cp-tree.h (ICS_USER_FLAG): Remove comment about obsolete flag.
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
38
39 struct vbase_info
40 {
41 /* The class dominating the hierarchy. */
42 tree type;
43 /* A pointer to a complete object of the indicated TYPE. */
44 tree decl_ptr;
45 tree inits;
46 };
47
48 static int is_subobject_of_p (tree, tree);
49 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
50 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
51 static tree dfs_debug_unmarkedp (tree, int, void *);
52 static tree dfs_debug_mark (tree, void *);
53 static int check_hidden_convs (tree, int, int, tree, tree, tree);
54 static tree split_conversions (tree, tree, tree, tree);
55 static int lookup_conversions_r (tree, int, int,
56 tree, tree, tree, tree, tree *, tree *);
57 static int look_for_overrides_r (tree, tree);
58 static tree lookup_field_queue_p (tree, int, void *);
59 static tree lookup_field_r (tree, void *);
60 static tree dfs_accessible_queue_p (tree, int, void *);
61 static tree dfs_accessible_p (tree, void *);
62 static tree dfs_access_in_type (tree, void *);
63 static access_kind access_in_type (tree, tree);
64 static int protected_accessible_p (tree, tree, tree);
65 static int friend_accessible_p (tree, tree, tree);
66 static int template_self_reference_p (tree, tree);
67 static tree dfs_get_pure_virtuals (tree, void *);
68
69 \f
70 /* Variables for gathering statistics. */
71 #ifdef GATHER_STATISTICS
72 static int n_fields_searched;
73 static int n_calls_lookup_field, n_calls_lookup_field_1;
74 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
75 static int n_calls_get_base_type;
76 static int n_outer_fields_searched;
77 static int n_contexts_saved;
78 #endif /* GATHER_STATISTICS */
79
80 \f
81 /* Worker for lookup_base. BINFO is the binfo we are searching at,
82 BASE is the RECORD_TYPE we are searching for. ACCESS is the
83 required access checks. IS_VIRTUAL indicates if BINFO is morally
84 virtual.
85
86 If BINFO is of the required type, then *BINFO_PTR is examined to
87 compare with any other instance of BASE we might have already
88 discovered. *BINFO_PTR is initialized and a base_kind return value
89 indicates what kind of base was located.
90
91 Otherwise BINFO's bases are searched. */
92
93 static base_kind
94 lookup_base_r (tree binfo, tree base, base_access access,
95 bool is_virtual, /* inside a virtual part */
96 tree *binfo_ptr)
97 {
98 int i;
99 tree base_binfo;
100 base_kind found = bk_not_base;
101
102 if (same_type_p (BINFO_TYPE (binfo), base))
103 {
104 /* We have found a base. Check against what we have found
105 already. */
106 found = bk_same_type;
107 if (is_virtual)
108 found = bk_via_virtual;
109
110 if (!*binfo_ptr)
111 *binfo_ptr = binfo;
112 else if (binfo != *binfo_ptr)
113 {
114 if (access != ba_any)
115 *binfo_ptr = NULL;
116 else if (!is_virtual)
117 /* Prefer a non-virtual base. */
118 *binfo_ptr = binfo;
119 found = bk_ambig;
120 }
121
122 return found;
123 }
124
125 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
126 {
127 base_kind bk;
128
129 bk = lookup_base_r (base_binfo, base,
130 access,
131 is_virtual || BINFO_VIRTUAL_P (base_binfo),
132 binfo_ptr);
133
134 switch (bk)
135 {
136 case bk_ambig:
137 if (access != ba_any)
138 return bk;
139 found = bk;
140 break;
141
142 case bk_same_type:
143 bk = bk_proper_base;
144 /* Fall through. */
145 case bk_proper_base:
146 gcc_assert (found == bk_not_base);
147 found = bk;
148 break;
149
150 case bk_via_virtual:
151 if (found != bk_ambig)
152 found = bk;
153 break;
154
155 case bk_not_base:
156 break;
157
158 default:
159 gcc_unreachable ();
160 }
161 }
162 return found;
163 }
164
165 /* Returns true if type BASE is accessible in T. (BASE is known to be
166 a (possibly non-proper) base class of T.) */
167
168 bool
169 accessible_base_p (tree t, tree base)
170 {
171 tree decl;
172
173 /* [class.access.base]
174
175 A base class is said to be accessible if an invented public
176 member of the base class is accessible.
177
178 If BASE is a non-proper base, this condition is trivially
179 true. */
180 if (same_type_p (t, base))
181 return true;
182 /* Rather than inventing a public member, we use the implicit
183 public typedef created in the scope of every class. */
184 decl = TYPE_FIELDS (base);
185 while (!DECL_SELF_REFERENCE_P (decl))
186 decl = TREE_CHAIN (decl);
187 while (ANON_AGGR_TYPE_P (t))
188 t = TYPE_CONTEXT (t);
189 return accessible_p (t, decl);
190 }
191
192 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
193 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
194 non-NULL, fill with information about what kind of base we
195 discovered.
196
197 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
198 not set in ACCESS, then an error is issued and error_mark_node is
199 returned. If the ba_quiet bit is set, then no error is issued and
200 NULL_TREE is returned. */
201
202 tree
203 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
204 {
205 tree binfo = NULL_TREE; /* The binfo we've found so far. */
206 tree t_binfo = NULL_TREE;
207 base_kind bk;
208
209 if (t == error_mark_node || base == error_mark_node)
210 {
211 if (kind_ptr)
212 *kind_ptr = bk_not_base;
213 return error_mark_node;
214 }
215 gcc_assert (TYPE_P (base));
216
217 if (!TYPE_P (t))
218 {
219 t_binfo = t;
220 t = BINFO_TYPE (t);
221 }
222 else
223 {
224 t = complete_type (TYPE_MAIN_VARIANT (t));
225 t_binfo = TYPE_BINFO (t);
226 }
227
228 base = complete_type (TYPE_MAIN_VARIANT (base));
229
230 if (t_binfo)
231 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
232 else
233 bk = bk_not_base;
234
235 /* Check that the base is unambiguous and accessible. */
236 if (access != ba_any)
237 switch (bk)
238 {
239 case bk_not_base:
240 break;
241
242 case bk_ambig:
243 binfo = NULL_TREE;
244 if (!(access & ba_quiet))
245 {
246 error ("`%T' is an ambiguous base of `%T'", base, t);
247 binfo = error_mark_node;
248 }
249 break;
250
251 default:
252 if ((access & ~ba_quiet) != ba_ignore
253 /* If BASE is incomplete, then BASE and TYPE are probably
254 the same, in which case BASE is accessible. If they
255 are not the same, then TYPE is invalid. In that case,
256 there's no need to issue another error here, and
257 there's no implicit typedef to use in the code that
258 follows, so we skip the check. */
259 && COMPLETE_TYPE_P (base)
260 && !accessible_base_p (t, base))
261 {
262 if (!(access & ba_quiet))
263 {
264 error ("`%T' is an inaccessible base of `%T'", base, t);
265 binfo = error_mark_node;
266 }
267 else
268 binfo = NULL_TREE;
269 bk = bk_inaccessible;
270 }
271 break;
272 }
273
274 if (kind_ptr)
275 *kind_ptr = bk;
276
277 return binfo;
278 }
279
280 /* Worker function for get_dynamic_cast_base_type. */
281
282 static int
283 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
284 tree *offset_ptr)
285 {
286 VEC (tree) *accesses;
287 tree base_binfo;
288 int i;
289 int worst = -2;
290
291 if (BINFO_TYPE (binfo) == subtype)
292 {
293 if (is_via_virtual)
294 return -1;
295 else
296 {
297 *offset_ptr = BINFO_OFFSET (binfo);
298 return 0;
299 }
300 }
301
302 accesses = BINFO_BASE_ACCESSES (binfo);
303 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
304 {
305 tree base_access = VEC_index (tree, accesses, i);
306 int rval;
307
308 if (base_access != access_public_node)
309 continue;
310 rval = dynamic_cast_base_recurse
311 (subtype, base_binfo,
312 is_via_virtual || BINFO_VIRTUAL_P (base_binfo), offset_ptr);
313 if (worst == -2)
314 worst = rval;
315 else if (rval >= 0)
316 worst = worst >= 0 ? -3 : worst;
317 else if (rval == -1)
318 worst = -1;
319 else if (rval == -3 && worst != -1)
320 worst = -3;
321 }
322 return worst;
323 }
324
325 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
326 started from is related to the required TARGET type, in order to optimize
327 the inheritance graph search. This information is independent of the
328 current context, and ignores private paths, hence get_base_distance is
329 inappropriate. Return a TREE specifying the base offset, BOFF.
330 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
331 and there are no public virtual SUBTYPE bases.
