Remove extra white spacing at end of lines.
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37
38 static int is_subobject_of_p (tree, tree);
39 static tree dfs_lookup_base (tree, void *);
40 static tree dfs_dcast_hint_pre (tree, void *);
41 static tree dfs_dcast_hint_post (tree, void *);
42 static tree dfs_debug_mark (tree, void *);
43 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44 tree (*post_fn) (tree, void *), void *data);
45 static void dfs_unmark_r (tree);
46 static int check_hidden_convs (tree, int, int, tree, tree, tree);
47 static tree split_conversions (tree, tree, tree, tree);
48 static int lookup_conversions_r (tree, int, int,
49 tree, tree, tree, tree, tree *, tree *);
50 static int look_for_overrides_r (tree, tree);
51 static tree lookup_field_r (tree, void *);
52 static tree dfs_accessible_post (tree, void *);
53 static tree dfs_walk_once_accessible_r (tree, bool, bool,
54 tree (*pre_fn) (tree, void *),
55 tree (*post_fn) (tree, void *),
56 void *data);
57 static tree dfs_walk_once_accessible (tree, bool,
58 tree (*pre_fn) (tree, void *),
59 tree (*post_fn) (tree, void *),
60 void *data);
61 static tree dfs_access_in_type (tree, void *);
62 static access_kind access_in_type (tree, tree);
63 static int protected_accessible_p (tree, tree, tree);
64 static int friend_accessible_p (tree, tree, tree);
65 static int template_self_reference_p (tree, tree);
66 static tree dfs_get_pure_virtuals (tree, void *);
67
68 \f
69 /* Variables for gathering statistics. */
70 #ifdef GATHER_STATISTICS
71 static int n_fields_searched;
72 static int n_calls_lookup_field, n_calls_lookup_field_1;
73 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
74 static int n_calls_get_base_type;
75 static int n_outer_fields_searched;
76 static int n_contexts_saved;
77 #endif /* GATHER_STATISTICS */
78
79 \f
80 /* Data for lookup_base and its workers. */
81
82 struct lookup_base_data_s
83 {
84 tree t; /* type being searched. */
85 tree base; /* The base type we're looking for. */
86 tree binfo; /* Found binfo. */
87 bool via_virtual; /* Found via a virtual path. */
88 bool ambiguous; /* Found multiply ambiguous */
89 bool repeated_base; /* Whether there are repeated bases in the
90 hierarchy. */
91 bool want_any; /* Whether we want any matching binfo. */
92 };
93
94 /* Worker function for lookup_base. See if we've found the desired
95 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
96
97 static tree
98 dfs_lookup_base (tree binfo, void *data_)
99 {
100 struct lookup_base_data_s *data = data_;
101
102 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
103 {
104 if (!data->binfo)
105 {
106 data->binfo = binfo;
107 data->via_virtual
108 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
109
110 if (!data->repeated_base)
111 /* If there are no repeated bases, we can stop now. */
112 return binfo;
113
114 if (data->want_any && !data->via_virtual)
115 /* If this is a non-virtual base, then we can't do
116 better. */
117 return binfo;
118
119 return dfs_skip_bases;
120 }
121 else
122 {
123 gcc_assert (binfo != data->binfo);
124
125 /* We've found more than one matching binfo. */
126 if (!data->want_any)
127 {
128 /* This is immediately ambiguous. */
129 data->binfo = NULL_TREE;
130 data->ambiguous = true;
131 return error_mark_node;
132 }
133
134 /* Prefer one via a non-virtual path. */
135 if (!binfo_via_virtual (binfo, data->t))
136 {
137 data->binfo = binfo;
138 data->via_virtual = false;
139 return binfo;
140 }
141
142 /* There must be repeated bases, otherwise we'd have stopped
143 on the first base we found. */
144 return dfs_skip_bases;
145 }
146 }
147
148 return NULL_TREE;
149 }
150
151 /* Returns true if type BASE is accessible in T. (BASE is known to be
152 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
153 true, consider any special access of the current scope, or access
154 bestowed by friendship. */
155
156 bool
157 accessible_base_p (tree t, tree base, bool consider_local_p)
158 {
159 tree decl;
160
161 /* [class.access.base]
162
163 A base class is said to be accessible if an invented public
164 member of the base class is accessible.
165
166 If BASE is a non-proper base, this condition is trivially
167 true. */
168 if (same_type_p (t, base))
169 return true;
170 /* Rather than inventing a public member, we use the implicit
171 public typedef created in the scope of every class. */
172 decl = TYPE_FIELDS (base);
173 while (!DECL_SELF_REFERENCE_P (decl))
174 decl = TREE_CHAIN (decl);
175 while (ANON_AGGR_TYPE_P (t))
176 t = TYPE_CONTEXT (t);
177 return accessible_p (t, decl, consider_local_p);
178 }
179
180 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
181 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
182 non-NULL, fill with information about what kind of base we
183 discovered.
184
185 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
186 not set in ACCESS, then an error is issued and error_mark_node is
187 returned. If the ba_quiet bit is set, then no error is issued and
188 NULL_TREE is returned. */
189
190 tree
191 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
192 {
193 tree binfo;
194 tree t_binfo;
195 base_kind bk;
196
197 if (t == error_mark_node || base == error_mark_node)
198 {
199 if (kind_ptr)
200 *kind_ptr = bk_not_base;
201 return error_mark_node;
202 }
203 gcc_assert (TYPE_P (base));
204
205 if (!TYPE_P (t))
206 {
207 t_binfo = t;
208 t = BINFO_TYPE (t);
209 }
210 else
211 {
212 t = complete_type (TYPE_MAIN_VARIANT (t));
213 t_binfo = TYPE_BINFO (t);
214 }
215
216 base = complete_type (TYPE_MAIN_VARIANT (base));
217
218 if (t_binfo)
219 {
220 struct lookup_base_data_s data;
221
222 data.t = t;
223 data.base = base;
224 data.binfo = NULL_TREE;
225 data.ambiguous = data.via_virtual = false;
226 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
227 data.want_any = access == ba_any;
228
229 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
230 binfo = data.binfo;
231
232 if (!binfo)
233 bk = data.ambiguous ? bk_ambig : bk_not_base;
234 else if (binfo == t_binfo)
235 bk = bk_same_type;
236 else if (data.via_virtual)
237 bk = bk_via_virtual;
238 else
239 bk = bk_proper_base;
240 }
241 else
242 {
243 binfo = NULL_TREE;
244 bk = bk_not_base;
245 }
246
247 /* Check that the base is unambiguous and accessible. */
248 if (access != ba_any)
249 switch (bk)
250 {
251 case bk_not_base:
252 break;
253
254 case bk_ambig:
255 if (!(access & ba_quiet))
256 {
257 error ("%qT is an ambiguous base of %qT", base, t);
258 binfo = error_mark_node;
259 }
260 break;
261
262 default:
263 if ((access & ba_check_bit)
264 /* If BASE is incomplete, then BASE and TYPE are probably
265 the same, in which case BASE is accessible. If they
266 are not the same, then TYPE is invalid. In that case,
267 there's no need to issue another error here, and
268 there's no implicit typedef to use in the code that
269 follows, so we skip the check. */
270 && COMPLETE_TYPE_P (base)
271 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
272 {
273 if (!(access & ba_quiet))
274 {
275 error ("%qT is an inaccessible base of %qT", base, t);
276 binfo = error_mark_node;
277 }
278 else
279 binfo = NULL_TREE;
280 bk = bk_inaccessible;
281 }
282 break;
283 }
284
285 if (kind_ptr)
286 *kind_ptr = bk;
287
288 return binfo;
289 }
290
291 /* Data for dcast_base_hint walker. */
292
293 struct dcast_data_s
294 {
295 tree subtype; /* The base type we're looking for. */
296 int virt_depth; /* Number of virtual bases encountered from most
297 derived. */
298 tree offset; /* Best hint offset discovered so far. */
299 bool repeated_base; /* Whether there are repeated bases in the
300 hierarchy. */
301 };
302
303 /* Worker for dcast_base_hint. Search for the base type being cast
304 from. */
305
306 static tree
307 dfs_dcast_hint_pre (tree binfo, void *data_)
308 {
309 struct dcast_data_s *data = data_;
310
311 if (BINFO_VIRTUAL_P (binfo))
312 data->virt_depth++;
313
314 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
315 {
316 if (data->virt_depth)
317 {
318 data->offset = ssize_int (-1);
319 return data->offset;
320 }
321 if (data->offset)
322 data->offset = ssize_int (-3);
323 else
324 data->offset = BINFO_OFFSET (binfo);
325
326 return data->repeated_base ? dfs_skip_bases : data->offset;
327 }
328
329 return NULL_TREE;
330 }
331
332 /* Worker for dcast_base_hint. Track the virtual depth. */
333
334 static tree
335 dfs_dcast_hint_post (tree binfo, void *data_)
336 {
337 struct dcast_data_s *data = data_;
338
339 if (BINFO_VIRTUAL_P (binfo))
340 data->virt_depth--;
341
342 return NULL_TREE;
343 }
344
345 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
346 started from is related to the required TARGET type, in order to optimize
347 the inheritance graph search. This information is independent of the
348 current context, and ignores private paths, hence get_base_distance is
349 inappropriate. Return a TREE specifying the base offset, BOFF.
