cp-tree.h (struct lang_decl): Overhaul.
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6 Contributed by Michael Tiemann (tiemann@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static int is_subobject_of_p (tree, tree);
40 static tree dfs_lookup_base (tree, void *);
41 static tree dfs_dcast_hint_pre (tree, void *);
42 static tree dfs_dcast_hint_post (tree, void *);
43 static tree dfs_debug_mark (tree, void *);
44 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
45 tree (*post_fn) (tree, void *), void *data);
46 static void dfs_unmark_r (tree);
47 static int check_hidden_convs (tree, int, int, tree, tree, tree);
48 static tree split_conversions (tree, tree, tree, tree);
49 static int lookup_conversions_r (tree, int, int,
50 tree, tree, tree, tree, tree *, tree *);
51 static int look_for_overrides_r (tree, tree);
52 static tree lookup_field_r (tree, void *);
53 static tree dfs_accessible_post (tree, void *);
54 static tree dfs_walk_once_accessible_r (tree, bool, bool,
55 tree (*pre_fn) (tree, void *),
56 tree (*post_fn) (tree, void *),
57 void *data);
58 static tree dfs_walk_once_accessible (tree, bool,
59 tree (*pre_fn) (tree, void *),
60 tree (*post_fn) (tree, void *),
61 void *data);
62 static tree dfs_access_in_type (tree, void *);
63 static access_kind access_in_type (tree, tree);
64 static int protected_accessible_p (tree, tree, tree);
65 static int friend_accessible_p (tree, tree, tree);
66 static int template_self_reference_p (tree, tree);
67 static tree dfs_get_pure_virtuals (tree, void *);
68
69 \f
70 /* Variables for gathering statistics. */
71 #ifdef GATHER_STATISTICS
72 static int n_fields_searched;
73 static int n_calls_lookup_field, n_calls_lookup_field_1;
74 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
75 static int n_calls_get_base_type;
76 static int n_outer_fields_searched;
77 static int n_contexts_saved;
78 #endif /* GATHER_STATISTICS */
79
80 \f
81 /* Data for lookup_base and its workers. */
82
83 struct lookup_base_data_s
84 {
85 tree t; /* type being searched. */
86 tree base; /* The base type we're looking for. */
87 tree binfo; /* Found binfo. */
88 bool via_virtual; /* Found via a virtual path. */
89 bool ambiguous; /* Found multiply ambiguous */
90 bool repeated_base; /* Whether there are repeated bases in the
91 hierarchy. */
92 bool want_any; /* Whether we want any matching binfo. */
93 };
94
95 /* Worker function for lookup_base. See if we've found the desired
96 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
97
98 static tree
99 dfs_lookup_base (tree binfo, void *data_)
100 {
101 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
102
103 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
104 {
105 if (!data->binfo)
106 {
107 data->binfo = binfo;
108 data->via_virtual
109 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
110
111 if (!data->repeated_base)
112 /* If there are no repeated bases, we can stop now. */
113 return binfo;
114
115 if (data->want_any && !data->via_virtual)
116 /* If this is a non-virtual base, then we can't do
117 better. */
118 return binfo;
119
120 return dfs_skip_bases;
121 }
122 else
123 {
124 gcc_assert (binfo != data->binfo);
125
126 /* We've found more than one matching binfo. */
127 if (!data->want_any)
128 {
129 /* This is immediately ambiguous. */
130 data->binfo = NULL_TREE;
131 data->ambiguous = true;
132 return error_mark_node;
133 }
134
135 /* Prefer one via a non-virtual path. */
136 if (!binfo_via_virtual (binfo, data->t))
137 {
138 data->binfo = binfo;
139 data->via_virtual = false;
140 return binfo;
141 }
142
143 /* There must be repeated bases, otherwise we'd have stopped
144 on the first base we found. */
145 return dfs_skip_bases;
146 }
147 }
148
149 return NULL_TREE;
150 }
151
152 /* Returns true if type BASE is accessible in T. (BASE is known to be
153 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
154 true, consider any special access of the current scope, or access
155 bestowed by friendship. */
156
157 bool
158 accessible_base_p (tree t, tree base, bool consider_local_p)
159 {
160 tree decl;
161
162 /* [class.access.base]
163
164 A base class is said to be accessible if an invented public
165 member of the base class is accessible.
166
167 If BASE is a non-proper base, this condition is trivially
168 true. */
169 if (same_type_p (t, base))
170 return true;
171 /* Rather than inventing a public member, we use the implicit
172 public typedef created in the scope of every class. */
173 decl = TYPE_FIELDS (base);
174 while (!DECL_SELF_REFERENCE_P (decl))
175 decl = TREE_CHAIN (decl);
176 while (ANON_AGGR_TYPE_P (t))
177 t = TYPE_CONTEXT (t);
178 return accessible_p (t, decl, consider_local_p);
179 }
180
181 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
182 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
183 non-NULL, fill with information about what kind of base we
184 discovered.
185
186 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
187 not set in ACCESS, then an error is issued and error_mark_node is
188 returned. If the ba_quiet bit is set, then no error is issued and
189 NULL_TREE is returned. */
190
191 tree
192 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
193 {
194 tree binfo;
195 tree t_binfo;
196 base_kind bk;
197
198 if (t == error_mark_node || base == error_mark_node)
199 {
200 if (kind_ptr)
201 *kind_ptr = bk_not_base;
202 return error_mark_node;
203 }
204 gcc_assert (TYPE_P (base));
205
206 if (!TYPE_P (t))
207 {
208 t_binfo = t;
209 t = BINFO_TYPE (t);
210 }
211 else
212 {
213 t = complete_type (TYPE_MAIN_VARIANT (t));
214 t_binfo = TYPE_BINFO (t);
215 }
216
217 base = complete_type (TYPE_MAIN_VARIANT (base));
218
219 if (t_binfo)
220 {
221 struct lookup_base_data_s data;
222
223 data.t = t;
224 data.base = base;
225 data.binfo = NULL_TREE;
226 data.ambiguous = data.via_virtual = false;
227 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
228 data.want_any = access == ba_any;
229
230 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
231 binfo = data.binfo;
232
233 if (!binfo)
234 bk = data.ambiguous ? bk_ambig : bk_not_base;
235 else if (binfo == t_binfo)
236 bk = bk_same_type;
237 else if (data.via_virtual)
238 bk = bk_via_virtual;
239 else
240 bk = bk_proper_base;
241 }
242 else
243 {
244 binfo = NULL_TREE;
245 bk = bk_not_base;
246 }
247
248 /* Check that the base is unambiguous and accessible. */
249 if (access != ba_any)
250 switch (bk)
251 {
252 case bk_not_base:
253 break;
254
255 case bk_ambig:
256 if (!(access & ba_quiet))
257 {
258 error ("%qT is an ambiguous base of %qT", base, t);
259 binfo = error_mark_node;
260 }
261 break;
262
263 default:
264 if ((access & ba_check_bit)
265 /* If BASE is incomplete, then BASE and TYPE are probably
266 the same, in which case BASE is accessible. If they
267 are not the same, then TYPE is invalid. In that case,
268 there's no need to issue another error here, and
269 there's no implicit typedef to use in the code that
270 follows, so we skip the check. */
271 && COMPLETE_TYPE_P (base)
272 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
273 {
274 if (!(access & ba_quiet))
275 {
276 error ("%qT is an inaccessible base of %qT", base, t);
277 binfo = error_mark_node;
278 }
279 else
280 binfo = NULL_TREE;
281 bk = bk_inaccessible;
282 }
283 break;
284 }
285
286 if (kind_ptr)
287 *kind_ptr = bk;
288
289 return binfo;
290 }
291
292 /* Data for dcast_base_hint walker. */
293
294 struct dcast_data_s
295 {
296 tree subtype; /* The base type we're looking for. */
297 int virt_depth; /* Number of virtual bases encountered from most
298 derived. */
299 tree offset; /* Best hint offset discovered so far. */
300 bool repeated_base; /* Whether there are repeated bases in the
301 hierarchy. */
302 };
303
304 /* Worker for dcast_base_hint. Search for the base type being cast
305 from. */
306
307 static tree
308 dfs_dcast_hint_pre (tree binfo, void *data_)
309 {
310 struct dcast_data_s *data = (struct dcast_data_s *) data_;
311
312 if (BINFO_VIRTUAL_P (binfo))
313 data->virt_depth++;
314
315 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
316 {
317 if (data->virt_depth)
318 {
319 data->offset = ssize_int (-1);
320 return data->offset;
321 }
322 if (data->offset)
323 data->offset = ssize_int (-3);
324 else
325 data->offset = BINFO_OFFSET (binfo);
326
327 return data->repeated_base ? dfs_skip_bases : data->offset;
328 }
329
330 return NULL_TREE;
331 }
332
333 /* Worker for dcast_base_hint. Track the virtual depth. */
334
335 static tree
336 dfs_dcast_hint_post (tree binfo, void *data_)
337 {
338 struct dcast_data_s *data = (struct dcast_data_s *) data_;
339
340 if (BINFO_VIRTUAL_P (binfo))
341 data->virt_depth--;
342
343 return NULL_TREE;
344 }
345
346 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
347 started from is related to the required TARGET type, in order to optimize
348 the inheritance graph search. This information is independent of the
349 current context, and ignores private paths, hence get_base_distance is
350 inappropriate. Return a TREE specifying the base offset, BOFF.