332 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
333 BOFF == -2, SUBTYPE is not a public base.
334 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
335
336 tree
337 get_dynamic_cast_base_type (tree subtype, tree target)
338 {
339 tree offset = NULL_TREE;
340 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
341 false, &offset);
342
343 if (!boff)
344 return offset;
345 offset = ssize_int (boff);
346 return offset;
347 }
348
349 /* Search for a member with name NAME in a multiple inheritance
350 lattice specified by TYPE. If it does not exist, return NULL_TREE.
351 If the member is ambiguously referenced, return `error_mark_node'.
352 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
353 true, type declarations are preferred. */
354
355 /* Do a 1-level search for NAME as a member of TYPE. The caller must
356 figure out whether it can access this field. (Since it is only one
357 level, this is reasonable.) */
358
359 tree
360 lookup_field_1 (tree type, tree name, bool want_type)
361 {
362 tree field;
363
364 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
365 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
366 || TREE_CODE (type) == TYPENAME_TYPE)
367 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
368 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
369 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
370 the code often worked even when we treated the index as a list
371 of fields!)
372 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
373 return NULL_TREE;
374
375 if (TYPE_NAME (type)
376 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
377 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
378 {
379 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
380 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
381 int i;
382
383 while (lo < hi)
384 {
385 i = (lo + hi) / 2;
386
387 #ifdef GATHER_STATISTICS
388 n_fields_searched++;
389 #endif /* GATHER_STATISTICS */
390
391 if (DECL_NAME (fields[i]) > name)
392 hi = i;
393 else if (DECL_NAME (fields[i]) < name)
394 lo = i + 1;
395 else
396 {
397 field = NULL_TREE;
398
399 /* We might have a nested class and a field with the
400 same name; we sorted them appropriately via
401 field_decl_cmp, so just look for the first or last
402 field with this name. */
403 if (want_type)
404 {
405 do
406 field = fields[i--];
407 while (i >= lo && DECL_NAME (fields[i]) == name);
408 if (TREE_CODE (field) != TYPE_DECL
409 && !DECL_CLASS_TEMPLATE_P (field))
410 field = NULL_TREE;
411 }
412 else
413 {
414 do
415 field = fields[i++];
416 while (i < hi && DECL_NAME (fields[i]) == name);
417 }
418 return field;
419 }
420 }
421 return NULL_TREE;
422 }
423
424 field = TYPE_FIELDS (type);
425
426 #ifdef GATHER_STATISTICS
427 n_calls_lookup_field_1++;
428 #endif /* GATHER_STATISTICS */
429 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
430 {
431 #ifdef GATHER_STATISTICS
432 n_fields_searched++;
433 #endif /* GATHER_STATISTICS */
434 gcc_assert (DECL_P (field));
435 if (DECL_NAME (field) == NULL_TREE
436 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
437 {
438 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
439 if (temp)
440 return temp;
441 }
442 if (TREE_CODE (field) == USING_DECL)
443 {
444 /* We generally treat class-scope using-declarations as
445 ARM-style access specifications, because support for the
446 ISO semantics has not been implemented. So, in general,
447 there's no reason to return a USING_DECL, and the rest of
448 the compiler cannot handle that. Once the class is
449 defined, USING_DECLs are purged from TYPE_FIELDS; see
450 handle_using_decl. However, we make special efforts to
451 make using-declarations in template classes work
452 correctly. */
453 if (CLASSTYPE_TEMPLATE_INFO (type)
454 && !CLASSTYPE_USE_TEMPLATE (type)
455 && !TREE_TYPE (field))
456 ;
457 else
458 continue;
459 }
460
461 if (DECL_NAME (field) == name
462 && (!want_type
463 || TREE_CODE (field) == TYPE_DECL
464 || DECL_CLASS_TEMPLATE_P (field)))
465 return field;
466 }
467 /* Not found. */
468 if (name == vptr_identifier)
469 {
470 /* Give the user what s/he thinks s/he wants. */
471 if (TYPE_POLYMORPHIC_P (type))
472 return TYPE_VFIELD (type);
473 }
474 return NULL_TREE;
475 }
476
477 /* There are a number of cases we need to be aware of here:
478 current_class_type current_function_decl
479 global NULL NULL
480 fn-local NULL SET
481 class-local SET NULL
482 class->fn SET SET
483 fn->class SET SET
484
485 Those last two make life interesting. If we're in a function which is
486 itself inside a class, we need decls to go into the fn's decls (our
487 second case below). But if we're in a class and the class itself is
488 inside a function, we need decls to go into the decls for the class. To
489 achieve this last goal, we must see if, when both current_class_ptr and
490 current_function_decl are set, the class was declared inside that
491 function. If so, we know to put the decls into the class's scope. */
492
493 tree
494 current_scope (void)
495 {
496 if (current_function_decl == NULL_TREE)
497 return current_class_type;
498 if (current_class_type == NULL_TREE)
499 return current_function_decl;
500 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
501 && same_type_p (DECL_CONTEXT (current_function_decl),
502 current_class_type))
503 || (DECL_FRIEND_CONTEXT (current_function_decl)
504 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
505 current_class_type)))
506 return current_function_decl;
507
508 return current_class_type;
509 }
510
511 /* Returns nonzero if we are currently in a function scope. Note
512 that this function returns zero if we are within a local class, but
513 not within a member function body of the local class. */
514
515 int
516 at_function_scope_p (void)
517 {
518 tree cs = current_scope ();
519 return cs && TREE_CODE (cs) == FUNCTION_DECL;
520 }
521
522 /* Returns true if the innermost active scope is a class scope. */
523
524 bool
525 at_class_scope_p (void)
526 {
527 tree cs = current_scope ();
528 return cs && TYPE_P (cs);
529 }
530
531 /* Returns true if the innermost active scope is a namespace scope. */
532
533 bool
534 at_namespace_scope_p (void)
535 {
536 /* We are in a namespace scope if we are not it a class scope or a
537 function scope. */
538 return !current_scope();
539 }
540
541 /* Return the scope of DECL, as appropriate when doing name-lookup. */
542
543 tree
544 context_for_name_lookup (tree decl)
545 {
546 /* [class.union]
547
548 For the purposes of name lookup, after the anonymous union
549 definition, the members of the anonymous union are considered to
550 have been defined in the scope in which the anonymous union is
551 declared. */
552 tree context = DECL_CONTEXT (decl);
553
554 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
555 context = TYPE_CONTEXT (context);
556 if (!context)
557 context = global_namespace;
558
559 return context;
560 }
561
562 /* The accessibility routines use BINFO_ACCESS for scratch space
563 during the computation of the accessibility of some declaration. */
564
565 #define BINFO_ACCESS(NODE) \
566 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
567
568 /* Set the access associated with NODE to ACCESS. */
569
570 #define SET_BINFO_ACCESS(NODE, ACCESS) \
571 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
572 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
573
574 /* Called from access_in_type via dfs_walk. Calculate the access to
575 DATA (which is really a DECL) in BINFO. */
576
577 static tree
578 dfs_access_in_type (tree binfo, void *data)
579 {
580 tree decl = (tree) data;
581 tree type = BINFO_TYPE (binfo);
582 access_kind access = ak_none;
583
584 if (context_for_name_lookup (decl) == type)
585 {
586 /* If we have descended to the scope of DECL, just note the
587 appropriate access. */
588 if (TREE_PRIVATE (decl))
589 access = ak_private;
590 else if (TREE_PROTECTED (decl))
591 access = ak_protected;
592 else
593 access = ak_public;
594 }
595 else
596 {
597 /* First, check for an access-declaration that gives us more
598 access to the DECL. The CONST_DECL for an enumeration
599 constant will not have DECL_LANG_SPECIFIC, and thus no
600 DECL_ACCESS. */
601 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
602 {
603 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
604
605 if (decl_access)
606 {
607 decl_access = TREE_VALUE (decl_access);
608
609 if (decl_access == access_public_node)
610 access = ak_public;
611 else if (decl_access == access_protected_node)
612 access = ak_protected;
613 else if (decl_access == access_private_node)
614 access = ak_private;
615 else
616 gcc_unreachable ();
617 }
618 }
619
620 if (!access)
621 {
622 int i;
623 tree base_binfo;
624 VEC (tree) *accesses;
625
626 /* Otherwise, scan our baseclasses, and pick the most favorable
627 access. */
628 accesses = BINFO_BASE_ACCESSES (binfo);
629 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
630 {
631 tree base_access = VEC_index (tree, accesses, i);
632 access_kind base_access_now = BINFO_ACCESS (base_binfo);
633
634 if (base_access_now == ak_none || base_access_now == ak_private)
635 /* If it was not accessible in the base, or only
636 accessible as a private member, we can't access it
637 all. */
638 base_access_now = ak_none;
639 else if (base_access == access_protected_node)
640 /* Public and protected members in the base become
641 protected here. */
642 base_access_now = ak_protected;
643 else if (base_access == access_private_node)
644 /* Public and protected members in the base become
645 private here. */
646 base_access_now = ak_private;
647
648 /* See if the new access, via this base, gives more
649 access than our previous best access. */
650 if (base_access_now != ak_none
651 && (access == ak_none || base_access_now < access))
652 {
653 access = base_access_now;
654
655 /* If the new access is public, we can't do better. */
656 if (access == ak_public)
657 break;
658 }
659 }
660 }
661 }
662
663 /* Note the access to DECL in TYPE. */
664 SET_BINFO_ACCESS (binfo, access);
665
666 /* Mark TYPE as visited so that if we reach it again we do not
667 duplicate our efforts here. */
668 BINFO_MARKED (binfo) = 1;
669
670 return NULL_TREE;
671 }
672
673 /* Return the access to DECL in TYPE. */
674
675 static access_kind
676 access_in_type (tree type, tree decl)
677 {
678 tree binfo = TYPE_BINFO (type);
679
680 /* We must take into account
681
682 [class.paths]
683
684 If a name can be reached by several paths through a multiple
685 inheritance graph, the access is that of the path that gives
686 most access.
