re PR c++/16889 (ambiguity is not detected)
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
38
39 struct vbase_info
40 {
41 /* The class dominating the hierarchy. */
42 tree type;
43 /* A pointer to a complete object of the indicated TYPE. */
44 tree decl_ptr;
45 tree inits;
46 };
47
48 static int is_subobject_of_p (tree, tree);
49 static tree dfs_check_overlap (tree, void *);
50 static tree dfs_no_overlap_yet (tree, int, void *);
51 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
52 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
53 static tree dfs_debug_unmarkedp (tree, int, void *);
54 static tree dfs_debug_mark (tree, void *);
55 static int check_hidden_convs (tree, int, int, tree, tree, tree);
56 static tree split_conversions (tree, tree, tree, tree);
57 static int lookup_conversions_r (tree, int, int,
58 tree, tree, tree, tree, tree *, tree *);
59 static int look_for_overrides_r (tree, tree);
60 static tree lookup_field_queue_p (tree, int, void *);
61 static int shared_member_p (tree);
62 static tree lookup_field_r (tree, void *);
63 static tree dfs_accessible_queue_p (tree, int, void *);
64 static tree dfs_accessible_p (tree, void *);
65 static tree dfs_access_in_type (tree, void *);
66 static access_kind access_in_type (tree, tree);
67 static int protected_accessible_p (tree, tree, tree);
68 static int friend_accessible_p (tree, tree, tree);
69 static int template_self_reference_p (tree, tree);
70 static tree dfs_get_pure_virtuals (tree, void *);
71
72 \f
73 /* Variables for gathering statistics. */
74 #ifdef GATHER_STATISTICS
75 static int n_fields_searched;
76 static int n_calls_lookup_field, n_calls_lookup_field_1;
77 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
78 static int n_calls_get_base_type;
79 static int n_outer_fields_searched;
80 static int n_contexts_saved;
81 #endif /* GATHER_STATISTICS */
82
83 \f
84 /* Worker for lookup_base. BINFO is the binfo we are searching at,
85 BASE is the RECORD_TYPE we are searching for. ACCESS is the
86 required access checks. IS_VIRTUAL indicates if BINFO is morally
87 virtual.
88
89 If BINFO is of the required type, then *BINFO_PTR is examined to
90 compare with any other instance of BASE we might have already
91 discovered. *BINFO_PTR is initialized and a base_kind return value
92 indicates what kind of base was located.
93
94 Otherwise BINFO's bases are searched. */
95
96 static base_kind
97 lookup_base_r (tree binfo, tree base, base_access access,
98 bool is_virtual, /* inside a virtual part */
99 tree *binfo_ptr)
100 {
101 int i;
102 tree base_binfo;
103 base_kind found = bk_not_base;
104
105 if (same_type_p (BINFO_TYPE (binfo), base))
106 {
107 /* We have found a base. Check against what we have found
108 already. */
109 found = bk_same_type;
110 if (is_virtual)
111 found = bk_via_virtual;
112
113 if (!*binfo_ptr)
114 *binfo_ptr = binfo;
115 else if (binfo != *binfo_ptr)
116 {
117 if (access != ba_any)
118 *binfo_ptr = NULL;
119 else if (!is_virtual)
120 /* Prefer a non-virtual base. */
121 *binfo_ptr = binfo;
122 found = bk_ambig;
123 }
124
125 return found;
126 }
127
128 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
129 {
130 base_kind bk;
131
132 bk = lookup_base_r (base_binfo, base,
133 access,
134 is_virtual || BINFO_VIRTUAL_P (base_binfo),
135 binfo_ptr);
136
137 switch (bk)
138 {
139 case bk_ambig:
140 if (access != ba_any)
141 return bk;
142 found = bk;
143 break;
144
145 case bk_same_type:
146 bk = bk_proper_base;
147 /* Fall through. */
148 case bk_proper_base:
149 gcc_assert (found == bk_not_base);
150 found = bk;
151 break;
152
153 case bk_via_virtual:
154 if (found != bk_ambig)
155 found = bk;
156 break;
157
158 case bk_not_base:
159 break;
160
161 default:
162 gcc_unreachable ();
163 }
164 }
165 return found;
166 }
167
168 /* Returns true if type BASE is accessible in T. (BASE is known to be
169 a (possibly non-proper) base class of T.) */
170
171 bool
172 accessible_base_p (tree t, tree base)
173 {
174 tree decl;
175
176 /* [class.access.base]
177
178 A base class is said to be accessible if an invented public
179 member of the base class is accessible.
180
181 If BASE is a non-proper base, this condition is trivially
182 true. */
183 if (same_type_p (t, base))
184 return true;
185 /* Rather than inventing a public member, we use the implicit
186 public typedef created in the scope of every class. */
187 decl = TYPE_FIELDS (base);
188 while (!DECL_SELF_REFERENCE_P (decl))
189 decl = TREE_CHAIN (decl);
190 while (ANON_AGGR_TYPE_P (t))
191 t = TYPE_CONTEXT (t);
192 return accessible_p (t, decl);
193 }
194
195 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
196 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
197 non-NULL, fill with information about what kind of base we
198 discovered.
199
200 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
201 not set in ACCESS, then an error is issued and error_mark_node is
202 returned. If the ba_quiet bit is set, then no error is issued and
203 NULL_TREE is returned. */
204
205 tree
206 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
207 {
208 tree binfo = NULL_TREE; /* The binfo we've found so far. */
209 tree t_binfo = NULL_TREE;
210 base_kind bk;
211
212 if (t == error_mark_node || base == error_mark_node)
213 {
214 if (kind_ptr)
215 *kind_ptr = bk_not_base;
216 return error_mark_node;
217 }
218 gcc_assert (TYPE_P (base));
219
220 if (!TYPE_P (t))
221 {
222 t_binfo = t;
223 t = BINFO_TYPE (t);
224 }
225 else
226 {
227 t = complete_type (TYPE_MAIN_VARIANT (t));
228 t_binfo = TYPE_BINFO (t);
229 }
230
231 base = complete_type (TYPE_MAIN_VARIANT (base));
232
233 if (t_binfo)
234 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
235 else
236 bk = bk_not_base;
237
238 /* Check that the base is unambiguous and accessible. */
239 if (access != ba_any)
240 switch (bk)
241 {
242 case bk_not_base:
243 break;
244
245 case bk_ambig:
246 binfo = NULL_TREE;
247 if (!(access & ba_quiet))
248 {
249 error ("`%T' is an ambiguous base of `%T'", base, t);
250 binfo = error_mark_node;
251 }
252 break;
253
254 default:
255 if ((access & ~ba_quiet) != ba_ignore
256 /* If BASE is incomplete, then BASE and TYPE are probably
257 the same, in which case BASE is accessible. If they
258 are not the same, then TYPE is invalid. In that case,
259 there's no need to issue another error here, and
260 there's no implicit typedef to use in the code that
261 follows, so we skip the check. */
262 && COMPLETE_TYPE_P (base)
263 && !accessible_base_p (t, base))
264 {
265 if (!(access & ba_quiet))
266 {
267 error ("`%T' is an inaccessible base of `%T'", base, t);
268 binfo = error_mark_node;
269 }
270 else
271 binfo = NULL_TREE;
272 bk = bk_inaccessible;
273 }
274 break;
275 }
276
277 if (kind_ptr)
278 *kind_ptr = bk;
279
280 return binfo;
281 }
282
283 /* Worker function for get_dynamic_cast_base_type. */
284
285 static int
286 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
287 tree *offset_ptr)
288 {
289 VEC (tree) *accesses;
290 tree base_binfo;
291 int i;
292 int worst = -2;
293
294 if (BINFO_TYPE (binfo) == subtype)
295 {
296 if (is_via_virtual)
297 return -1;
298 else
299 {
300 *offset_ptr = BINFO_OFFSET (binfo);
301 return 0;
302 }
303 }
304
305 accesses = BINFO_BASE_ACCESSES (binfo);
306 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
307 {
308 tree base_access = VEC_index (tree, accesses, i);
309 int rval;
310
311 if (base_access != access_public_node)
312 continue;
313 rval = dynamic_cast_base_recurse
314 (subtype, base_binfo,
315 is_via_virtual || BINFO_VIRTUAL_P (base_binfo), offset_ptr);
316 if (worst == -2)
317 worst = rval;
318 else if (rval >= 0)
319 worst = worst >= 0 ? -3 : worst;
320 else if (rval == -1)
321 worst = -1;
322 else if (rval == -3 && worst != -1)
323 worst = -3;
324 }
325 return worst;
326 }
327
328 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
329 started from is related to the required TARGET type, in order to optimize
330 the inheritance graph search. This information is independent of the
331 current context, and ignores private paths, hence get_base_distance is
332 inappropriate. Return a TREE specifying the base offset, BOFF.
333 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
334 and there are no public virtual SUBTYPE bases.