351 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
352 and there are no public virtual SUBTYPE bases.
353 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
354 BOFF == -2, SUBTYPE is not a public base.
355 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
356
357 tree
358 dcast_base_hint (tree subtype, tree target)
359 {
360 struct dcast_data_s data;
361
362 data.subtype = subtype;
363 data.virt_depth = 0;
364 data.offset = NULL_TREE;
365 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
366
367 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
368 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
369 return data.offset ? data.offset : ssize_int (-2);
370 }
371
372 /* Search for a member with name NAME in a multiple inheritance
373 lattice specified by TYPE. If it does not exist, return NULL_TREE.
374 If the member is ambiguously referenced, return `error_mark_node'.
375 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
376 true, type declarations are preferred. */
377
378 /* Do a 1-level search for NAME as a member of TYPE. The caller must
379 figure out whether it can access this field. (Since it is only one
380 level, this is reasonable.) */
381
382 tree
383 lookup_field_1 (tree type, tree name, bool want_type)
384 {
385 tree field;
386
387 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
388 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
389 || TREE_CODE (type) == TYPENAME_TYPE)
390 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
391 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
392 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
393 the code often worked even when we treated the index as a list
394 of fields!)
395 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
396 return NULL_TREE;
397
398 if (CLASSTYPE_SORTED_FIELDS (type))
399 {
400 tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
401 int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
402 int i;
403
404 while (lo < hi)
405 {
406 i = (lo + hi) / 2;
407
408 #ifdef GATHER_STATISTICS
409 n_fields_searched++;
410 #endif /* GATHER_STATISTICS */
411
412 if (DECL_NAME (fields[i]) > name)
413 hi = i;
414 else if (DECL_NAME (fields[i]) < name)
415 lo = i + 1;
416 else
417 {
418 field = NULL_TREE;
419
420 /* We might have a nested class and a field with the
421 same name; we sorted them appropriately via
422 field_decl_cmp, so just look for the first or last
423 field with this name. */
424 if (want_type)
425 {
426 do
427 field = fields[i--];
428 while (i >= lo && DECL_NAME (fields[i]) == name);
429 if (TREE_CODE (field) != TYPE_DECL
430 && !DECL_CLASS_TEMPLATE_P (field))
431 field = NULL_TREE;
432 }
433 else
434 {
435 do
436 field = fields[i++];
437 while (i < hi && DECL_NAME (fields[i]) == name);
438 }
439 return field;
440 }
441 }
442 return NULL_TREE;
443 }
444
445 field = TYPE_FIELDS (type);
446
447 #ifdef GATHER_STATISTICS
448 n_calls_lookup_field_1++;
449 #endif /* GATHER_STATISTICS */
450 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
451 {
452 #ifdef GATHER_STATISTICS
453 n_fields_searched++;
454 #endif /* GATHER_STATISTICS */
455 gcc_assert (DECL_P (field));
456 if (DECL_NAME (field) == NULL_TREE
457 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
458 {
459 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
460 if (temp)
461 return temp;
462 }
463 if (TREE_CODE (field) == USING_DECL)
464 {
465 /* We generally treat class-scope using-declarations as
466 ARM-style access specifications, because support for the
467 ISO semantics has not been implemented. So, in general,
468 there's no reason to return a USING_DECL, and the rest of
469 the compiler cannot handle that. Once the class is
470 defined, USING_DECLs are purged from TYPE_FIELDS; see
471 handle_using_decl. However, we make special efforts to
472 make using-declarations in class templates and class
473 template partial specializations work correctly. */
474 if (!DECL_DEPENDENT_P (field))
475 continue;
476 }
477
478 if (DECL_NAME (field) == name
479 && (!want_type
480 || TREE_CODE (field) == TYPE_DECL
481 || DECL_CLASS_TEMPLATE_P (field)))
482 return field;
483 }
484 /* Not found. */
485 if (name == vptr_identifier)
486 {
487 /* Give the user what s/he thinks s/he wants. */
488 if (TYPE_POLYMORPHIC_P (type))
489 return TYPE_VFIELD (type);
490 }
491 return NULL_TREE;
492 }
493
494 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
495 NAMESPACE_DECL corresponding to the innermost non-block scope. */
496
497 tree
498 current_scope (void)
499 {
500 /* There are a number of cases we need to be aware of here:
501 current_class_type current_function_decl
502 global NULL NULL
503 fn-local NULL SET
504 class-local SET NULL
505 class->fn SET SET
506 fn->class SET SET
507
508 Those last two make life interesting. If we're in a function which is
509 itself inside a class, we need decls to go into the fn's decls (our
510 second case below). But if we're in a class and the class itself is
511 inside a function, we need decls to go into the decls for the class. To
512 achieve this last goal, we must see if, when both current_class_ptr and
513 current_function_decl are set, the class was declared inside that
514 function. If so, we know to put the decls into the class's scope. */
515 if (current_function_decl && current_class_type
516 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
517 && same_type_p (DECL_CONTEXT (current_function_decl),
518 current_class_type))
519 || (DECL_FRIEND_CONTEXT (current_function_decl)
520 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
521 current_class_type))))
522 return current_function_decl;
523 if (current_class_type)
524 return current_class_type;
525 if (current_function_decl)
526 return current_function_decl;
527 return current_namespace;
528 }
529
530 /* Returns nonzero if we are currently in a function scope. Note
531 that this function returns zero if we are within a local class, but
532 not within a member function body of the local class. */
533
534 int
535 at_function_scope_p (void)
536 {
537 tree cs = current_scope ();
538 return cs && TREE_CODE (cs) == FUNCTION_DECL;
539 }
540
541 /* Returns true if the innermost active scope is a class scope. */
542
543 bool
544 at_class_scope_p (void)
545 {
546 tree cs = current_scope ();
547 return cs && TYPE_P (cs);
548 }
549
550 /* Returns true if the innermost active scope is a namespace scope. */
551
552 bool
553 at_namespace_scope_p (void)
554 {
555 tree cs = current_scope ();
556 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
557 }
558
559 /* Return the scope of DECL, as appropriate when doing name-lookup. */
560
561 tree
562 context_for_name_lookup (tree decl)
563 {
564 /* [class.union]
565
566 For the purposes of name lookup, after the anonymous union
567 definition, the members of the anonymous union are considered to
568 have been defined in the scope in which the anonymous union is
569 declared. */
570 tree context = DECL_CONTEXT (decl);
571
572 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
573 context = TYPE_CONTEXT (context);
574 if (!context)
575 context = global_namespace;
576
577 return context;
578 }
579
580 /* The accessibility routines use BINFO_ACCESS for scratch space
581 during the computation of the accessibility of some declaration. */
582
583 #define BINFO_ACCESS(NODE) \
584 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
585
586 /* Set the access associated with NODE to ACCESS. */
587
588 #define SET_BINFO_ACCESS(NODE, ACCESS) \
589 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
590 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
591
592 /* Called from access_in_type via dfs_walk. Calculate the access to
593 DATA (which is really a DECL) in BINFO. */
594
595 static tree
596 dfs_access_in_type (tree binfo, void *data)
597 {
598 tree decl = (tree) data;
599 tree type = BINFO_TYPE (binfo);
600 access_kind access = ak_none;
601
602 if (context_for_name_lookup (decl) == type)
603 {
604 /* If we have descended to the scope of DECL, just note the
605 appropriate access. */
606 if (TREE_PRIVATE (decl))
607 access = ak_private;
608 else if (TREE_PROTECTED (decl))
609 access = ak_protected;
610 else
611 access = ak_public;
612 }
613 else
614 {
615 /* First, check for an access-declaration that gives us more
616 access to the DECL. The CONST_DECL for an enumeration
617 constant will not have DECL_LANG_SPECIFIC, and thus no
618 DECL_ACCESS. */
619 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
620 {
621 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
622
623 if (decl_access)
624 {
625 decl_access = TREE_VALUE (decl_access);
626
627 if (decl_access == access_public_node)
628 access = ak_public;
629 else if (decl_access == access_protected_node)
630 access = ak_protected;
631 else if (decl_access == access_private_node)
632 access = ak_private;
633 else
634 gcc_unreachable ();
635 }
636 }
637
638 if (!access)
639 {
640 int i;
641 tree base_binfo;
642 VEC(tree,gc) *accesses;
643
644 /* Otherwise, scan our baseclasses, and pick the most favorable
645 access. */
646 accesses = BINFO_BASE_ACCESSES (binfo);
647 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
648 {
649 tree base_access = VEC_index (tree, accesses, i);
650 access_kind base_access_now = BINFO_ACCESS (base_binfo);
651
652 if (base_access_now == ak_none || base_access_now == ak_private)
653 /* If it was not accessible in the base, or only
654 accessible as a private member, we can't access it
655 all. */
656 base_access_now = ak_none;
657 else if (base_access == access_protected_node)
658 /* Public and protected members in the base become
659 protected here. */
660 base_access_now = ak_protected;
661 else if (base_access == access_private_node)
662 /* Public and protected members in the base become
663 private here. */
664 base_access_now = ak_private;
665
666 /* See if the new access, via this base, gives more
667 access than our previous best access. */
668 if (base_access_now != ak_none
669 && (access == ak_none || base_access_now < access))
670 {
671 access = base_access_now;
672
673 /* If the new access is public, we can't do better. */
674 if (access == ak_public)
675 break;
676 }
677 }
678 }
679 }
680
681 /* Note the access to DECL in TYPE. */
682 SET_BINFO_ACCESS (binfo, access);
683
684 return NULL_TREE;
685 }
686
687 /* Return the access to DECL in TYPE. */
688
689 static access_kind
690 access_in_type (tree type, tree decl)
691 {
692 tree binfo = TYPE_BINFO (type);
693
694 /* We must take into account
695
696 [class.paths]
697
698 If a name can be reached by several paths through a multiple
699 inheritance graph, the access is that of the path that gives
700 most access.