350 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
351 and there are no public virtual SUBTYPE bases.
352 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
353 BOFF == -2, SUBTYPE is not a public base.
354 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
355
356 tree
357 dcast_base_hint (tree subtype, tree target)
358 {
359 struct dcast_data_s data;
360
361 data.subtype = subtype;
362 data.virt_depth = 0;
363 data.offset = NULL_TREE;
364 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
365
366 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
367 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
368 return data.offset ? data.offset : ssize_int (-2);
369 }
370
371 /* Search for a member with name NAME in a multiple inheritance
372 lattice specified by TYPE. If it does not exist, return NULL_TREE.
373 If the member is ambiguously referenced, return `error_mark_node'.
374 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
375 true, type declarations are preferred. */
376
377 /* Do a 1-level search for NAME as a member of TYPE. The caller must
378 figure out whether it can access this field. (Since it is only one
379 level, this is reasonable.) */
380
381 tree
382 lookup_field_1 (tree type, tree name, bool want_type)
383 {
384 tree field;
385
386 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
387 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
388 || TREE_CODE (type) == TYPENAME_TYPE)
389 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
390 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
391 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
392 the code often worked even when we treated the index as a list
393 of fields!)
394 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
395 return NULL_TREE;
396
397 if (TYPE_NAME (type)
398 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
399 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
400 {
401 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
402 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
403 int i;
404
405 while (lo < hi)
406 {
407 i = (lo + hi) / 2;
408
409 #ifdef GATHER_STATISTICS
410 n_fields_searched++;
411 #endif /* GATHER_STATISTICS */
412
413 if (DECL_NAME (fields[i]) > name)
414 hi = i;
415 else if (DECL_NAME (fields[i]) < name)
416 lo = i + 1;
417 else
418 {
419 field = NULL_TREE;
420
421 /* We might have a nested class and a field with the
422 same name; we sorted them appropriately via
423 field_decl_cmp, so just look for the first or last
424 field with this name. */
425 if (want_type)
426 {
427 do
428 field = fields[i--];
429 while (i >= lo && DECL_NAME (fields[i]) == name);
430 if (TREE_CODE (field) != TYPE_DECL
431 && !DECL_CLASS_TEMPLATE_P (field))
432 field = NULL_TREE;
433 }
434 else
435 {
436 do
437 field = fields[i++];
438 while (i < hi && DECL_NAME (fields[i]) == name);
439 }
440 return field;
441 }
442 }
443 return NULL_TREE;
444 }
445
446 field = TYPE_FIELDS (type);
447
448 #ifdef GATHER_STATISTICS
449 n_calls_lookup_field_1++;
450 #endif /* GATHER_STATISTICS */
451 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
452 {
453 #ifdef GATHER_STATISTICS
454 n_fields_searched++;
455 #endif /* GATHER_STATISTICS */
456 gcc_assert (DECL_P (field));
457 if (DECL_NAME (field) == NULL_TREE
458 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
459 {
460 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
461 if (temp)
462 return temp;
463 }
464 if (TREE_CODE (field) == USING_DECL)
465 {
466 /* We generally treat class-scope using-declarations as
467 ARM-style access specifications, because support for the
468 ISO semantics has not been implemented. So, in general,
469 there's no reason to return a USING_DECL, and the rest of
470 the compiler cannot handle that. Once the class is
471 defined, USING_DECLs are purged from TYPE_FIELDS; see
472 handle_using_decl. However, we make special efforts to
473 make using-declarations in class templates and class
474 template partial specializations work correctly. */
475 if (!DECL_DEPENDENT_P (field))
476 continue;
477 }
478
479 if (DECL_NAME (field) == name
480 && (!want_type
481 || TREE_CODE (field) == TYPE_DECL
482 || DECL_CLASS_TEMPLATE_P (field)))
483 return field;
484 }
485 /* Not found. */
486 if (name == vptr_identifier)
487 {
488 /* Give the user what s/he thinks s/he wants. */
489 if (TYPE_POLYMORPHIC_P (type))
490 return TYPE_VFIELD (type);
491 }
492 return NULL_TREE;
493 }
494
495 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
496 NAMESPACE_DECL corresponding to the innermost non-block scope. */
497
498 tree
499 current_scope (void)
500 {
501 /* There are a number of cases we need to be aware of here:
502 current_class_type current_function_decl
503 global NULL NULL
504 fn-local NULL SET
505 class-local SET NULL
506 class->fn SET SET
507 fn->class SET SET
508
509 Those last two make life interesting. If we're in a function which is
510 itself inside a class, we need decls to go into the fn's decls (our
511 second case below). But if we're in a class and the class itself is
512 inside a function, we need decls to go into the decls for the class. To
513 achieve this last goal, we must see if, when both current_class_ptr and
514 current_function_decl are set, the class was declared inside that
515 function. If so, we know to put the decls into the class's scope. */
516 if (current_function_decl && current_class_type
517 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
518 && same_type_p (DECL_CONTEXT (current_function_decl),
519 current_class_type))
520 || (DECL_FRIEND_CONTEXT (current_function_decl)
521 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
522 current_class_type))))
523 return current_function_decl;
524 if (current_class_type)
525 return current_class_type;
526 if (current_function_decl)
527 return current_function_decl;
528 return current_namespace;
529 }
530
531 /* Returns nonzero if we are currently in a function scope. Note
532 that this function returns zero if we are within a local class, but
533 not within a member function body of the local class. */
534
535 int
536 at_function_scope_p (void)
537 {
538 tree cs = current_scope ();
539 return cs && TREE_CODE (cs) == FUNCTION_DECL;
540 }
541
542 /* Returns true if the innermost active scope is a class scope. */
543
544 bool
545 at_class_scope_p (void)
546 {
547 tree cs = current_scope ();
548 return cs && TYPE_P (cs);
549 }
550
551 /* Returns true if the innermost active scope is a namespace scope. */
552
553 bool
554 at_namespace_scope_p (void)
555 {
556 tree cs = current_scope ();
557 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
558 }
559
560 /* Return the scope of DECL, as appropriate when doing name-lookup. */
561
562 tree
563 context_for_name_lookup (tree decl)
564 {
565 /* [class.union]
566
567 For the purposes of name lookup, after the anonymous union
568 definition, the members of the anonymous union are considered to
569 have been defined in the scope in which the anonymous union is
570 declared. */
571 tree context = DECL_CONTEXT (decl);
572
573 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
574 context = TYPE_CONTEXT (context);
575 if (!context)
576 context = global_namespace;
577
578 return context;
579 }
580
581 /* The accessibility routines use BINFO_ACCESS for scratch space
582 during the computation of the accessibility of some declaration. */
583
584 #define BINFO_ACCESS(NODE) \
585 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
586
587 /* Set the access associated with NODE to ACCESS. */
588
589 #define SET_BINFO_ACCESS(NODE, ACCESS) \
590 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
591 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
592
593 /* Called from access_in_type via dfs_walk. Calculate the access to
594 DATA (which is really a DECL) in BINFO. */
595
596 static tree
597 dfs_access_in_type (tree binfo, void *data)
598 {
599 tree decl = (tree) data;
600 tree type = BINFO_TYPE (binfo);
601 access_kind access = ak_none;
602
603 if (context_for_name_lookup (decl) == type)
604 {
605 /* If we have descended to the scope of DECL, just note the
606 appropriate access. */
607 if (TREE_PRIVATE (decl))
608 access = ak_private;
609 else if (TREE_PROTECTED (decl))
610 access = ak_protected;
611 else
612 access = ak_public;
613 }
614 else
615 {
616 /* First, check for an access-declaration that gives us more
617 access to the DECL. The CONST_DECL for an enumeration
618 constant will not have DECL_LANG_SPECIFIC, and thus no
619 DECL_ACCESS. */
620 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
621 {
622 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
623
624 if (decl_access)
625 {
626 decl_access = TREE_VALUE (decl_access);
627
628 if (decl_access == access_public_node)
629 access = ak_public;
630 else if (decl_access == access_protected_node)
631 access = ak_protected;
632 else if (decl_access == access_private_node)
633 access = ak_private;
634 else
635 gcc_unreachable ();
636 }
637 }
638
639 if (!access)
640 {
641 int i;
642 tree base_binfo;
643 VEC(tree,gc) *accesses;
644
645 /* Otherwise, scan our baseclasses, and pick the most favorable
646 access. */
647 accesses = BINFO_BASE_ACCESSES (binfo);
648 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
649 {
650 tree base_access = VEC_index (tree, accesses, i);
651 access_kind base_access_now = BINFO_ACCESS (base_binfo);
652
653 if (base_access_now == ak_none || base_access_now == ak_private)
654 /* If it was not accessible in the base, or only
655 accessible as a private member, we can't access it
656 all. */
657 base_access_now = ak_none;
658 else if (base_access == access_protected_node)
659 /* Public and protected members in the base become
660 protected here. */
661 base_access_now = ak_protected;
662 else if (base_access == access_private_node)
663 /* Public and protected members in the base become
664 private here. */
665 base_access_now = ak_private;
666
667 /* See if the new access, via this base, gives more
668 access than our previous best access. */
669 if (base_access_now != ak_none
670 && (access == ak_none || base_access_now < access))
671 {
672 access = base_access_now;
673
674 /* If the new access is public, we can't do better. */
675 if (access == ak_public)
676 break;
677 }
678 }
679 }
680 }
681
682 /* Note the access to DECL in TYPE. */
683 SET_BINFO_ACCESS (binfo, access);
684
685 return NULL_TREE;
686 }
687
688 /* Return the access to DECL in TYPE. */
689
690 static access_kind
691 access_in_type (tree type, tree decl)
692 {
693 tree binfo = TYPE_BINFO (type);
694
695 /* We must take into account
696
697 [class.paths]
698
699 If a name can be reached by several paths through a multiple
700 inheritance graph, the access is that of the path that gives
701 most access.