335 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
336 BOFF == -2, SUBTYPE is not a public base.
337 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
338
339 tree
340 get_dynamic_cast_base_type (tree subtype, tree target)
341 {
342 tree offset = NULL_TREE;
343 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
344 false, &offset);
345
346 if (!boff)
347 return offset;
348 offset = ssize_int (boff);
349 return offset;
350 }
351
352 /* Search for a member with name NAME in a multiple inheritance
353 lattice specified by TYPE. If it does not exist, return NULL_TREE.
354 If the member is ambiguously referenced, return `error_mark_node'.
355 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
356 true, type declarations are preferred. */
357
358 /* Do a 1-level search for NAME as a member of TYPE. The caller must
359 figure out whether it can access this field. (Since it is only one
360 level, this is reasonable.) */
361
362 tree
363 lookup_field_1 (tree type, tree name, bool want_type)
364 {
365 tree field;
366
367 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
368 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
369 || TREE_CODE (type) == TYPENAME_TYPE)
370 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
371 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
372 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
373 the code often worked even when we treated the index as a list
374 of fields!)
375 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
376 return NULL_TREE;
377
378 if (TYPE_NAME (type)
379 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
380 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
381 {
382 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
383 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
384 int i;
385
386 while (lo < hi)
387 {
388 i = (lo + hi) / 2;
389
390 #ifdef GATHER_STATISTICS
391 n_fields_searched++;
392 #endif /* GATHER_STATISTICS */
393
394 if (DECL_NAME (fields[i]) > name)
395 hi = i;
396 else if (DECL_NAME (fields[i]) < name)
397 lo = i + 1;
398 else
399 {
400 field = NULL_TREE;
401
402 /* We might have a nested class and a field with the
403 same name; we sorted them appropriately via
404 field_decl_cmp, so just look for the first or last
405 field with this name. */
406 if (want_type)
407 {
408 do
409 field = fields[i--];
410 while (i >= lo && DECL_NAME (fields[i]) == name);
411 if (TREE_CODE (field) != TYPE_DECL
412 && !DECL_CLASS_TEMPLATE_P (field))
413 field = NULL_TREE;
414 }
415 else
416 {
417 do
418 field = fields[i++];
419 while (i < hi && DECL_NAME (fields[i]) == name);
420 }
421 return field;
422 }
423 }
424 return NULL_TREE;
425 }
426
427 field = TYPE_FIELDS (type);
428
429 #ifdef GATHER_STATISTICS
430 n_calls_lookup_field_1++;
431 #endif /* GATHER_STATISTICS */
432 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
433 {
434 #ifdef GATHER_STATISTICS
435 n_fields_searched++;
436 #endif /* GATHER_STATISTICS */
437 gcc_assert (DECL_P (field));
438 if (DECL_NAME (field) == NULL_TREE
439 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
440 {
441 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
442 if (temp)
443 return temp;
444 }
445 if (TREE_CODE (field) == USING_DECL)
446 {
447 /* We generally treat class-scope using-declarations as
448 ARM-style access specifications, because support for the
449 ISO semantics has not been implemented. So, in general,
450 there's no reason to return a USING_DECL, and the rest of
451 the compiler cannot handle that. Once the class is
452 defined, USING_DECLs are purged from TYPE_FIELDS; see
453 handle_using_decl. However, we make special efforts to
454 make using-declarations in template classes work
455 correctly. */
456 if (CLASSTYPE_TEMPLATE_INFO (type)
457 && !CLASSTYPE_USE_TEMPLATE (type)
458 && !TREE_TYPE (field))
459 ;
460 else
461 continue;
462 }
463
464 if (DECL_NAME (field) == name
465 && (!want_type
466 || TREE_CODE (field) == TYPE_DECL
467 || DECL_CLASS_TEMPLATE_P (field)))
468 return field;
469 }
470 /* Not found. */
471 if (name == vptr_identifier)
472 {
473 /* Give the user what s/he thinks s/he wants. */
474 if (TYPE_POLYMORPHIC_P (type))
475 return TYPE_VFIELD (type);
476 }
477 return NULL_TREE;
478 }
479
480 /* There are a number of cases we need to be aware of here:
481 current_class_type current_function_decl
482 global NULL NULL
483 fn-local NULL SET
484 class-local SET NULL
485 class->fn SET SET
486 fn->class SET SET
487
488 Those last two make life interesting. If we're in a function which is
489 itself inside a class, we need decls to go into the fn's decls (our
490 second case below). But if we're in a class and the class itself is
491 inside a function, we need decls to go into the decls for the class. To
492 achieve this last goal, we must see if, when both current_class_ptr and
493 current_function_decl are set, the class was declared inside that
494 function. If so, we know to put the decls into the class's scope. */
495
496 tree
497 current_scope (void)
498 {
499 if (current_function_decl == NULL_TREE)
500 return current_class_type;
501 if (current_class_type == NULL_TREE)
502 return current_function_decl;
503 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
504 && same_type_p (DECL_CONTEXT (current_function_decl),
505 current_class_type))
506 || (DECL_FRIEND_CONTEXT (current_function_decl)
507 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
508 current_class_type)))
509 return current_function_decl;
510
511 return current_class_type;
512 }
513
514 /* Returns nonzero if we are currently in a function scope. Note
515 that this function returns zero if we are within a local class, but
516 not within a member function body of the local class. */
517
518 int
519 at_function_scope_p (void)
520 {
521 tree cs = current_scope ();
522 return cs && TREE_CODE (cs) == FUNCTION_DECL;
523 }
524
525 /* Returns true if the innermost active scope is a class scope. */
526
527 bool
528 at_class_scope_p (void)
529 {
530 tree cs = current_scope ();
531 return cs && TYPE_P (cs);
532 }
533
534 /* Returns true if the innermost active scope is a namespace scope. */
535
536 bool
537 at_namespace_scope_p (void)
538 {
539 /* We are in a namespace scope if we are not it a class scope or a
540 function scope. */
541 return !current_scope();
542 }
543
544 /* Return the scope of DECL, as appropriate when doing name-lookup. */
545
546 tree
547 context_for_name_lookup (tree decl)
548 {
549 /* [class.union]
550
551 For the purposes of name lookup, after the anonymous union
552 definition, the members of the anonymous union are considered to
553 have been defined in the scope in which the anonymous union is
554 declared. */
555 tree context = DECL_CONTEXT (decl);
556
557 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
558 context = TYPE_CONTEXT (context);
559 if (!context)
560 context = global_namespace;
561
562 return context;
563 }
564
565 /* The accessibility routines use BINFO_ACCESS for scratch space
566 during the computation of the accessibility of some declaration. */
567
568 #define BINFO_ACCESS(NODE) \
569 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
570
571 /* Set the access associated with NODE to ACCESS. */
572
573 #define SET_BINFO_ACCESS(NODE, ACCESS) \
574 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
575 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
576
577 /* Called from access_in_type via dfs_walk. Calculate the access to
578 DATA (which is really a DECL) in BINFO. */
579
580 static tree
581 dfs_access_in_type (tree binfo, void *data)
582 {
583 tree decl = (tree) data;
584 tree type = BINFO_TYPE (binfo);
585 access_kind access = ak_none;
586
587 if (context_for_name_lookup (decl) == type)
588 {
589 /* If we have descended to the scope of DECL, just note the
590 appropriate access. */
591 if (TREE_PRIVATE (decl))
592 access = ak_private;
593 else if (TREE_PROTECTED (decl))
594 access = ak_protected;
595 else
596 access = ak_public;
597 }
598 else
599 {
600 /* First, check for an access-declaration that gives us more
601 access to the DECL. The CONST_DECL for an enumeration
602 constant will not have DECL_LANG_SPECIFIC, and thus no
603 DECL_ACCESS. */
604 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
605 {
606 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
607
608 if (decl_access)
609 {
610 decl_access = TREE_VALUE (decl_access);
611
612 if (decl_access == access_public_node)
613 access = ak_public;
614 else if (decl_access == access_protected_node)
615 access = ak_protected;
616 else if (decl_access == access_private_node)
617 access = ak_private;
618 else
619 gcc_unreachable ();
620 }
621 }
622
623 if (!access)
624 {
625 int i;
626 tree base_binfo;
627 VEC (tree) *accesses;
628
629 /* Otherwise, scan our baseclasses, and pick the most favorable
630 access. */
631 accesses = BINFO_BASE_ACCESSES (binfo);
632 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
633 {
634 tree base_access = VEC_index (tree, accesses, i);
635 access_kind base_access_now = BINFO_ACCESS (base_binfo);
636
637 if (base_access_now == ak_none || base_access_now == ak_private)
638 /* If it was not accessible in the base, or only
639 accessible as a private member, we can't access it
640 all. */
641 base_access_now = ak_none;
642 else if (base_access == access_protected_node)
643 /* Public and protected members in the base become
644 protected here. */
645 base_access_now = ak_protected;
646 else if (base_access == access_private_node)
647 /* Public and protected members in the base become
648 private here. */
649 base_access_now = ak_private;
650
651 /* See if the new access, via this base, gives more
652 access than our previous best access. */
653 if (base_access_now != ak_none
654 && (access == ak_none || base_access_now < access))
655 {
656 access = base_access_now;
657
658 /* If the new access is public, we can't do better. */
659 if (access == ak_public)
660 break;
661 }
662 }
663 }
664 }
665
666 /* Note the access to DECL in TYPE. */
667 SET_BINFO_ACCESS (binfo, access);
668
669 /* Mark TYPE as visited so that if we reach it again we do not
670 duplicate our efforts here. */
671 BINFO_MARKED (binfo) = 1;
672
673 return NULL_TREE;
674 }
675
676 /* Return the access to DECL in TYPE. */
677
678 static access_kind
679 access_in_type (tree type, tree decl)
680 {
681 tree binfo = TYPE_BINFO (type);
682
683 /* We must take into account
684
685 [class.paths]
686
687 If a name can be reached by several paths through a multiple
688 inheritance graph, the access is that of the path that gives
689 most access.