687
688 The algorithm we use is to make a post-order depth-first traversal
689 of the base-class hierarchy. As we come up the tree, we annotate
690 each node with the most lenient access. */
691 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
692 dfs_walk (binfo, dfs_unmark, markedp, 0);
693
694 return BINFO_ACCESS (binfo);
695 }
696
697 /* Called from accessible_p via dfs_walk. */
698
699 static tree
700 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
701 {
702 tree binfo = BINFO_BASE_BINFO (derived, ix);
703
704 if (BINFO_MARKED (binfo))
705 return NULL_TREE;
706
707 /* If this class is inherited via private or protected inheritance,
708 then we can't see it, unless we are a friend of the derived class. */
709 if (BINFO_BASE_ACCESS (derived, ix) != access_public_node
710 && !is_friend (BINFO_TYPE (derived), current_scope ()))
711 return NULL_TREE;
712
713 return binfo;
714 }
715
716 /* Called from accessible_p via dfs_walk. */
717
718 static tree
719 dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
720 {
721 access_kind access;
722
723 BINFO_MARKED (binfo) = 1;
724 access = BINFO_ACCESS (binfo);
725 if (access != ak_none
726 && is_friend (BINFO_TYPE (binfo), current_scope ()))
727 return binfo;
728
729 return NULL_TREE;
730 }
731
732 /* Returns nonzero if it is OK to access DECL through an object
733 indicated by BINFO in the context of DERIVED. */
734
735 static int
736 protected_accessible_p (tree decl, tree derived, tree binfo)
737 {
738 access_kind access;
739
740 /* We're checking this clause from [class.access.base]
741
742 m as a member of N is protected, and the reference occurs in a
743 member or friend of class N, or in a member or friend of a
744 class P derived from N, where m as a member of P is private or
745 protected.
746
747 Here DERIVED is a possible P and DECL is m. accessible_p will
748 iterate over various values of N, but the access to m in DERIVED
749 does not change.
750
751 Note that I believe that the passage above is wrong, and should read
752 "...is private or protected or public"; otherwise you get bizarre results
753 whereby a public using-decl can prevent you from accessing a protected
754 member of a base. (jason 2000/02/28) */
755
756 /* If DERIVED isn't derived from m's class, then it can't be a P. */
757 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
758 return 0;
759
760 access = access_in_type (derived, decl);
761
762 /* If m is inaccessible in DERIVED, then it's not a P. */
763 if (access == ak_none)
764 return 0;
765
766 /* [class.protected]
767
768 When a friend or a member function of a derived class references
769 a protected nonstatic member of a base class, an access check
770 applies in addition to those described earlier in clause
771 _class.access_) Except when forming a pointer to member
772 (_expr.unary.op_), the access must be through a pointer to,
773 reference to, or object of the derived class itself (or any class
774 derived from that class) (_expr.ref_). If the access is to form
775 a pointer to member, the nested-name-specifier shall name the
776 derived class (or any class derived from that class). */
777 if (DECL_NONSTATIC_MEMBER_P (decl))
778 {
779 /* We can tell through what the reference is occurring by
780 chasing BINFO up to the root. */
781 tree t = binfo;
782 while (BINFO_INHERITANCE_CHAIN (t))
783 t = BINFO_INHERITANCE_CHAIN (t);
784
785 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
786 return 0;
787 }
788
789 return 1;
790 }
791
792 /* Returns nonzero if SCOPE is a friend of a type which would be able
793 to access DECL through the object indicated by BINFO. */
794
795 static int
796 friend_accessible_p (tree scope, tree decl, tree binfo)
797 {
798 tree befriending_classes;
799 tree t;
800
801 if (!scope)
802 return 0;
803
804 if (TREE_CODE (scope) == FUNCTION_DECL
805 || DECL_FUNCTION_TEMPLATE_P (scope))
806 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
807 else if (TYPE_P (scope))
808 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
809 else
810 return 0;
811
812 for (t = befriending_classes; t; t = TREE_CHAIN (t))
813 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
814 return 1;
815
816 /* Nested classes are implicitly friends of their enclosing types, as
817 per core issue 45 (this is a change from the standard). */
818 if (TYPE_P (scope))
819 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
820 if (protected_accessible_p (decl, t, binfo))
821 return 1;
822
823 if (TREE_CODE (scope) == FUNCTION_DECL
824 || DECL_FUNCTION_TEMPLATE_P (scope))
825 {
826 /* Perhaps this SCOPE is a member of a class which is a
827 friend. */
828 if (DECL_CLASS_SCOPE_P (decl)
829 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
830 return 1;
831
832 /* Or an instantiation of something which is a friend. */
833 if (DECL_TEMPLATE_INFO (scope))
834 {
835 int ret;
836 /* Increment processing_template_decl to make sure that
837 dependent_type_p works correctly. */
838 ++processing_template_decl;
839 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
840 --processing_template_decl;
841 return ret;
842 }
843 }
844 else if (CLASSTYPE_TEMPLATE_INFO (scope))
845 {
846 int ret;
847 /* Increment processing_template_decl to make sure that
848 dependent_type_p works correctly. */
849 ++processing_template_decl;
850 ret = friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
851 --processing_template_decl;
852 return ret;
853 }
854
855 return 0;
856 }
857
858 /* DECL is a declaration from a base class of TYPE, which was the
859 class used to name DECL. Return nonzero if, in the current
860 context, DECL is accessible. If TYPE is actually a BINFO node,
861 then we can tell in what context the access is occurring by looking
862 at the most derived class along the path indicated by BINFO. */
863
864 int
865 accessible_p (tree type, tree decl)
866 {
867 tree binfo;
868 tree t;
869 tree scope;
870 access_kind access;
871
872 /* Nonzero if it's OK to access DECL if it has protected
873 accessibility in TYPE. */
874 int protected_ok = 0;
875
876 /* If this declaration is in a block or namespace scope, there's no
877 access control. */
878 if (!TYPE_P (context_for_name_lookup (decl)))
879 return 1;
880
881 /* There is no need to perform access checks inside a thunk. */
882 scope = current_scope ();
883 if (scope && DECL_THUNK_P (scope))
884 return 1;
885
886 /* In a template declaration, we cannot be sure whether the
887 particular specialization that is instantiated will be a friend
888 or not. Therefore, all access checks are deferred until
889 instantiation. */
890 if (processing_template_decl)
891 return 1;
892
893 if (!TYPE_P (type))
894 {
895 binfo = type;
896 type = BINFO_TYPE (type);
897 }
898 else
899 binfo = TYPE_BINFO (type);
900
901 /* [class.access.base]
902
903 A member m is accessible when named in class N if
904
905 --m as a member of N is public, or
906
907 --m as a member of N is private, and the reference occurs in a
908 member or friend of class N, or
909
910 --m as a member of N is protected, and the reference occurs in a
911 member or friend of class N, or in a member or friend of a
912 class P derived from N, where m as a member of P is private or
913 protected, or
914
915 --there exists a base class B of N that is accessible at the point
916 of reference, and m is accessible when named in class B.
