builtins.c, [...]: Avoid "`" as left quote, using "'" or %q, %< and %> as appropriate.
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
38
39 static int is_subobject_of_p (tree, tree);
40 static tree dfs_lookup_base (tree, void *);
41 static tree dfs_dcast_hint_pre (tree, void *);
42 static tree dfs_dcast_hint_post (tree, void *);
43 static tree dfs_debug_mark (tree, void *);
44 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
45 tree (*post_fn) (tree, void *), void *data);
46 static void dfs_unmark_r (tree);
47 static int check_hidden_convs (tree, int, int, tree, tree, tree);
48 static tree split_conversions (tree, tree, tree, tree);
49 static int lookup_conversions_r (tree, int, int,
50 tree, tree, tree, tree, tree *, tree *);
51 static int look_for_overrides_r (tree, tree);
52 static tree lookup_field_r (tree, void *);
53 static tree dfs_accessible_post (tree, void *);
54 static tree dfs_walk_once_accessible_r (tree, bool, bool,
55 tree (*pre_fn) (tree, void *),
56 tree (*post_fn) (tree, void *),
57 void *data);
58 static tree dfs_walk_once_accessible (tree, bool,
59 tree (*pre_fn) (tree, void *),
60 tree (*post_fn) (tree, void *),
61 void *data);
62 static tree dfs_access_in_type (tree, void *);
63 static access_kind access_in_type (tree, tree);
64 static int protected_accessible_p (tree, tree, tree);
65 static int friend_accessible_p (tree, tree, tree);
66 static int template_self_reference_p (tree, tree);
67 static tree dfs_get_pure_virtuals (tree, void *);
68
69 \f
70 /* Variables for gathering statistics. */
71 #ifdef GATHER_STATISTICS
72 static int n_fields_searched;
73 static int n_calls_lookup_field, n_calls_lookup_field_1;
74 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
75 static int n_calls_get_base_type;
76 static int n_outer_fields_searched;
77 static int n_contexts_saved;
78 #endif /* GATHER_STATISTICS */
79
80 \f
81 /* Data for lookup_base and its workers. */
82
83 struct lookup_base_data_s
84 {
85 tree t; /* type being searched. */
86 tree base; /* The base type we're looking for. */
87 tree binfo; /* Found binfo. */
88 bool via_virtual; /* Found via a virtual path. */
89 bool ambiguous; /* Found multiply ambiguous */
90 bool repeated_base; /* Whether there are repeated bases in the
91 hierarchy. */
92 bool want_any; /* Whether we want any matching binfo. */
93 };
94
95 /* Worker function for lookup_base. See if we've found the desired
96 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
97
98 static tree
99 dfs_lookup_base (tree binfo, void *data_)
100 {
101 struct lookup_base_data_s *data = data_;
102
103 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
104 {
105 if (!data->binfo)
106 {
107 data->binfo = binfo;
108 data->via_virtual
109 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
110
111 if (!data->repeated_base)
112 /* If there are no repeated bases, we can stop now. */
113 return binfo;
114
115 if (data->want_any && !data->via_virtual)
116 /* If this is a non-virtual base, then we can't do
117 better. */
118 return binfo;
119
120 return dfs_skip_bases;
121 }
122 else
123 {
124 gcc_assert (binfo != data->binfo);
125
126 /* We've found more than one matching binfo. */
127 if (!data->want_any)
128 {
129 /* This is immediately ambiguous. */
130 data->binfo = NULL_TREE;
131 data->ambiguous = true;
132 return error_mark_node;
133 }
134
135 /* Prefer one via a non-virtual path. */
136 if (!binfo_via_virtual (binfo, data->t))
137 {
138 data->binfo = binfo;
139 data->via_virtual = false;
140 return binfo;
141 }
142
143 /* There must be repeated bases, otherwise we'd have stopped
144 on the first base we found. */
145 return dfs_skip_bases;
146 }
147 }
148
149 return NULL_TREE;
150 }
151
152 /* Returns true if type BASE is accessible in T. (BASE is known to be
153 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
154 true, consider any special access of the current scope, or access
155 bestowed by friendship. */
156
157 bool
158 accessible_base_p (tree t, tree base, bool consider_local_p)
159 {
160 tree decl;
161
162 /* [class.access.base]
163
164 A base class is said to be accessible if an invented public
165 member of the base class is accessible.
166
167 If BASE is a non-proper base, this condition is trivially
168 true. */
169 if (same_type_p (t, base))
170 return true;
171 /* Rather than inventing a public member, we use the implicit
172 public typedef created in the scope of every class. */
173 decl = TYPE_FIELDS (base);
174 while (!DECL_SELF_REFERENCE_P (decl))
175 decl = TREE_CHAIN (decl);
176 while (ANON_AGGR_TYPE_P (t))
177 t = TYPE_CONTEXT (t);
178 return accessible_p (t, decl, consider_local_p);
179 }
180
181 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
182 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
183 non-NULL, fill with information about what kind of base we
184 discovered.
185
186 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
187 not set in ACCESS, then an error is issued and error_mark_node is
188 returned. If the ba_quiet bit is set, then no error is issued and
189 NULL_TREE is returned. */
190
191 tree
192 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
193 {
194 tree binfo;
195 tree t_binfo;
196 base_kind bk;
197
198 if (t == error_mark_node || base == error_mark_node)
199 {
200 if (kind_ptr)
201 *kind_ptr = bk_not_base;
202 return error_mark_node;
203 }
204 gcc_assert (TYPE_P (base));
205
206 if (!TYPE_P (t))
207 {
208 t_binfo = t;
209 t = BINFO_TYPE (t);
210 }
211 else
212 {
213 t = complete_type (TYPE_MAIN_VARIANT (t));
214 t_binfo = TYPE_BINFO (t);
215 }
216
217 base = complete_type (TYPE_MAIN_VARIANT (base));
218
219 if (t_binfo)
220 {
221 struct lookup_base_data_s data;
222
223 data.t = t;
224 data.base = base;
225 data.binfo = NULL_TREE;
226 data.ambiguous = data.via_virtual = false;
227 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
228 data.want_any = access == ba_any;
229
230 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
231 binfo = data.binfo;
232
233 if (!binfo)
234 bk = data.ambiguous ? bk_ambig : bk_not_base;
235 else if (binfo == t_binfo)
236 bk = bk_same_type;
237 else if (data.via_virtual)
238 bk = bk_via_virtual;
239 else
240 bk = bk_proper_base;
241 }
242 else
243 {
244 binfo = NULL_TREE;
245 bk = bk_not_base;
246 }
247
248 /* Check that the base is unambiguous and accessible. */
249 if (access != ba_any)
250 switch (bk)
251 {
252 case bk_not_base:
253 break;
254
255 case bk_ambig:
256 if (!(access & ba_quiet))
257 {
258 error ("%qT is an ambiguous base of %qT", base, t);
259 binfo = error_mark_node;
260 }
261 break;
262
263 default:
264 if ((access & ba_check_bit)
265 /* If BASE is incomplete, then BASE and TYPE are probably
266 the same, in which case BASE is accessible. If they
267 are not the same, then TYPE is invalid. In that case,
268 there's no need to issue another error here, and
269 there's no implicit typedef to use in the code that
270 follows, so we skip the check. */
271 && COMPLETE_TYPE_P (base)
272 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
273 {
274 if (!(access & ba_quiet))
275 {
276 error ("%qT is an inaccessible base of %qT", base, t);
277 binfo = error_mark_node;
278 }
279 else
280 binfo = NULL_TREE;
281 bk = bk_inaccessible;
282 }
283 break;
284 }
285
286 if (kind_ptr)
287 *kind_ptr = bk;
288
289 return binfo;
290 }
291
292 /* Data for dcast_base_hint walker. */
293
294 struct dcast_data_s
295 {
296 tree subtype; /* The base type we're looking for. */
297 int virt_depth; /* Number of virtual bases encountered from most
298 derived. */
299 tree offset; /* Best hint offset discovered so far. */
300 bool repeated_base; /* Whether there are repeated bases in the
301 hierarchy. */
302 };
303
304 /* Worker for dcast_base_hint. Search for the base type being cast
305 from. */
306
307 static tree
308 dfs_dcast_hint_pre (tree binfo, void *data_)
309 {
310 struct dcast_data_s *data = data_;
311
312 if (BINFO_VIRTUAL_P (binfo))
313 data->virt_depth++;
314
315 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
316 {
317 if (data->virt_depth)
318 {
319 data->offset = ssize_int (-1);
320 return data->offset;
321 }
322 if (data->offset)
323 data->offset = ssize_int (-3);
324 else
325 data->offset = BINFO_OFFSET (binfo);
326
327 return data->repeated_base ? dfs_skip_bases : data->offset;
328 }
329
330 return NULL_TREE;
331 }
332
333 /* Worker for dcast_base_hint. Track the virtual depth. */
334
335 static tree
336 dfs_dcast_hint_post (tree binfo, void *data_)
337 {
338 struct dcast_data_s *data = data_;
339
340 if (BINFO_VIRTUAL_P (binfo))
341 data->virt_depth--;
342
343 return NULL_TREE;
344 }
345
346 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
347 started from is related to the required TARGET type, in order to optimize
348 the inheritance graph search. This information is independent of the
349 current context, and ignores private paths, hence get_base_distance is
350 inappropriate. Return a TREE specifying the base offset, BOFF.