690
691 The algorithm we use is to make a post-order depth-first traversal
692 of the base-class hierarchy. As we come up the tree, we annotate
693 each node with the most lenient access. */
694 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
695 dfs_walk (binfo, dfs_unmark, markedp, 0);
696
697 return BINFO_ACCESS (binfo);
698 }
699
700 /* Called from accessible_p via dfs_walk. */
701
702 static tree
703 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
704 {
705 tree binfo = BINFO_BASE_BINFO (derived, ix);
706
707 if (BINFO_MARKED (binfo))
708 return NULL_TREE;
709
710 /* If this class is inherited via private or protected inheritance,
711 then we can't see it, unless we are a friend of the derived class. */
712 if (BINFO_BASE_ACCESS (derived, ix) != access_public_node
713 && !is_friend (BINFO_TYPE (derived), current_scope ()))
714 return NULL_TREE;
715
716 return binfo;
717 }
718
719 /* Called from accessible_p via dfs_walk. */
720
721 static tree
722 dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
723 {
724 access_kind access;
725
726 BINFO_MARKED (binfo) = 1;
727 access = BINFO_ACCESS (binfo);
728 if (access != ak_none
729 && is_friend (BINFO_TYPE (binfo), current_scope ()))
730 return binfo;
731
732 return NULL_TREE;
733 }
734
735 /* Returns nonzero if it is OK to access DECL through an object
736 indicated by BINFO in the context of DERIVED. */
737
738 static int
739 protected_accessible_p (tree decl, tree derived, tree binfo)
740 {
741 access_kind access;
742
743 /* We're checking this clause from [class.access.base]
744
745 m as a member of N is protected, and the reference occurs in a
746 member or friend of class N, or in a member or friend of a
747 class P derived from N, where m as a member of P is private or
748 protected.
749
750 Here DERIVED is a possible P and DECL is m. accessible_p will
751 iterate over various values of N, but the access to m in DERIVED
752 does not change.
753
754 Note that I believe that the passage above is wrong, and should read
755 "...is private or protected or public"; otherwise you get bizarre results
756 whereby a public using-decl can prevent you from accessing a protected
757 member of a base. (jason 2000/02/28) */
758
759 /* If DERIVED isn't derived from m's class, then it can't be a P. */
760 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
761 return 0;
762
763 access = access_in_type (derived, decl);
764
765 /* If m is inaccessible in DERIVED, then it's not a P. */
766 if (access == ak_none)
767 return 0;
768
769 /* [class.protected]
770
771 When a friend or a member function of a derived class references
772 a protected nonstatic member of a base class, an access check
773 applies in addition to those described earlier in clause
774 _class.access_) Except when forming a pointer to member
775 (_expr.unary.op_), the access must be through a pointer to,
776 reference to, or object of the derived class itself (or any class
777 derived from that class) (_expr.ref_). If the access is to form
778 a pointer to member, the nested-name-specifier shall name the
779 derived class (or any class derived from that class). */
780 if (DECL_NONSTATIC_MEMBER_P (decl))
781 {
782 /* We can tell through what the reference is occurring by
783 chasing BINFO up to the root. */
784 tree t = binfo;
785 while (BINFO_INHERITANCE_CHAIN (t))
786 t = BINFO_INHERITANCE_CHAIN (t);
787
788 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
789 return 0;
790 }
791
792 return 1;
793 }
794
795 /* Returns nonzero if SCOPE is a friend of a type which would be able
796 to access DECL through the object indicated by BINFO. */
797
798 static int
799 friend_accessible_p (tree scope, tree decl, tree binfo)
800 {
801 tree befriending_classes;
802 tree t;
803
804 if (!scope)
805 return 0;
806
807 if (TREE_CODE (scope) == FUNCTION_DECL
808 || DECL_FUNCTION_TEMPLATE_P (scope))
809 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
810 else if (TYPE_P (scope))
811 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
812 else
813 return 0;
814
815 for (t = befriending_classes; t; t = TREE_CHAIN (t))
816 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
817 return 1;
818
819 /* Nested classes are implicitly friends of their enclosing types, as
820 per core issue 45 (this is a change from the standard). */
821 if (TYPE_P (scope))
822 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
823 if (protected_accessible_p (decl, t, binfo))
824 return 1;
825
826 if (TREE_CODE (scope) == FUNCTION_DECL
827 || DECL_FUNCTION_TEMPLATE_P (scope))
828 {
829 /* Perhaps this SCOPE is a member of a class which is a
830 friend. */
831 if (DECL_CLASS_SCOPE_P (decl)
832 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
833 return 1;
834
835 /* Or an instantiation of something which is a friend. */
836 if (DECL_TEMPLATE_INFO (scope))
837 {
838 int ret;
839 /* Increment processing_template_decl to make sure that
840 dependent_type_p works correctly. */
841 ++processing_template_decl;
842 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
843 --processing_template_decl;
844 return ret;
845 }
846 }
847 else if (CLASSTYPE_TEMPLATE_INFO (scope))
848 {
849 int ret;
850 /* Increment processing_template_decl to make sure that
851 dependent_type_p works correctly. */
852 ++processing_template_decl;
853 ret = friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
854 --processing_template_decl;
855 return ret;
856 }
857
858 return 0;
859 }
860
861 /* DECL is a declaration from a base class of TYPE, which was the
862 class used to name DECL. Return nonzero if, in the current
863 context, DECL is accessible. If TYPE is actually a BINFO node,
864 then we can tell in what context the access is occurring by looking
865 at the most derived class along the path indicated by BINFO. */
866
867 int
868 accessible_p (tree type, tree decl)
869 {
870 tree binfo;
871 tree t;
872 tree scope;
873 access_kind access;
874
875 /* Nonzero if it's OK to access DECL if it has protected
876 accessibility in TYPE. */
877 int protected_ok = 0;
878
879 /* If this declaration is in a block or namespace scope, there's no
880 access control. */
881 if (!TYPE_P (context_for_name_lookup (decl)))
882 return 1;
883
884 /* There is no need to perform access checks inside a thunk. */
885 scope = current_scope ();
886 if (scope && DECL_THUNK_P (scope))
887 return 1;
888
889 /* In a template declaration, we cannot be sure whether the
890 particular specialization that is instantiated will be a friend
891 or not. Therefore, all access checks are deferred until
892 instantiation. */
893 if (processing_template_decl)
894 return 1;
895
896 if (!TYPE_P (type))
897 {
898 binfo = type;
899 type = BINFO_TYPE (type);
900 }
901 else
902 binfo = TYPE_BINFO (type);
903
904 /* [class.access.base]
905
906 A member m is accessible when named in class N if
907
908 --m as a member of N is public, or
909
910 --m as a member of N is private, and the reference occurs in a
911 member or friend of class N, or
912
913 --m as a member of N is protected, and the reference occurs in a
914 member or friend of class N, or in a member or friend of a
915 class P derived from N, where m as a member of P is private or
916 protected, or
917
918 --there exists a base class B of N that is accessible at the point
919 of reference, and m is accessible when named in class B.