917
918 We walk the base class hierarchy, checking these conditions. */
919
920 /* Figure out where the reference is occurring. Check to see if
921 DECL is private or protected in this scope, since that will
922 determine whether protected access is allowed. */
923 if (current_class_type)
924 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
925
926 /* Now, loop through the classes of which we are a friend. */
927 if (!protected_ok)
928 protected_ok = friend_accessible_p (scope, decl, binfo);
929
930 /* Standardize the binfo that access_in_type will use. We don't
931 need to know what path was chosen from this point onwards. */
932 binfo = TYPE_BINFO (type);
933
934 /* Compute the accessibility of DECL in the class hierarchy
935 dominated by type. */
936 access = access_in_type (type, decl);
937 if (access == ak_public
938 || (access == ak_protected && protected_ok))
939 return 1;
940 else
941 {
942 /* Walk the hierarchy again, looking for a base class that allows
943 access. */
944 t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
945 /* Clear any mark bits. Note that we have to walk the whole tree
946 here, since we have aborted the previous walk from some point
947 deep in the tree. */
948 dfs_walk (binfo, dfs_unmark, 0, 0);
949
950 return t != NULL_TREE;
951 }
952 }
953
954 struct lookup_field_info {
955 /* The type in which we're looking. */
956 tree type;
957 /* The name of the field for which we're looking. */
958 tree name;
959 /* If non-NULL, the current result of the lookup. */
960 tree rval;
961 /* The path to RVAL. */
962 tree rval_binfo;
963 /* If non-NULL, the lookup was ambiguous, and this is a list of the
964 candidates. */
965 tree ambiguous;
966 /* If nonzero, we are looking for types, not data members. */
967 int want_type;
968 /* If something went wrong, a message indicating what. */
969 const char *errstr;
970 };
971
972 /* Returns nonzero if BINFO is not hidden by the value found by the
973 lookup so far. If BINFO is hidden, then there's no need to look in
974 it. DATA is really a struct lookup_field_info. Called from
975 lookup_field via breadth_first_search. */
976
977 static tree
978 lookup_field_queue_p (tree derived, int ix, void *data)
979 {
980 tree binfo = BINFO_BASE_BINFO (derived, ix);
981 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
982
983 /* Don't look for constructors or destructors in base classes. */
984 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
985 return NULL_TREE;
986
987 /* If this base class is hidden by the best-known value so far, we
988 don't need to look. */
989 if (lfi->rval_binfo && derived == lfi->rval_binfo)
990 return NULL_TREE;
991
992 /* If this is a dependent base, don't look in it. */
993 if (BINFO_DEPENDENT_BASE_P (binfo))
994 return NULL_TREE;
995
996 return binfo;
997 }
998
999 /* Within the scope of a template class, you can refer to the to the
1000 current specialization with the name of the template itself. For
1001 example:
1002
1003 template <typename T> struct S { S* sp; }
1004
1005 Returns nonzero if DECL is such a declaration in a class TYPE. */
1006
1007 static int
1008 template_self_reference_p (tree type, tree decl)
1009 {
1010 return (CLASSTYPE_USE_TEMPLATE (type)
1011 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1012 && TREE_CODE (decl) == TYPE_DECL
1013 && DECL_ARTIFICIAL (decl)
1014 && DECL_NAME (decl) == constructor_name (type));
1015 }
1016
1017 /* Nonzero for a class member means that it is shared between all objects
1018 of that class.
1019
1020 [class.member.lookup]:If the resulting set of declarations are not all
1021 from sub-objects of the same type, or the set has a nonstatic member
1022 and includes members from distinct sub-objects, there is an ambiguity
1023 and the program is ill-formed.
1024
1025 This function checks that T contains no nonstatic members. */
1026
1027 int
1028 shared_member_p (tree t)
1029 {
1030 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1031 || TREE_CODE (t) == CONST_DECL)
1032 return 1;
1033 if (is_overloaded_fn (t))
1034 {
1035 for (; t; t = OVL_NEXT (t))
1036 {
1037 tree fn = OVL_CURRENT (t);
1038 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1039 return 0;
1040 }
1041 return 1;
1042 }
1043 return 0;
1044 }
1045
1046 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1047 found as a base class and sub-object of the object denoted by
1048 BINFO. */
1049
1050 static int
1051 is_subobject_of_p (tree parent, tree binfo)
1052 {
1053 tree probe;
1054
1055 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1056 {
1057 if (probe == binfo)
1058 return 1;
1059 if (BINFO_VIRTUAL_P (probe))
1060 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1061 != NULL_TREE);
1062 }
1063 return 0;
1064 }
1065
1066 /* DATA is really a struct lookup_field_info. Look for a field with
1067 the name indicated there in BINFO. If this function returns a
1068 non-NULL value it is the result of the lookup. Called from
1069 lookup_field via breadth_first_search. */
1070
1071 static tree
1072 lookup_field_r (tree binfo, void *data)
1073 {
1074 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1075 tree type = BINFO_TYPE (binfo);
1076 tree nval = NULL_TREE;
1077
1078 /* First, look for a function. There can't be a function and a data
1079 member with the same name, and if there's a function and a type
1080 with the same name, the type is hidden by the function. */
1081 if (!lfi->want_type)
1082 {
1083 int idx = lookup_fnfields_1 (type, lfi->name);
1084 if (idx >= 0)
1085 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1086 }
1087
1088 if (!nval)
1089 /* Look for a data member or type. */
1090 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1091
1092 /* If there is no declaration with the indicated name in this type,
1093 then there's nothing to do. */
1094 if (!nval)
1095 return NULL_TREE;
1096
1097 /* If we're looking up a type (as with an elaborated type specifier)
1098 we ignore all non-types we find. */
1099 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1100 && !DECL_CLASS_TEMPLATE_P (nval))
1101 {
1102 if (lfi->name == TYPE_IDENTIFIER (type))
1103 {
1104 /* If the aggregate has no user defined constructors, we allow
1105 it to have fields with the same name as the enclosing type.
1106 If we are looking for that name, find the corresponding
1107 TYPE_DECL. */
1108 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1109 if (DECL_NAME (nval) == lfi->name
1110 && TREE_CODE (nval) == TYPE_DECL)
1111 break;
1112 }
1113 else
1114 nval = NULL_TREE;
1115 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1116 {
1117 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1118 lfi->name);
1119 if (e != NULL)
1120 nval = TYPE_MAIN_DECL (e->type);
1121 else
1122 return NULL_TREE;
1123 }
1124 }
1125
1126 /* You must name a template base class with a template-id. */
1127 if (!same_type_p (type, lfi->type)
1128 && template_self_reference_p (type, nval))
1129 return NULL_TREE;
1130
1131 /* If the lookup already found a match, and the new value doesn't
1132 hide the old one, we might have an ambiguity. */
1133 if (lfi->rval_binfo
1134 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1135
1136 {
1137 if (nval == lfi->rval && shared_member_p (nval))
1138 /* The two things are really the same. */
1139 ;
1140 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1141 /* The previous value hides the new one. */
1142 ;
1143 else
1144 {
1145 /* We have a real ambiguity. We keep a chain of all the
1146 candidates. */
1147 if (!lfi->ambiguous && lfi->rval)
1148 {
1149 /* This is the first time we noticed an ambiguity. Add
1150 what we previously thought was a reasonable candidate
1151 to the list. */
1152 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1153 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1154 }
1155
1156 /* Add the new value. */
1157 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1158 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1159 lfi->errstr = "request for member `%D' is ambiguous";
1160 }
1161 }
1162 else
1163 {
1164 lfi->rval = nval;
1165 lfi->rval_binfo = binfo;
1166 }
1167
1168 return NULL_TREE;
1169 }
1170
1171 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1172 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1173 FUNCTIONS, and OPTYPE respectively. */
1174
1175 tree
1176 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1177 {
1178 tree baselink;
1179
1180 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1181 || TREE_CODE (functions) == TEMPLATE_DECL
1182 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1183 || TREE_CODE (functions) == OVERLOAD);
1184 gcc_assert (!optype || TYPE_P (optype));
1185 gcc_assert (TREE_TYPE (functions));
1186
1187 baselink = make_node (BASELINK);
1188 TREE_TYPE (baselink) = TREE_TYPE (functions);
1189 BASELINK_BINFO (baselink) = binfo;
1190 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1191 BASELINK_FUNCTIONS (baselink) = functions;
1192 BASELINK_OPTYPE (baselink) = optype;
1193
1194 return baselink;
1195 }
1196
1197 /* Look for a member named NAME in an inheritance lattice dominated by
1198 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1199 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1200 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1201 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1202 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1203 TREE_VALUEs are the list of ambiguous candidates.