702
703 The algorithm we use is to make a post-order depth-first traversal
704 of the base-class hierarchy. As we come up the tree, we annotate
705 each node with the most lenient access. */
706 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
707
708 return BINFO_ACCESS (binfo);
709 }
710
711 /* Returns nonzero if it is OK to access DECL through an object
712 indicated by BINFO in the context of DERIVED. */
713
714 static int
715 protected_accessible_p (tree decl, tree derived, tree binfo)
716 {
717 access_kind access;
718
719 /* We're checking this clause from [class.access.base]
720
721 m as a member of N is protected, and the reference occurs in a
722 member or friend of class N, or in a member or friend of a
723 class P derived from N, where m as a member of P is private or
724 protected.
725
726 Here DERIVED is a possible P and DECL is m. accessible_p will
727 iterate over various values of N, but the access to m in DERIVED
728 does not change.
729
730 Note that I believe that the passage above is wrong, and should read
731 "...is private or protected or public"; otherwise you get bizarre results
732 whereby a public using-decl can prevent you from accessing a protected
733 member of a base. (jason 2000/02/28) */
734
735 /* If DERIVED isn't derived from m's class, then it can't be a P. */
736 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
737 return 0;
738
739 access = access_in_type (derived, decl);
740
741 /* If m is inaccessible in DERIVED, then it's not a P. */
742 if (access == ak_none)
743 return 0;
744
745 /* [class.protected]
746
747 When a friend or a member function of a derived class references
748 a protected nonstatic member of a base class, an access check
749 applies in addition to those described earlier in clause
750 _class.access_) Except when forming a pointer to member
751 (_expr.unary.op_), the access must be through a pointer to,
752 reference to, or object of the derived class itself (or any class
753 derived from that class) (_expr.ref_). If the access is to form
754 a pointer to member, the nested-name-specifier shall name the
755 derived class (or any class derived from that class). */
756 if (DECL_NONSTATIC_MEMBER_P (decl))
757 {
758 /* We can tell through what the reference is occurring by
759 chasing BINFO up to the root. */
760 tree t = binfo;
761 while (BINFO_INHERITANCE_CHAIN (t))
762 t = BINFO_INHERITANCE_CHAIN (t);
763
764 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
765 return 0;
766 }
767
768 return 1;
769 }
770
771 /* Returns nonzero if SCOPE is a friend of a type which would be able
772 to access DECL through the object indicated by BINFO. */
773
774 static int
775 friend_accessible_p (tree scope, tree decl, tree binfo)
776 {
777 tree befriending_classes;
778 tree t;
779
780 if (!scope)
781 return 0;
782
783 if (TREE_CODE (scope) == FUNCTION_DECL
784 || DECL_FUNCTION_TEMPLATE_P (scope))
785 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
786 else if (TYPE_P (scope))
787 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
788 else
789 return 0;
790
791 for (t = befriending_classes; t; t = TREE_CHAIN (t))
792 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
793 return 1;
794
795 /* Nested classes are implicitly friends of their enclosing types, as
796 per core issue 45 (this is a change from the standard). */
797 if (TYPE_P (scope))
798 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
799 if (protected_accessible_p (decl, t, binfo))
800 return 1;
801
802 if (TREE_CODE (scope) == FUNCTION_DECL
803 || DECL_FUNCTION_TEMPLATE_P (scope))
804 {
805 /* Perhaps this SCOPE is a member of a class which is a
806 friend. */
807 if (DECL_CLASS_SCOPE_P (scope)
808 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
809 return 1;
810
811 /* Or an instantiation of something which is a friend. */
812 if (DECL_TEMPLATE_INFO (scope))
813 {
814 int ret;
815 /* Increment processing_template_decl to make sure that
816 dependent_type_p works correctly. */
817 ++processing_template_decl;
818 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
819 --processing_template_decl;
820 return ret;
821 }
822 }
823
824 return 0;
825 }
826
827 /* Called via dfs_walk_once_accessible from accessible_p */
828
829 static tree
830 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
831 {
832 if (BINFO_ACCESS (binfo) != ak_none)
833 {
834 tree scope = current_scope ();
835 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
836 && is_friend (BINFO_TYPE (binfo), scope))
837 return binfo;
838 }
839
840 return NULL_TREE;
841 }
842
843 /* DECL is a declaration from a base class of TYPE, which was the
844 class used to name DECL. Return nonzero if, in the current
845 context, DECL is accessible. If TYPE is actually a BINFO node,
846 then we can tell in what context the access is occurring by looking
847 at the most derived class along the path indicated by BINFO. If
848 CONSIDER_LOCAL is true, do consider special access the current
849 scope or friendship thereof we might have. */
850
851 int
852 accessible_p (tree type, tree decl, bool consider_local_p)
853 {
854 tree binfo;
855 tree scope;
856 access_kind access;
857
858 /* Nonzero if it's OK to access DECL if it has protected
859 accessibility in TYPE. */
860 int protected_ok = 0;
861
862 /* If this declaration is in a block or namespace scope, there's no
863 access control. */
864 if (!TYPE_P (context_for_name_lookup (decl)))
865 return 1;
866
867 /* There is no need to perform access checks inside a thunk. */
868 scope = current_scope ();
869 if (scope && DECL_THUNK_P (scope))
870 return 1;
871
872 /* In a template declaration, we cannot be sure whether the
873 particular specialization that is instantiated will be a friend
874 or not. Therefore, all access checks are deferred until
875 instantiation. */
876 if (processing_template_decl)
877 return 1;
878
879 if (!TYPE_P (type))
880 {
881 binfo = type;
882 type = BINFO_TYPE (type);
883 }
884 else
885 binfo = TYPE_BINFO (type);
886
887 /* [class.access.base]
888
889 A member m is accessible when named in class N if
890
891 --m as a member of N is public, or
892
893 --m as a member of N is private, and the reference occurs in a
894 member or friend of class N, or
895
896 --m as a member of N is protected, and the reference occurs in a
897 member or friend of class N, or in a member or friend of a
898 class P derived from N, where m as a member of P is private or
899 protected, or
900
901 --there exists a base class B of N that is accessible at the point
902 of reference, and m is accessible when named in class B.
903
904 We walk the base class hierarchy, checking these conditions. */
905
906 if (consider_local_p)
907 {
908 /* Figure out where the reference is occurring. Check to see if
909 DECL is private or protected in this scope, since that will
910 determine whether protected access is allowed. */
911 if (current_class_type)
912 protected_ok = protected_accessible_p (decl,
913 current_class_type, binfo);
914
915 /* Now, loop through the classes of which we are a friend. */
916 if (!protected_ok)
917 protected_ok = friend_accessible_p (scope, decl, binfo);
918 }
919
920 /* Standardize the binfo that access_in_type will use. We don't
921 need to know what path was chosen from this point onwards. */
922 binfo = TYPE_BINFO (type);
923
924 /* Compute the accessibility of DECL in the class hierarchy
925 dominated by type. */
926 access = access_in_type (type, decl);
927 if (access == ak_public
928 || (access == ak_protected && protected_ok))
929 return 1;
930
931 if (!consider_local_p)
932 return 0;
933
934 /* Walk the hierarchy again, looking for a base class that allows
935 access. */
936 return dfs_walk_once_accessible (binfo, /*friends=*/true,
937 NULL, dfs_accessible_post, NULL)
938 != NULL_TREE;
939 }
940
941 struct lookup_field_info {
942 /* The type in which we're looking. */
943 tree type;
944 /* The name of the field for which we're looking. */
945 tree name;
946 /* If non-NULL, the current result of the lookup. */
947 tree rval;
948 /* The path to RVAL. */
949 tree rval_binfo;
950 /* If non-NULL, the lookup was ambiguous, and this is a list of the
951 candidates. */
952 tree ambiguous;
953 /* If nonzero, we are looking for types, not data members. */
954 int want_type;
955 /* If something went wrong, a message indicating what. */
956 const char *errstr;
957 };
958
959 /* Within the scope of a template class, you can refer to the to the
960 current specialization with the name of the template itself. For
961 example:
962
963 template <typename T> struct S { S* sp; }
964
965 Returns nonzero if DECL is such a declaration in a class TYPE. */
966
967 static int
968 template_self_reference_p (tree type, tree decl)
969 {
970 return (CLASSTYPE_USE_TEMPLATE (type)
971 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
972 && TREE_CODE (decl) == TYPE_DECL
973 && DECL_ARTIFICIAL (decl)
974 && DECL_NAME (decl) == constructor_name (type));
975 }
976
977 /* Nonzero for a class member means that it is shared between all objects
978 of that class.