701
702 The algorithm we use is to make a post-order depth-first traversal
703 of the base-class hierarchy. As we come up the tree, we annotate
704 each node with the most lenient access. */
705 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
706
707 return BINFO_ACCESS (binfo);
708 }
709
710 /* Returns nonzero if it is OK to access DECL through an object
711 indicated by BINFO in the context of DERIVED. */
712
713 static int
714 protected_accessible_p (tree decl, tree derived, tree binfo)
715 {
716 access_kind access;
717
718 /* We're checking this clause from [class.access.base]
719
720 m as a member of N is protected, and the reference occurs in a
721 member or friend of class N, or in a member or friend of a
722 class P derived from N, where m as a member of P is public, private
723 or protected.
724
725 Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */
726
727 /* If DERIVED isn't derived from N, then it can't be a P. */
728 if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived))
729 return 0;
730
731 access = access_in_type (derived, decl);
732
733 /* If m is inaccessible in DERIVED, then it's not a P. */
734 if (access == ak_none)
735 return 0;
736
737 /* [class.protected]
738
739 When a friend or a member function of a derived class references
740 a protected nonstatic member of a base class, an access check
741 applies in addition to those described earlier in clause
742 _class.access_) Except when forming a pointer to member
743 (_expr.unary.op_), the access must be through a pointer to,
744 reference to, or object of the derived class itself (or any class
745 derived from that class) (_expr.ref_). If the access is to form
746 a pointer to member, the nested-name-specifier shall name the
747 derived class (or any class derived from that class). */
748 if (DECL_NONSTATIC_MEMBER_P (decl))
749 {
750 /* We can tell through what the reference is occurring by
751 chasing BINFO up to the root. */
752 tree t = binfo;
753 while (BINFO_INHERITANCE_CHAIN (t))
754 t = BINFO_INHERITANCE_CHAIN (t);
755
756 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
757 return 0;
758 }
759
760 return 1;
761 }
762
763 /* Returns nonzero if SCOPE is a friend of a type which would be able
764 to access DECL through the object indicated by BINFO. */
765
766 static int
767 friend_accessible_p (tree scope, tree decl, tree binfo)
768 {
769 tree befriending_classes;
770 tree t;
771
772 if (!scope)
773 return 0;
774
775 if (TREE_CODE (scope) == FUNCTION_DECL
776 || DECL_FUNCTION_TEMPLATE_P (scope))
777 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
778 else if (TYPE_P (scope))
779 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
780 else
781 return 0;
782
783 for (t = befriending_classes; t; t = TREE_CHAIN (t))
784 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
785 return 1;
786
787 /* Nested classes have the same access as their enclosing types, as
788 per DR 45 (this is a change from the standard). */
789 if (TYPE_P (scope))
790 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
791 if (protected_accessible_p (decl, t, binfo))
792 return 1;
793
794 if (TREE_CODE (scope) == FUNCTION_DECL
795 || DECL_FUNCTION_TEMPLATE_P (scope))
796 {
797 /* Perhaps this SCOPE is a member of a class which is a
798 friend. */
799 if (DECL_CLASS_SCOPE_P (scope)
800 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
801 return 1;
802
803 /* Or an instantiation of something which is a friend. */
804 if (DECL_TEMPLATE_INFO (scope))
805 {
806 int ret;
807 /* Increment processing_template_decl to make sure that
808 dependent_type_p works correctly. */
809 ++processing_template_decl;
810 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
811 --processing_template_decl;
812 return ret;
813 }
814 }
815
816 return 0;
817 }
818
819 /* Called via dfs_walk_once_accessible from accessible_p */
820
821 static tree
822 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
823 {
824 if (BINFO_ACCESS (binfo) != ak_none)
825 {
826 tree scope = current_scope ();
827 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
828 && is_friend (BINFO_TYPE (binfo), scope))
829 return binfo;
830 }
831
832 return NULL_TREE;
833 }
834
835 /* DECL is a declaration from a base class of TYPE, which was the
836 class used to name DECL. Return nonzero if, in the current
837 context, DECL is accessible. If TYPE is actually a BINFO node,
838 then we can tell in what context the access is occurring by looking
839 at the most derived class along the path indicated by BINFO. If
840 CONSIDER_LOCAL is true, do consider special access the current
841 scope or friendship thereof we might have. */
842
843 int
844 accessible_p (tree type, tree decl, bool consider_local_p)
845 {
846 tree binfo;
847 tree scope;
848 access_kind access;
849
850 /* Nonzero if it's OK to access DECL if it has protected
851 accessibility in TYPE. */
852 int protected_ok = 0;
853
854 /* If this declaration is in a block or namespace scope, there's no
855 access control. */
856 if (!TYPE_P (context_for_name_lookup (decl)))
857 return 1;
858
859 /* There is no need to perform access checks inside a thunk. */
860 scope = current_scope ();
861 if (scope && DECL_THUNK_P (scope))
862 return 1;
863
864 /* In a template declaration, we cannot be sure whether the
865 particular specialization that is instantiated will be a friend
866 or not. Therefore, all access checks are deferred until
867 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
868 parameter list for a template (because we may see dependent types
869 in default arguments for template parameters), and access
870 checking should be performed in the outermost parameter list. */
871 if (processing_template_decl
872 && (!processing_template_parmlist || processing_template_decl > 1))
873 return 1;
874
875 if (!TYPE_P (type))
876 {
877 binfo = type;
878 type = BINFO_TYPE (type);
879 }
880 else
881 binfo = TYPE_BINFO (type);
882
883 /* [class.access.base]
884
885 A member m is accessible when named in class N if
886
887 --m as a member of N is public, or
888
889 --m as a member of N is private, and the reference occurs in a
890 member or friend of class N, or
891
892 --m as a member of N is protected, and the reference occurs in a
893 member or friend of class N, or in a member or friend of a
894 class P derived from N, where m as a member of P is private or
895 protected, or
896
897 --there exists a base class B of N that is accessible at the point
898 of reference, and m is accessible when named in class B.
899
900 We walk the base class hierarchy, checking these conditions. */
901
902 if (consider_local_p)
903 {
904 /* Figure out where the reference is occurring. Check to see if
905 DECL is private or protected in this scope, since that will
906 determine whether protected access is allowed. */
907 if (current_class_type)
908 protected_ok = protected_accessible_p (decl,
909 current_class_type, binfo);
910
911 /* Now, loop through the classes of which we are a friend. */
912 if (!protected_ok)
913 protected_ok = friend_accessible_p (scope, decl, binfo);
914 }
915
916 /* Standardize the binfo that access_in_type will use. We don't
917 need to know what path was chosen from this point onwards. */
918 binfo = TYPE_BINFO (type);
919
920 /* Compute the accessibility of DECL in the class hierarchy
921 dominated by type. */
922 access = access_in_type (type, decl);
923 if (access == ak_public
924 || (access == ak_protected && protected_ok))
925 return 1;
926
927 if (!consider_local_p)
928 return 0;
929
930 /* Walk the hierarchy again, looking for a base class that allows
931 access. */
932 return dfs_walk_once_accessible (binfo, /*friends=*/true,
933 NULL, dfs_accessible_post, NULL)
934 != NULL_TREE;
935 }
936
937 struct lookup_field_info {
938 /* The type in which we're looking. */
939 tree type;
940 /* The name of the field for which we're looking. */
941 tree name;
942 /* If non-NULL, the current result of the lookup. */
943 tree rval;
944 /* The path to RVAL. */
945 tree rval_binfo;
946 /* If non-NULL, the lookup was ambiguous, and this is a list of the
947 candidates. */
948 tree ambiguous;
949 /* If nonzero, we are looking for types, not data members. */
950 int want_type;
951 /* If something went wrong, a message indicating what. */
952 const char *errstr;
953 };
954
955 /* Within the scope of a template class, you can refer to the to the
956 current specialization with the name of the template itself. For
957 example:
958
959 template <typename T> struct S { S* sp; }
960
961 Returns nonzero if DECL is such a declaration in a class TYPE. */
962
963 static int
964 template_self_reference_p (tree type, tree decl)
965 {
966 return (CLASSTYPE_USE_TEMPLATE (type)
967 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
968 && TREE_CODE (decl) == TYPE_DECL
969 && DECL_ARTIFICIAL (decl)
970 && DECL_NAME (decl) == constructor_name (type));
971 }
972
973 /* Nonzero for a class member means that it is shared between all objects
974 of that class.
975
976 [class.member.lookup]:If the resulting set of declarations are not all
977 from sub-objects of the same type, or the set has a nonstatic member
978 and includes members from distinct sub-objects, there is an ambiguity
979 and the program is ill-formed.
