (fields))
2202 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
2203 else if (TREE_CODE (fields) == FIELD_DECL
2204 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2205 dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
2206
2207 method_vec = (CLASS_TYPE_P (type)
2208 ? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
2209
2210 if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
2211 {
2212 tree *methods;
2213 tree *end;
2214
2215 /* Farm out constructors and destructors. */
2216 end = TREE_VEC_END (method_vec);
2217
2218 for (methods = &TREE_VEC_ELT (method_vec, 2);
2219 methods < end && *methods;
2220 methods++)
2221 setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)),
2222 /*type_binding_p=*/0);
2223 }
2224
2225 BINFO_PUSHDECLS_MARKED (binfo) = 0;
2226
2227 return NULL_TREE;
2228 }
2229
2230 /* When entering the scope of a class, we cache all of the
2231 fields that that class provides within its inheritance
2232 lattice. Where ambiguities result, we mark them
2233 with `error_mark_node' so that if they are encountered
2234 without explicit qualification, we can emit an error
2235 message. */
2236
2237 void
2238 push_class_decls (tree type)
2239 {
2240 search_stack = push_search_level (search_stack, &search_obstack);
2241
2242 /* Enter type declarations and mark. */
2243 dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);
2244
2245 /* Enter non-type declarations and unmark. */
2246 dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
2247 }
2248
2249 /* Here's a subroutine we need because C lacks lambdas. */
2250
2251 static tree
2252 dfs_unuse_fields (tree binfo, void *data ATTRIBUTE_UNUSED)
2253 {
2254 tree type = TREE_TYPE (binfo);
2255 tree fields;
2256
2257 if (TREE_CODE (type) == TYPENAME_TYPE)
2258 fields = TYPENAME_TYPE_FULLNAME (type);
2259 else if (TREE_CODE (type) == TYPEOF_TYPE)
2260 fields = TYPEOF_TYPE_EXPR (type);
2261 else if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
2262 fields = TEMPLATE_TYPE_PARM_INDEX (type);
2263 else
2264 fields = TYPE_FIELDS (type);
2265
2266 for (; fields; fields = TREE_CHAIN (fields))
2267 {
2268 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
2269 continue;
2270
2271 TREE_USED (fields) = 0;
2272 if (DECL_NAME (fields) == NULL_TREE
2273 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2274 unuse_fields (TREE_TYPE (fields));
2275 }
2276
2277 return NULL_TREE;
2278 }
2279
2280 void
2281 unuse_fields (tree type)
2282 {
2283 dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp, 0);
2284 }
2285
2286 void
2287 pop_class_decls (void)
2288 {
2289 /* We haven't pushed a search level when dealing with cached classes,
2290 so we'd better not try to pop it. */
2291 if (search_stack)
2292 search_stack = pop_search_level (search_stack);
2293 }
2294
2295 void
2296 print_search_statistics (void)
2297 {
2298 #ifdef GATHER_STATISTICS
2299 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2300 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2301 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2302 n_outer_fields_searched, n_calls_lookup_fnfields);
2303 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2304 #else /* GATHER_STATISTICS */
2305 fprintf (stderr, "no search statistics\n");
2306 #endif /* GATHER_STATISTICS */
2307 }
2308
2309 void
2310 init_search_processing (void)
2311 {
2312 gcc_obstack_init (&search_obstack);
2313 }
2314
2315 void
2316 reinit_search_statistics (void)
2317 {
2318 #ifdef GATHER_STATISTICS
2319 n_fields_searched = 0;
2320 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2321 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2322 n_calls_get_base_type = 0;
2323 n_outer_fields_searched = 0;
2324 n_contexts_saved = 0;