920
921 We walk the base class hierarchy, checking these conditions. */
922
923 /* Figure out where the reference is occurring. Check to see if
924 DECL is private or protected in this scope, since that will
925 determine whether protected access is allowed. */
926 if (current_class_type)
927 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
928
929 /* Now, loop through the classes of which we are a friend. */
930 if (!protected_ok)
931 protected_ok = friend_accessible_p (scope, decl, binfo);
932
933 /* Standardize the binfo that access_in_type will use. We don't
934 need to know what path was chosen from this point onwards. */
935 binfo = TYPE_BINFO (type);
936
937 /* Compute the accessibility of DECL in the class hierarchy
938 dominated by type. */
939 access = access_in_type (type, decl);
940 if (access == ak_public
941 || (access == ak_protected && protected_ok))
942 return 1;
943 else
944 {
945 /* Walk the hierarchy again, looking for a base class that allows
946 access. */
947 t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
948 /* Clear any mark bits. Note that we have to walk the whole tree
949 here, since we have aborted the previous walk from some point
950 deep in the tree. */
951 dfs_walk (binfo, dfs_unmark, 0, 0);
952
953 return t != NULL_TREE;
954 }
955 }
956
957 struct lookup_field_info {
958 /* The type in which we're looking. */
959 tree type;
960 /* The name of the field for which we're looking. */
961 tree name;
962 /* If non-NULL, the current result of the lookup. */
963 tree rval;
964 /* The path to RVAL. */
965 tree rval_binfo;
966 /* If non-NULL, the lookup was ambiguous, and this is a list of the
967 candidates. */
968 tree ambiguous;
969 /* If nonzero, we are looking for types, not data members. */
970 int want_type;
971 /* If something went wrong, a message indicating what. */
972 const char *errstr;
973 };
974
975 /* Returns nonzero if BINFO is not hidden by the value found by the
976 lookup so far. If BINFO is hidden, then there's no need to look in
977 it. DATA is really a struct lookup_field_info. Called from
978 lookup_field via breadth_first_search. */
979
980 static tree
981 lookup_field_queue_p (tree derived, int ix, void *data)
982 {
983 tree binfo = BINFO_BASE_BINFO (derived, ix);
984 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
985
986 /* Don't look for constructors or destructors in base classes. */
987 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
988 return NULL_TREE;
989
990 /* If this base class is hidden by the best-known value so far, we
991 don't need to look. */
992 if (lfi->rval_binfo && derived == lfi->rval_binfo)
993 return NULL_TREE;
994
995 /* If this is a dependent base, don't look in it. */
996 if (BINFO_DEPENDENT_BASE_P (binfo))
997 return NULL_TREE;
998
999 return binfo;
1000 }
1001
1002 /* Within the scope of a template class, you can refer to the to the
1003 current specialization with the name of the template itself. For
1004 example:
1005
1006 template <typename T> struct S { S* sp; }
1007
1008 Returns nonzero if DECL is such a declaration in a class TYPE. */
1009
1010 static int
1011 template_self_reference_p (tree type, tree decl)
1012 {
1013 return (CLASSTYPE_USE_TEMPLATE (type)
1014 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1015 && TREE_CODE (decl) == TYPE_DECL
1016 && DECL_ARTIFICIAL (decl)
1017 && DECL_NAME (decl) == constructor_name (type));
1018 }
1019
1020 /* Nonzero for a class member means that it is shared between all objects
1021 of that class.
1022
1023 [class.member.lookup]:If the resulting set of declarations are not all
1024 from sub-objects of the same type, or the set has a nonstatic member
1025 and includes members from distinct sub-objects, there is an ambiguity
1026 and the program is ill-formed.
1027
1028 This function checks that T contains no nonstatic members. */
1029
1030 static int
1031 shared_member_p (tree t)
1032 {
1033 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1034 || TREE_CODE (t) == CONST_DECL)
1035 return 1;
1036 if (is_overloaded_fn (t))
1037 {
1038 for (; t; t = OVL_NEXT (t))
1039 {
1040 tree fn = OVL_CURRENT (t);
1041 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1042 return 0;
1043 }
1044 return 1;
1045 }
1046 return 0;
1047 }
1048
1049 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1050 found as a base class and sub-object of the object denoted by
1051 BINFO. */
1052
1053 static int
1054 is_subobject_of_p (tree parent, tree binfo)
1055 {
1056 tree probe;
1057
1058 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1059 {
1060 if (probe == binfo)
1061 return 1;
1062 if (BINFO_VIRTUAL_P (probe))
1063 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1064 != NULL_TREE);
1065 }
1066 return 0;
1067 }
1068
1069 /* DATA is really a struct lookup_field_info. Look for a field with
1070 the name indicated there in BINFO. If this function returns a
1071 non-NULL value it is the result of the lookup. Called from
1072 lookup_field via breadth_first_search. */
1073
1074 static tree
1075 lookup_field_r (tree binfo, void *data)
1076 {
1077 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1078 tree type = BINFO_TYPE (binfo);
1079 tree nval = NULL_TREE;
1080
1081 /* First, look for a function. There can't be a function and a data
1082 member with the same name, and if there's a function and a type
1083 with the same name, the type is hidden by the function. */
1084 if (!lfi->want_type)
1085 {
1086 int idx = lookup_fnfields_1 (type, lfi->name);
1087 if (idx >= 0)
1088 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1089 }
1090
1091 if (!nval)
1092 /* Look for a data member or type. */
1093 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1094
1095 /* If there is no declaration with the indicated name in this type,
1096 then there's nothing to do. */
1097 if (!nval)
1098 return NULL_TREE;
1099
1100 /* If we're looking up a type (as with an elaborated type specifier)
1101 we ignore all non-types we find. */
1102 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1103 && !DECL_CLASS_TEMPLATE_P (nval))
1104 {
1105 if (lfi->name == TYPE_IDENTIFIER (type))
1106 {
1107 /* If the aggregate has no user defined constructors, we allow
1108 it to have fields with the same name as the enclosing type.
1109 If we are looking for that name, find the corresponding
1110 TYPE_DECL. */
1111 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1112 if (DECL_NAME (nval) == lfi->name
1113 && TREE_CODE (nval) == TYPE_DECL)
1114 break;
1115 }
1116 else
1117 nval = NULL_TREE;
1118 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1119 {
1120 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1121 lfi->name);
1122 if (e != NULL)
1123 nval = TYPE_MAIN_DECL (e->type);
1124 else
1125 return NULL_TREE;
1126 }
1127 }
1128
1129 /* You must name a template base class with a template-id. */
1130 if (!same_type_p (type, lfi->type)
1131 && template_self_reference_p (type, nval))
1132 return NULL_TREE;
1133
1134 /* If the lookup already found a match, and the new value doesn't
1135 hide the old one, we might have an ambiguity. */
1136 if (lfi->rval_binfo
1137 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1138
1139 {
1140 if (nval == lfi->rval && shared_member_p (nval))
1141 /* The two things are really the same. */
1142 ;
1143 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1144 /* The previous value hides the new one. */
1145 ;
1146 else
1147 {
1148 /* We have a real ambiguity. We keep a chain of all the
1149 candidates. */
1150 if (!lfi->ambiguous && lfi->rval)
1151 {
1152 /* This is the first time we noticed an ambiguity. Add
1153 what we previously thought was a reasonable candidate
1154 to the list. */
1155 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1156 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1157 }
1158
1159 /* Add the new value. */
1160 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1161 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1162 lfi->errstr = "request for member `%D' is ambiguous";
1163 }
1164 }
1165 else
1166 {
1167 lfi->rval = nval;
1168 lfi->rval_binfo = binfo;
1169 }
1170
1171 return NULL_TREE;
1172 }
1173
1174 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1175 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1176 FUNCTIONS, and OPTYPE respectively. */
1177
1178 tree
1179 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1180 {
1181 tree baselink;
1182
1183 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1184 || TREE_CODE (functions) == TEMPLATE_DECL
1185 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1186 || TREE_CODE (functions) == OVERLOAD);
1187 gcc_assert (!optype || TYPE_P (optype));
1188 gcc_assert (TREE_TYPE (functions));
1189
1190 baselink = make_node (BASELINK);
1191 TREE_TYPE (baselink) = TREE_TYPE (functions);
1192 BASELINK_BINFO (baselink) = binfo;
1193 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1194 BASELINK_FUNCTIONS (baselink) = functions;
1195 BASELINK_OPTYPE (baselink) = optype;
1196
1197 return baselink;
1198 }
1199
1200 /* Look for a member named NAME in an inheritance lattice dominated by
1201 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1202 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1203 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1204 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1205 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1206 TREE_VALUEs are the list of ambiguous candidates.
