cp-tree.h (context_as_string): Remove extern.
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37
38 static int is_subobject_of_p (tree, tree);
39 static tree dfs_lookup_base (tree, void *);
40 static tree dfs_dcast_hint_pre (tree, void *);
41 static tree dfs_dcast_hint_post (tree, void *);
42 static tree dfs_debug_mark (tree, void *);
43 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44 tree (*post_fn) (tree, void *), void *data);
45 static void dfs_unmark_r (tree);
46 static int check_hidden_convs (tree, int, int, tree, tree, tree);
47 static tree split_conversions (tree, tree, tree, tree);
48 static int lookup_conversions_r (tree, int, int,
49 tree, tree, tree, tree, tree *, tree *);
50 static int look_for_overrides_r (tree, tree);
51 static tree lookup_field_r (tree, void *);
52 static tree dfs_accessible_post (tree, void *);
53 static tree dfs_walk_once_accessible_r (tree, bool, bool,
54 tree (*pre_fn) (tree, void *),
55 tree (*post_fn) (tree, void *),
56 void *data);
57 static tree dfs_walk_once_accessible (tree, bool,
58 tree (*pre_fn) (tree, void *),
59 tree (*post_fn) (tree, void *),
60 void *data);
61 static tree dfs_access_in_type (tree, void *);
62 static access_kind access_in_type (tree, tree);
63 static int protected_accessible_p (tree, tree, tree);
64 static int friend_accessible_p (tree, tree, tree);
65 static int template_self_reference_p (tree, tree);
66 static tree dfs_get_pure_virtuals (tree, void *);
67
68 \f
69 /* Variables for gathering statistics. */
70 #ifdef GATHER_STATISTICS
71 static int n_fields_searched;
72 static int n_calls_lookup_field, n_calls_lookup_field_1;
73 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
74 static int n_calls_get_base_type;
75 static int n_outer_fields_searched;
76 static int n_contexts_saved;
77 #endif /* GATHER_STATISTICS */
78
79 \f
80 /* Data for lookup_base and its workers. */
81
82 struct lookup_base_data_s
83 {
84 tree t; /* type being searched. */
85 tree base; /* The base type we're looking for. */
86 tree binfo; /* Found binfo. */
87 bool via_virtual; /* Found via a virtual path. */
88 bool ambiguous; /* Found multiply ambiguous */
89 bool repeated_base; /* Whether there are repeated bases in the
90 hierarchy. */
91 bool want_any; /* Whether we want any matching binfo. */
92 };
93
94 /* Worker function for lookup_base. See if we've found the desired
95 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
96
97 static tree
98 dfs_lookup_base (tree binfo, void *data_)
99 {
100 struct lookup_base_data_s *data = data_;
101
102 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
103 {
104 if (!data->binfo)
105 {
106 data->binfo = binfo;
107 data->via_virtual
108 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
109
110 if (!data->repeated_base)
111 /* If there are no repeated bases, we can stop now. */
112 return binfo;
113
114 if (data->want_any && !data->via_virtual)
115 /* If this is a non-virtual base, then we can't do
116 better. */
117 return binfo;
118
119 return dfs_skip_bases;
120 }
121 else
122 {
123 gcc_assert (binfo != data->binfo);
124
125 /* We've found more than one matching binfo. */
126 if (!data->want_any)
127 {
128 /* This is immediately ambiguous. */
129 data->binfo = NULL_TREE;
130 data->ambiguous = true;
131 return error_mark_node;
132 }
133
134 /* Prefer one via a non-virtual path. */
135 if (!binfo_via_virtual (binfo, data->t))
136 {
137 data->binfo = binfo;
138 data->via_virtual = false;
139 return binfo;
140 }
141
142 /* There must be repeated bases, otherwise we'd have stopped
143 on the first base we found. */
144 return dfs_skip_bases;
145 }
146 }
147
148 return NULL_TREE;
149 }
150
151 /* Returns true if type BASE is accessible in T. (BASE is known to be
152 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
153 true, consider any special access of the current scope, or access
154 bestowed by friendship. */
155
156 bool
157 accessible_base_p (tree t, tree base, bool consider_local_p)
158 {
159 tree decl;
160
161 /* [class.access.base]
162
163 A base class is said to be accessible if an invented public
164 member of the base class is accessible.
165
166 If BASE is a non-proper base, this condition is trivially
167 true. */
168 if (same_type_p (t, base))
169 return true;
170 /* Rather than inventing a public member, we use the implicit
171 public typedef created in the scope of every class. */
172 decl = TYPE_FIELDS (base);
173 while (!DECL_SELF_REFERENCE_P (decl))
174 decl = TREE_CHAIN (decl);
175 while (ANON_AGGR_TYPE_P (t))
176 t = TYPE_CONTEXT (t);
177 return accessible_p (t, decl, consider_local_p);
178 }
179
180 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
181 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
182 non-NULL, fill with information about what kind of base we
183 discovered.
184
185 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
186 not set in ACCESS, then an error is issued and error_mark_node is
187 returned. If the ba_quiet bit is set, then no error is issued and
188 NULL_TREE is returned. */
189
190 tree
191 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
192 {
193 tree binfo;
194 tree t_binfo;
195 base_kind bk;
196
197 if (t == error_mark_node || base == error_mark_node)
198 {
199 if (kind_ptr)
200 *kind_ptr = bk_not_base;
201 return error_mark_node;
202 }
203 gcc_assert (TYPE_P (base));
204
205 if (!TYPE_P (t))
206 {
207 t_binfo = t;
208 t = BINFO_TYPE (t);
209 }
210 else
211 {
212 t = complete_type (TYPE_MAIN_VARIANT (t));
213 t_binfo = TYPE_BINFO (t);
214 }
215
216 base = complete_type (TYPE_MAIN_VARIANT (base));
217
218 if (t_binfo)
219 {
220 struct lookup_base_data_s data;
221
222 data.t = t;
223 data.base = base;
224 data.binfo = NULL_TREE;
225 data.ambiguous = data.via_virtual = false;
226 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
227 data.want_any = access == ba_any;
228
229 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
230 binfo = data.binfo;
231
232 if (!binfo)
233 bk = data.ambiguous ? bk_ambig : bk_not_base;
234 else if (binfo == t_binfo)
235 bk = bk_same_type;
236 else if (data.via_virtual)
237 bk = bk_via_virtual;
238 else
239 bk = bk_proper_base;
240 }
241 else
242 {
243 binfo = NULL_TREE;
244 bk = bk_not_base;
245 }
246
247 /* Check that the base is unambiguous and accessible. */
248 if (access != ba_any)
249 switch (bk)
250 {
251 case bk_not_base:
252 break;
253
254 case bk_ambig:
255 if (!(access & ba_quiet))
256 {
257 error ("%qT is an ambiguous base of %qT", base, t);
258 binfo = error_mark_node;
259 }
260 break;
261
262 default:
263 if ((access & ba_check_bit)
264 /* If BASE is incomplete, then BASE and TYPE are probably
265 the same, in which case BASE is accessible. If they
266 are not the same, then TYPE is invalid. In that case,
267 there's no need to issue another error here, and
268 there's no implicit typedef to use in the code that
269 follows, so we skip the check. */
270 && COMPLETE_TYPE_P (base)
271 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
272 {
273 if (!(access & ba_quiet))
274 {
275 error ("%qT is an inaccessible base of %qT", base, t);
276 binfo = error_mark_node;
277 }
278 else
279 binfo = NULL_TREE;
280 bk = bk_inaccessible;
281 }
282 break;
283 }
284
285 if (kind_ptr)
286 *kind_ptr = bk;
287
288 return binfo;
289 }
290
291 /* Data for dcast_base_hint walker. */
292
293 struct dcast_data_s
294 {
295 tree subtype; /* The base type we're looking for. */
296 int virt_depth; /* Number of virtual bases encountered from most
297 derived. */
298 tree offset; /* Best hint offset discovered so far. */
299 bool repeated_base; /* Whether there are repeated bases in the
300 hierarchy. */
301 };
302
303 /* Worker for dcast_base_hint. Search for the base type being cast
304 from. */
305
306 static tree
307 dfs_dcast_hint_pre (tree binfo, void *data_)
308 {
309 struct dcast_data_s *data = data_;
310
311 if (BINFO_VIRTUAL_P (binfo))
312 data->virt_depth++;
313
314 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
315 {
316 if (data->virt_depth)
317 {
318 data->offset = ssize_int (-1);
319 return data->offset;
320 }
321 if (data->offset)
322 data->offset = ssize_int (-3);
323 else
324 data->offset = BINFO_OFFSET (binfo);
325
326 return data->repeated_base ? dfs_skip_bases : data->offset;
327 }
328
329 return NULL_TREE;
330 }
331
332 /* Worker for dcast_base_hint. Track the virtual depth. */
333
334 static tree
335 dfs_dcast_hint_post (tree binfo, void *data_)
336 {
337 struct dcast_data_s *data = data_;
338
339 if (BINFO_VIRTUAL_P (binfo))
340 data->virt_depth--;
341
342 return NULL_TREE;
343 }
344
345 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
346 started from is related to the required TARGET type, in order to optimize
347 the inheritance graph search. This information is independent of the
348 current context, and ignores private paths, hence get_base_distance is
349 inappropriate. Return a TREE specifying the base offset, BOFF.