979
980 [class.member.lookup]:If the resulting set of declarations are not all
981 from sub-objects of the same type, or the set has a nonstatic member
982 and includes members from distinct sub-objects, there is an ambiguity
983 and the program is ill-formed.
984
985 This function checks that T contains no nonstatic members. */
986
987 int
988 shared_member_p (tree t)
989 {
990 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
991 || TREE_CODE (t) == CONST_DECL)
992 return 1;
993 if (is_overloaded_fn (t))
994 {
995 for (; t; t = OVL_NEXT (t))
996 {
997 tree fn = OVL_CURRENT (t);
998 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
999 return 0;
1000 }
1001 return 1;
1002 }
1003 return 0;
1004 }
1005
1006 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1007 found as a base class and sub-object of the object denoted by
1008 BINFO. */
1009
1010 static int
1011 is_subobject_of_p (tree parent, tree binfo)
1012 {
1013 tree probe;
1014
1015 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1016 {
1017 if (probe == binfo)
1018 return 1;
1019 if (BINFO_VIRTUAL_P (probe))
1020 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1021 != NULL_TREE);
1022 }
1023 return 0;
1024 }
1025
1026 /* DATA is really a struct lookup_field_info. Look for a field with
1027 the name indicated there in BINFO. If this function returns a
1028 non-NULL value it is the result of the lookup. Called from
1029 lookup_field via breadth_first_search. */
1030
1031 static tree
1032 lookup_field_r (tree binfo, void *data)
1033 {
1034 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1035 tree type = BINFO_TYPE (binfo);
1036 tree nval = NULL_TREE;
1037
1038 /* If this is a dependent base, don't look in it. */
1039 if (BINFO_DEPENDENT_BASE_P (binfo))
1040 return NULL_TREE;
1041
1042 /* If this base class is hidden by the best-known value so far, we
1043 don't need to look. */
1044 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1045 && !BINFO_VIRTUAL_P (binfo))
1046 return dfs_skip_bases;
1047
1048 /* First, look for a function. There can't be a function and a data
1049 member with the same name, and if there's a function and a type
1050 with the same name, the type is hidden by the function. */
1051 if (!lfi->want_type)
1052 {
1053 int idx = lookup_fnfields_1 (type, lfi->name);
1054 if (idx >= 0)
1055 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1056 }
1057
1058 if (!nval)
1059 /* Look for a data member or type. */
1060 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1061
1062 /* If there is no declaration with the indicated name in this type,
1063 then there's nothing to do. */
1064 if (!nval)
1065 goto done;
1066
1067 /* If we're looking up a type (as with an elaborated type specifier)
1068 we ignore all non-types we find. */
1069 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1070 && !DECL_CLASS_TEMPLATE_P (nval))
1071 {
1072 if (lfi->name == TYPE_IDENTIFIER (type))
1073 {
1074 /* If the aggregate has no user defined constructors, we allow
1075 it to have fields with the same name as the enclosing type.
1076 If we are looking for that name, find the corresponding
1077 TYPE_DECL. */
1078 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1079 if (DECL_NAME (nval) == lfi->name
1080 && TREE_CODE (nval) == TYPE_DECL)
1081 break;
1082 }
1083 else
1084 nval = NULL_TREE;
1085 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1086 {
1087 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1088 lfi->name);
1089 if (e != NULL)
1090 nval = TYPE_MAIN_DECL (e->type);
1091 else
1092 goto done;
1093 }
1094 }
1095
1096 /* You must name a template base class with a template-id. */
1097 if (!same_type_p (type, lfi->type)
1098 && template_self_reference_p (type, nval))
1099 goto done;
1100
1101 /* If the lookup already found a match, and the new value doesn't
1102 hide the old one, we might have an ambiguity. */
1103 if (lfi->rval_binfo
1104 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1105
1106 {
1107 if (nval == lfi->rval && shared_member_p (nval))
1108 /* The two things are really the same. */
1109 ;
1110 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1111 /* The previous value hides the new one. */
1112 ;
1113 else
1114 {
1115 /* We have a real ambiguity. We keep a chain of all the
1116 candidates. */
1117 if (!lfi->ambiguous && lfi->rval)
1118 {
1119 /* This is the first time we noticed an ambiguity. Add
1120 what we previously thought was a reasonable candidate
1121 to the list. */
1122 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1123 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1124 }
1125
1126 /* Add the new value. */
1127 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1128 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1129 lfi->errstr = "request for member %qD is ambiguous";
1130 }
1131 }
1132 else
1133 {
1134 lfi->rval = nval;
1135 lfi->rval_binfo = binfo;
1136 }
1137
1138 done:
1139 /* Don't look for constructors or destructors in base classes. */
1140 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1141 return dfs_skip_bases;
1142 return NULL_TREE;
1143 }
1144
1145 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1146 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1147 FUNCTIONS, and OPTYPE respectively. */
1148
1149 tree
1150 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1151 {
1152 tree baselink;
1153
1154 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1155 || TREE_CODE (functions) == TEMPLATE_DECL
1156 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1157 || TREE_CODE (functions) == OVERLOAD);
1158 gcc_assert (!optype || TYPE_P (optype));
1159 gcc_assert (TREE_TYPE (functions));
1160
1161 baselink = make_node (BASELINK);
1162 TREE_TYPE (baselink) = TREE_TYPE (functions);
1163 BASELINK_BINFO (baselink) = binfo;
1164 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1165 BASELINK_FUNCTIONS (baselink) = functions;
1166 BASELINK_OPTYPE (baselink) = optype;
1167
1168 return baselink;
1169 }
1170
1171 /* Look for a member named NAME in an inheritance lattice dominated by
1172 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1173 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1174 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1175 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1176 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1177 TREE_VALUEs are the list of ambiguous candidates.
1178
1179 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1180
1181 If nothing can be found return NULL_TREE and do not issue an error. */
1182
1183 tree
1184 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1185 {
1186 tree rval, rval_binfo = NULL_TREE;
1187 tree type = NULL_TREE, basetype_path = NULL_TREE;
1188 struct lookup_field_info lfi;
1189
1190 /* rval_binfo is the binfo associated with the found member, note,
1191 this can be set with useful information, even when rval is not
1192 set, because it must deal with ALL members, not just non-function
1193 members. It is used for ambiguity checking and the hidden
1194 checks. Whereas rval is only set if a proper (not hidden)
1195 non-function member is found. */
1196
1197 const char *errstr = 0;
1198
1199 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1200
1201 if (TREE_CODE (xbasetype) == TREE_BINFO)
1202 {
1203 type = BINFO_TYPE (xbasetype);
1204 basetype_path = xbasetype;
1205 }
1206 else
1207 {
1208 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1209 type = xbasetype;
1210 xbasetype = NULL_TREE;
1211 }
1212
1213 type = complete_type (type);
1214 if (!basetype_path)
1215 basetype_path = TYPE_BINFO (type);
1216
1217 if (!basetype_path)
1218 return NULL_TREE;
1219
1220 #ifdef GATHER_STATISTICS
1221 n_calls_lookup_field++;
1222 #endif /* GATHER_STATISTICS */
1223
1224 memset (&lfi, 0, sizeof (lfi));
1225 lfi.type = type;
1226 lfi.name = name;
1227 lfi.want_type = want_type;
1228 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1229 rval = lfi.rval;
1230 rval_binfo = lfi.rval_binfo;
1231 if (rval_binfo)
1232 type = BINFO_TYPE (rval_binfo);
1233 errstr = lfi.errstr;
1234