1207
1208 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1209
1210 If nothing can be found return NULL_TREE and do not issue an error. */
1211
1212 tree
1213 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1214 {
1215 tree rval, rval_binfo = NULL_TREE;
1216 tree type = NULL_TREE, basetype_path = NULL_TREE;
1217 struct lookup_field_info lfi;
1218
1219 /* rval_binfo is the binfo associated with the found member, note,
1220 this can be set with useful information, even when rval is not
1221 set, because it must deal with ALL members, not just non-function
1222 members. It is used for ambiguity checking and the hidden
1223 checks. Whereas rval is only set if a proper (not hidden)
1224 non-function member is found. */
1225
1226 const char *errstr = 0;
1227
1228 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1229
1230 if (TREE_CODE (xbasetype) == TREE_BINFO)
1231 {
1232 type = BINFO_TYPE (xbasetype);
1233 basetype_path = xbasetype;
1234 }
1235 else
1236 {
1237 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1238 type = xbasetype;
1239 xbasetype = NULL_TREE;
1240 }
1241
1242 type = complete_type (type);
1243 if (!basetype_path)
1244 basetype_path = TYPE_BINFO (type);
1245
1246 if (!basetype_path)
1247 return NULL_TREE;
1248
1249 #ifdef GATHER_STATISTICS
1250 n_calls_lookup_field++;
1251 #endif /* GATHER_STATISTICS */
1252
1253 memset (&lfi, 0, sizeof (lfi));
1254 lfi.type = type;
1255 lfi.name = name;
1256 lfi.want_type = want_type;
1257 dfs_walk_real (basetype_path, &lookup_field_r, 0,
1258 &lookup_field_queue_p, &lfi);
1259 rval = lfi.rval;
1260 rval_binfo = lfi.rval_binfo;
1261 if (rval_binfo)
1262 type = BINFO_TYPE (rval_binfo);
1263 errstr = lfi.errstr;
1264
1265 /* If we are not interested in ambiguities, don't report them;
1266 just return NULL_TREE. */
1267 if (!protect && lfi.ambiguous)
1268 return NULL_TREE;
1269
1270 if (protect == 2)
1271 {
1272 if (lfi.ambiguous)
1273 return lfi.ambiguous;
1274 else
1275 protect = 0;
1276 }
1277
1278 /* [class.access]
1279
1280 In the case of overloaded function names, access control is
1281 applied to the function selected by overloaded resolution. */
1282 if (rval && protect && !is_overloaded_fn (rval))
1283 perform_or_defer_access_check (basetype_path, rval);
1284
1285 if (errstr && protect)
1286 {
1287 error (errstr, name, type);
1288 if (lfi.ambiguous)
1289 print_candidates (lfi.ambiguous);
1290 rval = error_mark_node;
1291 }
1292
1293 if (rval && is_overloaded_fn (rval))
1294 rval = build_baselink (rval_binfo, basetype_path, rval,
1295 (IDENTIFIER_TYPENAME_P (name)
1296 ? TREE_TYPE (name): NULL_TREE));
1297 return rval;
1298 }
1299
1300 /* Like lookup_member, except that if we find a function member we
1301 return NULL_TREE. */
1302
1303 tree
1304 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1305 {
1306 tree rval = lookup_member (xbasetype, name, protect, want_type);
1307
1308 /* Ignore functions, but propagate the ambiguity list. */
1309 if (!error_operand_p (rval)
1310 && (rval && BASELINK_P (rval)))
1311 return NULL_TREE;
1312
1313 return rval;
1314 }
1315
1316 /* Like lookup_member, except that if we find a non-function member we
1317 return NULL_TREE. */
1318
1319 tree
1320 lookup_fnfields (tree xbasetype, tree name, int protect)
1321 {
1322 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1323
1324 /* Ignore non-functions, but propagate the ambiguity list. */
1325 if (!error_operand_p (rval)
1326 && (rval && !BASELINK_P (rval)))
1327 return NULL_TREE;
1328
1329 return rval;
1330 }
1331
1332 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1333 corresponding to "operator TYPE ()", or -1 if there is no such
1334 operator. Only CLASS_TYPE itself is searched; this routine does
1335 not scan the base classes of CLASS_TYPE. */
1336
1337 static int
1338 lookup_conversion_operator (tree class_type, tree type)
1339 {
1340 int tpl_slot = -1;
1341
1342 if (TYPE_HAS_CONVERSION (class_type))
1343 {
1344 int i;
1345 tree fn;
1346 VEC(tree) *methods = CLASSTYPE_METHOD_VEC (class_type);
1347
1348 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1349 VEC_iterate (tree, methods, i, fn); ++i)
1350 {
1351 /* All the conversion operators come near the beginning of
1352 the class. Therefore, if FN is not a conversion
1353 operator, there is no matching conversion operator in
1354 CLASS_TYPE. */
1355 fn = OVL_CURRENT (fn);
1356 if (!DECL_CONV_FN_P (fn))
1357 break;
1358
1359 if (TREE_CODE (fn) == TEMPLATE_DECL)
1360 /* All the templated conversion functions are on the same
1361 slot, so remember it. */
1362 tpl_slot = i;
1363 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1364 return i;
1365 }
1366 }
1367
1368 return tpl_slot;
1369 }
1370
1371 /* TYPE is a class type. Return the index of the fields within
1372 the method vector with name NAME, or -1 is no such field exists. */
1373
1374 int
1375 lookup_fnfields_1 (tree type, tree name)
1376 {
1377 VEC(tree) *method_vec;
1378 tree fn;
1379 tree tmp;
1380 size_t i;
1381
1382 if (!CLASS_TYPE_P (type))
1383 return -1;
1384
1385 if (COMPLETE_TYPE_P (type))
1386 {
1387 if ((name == ctor_identifier
1388 || name == base_ctor_identifier
1389 || name == complete_ctor_identifier))
1390 {
1391 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1392 lazily_declare_fn (sfk_constructor, type);
1393 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1394 lazily_declare_fn (sfk_copy_constructor, type);
1395 }
1396 else if (name == ansi_assopname(NOP_EXPR)
1397 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1398 lazily_declare_fn (sfk_assignment_operator, type);
1399 }
1400
1401 method_vec = CLASSTYPE_METHOD_VEC (type);
1402 if (!method_vec)
1403 return -1;
1404
1405 #ifdef GATHER_STATISTICS
1406 n_calls_lookup_fnfields_1++;
1407 #endif /* GATHER_STATISTICS */
1408
1409 /* Constructors are first... */
1410 if (name == ctor_identifier)
1411 {
1412 fn = CLASSTYPE_CONSTRUCTORS (type);
1413 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1414 }
1415 /* and destructors are second. */
1416 if (name == dtor_identifier)
1417 {
1418 fn = CLASSTYPE_DESTRUCTORS (type);
1419 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1420 }
1421 if (IDENTIFIER_TYPENAME_P (name))
1422 return lookup_conversion_operator (type, TREE_TYPE (name));
1423
1424 /* Skip the conversion operators. */
1425 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1426 VEC_iterate (tree, method_vec, i, fn);
1427 ++i)
1428 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1429 break;
1430
1431 /* If the type is complete, use binary search. */
1432 if (COMPLETE_TYPE_P (type))
1433 {
1434 int lo;
1435 int hi;
1436
1437 lo = i;
1438 hi = VEC_length (tree, method_vec);
1439 while (lo < hi)
1440 {
1441 i = (lo + hi) / 2;
1442
1443 #ifdef GATHER_STATISTICS
1444 n_outer_fields_searched++;
1445 #endif /* GATHER_STATISTICS */
1446
1447 tmp = VEC_index (tree, method_vec, i);
1448 tmp = DECL_NAME (OVL_CURRENT (tmp));
1449 if (tmp > name)
1450 hi = i;
1451 else if (tmp < name)
1452 lo = i + 1;
1453 else
1454 return i;
1455 }
1456 }
1457 else
1458 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1459 {
1460 #ifdef GATHER_STATISTICS
1461 n_outer_fields_searched++;
1462 #endif /* GATHER_STATISTICS */
1463 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1464 return i;
1465 }
1466
1467 return -1;
1468 }
1469
1470 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1471 the class or namespace used to qualify the name. CONTEXT_CLASS is
1472 the class corresponding to the object in which DECL will be used.
1473 Return a possibly modified version of DECL that takes into account
1474 the CONTEXT_CLASS.
1475
1476 In particular, consider an expression like `B::m' in the context of
1477 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1478 then the most derived class indicated by the BASELINK_BINFO will be
1479 `B', not `D'. This function makes that adjustment. */
1480
1481 tree
1482 adjust_result_of_qualified_name_lookup (tree decl,
1483 tree qualifying_scope,
1484 tree context_class)
1485 {
1486 if (context_class && CLASS_TYPE_P (qualifying_scope)
1487 && DERIVED_FROM_P (qualifying_scope, context_class)
1488 && BASELINK_P (decl))
1489 {
1490 tree base;
1491
1492 gcc_assert (CLASS_TYPE_P (context_class));
1493
1494 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1495 Because we do not yet know which function will be chosen by
1496 overload resolution, we cannot yet check either accessibility
1497 or ambiguity -- in either case, the choice of a static member
1498 function might make the usage valid. */
1499 base = lookup_base (context_class, qualifying_scope,
1500 ba_ignore | ba_quiet, NULL);
1501 if (base)
1502 {
1503 BASELINK_ACCESS_BINFO (decl) = base;
1504 BASELINK_BINFO (decl)
1505 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1506 ba_ignore | ba_quiet,
1507 NULL);
1508 }
1509 }
1510
1511 return decl;
1512 }
1513
1514 \f
1515 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1516 PREFN is called in preorder, while POSTFN is called in postorder.
1517 If they ever returns a non-NULL value, that value is immediately
1518 returned and the walk is terminated. Both PREFN and POSTFN can be
1519 NULL. At each node, PREFN and POSTFN are passed the binfo to
1520 examine. Before each base-binfo of BINFO is walked, QFN is called.