350 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
351 and there are no public virtual SUBTYPE bases.
352 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
353 BOFF == -2, SUBTYPE is not a public base.
354 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
355
356 tree
357 dcast_base_hint (tree subtype, tree target)
358 {
359 struct dcast_data_s data;
360
361 data.subtype = subtype;
362 data.virt_depth = 0;
363 data.offset = NULL_TREE;
364 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
365
366 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
367 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
368 return data.offset ? data.offset : ssize_int (-2);
369 }
370
371 /* Search for a member with name NAME in a multiple inheritance
372 lattice specified by TYPE. If it does not exist, return NULL_TREE.
373 If the member is ambiguously referenced, return `error_mark_node'.
374 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
375 true, type declarations are preferred. */
376
377 /* Do a 1-level search for NAME as a member of TYPE. The caller must
378 figure out whether it can access this field. (Since it is only one
379 level, this is reasonable.) */
380
381 tree
382 lookup_field_1 (tree type, tree name, bool want_type)
383 {
384 tree field;
385
386 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
387 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
388 || TREE_CODE (type) == TYPENAME_TYPE)
389 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
390 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
391 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
392 the code often worked even when we treated the index as a list
393 of fields!)
394 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
395 return NULL_TREE;
396
397 if (TYPE_NAME (type)
398 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
399 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
400 {
401 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
402 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
403 int i;
404
405 while (lo < hi)
406 {
407 i = (lo + hi) / 2;
408
409 #ifdef GATHER_STATISTICS
410 n_fields_searched++;
411 #endif /* GATHER_STATISTICS */
412
413 if (DECL_NAME (fields[i]) > name)
414 hi = i;
415 else if (DECL_NAME (fields[i]) < name)
416 lo = i + 1;
417 else
418 {
419 field = NULL_TREE;
420
421 /* We might have a nested class and a field with the
422 same name; we sorted them appropriately via
423 field_decl_cmp, so just look for the first or last
424 field with this name. */
425 if (want_type)
426 {
427 do
428 field = fields[i--];
429 while (i >= lo && DECL_NAME (fields[i]) == name);
430 if (TREE_CODE (field) != TYPE_DECL
431 && !DECL_CLASS_TEMPLATE_P (field))
432 field = NULL_TREE;
433 }
434 else
435 {
436 do
437 field = fields[i++];
438 while (i < hi && DECL_NAME (fields[i]) == name);
439 }
440 return field;
441 }
442 }
443 return NULL_TREE;
444 }
445
446 field = TYPE_FIELDS (type);
447
448 #ifdef GATHER_STATISTICS
449 n_calls_lookup_field_1++;
450 #endif /* GATHER_STATISTICS */
451 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
452 {
453 #ifdef GATHER_STATISTICS
454 n_fields_searched++;
455 #endif /* GATHER_STATISTICS */
456 gcc_assert (DECL_P (field));
457 if (DECL_NAME (field) == NULL_TREE
458 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
459 {
460 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
461 if (temp)
462 return temp;
463 }
464 if (TREE_CODE (field) == USING_DECL)
465 {
466 /* We generally treat class-scope using-declarations as
467 ARM-style access specifications, because support for the
468 ISO semantics has not been implemented. So, in general,
469 there's no reason to return a USING_DECL, and the rest of
470 the compiler cannot handle that. Once the class is
471 defined, USING_DECLs are purged from TYPE_FIELDS; see
472 handle_using_decl. However, we make special efforts to
473 make using-declarations in template classes work
474 correctly. */
475 if (CLASSTYPE_TEMPLATE_INFO (type)
476 && !CLASSTYPE_USE_TEMPLATE (type)
477 && !TREE_TYPE (field))
478 ;
479 else
480 continue;
481 }
482
483 if (DECL_NAME (field) == name
484 && (!want_type
485 || TREE_CODE (field) == TYPE_DECL
486 || DECL_CLASS_TEMPLATE_P (field)))
487 return field;
488 }
489 /* Not found. */
490 if (name == vptr_identifier)
491 {
492 /* Give the user what s/he thinks s/he wants. */
493 if (TYPE_POLYMORPHIC_P (type))
494 return TYPE_VFIELD (type);
495 }
496 return NULL_TREE;
497 }
498
499 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
500 NAMESPACE_DECL corresponding to the innermost non-block scope. */
501
502 tree
503 current_scope (void)
504 {
505 /* There are a number of cases we need to be aware of here:
506 current_class_type current_function_decl
507 global NULL NULL
508 fn-local NULL SET
509 class-local SET NULL
510 class->fn SET SET
511 fn->class SET SET
512
513 Those last two make life interesting. If we're in a function which is
514 itself inside a class, we need decls to go into the fn's decls (our
515 second case below). But if we're in a class and the class itself is
516 inside a function, we need decls to go into the decls for the class. To
517 achieve this last goal, we must see if, when both current_class_ptr and
518 current_function_decl are set, the class was declared inside that
519 function. If so, we know to put the decls into the class's scope. */
520 if (current_function_decl && current_class_type
521 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
522 && same_type_p (DECL_CONTEXT (current_function_decl),
523 current_class_type))
524 || (DECL_FRIEND_CONTEXT (current_function_decl)
525 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
526 current_class_type))))
527 return current_function_decl;
528 if (current_class_type)
529 return current_class_type;
530 if (current_function_decl)
531 return current_function_decl;
532 return current_namespace;
533 }
534
535 /* Returns nonzero if we are currently in a function scope. Note
536 that this function returns zero if we are within a local class, but
537 not within a member function body of the local class. */
538
539 int
540 at_function_scope_p (void)
541 {
542 tree cs = current_scope ();
543 return cs && TREE_CODE (cs) == FUNCTION_DECL;
544 }
545
546 /* Returns true if the innermost active scope is a class scope. */
547
548 bool
549 at_class_scope_p (void)
550 {
551 tree cs = current_scope ();
552 return cs && TYPE_P (cs);
553 }
554
555 /* Returns true if the innermost active scope is a namespace scope. */
556
557 bool
558 at_namespace_scope_p (void)
559 {
560 tree cs = current_scope ();
561 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
562 }
563
564 /* Return the scope of DECL, as appropriate when doing name-lookup. */
565
566 tree
567 context_for_name_lookup (tree decl)
568 {
569 /* [class.union]
570
571 For the purposes of name lookup, after the anonymous union
572 definition, the members of the anonymous union are considered to
573 have been defined in the scope in which the anonymous union is
574 declared. */
575 tree context = DECL_CONTEXT (decl);
576
577 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
578 context = TYPE_CONTEXT (context);
579 if (!context)
580 context = global_namespace;
581
582 return context;
583 }
584
585 /* The accessibility routines use BINFO_ACCESS for scratch space
586 during the computation of the accessibility of some declaration. */
587
588 #define BINFO_ACCESS(NODE) \
589 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
590
591 /* Set the access associated with NODE to ACCESS. */
592
593 #define SET_BINFO_ACCESS(NODE, ACCESS) \
594 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
595 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
596
597 /* Called from access_in_type via dfs_walk. Calculate the access to
598 DATA (which is really a DECL) in BINFO. */
599
600 static tree
601 dfs_access_in_type (tree binfo, void *data)
602 {
603 tree decl = (tree) data;
604 tree type = BINFO_TYPE (binfo);
605 access_kind access = ak_none;
606
607 if (context_for_name_lookup (decl) == type)
608 {
609 /* If we have descended to the scope of DECL, just note the
610 appropriate access. */
611 if (TREE_PRIVATE (decl))
612 access = ak_private;
613 else if (TREE_PROTECTED (decl))
614 access = ak_protected;
615 else
616 access = ak_public;
617 }
618 else
619 {
620 /* First, check for an access-declaration that gives us more
621 access to the DECL. The CONST_DECL for an enumeration
622 constant will not have DECL_LANG_SPECIFIC, and thus no
623 DECL_ACCESS. */
624 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
625 {
626 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
627
628 if (decl_access)
629 {
630 decl_access = TREE_VALUE (decl_access);
631
632 if (decl_access == access_public_node)
633 access = ak_public;
634 else if (decl_access == access_protected_node)
635 access = ak_protected;
636 else if (decl_access == access_private_node)
637 access = ak_private;
638 else
639 gcc_unreachable ();
640 }
641 }
642
643 if (!access)
644 {
645 int i;
646 tree base_binfo;
647 VEC (tree) *accesses;
648
649 /* Otherwise, scan our baseclasses, and pick the most favorable
650 access. */
651 accesses = BINFO_BASE_ACCESSES (binfo);
652 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
653 {
654 tree base_access = VEC_index (tree, accesses, i);
655 access_kind base_access_now = BINFO_ACCESS (base_binfo);
656
657 if (base_access_now == ak_none || base_access_now == ak_private)
658 /* If it was not accessible in the base, or only
659 accessible as a private member, we can't access it
660 all. */
661 base_access_now = ak_none;
662 else if (base_access == access_protected_node)
663 /* Public and protected members in the base become
664 protected here. */
665 base_access_now = ak_protected;
666 else if (base_access == access_private_node)
667 /* Public and protected members in the base become
668 private here. */
669 base_access_now = ak_private;
670
671 /* See if the new access, via this base, gives more
672 access than our previous best access. */
673 if (base_access_now != ak_none
674 && (access == ak_none || base_access_now < access))
675 {
676 access = base_access_now;
677
678 /* If the new access is public, we can't do better. */
679 if (access == ak_public)
680 break;
681 }
682 }
683 }
684 }
685
686 /* Note the access to DECL in TYPE. */
687 SET_BINFO_ACCESS (binfo, access);
688
689 return NULL_TREE;
690 }
691
692 /* Return the access to DECL in TYPE. */
693
694 static access_kind
695 access_in_type (tree type, tree decl)
696 {
697 tree binfo = TYPE_BINFO (type);
698
699 /* We must take into account
700
701 [class.paths]
702
703 If a name can be reached by several paths through a multiple
704 inheritance graph, the access is that of the path that gives
705 most access.