1235 /* If we are not interested in ambiguities, don't report them;
1236 just return NULL_TREE. */
1237 if (!protect && lfi.ambiguous)
1238 return NULL_TREE;
1239
1240 if (protect == 2)
1241 {
1242 if (lfi.ambiguous)
1243 return lfi.ambiguous;
1244 else
1245 protect = 0;
1246 }
1247
1248 /* [class.access]
1249
1250 In the case of overloaded function names, access control is
1251 applied to the function selected by overloaded resolution. */
1252 if (rval && protect && !is_overloaded_fn (rval))
1253 perform_or_defer_access_check (basetype_path, rval);
1254
1255 if (errstr && protect)
1256 {
1257 error (errstr, name, type);
1258 if (lfi.ambiguous)
1259 print_candidates (lfi.ambiguous);
1260 rval = error_mark_node;
1261 }
1262
1263 if (rval && is_overloaded_fn (rval))
1264 rval = build_baselink (rval_binfo, basetype_path, rval,
1265 (IDENTIFIER_TYPENAME_P (name)
1266 ? TREE_TYPE (name): NULL_TREE));
1267 return rval;
1268 }
1269
1270 /* Like lookup_member, except that if we find a function member we
1271 return NULL_TREE. */
1272
1273 tree
1274 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1275 {
1276 tree rval = lookup_member (xbasetype, name, protect, want_type);
1277
1278 /* Ignore functions, but propagate the ambiguity list. */
1279 if (!error_operand_p (rval)
1280 && (rval && BASELINK_P (rval)))
1281 return NULL_TREE;
1282
1283 return rval;
1284 }
1285
1286 /* Like lookup_member, except that if we find a non-function member we
1287 return NULL_TREE. */
1288
1289 tree
1290 lookup_fnfields (tree xbasetype, tree name, int protect)
1291 {
1292 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1293
1294 /* Ignore non-functions, but propagate the ambiguity list. */
1295 if (!error_operand_p (rval)
1296 && (rval && !BASELINK_P (rval)))
1297 return NULL_TREE;
1298
1299 return rval;
1300 }
1301
1302 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1303 corresponding to "operator TYPE ()", or -1 if there is no such
1304 operator. Only CLASS_TYPE itself is searched; this routine does
1305 not scan the base classes of CLASS_TYPE. */
1306
1307 static int
1308 lookup_conversion_operator (tree class_type, tree type)
1309 {
1310 int tpl_slot = -1;
1311
1312 if (TYPE_HAS_CONVERSION (class_type))
1313 {
1314 int i;
1315 tree fn;
1316 VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1317
1318 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1319 VEC_iterate (tree, methods, i, fn); ++i)
1320 {
1321 /* All the conversion operators come near the beginning of
1322 the class. Therefore, if FN is not a conversion
1323 operator, there is no matching conversion operator in
1324 CLASS_TYPE. */
1325 fn = OVL_CURRENT (fn);
1326 if (!DECL_CONV_FN_P (fn))
1327 break;
1328
1329 if (TREE_CODE (fn) == TEMPLATE_DECL)
1330 /* All the templated conversion functions are on the same
1331 slot, so remember it. */
1332 tpl_slot = i;
1333 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1334 return i;
1335 }
1336 }
1337
1338 return tpl_slot;
1339 }
1340
1341 /* TYPE is a class type. Return the index of the fields within
1342 the method vector with name NAME, or -1 is no such field exists. */
1343
1344 int
1345 lookup_fnfields_1 (tree type, tree name)
1346 {
1347 VEC(tree,gc) *method_vec;
1348 tree fn;
1349 tree tmp;
1350 size_t i;
1351
1352 if (!CLASS_TYPE_P (type))
1353 return -1;
1354
1355 if (COMPLETE_TYPE_P (type))
1356 {
1357 if ((name == ctor_identifier
1358 || name == base_ctor_identifier
1359 || name == complete_ctor_identifier))
1360 {
1361 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1362 lazily_declare_fn (sfk_constructor, type);
1363 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1364 lazily_declare_fn (sfk_copy_constructor, type);
1365 }
1366 else if (name == ansi_assopname(NOP_EXPR)
1367 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1368 lazily_declare_fn (sfk_assignment_operator, type);
1369 else if ((name == dtor_identifier
1370 || name == base_dtor_identifier
1371 || name == complete_dtor_identifier
1372 || name == deleting_dtor_identifier)
1373 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1374 lazily_declare_fn (sfk_destructor, type);
1375 }
1376
1377 method_vec = CLASSTYPE_METHOD_VEC (type);
1378 if (!method_vec)
1379 return -1;
1380
1381 #ifdef GATHER_STATISTICS
1382 n_calls_lookup_fnfields_1++;
1383 #endif /* GATHER_STATISTICS */
1384
1385 /* Constructors are first... */
1386 if (name == ctor_identifier)
1387 {
1388 fn = CLASSTYPE_CONSTRUCTORS (type);
1389 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1390 }
1391 /* and destructors are second. */
1392 if (name == dtor_identifier)
1393 {
1394 fn = CLASSTYPE_DESTRUCTORS (type);
1395 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1396 }
1397 if (IDENTIFIER_TYPENAME_P (name))
1398 return lookup_conversion_operator (type, TREE_TYPE (name));
1399
1400 /* Skip the conversion operators. */
1401 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1402 VEC_iterate (tree, method_vec, i, fn);
1403 ++i)
1404 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1405 break;
1406
1407 /* If the type is complete, use binary search. */
1408 if (COMPLETE_TYPE_P (type))
1409 {
1410 int lo;
1411 int hi;
1412
1413 lo = i;
1414 hi = VEC_length (tree, method_vec);
1415 while (lo < hi)
1416 {
1417 i = (lo + hi) / 2;
1418
1419 #ifdef GATHER_STATISTICS
1420 n_outer_fields_searched++;
1421 #endif /* GATHER_STATISTICS */
1422
1423 tmp = VEC_index (tree, method_vec, i);
1424 tmp = DECL_NAME (OVL_CURRENT (tmp));
1425 if (tmp > name)
1426 hi = i;
1427 else if (tmp < name)
1428 lo = i + 1;
1429 else
1430 return i;
1431 }
1432 }
1433 else
1434 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1435 {
1436 #ifdef GATHER_STATISTICS
1437 n_outer_fields_searched++;
1438 #endif /* GATHER_STATISTICS */
1439 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1440 return i;
1441 }
1442
1443 return -1;
1444 }
1445
1446 /* Like lookup_fnfields_1, except that the name is extracted from
1447 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1448
1449 int
1450 class_method_index_for_fn (tree class_type, tree function)
1451 {
1452 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1453 || DECL_FUNCTION_TEMPLATE_P (function));
1454
1455 return lookup_fnfields_1 (class_type,
1456 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1457 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1458 DECL_NAME (function));
1459 }
1460
1461
1462 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1463 the class or namespace used to qualify the name. CONTEXT_CLASS is
1464 the class corresponding to the object in which DECL will be used.
1465 Return a possibly modified version of DECL that takes into account
1466 the CONTEXT_CLASS.
1467
1468 In particular, consider an expression like `B::m' in the context of
1469 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1470 then the most derived class indicated by the BASELINK_BINFO will be
1471 `B', not `D'. This function makes that adjustment. */
1472
1473 tree
1474 adjust_result_of_qualified_name_lookup (tree decl,
1475 tree qualifying_scope,
1476 tree context_class)
1477 {
1478 if (context_class && CLASS_TYPE_P (qualifying_scope)
1479 && DERIVED_FROM_P (qualifying_scope, context_class)
1480 && BASELINK_P (decl))
1481 {
1482 tree base;
1483
1484 gcc_assert (CLASS_TYPE_P (context_class));
1485
1486 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1487 Because we do not yet know which function will be chosen by
1488 overload resolution, we cannot yet check either accessibility
1489 or ambiguity -- in either case, the choice of a static member
1490 function might make the usage valid. */
1491 base = lookup_base (context_class, qualifying_scope,
1492 ba_unique | ba_quiet, NULL);
1493 if (base)
1494 {
1495 BASELINK_ACCESS_BINFO (decl) = base;
1496 BASELINK_BINFO (decl)
1497 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1498 ba_unique | ba_quiet,
1499 NULL);
1500 }
1501 }
1502
1503 return decl;
1504 }
1505
1506 \f
1507 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1508 PRE_FN is called in preorder, while POST_FN is called in postorder.