1204
1205 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1206
1207 If nothing can be found return NULL_TREE and do not issue an error. */
1208
1209 tree
1210 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1211 {
1212 tree rval, rval_binfo = NULL_TREE;
1213 tree type = NULL_TREE, basetype_path = NULL_TREE;
1214 struct lookup_field_info lfi;
1215
1216 /* rval_binfo is the binfo associated with the found member, note,
1217 this can be set with useful information, even when rval is not
1218 set, because it must deal with ALL members, not just non-function
1219 members. It is used for ambiguity checking and the hidden
1220 checks. Whereas rval is only set if a proper (not hidden)
1221 non-function member is found. */
1222
1223 const char *errstr = 0;
1224
1225 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1226
1227 if (TREE_CODE (xbasetype) == TREE_BINFO)
1228 {
1229 type = BINFO_TYPE (xbasetype);
1230 basetype_path = xbasetype;
1231 }
1232 else
1233 {
1234 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1235 type = xbasetype;
1236 xbasetype = NULL_TREE;
1237 }
1238
1239 type = complete_type (type);
1240 if (!basetype_path)
1241 basetype_path = TYPE_BINFO (type);
1242
1243 if (!basetype_path)
1244 return NULL_TREE;
1245
1246 #ifdef GATHER_STATISTICS
1247 n_calls_lookup_field++;
1248 #endif /* GATHER_STATISTICS */
1249
1250 memset (&lfi, 0, sizeof (lfi));
1251 lfi.type = type;
1252 lfi.name = name;
1253 lfi.want_type = want_type;
1254 dfs_walk_real (basetype_path, &lookup_field_r, 0,
1255 &lookup_field_queue_p, &lfi);
1256 rval = lfi.rval;
1257 rval_binfo = lfi.rval_binfo;
1258 if (rval_binfo)
1259 type = BINFO_TYPE (rval_binfo);
1260 errstr = lfi.errstr;
1261
1262 /* If we are not interested in ambiguities, don't report them;
1263 just return NULL_TREE. */
1264 if (!protect && lfi.ambiguous)
1265 return NULL_TREE;
1266
1267 if (protect == 2)
1268 {
1269 if (lfi.ambiguous)
1270 return lfi.ambiguous;
1271 else
1272 protect = 0;
1273 }
1274
1275 /* [class.access]
1276
1277 In the case of overloaded function names, access control is
1278 applied to the function selected by overloaded resolution. */
1279 if (rval && protect && !is_overloaded_fn (rval))
1280 perform_or_defer_access_check (basetype_path, rval);
1281
1282 if (errstr && protect)
1283 {
1284 error (errstr, name, type);
1285 if (lfi.ambiguous)
1286 print_candidates (lfi.ambiguous);
1287 rval = error_mark_node;
1288 }
1289
1290 if (rval && is_overloaded_fn (rval))
1291 rval = build_baselink (rval_binfo, basetype_path, rval,
1292 (IDENTIFIER_TYPENAME_P (name)
1293 ? TREE_TYPE (name): NULL_TREE));
1294 return rval;
1295 }
1296
1297 /* Like lookup_member, except that if we find a function member we
1298 return NULL_TREE. */
1299
1300 tree
1301 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1302 {
1303 tree rval = lookup_member (xbasetype, name, protect, want_type);
1304
1305 /* Ignore functions, but propagate the ambiguity list. */
1306 if (!error_operand_p (rval)
1307 && (rval && BASELINK_P (rval)))
1308 return NULL_TREE;
1309
1310 return rval;
1311 }
1312
1313 /* Like lookup_member, except that if we find a non-function member we
1314 return NULL_TREE. */
1315
1316 tree
1317 lookup_fnfields (tree xbasetype, tree name, int protect)
1318 {
1319 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1320
1321 /* Ignore non-functions, but propagate the ambiguity list. */
1322 if (!error_operand_p (rval)
1323 && (rval && !BASELINK_P (rval)))
1324 return NULL_TREE;
1325
1326 return rval;
1327 }
1328
1329 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1330 corresponding to "operator TYPE ()", or -1 if there is no such
1331 operator. Only CLASS_TYPE itself is searched; this routine does
1332 not scan the base classes of CLASS_TYPE. */
1333
1334 static int
1335 lookup_conversion_operator (tree class_type, tree type)
1336 {
1337 int tpl_slot = -1;
1338
1339 if (TYPE_HAS_CONVERSION (class_type))
1340 {
1341 int i;
1342 tree fn;
1343 VEC(tree) *methods = CLASSTYPE_METHOD_VEC (class_type);
1344
1345 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1346 VEC_iterate (tree, methods, i, fn); ++i)
1347 {
1348 /* All the conversion operators come near the beginning of
1349 the class. Therefore, if FN is not a conversion
1350 operator, there is no matching conversion operator in
1351 CLASS_TYPE. */
1352 fn = OVL_CURRENT (fn);
1353 if (!DECL_CONV_FN_P (fn))
1354 break;
1355
1356 if (TREE_CODE (fn) == TEMPLATE_DECL)
1357 /* All the templated conversion functions are on the same
1358 slot, so remember it. */
1359 tpl_slot = i;
1360 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1361 return i;
1362 }
1363 }
1364
1365 return tpl_slot;
1366 }
1367
1368 /* TYPE is a class type. Return the index of the fields within
1369 the method vector with name NAME, or -1 is no such field exists. */
1370
1371 int
1372 lookup_fnfields_1 (tree type, tree name)
1373 {
1374 VEC(tree) *method_vec;
1375 tree fn;
1376 tree tmp;
1377 size_t i;
1378
1379 if (!CLASS_TYPE_P (type))
1380 return -1;
1381
1382 if (COMPLETE_TYPE_P (type))
1383 {
1384 if ((name == ctor_identifier
1385 || name == base_ctor_identifier
1386 || name == complete_ctor_identifier))
1387 {
1388 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1389 lazily_declare_fn (sfk_constructor, type);
1390 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1391 lazily_declare_fn (sfk_copy_constructor, type);
1392 }
1393 else if (name == ansi_assopname(NOP_EXPR)
1394 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1395 lazily_declare_fn (sfk_assignment_operator, type);
1396 }
1397
1398 method_vec = CLASSTYPE_METHOD_VEC (type);
1399 if (!method_vec)
1400 return -1;
1401
1402 #ifdef GATHER_STATISTICS
1403 n_calls_lookup_fnfields_1++;
1404 #endif /* GATHER_STATISTICS */
1405
1406 /* Constructors are first... */
1407 if (name == ctor_identifier)
1408 {
1409 fn = CLASSTYPE_CONSTRUCTORS (type);
1410 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1411 }
1412 /* and destructors are second. */
1413 if (name == dtor_identifier)
1414 {
1415 fn = CLASSTYPE_DESTRUCTORS (type);
1416 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1417 }
1418 if (IDENTIFIER_TYPENAME_P (name))
1419 return lookup_conversion_operator (type, TREE_TYPE (name));
1420
1421 /* Skip the conversion operators. */
1422 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1423 VEC_iterate (tree, method_vec, i, fn);
1424 ++i)
1425 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1426 break;
1427
1428 /* If the type is complete, use binary search. */
1429 if (COMPLETE_TYPE_P (type))
1430 {
1431 int lo;
1432 int hi;
1433
1434 lo = i;
1435 hi = VEC_length (tree, method_vec);
1436 while (lo < hi)
1437 {
1438 i = (lo + hi) / 2;
1439
1440 #ifdef GATHER_STATISTICS
1441 n_outer_fields_searched++;
1442 #endif /* GATHER_STATISTICS */
1443
1444 tmp = VEC_index (tree, method_vec, i);
1445 tmp = DECL_NAME (OVL_CURRENT (tmp));
1446 if (tmp > name)
1447 hi = i;
1448 else if (tmp < name)
1449 lo = i + 1;
1450 else
1451 return i;
1452 }
1453 }
1454 else
1455 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1456 {
1457 #ifdef GATHER_STATISTICS
1458 n_outer_fields_searched++;
1459 #endif /* GATHER_STATISTICS */
1460 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1461 return i;
1462 }
1463
1464 return -1;
1465 }
1466
1467 /* Like lookup_fnfields_1, except that the name is extracted from
1468 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1469
1470 int
1471 class_method_index_for_fn (tree class_type, tree function)
1472 {
1473 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1474 || DECL_FUNCTION_TEMPLATE_P (function));
1475
1476 return lookup_fnfields_1 (class_type,
1477 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1478 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1479 DECL_NAME (function));
1480 }
1481
1482
1483 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1484 the class or namespace used to qualify the name. CONTEXT_CLASS is
1485 the class corresponding to the object in which DECL will be used.
1486 Return a possibly modified version of DECL that takes into account
1487 the CONTEXT_CLASS.
1488
1489 In particular, consider an expression like `B::m' in the context of
1490 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1491 then the most derived class indicated by the BASELINK_BINFO will be
1492 `B', not `D'. This function makes that adjustment. */
1493
1494 tree
1495 adjust_result_of_qualified_name_lookup (tree decl,
1496 tree qualifying_scope,
1497 tree context_class)
1498 {
1499 if (context_class && CLASS_TYPE_P (qualifying_scope)
1500 && DERIVED_FROM_P (qualifying_scope, context_class)
1501 && BASELINK_P (decl))
1502 {
1503 tree base;
1504
1505 gcc_assert (CLASS_TYPE_P (context_class));
1506
1507 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1508 Because we do not yet know which function will be chosen by
1509 overload resolution, we cannot yet check either accessibility
1510 or ambiguity -- in either case, the choice of a static member
1511 function might make the usage valid. */
1512 base = lookup_base (context_class, qualifying_scope,
1513 ba_ignore | ba_quiet, NULL);
1514 if (base)
1515 {
1516 BASELINK_ACCESS_BINFO (decl) = base;
1517 BASELINK_BINFO (decl)
1518 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1519 ba_ignore | ba_quiet,
1520 NULL);
1521 }
1522 }
1523
1524 return decl;
1525 }
1526
1527 \f
1528 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1529 PREFN is called in preorder, while POSTFN is called in postorder.