351 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
352 and there are no public virtual SUBTYPE bases.
353 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
354 BOFF == -2, SUBTYPE is not a public base.
355 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
356
357 tree
358 dcast_base_hint (tree subtype, tree target)
359 {
360 struct dcast_data_s data;
361
362 data.subtype = subtype;
363 data.virt_depth = 0;
364 data.offset = NULL_TREE;
365 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
366
367 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
368 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
369 return data.offset ? data.offset : ssize_int (-2);
370 }
371
372 /* Search for a member with name NAME in a multiple inheritance
373 lattice specified by TYPE. If it does not exist, return NULL_TREE.
374 If the member is ambiguously referenced, return `error_mark_node'.
375 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
376 true, type declarations are preferred. */
377
378 /* Do a 1-level search for NAME as a member of TYPE. The caller must
379 figure out whether it can access this field. (Since it is only one
380 level, this is reasonable.) */
381
382 tree
383 lookup_field_1 (tree type, tree name, bool want_type)
384 {
385 tree field;
386
387 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
388 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
389 || TREE_CODE (type) == TYPENAME_TYPE)
390 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
391 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
392 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
393 the code often worked even when we treated the index as a list
394 of fields!)
395 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
396 return NULL_TREE;
397
398 if (TYPE_NAME (type)
399 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
400 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
401 {
402 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
403 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
404 int i;
405
406 while (lo < hi)
407 {
408 i = (lo + hi) / 2;
409
410 #ifdef GATHER_STATISTICS
411 n_fields_searched++;
412 #endif /* GATHER_STATISTICS */
413
414 if (DECL_NAME (fields[i]) > name)
415 hi = i;
416 else if (DECL_NAME (fields[i]) < name)
417 lo = i + 1;
418 else
419 {
420 field = NULL_TREE;
421
422 /* We might have a nested class and a field with the
423 same name; we sorted them appropriately via
424 field_decl_cmp, so just look for the first or last
425 field with this name. */
426 if (want_type)
427 {
428 do
429 field = fields[i--];
430 while (i >= lo && DECL_NAME (fields[i]) == name);
431 if (TREE_CODE (field) != TYPE_DECL
432 && !DECL_CLASS_TEMPLATE_P (field))
433 field = NULL_TREE;
434 }
435 else
436 {
437 do
438 field = fields[i++];
439 while (i < hi && DECL_NAME (fields[i]) == name);
440 }
441 return field;
442 }
443 }
444 return NULL_TREE;
445 }
446
447 field = TYPE_FIELDS (type);
448
449 #ifdef GATHER_STATISTICS
450 n_calls_lookup_field_1++;
451 #endif /* GATHER_STATISTICS */
452 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
453 {
454 #ifdef GATHER_STATISTICS
455 n_fields_searched++;
456 #endif /* GATHER_STATISTICS */
457 gcc_assert (DECL_P (field));
458 if (DECL_NAME (field) == NULL_TREE
459 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
460 {
461 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
462 if (temp)
463 return temp;
464 }
465 if (TREE_CODE (field) == USING_DECL)
466 {
467 /* We generally treat class-scope using-declarations as
468 ARM-style access specifications, because support for the
469 ISO semantics has not been implemented. So, in general,
470 there's no reason to return a USING_DECL, and the rest of
471 the compiler cannot handle that. Once the class is
472 defined, USING_DECLs are purged from TYPE_FIELDS; see
473 handle_using_decl. However, we make special efforts to
474 make using-declarations in template classes work
475 correctly. */
476 if (CLASSTYPE_TEMPLATE_INFO (type)
477 && !CLASSTYPE_USE_TEMPLATE (type)
478 && !TREE_TYPE (field))
479 ;
480 else
481 continue;
482 }
483
484 if (DECL_NAME (field) == name
485 && (!want_type
486 || TREE_CODE (field) == TYPE_DECL
487 || DECL_CLASS_TEMPLATE_P (field)))
488 return field;
489 }
490 /* Not found. */
491 if (name == vptr_identifier)
492 {
493 /* Give the user what s/he thinks s/he wants. */
494 if (TYPE_POLYMORPHIC_P (type))
495 return TYPE_VFIELD (type);
496 }
497 return NULL_TREE;
498 }
499
500 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
501 NAMESPACE_DECL corresponding to the innermost non-block scope. */
502
503 tree
504 current_scope (void)
505 {
506 /* There are a number of cases we need to be aware of here:
507 current_class_type current_function_decl
508 global NULL NULL
509 fn-local NULL SET
510 class-local SET NULL
511 class->fn SET SET
512 fn->class SET SET
513
514 Those last two make life interesting. If we're in a function which is
515 itself inside a class, we need decls to go into the fn's decls (our
516 second case below). But if we're in a class and the class itself is
517 inside a function, we need decls to go into the decls for the class. To
518 achieve this last goal, we must see if, when both current_class_ptr and
519 current_function_decl are set, the class was declared inside that
520 function. If so, we know to put the decls into the class's scope. */
521 if (current_function_decl && current_class_type
522 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
523 && same_type_p (DECL_CONTEXT (current_function_decl),
524 current_class_type))
525 || (DECL_FRIEND_CONTEXT (current_function_decl)
526 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
527 current_class_type))))
528 return current_function_decl;
529 if (current_class_type)
530 return current_class_type;
531 if (current_function_decl)
532 return current_function_decl;
533 return current_namespace;
534 }
535
536 /* Returns nonzero if we are currently in a function scope. Note
537 that this function returns zero if we are within a local class, but
538 not within a member function body of the local class. */
539
540 int
541 at_function_scope_p (void)
542 {
543 tree cs = current_scope ();
544 return cs && TREE_CODE (cs) == FUNCTION_DECL;
545 }
546
547 /* Returns true if the innermost active scope is a class scope. */
548
549 bool
550 at_class_scope_p (void)
551 {
552 tree cs = current_scope ();
553 return cs && TYPE_P (cs);
554 }
555
556 /* Returns true if the innermost active scope is a namespace scope. */
557
558 bool
559 at_namespace_scope_p (void)
560 {
561 tree cs = current_scope ();
562 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
563 }
564
565 /* Return the scope of DECL, as appropriate when doing name-lookup. */
566
567 tree
568 context_for_name_lookup (tree decl)
569 {
570 /* [class.union]
571
572 For the purposes of name lookup, after the anonymous union
573 definition, the members of the anonymous union are considered to
574 have been defined in the scope in which the anonymous union is
575 declared. */
576 tree context = DECL_CONTEXT (decl);
577
578 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
579 context = TYPE_CONTEXT (context);
580 if (!context)
581 context = global_namespace;
582
583 return context;
584 }
585
586 /* The accessibility routines use BINFO_ACCESS for scratch space
587 during the computation of the accessibility of some declaration. */
588
589 #define BINFO_ACCESS(NODE) \
590 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
591
592 /* Set the access associated with NODE to ACCESS. */
593
594 #define SET_BINFO_ACCESS(NODE, ACCESS) \
595 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
596 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
597
598 /* Called from access_in_type via dfs_walk. Calculate the access to
599 DATA (which is really a DECL) in BINFO. */
600
601 static tree
602 dfs_access_in_type (tree binfo, void *data)
603 {
604 tree decl = (tree) data;
605 tree type = BINFO_TYPE (binfo);
606 access_kind access = ak_none;
607
608 if (context_for_name_lookup (decl) == type)
609 {
610 /* If we have descended to the scope of DECL, just note the
611 appropriate access. */
612 if (TREE_PRIVATE (decl))
613 access = ak_private;
614 else if (TREE_PROTECTED (decl))
615 access = ak_protected;
616 else
617 access = ak_public;
618 }
619 else
620 {
621 /* First, check for an access-declaration that gives us more
622 access to the DECL. The CONST_DECL for an enumeration
623 constant will not have DECL_LANG_SPECIFIC, and thus no
624 DECL_ACCESS. */
625 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
626 {
627 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
628
629 if (decl_access)
630 {
631 decl_access = TREE_VALUE (decl_access);
632
633 if (decl_access == access_public_node)
634 access = ak_public;
635 else if (decl_access == access_protected_node)
636 access = ak_protected;
637 else if (decl_access == access_private_node)
638 access = ak_private;
639 else
640 gcc_unreachable ();
641 }
642 }
643
644 if (!access)
645 {
646 int i;
647 tree base_binfo;
648 VEC (tree) *accesses;
649
650 /* Otherwise, scan our baseclasses, and pick the most favorable
651 access. */
652 accesses = BINFO_BASE_ACCESSES (binfo);
653 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
654 {
655 tree base_access = VEC_index (tree, accesses, i);
656 access_kind base_access_now = BINFO_ACCESS (base_binfo);
657
658 if (base_access_now == ak_none || base_access_now == ak_private)
659 /* If it was not accessible in the base, or only
660 accessible as a private member, we can't access it
661 all. */
662 base_access_now = ak_none;
663 else if (base_access == access_protected_node)
664 /* Public and protected members in the base become
665 protected here. */
666 base_access_now = ak_protected;
667 else if (base_access == access_private_node)
668 /* Public and protected members in the base become
669 private here. */
670 base_access_now = ak_private;
671
672 /* See if the new access, via this base, gives more
673 access than our previous best access. */
674 if (base_access_now != ak_none
675 && (access == ak_none || base_access_now < access))
676 {
677 access = base_access_now;
678
679 /* If the new access is public, we can't do better. */
680 if (access == ak_public)
681 break;
682 }
683 }
684 }
685 }
686
687 /* Note the access to DECL in TYPE. */
688 SET_BINFO_ACCESS (binfo, access);
689
690 return NULL_TREE;
691 }
692
693 /* Return the access to DECL in TYPE. */
694
695 static access_kind
696 access_in_type (tree type, tree decl)
697 {
698 tree binfo = TYPE_BINFO (type);
699
700 /* We must take into account
701
702 [class.paths]
703
704 If a name can be reached by several paths through a multiple
705 inheritance graph, the access is that of the path that gives
706 most access.