980
981 This function checks that T contains no nonstatic members. */
982
983 int
984 shared_member_p (tree t)
985 {
986 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
987 || TREE_CODE (t) == CONST_DECL)
988 return 1;
989 if (is_overloaded_fn (t))
990 {
991 for (; t; t = OVL_NEXT (t))
992 {
993 tree fn = OVL_CURRENT (t);
994 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
995 return 0;
996 }
997 return 1;
998 }
999 return 0;
1000 }
1001
1002 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1003 found as a base class and sub-object of the object denoted by
1004 BINFO. */
1005
1006 static int
1007 is_subobject_of_p (tree parent, tree binfo)
1008 {
1009 tree probe;
1010
1011 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1012 {
1013 if (probe == binfo)
1014 return 1;
1015 if (BINFO_VIRTUAL_P (probe))
1016 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1017 != NULL_TREE);
1018 }
1019 return 0;
1020 }
1021
1022 /* DATA is really a struct lookup_field_info. Look for a field with
1023 the name indicated there in BINFO. If this function returns a
1024 non-NULL value it is the result of the lookup. Called from
1025 lookup_field via breadth_first_search. */
1026
1027 static tree
1028 lookup_field_r (tree binfo, void *data)
1029 {
1030 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1031 tree type = BINFO_TYPE (binfo);
1032 tree nval = NULL_TREE;
1033
1034 /* If this is a dependent base, don't look in it. */
1035 if (BINFO_DEPENDENT_BASE_P (binfo))
1036 return NULL_TREE;
1037
1038 /* If this base class is hidden by the best-known value so far, we
1039 don't need to look. */
1040 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1041 && !BINFO_VIRTUAL_P (binfo))
1042 return dfs_skip_bases;
1043
1044 /* First, look for a function. There can't be a function and a data
1045 member with the same name, and if there's a function and a type
1046 with the same name, the type is hidden by the function. */
1047 if (!lfi->want_type)
1048 {
1049 int idx = lookup_fnfields_1 (type, lfi->name);
1050 if (idx >= 0)
1051 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1052 }
1053
1054 if (!nval)
1055 /* Look for a data member or type. */
1056 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1057
1058 /* If there is no declaration with the indicated name in this type,
1059 then there's nothing to do. */
1060 if (!nval)
1061 goto done;
1062
1063 /* If we're looking up a type (as with an elaborated type specifier)
1064 we ignore all non-types we find. */
1065 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1066 && !DECL_CLASS_TEMPLATE_P (nval))
1067 {
1068 if (lfi->name == TYPE_IDENTIFIER (type))
1069 {
1070 /* If the aggregate has no user defined constructors, we allow
1071 it to have fields with the same name as the enclosing type.
1072 If we are looking for that name, find the corresponding
1073 TYPE_DECL. */
1074 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1075 if (DECL_NAME (nval) == lfi->name
1076 && TREE_CODE (nval) == TYPE_DECL)
1077 break;
1078 }
1079 else
1080 nval = NULL_TREE;
1081 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1082 {
1083 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1084 lfi->name);
1085 if (e != NULL)
1086 nval = TYPE_MAIN_DECL (e->type);
1087 else
1088 goto done;
1089 }
1090 }
1091
1092 /* You must name a template base class with a template-id. */
1093 if (!same_type_p (type, lfi->type)
1094 && template_self_reference_p (type, nval))
1095 goto done;
1096
1097 /* If the lookup already found a match, and the new value doesn't
1098 hide the old one, we might have an ambiguity. */
1099 if (lfi->rval_binfo
1100 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1101
1102 {
1103 if (nval == lfi->rval && shared_member_p (nval))
1104 /* The two things are really the same. */
1105 ;
1106 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1107 /* The previous value hides the new one. */
1108 ;
1109 else
1110 {
1111 /* We have a real ambiguity. We keep a chain of all the
1112 candidates. */
1113 if (!lfi->ambiguous && lfi->rval)
1114 {
1115 /* This is the first time we noticed an ambiguity. Add
1116 what we previously thought was a reasonable candidate
1117 to the list. */
1118 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1119 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1120 }
1121
1122 /* Add the new value. */
1123 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1124 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1125 lfi->errstr = "request for member %qD is ambiguous";
1126 }
1127 }
1128 else
1129 {
1130 lfi->rval = nval;
1131 lfi->rval_binfo = binfo;
1132 }
1133
1134 done:
1135 /* Don't look for constructors or destructors in base classes. */
1136 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1137 return dfs_skip_bases;
1138 return NULL_TREE;
1139 }
1140
1141 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1142 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1143 FUNCTIONS, and OPTYPE respectively. */
1144
1145 tree
1146 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1147 {
1148 tree baselink;
1149
1150 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1151 || TREE_CODE (functions) == TEMPLATE_DECL
1152 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1153 || TREE_CODE (functions) == OVERLOAD);
1154 gcc_assert (!optype || TYPE_P (optype));
1155 gcc_assert (TREE_TYPE (functions));
1156
1157 baselink = make_node (BASELINK);
1158 TREE_TYPE (baselink) = TREE_TYPE (functions);
1159 BASELINK_BINFO (baselink) = binfo;
1160 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1161 BASELINK_FUNCTIONS (baselink) = functions;
1162 BASELINK_OPTYPE (baselink) = optype;
1163
1164 return baselink;
1165 }
1166
1167 /* Look for a member named NAME in an inheritance lattice dominated by
1168 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1169 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1170 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1171 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1172 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1173 TREE_VALUEs are the list of ambiguous candidates.
1174
1175 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1176
1177 If nothing can be found return NULL_TREE and do not issue an error. */
1178
1179 tree
1180 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1181 {
1182 tree rval, rval_binfo = NULL_TREE;
1183 tree type = NULL_TREE, basetype_path = NULL_TREE;
1184 struct lookup_field_info lfi;
1185
1186 /* rval_binfo is the binfo associated with the found member, note,
1187 this can be set with useful information, even when rval is not
1188 set, because it must deal with ALL members, not just non-function
1189 members. It is used for ambiguity checking and the hidden
1190 checks. Whereas rval is only set if a proper (not hidden)
1191 non-function member is found. */
1192
1193 const char *errstr = 0;
1194
1195 if (name == error_mark_node)
1196 return NULL_TREE;
1197
1198 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1199
1200 if (TREE_CODE (xbasetype) == TREE_BINFO)
1201 {
1202 type = BINFO_TYPE (xbasetype);
1203 basetype_path = xbasetype;
1204 }
1205 else
1206 {
1207 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1208 return NULL_TREE;
1209 type = xbasetype;
1210 xbasetype = NULL_TREE;
1211 }
1212
1213 type = complete_type (type);
1214 if (!basetype_path)
1215 basetype_path = TYPE_BINFO (type);
1216
1217 if (!basetype_path)
1218 return NULL_TREE;
1219
1220 #ifdef GATHER_STATISTICS
1221 n_calls_lookup_field++;
1222 #endif /* GATHER_STATISTICS */
1223
1224 memset (&lfi, 0, sizeof (lfi));
1225 lfi.type = type;
1226 lfi.name = name;
1227 lfi.want_type = want_type;
1228 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1229 rval = lfi.rval;
1230 rval_binfo = lfi.rval_binfo;
1231 if (rval_binfo)
1232 type = BINFO_TYPE (rval_binfo);
1233 errstr = lfi.errstr;
1234
1235 /* If we are not interested in ambiguities, don't report them;
1236 just return NULL_TREE. */
1237 if (!protect && lfi.ambiguous)
1238 return NULL_TREE;
1239
1240 if (protect == 2)
1241 {
1242 if (lfi.ambiguous)
1243 return lfi.ambiguous;
1244 else
1245 protect = 0;
1246 }
1247
1248 /* [class.access]
1249
1250 In the case of overloaded function names, access control is
1251 applied to the function selected by overloaded resolution.
1252
1253 We cannot check here, even if RVAL is only a single non-static
1254 member function, since we do not know what the "this" pointer
1255 will be. For:
1256
1257 class A { protected: void f(); };
1258 class B : public A {
1259 void g(A *p) {
1260 f(); // OK
1261 p->f(); // Not OK.