1530 If they ever returns a non-NULL value, that value is immediately
1531 returned and the walk is terminated. Both PREFN and POSTFN can be
1532 NULL. At each node, PREFN and POSTFN are passed the binfo to
1533 examine. Before each base-binfo of BINFO is walked, QFN is called.
1534 If the value returned is nonzero, the base-binfo is walked;
1535 otherwise it is not. If QFN is NULL, it is treated as a function
1536 which always returns 1. All callbacks are passed DATA whenever
1537 they are called. */
1538
1539 tree
1540 dfs_walk_real (tree binfo,
1541 tree (*prefn) (tree, void *),
1542 tree (*postfn) (tree, void *),
1543 tree (*qfn) (tree, int, void *),
1544 void *data)
1545 {
1546 int i;
1547 tree base_binfo;
1548 tree rval = NULL_TREE;
1549
1550 /* Call the pre-order walking function. */
1551 if (prefn)
1552 {
1553 rval = (*prefn) (binfo, data);
1554 if (rval)
1555 return rval;
1556 }
1557
1558 /* Process the basetypes. */
1559 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1560 {
1561 if (qfn)
1562 {
1563 base_binfo = (*qfn) (binfo, i, data);
1564 if (!base_binfo)
1565 continue;
1566 }
1567 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1568 if (rval)
1569 return rval;
1570 }
1571
1572 /* Call the post-order walking function. */
1573 if (postfn)
1574 rval = (*postfn) (binfo, data);
1575
1576 return rval;
1577 }
1578
1579 /* Exactly like dfs_walk_real, except that there is no pre-order
1580 function call and FN is called in post-order. */
1581
1582 tree
1583 dfs_walk (tree binfo,
1584 tree (*fn) (tree, void *),
1585 tree (*qfn) (tree, int, void *),
1586 void *data)
1587 {
1588 return dfs_walk_real (binfo, 0, fn, qfn, data);
1589 }
1590
1591 /* Check that virtual overrider OVERRIDER is acceptable for base function
1592 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1593
1594 int
1595 check_final_overrider (tree overrider, tree basefn)
1596 {
1597 tree over_type = TREE_TYPE (overrider);
1598 tree base_type = TREE_TYPE (basefn);
1599 tree over_return = TREE_TYPE (over_type);
1600 tree base_return = TREE_TYPE (base_type);
1601 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1602 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1603 int fail = 0;
1604
1605 if (DECL_INVALID_OVERRIDER_P (overrider))
1606 return 0;
1607
1608 if (same_type_p (base_return, over_return))
1609 /* OK */;
1610 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1611 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1612 && POINTER_TYPE_P (base_return)))
1613 {
1614 /* Potentially covariant. */
1615 unsigned base_quals, over_quals;
1616
1617 fail = !POINTER_TYPE_P (base_return);
1618 if (!fail)
1619 {
1620 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1621
1622 base_return = TREE_TYPE (base_return);
1623 over_return = TREE_TYPE (over_return);
1624 }
1625 base_quals = cp_type_quals (base_return);
1626 over_quals = cp_type_quals (over_return);
1627
1628 if ((base_quals & over_quals) != over_quals)
1629 fail = 1;
1630
1631 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1632 {
1633 tree binfo = lookup_base (over_return, base_return,
1634 ba_check | ba_quiet, NULL);
1635
1636 if (!binfo)
1637 fail = 1;
1638 }
1639 else if (!pedantic
1640 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1641 /* GNU extension, allow trivial pointer conversions such as
1642 converting to void *, or qualification conversion. */
1643 {
1644 /* can_convert will permit user defined conversion from a
1645 (reference to) class type. We must reject them. */
1646 over_return = non_reference (TREE_TYPE (over_type));
1647 if (CLASS_TYPE_P (over_return))
1648 fail = 2;
1649 }
1650 else
1651 fail = 2;
1652 }
1653 else
1654 fail = 2;
1655 if (!fail)
1656 /* OK */;
1657 else
1658 {
1659 if (fail == 1)
1660 {
1661 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1662 cp_error_at (" overriding `%#D'", basefn);
1663 }
1664 else
1665 {
1666 cp_error_at ("conflicting return type specified for `%#D'",
1667 overrider);
1668 cp_error_at (" overriding `%#D'", basefn);
1669 }
1670 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1671 return 0;
1672 }
1673
1674 /* Check throw specifier is at least as strict. */
1675 if (!comp_except_specs (base_throw, over_throw, 0))
1676 {
1677 cp_error_at ("looser throw specifier for `%#F'", overrider);
1678 cp_error_at (" overriding `%#F'", basefn);
1679 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1680 return 0;
1681 }
1682
1683 return 1;
1684 }
1685
1686 /* Given a class TYPE, and a function decl FNDECL, look for
1687 virtual functions in TYPE's hierarchy which FNDECL overrides.
1688 We do not look in TYPE itself, only its bases.
1689
1690 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1691 find that it overrides anything.
1692
1693 We check that every function which is overridden, is correctly
1694 overridden. */
1695
1696 int
1697 look_for_overrides (tree type, tree fndecl)
1698 {
1699 tree binfo = TYPE_BINFO (type);
1700 tree base_binfo;
1701 int ix;
1702 int found = 0;
1703
1704 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1705 {
1706 tree basetype = BINFO_TYPE (base_binfo);
1707
1708 if (TYPE_POLYMORPHIC_P (basetype))
1709 found += look_for_overrides_r (basetype, fndecl);
1710 }
1711 return found;
1712 }
1713
1714 /* Look in TYPE for virtual functions with the same signature as
1715 FNDECL. */
1716
1717 tree
1718 look_for_overrides_here (tree type, tree fndecl)
1719 {
1720 int ix;
1721
1722 /* If there are no methods in TYPE (meaning that only implicitly
1723 declared methods will ever be provided for TYPE), then there are
1724 no virtual functions. */
1725 if (!CLASSTYPE_METHOD_VEC (type))
1726 return NULL_TREE;
1727
1728 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1729 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1730 else
1731 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1732 if (ix >= 0)
1733 {
1734 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1735
1736 for (; fns; fns = OVL_NEXT (fns))
1737 {
1738 tree fn = OVL_CURRENT (fns);
1739
1740 if (!DECL_VIRTUAL_P (fn))
1741 /* Not a virtual. */;
1742 else if (DECL_CONTEXT (fn) != type)
1743 /* Introduced with a using declaration. */;
1744 else if (DECL_STATIC_FUNCTION_P (fndecl))
1745 {
1746 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1747 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1748 if (compparms (TREE_CHAIN (btypes), dtypes))
1749 return fn;
1750 }
1751 else if (same_signature_p (fndecl, fn))
1752 return fn;
1753 }
1754 }
1755 return NULL_TREE;
1756 }
1757
1758 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1759 TYPE itself and its bases. */
1760
1761 static int
1762 look_for_overrides_r (tree type, tree fndecl)
1763 {
1764 tree fn = look_for_overrides_here (type, fndecl);
1765 if (fn)
1766 {
1767 if (DECL_STATIC_FUNCTION_P (fndecl))
1768 {
1769 /* A static member function cannot match an inherited
1770 virtual member function. */
1771 cp_error_at ("`%#D' cannot be declared", fndecl);
1772 cp_error_at (" since `%#D' declared in base class", fn);
1773 }
1774 else
1775 {
1776 /* It's definitely virtual, even if not explicitly set. */
1777 DECL_VIRTUAL_P (fndecl) = 1;
1778 check_final_overrider (fndecl, fn);
1779 }
1780 return 1;
1781 }
1782
1783 /* We failed to find one declared in this class. Look in its bases. */
1784 return look_for_overrides (type, fndecl);
1785 }
1786
1787 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1788
1789 static tree
1790 dfs_get_pure_virtuals (tree binfo, void *data)
1791 {
1792 tree type = (tree) data;
1793
1794 /* We're not interested in primary base classes; the derived class
1795 of which they are a primary base will contain the information we
1796 need. */
1797 if (!BINFO_PRIMARY_P (binfo))
1798 {
1799 tree virtuals;
1800
1801 for (virtuals = BINFO_VIRTUALS (binfo);
1802 virtuals;
1803 virtuals = TREE_CHAIN (virtuals))
1804 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1805 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (type),
1806 BV_FN (virtuals));
1807 }
1808
1809 BINFO_MARKED (binfo) = 1;
1810
1811 return NULL_TREE;
1812 }
1813
1814 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1815
1816 void
1817 get_pure_virtuals (tree type)
1818 {
1819 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1820 is going to be overridden. */
1821 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
1822 /* Now, run through all the bases which are not primary bases, and
1823 collect the pure virtual functions. We look at the vtable in
1824 each class to determine what pure virtual functions are present.