707
708 The algorithm we use is to make a post-order depth-first traversal
709 of the base-class hierarchy. As we come up the tree, we annotate
710 each node with the most lenient access. */
711 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
712
713 return BINFO_ACCESS (binfo);
714 }
715
716 /* Returns nonzero if it is OK to access DECL through an object
717 indicated by BINFO in the context of DERIVED. */
718
719 static int
720 protected_accessible_p (tree decl, tree derived, tree binfo)
721 {
722 access_kind access;
723
724 /* We're checking this clause from [class.access.base]
725
726 m as a member of N is protected, and the reference occurs in a
727 member or friend of class N, or in a member or friend of a
728 class P derived from N, where m as a member of P is private or
729 protected.
730
731 Here DERIVED is a possible P and DECL is m. accessible_p will
732 iterate over various values of N, but the access to m in DERIVED
733 does not change.
734
735 Note that I believe that the passage above is wrong, and should read
736 "...is private or protected or public"; otherwise you get bizarre results
737 whereby a public using-decl can prevent you from accessing a protected
738 member of a base. (jason 2000/02/28) */
739
740 /* If DERIVED isn't derived from m's class, then it can't be a P. */
741 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
742 return 0;
743
744 access = access_in_type (derived, decl);
745
746 /* If m is inaccessible in DERIVED, then it's not a P. */
747 if (access == ak_none)
748 return 0;
749
750 /* [class.protected]
751
752 When a friend or a member function of a derived class references
753 a protected nonstatic member of a base class, an access check
754 applies in addition to those described earlier in clause
755 _class.access_) Except when forming a pointer to member
756 (_expr.unary.op_), the access must be through a pointer to,
757 reference to, or object of the derived class itself (or any class
758 derived from that class) (_expr.ref_). If the access is to form
759 a pointer to member, the nested-name-specifier shall name the
760 derived class (or any class derived from that class). */
761 if (DECL_NONSTATIC_MEMBER_P (decl))
762 {
763 /* We can tell through what the reference is occurring by
764 chasing BINFO up to the root. */
765 tree t = binfo;
766 while (BINFO_INHERITANCE_CHAIN (t))
767 t = BINFO_INHERITANCE_CHAIN (t);
768
769 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
770 return 0;
771 }
772
773 return 1;
774 }
775
776 /* Returns nonzero if SCOPE is a friend of a type which would be able
777 to access DECL through the object indicated by BINFO. */
778
779 static int
780 friend_accessible_p (tree scope, tree decl, tree binfo)
781 {
782 tree befriending_classes;
783 tree t;
784
785 if (!scope)
786 return 0;
787
788 if (TREE_CODE (scope) == FUNCTION_DECL
789 || DECL_FUNCTION_TEMPLATE_P (scope))
790 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
791 else if (TYPE_P (scope))
792 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
793 else
794 return 0;
795
796 for (t = befriending_classes; t; t = TREE_CHAIN (t))
797 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
798 return 1;
799
800 /* Nested classes are implicitly friends of their enclosing types, as
801 per core issue 45 (this is a change from the standard). */
802 if (TYPE_P (scope))
803 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
804 if (protected_accessible_p (decl, t, binfo))
805 return 1;
806
807 if (TREE_CODE (scope) == FUNCTION_DECL
808 || DECL_FUNCTION_TEMPLATE_P (scope))
809 {
810 /* Perhaps this SCOPE is a member of a class which is a
811 friend. */
812 if (DECL_CLASS_SCOPE_P (scope)
813 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
814 return 1;
815
816 /* Or an instantiation of something which is a friend. */
817 if (DECL_TEMPLATE_INFO (scope))
818 {
819 int ret;
820 /* Increment processing_template_decl to make sure that
821 dependent_type_p works correctly. */
822 ++processing_template_decl;
823 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
824 --processing_template_decl;
825 return ret;
826 }
827 }
828
829 return 0;
830 }
831
832 /* Called via dfs_walk_once_accessible from accessible_p */
833
834 static tree
835 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
836 {
837 if (BINFO_ACCESS (binfo) != ak_none)
838 {
839 tree scope = current_scope ();
840 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
841 && is_friend (BINFO_TYPE (binfo), scope))
842 return binfo;
843 }
844
845 return NULL_TREE;
846 }
847
848 /* DECL is a declaration from a base class of TYPE, which was the
849 class used to name DECL. Return nonzero if, in the current
850 context, DECL is accessible. If TYPE is actually a BINFO node,
851 then we can tell in what context the access is occurring by looking
852 at the most derived class along the path indicated by BINFO. If
853 CONSIDER_LOCAL is true, do consider special access the current
854 scope or friendship thereof we might have. */
855
856 int
857 accessible_p (tree type, tree decl, bool consider_local_p)
858 {
859 tree binfo;
860 tree scope;
861 access_kind access;
862
863 /* Nonzero if it's OK to access DECL if it has protected
864 accessibility in TYPE. */
865 int protected_ok = 0;
866
867 /* If this declaration is in a block or namespace scope, there's no
868 access control. */
869 if (!TYPE_P (context_for_name_lookup (decl)))
870 return 1;
871
872 /* There is no need to perform access checks inside a thunk. */
873 scope = current_scope ();
874 if (scope && DECL_THUNK_P (scope))
875 return 1;
876
877 /* In a template declaration, we cannot be sure whether the
878 particular specialization that is instantiated will be a friend
879 or not. Therefore, all access checks are deferred until
880 instantiation. */
881 if (processing_template_decl)
882 return 1;
883
884 if (!TYPE_P (type))
885 {
886 binfo = type;
887 type = BINFO_TYPE (type);
888 }
889 else
890 binfo = TYPE_BINFO (type);
891
892 /* [class.access.base]
893
894 A member m is accessible when named in class N if
895
896 --m as a member of N is public, or
897
898 --m as a member of N is private, and the reference occurs in a
899 member or friend of class N, or
900
901 --m as a member of N is protected, and the reference occurs in a
902 member or friend of class N, or in a member or friend of a
903 class P derived from N, where m as a member of P is private or
904 protected, or
905
906 --there exists a base class B of N that is accessible at the point
907 of reference, and m is accessible when named in class B.
908
909 We walk the base class hierarchy, checking these conditions. */
910
911 if (consider_local_p)
912 {
913 /* Figure out where the reference is occurring. Check to see if
914 DECL is private or protected in this scope, since that will
915 determine whether protected access is allowed. */
916 if (current_class_type)
917 protected_ok = protected_accessible_p (decl,
918 current_class_type, binfo);
919
920 /* Now, loop through the classes of which we are a friend. */
921 if (!protected_ok)
922 protected_ok = friend_accessible_p (scope, decl, binfo);
923 }
924
925 /* Standardize the binfo that access_in_type will use. We don't
926 need to know what path was chosen from this point onwards. */
927 binfo = TYPE_BINFO (type);
928
929 /* Compute the accessibility of DECL in the class hierarchy
930 dominated by type. */
931 access = access_in_type (type, decl);
932 if (access == ak_public
933 || (access == ak_protected && protected_ok))
934 return 1;
935
936 if (!consider_local_p)
937 return 0;
938
939 /* Walk the hierarchy again, looking for a base class that allows
940 access. */
941 return dfs_walk_once_accessible (binfo, /*friends=*/true,
942 NULL, dfs_accessible_post, NULL)
943 != NULL_TREE;
944 }
945
946 struct lookup_field_info {
947 /* The type in which we're looking. */
948 tree type;
949 /* The name of the field for which we're looking. */
950 tree name;
951 /* If non-NULL, the current result of the lookup. */
952 tree rval;
953 /* The path to RVAL. */
954 tree rval_binfo;
955 /* If non-NULL, the lookup was ambiguous, and this is a list of the
956 candidates. */
957 tree ambiguous;
958 /* If nonzero, we are looking for types, not data members. */
959 int want_type;
960 /* If something went wrong, a message indicating what. */
961 const char *errstr;
962 };
963
964 /* Within the scope of a template class, you can refer to the to the
965 current specialization with the name of the template itself. For
966 example:
967
968 template <typename T> struct S { S* sp; }
969
970 Returns nonzero if DECL is such a declaration in a class TYPE. */
971
972 static int
973 template_self_reference_p (tree type, tree decl)
974 {
975 return (CLASSTYPE_USE_TEMPLATE (type)
976 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
977 && TREE_CODE (decl) == TYPE_DECL
978 && DECL_ARTIFICIAL (decl)
979 && DECL_NAME (decl) == constructor_name (type));
980 }
981
982 /* Nonzero for a class member means that it is shared between all objects
983 of that class.