706
707 The algorithm we use is to make a post-order depth-first traversal
708 of the base-class hierarchy. As we come up the tree, we annotate
709 each node with the most lenient access. */
710 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
711
712 return BINFO_ACCESS (binfo);
713 }
714
715 /* Returns nonzero if it is OK to access DECL through an object
716 indicated by BINFO in the context of DERIVED. */
717
718 static int
719 protected_accessible_p (tree decl, tree derived, tree binfo)
720 {
721 access_kind access;
722
723 /* We're checking this clause from [class.access.base]
724
725 m as a member of N is protected, and the reference occurs in a
726 member or friend of class N, or in a member or friend of a
727 class P derived from N, where m as a member of P is private or
728 protected.
729
730 Here DERIVED is a possible P and DECL is m. accessible_p will
731 iterate over various values of N, but the access to m in DERIVED
732 does not change.
733
734 Note that I believe that the passage above is wrong, and should read
735 "...is private or protected or public"; otherwise you get bizarre results
736 whereby a public using-decl can prevent you from accessing a protected
737 member of a base. (jason 2000/02/28) */
738
739 /* If DERIVED isn't derived from m's class, then it can't be a P. */
740 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
741 return 0;
742
743 access = access_in_type (derived, decl);
744
745 /* If m is inaccessible in DERIVED, then it's not a P. */
746 if (access == ak_none)
747 return 0;
748
749 /* [class.protected]
750
751 When a friend or a member function of a derived class references
752 a protected nonstatic member of a base class, an access check
753 applies in addition to those described earlier in clause
754 _class.access_) Except when forming a pointer to member
755 (_expr.unary.op_), the access must be through a pointer to,
756 reference to, or object of the derived class itself (or any class
757 derived from that class) (_expr.ref_). If the access is to form
758 a pointer to member, the nested-name-specifier shall name the
759 derived class (or any class derived from that class). */
760 if (DECL_NONSTATIC_MEMBER_P (decl))
761 {
762 /* We can tell through what the reference is occurring by
763 chasing BINFO up to the root. */
764 tree t = binfo;
765 while (BINFO_INHERITANCE_CHAIN (t))
766 t = BINFO_INHERITANCE_CHAIN (t);
767
768 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
769 return 0;
770 }
771
772 return 1;
773 }
774
775 /* Returns nonzero if SCOPE is a friend of a type which would be able
776 to access DECL through the object indicated by BINFO. */
777
778 static int
779 friend_accessible_p (tree scope, tree decl, tree binfo)
780 {
781 tree befriending_classes;
782 tree t;
783
784 if (!scope)
785 return 0;
786
787 if (TREE_CODE (scope) == FUNCTION_DECL
788 || DECL_FUNCTION_TEMPLATE_P (scope))
789 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
790 else if (TYPE_P (scope))
791 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
792 else
793 return 0;
794
795 for (t = befriending_classes; t; t = TREE_CHAIN (t))
796 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
797 return 1;
798
799 /* Nested classes are implicitly friends of their enclosing types, as
800 per core issue 45 (this is a change from the standard). */
801 if (TYPE_P (scope))
802 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
803 if (protected_accessible_p (decl, t, binfo))
804 return 1;
805
806 if (TREE_CODE (scope) == FUNCTION_DECL
807 || DECL_FUNCTION_TEMPLATE_P (scope))
808 {
809 /* Perhaps this SCOPE is a member of a class which is a
810 friend. */
811 if (DECL_CLASS_SCOPE_P (scope)
812 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
813 return 1;
814
815 /* Or an instantiation of something which is a friend. */
816 if (DECL_TEMPLATE_INFO (scope))
817 {
818 int ret;
819 /* Increment processing_template_decl to make sure that
820 dependent_type_p works correctly. */
821 ++processing_template_decl;
822 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
823 --processing_template_decl;
824 return ret;
825 }
826 }
827
828 return 0;
829 }
830
831 /* Called via dfs_walk_once_accessible from accessible_p */
832
833 static tree
834 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
835 {
836 if (BINFO_ACCESS (binfo) != ak_none)
837 {
838 tree scope = current_scope ();
839 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
840 && is_friend (BINFO_TYPE (binfo), scope))
841 return binfo;
842 }
843
844 return NULL_TREE;
845 }
846
847 /* DECL is a declaration from a base class of TYPE, which was the
848 class used to name DECL. Return nonzero if, in the current
849 context, DECL is accessible. If TYPE is actually a BINFO node,
850 then we can tell in what context the access is occurring by looking
851 at the most derived class along the path indicated by BINFO. If
852 CONSIDER_LOCAL is true, do consider special access the current
853 scope or friendship thereof we might have. */
854
855 int
856 accessible_p (tree type, tree decl, bool consider_local_p)
857 {
858 tree binfo;
859 tree scope;
860 access_kind access;
861
862 /* Nonzero if it's OK to access DECL if it has protected
863 accessibility in TYPE. */
864 int protected_ok = 0;
865
866 /* If this declaration is in a block or namespace scope, there's no
867 access control. */
868 if (!TYPE_P (context_for_name_lookup (decl)))
869 return 1;
870
871 /* There is no need to perform access checks inside a thunk. */
872 scope = current_scope ();
873 if (scope && DECL_THUNK_P (scope))
874 return 1;
875
876 /* In a template declaration, we cannot be sure whether the
877 particular specialization that is instantiated will be a friend
878 or not. Therefore, all access checks are deferred until
879 instantiation. */
880 if (processing_template_decl)
881 return 1;
882
883 if (!TYPE_P (type))
884 {
885 binfo = type;
886 type = BINFO_TYPE (type);
887 }
888 else
889 binfo = TYPE_BINFO (type);
890
891 /* [class.access.base]
892
893 A member m is accessible when named in class N if
894
895 --m as a member of N is public, or
896
897 --m as a member of N is private, and the reference occurs in a
898 member or friend of class N, or
899
900 --m as a member of N is protected, and the reference occurs in a
901 member or friend of class N, or in a member or friend of a
902 class P derived from N, where m as a member of P is private or
903 protected, or
904
905 --there exists a base class B of N that is accessible at the point
906 of reference, and m is accessible when named in class B.
907
908 We walk the base class hierarchy, checking these conditions. */
909
910 if (consider_local_p)
911 {
912 /* Figure out where the reference is occurring. Check to see if
913 DECL is private or protected in this scope, since that will
914 determine whether protected access is allowed. */
915 if (current_class_type)
916 protected_ok = protected_accessible_p (decl,
917 current_class_type, binfo);
918
919 /* Now, loop through the classes of which we are a friend. */
920 if (!protected_ok)
921 protected_ok = friend_accessible_p (scope, decl, binfo);
922 }
923
924 /* Standardize the binfo that access_in_type will use. We don't
925 need to know what path was chosen from this point onwards. */
926 binfo = TYPE_BINFO (type);
927
928 /* Compute the accessibility of DECL in the class hierarchy
929 dominated by type. */
930 access = access_in_type (type, decl);
931 if (access == ak_public
932 || (access == ak_protected && protected_ok))
933 return 1;
934
935 if (!consider_local_p)
936 return 0;
937
938 /* Walk the hierarchy again, looking for a base class that allows
939 access. */
940 return dfs_walk_once_accessible (binfo, /*friends=*/true,
941 NULL, dfs_accessible_post, NULL)
942 != NULL_TREE;
943 }
944
945 struct lookup_field_info {
946 /* The type in which we're looking. */
947 tree type;
948 /* The name of the field for which we're looking. */
949 tree name;
950 /* If non-NULL, the current result of the lookup. */
951 tree rval;
952 /* The path to RVAL. */
953 tree rval_binfo;
954 /* If non-NULL, the lookup was ambiguous, and this is a list of the
955 candidates. */
956 tree ambiguous;
957 /* If nonzero, we are looking for types, not data members. */
958 int want_type;
959 /* If something went wrong, a message indicating what. */
960 const char *errstr;
961 };
962
963 /* Within the scope of a template class, you can refer to the to the
964 current specialization with the name of the template itself. For
965 example:
966
967 template <typename T> struct S { S* sp; }
968
969 Returns nonzero if DECL is such a declaration in a class TYPE. */
970
971 static int
972 template_self_reference_p (tree type, tree decl)
973 {
974 return (CLASSTYPE_USE_TEMPLATE (type)
975 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
976 && TREE_CODE (decl) == TYPE_DECL
977 && DECL_ARTIFICIAL (decl)
978 && DECL_NAME (decl) == constructor_name (type));
979 }
980
981 /* Nonzero for a class member means that it is shared between all objects
982 of that class.