1825 (A primary base is not interesting because the derived class of
1826 which it is a primary base will contain vtable entries for the
1827 pure virtuals in the base class. */
1828 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1829 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1830 }
1831 \f
1832 /* DEPTH-FIRST SEARCH ROUTINES. */
1833
1834 tree
1835 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1836 {
1837 tree binfo = BINFO_BASE_BINFO (derived, ix);
1838
1839 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1840 }
1841
1842 tree
1843 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1844 {
1845 tree binfo = BINFO_BASE_BINFO (derived, ix);
1846
1847 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1848 }
1849
1850 /* The worker functions for `dfs_walk'. These do not need to
1851 test anything (vis a vis marking) if they are paired with
1852 a predicate function (above). */
1853
1854 tree
1855 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1856 {
1857 BINFO_MARKED (binfo) = 0;
1858 return NULL_TREE;
1859 }
1860
1861 \f
1862 /* Debug info for C++ classes can get very large; try to avoid
1863 emitting it everywhere.
1864
1865 Note that this optimization wins even when the target supports
1866 BINCL (if only slightly), and reduces the amount of work for the
1867 linker. */
1868
1869 void
1870 maybe_suppress_debug_info (tree t)
1871 {
1872 if (write_symbols == NO_DEBUG)
1873 return;
1874
1875 /* We might have set this earlier in cp_finish_decl. */
1876 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
1877
1878 /* If we already know how we're handling this class, handle debug info
1879 the same way. */
1880 if (CLASSTYPE_INTERFACE_KNOWN (t))
1881 {
1882 if (CLASSTYPE_INTERFACE_ONLY (t))
1883 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
1884 /* else don't set it. */
1885 }
1886 /* If the class has a vtable, write out the debug info along with
1887 the vtable. */
1888 else if (TYPE_CONTAINS_VPTR_P (t))
1889 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
1890
1891 /* Otherwise, just emit the debug info normally. */
1892 }
1893
1894 /* Note that we want debugging information for a base class of a class
1895 whose vtable is being emitted. Normally, this would happen because
1896 calling the constructor for a derived class implies calling the
1897 constructors for all bases, which involve initializing the
1898 appropriate vptr with the vtable for the base class; but in the
1899 presence of optimization, this initialization may be optimized
1900 away, so we tell finish_vtable_vardecl that we want the debugging
1901 information anyway. */
1902
1903 static tree
1904 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
1905 {
1906 tree t = BINFO_TYPE (binfo);
1907
1908 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
1909
1910 return NULL_TREE;
1911 }
1912
1913 /* Returns BINFO if we haven't already noted that we want debugging
1914 info for this base class. */
1915
1916 static tree
1917 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1918 {
1919 tree binfo = BINFO_BASE_BINFO (derived, ix);
1920
1921 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
1922 ? binfo : NULL_TREE);
1923 }
1924
1925 /* Write out the debugging information for TYPE, whose vtable is being
1926 emitted. Also walk through our bases and note that we want to
1927 write out information for them. This avoids the problem of not
1928 writing any debug info for intermediate basetypes whose
1929 constructors, and thus the references to their vtables, and thus
1930 the vtables themselves, were optimized away. */
1931
1932 void
1933 note_debug_info_needed (tree type)
1934 {
1935 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
1936 {
1937 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
1938 rest_of_type_compilation (type, toplevel_bindings_p ());
1939 }
1940
1941 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
1942 }
1943 \f
1944 void
1945 print_search_statistics (void)
1946 {
1947 #ifdef GATHER_STATISTICS
1948 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
1949 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
1950 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
1951 n_outer_fields_searched, n_calls_lookup_fnfields);
1952 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
1953 #else /* GATHER_STATISTICS */
1954 fprintf (stderr, "no search statistics\n");
1955 #endif /* GATHER_STATISTICS */
1956 }
1957
1958 void
1959 reinit_search_statistics (void)
1960 {
1961 #ifdef GATHER_STATISTICS
1962 n_fields_searched = 0;
1963 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
1964 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
1965 n_calls_get_base_type = 0;
1966 n_outer_fields_searched = 0;
1967 n_contexts_saved = 0;
1968 #endif /* GATHER_STATISTICS */
1969 }
1970
1971 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
1972 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
1973 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
1974 bases have been encountered already in the tree walk. PARENT_CONVS
1975 is the list of lists of conversion functions that could hide CONV
1976 and OTHER_CONVS is the list of lists of conversion functions that
1977 could hide or be hidden by CONV, should virtualness be involved in
1978 the hierarchy. Merely checking the conversion op's name is not
1979 enough because two conversion operators to the same type can have
1980 different names. Return nonzero if we are visible. */
1981
1982 static int
1983 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
1984 tree to_type, tree parent_convs, tree other_convs)
1985 {
1986 tree level, probe;
1987
1988 /* See if we are hidden by a parent conversion. */
1989 for (level = parent_convs; level; level = TREE_CHAIN (level))
1990 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
1991 if (same_type_p (to_type, TREE_TYPE (probe)))
1992 return 0;
1993
1994 if (virtual_depth || virtualness)
1995 {
1996 /* In a virtual hierarchy, we could be hidden, or could hide a
1997 conversion function on the other_convs list. */
1998 for (level = other_convs; level; level = TREE_CHAIN (level))
1999 {
2000 int we_hide_them;
2001 int they_hide_us;
2002 tree *prev, other;
2003
2004 if (!(virtual_depth || TREE_STATIC (level)))
2005 /* Neither is morally virtual, so cannot hide each other. */
2006 continue;
2007
2008 if (!TREE_VALUE (level))
2009 /* They evaporated away already. */
2010 continue;
2011
2012 they_hide_us = (virtual_depth
2013 && original_binfo (binfo, TREE_PURPOSE (level)));
2014 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2015 && original_binfo (TREE_PURPOSE (level), binfo));
2016
2017 if (!(we_hide_them || they_hide_us))
2018 /* Neither is within the other, so no hiding can occur. */
2019 continue;
2020
2021 for (prev = &TREE_VALUE (level), other = *prev; other;)
2022 {
2023 if (same_type_p (to_type, TREE_TYPE (other)))
2024 {
2025 if (they_hide_us)
2026 /* We are hidden. */
2027 return 0;
2028
2029 if (we_hide_them)
2030 {
2031 /* We hide the other one. */
2032 other = TREE_CHAIN (other);
2033 *prev = other;
2034 continue;
2035 }
2036 }
2037 prev = &TREE_CHAIN (other);
2038 other = *prev;
2039 }
2040 }
2041 }
2042 return 1;
2043 }
2044
2045 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2046 of conversion functions, the first slot will be for the current
2047 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2048 of conversion functions from children of the current binfo,
2049 concatenated with conversions from elsewhere in the hierarchy --
2050 that list begins with OTHER_CONVS. Return a single list of lists
2051 containing only conversions from the current binfo and its
2052 children. */
2053
2054 static tree
2055 split_conversions (tree my_convs, tree parent_convs,
2056 tree child_convs, tree other_convs)
2057 {
2058 tree t;
2059 tree prev;
2060
2061 /* Remove the original other_convs portion from child_convs. */
2062 for (prev = NULL, t = child_convs;
2063 t != other_convs; prev = t, t = TREE_CHAIN (t))
2064 continue;
2065
2066 if (prev)
2067 TREE_CHAIN (prev) = NULL_TREE;
2068 else
2069 child_convs = NULL_TREE;
2070
2071 /* Attach the child convs to any we had at this level. */
2072 if (my_convs)
2073 {
2074 my_convs = parent_convs;
2075 TREE_CHAIN (my_convs) = child_convs;
2076 }
2077 else
2078 my_convs = child_convs;
2079
2080 return my_convs;
2081 }
2082
2083 /* Worker for lookup_conversions. Lookup conversion functions in
2084 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2085 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2086 encountered virtual bases already in the tree walk. PARENT_CONVS &
2087 PARENT_TPL_CONVS are lists of list of conversions within parent
2088 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2089 elsewhere in the tree. Return the conversions found within this
2090 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2091 encountered virtualness. We keep template and non-template
2092 conversions separate, to avoid unnecessary type comparisons.