984
985 [class.member.lookup]:If the resulting set of declarations are not all
986 from sub-objects of the same type, or the set has a nonstatic member
987 and includes members from distinct sub-objects, there is an ambiguity
988 and the program is ill-formed.
989
990 This function checks that T contains no nonstatic members. */
991
992 int
993 shared_member_p (tree t)
994 {
995 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
996 || TREE_CODE (t) == CONST_DECL)
997 return 1;
998 if (is_overloaded_fn (t))
999 {
1000 for (; t; t = OVL_NEXT (t))
1001 {
1002 tree fn = OVL_CURRENT (t);
1003 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1004 return 0;
1005 }
1006 return 1;
1007 }
1008 return 0;
1009 }
1010
1011 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1012 found as a base class and sub-object of the object denoted by
1013 BINFO. */
1014
1015 static int
1016 is_subobject_of_p (tree parent, tree binfo)
1017 {
1018 tree probe;
1019
1020 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1021 {
1022 if (probe == binfo)
1023 return 1;
1024 if (BINFO_VIRTUAL_P (probe))
1025 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1026 != NULL_TREE);
1027 }
1028 return 0;
1029 }
1030
1031 /* DATA is really a struct lookup_field_info. Look for a field with
1032 the name indicated there in BINFO. If this function returns a
1033 non-NULL value it is the result of the lookup. Called from
1034 lookup_field via breadth_first_search. */
1035
1036 static tree
1037 lookup_field_r (tree binfo, void *data)
1038 {
1039 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1040 tree type = BINFO_TYPE (binfo);
1041 tree nval = NULL_TREE;
1042
1043 /* If this is a dependent base, don't look in it. */
1044 if (BINFO_DEPENDENT_BASE_P (binfo))
1045 return NULL_TREE;
1046
1047 /* If this base class is hidden by the best-known value so far, we
1048 don't need to look. */
1049 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1050 && !BINFO_VIRTUAL_P (binfo))
1051 return dfs_skip_bases;
1052
1053 /* First, look for a function. There can't be a function and a data
1054 member with the same name, and if there's a function and a type
1055 with the same name, the type is hidden by the function. */
1056 if (!lfi->want_type)
1057 {
1058 int idx = lookup_fnfields_1 (type, lfi->name);
1059 if (idx >= 0)
1060 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1061 }
1062
1063 if (!nval)
1064 /* Look for a data member or type. */
1065 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1066
1067 /* If there is no declaration with the indicated name in this type,
1068 then there's nothing to do. */
1069 if (!nval)
1070 goto done;
1071
1072 /* If we're looking up a type (as with an elaborated type specifier)
1073 we ignore all non-types we find. */
1074 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1075 && !DECL_CLASS_TEMPLATE_P (nval))
1076 {
1077 if (lfi->name == TYPE_IDENTIFIER (type))
1078 {
1079 /* If the aggregate has no user defined constructors, we allow
1080 it to have fields with the same name as the enclosing type.
1081 If we are looking for that name, find the corresponding
1082 TYPE_DECL. */
1083 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1084 if (DECL_NAME (nval) == lfi->name
1085 && TREE_CODE (nval) == TYPE_DECL)
1086 break;
1087 }
1088 else
1089 nval = NULL_TREE;
1090 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1091 {
1092 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1093 lfi->name);
1094 if (e != NULL)
1095 nval = TYPE_MAIN_DECL (e->type);
1096 else
1097 goto done;
1098 }
1099 }
1100
1101 /* You must name a template base class with a template-id. */
1102 if (!same_type_p (type, lfi->type)
1103 && template_self_reference_p (type, nval))
1104 goto done;
1105
1106 /* If the lookup already found a match, and the new value doesn't
1107 hide the old one, we might have an ambiguity. */
1108 if (lfi->rval_binfo
1109 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1110
1111 {
1112 if (nval == lfi->rval && shared_member_p (nval))
1113 /* The two things are really the same. */
1114 ;
1115 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1116 /* The previous value hides the new one. */
1117 ;
1118 else
1119 {
1120 /* We have a real ambiguity. We keep a chain of all the
1121 candidates. */
1122 if (!lfi->ambiguous && lfi->rval)
1123 {
1124 /* This is the first time we noticed an ambiguity. Add
1125 what we previously thought was a reasonable candidate
1126 to the list. */
1127 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1128 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1129 }
1130
1131 /* Add the new value. */
1132 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1133 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1134 lfi->errstr = "request for member %qD is ambiguous";
1135 }
1136 }
1137 else
1138 {
1139 lfi->rval = nval;
1140 lfi->rval_binfo = binfo;
1141 }
1142
1143 done:
1144 /* Don't look for constructors or destructors in base classes. */
1145 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1146 return dfs_skip_bases;
1147 return NULL_TREE;
1148 }
1149
1150 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1151 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1152 FUNCTIONS, and OPTYPE respectively. */
1153
1154 tree
1155 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1156 {
1157 tree baselink;
1158
1159 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1160 || TREE_CODE (functions) == TEMPLATE_DECL
1161 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1162 || TREE_CODE (functions) == OVERLOAD);
1163 gcc_assert (!optype || TYPE_P (optype));
1164 gcc_assert (TREE_TYPE (functions));
1165
1166 baselink = make_node (BASELINK);
1167 TREE_TYPE (baselink) = TREE_TYPE (functions);
1168 BASELINK_BINFO (baselink) = binfo;
1169 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1170 BASELINK_FUNCTIONS (baselink) = functions;
1171 BASELINK_OPTYPE (baselink) = optype;
1172
1173 return baselink;
1174 }
1175
1176 /* Look for a member named NAME in an inheritance lattice dominated by
1177 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1178 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1179 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1180 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1181 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1182 TREE_VALUEs are the list of ambiguous candidates.
1183
1184 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1185
1186 If nothing can be found return NULL_TREE and do not issue an error. */
1187
1188 tree
1189 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1190 {
1191 tree rval, rval_binfo = NULL_TREE;
1192 tree type = NULL_TREE, basetype_path = NULL_TREE;
1193 struct lookup_field_info lfi;
1194
1195 /* rval_binfo is the binfo associated with the found member, note,
1196 this can be set with useful information, even when rval is not
1197 set, because it must deal with ALL members, not just non-function
1198 members. It is used for ambiguity checking and the hidden
1199 checks. Whereas rval is only set if a proper (not hidden)
1200 non-function member is found. */
1201
1202 const char *errstr = 0;
1203
1204 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1205
1206 if (TREE_CODE (xbasetype) == TREE_BINFO)
1207 {
1208 type = BINFO_TYPE (xbasetype);
1209 basetype_path = xbasetype;
1210 }
1211 else
1212 {
1213 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1214 type = xbasetype;
1215 xbasetype = NULL_TREE;
1216 }
1217
1218 type = complete_type (type);
1219 if (!basetype_path)
1220 basetype_path = TYPE_BINFO (type);
1221
1222 if (!basetype_path)
1223 return NULL_TREE;
1224
1225 #ifdef GATHER_STATISTICS
1226 n_calls_lookup_field++;
1227 #endif /* GATHER_STATISTICS */
1228
1229 memset (&lfi, 0, sizeof (lfi));
1230 lfi.type = type;
1231 lfi.name = name;
1232 lfi.want_type = want_type;
1233 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1234 rval = lfi.rval;