983
984 [class.member.lookup]:If the resulting set of declarations are not all
985 from sub-objects of the same type, or the set has a nonstatic member
986 and includes members from distinct sub-objects, there is an ambiguity
987 and the program is ill-formed.
988
989 This function checks that T contains no nonstatic members. */
990
991 int
992 shared_member_p (tree t)
993 {
994 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
995 || TREE_CODE (t) == CONST_DECL)
996 return 1;
997 if (is_overloaded_fn (t))
998 {
999 for (; t; t = OVL_NEXT (t))
1000 {
1001 tree fn = OVL_CURRENT (t);
1002 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1003 return 0;
1004 }
1005 return 1;
1006 }
1007 return 0;
1008 }
1009
1010 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1011 found as a base class and sub-object of the object denoted by
1012 BINFO. */
1013
1014 static int
1015 is_subobject_of_p (tree parent, tree binfo)
1016 {
1017 tree probe;
1018
1019 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1020 {
1021 if (probe == binfo)
1022 return 1;
1023 if (BINFO_VIRTUAL_P (probe))
1024 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1025 != NULL_TREE);
1026 }
1027 return 0;
1028 }
1029
1030 /* DATA is really a struct lookup_field_info. Look for a field with
1031 the name indicated there in BINFO. If this function returns a
1032 non-NULL value it is the result of the lookup. Called from
1033 lookup_field via breadth_first_search. */
1034
1035 static tree
1036 lookup_field_r (tree binfo, void *data)
1037 {
1038 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1039 tree type = BINFO_TYPE (binfo);
1040 tree nval = NULL_TREE;
1041
1042 /* If this is a dependent base, don't look in it. */
1043 if (BINFO_DEPENDENT_BASE_P (binfo))
1044 return NULL_TREE;
1045
1046 /* If this base class is hidden by the best-known value so far, we
1047 don't need to look. */
1048 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1049 && !BINFO_VIRTUAL_P (binfo))
1050 return dfs_skip_bases;
1051
1052 /* First, look for a function. There can't be a function and a data
1053 member with the same name, and if there's a function and a type
1054 with the same name, the type is hidden by the function. */
1055 if (!lfi->want_type)
1056 {
1057 int idx = lookup_fnfields_1 (type, lfi->name);
1058 if (idx >= 0)
1059 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1060 }
1061
1062 if (!nval)
1063 /* Look for a data member or type. */
1064 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1065
1066 /* If there is no declaration with the indicated name in this type,
1067 then there's nothing to do. */
1068 if (!nval)
1069 goto done;
1070
1071 /* If we're looking up a type (as with an elaborated type specifier)
1072 we ignore all non-types we find. */
1073 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1074 && !DECL_CLASS_TEMPLATE_P (nval))
1075 {
1076 if (lfi->name == TYPE_IDENTIFIER (type))
1077 {
1078 /* If the aggregate has no user defined constructors, we allow
1079 it to have fields with the same name as the enclosing type.
1080 If we are looking for that name, find the corresponding
1081 TYPE_DECL. */
1082 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1083 if (DECL_NAME (nval) == lfi->name
1084 && TREE_CODE (nval) == TYPE_DECL)
1085 break;
1086 }
1087 else
1088 nval = NULL_TREE;
1089 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1090 {
1091 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1092 lfi->name);
1093 if (e != NULL)
1094 nval = TYPE_MAIN_DECL (e->type);
1095 else
1096 goto done;
1097 }
1098 }
1099
1100 /* You must name a template base class with a template-id. */
1101 if (!same_type_p (type, lfi->type)
1102 && template_self_reference_p (type, nval))
1103 goto done;
1104
1105 /* If the lookup already found a match, and the new value doesn't
1106 hide the old one, we might have an ambiguity. */
1107 if (lfi->rval_binfo
1108 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1109
1110 {
1111 if (nval == lfi->rval && shared_member_p (nval))
1112 /* The two things are really the same. */
1113 ;
1114 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1115 /* The previous value hides the new one. */
1116 ;
1117 else
1118 {
1119 /* We have a real ambiguity. We keep a chain of all the
1120 candidates. */
1121 if (!lfi->ambiguous && lfi->rval)
1122 {
1123 /* This is the first time we noticed an ambiguity. Add
1124 what we previously thought was a reasonable candidate
1125 to the list. */
1126 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1127 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1128 }
1129
1130 /* Add the new value. */
1131 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1132 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1133 lfi->errstr = "request for member %qD is ambiguous";
1134 }
1135 }
1136 else
1137 {
1138 lfi->rval = nval;
1139 lfi->rval_binfo = binfo;
1140 }
1141
1142 done:
1143 /* Don't look for constructors or destructors in base classes. */
1144 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1145 return dfs_skip_bases;
1146 return NULL_TREE;
1147 }
1148
1149 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1150 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1151 FUNCTIONS, and OPTYPE respectively. */
1152
1153 tree
1154 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1155 {
1156 tree baselink;
1157
1158 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1159 || TREE_CODE (functions) == TEMPLATE_DECL
1160 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1161 || TREE_CODE (functions) == OVERLOAD);
1162 gcc_assert (!optype || TYPE_P (optype));
1163 gcc_assert (TREE_TYPE (functions));
1164
1165 baselink = make_node (BASELINK);
1166 TREE_TYPE (baselink) = TREE_TYPE (functions);
1167 BASELINK_BINFO (baselink) = binfo;
1168 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1169 BASELINK_FUNCTIONS (baselink) = functions;
1170 BASELINK_OPTYPE (baselink) = optype;
1171
1172 return baselink;
1173 }
1174
1175 /* Look for a member named NAME in an inheritance lattice dominated by
1176 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1177 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1178 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1179 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1180 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1181 TREE_VALUEs are the list of ambiguous candidates.
1182
1183 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1184
1185 If nothing can be found return NULL_TREE and do not issue an error. */
1186
1187 tree
1188 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1189 {
1190 tree rval, rval_binfo = NULL_TREE;
1191 tree type = NULL_TREE, basetype_path = NULL_TREE;
1192 struct lookup_field_info lfi;
1193
1194 /* rval_binfo is the binfo associated with the found member, note,
1195 this can be set with useful information, even when rval is not
1196 set, because it must deal with ALL members, not just non-function
1197 members. It is used for ambiguity checking and the hidden
1198 checks. Whereas rval is only set if a proper (not hidden)
1199 non-function member is found. */
1200
1201 const char *errstr = 0;
1202
1203 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1204
1205 if (TREE_CODE (xbasetype) == TREE_BINFO)
1206 {
1207 type = BINFO_TYPE (xbasetype);
1208 basetype_path = xbasetype;
1209 }
1210 else
1211 {
1212 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1213 type = xbasetype;
1214 xbasetype = NULL_TREE;
1215 }
1216
1217 type = complete_type (type);
1218 if (!basetype_path)
1219 basetype_path = TYPE_BINFO (type);
1220
1221 if (!basetype_path)
1222 return NULL_TREE;
1223
1224 #ifdef GATHER_STATISTICS
1225 n_calls_lookup_field++;
1226 #endif /* GATHER_STATISTICS */
1227
1228 memset (&lfi, 0, sizeof (lfi));
1229 lfi.type = type;
1230 lfi.name = name;
1231 lfi.want_type = want_type;
1232 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1233 rval = lfi.rval;