2093
2094 The located conversion functions are held in lists of lists. The
2095 TREE_VALUE of the outer list is the list of conversion functions
2096 found in a particular binfo. The TREE_PURPOSE of both the outer
2097 and inner lists is the binfo at which those conversions were
2098 found. TREE_STATIC is set for those lists within of morally
2099 virtual binfos. The TREE_VALUE of the inner list is the conversion
2100 function or overload itself. The TREE_TYPE of each inner list node
2101 is the converted-to type. */
2102
2103 static int
2104 lookup_conversions_r (tree binfo,
2105 int virtual_depth, int virtualness,
2106 tree parent_convs, tree parent_tpl_convs,
2107 tree other_convs, tree other_tpl_convs,
2108 tree *convs, tree *tpl_convs)
2109 {
2110 int my_virtualness = 0;
2111 tree my_convs = NULL_TREE;
2112 tree my_tpl_convs = NULL_TREE;
2113 tree child_convs = NULL_TREE;
2114 tree child_tpl_convs = NULL_TREE;
2115 unsigned i;
2116 tree base_binfo;
2117 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2118 tree conv;
2119
2120 /* If we have no conversion operators, then don't look. */
2121 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2122 {
2123 *convs = *tpl_convs = NULL_TREE;
2124
2125 return 0;
2126 }
2127
2128 if (BINFO_VIRTUAL_P (binfo))
2129 virtual_depth++;
2130
2131 /* First, locate the unhidden ones at this level. */
2132 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2133 VEC_iterate (tree, method_vec, i, conv);
2134 ++i)
2135 {
2136 tree cur = OVL_CURRENT (conv);
2137
2138 if (!DECL_CONV_FN_P (cur))
2139 break;
2140
2141 if (TREE_CODE (cur) == TEMPLATE_DECL)
2142 {
2143 /* Only template conversions can be overloaded, and we must
2144 flatten them out and check each one individually. */
2145 tree tpls;
2146
2147 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2148 {
2149 tree tpl = OVL_CURRENT (tpls);
2150 tree type = DECL_CONV_FN_TYPE (tpl);
2151
2152 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2153 type, parent_tpl_convs, other_tpl_convs))
2154 {
2155 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2156 TREE_TYPE (my_tpl_convs) = type;
2157 if (virtual_depth)
2158 {
2159 TREE_STATIC (my_tpl_convs) = 1;
2160 my_virtualness = 1;
2161 }
2162 }
2163 }
2164 }
2165 else
2166 {
2167 tree name = DECL_NAME (cur);
2168
2169 if (!IDENTIFIER_MARKED (name))
2170 {
2171 tree type = DECL_CONV_FN_TYPE (cur);
2172
2173 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2174 type, parent_convs, other_convs))
2175 {
2176 my_convs = tree_cons (binfo, conv, my_convs);
2177 TREE_TYPE (my_convs) = type;
2178 if (virtual_depth)
2179 {
2180 TREE_STATIC (my_convs) = 1;
2181 my_virtualness = 1;
2182 }
2183 IDENTIFIER_MARKED (name) = 1;
2184 }
2185 }
2186 }
2187 }
2188
2189 if (my_convs)
2190 {
2191 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2192 if (virtual_depth)
2193 TREE_STATIC (parent_convs) = 1;
2194 }
2195
2196 if (my_tpl_convs)
2197 {
2198 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2199 if (virtual_depth)
2200 TREE_STATIC (parent_convs) = 1;
2201 }
2202
2203 child_convs = other_convs;
2204 child_tpl_convs = other_tpl_convs;
2205
2206 /* Now iterate over each base, looking for more conversions. */
2207 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2208 {
2209 tree base_convs, base_tpl_convs;
2210 unsigned base_virtualness;
2211
2212 base_virtualness = lookup_conversions_r (base_binfo,
2213 virtual_depth, virtualness,
2214 parent_convs, parent_tpl_convs,
2215 child_convs, child_tpl_convs,
2216 &base_convs, &base_tpl_convs);
2217 if (base_virtualness)
2218 my_virtualness = virtualness = 1;
2219 child_convs = chainon (base_convs, child_convs);
2220 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2221 }
2222
2223 /* Unmark the conversions found at this level */
2224 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2225 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2226
2227 *convs = split_conversions (my_convs, parent_convs,
2228 child_convs, other_convs);
2229 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2230 child_tpl_convs, other_tpl_convs);
2231
2232 return my_virtualness;
2233 }
2234
2235 /* Return a TREE_LIST containing all the non-hidden user-defined
2236 conversion functions for TYPE (and its base-classes). The
2237 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2238 function. The TREE_PURPOSE is the BINFO from which the conversion
2239 functions in this node were selected. This function is effectively
2240 performing a set of member lookups as lookup_fnfield does, but
2241 using the type being converted to as the unique key, rather than the
2242 field name. */
2243
2244 tree
2245 lookup_conversions (tree type)
2246 {
2247 tree convs, tpl_convs;
2248 tree list = NULL_TREE;
2249
2250 complete_type (type);
2251 if (!TYPE_BINFO (type))
2252 return NULL_TREE;
2253
2254 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2255 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2256 &convs, &tpl_convs);
2257
2258 /* Flatten the list-of-lists */
2259 for (; convs; convs = TREE_CHAIN (convs))
2260 {
2261 tree probe, next;
2262
2263 for (probe = TREE_VALUE (convs); probe; probe = next)
2264 {
2265 next = TREE_CHAIN (probe);
2266
2267 TREE_CHAIN (probe) = list;
2268 list = probe;
2269 }
2270 }
2271
2272 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2273 {
2274 tree probe, next;
2275
2276 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2277 {
2278 next = TREE_CHAIN (probe);
2279
2280 TREE_CHAIN (probe) = list;
2281 list = probe;
2282 }
2283 }
2284
2285 return list;
2286 }
2287
2288 /* Returns the binfo of the first direct or indirect virtual base derived
2289 from BINFO, or NULL if binfo is not via virtual. */
2290
2291 tree
2292 binfo_from_vbase (tree binfo)
2293 {
2294 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2295 {
2296 if (BINFO_VIRTUAL_P (binfo))
2297 return binfo;
2298 }
2299 return NULL_TREE;
2300 }
2301
2302 /* Returns the binfo of the first direct or indirect virtual base derived
2303 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2304 via virtual. */
2305
2306 tree
2307 binfo_via_virtual (tree binfo, tree limit)
2308 {
2309 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2310 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2311 {
2312 if (BINFO_VIRTUAL_P (binfo))
2313 return binfo;
2314 }
2315 return NULL_TREE;
2316 }
2317
2318 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2319 Find the equivalent binfo within whatever graph HERE is located.
2320 This is the inverse of original_binfo. */
2321
2322 tree
2323 copied_binfo (tree binfo, tree here)
2324 {
2325 tree result = NULL_TREE;
2326
2327 if (BINFO_VIRTUAL_P (binfo))
2328 {
2329 tree t;
2330
2331 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2332 t = BINFO_INHERITANCE_CHAIN (t))
2333 continue;
2334
2335 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2336 }
2337 else if (BINFO_INHERITANCE_CHAIN (binfo))
2338 {
2339 tree cbinfo;
2340 tree base_binfo;
2341 int ix;
2342
2343 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2344 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2345 if (BINFO_TYPE (base_binfo) == BINFO_TYPE (binfo))
2346 {
2347 result = base_binfo;
2348 break;
2349 }
2350 }
2351 else
2352 {
2353 gcc_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo));
2354 result = here;
2355 }
2356
2357 gcc_assert (result);
2358 return result;
2359 }
2360
2361 tree
2362 binfo_for_vbase (tree base, tree t)
2363 {
2364 unsigned ix;
2365 tree binfo;
2366 VEC (tree) *vbases;
2367
2368 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2369 VEC_iterate (tree, vbases, ix, binfo); ix++)
2370 if (BINFO_TYPE (binfo) == base)
2371 return binfo;
2372 return NULL;
2373 }
2374
2375 /* BINFO is some base binfo of HERE, within some other
2376 hierarchy. Return the equivalent binfo, but in the hierarchy
2377 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2378 is not a base binfo of HERE, returns NULL_TREE. */
2379
2380 tree
2381 original_binfo (tree binfo, tree here)
2382 {
2383 tree result = NULL;
2384
2385 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2386 result = here;
2387 else if (BINFO_VIRTUAL_P (binfo))
2388 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2389 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2390 : NULL_TREE);
2391 else if (BINFO_INHERITANCE_CHAIN (binfo))
2392 {
2393 tree base_binfos;
2394
2395 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2396 if (base_binfos)
2397 {
2398 int ix;
2399 tree base_binfo;
2400
2401 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2402 if (BINFO_TYPE (base_binfo) == BINFO_TYPE (binfo))
2403 {
2404 result = base_binfo;
2405 break;
2406 }
2407 }
2408 }
2409
2410 return result;
2411 }
2412