1521 If the value returned is nonzero, the base-binfo is walked;
1522 otherwise it is not. If QFN is NULL, it is treated as a function
1523 which always returns 1. All callbacks are passed DATA whenever
1524 they are called. */
1525
1526 tree
1527 dfs_walk_real (tree binfo,
1528 tree (*prefn) (tree, void *),
1529 tree (*postfn) (tree, void *),
1530 tree (*qfn) (tree, int, void *),
1531 void *data)
1532 {
1533 int i;
1534 tree base_binfo;
1535 tree rval = NULL_TREE;
1536
1537 /* Call the pre-order walking function. */
1538 if (prefn)
1539 {
1540 rval = (*prefn) (binfo, data);
1541 if (rval)
1542 return rval;
1543 }
1544
1545 /* Process the basetypes. */
1546 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1547 {
1548 if (qfn)
1549 {
1550 base_binfo = (*qfn) (binfo, i, data);
1551 if (!base_binfo)
1552 continue;
1553 }
1554 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1555 if (rval)
1556 return rval;
1557 }
1558
1559 /* Call the post-order walking function. */
1560 if (postfn)
1561 rval = (*postfn) (binfo, data);
1562
1563 return rval;
1564 }
1565
1566 /* Exactly like dfs_walk_real, except that there is no pre-order
1567 function call and FN is called in post-order. */
1568
1569 tree
1570 dfs_walk (tree binfo,
1571 tree (*fn) (tree, void *),
1572 tree (*qfn) (tree, int, void *),
1573 void *data)
1574 {
1575 return dfs_walk_real (binfo, 0, fn, qfn, data);
1576 }
1577
1578 /* Check that virtual overrider OVERRIDER is acceptable for base function
1579 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1580
1581 int
1582 check_final_overrider (tree overrider, tree basefn)
1583 {
1584 tree over_type = TREE_TYPE (overrider);
1585 tree base_type = TREE_TYPE (basefn);
1586 tree over_return = TREE_TYPE (over_type);
1587 tree base_return = TREE_TYPE (base_type);
1588 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1589 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1590 int fail = 0;
1591
1592 if (DECL_INVALID_OVERRIDER_P (overrider))
1593 return 0;
1594
1595 if (same_type_p (base_return, over_return))
1596 /* OK */;
1597 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1598 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1599 && POINTER_TYPE_P (base_return)))
1600 {
1601 /* Potentially covariant. */
1602 unsigned base_quals, over_quals;
1603
1604 fail = !POINTER_TYPE_P (base_return);
1605 if (!fail)
1606 {
1607 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1608
1609 base_return = TREE_TYPE (base_return);
1610 over_return = TREE_TYPE (over_return);
1611 }
1612 base_quals = cp_type_quals (base_return);
1613 over_quals = cp_type_quals (over_return);
1614
1615 if ((base_quals & over_quals) != over_quals)
1616 fail = 1;
1617
1618 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1619 {
1620 tree binfo = lookup_base (over_return, base_return,
1621 ba_check | ba_quiet, NULL);
1622
1623 if (!binfo)
1624 fail = 1;
1625 }
1626 else if (!pedantic
1627 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1628 /* GNU extension, allow trivial pointer conversions such as
1629 converting to void *, or qualification conversion. */
1630 {
1631 /* can_convert will permit user defined conversion from a
1632 (reference to) class type. We must reject them. */
1633 over_return = non_reference (TREE_TYPE (over_type));
1634 if (CLASS_TYPE_P (over_return))
1635 fail = 2;
1636 }
1637 else
1638 fail = 2;
1639 }
1640 else
1641 fail = 2;
1642 if (!fail)
1643 /* OK */;
1644 else
1645 {
1646 if (fail == 1)
1647 {
1648 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1649 cp_error_at (" overriding `%#D'", basefn);
1650 }
1651 else
1652 {
1653 cp_error_at ("conflicting return type specified for `%#D'",
1654 overrider);
1655 cp_error_at (" overriding `%#D'", basefn);
1656 }
1657 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1658 return 0;
1659 }
1660
1661 /* Check throw specifier is at least as strict. */
1662 if (!comp_except_specs (base_throw, over_throw, 0))
1663 {
1664 cp_error_at ("looser throw specifier for `%#F'", overrider);
1665 cp_error_at (" overriding `%#F'", basefn);
1666 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1667 return 0;
1668 }
1669
1670 return 1;
1671 }
1672
1673 /* Given a class TYPE, and a function decl FNDECL, look for
1674 virtual functions in TYPE's hierarchy which FNDECL overrides.
1675 We do not look in TYPE itself, only its bases.
1676
1677 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1678 find that it overrides anything.
1679
1680 We check that every function which is overridden, is correctly
1681 overridden. */
1682
1683 int
1684 look_for_overrides (tree type, tree fndecl)
1685 {
1686 tree binfo = TYPE_BINFO (type);
1687 tree base_binfo;
1688 int ix;
1689 int found = 0;
1690
1691 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1692 {
1693 tree basetype = BINFO_TYPE (base_binfo);
1694
1695 if (TYPE_POLYMORPHIC_P (basetype))
1696 found += look_for_overrides_r (basetype, fndecl);
1697 }
1698 return found;
1699 }
1700
1701 /* Look in TYPE for virtual functions with the same signature as
1702 FNDECL. */
1703
1704 tree
1705 look_for_overrides_here (tree type, tree fndecl)
1706 {
1707 int ix;
1708
1709 /* If there are no methods in TYPE (meaning that only implicitly
1710 declared methods will ever be provided for TYPE), then there are
1711 no virtual functions. */
1712 if (!CLASSTYPE_METHOD_VEC (type))
1713 return NULL_TREE;
1714
1715 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1716 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1717 else
1718 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1719 if (ix >= 0)
1720 {
1721 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1722
1723 for (; fns; fns = OVL_NEXT (fns))
1724 {
1725 tree fn = OVL_CURRENT (fns);
1726
1727 if (!DECL_VIRTUAL_P (fn))
1728 /* Not a virtual. */;
1729 else if (DECL_CONTEXT (fn) != type)
1730 /* Introduced with a using declaration. */;
1731 else if (DECL_STATIC_FUNCTION_P (fndecl))
1732 {
1733 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1734 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1735 if (compparms (TREE_CHAIN (btypes), dtypes))
1736 return fn;
1737 }
1738 else if (same_signature_p (fndecl, fn))
1739 return fn;
1740 }
1741 }
1742 return NULL_TREE;
1743 }
1744
1745 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1746 TYPE itself and its bases. */
1747
1748 static int
1749 look_for_overrides_r (tree type, tree fndecl)
1750 {
1751 tree fn = look_for_overrides_here (type, fndecl);
1752 if (fn)
1753 {
1754 if (DECL_STATIC_FUNCTION_P (fndecl))
1755 {
1756 /* A static member function cannot match an inherited
1757 virtual member function. */
1758 cp_error_at ("`%#D' cannot be declared", fndecl);
1759 cp_error_at (" since `%#D' declared in base class", fn);
1760 }
1761 else
1762 {
1763 /* It's definitely virtual, even if not explicitly set. */
1764 DECL_VIRTUAL_P (fndecl) = 1;
1765 check_final_overrider (fndecl, fn);
1766 }
1767 return 1;
1768 }
1769
1770 /* We failed to find one declared in this class. Look in its bases. */
1771 return look_for_overrides (type, fndecl);
1772 }
1773
1774 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1775
1776 static tree
1777 dfs_get_pure_virtuals (tree binfo, void *data)
1778 {
1779 tree type = (tree) data;
1780
1781 /* We're not interested in primary base classes; the derived class
1782 of which they are a primary base will contain the information we
1783 need. */
1784 if (!BINFO_PRIMARY_P (binfo))
1785 {
1786 tree virtuals;
1787
1788 for (virtuals = BINFO_VIRTUALS (binfo);
1789 virtuals;
1790 virtuals = TREE_CHAIN (virtuals))
1791 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1792 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (type),
1793 BV_FN (virtuals));
1794 }
1795
1796 BINFO_MARKED (binfo) = 1;
1797
1798 return NULL_TREE;
1799 }
1800
1801 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1802
1803 void
1804 get_pure_virtuals (tree type)
1805 {
1806 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1807 is going to be overridden. */
1808 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
1809 /* Now, run through all the bases which are not primary bases, and
1810 collect the pure virtual functions. We look at the vtable in
1811 each class to determine what pure virtual functions are present.
1812 (A primary base is not interesting because the derived class of
1813 which it is a primary base will contain vtable entries for the
1814 pure virtuals in the base class. */
1815 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1816 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1817 }
1818 \f
1819 /* DEPTH-FIRST SEARCH ROUTINES. */
1820
1821 tree
1822 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1823 {
1824 tree binfo = BINFO_BASE_BINFO (derived, ix);
1825
1826 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1827 }
1828
1829 tree
1830 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1831 {
1832 tree binfo = BINFO_BASE_BINFO (derived, ix);
1833
1834 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1835 }
1836
1837 /* The worker functions for `dfs_walk'. These do not need to
1838 test anything (vis a vis marking) if they are paired with
1839 a predicate function (above). */
1840
1841 tree
1842 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1843 {
1844 BINFO_MARKED (binfo) = 0;
1845 return NULL_TREE;
1846 }
1847
1848 \f
1849 /* Debug info for C++ classes can get very large; try to avoid
1850 emitting it everywhere.