1509 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1510 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1511 that value is immediately returned and the walk is terminated. One
1512 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1513 POST_FN are passed the binfo to examine and the caller's DATA
1514 value. All paths are walked, thus virtual and morally virtual
1515 binfos can be multiply walked. */
1516
1517 tree
1518 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1519 tree (*post_fn) (tree, void *), void *data)
1520 {
1521 tree rval;
1522 unsigned ix;
1523 tree base_binfo;
1524
1525 /* Call the pre-order walking function. */
1526 if (pre_fn)
1527 {
1528 rval = pre_fn (binfo, data);
1529 if (rval)
1530 {
1531 if (rval == dfs_skip_bases)
1532 goto skip_bases;
1533 return rval;
1534 }
1535 }
1536
1537 /* Find the next child binfo to walk. */
1538 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1539 {
1540 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1541 if (rval)
1542 return rval;
1543 }
1544
1545 skip_bases:
1546 /* Call the post-order walking function. */
1547 if (post_fn)
1548 {
1549 rval = post_fn (binfo, data);
1550 gcc_assert (rval != dfs_skip_bases);
1551 return rval;
1552 }
1553
1554 return NULL_TREE;
1555 }
1556
1557 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1558 that binfos are walked at most once. */
1559
1560 static tree
1561 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1562 tree (*post_fn) (tree, void *), void *data)
1563 {
1564 tree rval;
1565 unsigned ix;
1566 tree base_binfo;
1567
1568 /* Call the pre-order walking function. */
1569 if (pre_fn)
1570 {
1571 rval = pre_fn (binfo, data);
1572 if (rval)
1573 {
1574 if (rval == dfs_skip_bases)
1575 goto skip_bases;
1576
1577 return rval;
1578 }
1579 }
1580
1581 /* Find the next child binfo to walk. */
1582 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1583 {
1584 if (BINFO_VIRTUAL_P (base_binfo))
1585 {
1586 if (BINFO_MARKED (base_binfo))
1587 continue;
1588 BINFO_MARKED (base_binfo) = 1;
1589 }
1590
1591 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1592 if (rval)
1593 return rval;
1594 }
1595
1596 skip_bases:
1597 /* Call the post-order walking function. */
1598 if (post_fn)
1599 {
1600 rval = post_fn (binfo, data);
1601 gcc_assert (rval != dfs_skip_bases);
1602 return rval;
1603 }
1604
1605 return NULL_TREE;
1606 }
1607
1608 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1609 BINFO. */
1610
1611 static void
1612 dfs_unmark_r (tree binfo)
1613 {
1614 unsigned ix;
1615 tree base_binfo;
1616
1617 /* Process the basetypes. */
1618 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1619 {
1620 if (BINFO_VIRTUAL_P (base_binfo))
1621 {
1622 if (!BINFO_MARKED (base_binfo))
1623 continue;
1624 BINFO_MARKED (base_binfo) = 0;
1625 }
1626 /* Only walk, if it can contain more virtual bases. */
1627 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1628 dfs_unmark_r (base_binfo);
1629 }
1630 }
1631
1632 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1633 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1634 For diamond shaped hierarchies we must mark the virtual bases, to
1635 avoid multiple walks. */
1636
1637 tree
1638 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1639 tree (*post_fn) (tree, void *), void *data)
1640 {
1641 static int active = 0; /* We must not be called recursively. */
1642 tree rval;
1643
1644 gcc_assert (pre_fn || post_fn);
1645 gcc_assert (!active);
1646 active++;
1647
1648 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1649 /* We are not diamond shaped, and therefore cannot encounter the
1650 same binfo twice. */
1651 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1652 else
1653 {
1654 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1655 if (!BINFO_INHERITANCE_CHAIN (binfo))
1656 {
1657 /* We are at the top of the hierarchy, and can use the
1658 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1659 bases. */
1660 VEC(tree,gc) *vbases;
1661 unsigned ix;
1662 tree base_binfo;
1663
1664 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1665 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1666 BINFO_MARKED (base_binfo) = 0;
1667 }
1668 else
1669 dfs_unmark_r (binfo);
1670 }
1671
1672 active--;
1673
1674 return rval;
1675 }
1676
1677 /* Worker function for dfs_walk_once_accessible. Behaves like
1678 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1679 access given by the current context should be considered, (b) ONCE
1680 indicates whether bases should be marked during traversal. */
1681
1682 static tree
1683 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1684 tree (*pre_fn) (tree, void *),
1685 tree (*post_fn) (tree, void *), void *data)
1686 {
1687 tree rval = NULL_TREE;
1688 unsigned ix;
1689 tree base_binfo;
1690
1691 /* Call the pre-order walking function. */
1692 if (pre_fn)
1693 {
1694 rval = pre_fn (binfo, data);
1695 if (rval)
1696 {
1697 if (rval == dfs_skip_bases)
1698 goto skip_bases;
1699
1700 return rval;
1701 }
1702 }
1703
1704 /* Find the next child binfo to walk. */
1705 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1706 {
1707 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1708
1709 if (mark && BINFO_MARKED (base_binfo))
1710 continue;
1711
1712 /* If the base is inherited via private or protected
1713 inheritance, then we can't see it, unless we are a friend of
1714 the current binfo. */
1715 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1716 {
1717 tree scope;
1718 if (!friends_p)
1719 continue;
1720 scope = current_scope ();
1721 if (!scope
1722 || TREE_CODE (scope) == NAMESPACE_DECL
1723 || !is_friend (BINFO_TYPE (binfo), scope))
1724 continue;
1725 }
1726
1727 if (mark)
1728 BINFO_MARKED (base_binfo) = 1;
1729
1730 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1731 pre_fn, post_fn, data);
1732 if (rval)
1733 return rval;
1734 }
1735
1736 skip_bases:
1737 /* Call the post-order walking function. */
1738 if (post_fn)
1739 {
1740 rval = post_fn (binfo, data);
1741 gcc_assert (rval != dfs_skip_bases);
1742 return rval;
1743 }
1744
1745 return NULL_TREE;
1746 }
1747
1748 /* Like dfs_walk_once except that only accessible bases are walked.
1749 FRIENDS_P indicates whether friendship of the local context
1750 should be considered when determining accessibility. */
1751
1752 static tree
1753 dfs_walk_once_accessible (tree binfo, bool friends_p,
1754 tree (*pre_fn) (tree, void *),
1755 tree (*post_fn) (tree, void *), void *data)
1756 {
1757 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1758 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1759 pre_fn, post_fn, data);
1760
1761 if (diamond_shaped)
1762 {
1763 if (!BINFO_INHERITANCE_CHAIN (binfo))
1764 {
1765 /* We are at the top of the hierarchy, and can use the
1766 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1767 bases. */
1768 VEC(tree,gc) *vbases;
1769 unsigned ix;
1770 tree base_binfo;
1771
1772 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1773 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1774 BINFO_MARKED (base_binfo) = 0;
1775 }
1776 else
1777 dfs_unmark_r (binfo);
1778 }
1779 return rval;
1780 }
1781
1782 /* Check that virtual overrider OVERRIDER is acceptable for base function
1783 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1784
1785 static int
1786 check_final_overrider (tree overrider, tree basefn)
1787 {
1788 tree over_type = TREE_TYPE (overrider);
1789 tree base_type = TREE_TYPE (basefn);
1790 tree over_return = TREE_TYPE (over_type);
1791 tree base_return = TREE_TYPE (base_type);
1792 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1793 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1794 int fail = 0;
1795
1796 if (DECL_INVALID_OVERRIDER_P (overrider))
1797 return 0;
1798
1799 if (same_type_p (base_return, over_return))
1800 /* OK */;
1801 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1802 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1803 && POINTER_TYPE_P (base_return)))
1804 {
1805 /* Potentially covariant. */
1806 unsigned base_quals, over_quals;
1807
1808 fail = !POINTER_TYPE_P (base_return);
1809 if (!fail)
1810 {
1811 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1812
1813 base_return = TREE_TYPE (base_return);
1814 over_return = TREE_TYPE (over_return);
1815 }
1816 base_quals = cp_type_quals (base_return);
1817 over_quals = cp_type_quals (over_return);
1818
1819 if ((base_quals & over_quals) != over_quals)
1820 fail = 1;
1821
1822 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1823 {
1824 tree binfo = lookup_base (over_return, base_return,
1825 ba_check | ba_quiet, NULL);
1826
1827 if (!binfo)
1828 fail = 1;
1829 }
1830 else if (!pedantic
1831 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1832 /* GNU extension, allow trivial pointer conversions such as
1833 converting to void *, or qualification conversion. */
1834 {
1835 /* can_convert will permit user defined conversion from a
1836 (reference to) class type. We must reject them. */
1837 over_return = non_reference (TREE_TYPE (over_type));
1838 if (CLASS_TYPE_P (over_return))
1839 fail = 2;
1840 else
1841 {
1842 cp_warning_at ("deprecated covariant return type for %q#D",
1843 overrider);
1844 cp_warning_at (" overriding %q#D", basefn);
1845 }
1846 }
1847 else
1848 fail = 2;
1849 }
1850 else
1851 fail = 2;
1852 if (!fail)
1853 /* OK */;
1854 else
1855 {
1856 if (fail == 1)
1857 {
1858 cp_error_at ("invalid covariant return type for %q#D", overrider);
1859 cp_error_at (" overriding %q#D", basefn);
1860 }
1861 else
1862 {
1863 cp_error_at ("conflicting return type specified for %q#D",
1864 overrider);
1865 cp_error_at (" overriding %q#D", basefn);
1866 }
1867 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1868 return 0;
1869 }
1870
1871 /* Check throw specifier is at least as strict. */
1872 if (!comp_except_specs (base_throw, over_throw, 0))
1873 {
1874 cp_error_at ("looser throw specifier for %q#F", overrider);
1875 cp_error_at (" overriding %q#F", basefn);
1876 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1877 return 0;
1878 }
1879
1880 return 1;
1881 }
1882
1883 /* Given a class TYPE, and a function decl FNDECL, look for
1884 virtual functions in TYPE's hierarchy which FNDECL overrides.
1885 We do not look in TYPE itself, only its bases.
1886
1887 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1888 find that it overrides anything.