1234 rval_binfo = lfi.rval_binfo;
1235 if (rval_binfo)
1236 type = BINFO_TYPE (rval_binfo);
1237 errstr = lfi.errstr;
1238
1239 /* If we are not interested in ambiguities, don't report them;
1240 just return NULL_TREE. */
1241 if (!protect && lfi.ambiguous)
1242 return NULL_TREE;
1243
1244 if (protect == 2)
1245 {
1246 if (lfi.ambiguous)
1247 return lfi.ambiguous;
1248 else
1249 protect = 0;
1250 }
1251
1252 /* [class.access]
1253
1254 In the case of overloaded function names, access control is
1255 applied to the function selected by overloaded resolution. */
1256 if (rval && protect && !is_overloaded_fn (rval))
1257 perform_or_defer_access_check (basetype_path, rval);
1258
1259 if (errstr && protect)
1260 {
1261 error (errstr, name, type);
1262 if (lfi.ambiguous)
1263 print_candidates (lfi.ambiguous);
1264 rval = error_mark_node;
1265 }
1266
1267 if (rval && is_overloaded_fn (rval))
1268 rval = build_baselink (rval_binfo, basetype_path, rval,
1269 (IDENTIFIER_TYPENAME_P (name)
1270 ? TREE_TYPE (name): NULL_TREE));
1271 return rval;
1272 }
1273
1274 /* Like lookup_member, except that if we find a function member we
1275 return NULL_TREE. */
1276
1277 tree
1278 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1279 {
1280 tree rval = lookup_member (xbasetype, name, protect, want_type);
1281
1282 /* Ignore functions, but propagate the ambiguity list. */
1283 if (!error_operand_p (rval)
1284 && (rval && BASELINK_P (rval)))
1285 return NULL_TREE;
1286
1287 return rval;
1288 }
1289
1290 /* Like lookup_member, except that if we find a non-function member we
1291 return NULL_TREE. */
1292
1293 tree
1294 lookup_fnfields (tree xbasetype, tree name, int protect)
1295 {
1296 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1297
1298 /* Ignore non-functions, but propagate the ambiguity list. */
1299 if (!error_operand_p (rval)
1300 && (rval && !BASELINK_P (rval)))
1301 return NULL_TREE;
1302
1303 return rval;
1304 }
1305
1306 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1307 corresponding to "operator TYPE ()", or -1 if there is no such
1308 operator. Only CLASS_TYPE itself is searched; this routine does
1309 not scan the base classes of CLASS_TYPE. */
1310
1311 static int
1312 lookup_conversion_operator (tree class_type, tree type)
1313 {
1314 int tpl_slot = -1;
1315
1316 if (TYPE_HAS_CONVERSION (class_type))
1317 {
1318 int i;
1319 tree fn;
1320 VEC(tree) *methods = CLASSTYPE_METHOD_VEC (class_type);
1321
1322 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1323 VEC_iterate (tree, methods, i, fn); ++i)
1324 {
1325 /* All the conversion operators come near the beginning of
1326 the class. Therefore, if FN is not a conversion
1327 operator, there is no matching conversion operator in
1328 CLASS_TYPE. */
1329 fn = OVL_CURRENT (fn);
1330 if (!DECL_CONV_FN_P (fn))
1331 break;
1332
1333 if (TREE_CODE (fn) == TEMPLATE_DECL)
1334 /* All the templated conversion functions are on the same
1335 slot, so remember it. */
1336 tpl_slot = i;
1337 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1338 return i;
1339 }
1340 }
1341
1342 return tpl_slot;
1343 }
1344
1345 /* TYPE is a class type. Return the index of the fields within
1346 the method vector with name NAME, or -1 is no such field exists. */
1347
1348 int
1349 lookup_fnfields_1 (tree type, tree name)
1350 {
1351 VEC(tree) *method_vec;
1352 tree fn;
1353 tree tmp;
1354 size_t i;
1355
1356 if (!CLASS_TYPE_P (type))
1357 return -1;
1358
1359 if (COMPLETE_TYPE_P (type))
1360 {
1361 if ((name == ctor_identifier
1362 || name == base_ctor_identifier
1363 || name == complete_ctor_identifier))
1364 {
1365 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1366 lazily_declare_fn (sfk_constructor, type);
1367 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1368 lazily_declare_fn (sfk_copy_constructor, type);
1369 }
1370 else if (name == ansi_assopname(NOP_EXPR)
1371 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1372 lazily_declare_fn (sfk_assignment_operator, type);
1373 }
1374
1375 method_vec = CLASSTYPE_METHOD_VEC (type);
1376 if (!method_vec)
1377 return -1;
1378
1379 #ifdef GATHER_STATISTICS
1380 n_calls_lookup_fnfields_1++;
1381 #endif /* GATHER_STATISTICS */
1382
1383 /* Constructors are first... */
1384 if (name == ctor_identifier)
1385 {
1386 fn = CLASSTYPE_CONSTRUCTORS (type);
1387 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1388 }
1389 /* and destructors are second. */
1390 if (name == dtor_identifier)
1391 {
1392 fn = CLASSTYPE_DESTRUCTORS (type);
1393 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1394 }
1395 if (IDENTIFIER_TYPENAME_P (name))
1396 return lookup_conversion_operator (type, TREE_TYPE (name));
1397
1398 /* Skip the conversion operators. */
1399 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1400 VEC_iterate (tree, method_vec, i, fn);
1401 ++i)
1402 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1403 break;
1404
1405 /* If the type is complete, use binary search. */
1406 if (COMPLETE_TYPE_P (type))
1407 {
1408 int lo;
1409 int hi;
1410
1411 lo = i;
1412 hi = VEC_length (tree, method_vec);
1413 while (lo < hi)
1414 {
1415 i = (lo + hi) / 2;
1416
1417 #ifdef GATHER_STATISTICS
1418 n_outer_fields_searched++;
1419 #endif /* GATHER_STATISTICS */
1420
1421 tmp = VEC_index (tree, method_vec, i);
1422 tmp = DECL_NAME (OVL_CURRENT (tmp));
1423 if (tmp > name)
1424 hi = i;
1425 else if (tmp < name)
1426 lo = i + 1;
1427 else
1428 return i;
1429 }
1430 }
1431 else
1432 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1433 {
1434 #ifdef GATHER_STATISTICS
1435 n_outer_fields_searched++;
1436 #endif /* GATHER_STATISTICS */
1437 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1438 return i;
1439 }
1440
1441 return -1;
1442 }
1443
1444 /* Like lookup_fnfields_1, except that the name is extracted from
1445 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1446
1447 int
1448 class_method_index_for_fn (tree class_type, tree function)
1449 {
1450 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1451 || DECL_FUNCTION_TEMPLATE_P (function));
1452
1453 return lookup_fnfields_1 (class_type,
1454 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1455 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1456 DECL_NAME (function));
1457 }
1458
1459
1460 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1461 the class or namespace used to qualify the name. CONTEXT_CLASS is
1462 the class corresponding to the object in which DECL will be used.
1463 Return a possibly modified version of DECL that takes into account
1464 the CONTEXT_CLASS.
1465
1466 In particular, consider an expression like `B::m' in the context of
1467 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1468 then the most derived class indicated by the BASELINK_BINFO will be
1469 `B', not `D'. This function makes that adjustment. */
1470
1471 tree
1472 adjust_result_of_qualified_name_lookup (tree decl,
1473 tree qualifying_scope,
1474 tree context_class)
1475 {
1476 if (context_class && CLASS_TYPE_P (qualifying_scope)
1477 && DERIVED_FROM_P (qualifying_scope, context_class)
1478 && BASELINK_P (decl))
1479 {
1480 tree base;
1481
1482 gcc_assert (CLASS_TYPE_P (context_class));
1483
1484 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1485 Because we do not yet know which function will be chosen by
1486 overload resolution, we cannot yet check either accessibility
1487 or ambiguity -- in either case, the choice of a static member
1488 function might make the usage valid. */
1489 base = lookup_base (context_class, qualifying_scope,
1490 ba_unique | ba_quiet, NULL);
1491 if (base)
1492 {
1493 BASELINK_ACCESS_BINFO (decl) = base;
1494 BASELINK_BINFO (decl)
1495 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1496 ba_unique | ba_quiet,
1497 NULL);
1498 }
1499 }
1500
1501 return decl;
1502 }
1503
1504 \f
1505 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1506 PRE_FN is called in preorder, while POST_FN is called in postorder.