1235 rval_binfo = lfi.rval_binfo;
1236 if (rval_binfo)
1237 type = BINFO_TYPE (rval_binfo);
1238 errstr = lfi.errstr;
1239
1240 /* If we are not interested in ambiguities, don't report them;
1241 just return NULL_TREE. */
1242 if (!protect && lfi.ambiguous)
1243 return NULL_TREE;
1244
1245 if (protect == 2)
1246 {
1247 if (lfi.ambiguous)
1248 return lfi.ambiguous;
1249 else
1250 protect = 0;
1251 }
1252
1253 /* [class.access]
1254
1255 In the case of overloaded function names, access control is
1256 applied to the function selected by overloaded resolution. */
1257 if (rval && protect && !is_overloaded_fn (rval))
1258 perform_or_defer_access_check (basetype_path, rval);
1259
1260 if (errstr && protect)
1261 {
1262 error (errstr, name, type);
1263 if (lfi.ambiguous)
1264 print_candidates (lfi.ambiguous);
1265 rval = error_mark_node;
1266 }
1267
1268 if (rval && is_overloaded_fn (rval))
1269 rval = build_baselink (rval_binfo, basetype_path, rval,
1270 (IDENTIFIER_TYPENAME_P (name)
1271 ? TREE_TYPE (name): NULL_TREE));
1272 return rval;
1273 }
1274
1275 /* Like lookup_member, except that if we find a function member we
1276 return NULL_TREE. */
1277
1278 tree
1279 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1280 {
1281 tree rval = lookup_member (xbasetype, name, protect, want_type);
1282
1283 /* Ignore functions, but propagate the ambiguity list. */
1284 if (!error_operand_p (rval)
1285 && (rval && BASELINK_P (rval)))
1286 return NULL_TREE;
1287
1288 return rval;
1289 }
1290
1291 /* Like lookup_member, except that if we find a non-function member we
1292 return NULL_TREE. */
1293
1294 tree
1295 lookup_fnfields (tree xbasetype, tree name, int protect)
1296 {
1297 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1298
1299 /* Ignore non-functions, but propagate the ambiguity list. */
1300 if (!error_operand_p (rval)
1301 && (rval && !BASELINK_P (rval)))
1302 return NULL_TREE;
1303
1304 return rval;
1305 }
1306
1307 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1308 corresponding to "operator TYPE ()", or -1 if there is no such
1309 operator. Only CLASS_TYPE itself is searched; this routine does
1310 not scan the base classes of CLASS_TYPE. */
1311
1312 static int
1313 lookup_conversion_operator (tree class_type, tree type)
1314 {
1315 int tpl_slot = -1;
1316
1317 if (TYPE_HAS_CONVERSION (class_type))
1318 {
1319 int i;
1320 tree fn;
1321 VEC(tree) *methods = CLASSTYPE_METHOD_VEC (class_type);
1322
1323 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1324 VEC_iterate (tree, methods, i, fn); ++i)
1325 {
1326 /* All the conversion operators come near the beginning of
1327 the class. Therefore, if FN is not a conversion
1328 operator, there is no matching conversion operator in
1329 CLASS_TYPE. */
1330 fn = OVL_CURRENT (fn);
1331 if (!DECL_CONV_FN_P (fn))
1332 break;
1333
1334 if (TREE_CODE (fn) == TEMPLATE_DECL)
1335 /* All the templated conversion functions are on the same
1336 slot, so remember it. */
1337 tpl_slot = i;
1338 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1339 return i;
1340 }
1341 }
1342
1343 return tpl_slot;
1344 }
1345
1346 /* TYPE is a class type. Return the index of the fields within
1347 the method vector with name NAME, or -1 is no such field exists. */
1348
1349 int
1350 lookup_fnfields_1 (tree type, tree name)
1351 {
1352 VEC(tree) *method_vec;
1353 tree fn;
1354 tree tmp;
1355 size_t i;
1356
1357 if (!CLASS_TYPE_P (type))
1358 return -1;
1359
1360 if (COMPLETE_TYPE_P (type))
1361 {
1362 if ((name == ctor_identifier
1363 || name == base_ctor_identifier
1364 || name == complete_ctor_identifier))
1365 {
1366 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1367 lazily_declare_fn (sfk_constructor, type);
1368 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1369 lazily_declare_fn (sfk_copy_constructor, type);
1370 }
1371 else if (name == ansi_assopname(NOP_EXPR)
1372 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1373 lazily_declare_fn (sfk_assignment_operator, type);
1374 }
1375
1376 method_vec = CLASSTYPE_METHOD_VEC (type);
1377 if (!method_vec)
1378 return -1;
1379
1380 #ifdef GATHER_STATISTICS
1381 n_calls_lookup_fnfields_1++;
1382 #endif /* GATHER_STATISTICS */
1383
1384 /* Constructors are first... */
1385 if (name == ctor_identifier)
1386 {
1387 fn = CLASSTYPE_CONSTRUCTORS (type);
1388 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1389 }
1390 /* and destructors are second. */
1391 if (name == dtor_identifier)
1392 {
1393 fn = CLASSTYPE_DESTRUCTORS (type);
1394 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1395 }
1396 if (IDENTIFIER_TYPENAME_P (name))
1397 return lookup_conversion_operator (type, TREE_TYPE (name));
1398
1399 /* Skip the conversion operators. */
1400 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1401 VEC_iterate (tree, method_vec, i, fn);
1402 ++i)
1403 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1404 break;
1405
1406 /* If the type is complete, use binary search. */
1407 if (COMPLETE_TYPE_P (type))
1408 {
1409 int lo;
1410 int hi;
1411
1412 lo = i;
1413 hi = VEC_length (tree, method_vec);
1414 while (lo < hi)
1415 {
1416 i = (lo + hi) / 2;
1417
1418 #ifdef GATHER_STATISTICS
1419 n_outer_fields_searched++;
1420 #endif /* GATHER_STATISTICS */
1421
1422 tmp = VEC_index (tree, method_vec, i);
1423 tmp = DECL_NAME (OVL_CURRENT (tmp));
1424 if (tmp > name)
1425 hi = i;
1426 else if (tmp < name)
1427 lo = i + 1;
1428 else
1429 return i;
1430 }
1431 }
1432 else
1433 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1434 {
1435 #ifdef GATHER_STATISTICS
1436 n_outer_fields_searched++;
1437 #endif /* GATHER_STATISTICS */
1438 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1439 return i;
1440 }
1441
1442 return -1;
1443 }
1444
1445 /* Like lookup_fnfields_1, except that the name is extracted from
1446 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1447
1448 int
1449 class_method_index_for_fn (tree class_type, tree function)
1450 {
1451 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1452 || DECL_FUNCTION_TEMPLATE_P (function));
1453
1454 return lookup_fnfields_1 (class_type,
1455 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1456 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1457 DECL_NAME (function));
1458 }
1459
1460
1461 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1462 the class or namespace used to qualify the name. CONTEXT_CLASS is
1463 the class corresponding to the object in which DECL will be used.
1464 Return a possibly modified version of DECL that takes into account
1465 the CONTEXT_CLASS.
1466
1467 In particular, consider an expression like `B::m' in the context of
1468 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1469 then the most derived class indicated by the BASELINK_BINFO will be
1470 `B', not `D'. This function makes that adjustment. */
1471
1472 tree
1473 adjust_result_of_qualified_name_lookup (tree decl,
1474 tree qualifying_scope,
1475 tree context_class)
1476 {
1477 if (context_class && CLASS_TYPE_P (qualifying_scope)
1478 && DERIVED_FROM_P (qualifying_scope, context_class)
1479 && BASELINK_P (decl))
1480 {
1481 tree base;
1482
1483 gcc_assert (CLASS_TYPE_P (context_class));
1484
1485 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1486 Because we do not yet know which function will be chosen by
1487 overload resolution, we cannot yet check either accessibility
1488 or ambiguity -- in either case, the choice of a static member
1489 function might make the usage valid. */
1490 base = lookup_base (context_class, qualifying_scope,
1491 ba_unique | ba_quiet, NULL);
1492 if (base)
1493 {
1494 BASELINK_ACCESS_BINFO (decl) = base;
1495 BASELINK_BINFO (decl)
1496 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1497 ba_unique | ba_quiet,
1498 NULL);
1499 }
1500 }
1501
1502 return decl;
1503 }
1504
1505 \f
1506 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1507 PRE_FN is called in preorder, while POST_FN is called in postorder.