1851
1852 Note that this optimization wins even when the target supports
1853 BINCL (if only slightly), and reduces the amount of work for the
1854 linker. */
1855
1856 void
1857 maybe_suppress_debug_info (tree t)
1858 {
1859 if (write_symbols == NO_DEBUG)
1860 return;
1861
1862 /* We might have set this earlier in cp_finish_decl. */
1863 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
1864
1865 /* If we already know how we're handling this class, handle debug info
1866 the same way. */
1867 if (CLASSTYPE_INTERFACE_KNOWN (t))
1868 {
1869 if (CLASSTYPE_INTERFACE_ONLY (t))
1870 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
1871 /* else don't set it. */
1872 }
1873 /* If the class has a vtable, write out the debug info along with
1874 the vtable. */
1875 else if (TYPE_CONTAINS_VPTR_P (t))
1876 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
1877
1878 /* Otherwise, just emit the debug info normally. */
1879 }
1880
1881 /* Note that we want debugging information for a base class of a class
1882 whose vtable is being emitted. Normally, this would happen because
1883 calling the constructor for a derived class implies calling the
1884 constructors for all bases, which involve initializing the
1885 appropriate vptr with the vtable for the base class; but in the
1886 presence of optimization, this initialization may be optimized
1887 away, so we tell finish_vtable_vardecl that we want the debugging
1888 information anyway. */
1889
1890 static tree
1891 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
1892 {
1893 tree t = BINFO_TYPE (binfo);
1894
1895 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
1896
1897 return NULL_TREE;
1898 }
1899
1900 /* Returns BINFO if we haven't already noted that we want debugging
1901 info for this base class. */
1902
1903 static tree
1904 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1905 {
1906 tree binfo = BINFO_BASE_BINFO (derived, ix);
1907
1908 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
1909 ? binfo : NULL_TREE);
1910 }
1911
1912 /* Write out the debugging information for TYPE, whose vtable is being
1913 emitted. Also walk through our bases and note that we want to
1914 write out information for them. This avoids the problem of not
1915 writing any debug info for intermediate basetypes whose
1916 constructors, and thus the references to their vtables, and thus
1917 the vtables themselves, were optimized away. */
1918
1919 void
1920 note_debug_info_needed (tree type)
1921 {
1922 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
1923 {
1924 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
1925 rest_of_type_compilation (type, toplevel_bindings_p ());
1926 }
1927
1928 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
1929 }
1930 \f
1931 void
1932 print_search_statistics (void)
1933 {
1934 #ifdef GATHER_STATISTICS
1935 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
1936 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
1937 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
1938 n_outer_fields_searched, n_calls_lookup_fnfields);
1939 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
1940 #else /* GATHER_STATISTICS */
1941 fprintf (stderr, "no search statistics\n");
1942 #endif /* GATHER_STATISTICS */
1943 }
1944
1945 void
1946 reinit_search_statistics (void)
1947 {
1948 #ifdef GATHER_STATISTICS
1949 n_fields_searched = 0;
1950 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
1951 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
1952 n_calls_get_base_type = 0;
1953 n_outer_fields_searched = 0;
1954 n_contexts_saved = 0;
1955 #endif /* GATHER_STATISTICS */
1956 }
1957
1958 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
1959 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
1960 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
1961 bases have been encountered already in the tree walk. PARENT_CONVS
1962 is the list of lists of conversion functions that could hide CONV
1963 and OTHER_CONVS is the list of lists of conversion functions that
1964 could hide or be hidden by CONV, should virtualness be involved in
1965 the hierarchy. Merely checking the conversion op's name is not
1966 enough because two conversion operators to the same type can have
1967 different names. Return nonzero if we are visible. */
1968
1969 static int
1970 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
1971 tree to_type, tree parent_convs, tree other_convs)
1972 {
1973 tree level, probe;
1974
1975 /* See if we are hidden by a parent conversion. */
1976 for (level = parent_convs; level; level = TREE_CHAIN (level))
1977 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
1978 if (same_type_p (to_type, TREE_TYPE (probe)))
1979 return 0;
1980
1981 if (virtual_depth || virtualness)
1982 {
1983 /* In a virtual hierarchy, we could be hidden, or could hide a
1984 conversion function on the other_convs list. */
1985 for (level = other_convs; level; level = TREE_CHAIN (level))
1986 {
1987 int we_hide_them;
1988 int they_hide_us;
1989 tree *prev, other;
1990
1991 if (!(virtual_depth || TREE_STATIC (level)))
1992 /* Neither is morally virtual, so cannot hide each other. */
1993 continue;
1994
1995 if (!TREE_VALUE (level))
1996 /* They evaporated away already. */
1997 continue;
1998
1999 they_hide_us = (virtual_depth
2000 && original_binfo (binfo, TREE_PURPOSE (level)));
2001 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2002 && original_binfo (TREE_PURPOSE (level), binfo));
2003
2004 if (!(we_hide_them || they_hide_us))
2005 /* Neither is within the other, so no hiding can occur. */
2006 continue;
2007
2008 for (prev = &TREE_VALUE (level), other = *prev; other;)
2009 {
2010 if (same_type_p (to_type, TREE_TYPE (other)))
2011 {
2012 if (they_hide_us)
2013 /* We are hidden. */
2014 return 0;
2015
2016 if (we_hide_them)
2017 {
2018 /* We hide the other one. */
2019 other = TREE_CHAIN (other);
2020 *prev = other;
2021 continue;
2022 }
2023 }
2024 prev = &TREE_CHAIN (other);
2025 other = *prev;
2026 }
2027 }
2028 }
2029 return 1;
2030 }
2031
2032 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2033 of conversion functions, the first slot will be for the current
2034 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2035 of conversion functions from children of the current binfo,
2036 concatenated with conversions from elsewhere in the hierarchy --
2037 that list begins with OTHER_CONVS. Return a single list of lists
2038 containing only conversions from the current binfo and its
2039 children. */
2040
2041 static tree
2042 split_conversions (tree my_convs, tree parent_convs,
2043 tree child_convs, tree other_convs)
2044 {
2045 tree t;
2046 tree prev;
2047
2048 /* Remove the original other_convs portion from child_convs. */
2049 for (prev = NULL, t = child_convs;
2050 t != other_convs; prev = t, t = TREE_CHAIN (t))
2051 continue;
2052
2053 if (prev)
2054 TREE_CHAIN (prev) = NULL_TREE;
2055 else
2056 child_convs = NULL_TREE;
2057
2058 /* Attach the child convs to any we had at this level. */
2059 if (my_convs)
2060 {
2061 my_convs = parent_convs;
2062 TREE_CHAIN (my_convs) = child_convs;
2063 }
2064 else
2065 my_convs = child_convs;
2066
2067 return my_convs;
2068 }
2069
2070 /* Worker for lookup_conversions. Lookup conversion functions in
2071 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2072 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2073 encountered virtual bases already in the tree walk. PARENT_CONVS &
2074 PARENT_TPL_CONVS are lists of list of conversions within parent
2075 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2076 elsewhere in the tree. Return the conversions found within this
2077 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2078 encountered virtualness. We keep template and non-template
2079 conversions separate, to avoid unnecessary type comparisons.