1507 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1508 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1509 that value is immediately returned and the walk is terminated. One
1510 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1511 POST_FN are passed the binfo to examine and the caller's DATA
1512 value. All paths are walked, thus virtual and morally virtual
1513 binfos can be multiply walked. */
1514
1515 tree
1516 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1517 tree (*post_fn) (tree, void *), void *data)
1518 {
1519 tree rval;
1520 unsigned ix;
1521 tree base_binfo;
1522
1523 /* Call the pre-order walking function. */
1524 if (pre_fn)
1525 {
1526 rval = pre_fn (binfo, data);
1527 if (rval)
1528 {
1529 if (rval == dfs_skip_bases)
1530 goto skip_bases;
1531 return rval;
1532 }
1533 }
1534
1535 /* Find the next child binfo to walk. */
1536 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1537 {
1538 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1539 if (rval)
1540 return rval;
1541 }
1542
1543 skip_bases:
1544 /* Call the post-order walking function. */
1545 if (post_fn)
1546 {
1547 rval = post_fn (binfo, data);
1548 gcc_assert (rval != dfs_skip_bases);
1549 return rval;
1550 }
1551
1552 return NULL_TREE;
1553 }
1554
1555 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1556 that binfos are walked at most once. */
1557
1558 static tree
1559 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1560 tree (*post_fn) (tree, void *), void *data)
1561 {
1562 tree rval;
1563 unsigned ix;
1564 tree base_binfo;
1565
1566 /* Call the pre-order walking function. */
1567 if (pre_fn)
1568 {
1569 rval = pre_fn (binfo, data);
1570 if (rval)
1571 {
1572 if (rval == dfs_skip_bases)
1573 goto skip_bases;
1574
1575 return rval;
1576 }
1577 }
1578
1579 /* Find the next child binfo to walk. */
1580 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1581 {
1582 if (BINFO_VIRTUAL_P (base_binfo))
1583 {
1584 if (BINFO_MARKED (base_binfo))
1585 continue;
1586 BINFO_MARKED (base_binfo) = 1;
1587 }
1588
1589 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1590 if (rval)
1591 return rval;
1592 }
1593
1594 skip_bases:
1595 /* Call the post-order walking function. */
1596 if (post_fn)
1597 {
1598 rval = post_fn (binfo, data);
1599 gcc_assert (rval != dfs_skip_bases);
1600 return rval;
1601 }
1602
1603 return NULL_TREE;
1604 }
1605
1606 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1607 BINFO. */
1608
1609 static void
1610 dfs_unmark_r (tree binfo)
1611 {
1612 unsigned ix;
1613 tree base_binfo;
1614
1615 /* Process the basetypes. */
1616 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1617 {
1618 if (BINFO_VIRTUAL_P (base_binfo))
1619 {
1620 if (!BINFO_MARKED (base_binfo))
1621 continue;
1622 BINFO_MARKED (base_binfo) = 0;
1623 }
1624 /* Only walk, if it can contain more virtual bases. */
1625 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1626 dfs_unmark_r (base_binfo);
1627 }
1628 }
1629
1630 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1631 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1632 For diamond shaped hierarchies we must mark the virtual bases, to
1633 avoid multiple walks. */
1634
1635 tree
1636 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1637 tree (*post_fn) (tree, void *), void *data)
1638 {
1639 tree rval;
1640
1641 gcc_assert (pre_fn || post_fn);
1642
1643 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1644 /* We are not diamond shaped, and therefore cannot encounter the
1645 same binfo twice. */
1646 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1647 else
1648 {
1649 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1650 if (!BINFO_INHERITANCE_CHAIN (binfo))
1651 {
1652 /* We are at the top of the hierarchy, and can use the
1653 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1654 bases. */
1655 VEC (tree) *vbases;
1656 unsigned ix;
1657 tree base_binfo;
1658
1659 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1660 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1661 BINFO_MARKED (base_binfo) = 0;
1662 }
1663 else
1664 dfs_unmark_r (binfo);
1665 }
1666 return rval;
1667 }
1668
1669 /* Worker function for dfs_walk_once_accessible. Behaves like
1670 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1671 access given by the current context should be considered, (b) ONCE
1672 indicates whether bases should be marked during traversal. */
1673
1674 static tree
1675 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1676 tree (*pre_fn) (tree, void *),
1677 tree (*post_fn) (tree, void *), void *data)
1678 {
1679 tree rval = NULL_TREE;
1680 unsigned ix;
1681 tree base_binfo;
1682
1683 /* Call the pre-order walking function. */
1684 if (pre_fn)
1685 {
1686 rval = pre_fn (binfo, data);
1687 if (rval)
1688 {
1689 if (rval == dfs_skip_bases)
1690 goto skip_bases;
1691
1692 return rval;
1693 }
1694 }
1695
1696 /* Find the next child binfo to walk. */
1697 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1698 {
1699 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1700
1701 if (mark && BINFO_MARKED (base_binfo))
1702 continue;
1703
1704 /* If the base is inherited via private or protected
1705 inheritance, then we can't see it, unless we are a friend of
1706 the current binfo. */
1707 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1708 {
1709 tree scope;
1710 if (!friends_p)
1711 continue;
1712 scope = current_scope ();
1713 if (!scope
1714 || TREE_CODE (scope) == NAMESPACE_DECL
1715 || !is_friend (BINFO_TYPE (binfo), scope))
1716 continue;
1717 }
1718
1719 if (mark)
1720 BINFO_MARKED (base_binfo) = 1;
1721
1722 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1723 pre_fn, post_fn, data);
1724 if (rval)
1725 return rval;
1726 }
1727
1728 skip_bases:
1729 /* Call the post-order walking function. */
1730 if (post_fn)
1731 {
1732 rval = post_fn (binfo, data);
1733 gcc_assert (rval != dfs_skip_bases);
1734 return rval;
1735 }
1736
1737 return NULL_TREE;
1738 }
1739
1740 /* Like dfs_walk_once except that only accessible bases are walked.
1741 FRIENDS_P indicates whether friendship of the local context
1742 should be considered when determining accessibility. */
1743
1744 static tree
1745 dfs_walk_once_accessible (tree binfo, bool friends_p,
1746 tree (*pre_fn) (tree, void *),
1747 tree (*post_fn) (tree, void *), void *data)
1748 {
1749 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1750 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1751 pre_fn, post_fn, data);
1752
1753 if (diamond_shaped)
1754 {
1755 if (!BINFO_INHERITANCE_CHAIN (binfo))
1756 {
1757 /* We are at the top of the hierarchy, and can use the
1758 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1759 bases. */
1760 VEC (tree) *vbases;
1761 unsigned ix;
1762 tree base_binfo;
1763
1764 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1765 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1766 BINFO_MARKED (base_binfo) = 0;
1767 }
1768 else
1769 dfs_unmark_r (binfo);
1770 }
1771 return rval;
1772 }
1773
1774 /* Check that virtual overrider OVERRIDER is acceptable for base function
1775 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1776
1777 static int
1778 check_final_overrider (tree overrider, tree basefn)
1779 {
1780 tree over_type = TREE_TYPE (overrider);
1781 tree base_type = TREE_TYPE (basefn);
1782 tree over_return = TREE_TYPE (over_type);
1783 tree base_return = TREE_TYPE (base_type);
1784 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1785 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1786 int fail = 0;
1787
1788 if (DECL_INVALID_OVERRIDER_P (overrider))
1789 return 0;
1790
1791 if (same_type_p (base_return, over_return))
1792 /* OK */;
1793 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1794 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1795 && POINTER_TYPE_P (base_return)))
1796 {
1797 /* Potentially covariant. */
1798 unsigned base_quals, over_quals;
1799
1800 fail = !POINTER_TYPE_P (base_return);
1801 if (!fail)
1802 {
1803 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1804
1805 base_return = TREE_TYPE (base_return);
1806 over_return = TREE_TYPE (over_return);
1807 }
1808 base_quals = cp_type_quals (base_return);
1809 over_quals = cp_type_quals (over_return);
1810
1811 if ((base_quals & over_quals) != over_quals)
1812 fail = 1;
1813
1814 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1815 {
1816 tree binfo = lookup_base (over_return, base_return,
1817 ba_check | ba_quiet, NULL);
1818
1819 if (!binfo)
1820 fail = 1;
1821 }
1822 else if (!pedantic
1823 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1824 /* GNU extension, allow trivial pointer conversions such as
1825 converting to void *, or qualification conversion. */
1826 {
1827 /* can_convert will permit user defined conversion from a
1828 (reference to) class type. We must reject them. */
1829 over_return = non_reference (TREE_TYPE (over_type));
1830 if (CLASS_TYPE_P (over_return))
1831 fail = 2;
1832 else
1833 {
1834 cp_warning_at ("deprecated covariant return type for %q#D",
1835 overrider);
1836 cp_warning_at (" overriding %q#D", basefn);
1837 }
1838 }
1839 else
1840 fail = 2;
1841 }
1842 else
1843 fail = 2;
1844 if (!fail)
1845 /* OK */;
1846 else
1847 {
1848 if (fail == 1)
1849 {
1850 cp_error_at ("invalid covariant return type for %q#D", overrider);
1851 cp_error_at (" overriding %q#D", basefn);
1852 }
1853 else
1854 {
1855 cp_error_at ("conflicting return type specified for %q#D",
1856 overrider);
1857 cp_error_at (" overriding %q#D", basefn);
1858 }
1859 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1860 return 0;
1861 }
1862
1863 /* Check throw specifier is at least as strict. */
1864 if (!comp_except_specs (base_throw, over_throw, 0))
1865 {
1866 cp_error_at ("looser throw specifier for %q#F", overrider);
1867 cp_error_at (" overriding %q#F", basefn);
1868 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1869 return 0;
1870 }
1871
1872 return 1;
1873 }
1874
1875 /* Given a class TYPE, and a function decl FNDECL, look for
1876 virtual functions in TYPE's hierarchy which FNDECL overrides.
1877 We do not look in TYPE itself, only its bases.
1878
1879 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1880 find that it overrides anything.