1508 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1509 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1510 that value is immediately returned and the walk is terminated. One
1511 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1512 POST_FN are passed the binfo to examine and the caller's DATA
1513 value. All paths are walked, thus virtual and morally virtual
1514 binfos can be multiply walked. */
1515
1516 tree
1517 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1518 tree (*post_fn) (tree, void *), void *data)
1519 {
1520 tree rval;
1521 unsigned ix;
1522 tree base_binfo;
1523
1524 /* Call the pre-order walking function. */
1525 if (pre_fn)
1526 {
1527 rval = pre_fn (binfo, data);
1528 if (rval)
1529 {
1530 if (rval == dfs_skip_bases)
1531 goto skip_bases;
1532 return rval;
1533 }
1534 }
1535
1536 /* Find the next child binfo to walk. */
1537 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1538 {
1539 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1540 if (rval)
1541 return rval;
1542 }
1543
1544 skip_bases:
1545 /* Call the post-order walking function. */
1546 if (post_fn)
1547 {
1548 rval = post_fn (binfo, data);
1549 gcc_assert (rval != dfs_skip_bases);
1550 return rval;
1551 }
1552
1553 return NULL_TREE;
1554 }
1555
1556 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1557 that binfos are walked at most once. */
1558
1559 static tree
1560 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1561 tree (*post_fn) (tree, void *), void *data)
1562 {
1563 tree rval;
1564 unsigned ix;
1565 tree base_binfo;
1566
1567 /* Call the pre-order walking function. */
1568 if (pre_fn)
1569 {
1570 rval = pre_fn (binfo, data);
1571 if (rval)
1572 {
1573 if (rval == dfs_skip_bases)
1574 goto skip_bases;
1575
1576 return rval;
1577 }
1578 }
1579
1580 /* Find the next child binfo to walk. */
1581 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1582 {
1583 if (BINFO_VIRTUAL_P (base_binfo))
1584 {
1585 if (BINFO_MARKED (base_binfo))
1586 continue;
1587 BINFO_MARKED (base_binfo) = 1;
1588 }
1589
1590 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1591 if (rval)
1592 return rval;
1593 }
1594
1595 skip_bases:
1596 /* Call the post-order walking function. */
1597 if (post_fn)
1598 {
1599 rval = post_fn (binfo, data);
1600 gcc_assert (rval != dfs_skip_bases);
1601 return rval;
1602 }
1603
1604 return NULL_TREE;
1605 }
1606
1607 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1608 BINFO. */
1609
1610 static void
1611 dfs_unmark_r (tree binfo)
1612 {
1613 unsigned ix;
1614 tree base_binfo;
1615
1616 /* Process the basetypes. */
1617 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1618 {
1619 if (BINFO_VIRTUAL_P (base_binfo))
1620 {
1621 if (!BINFO_MARKED (base_binfo))
1622 continue;
1623 BINFO_MARKED (base_binfo) = 0;
1624 }
1625 /* Only walk, if it can contain more virtual bases. */
1626 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1627 dfs_unmark_r (base_binfo);
1628 }
1629 }
1630
1631 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1632 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1633 For diamond shaped hierarchies we must mark the virtual bases, to
1634 avoid multiple walks. */
1635
1636 tree
1637 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1638 tree (*post_fn) (tree, void *), void *data)
1639 {
1640 tree rval;
1641
1642 gcc_assert (pre_fn || post_fn);
1643
1644 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1645 /* We are not diamond shaped, and therefore cannot encounter the
1646 same binfo twice. */
1647 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1648 else
1649 {
1650 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1651 if (!BINFO_INHERITANCE_CHAIN (binfo))
1652 {
1653 /* We are at the top of the hierarchy, and can use the
1654 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1655 bases. */
1656 VEC (tree) *vbases;
1657 unsigned ix;
1658 tree base_binfo;
1659
1660 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1661 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1662 BINFO_MARKED (base_binfo) = 0;
1663 }
1664 else
1665 dfs_unmark_r (binfo);
1666 }
1667 return rval;
1668 }
1669
1670 /* Worker function for dfs_walk_once_accessible. Behaves like
1671 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1672 access given by the current context should be considered, (b) ONCE
1673 indicates whether bases should be marked during traversal. */
1674
1675 static tree
1676 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1677 tree (*pre_fn) (tree, void *),
1678 tree (*post_fn) (tree, void *), void *data)
1679 {
1680 tree rval = NULL_TREE;
1681 unsigned ix;
1682 tree base_binfo;
1683
1684 /* Call the pre-order walking function. */
1685 if (pre_fn)
1686 {
1687 rval = pre_fn (binfo, data);
1688 if (rval)
1689 {
1690 if (rval == dfs_skip_bases)
1691 goto skip_bases;
1692
1693 return rval;
1694 }
1695 }
1696
1697 /* Find the next child binfo to walk. */
1698 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1699 {
1700 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1701
1702 if (mark && BINFO_MARKED (base_binfo))
1703 continue;
1704
1705 /* If the base is inherited via private or protected
1706 inheritance, then we can't see it, unless we are a friend of
1707 the current binfo. */
1708 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1709 {
1710 tree scope;
1711 if (!friends_p)
1712 continue;
1713 scope = current_scope ();
1714 if (!scope
1715 || TREE_CODE (scope) == NAMESPACE_DECL
1716 || !is_friend (BINFO_TYPE (binfo), scope))
1717 continue;
1718 }
1719
1720 if (mark)
1721 BINFO_MARKED (base_binfo) = 1;
1722
1723 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1724 pre_fn, post_fn, data);
1725 if (rval)
1726 return rval;
1727 }
1728
1729 skip_bases:
1730 /* Call the post-order walking function. */
1731 if (post_fn)
1732 {
1733 rval = post_fn (binfo, data);
1734 gcc_assert (rval != dfs_skip_bases);
1735 return rval;
1736 }
1737
1738 return NULL_TREE;
1739 }
1740
1741 /* Like dfs_walk_once except that only accessible bases are walked.
1742 FRIENDS_P indicates whether friendship of the local context
1743 should be considered when determining accessibility. */
1744
1745 static tree
1746 dfs_walk_once_accessible (tree binfo, bool friends_p,
1747 tree (*pre_fn) (tree, void *),
1748 tree (*post_fn) (tree, void *), void *data)
1749 {
1750 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1751 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1752 pre_fn, post_fn, data);
1753
1754 if (diamond_shaped)
1755 {
1756 if (!BINFO_INHERITANCE_CHAIN (binfo))
1757 {
1758 /* We are at the top of the hierarchy, and can use the
1759 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1760 bases. */
1761 VEC (tree) *vbases;
1762 unsigned ix;
1763 tree base_binfo;
1764
1765 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1766 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1767 BINFO_MARKED (base_binfo) = 0;
1768 }
1769 else
1770 dfs_unmark_r (binfo);
1771 }
1772 return rval;
1773 }
1774
1775 /* Check that virtual overrider OVERRIDER is acceptable for base function
1776 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1777
1778 int
1779 check_final_overrider (tree overrider, tree basefn)
1780 {
1781 tree over_type = TREE_TYPE (overrider);
1782 tree base_type = TREE_TYPE (basefn);
1783 tree over_return = TREE_TYPE (over_type);
1784 tree base_return = TREE_TYPE (base_type);
1785 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1786 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1787 int fail = 0;
1788
1789 if (DECL_INVALID_OVERRIDER_P (overrider))
1790 return 0;
1791
1792 if (same_type_p (base_return, over_return))
1793 /* OK */;
1794 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1795 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1796 && POINTER_TYPE_P (base_return)))
1797 {
1798 /* Potentially covariant. */
1799 unsigned base_quals, over_quals;
1800
1801 fail = !POINTER_TYPE_P (base_return);
1802 if (!fail)
1803 {
1804 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1805
1806 base_return = TREE_TYPE (base_return);
1807 over_return = TREE_TYPE (over_return);
1808 }
1809 base_quals = cp_type_quals (base_return);
1810 over_quals = cp_type_quals (over_return);
1811
1812 if ((base_quals & over_quals) != over_quals)
1813 fail = 1;
1814
1815 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1816 {
1817 tree binfo = lookup_base (over_return, base_return,
1818 ba_check | ba_quiet, NULL);
1819
1820 if (!binfo)
1821 fail = 1;
1822 }
1823 else if (!pedantic
1824 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1825 /* GNU extension, allow trivial pointer conversions such as
1826 converting to void *, or qualification conversion. */
1827 {
1828 /* can_convert will permit user defined conversion from a
1829 (reference to) class type. We must reject them. */
1830 over_return = non_reference (TREE_TYPE (over_type));
1831 if (CLASS_TYPE_P (over_return))
1832 fail = 2;
1833 else
1834 {
1835 cp_warning_at ("deprecated covariant return type for %q#D",
1836 overrider);
1837 cp_warning_at (" overriding %q#D", basefn);
1838 }
1839 }
1840 else
1841 fail = 2;
1842 }
1843 else
1844 fail = 2;
1845 if (!fail)
1846 /* OK */;
1847 else
1848 {
1849 if (fail == 1)
1850 {
1851 cp_error_at ("invalid covariant return type for %q#D", overrider);
1852 cp_error_at (" overriding %q#D", basefn);
1853 }
1854 else
1855 {
1856 cp_error_at ("conflicting return type specified for %q#D",
1857 overrider);
1858 cp_error_at (" overriding %q#D", basefn);
1859 }
1860 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1861 return 0;
1862 }
1863
1864 /* Check throw specifier is at least as strict. */
1865 if (!comp_except_specs (base_throw, over_throw, 0))
1866 {
1867 cp_error_at ("looser throw specifier for %q#F", overrider);
1868 cp_error_at (" overriding %q#F", basefn);
1869 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1870 return 0;
1871 }
1872
1873 return 1;
1874 }
1875
1876 /* Given a class TYPE, and a function decl FNDECL, look for
1877 virtual functions in TYPE's hierarchy which FNDECL overrides.
1878 We do not look in TYPE itself, only its bases.
1879
1880 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1881 find that it overrides anything.