1889
1890 We check that every function which is overridden, is correctly
1891 overridden. */
1892
1893 int
1894 look_for_overrides (tree type, tree fndecl)
1895 {
1896 tree binfo = TYPE_BINFO (type);
1897 tree base_binfo;
1898 int ix;
1899 int found = 0;
1900
1901 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1902 {
1903 tree basetype = BINFO_TYPE (base_binfo);
1904
1905 if (TYPE_POLYMORPHIC_P (basetype))
1906 found += look_for_overrides_r (basetype, fndecl);
1907 }
1908 return found;
1909 }
1910
1911 /* Look in TYPE for virtual functions with the same signature as
1912 FNDECL. */
1913
1914 tree
1915 look_for_overrides_here (tree type, tree fndecl)
1916 {
1917 int ix;
1918
1919 /* If there are no methods in TYPE (meaning that only implicitly
1920 declared methods will ever be provided for TYPE), then there are
1921 no virtual functions. */
1922 if (!CLASSTYPE_METHOD_VEC (type))
1923 return NULL_TREE;
1924
1925 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1926 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1927 else
1928 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1929 if (ix >= 0)
1930 {
1931 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1932
1933 for (; fns; fns = OVL_NEXT (fns))
1934 {
1935 tree fn = OVL_CURRENT (fns);
1936
1937 if (!DECL_VIRTUAL_P (fn))
1938 /* Not a virtual. */;
1939 else if (DECL_CONTEXT (fn) != type)
1940 /* Introduced with a using declaration. */;
1941 else if (DECL_STATIC_FUNCTION_P (fndecl))
1942 {
1943 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1944 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1945 if (compparms (TREE_CHAIN (btypes), dtypes))
1946 return fn;
1947 }
1948 else if (same_signature_p (fndecl, fn))
1949 return fn;
1950 }
1951 }
1952 return NULL_TREE;
1953 }
1954
1955 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1956 TYPE itself and its bases. */
1957
1958 static int
1959 look_for_overrides_r (tree type, tree fndecl)
1960 {
1961 tree fn = look_for_overrides_here (type, fndecl);
1962 if (fn)
1963 {
1964 if (DECL_STATIC_FUNCTION_P (fndecl))
1965 {
1966 /* A static member function cannot match an inherited
1967 virtual member function. */
1968 cp_error_at ("%q#D cannot be declared", fndecl);
1969 cp_error_at (" since %q#D declared in base class", fn);
1970 }
1971 else
1972 {
1973 /* It's definitely virtual, even if not explicitly set. */
1974 DECL_VIRTUAL_P (fndecl) = 1;
1975 check_final_overrider (fndecl, fn);
1976 }
1977 return 1;
1978 }
1979
1980 /* We failed to find one declared in this class. Look in its bases. */
1981 return look_for_overrides (type, fndecl);
1982 }
1983
1984 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1985
1986 static tree
1987 dfs_get_pure_virtuals (tree binfo, void *data)
1988 {
1989 tree type = (tree) data;
1990
1991 /* We're not interested in primary base classes; the derived class
1992 of which they are a primary base will contain the information we
1993 need. */
1994 if (!BINFO_PRIMARY_P (binfo))
1995 {
1996 tree virtuals;
1997
1998 for (virtuals = BINFO_VIRTUALS (binfo);
1999 virtuals;
2000 virtuals = TREE_CHAIN (virtuals))
2001 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2002 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2003 BV_FN (virtuals));
2004 }
2005
2006 return NULL_TREE;
2007 }
2008
2009 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2010
2011 void
2012 get_pure_virtuals (tree type)
2013 {
2014 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2015 is going to be overridden. */
2016 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2017 /* Now, run through all the bases which are not primary bases, and
2018 collect the pure virtual functions. We look at the vtable in
2019 each class to determine what pure virtual functions are present.
2020 (A primary base is not interesting because the derived class of
2021 which it is a primary base will contain vtable entries for the
2022 pure virtuals in the base class. */
2023 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2024 }
2025 \f
2026 /* Debug info for C++ classes can get very large; try to avoid
2027 emitting it everywhere.
2028
2029 Note that this optimization wins even when the target supports
2030 BINCL (if only slightly), and reduces the amount of work for the
2031 linker. */
2032
2033 void
2034 maybe_suppress_debug_info (tree t)
2035 {
2036 if (write_symbols == NO_DEBUG)
2037 return;
2038
2039 /* We might have set this earlier in cp_finish_decl. */
2040 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2041
2042 /* If we already know how we're handling this class, handle debug info
2043 the same way. */
2044 if (CLASSTYPE_INTERFACE_KNOWN (t))
2045 {
2046 if (CLASSTYPE_INTERFACE_ONLY (t))
2047 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2048 /* else don't set it. */
2049 }
2050 /* If the class has a vtable, write out the debug info along with
2051 the vtable. */
2052 else if (TYPE_CONTAINS_VPTR_P (t))
2053 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2054
2055 /* Otherwise, just emit the debug info normally. */
2056 }
2057
2058 /* Note that we want debugging information for a base class of a class
2059 whose vtable is being emitted. Normally, this would happen because
2060 calling the constructor for a derived class implies calling the
2061 constructors for all bases, which involve initializing the
2062 appropriate vptr with the vtable for the base class; but in the
2063 presence of optimization, this initialization may be optimized
2064 away, so we tell finish_vtable_vardecl that we want the debugging
2065 information anyway. */
2066
2067 static tree
2068 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2069 {
2070 tree t = BINFO_TYPE (binfo);
2071
2072 if (CLASSTYPE_DEBUG_REQUESTED (t))
2073 return dfs_skip_bases;
2074
2075 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2076
2077 return NULL_TREE;
2078 }
2079
2080 /* Write out the debugging information for TYPE, whose vtable is being
2081 emitted. Also walk through our bases and note that we want to
2082 write out information for them. This avoids the problem of not
2083 writing any debug info for intermediate basetypes whose
2084 constructors, and thus the references to their vtables, and thus
2085 the vtables themselves, were optimized away. */
2086
2087 void
2088 note_debug_info_needed (tree type)
2089 {
2090 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2091 {
2092 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2093 rest_of_type_compilation (type, toplevel_bindings_p ());
2094 }
2095
2096 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2097 }
2098 \f
2099 void
2100 print_search_statistics (void)
2101 {
2102 #ifdef GATHER_STATISTICS
2103 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2104 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2105 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2106 n_outer_fields_searched, n_calls_lookup_fnfields);
2107 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2108 #else /* GATHER_STATISTICS */
2109 fprintf (stderr, "no search statistics\n");
2110 #endif /* GATHER_STATISTICS */
2111 }
2112
2113 void
2114 reinit_search_statistics (void)
2115 {
2116 #ifdef GATHER_STATISTICS
2117 n_fields_searched = 0;
2118 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2119 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2120 n_calls_get_base_type = 0;
2121 n_outer_fields_searched = 0;
2122 n_contexts_saved = 0;
2123 #endif /* GATHER_STATISTICS */
2124 }
2125
2126 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2127 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2128 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2129 bases have been encountered already in the tree walk. PARENT_CONVS
2130 is the list of lists of conversion functions that could hide CONV
2131 and OTHER_CONVS is the list of lists of conversion functions that
2132 could hide or be hidden by CONV, should virtualness be involved in
2133 the hierarchy. Merely checking the conversion op's name is not
2134 enough because two conversion operators to the same type can have
2135 different names. Return nonzero if we are visible. */
2136
2137 static int
2138 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2139 tree to_type, tree parent_convs, tree other_convs)
2140 {
2141 tree level, probe;
2142
2143 /* See if we are hidden by a parent conversion. */
2144 for (level = parent_convs; level; level = TREE_CHAIN (level))
2145 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2146 if (same_type_p (to_type, TREE_TYPE (probe)))
2147 return 0;
2148
2149 if (virtual_depth || virtualness)
2150 {
2151 /* In a virtual hierarchy, we could be hidden, or could hide a
2152 conversion function on the other_convs list. */
2153 for (level = other_convs; level; level = TREE_CHAIN (level))
2154 {
2155 int we_hide_them;
2156 int they_hide_us;
2157 tree *prev, other;
2158
2159 if (!(virtual_depth || TREE_STATIC (level)))
2160 /* Neither is morally virtual, so cannot hide each other. */
2161 continue;
2162
2163 if (!TREE_VALUE (level))
2164 /* They evaporated away already. */
2165 continue;
2166
2167 they_hide_us = (virtual_depth
2168 && original_binfo (binfo, TREE_PURPOSE (level)));
2169 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2170 && original_binfo (TREE_PURPOSE (level), binfo));
2171
2172 if (!(we_hide_them || they_hide_us))
2173 /* Neither is within the other, so no hiding can occur. */
2174 continue;
2175
2176 for (prev = &TREE_VALUE (level), other = *prev; other;)
2177 {
2178 if (same_type_p (to_type, TREE_TYPE (other)))
2179 {
2180 if (they_hide_us)
2181 /* We are hidden. */
2182 return 0;
2183
2184 if (we_hide_them)
2185 {
2186 /* We hide the other one. */
2187 other = TREE_CHAIN (other);
2188 *prev = other;
2189 continue;
2190 }
2191 }
2192 prev = &TREE_CHAIN (other);
2193 other = *prev;
2194 }
2195 }
2196 }
2197 return 1;
2198 }
2199
2200 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2201 of conversion functions, the first slot will be for the current
2202 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2203 of conversion functions from children of the current binfo,
2204 concatenated with conversions from elsewhere in the hierarchy --
2205 that list begins with OTHER_CONVS. Return a single list of lists
2206 containing only conversions from the current binfo and its
2207 children. */
2208
2209 static tree
2210 split_conversions (tree my_convs, tree parent_convs,
2211 tree child_convs, tree other_convs)
2212 {
2213 tree t;
2214 tree prev;
2215
2216 /* Remove the original other_convs portion from child_convs. */
2217 for (prev = NULL, t = child_convs;
2218 t != other_convs; prev = t, t = TREE_CHAIN (t))
2219 continue;
2220
2221 if (prev)
2222 TREE_CHAIN (prev) = NULL_TREE;
2223 else
2224 child_convs = NULL_TREE;
2225
2226 /* Attach the child convs to any we had at this level. */
2227 if (my_convs)
2228 {
2229 my_convs = parent_convs;
2230 TREE_CHAIN (my_convs) = child_convs;
2231 }
2232 else
2233 my_convs = child_convs;
2234
2235 return my_convs;
2236 }
2237
2238 /* Worker for lookup_conversions. Lookup conversion functions in
2239 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2240 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2241 encountered virtual bases already in the tree walk. PARENT_CONVS &
2242 PARENT_TPL_CONVS are lists of list of conversions within parent
2243 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2244 elsewhere in the tree. Return the conversions found within this
2245 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2246 encountered virtualness. We keep template and non-template
2247 conversions separate, to avoid unnecessary type comparisons.