1262 }
1263 };
1264
1265 only the first call to "f" is valid. However, if the function is
1266 static, we can check. */
1267 if (rval && protect
1268 && !really_overloaded_fn (rval)
1269 && !(TREE_CODE (rval) == FUNCTION_DECL
1270 && DECL_NONSTATIC_MEMBER_FUNCTION_P (rval)))
1271 perform_or_defer_access_check (basetype_path, rval, rval);
1272
1273 if (errstr && protect)
1274 {
1275 error (errstr, name, type);
1276 if (lfi.ambiguous)
1277 print_candidates (lfi.ambiguous);
1278 rval = error_mark_node;
1279 }
1280
1281 if (rval && is_overloaded_fn (rval))
1282 rval = build_baselink (rval_binfo, basetype_path, rval,
1283 (IDENTIFIER_TYPENAME_P (name)
1284 ? TREE_TYPE (name): NULL_TREE));
1285 return rval;
1286 }
1287
1288 /* Like lookup_member, except that if we find a function member we
1289 return NULL_TREE. */
1290
1291 tree
1292 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1293 {
1294 tree rval = lookup_member (xbasetype, name, protect, want_type);
1295
1296 /* Ignore functions, but propagate the ambiguity list. */
1297 if (!error_operand_p (rval)
1298 && (rval && BASELINK_P (rval)))
1299 return NULL_TREE;
1300
1301 return rval;
1302 }
1303
1304 /* Like lookup_member, except that if we find a non-function member we
1305 return NULL_TREE. */
1306
1307 tree
1308 lookup_fnfields (tree xbasetype, tree name, int protect)
1309 {
1310 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1311
1312 /* Ignore non-functions, but propagate the ambiguity list. */
1313 if (!error_operand_p (rval)
1314 && (rval && !BASELINK_P (rval)))
1315 return NULL_TREE;
1316
1317 return rval;
1318 }
1319
1320 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1321 corresponding to "operator TYPE ()", or -1 if there is no such
1322 operator. Only CLASS_TYPE itself is searched; this routine does
1323 not scan the base classes of CLASS_TYPE. */
1324
1325 static int
1326 lookup_conversion_operator (tree class_type, tree type)
1327 {
1328 int tpl_slot = -1;
1329
1330 if (TYPE_HAS_CONVERSION (class_type))
1331 {
1332 int i;
1333 tree fn;
1334 VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1335
1336 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1337 VEC_iterate (tree, methods, i, fn); ++i)
1338 {
1339 /* All the conversion operators come near the beginning of
1340 the class. Therefore, if FN is not a conversion
1341 operator, there is no matching conversion operator in
1342 CLASS_TYPE. */
1343 fn = OVL_CURRENT (fn);
1344 if (!DECL_CONV_FN_P (fn))
1345 break;
1346
1347 if (TREE_CODE (fn) == TEMPLATE_DECL)
1348 /* All the templated conversion functions are on the same
1349 slot, so remember it. */
1350 tpl_slot = i;
1351 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1352 return i;
1353 }
1354 }
1355
1356 return tpl_slot;
1357 }
1358
1359 /* TYPE is a class type. Return the index of the fields within
1360 the method vector with name NAME, or -1 is no such field exists. */
1361
1362 int
1363 lookup_fnfields_1 (tree type, tree name)
1364 {
1365 VEC(tree,gc) *method_vec;
1366 tree fn;
1367 tree tmp;
1368 size_t i;
1369
1370 if (!CLASS_TYPE_P (type))
1371 return -1;
1372
1373 if (COMPLETE_TYPE_P (type))
1374 {
1375 if ((name == ctor_identifier
1376 || name == base_ctor_identifier
1377 || name == complete_ctor_identifier))
1378 {
1379 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1380 lazily_declare_fn (sfk_constructor, type);
1381 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1382 lazily_declare_fn (sfk_copy_constructor, type);
1383 }
1384 else if (name == ansi_assopname(NOP_EXPR)
1385 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1386 lazily_declare_fn (sfk_assignment_operator, type);
1387 else if ((name == dtor_identifier
1388 || name == base_dtor_identifier
1389 || name == complete_dtor_identifier
1390 || name == deleting_dtor_identifier)
1391 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1392 lazily_declare_fn (sfk_destructor, type);
1393 }
1394
1395 method_vec = CLASSTYPE_METHOD_VEC (type);
1396 if (!method_vec)
1397 return -1;
1398
1399 #ifdef GATHER_STATISTICS
1400 n_calls_lookup_fnfields_1++;
1401 #endif /* GATHER_STATISTICS */
1402
1403 /* Constructors are first... */
1404 if (name == ctor_identifier)
1405 {
1406 fn = CLASSTYPE_CONSTRUCTORS (type);
1407 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1408 }
1409 /* and destructors are second. */
1410 if (name == dtor_identifier)
1411 {
1412 fn = CLASSTYPE_DESTRUCTORS (type);
1413 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1414 }
1415 if (IDENTIFIER_TYPENAME_P (name))
1416 return lookup_conversion_operator (type, TREE_TYPE (name));
1417
1418 /* Skip the conversion operators. */
1419 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1420 VEC_iterate (tree, method_vec, i, fn);
1421 ++i)
1422 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1423 break;
1424
1425 /* If the type is complete, use binary search. */
1426 if (COMPLETE_TYPE_P (type))
1427 {
1428 int lo;
1429 int hi;
1430
1431 lo = i;
1432 hi = VEC_length (tree, method_vec);
1433 while (lo < hi)
1434 {
1435 i = (lo + hi) / 2;
1436
1437 #ifdef GATHER_STATISTICS
1438 n_outer_fields_searched++;
1439 #endif /* GATHER_STATISTICS */
1440
1441 tmp = VEC_index (tree, method_vec, i);
1442 tmp = DECL_NAME (OVL_CURRENT (tmp));
1443 if (tmp > name)
1444 hi = i;
1445 else if (tmp < name)
1446 lo = i + 1;
1447 else
1448 return i;
1449 }
1450 }
1451 else
1452 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1453 {
1454 #ifdef GATHER_STATISTICS
1455 n_outer_fields_searched++;
1456 #endif /* GATHER_STATISTICS */
1457 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1458 return i;
1459 }
1460
1461 return -1;
1462 }
1463
1464 /* Like lookup_fnfields_1, except that the name is extracted from
1465 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1466
1467 int
1468 class_method_index_for_fn (tree class_type, tree function)
1469 {
1470 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1471 || DECL_FUNCTION_TEMPLATE_P (function));
1472
1473 return lookup_fnfields_1 (class_type,
1474 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1475 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1476 DECL_NAME (function));
1477 }
1478
1479
1480 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1481 the class or namespace used to qualify the name. CONTEXT_CLASS is
1482 the class corresponding to the object in which DECL will be used.
1483 Return a possibly modified version of DECL that takes into account
1484 the CONTEXT_CLASS.
1485
1486 In particular, consider an expression like `B::m' in the context of
1487 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1488 then the most derived class indicated by the BASELINK_BINFO will be
1489 `B', not `D'. This function makes that adjustment. */
1490
1491 tree
1492 adjust_result_of_qualified_name_lookup (tree decl,
1493 tree qualifying_scope,
1494 tree context_class)
1495 {
1496 if (context_class && context_class != error_mark_node
1497 && CLASS_TYPE_P (context_class)
1498 && CLASS_TYPE_P (qualifying_scope)
1499 && DERIVED_FROM_P (qualifying_scope, context_class)
1500 && BASELINK_P (decl))
1501 {
1502 tree base;
1503
1504 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1505 Because we do not yet know which function will be chosen by
1506 overload resolution, we cannot yet check either accessibility
1507 or ambiguity -- in either case, the choice of a static member
1508 function might make the usage valid. */
1509 base = lookup_base (context_class, qualifying_scope,
1510 ba_unique | ba_quiet, NULL);
1511 if (base)
1512 {
1513 BASELINK_ACCESS_BINFO (decl) = base;
1514 BASELINK_BINFO (decl)
1515 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1516 ba_unique | ba_quiet,
1517 NULL);
1518 }
1519 }
1520
1521 return decl;
1522 }
1523
1524 \f
1525 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1526 PRE_FN is called in preorder, while POST_FN is called in postorder.