1881
1882 We check that every function which is overridden, is correctly
1883 overridden. */
1884
1885 int
1886 look_for_overrides (tree type, tree fndecl)
1887 {
1888 tree binfo = TYPE_BINFO (type);
1889 tree base_binfo;
1890 int ix;
1891 int found = 0;
1892
1893 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1894 {
1895 tree basetype = BINFO_TYPE (base_binfo);
1896
1897 if (TYPE_POLYMORPHIC_P (basetype))
1898 found += look_for_overrides_r (basetype, fndecl);
1899 }
1900 return found;
1901 }
1902
1903 /* Look in TYPE for virtual functions with the same signature as
1904 FNDECL. */
1905
1906 tree
1907 look_for_overrides_here (tree type, tree fndecl)
1908 {
1909 int ix;
1910
1911 /* If there are no methods in TYPE (meaning that only implicitly
1912 declared methods will ever be provided for TYPE), then there are
1913 no virtual functions. */
1914 if (!CLASSTYPE_METHOD_VEC (type))
1915 return NULL_TREE;
1916
1917 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1918 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1919 else
1920 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1921 if (ix >= 0)
1922 {
1923 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1924
1925 for (; fns; fns = OVL_NEXT (fns))
1926 {
1927 tree fn = OVL_CURRENT (fns);
1928
1929 if (!DECL_VIRTUAL_P (fn))
1930 /* Not a virtual. */;
1931 else if (DECL_CONTEXT (fn) != type)
1932 /* Introduced with a using declaration. */;
1933 else if (DECL_STATIC_FUNCTION_P (fndecl))
1934 {
1935 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1936 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1937 if (compparms (TREE_CHAIN (btypes), dtypes))
1938 return fn;
1939 }
1940 else if (same_signature_p (fndecl, fn))
1941 return fn;
1942 }
1943 }
1944 return NULL_TREE;
1945 }
1946
1947 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1948 TYPE itself and its bases. */
1949
1950 static int
1951 look_for_overrides_r (tree type, tree fndecl)
1952 {
1953 tree fn = look_for_overrides_here (type, fndecl);
1954 if (fn)
1955 {
1956 if (DECL_STATIC_FUNCTION_P (fndecl))
1957 {
1958 /* A static member function cannot match an inherited
1959 virtual member function. */
1960 cp_error_at ("%q#D cannot be declared", fndecl);
1961 cp_error_at (" since %q#D declared in base class", fn);
1962 }
1963 else
1964 {
1965 /* It's definitely virtual, even if not explicitly set. */
1966 DECL_VIRTUAL_P (fndecl) = 1;
1967 check_final_overrider (fndecl, fn);
1968 }
1969 return 1;
1970 }
1971
1972 /* We failed to find one declared in this class. Look in its bases. */
1973 return look_for_overrides (type, fndecl);
1974 }
1975
1976 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1977
1978 static tree
1979 dfs_get_pure_virtuals (tree binfo, void *data)
1980 {
1981 tree type = (tree) data;
1982
1983 /* We're not interested in primary base classes; the derived class
1984 of which they are a primary base will contain the information we
1985 need. */
1986 if (!BINFO_PRIMARY_P (binfo))
1987 {
1988 tree virtuals;
1989
1990 for (virtuals = BINFO_VIRTUALS (binfo);
1991 virtuals;
1992 virtuals = TREE_CHAIN (virtuals))
1993 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1994 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (type),
1995 BV_FN (virtuals));
1996 }
1997
1998 return NULL_TREE;
1999 }
2000
2001 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2002
2003 void
2004 get_pure_virtuals (tree type)
2005 {
2006 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2007 is going to be overridden. */
2008 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2009 /* Now, run through all the bases which are not primary bases, and
2010 collect the pure virtual functions. We look at the vtable in
2011 each class to determine what pure virtual functions are present.
2012 (A primary base is not interesting because the derived class of
2013 which it is a primary base will contain vtable entries for the
2014 pure virtuals in the base class. */
2015 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2016 }
2017 \f
2018 /* Debug info for C++ classes can get very large; try to avoid
2019 emitting it everywhere.
2020
2021 Note that this optimization wins even when the target supports
2022 BINCL (if only slightly), and reduces the amount of work for the
2023 linker. */
2024
2025 void
2026 maybe_suppress_debug_info (tree t)
2027 {
2028 if (write_symbols == NO_DEBUG)
2029 return;
2030
2031 /* We might have set this earlier in cp_finish_decl. */
2032 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2033
2034 /* If we already know how we're handling this class, handle debug info
2035 the same way. */
2036 if (CLASSTYPE_INTERFACE_KNOWN (t))
2037 {
2038 if (CLASSTYPE_INTERFACE_ONLY (t))
2039 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2040 /* else don't set it. */
2041 }
2042 /* If the class has a vtable, write out the debug info along with
2043 the vtable. */
2044 else if (TYPE_CONTAINS_VPTR_P (t))
2045 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2046
2047 /* Otherwise, just emit the debug info normally. */
2048 }
2049
2050 /* Note that we want debugging information for a base class of a class
2051 whose vtable is being emitted. Normally, this would happen because
2052 calling the constructor for a derived class implies calling the
2053 constructors for all bases, which involve initializing the
2054 appropriate vptr with the vtable for the base class; but in the
2055 presence of optimization, this initialization may be optimized
2056 away, so we tell finish_vtable_vardecl that we want the debugging
2057 information anyway. */
2058
2059 static tree
2060 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2061 {
2062 tree t = BINFO_TYPE (binfo);
2063
2064 if (CLASSTYPE_DEBUG_REQUESTED (t))
2065 return dfs_skip_bases;
2066
2067 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2068
2069 return NULL_TREE;
2070 }
2071
2072 /* Write out the debugging information for TYPE, whose vtable is being
2073 emitted. Also walk through our bases and note that we want to
2074 write out information for them. This avoids the problem of not
2075 writing any debug info for intermediate basetypes whose
2076 constructors, and thus the references to their vtables, and thus
2077 the vtables themselves, were optimized away. */
2078
2079 void
2080 note_debug_info_needed (tree type)
2081 {
2082 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2083 {
2084 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2085 rest_of_type_compilation (type, toplevel_bindings_p ());
2086 }
2087
2088 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2089 }
2090 \f
2091 void
2092 print_search_statistics (void)
2093 {
2094 #ifdef GATHER_STATISTICS
2095 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2096 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2097 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2098 n_outer_fields_searched, n_calls_lookup_fnfields);
2099 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2100 #else /* GATHER_STATISTICS */
2101 fprintf (stderr, "no search statistics\n");
2102 #endif /* GATHER_STATISTICS */
2103 }
2104
2105 void
2106 reinit_search_statistics (void)
2107 {
2108 #ifdef GATHER_STATISTICS
2109 n_fields_searched = 0;
2110 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2111 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2112 n_calls_get_base_type = 0;
2113 n_outer_fields_searched = 0;
2114 n_contexts_saved = 0;
2115 #endif /* GATHER_STATISTICS */
2116 }
2117
2118 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2119 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2120 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2121 bases have been encountered already in the tree walk. PARENT_CONVS
2122 is the list of lists of conversion functions that could hide CONV
2123 and OTHER_CONVS is the list of lists of conversion functions that
2124 could hide or be hidden by CONV, should virtualness be involved in
2125 the hierarchy. Merely checking the conversion op's name is not
2126 enough because two conversion operators to the same type can have
2127 different names. Return nonzero if we are visible. */
2128
2129 static int
2130 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2131 tree to_type, tree parent_convs, tree other_convs)
2132 {
2133 tree level, probe;
2134
2135 /* See if we are hidden by a parent conversion. */
2136 for (level = parent_convs; level; level = TREE_CHAIN (level))
2137 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2138 if (same_type_p (to_type, TREE_TYPE (probe)))
2139 return 0;
2140
2141 if (virtual_depth || virtualness)
2142 {
2143 /* In a virtual hierarchy, we could be hidden, or could hide a
2144 conversion function on the other_convs list. */
2145 for (level = other_convs; level; level = TREE_CHAIN (level))
2146 {
2147 int we_hide_them;
2148 int they_hide_us;
2149 tree *prev, other;
2150
2151 if (!(virtual_depth || TREE_STATIC (level)))
2152 /* Neither is morally virtual, so cannot hide each other. */
2153 continue;
2154
2155 if (!TREE_VALUE (level))
2156 /* They evaporated away already. */
2157 continue;
2158
2159 they_hide_us = (virtual_depth
2160 && original_binfo (binfo, TREE_PURPOSE (level)));
2161 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2162 && original_binfo (TREE_PURPOSE (level), binfo));
2163
2164 if (!(we_hide_them || they_hide_us))
2165 /* Neither is within the other, so no hiding can occur. */
2166 continue;
2167
2168 for (prev = &TREE_VALUE (level), other = *prev; other;)
2169 {
2170 if (same_type_p (to_type, TREE_TYPE (other)))
2171 {
2172 if (they_hide_us)
2173 /* We are hidden. */
2174 return 0;
2175
2176 if (we_hide_them)
2177 {
2178 /* We hide the other one. */
2179 other = TREE_CHAIN (other);
2180 *prev = other;
2181 continue;
2182 }
2183 }
2184 prev = &TREE_CHAIN (other);
2185 other = *prev;
2186 }
2187 }
2188 }
2189 return 1;
2190 }
2191
2192 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2193 of conversion functions, the first slot will be for the current
2194 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2195 of conversion functions from children of the current binfo,
2196 concatenated with conversions from elsewhere in the hierarchy --
2197 that list begins with OTHER_CONVS. Return a single list of lists
2198 containing only conversions from the current binfo and its
2199 children. */
2200
2201 static tree
2202 split_conversions (tree my_convs, tree parent_convs,
2203 tree child_convs, tree other_convs)
2204 {
2205 tree t;
2206 tree prev;
2207
2208 /* Remove the original other_convs portion from child_convs. */
2209 for (prev = NULL, t = child_convs;
2210 t != other_convs; prev = t, t = TREE_CHAIN (t))
2211 continue;
2212
2213 if (prev)
2214 TREE_CHAIN (prev) = NULL_TREE;
2215 else
2216 child_convs = NULL_TREE;
2217
2218 /* Attach the child convs to any we had at this level. */
2219 if (my_convs)
2220 {
2221 my_convs = parent_convs;
2222 TREE_CHAIN (my_convs) = child_convs;
2223 }
2224 else
2225 my_convs = child_convs;
2226
2227 return my_convs;
2228 }
2229
2230 /* Worker for lookup_conversions. Lookup conversion functions in
2231 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2232 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2233 encountered virtual bases already in the tree walk. PARENT_CONVS &
2234 PARENT_TPL_CONVS are lists of list of conversions within parent
2235 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2236 elsewhere in the tree. Return the conversions found within this
2237 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2238 encountered virtualness. We keep template and non-template
2239 conversions separate, to avoid unnecessary type comparisons.