2325 #endif /* GATHER_STATISTICS */
2326 }
2327
2328 static tree
2329 add_conversions (tree binfo, void *data)
2330 {
2331 int i;
2332 tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2333 tree *conversions = (tree *) data;
2334
2335 /* Some builtin types have no method vector, not even an empty one. */
2336 if (!method_vec)
2337 return NULL_TREE;
2338
2339 for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
2340 {
2341 tree tmp = TREE_VEC_ELT (method_vec, i);
2342 tree name;
2343
2344 if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
2345 break;
2346
2347 name = DECL_NAME (OVL_CURRENT (tmp));
2348
2349 /* Make sure we don't already have this conversion. */
2350 if (! IDENTIFIER_MARKED (name))
2351 {
2352 tree t;
2353
2354 /* Make sure that we do not already have a conversion
2355 operator for this type. Merely checking the NAME is not
2356 enough because two conversion operators to the same type
2357 may not have the same NAME. */
2358 for (t = *conversions; t; t = TREE_CHAIN (t))
2359 {
2360 tree fn;
2361 for (fn = TREE_VALUE (t); fn; fn = OVL_NEXT (fn))
2362 if (same_type_p (TREE_TYPE (name),
2363 DECL_CONV_FN_TYPE (OVL_CURRENT (fn))))
2364 break;
2365 if (fn)
2366 break;
2367 }
2368 if (!t)
2369 {
2370 *conversions = tree_cons (binfo, tmp, *conversions);
2371 IDENTIFIER_MARKED (name) = 1;
2372 }
2373 }
2374 }
2375 return NULL_TREE;
2376 }
2377
2378 /* Return a TREE_LIST containing all the non-hidden user-defined
2379 conversion functions for TYPE (and its base-classes). The
2380 TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
2381 containing the conversion functions. The TREE_PURPOSE is the BINFO
2382 from which the conversion functions in this node were selected. */
2383
2384 tree
2385 lookup_conversions (tree type)
2386 {
2387 tree t;
2388 tree conversions = NULL_TREE;
2389
2390 complete_type (type);
2391 bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);
2392
2393 for (t = conversions; t; t = TREE_CHAIN (t))
2394 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;
2395
2396 return conversions;
2397 }
2398
2399 struct overlap_info
2400 {
2401 tree compare_type;
2402 int found_overlap;
2403 };
2404
2405 /* Check whether the empty class indicated by EMPTY_BINFO is also present
2406 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
2407
2408 static tree
2409 dfs_check_overlap (tree empty_binfo, void *data)
2410 {
2411 struct overlap_info *oi = (struct overlap_info *) data;
2412 tree binfo;
2413 for (binfo = TYPE_BINFO (oi->compare_type);
2414 ;
2415 binfo = BINFO_BASETYPE (binfo, 0))
2416 {
2417 if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
2418 {
2419 oi->found_overlap = 1;
2420 break;
2421 }
2422 else if (BINFO_BASETYPES (binfo) == NULL_TREE)
2423 break;
2424 }
2425
2426 return NULL_TREE;
2427 }
2428
2429 /* Trivial function to stop base traversal when we find something. */
2430
2431 static tree
2432 dfs_no_overlap_yet (tree derived, int ix, void *data)
2433 {
2434 tree binfo = BINFO_BASETYPE (derived, ix);
2435 struct overlap_info *oi = (struct overlap_info *) data;
2436
2437 return !oi->found_overlap ? binfo : NULL_TREE;
2438 }
2439
2440 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
2441 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
2442
2443 int
2444 types_overlap_p (tree empty_type, tree next_type)
2445 {
2446 struct overlap_info oi;
2447
2448 if (! IS_AGGR_TYPE (next_type))
2449 return 0;
2450 oi.compare_type = next_type;
2451 oi.found_overlap = 0;
2452 dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
2453 dfs_no_overlap_yet, &oi);
2454 return oi.found_overlap;
2455 }
2456
2457 /* Given a vtable VAR, determine which of the inherited classes the vtable
2458 inherits (in a loose sense) functions from.