1527 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1528 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1529 that value is immediately returned and the walk is terminated. One
1530 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1531 POST_FN are passed the binfo to examine and the caller's DATA
1532 value. All paths are walked, thus virtual and morally virtual
1533 binfos can be multiply walked. */
1534
1535 tree
1536 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1537 tree (*post_fn) (tree, void *), void *data)
1538 {
1539 tree rval;
1540 unsigned ix;
1541 tree base_binfo;
1542
1543 /* Call the pre-order walking function. */
1544 if (pre_fn)
1545 {
1546 rval = pre_fn (binfo, data);
1547 if (rval)
1548 {
1549 if (rval == dfs_skip_bases)
1550 goto skip_bases;
1551 return rval;
1552 }
1553 }
1554
1555 /* Find the next child binfo to walk. */
1556 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1557 {
1558 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1559 if (rval)
1560 return rval;
1561 }
1562
1563 skip_bases:
1564 /* Call the post-order walking function. */
1565 if (post_fn)
1566 {
1567 rval = post_fn (binfo, data);
1568 gcc_assert (rval != dfs_skip_bases);
1569 return rval;
1570 }
1571
1572 return NULL_TREE;
1573 }
1574
1575 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1576 that binfos are walked at most once. */
1577
1578 static tree
1579 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1580 tree (*post_fn) (tree, void *), void *data)
1581 {
1582 tree rval;
1583 unsigned ix;
1584 tree base_binfo;
1585
1586 /* Call the pre-order walking function. */
1587 if (pre_fn)
1588 {
1589 rval = pre_fn (binfo, data);
1590 if (rval)
1591 {
1592 if (rval == dfs_skip_bases)
1593 goto skip_bases;
1594
1595 return rval;
1596 }
1597 }
1598
1599 /* Find the next child binfo to walk. */
1600 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1601 {
1602 if (BINFO_VIRTUAL_P (base_binfo))
1603 {
1604 if (BINFO_MARKED (base_binfo))
1605 continue;
1606 BINFO_MARKED (base_binfo) = 1;
1607 }
1608
1609 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1610 if (rval)
1611 return rval;
1612 }
1613
1614 skip_bases:
1615 /* Call the post-order walking function. */
1616 if (post_fn)
1617 {
1618 rval = post_fn (binfo, data);
1619 gcc_assert (rval != dfs_skip_bases);
1620 return rval;
1621 }
1622
1623 return NULL_TREE;
1624 }
1625
1626 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1627 BINFO. */
1628
1629 static void
1630 dfs_unmark_r (tree binfo)
1631 {
1632 unsigned ix;
1633 tree base_binfo;
1634
1635 /* Process the basetypes. */
1636 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1637 {
1638 if (BINFO_VIRTUAL_P (base_binfo))
1639 {
1640 if (!BINFO_MARKED (base_binfo))
1641 continue;
1642 BINFO_MARKED (base_binfo) = 0;
1643 }
1644 /* Only walk, if it can contain more virtual bases. */
1645 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1646 dfs_unmark_r (base_binfo);
1647 }
1648 }
1649
1650 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1651 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1652 For diamond shaped hierarchies we must mark the virtual bases, to
1653 avoid multiple walks. */
1654
1655 tree
1656 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1657 tree (*post_fn) (tree, void *), void *data)
1658 {
1659 static int active = 0; /* We must not be called recursively. */
1660 tree rval;
1661
1662 gcc_assert (pre_fn || post_fn);
1663 gcc_assert (!active);
1664 active++;
1665
1666 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1667 /* We are not diamond shaped, and therefore cannot encounter the
1668 same binfo twice. */
1669 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1670 else
1671 {
1672 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1673 if (!BINFO_INHERITANCE_CHAIN (binfo))
1674 {
1675 /* We are at the top of the hierarchy, and can use the
1676 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1677 bases. */
1678 VEC(tree,gc) *vbases;
1679 unsigned ix;
1680 tree base_binfo;
1681
1682 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1683 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1684 BINFO_MARKED (base_binfo) = 0;
1685 }
1686 else
1687 dfs_unmark_r (binfo);
1688 }
1689
1690 active--;
1691
1692 return rval;
1693 }
1694
1695 /* Worker function for dfs_walk_once_accessible. Behaves like
1696 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1697 access given by the current context should be considered, (b) ONCE
1698 indicates whether bases should be marked during traversal. */
1699
1700 static tree
1701 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1702 tree (*pre_fn) (tree, void *),
1703 tree (*post_fn) (tree, void *), void *data)
1704 {
1705 tree rval = NULL_TREE;
1706 unsigned ix;
1707 tree base_binfo;
1708
1709 /* Call the pre-order walking function. */
1710 if (pre_fn)
1711 {
1712 rval = pre_fn (binfo, data);
1713 if (rval)
1714 {
1715 if (rval == dfs_skip_bases)
1716 goto skip_bases;
1717
1718 return rval;
1719 }
1720 }
1721
1722 /* Find the next child binfo to walk. */
1723 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1724 {
1725 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1726
1727 if (mark && BINFO_MARKED (base_binfo))
1728 continue;
1729
1730 /* If the base is inherited via private or protected
1731 inheritance, then we can't see it, unless we are a friend of
1732 the current binfo. */
1733 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1734 {
1735 tree scope;
1736 if (!friends_p)
1737 continue;
1738 scope = current_scope ();
1739 if (!scope
1740 || TREE_CODE (scope) == NAMESPACE_DECL
1741 || !is_friend (BINFO_TYPE (binfo), scope))
1742 continue;
1743 }
1744
1745 if (mark)
1746 BINFO_MARKED (base_binfo) = 1;
1747
1748 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1749 pre_fn, post_fn, data);
1750 if (rval)
1751 return rval;
1752 }
1753
1754 skip_bases:
1755 /* Call the post-order walking function. */
1756 if (post_fn)
1757 {
1758 rval = post_fn (binfo, data);
1759 gcc_assert (rval != dfs_skip_bases);
1760 return rval;
1761 }
1762
1763 return NULL_TREE;
1764 }
1765
1766 /* Like dfs_walk_once except that only accessible bases are walked.
1767 FRIENDS_P indicates whether friendship of the local context
1768 should be considered when determining accessibility. */
1769
1770 static tree
1771 dfs_walk_once_accessible (tree binfo, bool friends_p,
1772 tree (*pre_fn) (tree, void *),
1773 tree (*post_fn) (tree, void *), void *data)
1774 {
1775 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1776 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1777 pre_fn, post_fn, data);
1778
1779 if (diamond_shaped)
1780 {
1781 if (!BINFO_INHERITANCE_CHAIN (binfo))
1782 {
1783 /* We are at the top of the hierarchy, and can use the
1784 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1785 bases. */
1786 VEC(tree,gc) *vbases;
1787 unsigned ix;
1788 tree base_binfo;
1789
1790 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1791 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1792 BINFO_MARKED (base_binfo) = 0;
1793 }
1794 else
1795 dfs_unmark_r (binfo);
1796 }
1797 return rval;
1798 }
1799
1800 /* Check that virtual overrider OVERRIDER is acceptable for base function
1801 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1802
1803 static int
1804 check_final_overrider (tree overrider, tree basefn)
1805 {
1806 tree over_type = TREE_TYPE (overrider);
1807 tree base_type = TREE_TYPE (basefn);
1808 tree over_return = TREE_TYPE (over_type);
1809 tree base_return = TREE_TYPE (base_type);
1810 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1811 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1812 int fail = 0;
1813
1814 if (DECL_INVALID_OVERRIDER_P (overrider))
1815 return 0;
1816
1817 if (same_type_p (base_return, over_return))
1818 /* OK */;
1819 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1820 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1821 && POINTER_TYPE_P (base_return)))
1822 {
1823 /* Potentially covariant. */
1824 unsigned base_quals, over_quals;
1825
1826 fail = !POINTER_TYPE_P (base_return);
1827 if (!fail)
1828 {
1829 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1830
1831 base_return = TREE_TYPE (base_return);
1832 over_return = TREE_TYPE (over_return);
1833 }
1834 base_quals = cp_type_quals (base_return);
1835 over_quals = cp_type_quals (over_return);
1836
1837 if ((base_quals & over_quals) != over_quals)
1838 fail = 1;
1839
1840 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1841 {
1842 tree binfo = lookup_base (over_return, base_return,
1843 ba_check | ba_quiet, NULL);
1844
1845 if (!binfo)
1846 fail = 1;
1847 }
1848 else if (!pedantic
1849 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1850 /* GNU extension, allow trivial pointer conversions such as
1851 converting to void *, or qualification conversion. */
1852 {
1853 /* can_convert will permit user defined conversion from a
1854 (reference to) class type. We must reject them. */
1855 over_return = non_reference (TREE_TYPE (over_type));
1856 if (CLASS_TYPE_P (over_return))
1857 fail = 2;
1858 else
1859 {
1860 warning (0, "deprecated covariant return type for %q+#D",
1861 overrider);
1862 warning (0, " overriding %q+#D", basefn);
1863 }
1864 }
1865 else
1866 fail = 2;
1867 }
1868 else
1869 fail = 2;
1870 if (!fail)
1871 /* OK */;
1872 else
1873 {
1874 if (fail == 1)
1875 {
1876 error ("invalid covariant return type for %q+#D", overrider);
1877 error (" overriding %q+#D", basefn);
1878 }
1879 else
1880 {
1881 error ("conflicting return type specified for %q+#D", overrider);
1882 error (" overriding %q+#D", basefn);
1883 }
1884 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1885 return 0;
1886 }
1887
1888 /* Check throw specifier is at least as strict. */
1889 if (!comp_except_specs (base_throw, over_throw, 0))
1890 {
1891 error ("looser throw specifier for %q+#F", overrider);
1892 error (" overriding %q+#F", basefn);
1893 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1894 return 0;
1895 }
1896
1897 /* Check for conflicting type attributes. */
1898 if (!targetm.comp_type_attributes (over_type, base_type))
1899 {
1900 error ("conflicting type attributes specified for %q+#D", overrider);
1901 error (" overriding %q+#D", basefn);
1902 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1903 return 0;
1904 }
1905
1906 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
1907 {
1908 if (DECL_DELETED_FN (overrider))
1909 {
1910 error ("deleted function %q+D", overrider);
1911 error ("overriding non-deleted function %q+D", basefn);
1912 }
1913 else
1914 {
1915 error ("non-deleted function %q+D", overrider);
1916 error ("overriding deleted function %q+D", basefn);
1917 }
1918 return 0;
1919 }
1920 return 1;
1921 }
1922
1923 /* Given a class TYPE, and a function decl FNDECL, look for
1924 virtual functions in TYPE's hierarchy which FNDECL overrides.
1925 We do not look in TYPE itself, only its bases.
1926
1927 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1928 find that it overrides anything.