2240
2241 The located conversion functions are held in lists of lists. The
2242 TREE_VALUE of the outer list is the list of conversion functions
2243 found in a particular binfo. The TREE_PURPOSE of both the outer
2244 and inner lists is the binfo at which those conversions were
2245 found. TREE_STATIC is set for those lists within of morally
2246 virtual binfos. The TREE_VALUE of the inner list is the conversion
2247 function or overload itself. The TREE_TYPE of each inner list node
2248 is the converted-to type. */
2249
2250 static int
2251 lookup_conversions_r (tree binfo,
2252 int virtual_depth, int virtualness,
2253 tree parent_convs, tree parent_tpl_convs,
2254 tree other_convs, tree other_tpl_convs,
2255 tree *convs, tree *tpl_convs)
2256 {
2257 int my_virtualness = 0;
2258 tree my_convs = NULL_TREE;
2259 tree my_tpl_convs = NULL_TREE;
2260 tree child_convs = NULL_TREE;
2261 tree child_tpl_convs = NULL_TREE;
2262 unsigned i;
2263 tree base_binfo;
2264 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2265 tree conv;
2266
2267 /* If we have no conversion operators, then don't look. */
2268 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2269 {
2270 *convs = *tpl_convs = NULL_TREE;
2271
2272 return 0;
2273 }
2274
2275 if (BINFO_VIRTUAL_P (binfo))
2276 virtual_depth++;
2277
2278 /* First, locate the unhidden ones at this level. */
2279 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2280 VEC_iterate (tree, method_vec, i, conv);
2281 ++i)
2282 {
2283 tree cur = OVL_CURRENT (conv);
2284
2285 if (!DECL_CONV_FN_P (cur))
2286 break;
2287
2288 if (TREE_CODE (cur) == TEMPLATE_DECL)
2289 {
2290 /* Only template conversions can be overloaded, and we must
2291 flatten them out and check each one individually. */
2292 tree tpls;
2293
2294 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2295 {
2296 tree tpl = OVL_CURRENT (tpls);
2297 tree type = DECL_CONV_FN_TYPE (tpl);
2298
2299 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2300 type, parent_tpl_convs, other_tpl_convs))
2301 {
2302 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2303 TREE_TYPE (my_tpl_convs) = type;
2304 if (virtual_depth)
2305 {
2306 TREE_STATIC (my_tpl_convs) = 1;
2307 my_virtualness = 1;
2308 }
2309 }
2310 }
2311 }
2312 else
2313 {
2314 tree name = DECL_NAME (cur);
2315
2316 if (!IDENTIFIER_MARKED (name))
2317 {
2318 tree type = DECL_CONV_FN_TYPE (cur);
2319
2320 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2321 type, parent_convs, other_convs))
2322 {
2323 my_convs = tree_cons (binfo, conv, my_convs);
2324 TREE_TYPE (my_convs) = type;
2325 if (virtual_depth)
2326 {
2327 TREE_STATIC (my_convs) = 1;
2328 my_virtualness = 1;
2329 }
2330 IDENTIFIER_MARKED (name) = 1;
2331 }
2332 }
2333 }
2334 }
2335
2336 if (my_convs)
2337 {
2338 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2339 if (virtual_depth)
2340 TREE_STATIC (parent_convs) = 1;
2341 }
2342
2343 if (my_tpl_convs)
2344 {
2345 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2346 if (virtual_depth)
2347 TREE_STATIC (parent_convs) = 1;
2348 }
2349
2350 child_convs = other_convs;
2351 child_tpl_convs = other_tpl_convs;
2352
2353 /* Now iterate over each base, looking for more conversions. */
2354 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2355 {
2356 tree base_convs, base_tpl_convs;
2357 unsigned base_virtualness;
2358
2359 base_virtualness = lookup_conversions_r (base_binfo,
2360 virtual_depth, virtualness,
2361 parent_convs, parent_tpl_convs,
2362 child_convs, child_tpl_convs,
2363 &base_convs, &base_tpl_convs);
2364 if (base_virtualness)
2365 my_virtualness = virtualness = 1;
2366 child_convs = chainon (base_convs, child_convs);
2367 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2368 }
2369
2370 /* Unmark the conversions found at this level */
2371 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2372 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2373
2374 *convs = split_conversions (my_convs, parent_convs,
2375 child_convs, other_convs);
2376 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2377 child_tpl_convs, other_tpl_convs);
2378
2379 return my_virtualness;
2380 }
2381
2382 /* Return a TREE_LIST containing all the non-hidden user-defined
2383 conversion functions for TYPE (and its base-classes). The
2384 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2385 function. The TREE_PURPOSE is the BINFO from which the conversion
2386 functions in this node were selected. This function is effectively
2387 performing a set of member lookups as lookup_fnfield does, but
2388 using the type being converted to as the unique key, rather than the
2389 field name. */
2390
2391 tree
2392 lookup_conversions (tree type)
2393 {
2394 tree convs, tpl_convs;
2395 tree list = NULL_TREE;
2396
2397 complete_type (type);
2398 if (!TYPE_BINFO (type))
2399 return NULL_TREE;
2400
2401 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2402 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2403 &convs, &tpl_convs);
2404
2405 /* Flatten the list-of-lists */
2406 for (; convs; convs = TREE_CHAIN (convs))
2407 {
2408 tree probe, next;
2409
2410 for (probe = TREE_VALUE (convs); probe; probe = next)
2411 {
2412 next = TREE_CHAIN (probe);
2413
2414 TREE_CHAIN (probe) = list;
2415 list = probe;
2416 }
2417 }
2418
2419 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2420 {
2421 tree probe, next;
2422
2423 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2424 {
2425 next = TREE_CHAIN (probe);
2426
2427 TREE_CHAIN (probe) = list;
2428 list = probe;
2429 }
2430 }
2431
2432 return list;
2433 }
2434
2435 /* Returns the binfo of the first direct or indirect virtual base derived
2436 from BINFO, or NULL if binfo is not via virtual. */
2437
2438 tree
2439 binfo_from_vbase (tree binfo)
2440 {
2441 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2442 {
2443 if (BINFO_VIRTUAL_P (binfo))
2444 return binfo;
2445 }
2446 return NULL_TREE;
2447 }
2448
2449 /* Returns the binfo of the first direct or indirect virtual base derived
2450 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2451 via virtual. */
2452
2453 tree
2454 binfo_via_virtual (tree binfo, tree limit)
2455 {
2456 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2457 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2458 return NULL_TREE;
2459
2460 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2461 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2462 {
2463 if (BINFO_VIRTUAL_P (binfo))
2464 return binfo;
2465 }
2466 return NULL_TREE;
2467 }
2468
2469 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2470 Find the equivalent binfo within whatever graph HERE is located.
2471 This is the inverse of original_binfo. */
2472
2473 tree
2474 copied_binfo (tree binfo, tree here)
2475 {
2476 tree result = NULL_TREE;
2477
2478 if (BINFO_VIRTUAL_P (binfo))
2479 {
2480 tree t;
2481
2482 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2483 t = BINFO_INHERITANCE_CHAIN (t))
2484 continue;
2485
2486 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2487 }
2488 else if (BINFO_INHERITANCE_CHAIN (binfo))
2489 {
2490 tree cbinfo;
2491 tree base_binfo;
2492 int ix;
2493
2494 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2495 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2496 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2497 {
2498 result = base_binfo;
2499 break;
2500 }
2501 }
2502 else
2503 {
2504 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2505 result = here;
2506 }
2507
2508 gcc_assert (result);
2509 return result;
2510 }
2511
2512 tree
2513 binfo_for_vbase (tree base, tree t)
2514 {
2515 unsigned ix;
2516 tree binfo;
2517 VEC (tree) *vbases;
2518
2519 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2520 VEC_iterate (tree, vbases, ix, binfo); ix++)
2521 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2522 return binfo;
2523 return NULL;
2524 }
2525
2526 /* BINFO is some base binfo of HERE, within some other
2527 hierarchy. Return the equivalent binfo, but in the hierarchy
2528 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2529 is not a base binfo of HERE, returns NULL_TREE. */
2530
2531 tree
2532 original_binfo (tree binfo, tree here)
2533 {
2534 tree result = NULL;
2535
2536 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2537 result = here;
2538 else if (BINFO_VIRTUAL_P (binfo))
2539 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2540 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2541 : NULL_TREE);
2542 else if (BINFO_INHERITANCE_CHAIN (binfo))
2543 {
2544 tree base_binfos;
2545
2546 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2547 if (base_binfos)
2548 {
2549 int ix;
2550 tree base_binfo;
2551
2552 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2553 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2554 BINFO_TYPE (binfo)))
2555 {
2556 result = base_binfo;
2557 break;
2558 }
2559 }
2560 }
2561
2562 return result;
2563 }
2564