2080
2081 The located conversion functions are held in lists of lists. The
2082 TREE_VALUE of the outer list is the list of conversion functions
2083 found in a particular binfo. The TREE_PURPOSE of both the outer
2084 and inner lists is the binfo at which those conversions were
2085 found. TREE_STATIC is set for those lists within of morally
2086 virtual binfos. The TREE_VALUE of the inner list is the conversion
2087 function or overload itself. The TREE_TYPE of each inner list node
2088 is the converted-to type. */
2089
2090 static int
2091 lookup_conversions_r (tree binfo,
2092 int virtual_depth, int virtualness,
2093 tree parent_convs, tree parent_tpl_convs,
2094 tree other_convs, tree other_tpl_convs,
2095 tree *convs, tree *tpl_convs)
2096 {
2097 int my_virtualness = 0;
2098 tree my_convs = NULL_TREE;
2099 tree my_tpl_convs = NULL_TREE;
2100 tree child_convs = NULL_TREE;
2101 tree child_tpl_convs = NULL_TREE;
2102 unsigned i;
2103 tree base_binfo;
2104 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2105 tree conv;
2106
2107 /* If we have no conversion operators, then don't look. */
2108 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2109 {
2110 *convs = *tpl_convs = NULL_TREE;
2111
2112 return 0;
2113 }
2114
2115 if (BINFO_VIRTUAL_P (binfo))
2116 virtual_depth++;
2117
2118 /* First, locate the unhidden ones at this level. */
2119 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2120 VEC_iterate (tree, method_vec, i, conv);
2121 ++i)
2122 {
2123 tree cur = OVL_CURRENT (conv);
2124
2125 if (!DECL_CONV_FN_P (cur))
2126 break;
2127
2128 if (TREE_CODE (cur) == TEMPLATE_DECL)
2129 {
2130 /* Only template conversions can be overloaded, and we must
2131 flatten them out and check each one individually. */
2132 tree tpls;
2133
2134 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2135 {
2136 tree tpl = OVL_CURRENT (tpls);
2137 tree type = DECL_CONV_FN_TYPE (tpl);
2138
2139 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2140 type, parent_tpl_convs, other_tpl_convs))
2141 {
2142 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2143 TREE_TYPE (my_tpl_convs) = type;
2144 if (virtual_depth)
2145 {
2146 TREE_STATIC (my_tpl_convs) = 1;
2147 my_virtualness = 1;
2148 }
2149 }
2150 }
2151 }
2152 else
2153 {
2154 tree name = DECL_NAME (cur);
2155
2156 if (!IDENTIFIER_MARKED (name))
2157 {
2158 tree type = DECL_CONV_FN_TYPE (cur);
2159
2160 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2161 type, parent_convs, other_convs))
2162 {
2163 my_convs = tree_cons (binfo, conv, my_convs);
2164 TREE_TYPE (my_convs) = type;
2165 if (virtual_depth)
2166 {
2167 TREE_STATIC (my_convs) = 1;
2168 my_virtualness = 1;
2169 }
2170 IDENTIFIER_MARKED (name) = 1;
2171 }
2172 }
2173 }
2174 }
2175
2176 if (my_convs)
2177 {
2178 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2179 if (virtual_depth)
2180 TREE_STATIC (parent_convs) = 1;
2181 }
2182
2183 if (my_tpl_convs)
2184 {
2185 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2186 if (virtual_depth)
2187 TREE_STATIC (parent_convs) = 1;
2188 }
2189
2190 child_convs = other_convs;
2191 child_tpl_convs = other_tpl_convs;
2192
2193 /* Now iterate over each base, looking for more conversions. */
2194 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2195 {
2196 tree base_convs, base_tpl_convs;
2197 unsigned base_virtualness;
2198
2199 base_virtualness = lookup_conversions_r (base_binfo,
2200 virtual_depth, virtualness,
2201 parent_convs, parent_tpl_convs,
2202 child_convs, child_tpl_convs,
2203 &base_convs, &base_tpl_convs);
2204 if (base_virtualness)
2205 my_virtualness = virtualness = 1;
2206 child_convs = chainon (base_convs, child_convs);
2207 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2208 }
2209
2210 /* Unmark the conversions found at this level */
2211 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2212 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2213
2214 *convs = split_conversions (my_convs, parent_convs,
2215 child_convs, other_convs);
2216 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2217 child_tpl_convs, other_tpl_convs);
2218
2219 return my_virtualness;
2220 }
2221
2222 /* Return a TREE_LIST containing all the non-hidden user-defined
2223 conversion functions for TYPE (and its base-classes). The
2224 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2225 function. The TREE_PURPOSE is the BINFO from which the conversion
2226 functions in this node were selected. This function is effectively
2227 performing a set of member lookups as lookup_fnfield does, but
2228 using the type being converted to as the unique key, rather than the
2229 field name. */
2230
2231 tree
2232 lookup_conversions (tree type)
2233 {
2234 tree convs, tpl_convs;
2235 tree list = NULL_TREE;
2236
2237 complete_type (type);
2238 if (!TYPE_BINFO (type))
2239 return NULL_TREE;
2240
2241 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2242 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2243 &convs, &tpl_convs);
2244
2245 /* Flatten the list-of-lists */
2246 for (; convs; convs = TREE_CHAIN (convs))
2247 {
2248 tree probe, next;
2249
2250 for (probe = TREE_VALUE (convs); probe; probe = next)
2251 {
2252 next = TREE_CHAIN (probe);
2253
2254 TREE_CHAIN (probe) = list;
2255 list = probe;
2256 }
2257 }
2258
2259 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2260 {
2261 tree probe, next;
2262
2263 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2264 {
2265 next = TREE_CHAIN (probe);
2266
2267 TREE_CHAIN (probe) = list;
2268 list = probe;
2269 }
2270 }
2271
2272 return list;
2273 }
2274
2275 struct overlap_info
2276 {
2277 tree compare_type;
2278 int found_overlap;
2279 };
2280
2281 /* Check whether the empty class indicated by EMPTY_BINFO is also present
2282 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
2283
2284 static tree
2285 dfs_check_overlap (tree empty_binfo, void *data)
2286 {
2287 struct overlap_info *oi = (struct overlap_info *) data;
2288 tree binfo;
2289
2290 for (binfo = TYPE_BINFO (oi->compare_type);
2291 ;
2292 binfo = BINFO_BASE_BINFO (binfo, 0))
2293 {
2294 if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
2295 {
2296 oi->found_overlap = 1;
2297 break;
2298 }
2299 else if (!BINFO_N_BASE_BINFOS (binfo))
2300 break;
2301 }
2302
2303 return NULL_TREE;
2304 }
2305
2306 /* Trivial function to stop base traversal when we find something. */
2307
2308 static tree
2309 dfs_no_overlap_yet (tree derived, int ix, void *data)
2310 {
2311 tree binfo = BINFO_BASE_BINFO (derived, ix);
2312 struct overlap_info *oi = (struct overlap_info *) data;
2313
2314 return !oi->found_overlap ? binfo : NULL_TREE;
2315 }
2316
2317 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
2318 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
2319
2320 int
2321 types_overlap_p (tree empty_type, tree next_type)
2322 {
2323 struct overlap_info oi;
2324
2325 if (! IS_AGGR_TYPE (next_type))
2326 return 0;
2327 oi.compare_type = next_type;
2328 oi.found_overlap = 0;
2329 dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
2330 dfs_no_overlap_yet, &oi);
2331 return oi.found_overlap;
2332 }
2333
2334 /* Returns the binfo of the first direct or indirect virtual base derived
2335 from BINFO, or NULL if binfo is not via virtual. */
2336
2337 tree
2338 binfo_from_vbase (tree binfo)
2339 {
2340 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2341 {
2342 if (BINFO_VIRTUAL_P (binfo))
2343 return binfo;
2344 }
2345 return NULL_TREE;
2346 }
2347
2348 /* Returns the binfo of the first direct or indirect virtual base derived
2349 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2350 via virtual. */
2351
2352 tree
2353 binfo_via_virtual (tree binfo, tree limit)
2354 {
2355 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2356 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2357 {
2358 if (BINFO_VIRTUAL_P (binfo))
2359 return binfo;
2360 }
2361 return NULL_TREE;
2362 }
2363
2364 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2365 Find the equivalent binfo within whatever graph HERE is located.
2366 This is the inverse of original_binfo. */
2367
2368 tree
2369 copied_binfo (tree binfo, tree here)
2370 {
2371 tree result = NULL_TREE;
2372
2373 if (BINFO_VIRTUAL_P (binfo))
2374 {
2375 tree t;
2376
2377 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2378 t = BINFO_INHERITANCE_CHAIN (t))
2379 continue;
2380
2381 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2382 }
2383 else if (BINFO_INHERITANCE_CHAIN (binfo))
2384 {
2385 tree cbinfo;
2386 tree base_binfo;
2387 int ix;
2388
2389 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2390 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2391 if (BINFO_TYPE (base_binfo) == BINFO_TYPE (binfo))
2392 {
2393 result = base_binfo;
2394 break;
2395 }
2396 }
2397 else
2398 {
2399 gcc_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo));
2400 result = here;
2401 }
2402
2403 gcc_assert (result);
2404 return result;
2405 }
2406
2407 tree
2408 binfo_for_vbase (tree base, tree t)
2409 {
2410 unsigned ix;
2411 tree binfo;
2412 VEC (tree) *vbases;
2413
2414 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2415 VEC_iterate (tree, vbases, ix, binfo); ix++)
2416 if (BINFO_TYPE (binfo) == base)
2417 return binfo;
2418 return NULL;
2419 }
2420
2421 /* BINFO is some base binfo of HERE, within some other
2422 hierarchy. Return the equivalent binfo, but in the hierarchy
2423 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2424 is not a base binfo of HERE, returns NULL_TREE. */
2425
2426 tree
2427 original_binfo (tree binfo, tree here)
2428 {
2429 tree result = NULL;
2430
2431 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2432 result = here;
2433 else if (BINFO_VIRTUAL_P (binfo))
2434 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2435 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2436 : NULL_TREE);
2437 else if (BINFO_INHERITANCE_CHAIN (binfo))
2438 {
2439 tree base_binfos;
2440
2441 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2442 if (base_binfos)
2443 {
2444 int ix;
2445 tree base_binfo;
2446
2447 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2448 if (BINFO_TYPE (base_binfo) == BINFO_TYPE (binfo))
2449 {
2450 result = base_binfo;
2451 break;
2452 }
2453 }
2454 }
2455
2456 return result;
2457 }
2458