1929
1930 We check that every function which is overridden, is correctly
1931 overridden. */
1932
1933 int
1934 look_for_overrides (tree type, tree fndecl)
1935 {
1936 tree binfo = TYPE_BINFO (type);
1937 tree base_binfo;
1938 int ix;
1939 int found = 0;
1940
1941 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1942 {
1943 tree basetype = BINFO_TYPE (base_binfo);
1944
1945 if (TYPE_POLYMORPHIC_P (basetype))
1946 found += look_for_overrides_r (basetype, fndecl);
1947 }
1948 return found;
1949 }
1950
1951 /* Look in TYPE for virtual functions with the same signature as
1952 FNDECL. */
1953
1954 tree
1955 look_for_overrides_here (tree type, tree fndecl)
1956 {
1957 int ix;
1958
1959 /* If there are no methods in TYPE (meaning that only implicitly
1960 declared methods will ever be provided for TYPE), then there are
1961 no virtual functions. */
1962 if (!CLASSTYPE_METHOD_VEC (type))
1963 return NULL_TREE;
1964
1965 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1966 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1967 else
1968 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1969 if (ix >= 0)
1970 {
1971 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1972
1973 for (; fns; fns = OVL_NEXT (fns))
1974 {
1975 tree fn = OVL_CURRENT (fns);
1976
1977 if (!DECL_VIRTUAL_P (fn))
1978 /* Not a virtual. */;
1979 else if (DECL_CONTEXT (fn) != type)
1980 /* Introduced with a using declaration. */;
1981 else if (DECL_STATIC_FUNCTION_P (fndecl))
1982 {
1983 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1984 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1985 if (compparms (TREE_CHAIN (btypes), dtypes))
1986 return fn;
1987 }
1988 else if (same_signature_p (fndecl, fn))
1989 return fn;
1990 }
1991 }
1992 return NULL_TREE;
1993 }
1994
1995 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1996 TYPE itself and its bases. */
1997
1998 static int
1999 look_for_overrides_r (tree type, tree fndecl)
2000 {
2001 tree fn = look_for_overrides_here (type, fndecl);
2002 if (fn)
2003 {
2004 if (DECL_STATIC_FUNCTION_P (fndecl))
2005 {
2006 /* A static member function cannot match an inherited
2007 virtual member function. */
2008 error ("%q+#D cannot be declared", fndecl);
2009 error (" since %q+#D declared in base class", fn);
2010 }
2011 else
2012 {
2013 /* It's definitely virtual, even if not explicitly set. */
2014 DECL_VIRTUAL_P (fndecl) = 1;
2015 check_final_overrider (fndecl, fn);
2016 }
2017 return 1;
2018 }
2019
2020 /* We failed to find one declared in this class. Look in its bases. */
2021 return look_for_overrides (type, fndecl);
2022 }
2023
2024 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2025
2026 static tree
2027 dfs_get_pure_virtuals (tree binfo, void *data)
2028 {
2029 tree type = (tree) data;
2030
2031 /* We're not interested in primary base classes; the derived class
2032 of which they are a primary base will contain the information we
2033 need. */
2034 if (!BINFO_PRIMARY_P (binfo))
2035 {
2036 tree virtuals;
2037
2038 for (virtuals = BINFO_VIRTUALS (binfo);
2039 virtuals;
2040 virtuals = TREE_CHAIN (virtuals))
2041 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2042 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2043 BV_FN (virtuals));
2044 }
2045
2046 return NULL_TREE;
2047 }
2048
2049 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2050
2051 void
2052 get_pure_virtuals (tree type)
2053 {
2054 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2055 is going to be overridden. */
2056 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2057 /* Now, run through all the bases which are not primary bases, and
2058 collect the pure virtual functions. We look at the vtable in
2059 each class to determine what pure virtual functions are present.
2060 (A primary base is not interesting because the derived class of
2061 which it is a primary base will contain vtable entries for the
2062 pure virtuals in the base class. */
2063 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2064 }
2065 \f
2066 /* Debug info for C++ classes can get very large; try to avoid
2067 emitting it everywhere.
2068
2069 Note that this optimization wins even when the target supports
2070 BINCL (if only slightly), and reduces the amount of work for the
2071 linker. */
2072
2073 void
2074 maybe_suppress_debug_info (tree t)
2075 {
2076 if (write_symbols == NO_DEBUG)
2077 return;
2078
2079 /* We might have set this earlier in cp_finish_decl. */
2080 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2081
2082 /* Always emit the information for each class every time. */
2083 if (flag_emit_class_debug_always)
2084 return;
2085
2086 /* If we already know how we're handling this class, handle debug info
2087 the same way. */
2088 if (CLASSTYPE_INTERFACE_KNOWN (t))
2089 {
2090 if (CLASSTYPE_INTERFACE_ONLY (t))
2091 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2092 /* else don't set it. */
2093 }
2094 /* If the class has a vtable, write out the debug info along with
2095 the vtable. */
2096 else if (TYPE_CONTAINS_VPTR_P (t))
2097 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2098
2099 /* Otherwise, just emit the debug info normally. */
2100 }
2101
2102 /* Note that we want debugging information for a base class of a class
2103 whose vtable is being emitted. Normally, this would happen because
2104 calling the constructor for a derived class implies calling the
2105 constructors for all bases, which involve initializing the
2106 appropriate vptr with the vtable for the base class; but in the
2107 presence of optimization, this initialization may be optimized
2108 away, so we tell finish_vtable_vardecl that we want the debugging
2109 information anyway. */
2110
2111 static tree
2112 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2113 {
2114 tree t = BINFO_TYPE (binfo);
2115
2116 if (CLASSTYPE_DEBUG_REQUESTED (t))
2117 return dfs_skip_bases;
2118
2119 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2120
2121 return NULL_TREE;
2122 }
2123
2124 /* Write out the debugging information for TYPE, whose vtable is being
2125 emitted. Also walk through our bases and note that we want to
2126 write out information for them. This avoids the problem of not
2127 writing any debug info for intermediate basetypes whose
2128 constructors, and thus the references to their vtables, and thus
2129 the vtables themselves, were optimized away. */
2130
2131 void
2132 note_debug_info_needed (tree type)
2133 {
2134 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2135 {
2136 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2137 rest_of_type_compilation (type, toplevel_bindings_p ());
2138 }
2139
2140 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2141 }
2142 \f
2143 void
2144 print_search_statistics (void)
2145 {
2146 #ifdef GATHER_STATISTICS
2147 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2148 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2149 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2150 n_outer_fields_searched, n_calls_lookup_fnfields);
2151 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2152 #else /* GATHER_STATISTICS */
2153 fprintf (stderr, "no search statistics\n");
2154 #endif /* GATHER_STATISTICS */
2155 }
2156
2157 void
2158 reinit_search_statistics (void)
2159 {
2160 #ifdef GATHER_STATISTICS
2161 n_fields_searched = 0;
2162 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2163 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2164 n_calls_get_base_type = 0;
2165 n_outer_fields_searched = 0;
2166 n_contexts_saved = 0;
2167 #endif /* GATHER_STATISTICS */
2168 }
2169
2170 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2171 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2172 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2173 bases have been encountered already in the tree walk. PARENT_CONVS
2174 is the list of lists of conversion functions that could hide CONV
2175 and OTHER_CONVS is the list of lists of conversion functions that
2176 could hide or be hidden by CONV, should virtualness be involved in
2177 the hierarchy. Merely checking the conversion op's name is not
2178 enough because two conversion operators to the same type can have
2179 different names. Return nonzero if we are visible. */
2180
2181 static int
2182 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2183 tree to_type, tree parent_convs, tree other_convs)
2184 {
2185 tree level, probe;
2186
2187 /* See if we are hidden by a parent conversion. */
2188 for (level = parent_convs; level; level = TREE_CHAIN (level))
2189 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2190 if (same_type_p (to_type, TREE_TYPE (probe)))
2191 return 0;
2192
2193 if (virtual_depth || virtualness)
2194 {
2195 /* In a virtual hierarchy, we could be hidden, or could hide a
2196 conversion function on the other_convs list. */
2197 for (level = other_convs; level; level = TREE_CHAIN (level))
2198 {
2199 int we_hide_them;
2200 int they_hide_us;
2201 tree *prev, other;
2202
2203 if (!(virtual_depth || TREE_STATIC (level)))
2204 /* Neither is morally virtual, so cannot hide each other. */
2205 continue;
2206
2207 if (!TREE_VALUE (level))
2208 /* They evaporated away already. */
2209 continue;
2210
2211 they_hide_us = (virtual_depth
2212 && original_binfo (binfo, TREE_PURPOSE (level)));
2213 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2214 && original_binfo (TREE_PURPOSE (level), binfo));
2215
2216 if (!(we_hide_them || they_hide_us))
2217 /* Neither is within the other, so no hiding can occur. */
2218 continue;
2219
2220 for (prev = &TREE_VALUE (level), other = *prev; other;)
2221 {
2222 if (same_type_p (to_type, TREE_TYPE (other)))
2223 {
2224 if (they_hide_us)
2225 /* We are hidden. */
2226 return 0;
2227
2228 if (we_hide_them)
2229 {
2230 /* We hide the other one. */
2231 other = TREE_CHAIN (other);
2232 *prev = other;
2233 continue;
2234 }
2235 }
2236 prev = &TREE_CHAIN (other);
2237 other = *prev;
2238 }
2239 }
2240 }
2241 return 1;
2242 }
2243
2244 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2245 of conversion functions, the first slot will be for the current
2246 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2247 of conversion functions from children of the current binfo,
2248 concatenated with conversions from elsewhere in the hierarchy --
2249 that list begins with OTHER_CONVS. Return a single list of lists
2250 containing only conversions from the current binfo and its
2251 children. */
2252
2253 static tree
2254 split_conversions (tree my_convs, tree parent_convs,
2255 tree child_convs, tree other_convs)
2256 {
2257 tree t;
2258 tree prev;
2259
2260 /* Remove the original other_convs portion from child_convs. */
2261 for (prev = NULL, t = child_convs;
2262 t != other_convs; prev = t, t = TREE_CHAIN (t))
2263 continue;
2264
2265 if (prev)
2266 TREE_CHAIN (prev) = NULL_TREE;
2267 else
2268 child_convs = NULL_TREE;
2269
2270 /* Attach the child convs to any we had at this level. */
2271 if (my_convs)
2272 {
2273 my_convs = parent_convs;
2274 TREE_CHAIN (my_convs) = child_convs;
2275 }
2276 else
2277 my_convs = child_convs;
2278
2279 return my_convs;
2280 }
2281
2282 /* Worker for lookup_conversions. Lookup conversion functions in
2283 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2284 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2285 encountered virtual bases already in the tree walk. PARENT_CONVS &
2286 PARENT_TPL_CONVS are lists of list of conversions within parent
2287 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2288 elsewhere in the tree. Return the conversions found within this
2289 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2290 encountered virtualness. We keep template and non-template
2291 conversions separate, to avoid unnecessary type comparisons.