2459
2460 FIXME: This does not work with the new ABI. */
2461
2462 tree
2463 binfo_for_vtable (tree var)
2464 {
2465 tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
2466 tree binfos = TYPE_BINFO_BASETYPES (BINFO_TYPE (main_binfo));
2467 int n_baseclasses = CLASSTYPE_N_BASECLASSES (BINFO_TYPE (main_binfo));
2468 int i;
2469
2470 for (i = 0; i < n_baseclasses; i++)
2471 {
2472 tree base_binfo = TREE_VEC_ELT (binfos, i);
2473 if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
2474 return base_binfo;
2475 }
2476
2477 /* If no secondary base classes matched, return the primary base, if
2478 there is one. */
2479 if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
2480 return get_primary_binfo (main_binfo);
2481
2482 return main_binfo;
2483 }
2484
2485 /* Returns the binfo of the first direct or indirect virtual base derived
2486 from BINFO, or NULL if binfo is not via virtual. */
2487
2488 tree
2489 binfo_from_vbase (tree binfo)
2490 {
2491 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2492 {
2493 if (TREE_VIA_VIRTUAL (binfo))
2494 return binfo;
2495 }
2496 return NULL_TREE;
2497 }
2498
2499 /* Returns the binfo of the first direct or indirect virtual base derived
2500 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2501 via virtual. */
2502
2503 tree
2504 binfo_via_virtual (tree binfo, tree limit)
2505 {
2506 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2507 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2508 {
2509 if (TREE_VIA_VIRTUAL (binfo))
2510 return binfo;
2511 }
2512 return NULL_TREE;
2513 }
2514
2515 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2516 Find the equivalent binfo within whatever graph HERE is located.
2517 This is the inverse of original_binfo. */
2518
2519 tree
2520 copied_binfo (tree binfo, tree here)
2521 {
2522 tree result = NULL_TREE;
2523
2524 if (TREE_VIA_VIRTUAL (binfo))
2525 {
2526 tree t;
2527
2528 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2529 t = BINFO_INHERITANCE_CHAIN (t))
2530 continue;
2531
2532 result = purpose_member (BINFO_TYPE (binfo),
2533 CLASSTYPE_VBASECLASSES (BINFO_TYPE (t)));
2534 result = TREE_VALUE (result);
2535 }
2536 else if (BINFO_INHERITANCE_CHAIN (binfo))
2537 {
2538 tree base_binfos;
2539 int ix, n;
2540
2541 base_binfos = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2542 base_binfos = BINFO_BASETYPES (base_binfos);
2543 n = TREE_VEC_LENGTH (base_binfos);
2544 for (ix = 0; ix != n; ix++)
2545 {
2546 tree base = TREE_VEC_ELT (base_binfos, ix);
2547
2548 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2549 {
2550 result = base;
2551 break;
2552 }
2553 }
2554 }
2555 else
2556 {
2557 my_friendly_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo), 20030202);
2558 result = here;
2559 }
2560
2561 my_friendly_assert (result, 20030202);
2562 return result;
2563 }
2564
2565 /* BINFO is some base binfo of HERE, within some other
2566 hierarchy. Return the equivalent binfo, but in the hierarchy
2567 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2568 is not a base binfo of HERE, returns NULL_TREE. */
2569
2570 tree
2571 original_binfo (tree binfo, tree here)
2572 {
2573 tree result = NULL;
2574
2575 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2576 result = here;
2577 else if (TREE_VIA_VIRTUAL (binfo))
2578 {
2579 result = purpose_member (BINFO_TYPE (binfo),
2580 CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)));
2581 if (result)
2582 result = TREE_VALUE (result);
2583 }
2584 else if (BINFO_INHERITANCE_CHAIN (binfo))
2585 {
2586 tree base_binfos;
2587
2588 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2589 if (base_binfos)
2590 {
2591 int ix, n;
2592
2593 base_binfos = BINFO_BASETYPES (base_binfos);
2594 n = TREE_VEC_LENGTH (base_binfos);
2595 for (ix = 0; ix != n; ix++)
2596 {
2597 tree base = TREE_VEC_ELT (base_binfos, ix);
2598
2599 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2600 {
2601 result = base;
2602 break;
2603 }
2604 }
2605 }
2606 }
2607
2608 return result;
2609 }
2610