1882
1883 We check that every function which is overridden, is correctly
1884 overridden. */
1885
1886 int
1887 look_for_overrides (tree type, tree fndecl)
1888 {
1889 tree binfo = TYPE_BINFO (type);
1890 tree base_binfo;
1891 int ix;
1892 int found = 0;
1893
1894 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1895 {
1896 tree basetype = BINFO_TYPE (base_binfo);
1897
1898 if (TYPE_POLYMORPHIC_P (basetype))
1899 found += look_for_overrides_r (basetype, fndecl);
1900 }
1901 return found;
1902 }
1903
1904 /* Look in TYPE for virtual functions with the same signature as
1905 FNDECL. */
1906
1907 tree
1908 look_for_overrides_here (tree type, tree fndecl)
1909 {
1910 int ix;
1911
1912 /* If there are no methods in TYPE (meaning that only implicitly
1913 declared methods will ever be provided for TYPE), then there are
1914 no virtual functions. */
1915 if (!CLASSTYPE_METHOD_VEC (type))
1916 return NULL_TREE;
1917
1918 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1919 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1920 else
1921 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1922 if (ix >= 0)
1923 {
1924 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1925
1926 for (; fns; fns = OVL_NEXT (fns))
1927 {
1928 tree fn = OVL_CURRENT (fns);
1929
1930 if (!DECL_VIRTUAL_P (fn))
1931 /* Not a virtual. */;
1932 else if (DECL_CONTEXT (fn) != type)
1933 /* Introduced with a using declaration. */;
1934 else if (DECL_STATIC_FUNCTION_P (fndecl))
1935 {
1936 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1937 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1938 if (compparms (TREE_CHAIN (btypes), dtypes))
1939 return fn;
1940 }
1941 else if (same_signature_p (fndecl, fn))
1942 return fn;
1943 }
1944 }
1945 return NULL_TREE;
1946 }
1947
1948 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1949 TYPE itself and its bases. */
1950
1951 static int
1952 look_for_overrides_r (tree type, tree fndecl)
1953 {
1954 tree fn = look_for_overrides_here (type, fndecl);
1955 if (fn)
1956 {
1957 if (DECL_STATIC_FUNCTION_P (fndecl))
1958 {
1959 /* A static member function cannot match an inherited
1960 virtual member function. */
1961 cp_error_at ("%q#D cannot be declared", fndecl);
1962 cp_error_at (" since %q#D declared in base class", fn);
1963 }
1964 else
1965 {
1966 /* It's definitely virtual, even if not explicitly set. */
1967 DECL_VIRTUAL_P (fndecl) = 1;
1968 check_final_overrider (fndecl, fn);
1969 }
1970 return 1;
1971 }
1972
1973 /* We failed to find one declared in this class. Look in its bases. */
1974 return look_for_overrides (type, fndecl);
1975 }
1976
1977 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1978
1979 static tree
1980 dfs_get_pure_virtuals (tree binfo, void *data)
1981 {
1982 tree type = (tree) data;
1983
1984 /* We're not interested in primary base classes; the derived class
1985 of which they are a primary base will contain the information we
1986 need. */
1987 if (!BINFO_PRIMARY_P (binfo))
1988 {
1989 tree virtuals;
1990
1991 for (virtuals = BINFO_VIRTUALS (binfo);
1992 virtuals;
1993 virtuals = TREE_CHAIN (virtuals))
1994 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1995 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (type),
1996 BV_FN (virtuals));
1997 }
1998
1999 return NULL_TREE;
2000 }
2001
2002 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2003
2004 void
2005 get_pure_virtuals (tree type)
2006 {
2007 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2008 is going to be overridden. */
2009 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2010 /* Now, run through all the bases which are not primary bases, and
2011 collect the pure virtual functions. We look at the vtable in
2012 each class to determine what pure virtual functions are present.
2013 (A primary base is not interesting because the derived class of
2014 which it is a primary base will contain vtable entries for the
2015 pure virtuals in the base class. */
2016 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2017 }
2018 \f
2019 /* Debug info for C++ classes can get very large; try to avoid
2020 emitting it everywhere.
2021
2022 Note that this optimization wins even when the target supports
2023 BINCL (if only slightly), and reduces the amount of work for the
2024 linker. */
2025
2026 void
2027 maybe_suppress_debug_info (tree t)
2028 {
2029 if (write_symbols == NO_DEBUG)
2030 return;
2031
2032 /* We might have set this earlier in cp_finish_decl. */
2033 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2034
2035 /* If we already know how we're handling this class, handle debug info
2036 the same way. */
2037 if (CLASSTYPE_INTERFACE_KNOWN (t))
2038 {
2039 if (CLASSTYPE_INTERFACE_ONLY (t))
2040 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2041 /* else don't set it. */
2042 }
2043 /* If the class has a vtable, write out the debug info along with
2044 the vtable. */
2045 else if (TYPE_CONTAINS_VPTR_P (t))
2046 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2047
2048 /* Otherwise, just emit the debug info normally. */
2049 }
2050
2051 /* Note that we want debugging information for a base class of a class
2052 whose vtable is being emitted. Normally, this would happen because
2053 calling the constructor for a derived class implies calling the
2054 constructors for all bases, which involve initializing the
2055 appropriate vptr with the vtable for the base class; but in the
2056 presence of optimization, this initialization may be optimized
2057 away, so we tell finish_vtable_vardecl that we want the debugging
2058 information anyway. */
2059
2060 static tree
2061 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2062 {
2063 tree t = BINFO_TYPE (binfo);
2064
2065 if (CLASSTYPE_DEBUG_REQUESTED (t))
2066 return dfs_skip_bases;
2067
2068 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2069
2070 return NULL_TREE;
2071 }
2072
2073 /* Write out the debugging information for TYPE, whose vtable is being
2074 emitted. Also walk through our bases and note that we want to
2075 write out information for them. This avoids the problem of not
2076 writing any debug info for intermediate basetypes whose
2077 constructors, and thus the references to their vtables, and thus
2078 the vtables themselves, were optimized away. */
2079
2080 void
2081 note_debug_info_needed (tree type)
2082 {
2083 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2084 {
2085 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2086 rest_of_type_compilation (type, toplevel_bindings_p ());
2087 }
2088
2089 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2090 }
2091 \f
2092 void
2093 print_search_statistics (void)
2094 {
2095 #ifdef GATHER_STATISTICS
2096 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2097 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2098 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2099 n_outer_fields_searched, n_calls_lookup_fnfields);
2100 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2101 #else /* GATHER_STATISTICS */
2102 fprintf (stderr, "no search statistics\n");
2103 #endif /* GATHER_STATISTICS */
2104 }
2105
2106 void
2107 reinit_search_statistics (void)
2108 {
2109 #ifdef GATHER_STATISTICS
2110 n_fields_searched = 0;
2111 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2112 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2113 n_calls_get_base_type = 0;
2114 n_outer_fields_searched = 0;
2115 n_contexts_saved = 0;
2116 #endif /* GATHER_STATISTICS */
2117 }
2118
2119 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2120 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2121 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2122 bases have been encountered already in the tree walk. PARENT_CONVS
2123 is the list of lists of conversion functions that could hide CONV
2124 and OTHER_CONVS is the list of lists of conversion functions that
2125 could hide or be hidden by CONV, should virtualness be involved in
2126 the hierarchy. Merely checking the conversion op's name is not
2127 enough because two conversion operators to the same type can have
2128 different names. Return nonzero if we are visible. */
2129
2130 static int
2131 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2132 tree to_type, tree parent_convs, tree other_convs)
2133 {
2134 tree level, probe;
2135
2136 /* See if we are hidden by a parent conversion. */
2137 for (level = parent_convs; level; level = TREE_CHAIN (level))
2138 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2139 if (same_type_p (to_type, TREE_TYPE (probe)))
2140 return 0;
2141
2142 if (virtual_depth || virtualness)
2143 {
2144 /* In a virtual hierarchy, we could be hidden, or could hide a
2145 conversion function on the other_convs list. */
2146 for (level = other_convs; level; level = TREE_CHAIN (level))
2147 {
2148 int we_hide_them;
2149 int they_hide_us;
2150 tree *prev, other;
2151
2152 if (!(virtual_depth || TREE_STATIC (level)))
2153 /* Neither is morally virtual, so cannot hide each other. */
2154 continue;
2155
2156 if (!TREE_VALUE (level))
2157 /* They evaporated away already. */
2158 continue;
2159
2160 they_hide_us = (virtual_depth
2161 && original_binfo (binfo, TREE_PURPOSE (level)));
2162 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2163 && original_binfo (TREE_PURPOSE (level), binfo));
2164
2165 if (!(we_hide_them || they_hide_us))
2166 /* Neither is within the other, so no hiding can occur. */
2167 continue;
2168
2169 for (prev = &TREE_VALUE (level), other = *prev; other;)
2170 {
2171 if (same_type_p (to_type, TREE_TYPE (other)))
2172 {
2173 if (they_hide_us)
2174 /* We are hidden. */
2175 return 0;
2176
2177 if (we_hide_them)
2178 {
2179 /* We hide the other one. */
2180 other = TREE_CHAIN (other);
2181 *prev = other;
2182 continue;
2183 }
2184 }
2185 prev = &TREE_CHAIN (other);
2186 other = *prev;
2187 }
2188 }
2189 }
2190 return 1;
2191 }
2192
2193 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2194 of conversion functions, the first slot will be for the current
2195 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2196 of conversion functions from children of the current binfo,
2197 concatenated with conversions from elsewhere in the hierarchy --
2198 that list begins with OTHER_CONVS. Return a single list of lists
2199 containing only conversions from the current binfo and its
2200 children. */
2201
2202 static tree
2203 split_conversions (tree my_convs, tree parent_convs,
2204 tree child_convs, tree other_convs)
2205 {
2206 tree t;
2207 tree prev;
2208
2209 /* Remove the original other_convs portion from child_convs. */
2210 for (prev = NULL, t = child_convs;
2211 t != other_convs; prev = t, t = TREE_CHAIN (t))
2212 continue;
2213
2214 if (prev)
2215 TREE_CHAIN (prev) = NULL_TREE;
2216 else
2217 child_convs = NULL_TREE;
2218
2219 /* Attach the child convs to any we had at this level. */
2220 if (my_convs)
2221 {
2222 my_convs = parent_convs;
2223 TREE_CHAIN (my_convs) = child_convs;
2224 }
2225 else
2226 my_convs = child_convs;
2227
2228 return my_convs;
2229 }
2230
2231 /* Worker for lookup_conversions. Lookup conversion functions in
2232 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2233 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2234 encountered virtual bases already in the tree walk. PARENT_CONVS &
2235 PARENT_TPL_CONVS are lists of list of conversions within parent
2236 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2237 elsewhere in the tree. Return the conversions found within this
2238 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2239 encountered virtualness. We keep template and non-template
2240 conversions separate, to avoid unnecessary type comparisons.