2292
2293 The located conversion functions are held in lists of lists. The
2294 TREE_VALUE of the outer list is the list of conversion functions
2295 found in a particular binfo. The TREE_PURPOSE of both the outer
2296 and inner lists is the binfo at which those conversions were
2297 found. TREE_STATIC is set for those lists within of morally
2298 virtual binfos. The TREE_VALUE of the inner list is the conversion
2299 function or overload itself. The TREE_TYPE of each inner list node
2300 is the converted-to type. */
2301
2302 static int
2303 lookup_conversions_r (tree binfo,
2304 int virtual_depth, int virtualness,
2305 tree parent_convs, tree parent_tpl_convs,
2306 tree other_convs, tree other_tpl_convs,
2307 tree *convs, tree *tpl_convs)
2308 {
2309 int my_virtualness = 0;
2310 tree my_convs = NULL_TREE;
2311 tree my_tpl_convs = NULL_TREE;
2312 tree child_convs = NULL_TREE;
2313 tree child_tpl_convs = NULL_TREE;
2314 unsigned i;
2315 tree base_binfo;
2316 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2317 tree conv;
2318
2319 /* If we have no conversion operators, then don't look. */
2320 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2321 {
2322 *convs = *tpl_convs = NULL_TREE;
2323
2324 return 0;
2325 }
2326
2327 if (BINFO_VIRTUAL_P (binfo))
2328 virtual_depth++;
2329
2330 /* First, locate the unhidden ones at this level. */
2331 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2332 VEC_iterate (tree, method_vec, i, conv);
2333 ++i)
2334 {
2335 tree cur = OVL_CURRENT (conv);
2336
2337 if (!DECL_CONV_FN_P (cur))
2338 break;
2339
2340 if (TREE_CODE (cur) == TEMPLATE_DECL)
2341 {
2342 /* Only template conversions can be overloaded, and we must
2343 flatten them out and check each one individually. */
2344 tree tpls;
2345
2346 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2347 {
2348 tree tpl = OVL_CURRENT (tpls);
2349 tree type = DECL_CONV_FN_TYPE (tpl);
2350
2351 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2352 type, parent_tpl_convs, other_tpl_convs))
2353 {
2354 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2355 TREE_TYPE (my_tpl_convs) = type;
2356 if (virtual_depth)
2357 {
2358 TREE_STATIC (my_tpl_convs) = 1;
2359 my_virtualness = 1;
2360 }
2361 }
2362 }
2363 }
2364 else
2365 {
2366 tree name = DECL_NAME (cur);
2367
2368 if (!IDENTIFIER_MARKED (name))
2369 {
2370 tree type = DECL_CONV_FN_TYPE (cur);
2371
2372 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2373 type, parent_convs, other_convs))
2374 {
2375 my_convs = tree_cons (binfo, conv, my_convs);
2376 TREE_TYPE (my_convs) = type;
2377 if (virtual_depth)
2378 {
2379 TREE_STATIC (my_convs) = 1;
2380 my_virtualness = 1;
2381 }
2382 IDENTIFIER_MARKED (name) = 1;
2383 }
2384 }
2385 }
2386 }
2387
2388 if (my_convs)
2389 {
2390 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2391 if (virtual_depth)
2392 TREE_STATIC (parent_convs) = 1;
2393 }
2394
2395 if (my_tpl_convs)
2396 {
2397 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2398 if (virtual_depth)
2399 TREE_STATIC (parent_tpl_convs) = 1;
2400 }
2401
2402 child_convs = other_convs;
2403 child_tpl_convs = other_tpl_convs;
2404
2405 /* Now iterate over each base, looking for more conversions. */
2406 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2407 {
2408 tree base_convs, base_tpl_convs;
2409 unsigned base_virtualness;
2410
2411 base_virtualness = lookup_conversions_r (base_binfo,
2412 virtual_depth, virtualness,
2413 parent_convs, parent_tpl_convs,
2414 child_convs, child_tpl_convs,
2415 &base_convs, &base_tpl_convs);
2416 if (base_virtualness)
2417 my_virtualness = virtualness = 1;
2418 child_convs = chainon (base_convs, child_convs);
2419 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2420 }
2421
2422 /* Unmark the conversions found at this level */
2423 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2424 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2425
2426 *convs = split_conversions (my_convs, parent_convs,
2427 child_convs, other_convs);
2428 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2429 child_tpl_convs, other_tpl_convs);
2430
2431 return my_virtualness;
2432 }
2433
2434 /* Return a TREE_LIST containing all the non-hidden user-defined
2435 conversion functions for TYPE (and its base-classes). The
2436 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2437 function. The TREE_PURPOSE is the BINFO from which the conversion
2438 functions in this node were selected. This function is effectively
2439 performing a set of member lookups as lookup_fnfield does, but
2440 using the type being converted to as the unique key, rather than the
2441 field name. */
2442
2443 tree
2444 lookup_conversions (tree type)
2445 {
2446 tree convs, tpl_convs;
2447 tree list = NULL_TREE;
2448
2449 complete_type (type);
2450 if (!TYPE_BINFO (type))
2451 return NULL_TREE;
2452
2453 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2454 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2455 &convs, &tpl_convs);
2456
2457 /* Flatten the list-of-lists */
2458 for (; convs; convs = TREE_CHAIN (convs))
2459 {
2460 tree probe, next;
2461
2462 for (probe = TREE_VALUE (convs); probe; probe = next)
2463 {
2464 next = TREE_CHAIN (probe);
2465
2466 TREE_CHAIN (probe) = list;
2467 list = probe;
2468 }
2469 }
2470
2471 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2472 {
2473 tree probe, next;
2474
2475 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2476 {
2477 next = TREE_CHAIN (probe);
2478
2479 TREE_CHAIN (probe) = list;
2480 list = probe;
2481 }
2482 }
2483
2484 return list;
2485 }
2486
2487 /* Returns the binfo of the first direct or indirect virtual base derived
2488 from BINFO, or NULL if binfo is not via virtual. */
2489
2490 tree
2491 binfo_from_vbase (tree binfo)
2492 {
2493 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2494 {
2495 if (BINFO_VIRTUAL_P (binfo))
2496 return binfo;
2497 }
2498 return NULL_TREE;
2499 }
2500
2501 /* Returns the binfo of the first direct or indirect virtual base derived
2502 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2503 via virtual. */
2504
2505 tree
2506 binfo_via_virtual (tree binfo, tree limit)
2507 {
2508 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2509 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2510 return NULL_TREE;
2511
2512 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2513 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2514 {
2515 if (BINFO_VIRTUAL_P (binfo))
2516 return binfo;
2517 }
2518 return NULL_TREE;
2519 }
2520
2521 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2522 Find the equivalent binfo within whatever graph HERE is located.
2523 This is the inverse of original_binfo. */
2524
2525 tree
2526 copied_binfo (tree binfo, tree here)
2527 {
2528 tree result = NULL_TREE;
2529
2530 if (BINFO_VIRTUAL_P (binfo))
2531 {
2532 tree t;
2533
2534 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2535 t = BINFO_INHERITANCE_CHAIN (t))
2536 continue;
2537
2538 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2539 }
2540 else if (BINFO_INHERITANCE_CHAIN (binfo))
2541 {
2542 tree cbinfo;
2543 tree base_binfo;
2544 int ix;
2545
2546 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2547 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2548 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2549 {
2550 result = base_binfo;
2551 break;
2552 }
2553 }
2554 else
2555 {
2556 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2557 result = here;
2558 }
2559
2560 gcc_assert (result);
2561 return result;
2562 }
2563
2564 tree
2565 binfo_for_vbase (tree base, tree t)
2566 {
2567 unsigned ix;
2568 tree binfo;
2569 VEC(tree,gc) *vbases;
2570
2571 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2572 VEC_iterate (tree, vbases, ix, binfo); ix++)
2573 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2574 return binfo;
2575 return NULL;
2576 }
2577
2578 /* BINFO is some base binfo of HERE, within some other
2579 hierarchy. Return the equivalent binfo, but in the hierarchy
2580 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2581 is not a base binfo of HERE, returns NULL_TREE. */
2582
2583 tree
2584 original_binfo (tree binfo, tree here)
2585 {
2586 tree result = NULL;
2587
2588 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2589 result = here;
2590 else if (BINFO_VIRTUAL_P (binfo))
2591 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2592 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2593 : NULL_TREE);
2594 else if (BINFO_INHERITANCE_CHAIN (binfo))
2595 {
2596 tree base_binfos;
2597
2598 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2599 if (base_binfos)
2600 {
2601 int ix;
2602 tree base_binfo;
2603
2604 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2605 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2606 BINFO_TYPE (binfo)))
2607 {
2608 result = base_binfo;
2609 break;
2610 }
2611 }
2612 }
2613
2614 return result;
2615 }
2616