2241
2242 The located conversion functions are held in lists of lists. The
2243 TREE_VALUE of the outer list is the list of conversion functions
2244 found in a particular binfo. The TREE_PURPOSE of both the outer
2245 and inner lists is the binfo at which those conversions were
2246 found. TREE_STATIC is set for those lists within of morally
2247 virtual binfos. The TREE_VALUE of the inner list is the conversion
2248 function or overload itself. The TREE_TYPE of each inner list node
2249 is the converted-to type. */
2250
2251 static int
2252 lookup_conversions_r (tree binfo,
2253 int virtual_depth, int virtualness,
2254 tree parent_convs, tree parent_tpl_convs,
2255 tree other_convs, tree other_tpl_convs,
2256 tree *convs, tree *tpl_convs)
2257 {
2258 int my_virtualness = 0;
2259 tree my_convs = NULL_TREE;
2260 tree my_tpl_convs = NULL_TREE;
2261 tree child_convs = NULL_TREE;
2262 tree child_tpl_convs = NULL_TREE;
2263 unsigned i;
2264 tree base_binfo;
2265 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2266 tree conv;
2267
2268 /* If we have no conversion operators, then don't look. */
2269 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2270 {
2271 *convs = *tpl_convs = NULL_TREE;
2272
2273 return 0;
2274 }
2275
2276 if (BINFO_VIRTUAL_P (binfo))
2277 virtual_depth++;
2278
2279 /* First, locate the unhidden ones at this level. */
2280 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2281 VEC_iterate (tree, method_vec, i, conv);
2282 ++i)
2283 {
2284 tree cur = OVL_CURRENT (conv);
2285
2286 if (!DECL_CONV_FN_P (cur))
2287 break;
2288
2289 if (TREE_CODE (cur) == TEMPLATE_DECL)
2290 {
2291 /* Only template conversions can be overloaded, and we must
2292 flatten them out and check each one individually. */
2293 tree tpls;
2294
2295 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2296 {
2297 tree tpl = OVL_CURRENT (tpls);
2298 tree type = DECL_CONV_FN_TYPE (tpl);
2299
2300 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2301 type, parent_tpl_convs, other_tpl_convs))
2302 {
2303 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2304 TREE_TYPE (my_tpl_convs) = type;
2305 if (virtual_depth)
2306 {
2307 TREE_STATIC (my_tpl_convs) = 1;
2308 my_virtualness = 1;
2309 }
2310 }
2311 }
2312 }
2313 else
2314 {
2315 tree name = DECL_NAME (cur);
2316
2317 if (!IDENTIFIER_MARKED (name))
2318 {
2319 tree type = DECL_CONV_FN_TYPE (cur);
2320
2321 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2322 type, parent_convs, other_convs))
2323 {
2324 my_convs = tree_cons (binfo, conv, my_convs);
2325 TREE_TYPE (my_convs) = type;
2326 if (virtual_depth)
2327 {
2328 TREE_STATIC (my_convs) = 1;
2329 my_virtualness = 1;
2330 }
2331 IDENTIFIER_MARKED (name) = 1;
2332 }
2333 }
2334 }
2335 }
2336
2337 if (my_convs)
2338 {
2339 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2340 if (virtual_depth)
2341 TREE_STATIC (parent_convs) = 1;
2342 }
2343
2344 if (my_tpl_convs)
2345 {
2346 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2347 if (virtual_depth)
2348 TREE_STATIC (parent_convs) = 1;
2349 }
2350
2351 child_convs = other_convs;
2352 child_tpl_convs = other_tpl_convs;
2353
2354 /* Now iterate over each base, looking for more conversions. */
2355 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2356 {
2357 tree base_convs, base_tpl_convs;
2358 unsigned base_virtualness;
2359
2360 base_virtualness = lookup_conversions_r (base_binfo,
2361 virtual_depth, virtualness,
2362 parent_convs, parent_tpl_convs,
2363 child_convs, child_tpl_convs,
2364 &base_convs, &base_tpl_convs);
2365 if (base_virtualness)
2366 my_virtualness = virtualness = 1;
2367 child_convs = chainon (base_convs, child_convs);
2368 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2369 }
2370
2371 /* Unmark the conversions found at this level */
2372 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2373 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2374
2375 *convs = split_conversions (my_convs, parent_convs,
2376 child_convs, other_convs);
2377 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2378 child_tpl_convs, other_tpl_convs);
2379
2380 return my_virtualness;
2381 }
2382
2383 /* Return a TREE_LIST containing all the non-hidden user-defined
2384 conversion functions for TYPE (and its base-classes). The
2385 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2386 function. The TREE_PURPOSE is the BINFO from which the conversion
2387 functions in this node were selected. This function is effectively
2388 performing a set of member lookups as lookup_fnfield does, but
2389 using the type being converted to as the unique key, rather than the
2390 field name. */
2391
2392 tree
2393 lookup_conversions (tree type)
2394 {
2395 tree convs, tpl_convs;
2396 tree list = NULL_TREE;
2397
2398 complete_type (type);
2399 if (!TYPE_BINFO (type))
2400 return NULL_TREE;
2401
2402 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2403 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2404 &convs, &tpl_convs);
2405
2406 /* Flatten the list-of-lists */
2407 for (; convs; convs = TREE_CHAIN (convs))
2408 {
2409 tree probe, next;
2410
2411 for (probe = TREE_VALUE (convs); probe; probe = next)
2412 {
2413 next = TREE_CHAIN (probe);
2414
2415 TREE_CHAIN (probe) = list;
2416 list = probe;
2417 }
2418 }
2419
2420 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2421 {
2422 tree probe, next;
2423
2424 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2425 {
2426 next = TREE_CHAIN (probe);
2427
2428 TREE_CHAIN (probe) = list;
2429 list = probe;
2430 }
2431 }
2432
2433 return list;
2434 }
2435
2436 /* Returns the binfo of the first direct or indirect virtual base derived
2437 from BINFO, or NULL if binfo is not via virtual. */
2438
2439 tree
2440 binfo_from_vbase (tree binfo)
2441 {
2442 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2443 {
2444 if (BINFO_VIRTUAL_P (binfo))
2445 return binfo;
2446 }
2447 return NULL_TREE;
2448 }
2449
2450 /* Returns the binfo of the first direct or indirect virtual base derived
2451 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2452 via virtual. */
2453
2454 tree
2455 binfo_via_virtual (tree binfo, tree limit)
2456 {
2457 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2458 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2459 return NULL_TREE;
2460
2461 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2462 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2463 {
2464 if (BINFO_VIRTUAL_P (binfo))
2465 return binfo;
2466 }
2467 return NULL_TREE;
2468 }
2469
2470 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2471 Find the equivalent binfo within whatever graph HERE is located.
2472 This is the inverse of original_binfo. */
2473
2474 tree
2475 copied_binfo (tree binfo, tree here)
2476 {
2477 tree result = NULL_TREE;
2478
2479 if (BINFO_VIRTUAL_P (binfo))
2480 {
2481 tree t;
2482
2483 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2484 t = BINFO_INHERITANCE_CHAIN (t))
2485 continue;
2486
2487 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2488 }
2489 else if (BINFO_INHERITANCE_CHAIN (binfo))
2490 {
2491 tree cbinfo;
2492 tree base_binfo;
2493 int ix;
2494
2495 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2496 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2497 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2498 {
2499 result = base_binfo;
2500 break;
2501 }
2502 }
2503 else
2504 {
2505 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2506 result = here;
2507 }
2508
2509 gcc_assert (result);
2510 return result;
2511 }
2512
2513 tree
2514 binfo_for_vbase (tree base, tree t)
2515 {
2516 unsigned ix;
2517 tree binfo;
2518 VEC (tree) *vbases;
2519
2520 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2521 VEC_iterate (tree, vbases, ix, binfo); ix++)
2522 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2523 return binfo;
2524 return NULL;
2525 }
2526
2527 /* BINFO is some base binfo of HERE, within some other
2528 hierarchy. Return the equivalent binfo, but in the hierarchy
2529 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2530 is not a base binfo of HERE, returns NULL_TREE. */
2531
2532 tree
2533 original_binfo (tree binfo, tree here)
2534 {
2535 tree result = NULL;
2536
2537 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2538 result = here;
2539 else if (BINFO_VIRTUAL_P (binfo))
2540 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2541 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2542 : NULL_TREE);
2543 else if (BINFO_INHERITANCE_CHAIN (binfo))
2544 {
2545 tree base_binfos;
2546
2547 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2548 if (base_binfos)
2549 {
2550 int ix;
2551 tree base_binfo;
2552
2553 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2554 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2555 BINFO_TYPE (binfo)))
2556 {
2557 result = base_binfo;
2558 break;
2559 }
2560 }
2561 }
2562
2563 return result;
2564 }
2565