2248
2249 The located conversion functions are held in lists of lists. The
2250 TREE_VALUE of the outer list is the list of conversion functions
2251 found in a particular binfo. The TREE_PURPOSE of both the outer
2252 and inner lists is the binfo at which those conversions were
2253 found. TREE_STATIC is set for those lists within of morally
2254 virtual binfos. The TREE_VALUE of the inner list is the conversion
2255 function or overload itself. The TREE_TYPE of each inner list node
2256 is the converted-to type. */
2257
2258 static int
2259 lookup_conversions_r (tree binfo,
2260 int virtual_depth, int virtualness,
2261 tree parent_convs, tree parent_tpl_convs,
2262 tree other_convs, tree other_tpl_convs,
2263 tree *convs, tree *tpl_convs)
2264 {
2265 int my_virtualness = 0;
2266 tree my_convs = NULL_TREE;
2267 tree my_tpl_convs = NULL_TREE;
2268 tree child_convs = NULL_TREE;
2269 tree child_tpl_convs = NULL_TREE;
2270 unsigned i;
2271 tree base_binfo;
2272 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2273 tree conv;
2274
2275 /* If we have no conversion operators, then don't look. */
2276 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2277 {
2278 *convs = *tpl_convs = NULL_TREE;
2279
2280 return 0;
2281 }
2282
2283 if (BINFO_VIRTUAL_P (binfo))
2284 virtual_depth++;
2285
2286 /* First, locate the unhidden ones at this level. */
2287 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2288 VEC_iterate (tree, method_vec, i, conv);
2289 ++i)
2290 {
2291 tree cur = OVL_CURRENT (conv);
2292
2293 if (!DECL_CONV_FN_P (cur))
2294 break;
2295
2296 if (TREE_CODE (cur) == TEMPLATE_DECL)
2297 {
2298 /* Only template conversions can be overloaded, and we must
2299 flatten them out and check each one individually. */
2300 tree tpls;
2301
2302 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2303 {
2304 tree tpl = OVL_CURRENT (tpls);
2305 tree type = DECL_CONV_FN_TYPE (tpl);
2306
2307 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2308 type, parent_tpl_convs, other_tpl_convs))
2309 {
2310 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2311 TREE_TYPE (my_tpl_convs) = type;
2312 if (virtual_depth)
2313 {
2314 TREE_STATIC (my_tpl_convs) = 1;
2315 my_virtualness = 1;
2316 }
2317 }
2318 }
2319 }
2320 else
2321 {
2322 tree name = DECL_NAME (cur);
2323
2324 if (!IDENTIFIER_MARKED (name))
2325 {
2326 tree type = DECL_CONV_FN_TYPE (cur);
2327
2328 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2329 type, parent_convs, other_convs))
2330 {
2331 my_convs = tree_cons (binfo, conv, my_convs);
2332 TREE_TYPE (my_convs) = type;
2333 if (virtual_depth)
2334 {
2335 TREE_STATIC (my_convs) = 1;
2336 my_virtualness = 1;
2337 }
2338 IDENTIFIER_MARKED (name) = 1;
2339 }
2340 }
2341 }
2342 }
2343
2344 if (my_convs)
2345 {
2346 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2347 if (virtual_depth)
2348 TREE_STATIC (parent_convs) = 1;
2349 }
2350
2351 if (my_tpl_convs)
2352 {
2353 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2354 if (virtual_depth)
2355 TREE_STATIC (parent_convs) = 1;
2356 }
2357
2358 child_convs = other_convs;
2359 child_tpl_convs = other_tpl_convs;
2360
2361 /* Now iterate over each base, looking for more conversions. */
2362 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2363 {
2364 tree base_convs, base_tpl_convs;
2365 unsigned base_virtualness;
2366
2367 base_virtualness = lookup_conversions_r (base_binfo,
2368 virtual_depth, virtualness,
2369 parent_convs, parent_tpl_convs,
2370 child_convs, child_tpl_convs,
2371 &base_convs, &base_tpl_convs);
2372 if (base_virtualness)
2373 my_virtualness = virtualness = 1;
2374 child_convs = chainon (base_convs, child_convs);
2375 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2376 }
2377
2378 /* Unmark the conversions found at this level */
2379 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2380 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2381
2382 *convs = split_conversions (my_convs, parent_convs,
2383 child_convs, other_convs);
2384 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2385 child_tpl_convs, other_tpl_convs);
2386
2387 return my_virtualness;
2388 }
2389
2390 /* Return a TREE_LIST containing all the non-hidden user-defined
2391 conversion functions for TYPE (and its base-classes). The
2392 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2393 function. The TREE_PURPOSE is the BINFO from which the conversion
2394 functions in this node were selected. This function is effectively
2395 performing a set of member lookups as lookup_fnfield does, but
2396 using the type being converted to as the unique key, rather than the
2397 field name. */
2398
2399 tree
2400 lookup_conversions (tree type)
2401 {
2402 tree convs, tpl_convs;
2403 tree list = NULL_TREE;
2404
2405 complete_type (type);
2406 if (!TYPE_BINFO (type))
2407 return NULL_TREE;
2408
2409 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2410 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2411 &convs, &tpl_convs);
2412
2413 /* Flatten the list-of-lists */
2414 for (; convs; convs = TREE_CHAIN (convs))
2415 {
2416 tree probe, next;
2417
2418 for (probe = TREE_VALUE (convs); probe; probe = next)
2419 {
2420 next = TREE_CHAIN (probe);
2421
2422 TREE_CHAIN (probe) = list;
2423 list = probe;
2424 }
2425 }
2426
2427 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2428 {
2429 tree probe, next;
2430
2431 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2432 {
2433 next = TREE_CHAIN (probe);
2434
2435 TREE_CHAIN (probe) = list;
2436 list = probe;
2437 }
2438 }
2439
2440 return list;
2441 }
2442
2443 /* Returns the binfo of the first direct or indirect virtual base derived
2444 from BINFO, or NULL if binfo is not via virtual. */
2445
2446 tree
2447 binfo_from_vbase (tree binfo)
2448 {
2449 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2450 {
2451 if (BINFO_VIRTUAL_P (binfo))
2452 return binfo;
2453 }
2454 return NULL_TREE;
2455 }
2456
2457 /* Returns the binfo of the first direct or indirect virtual base derived
2458 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2459 via virtual. */
2460
2461 tree
2462 binfo_via_virtual (tree binfo, tree limit)
2463 {
2464 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2465 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2466 return NULL_TREE;
2467
2468 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2469 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2470 {
2471 if (BINFO_VIRTUAL_P (binfo))
2472 return binfo;
2473 }
2474 return NULL_TREE;
2475 }
2476
2477 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2478 Find the equivalent binfo within whatever graph HERE is located.
2479 This is the inverse of original_binfo. */
2480
2481 tree
2482 copied_binfo (tree binfo, tree here)
2483 {
2484 tree result = NULL_TREE;
2485
2486 if (BINFO_VIRTUAL_P (binfo))
2487 {
2488 tree t;
2489
2490 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2491 t = BINFO_INHERITANCE_CHAIN (t))
2492 continue;
2493
2494 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2495 }
2496 else if (BINFO_INHERITANCE_CHAIN (binfo))
2497 {
2498 tree cbinfo;
2499 tree base_binfo;
2500 int ix;
2501
2502 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2503 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2504 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2505 {
2506 result = base_binfo;
2507 break;
2508 }
2509 }
2510 else
2511 {
2512 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2513 result = here;
2514 }
2515
2516 gcc_assert (result);
2517 return result;
2518 }
2519
2520 tree
2521 binfo_for_vbase (tree base, tree t)
2522 {
2523 unsigned ix;
2524 tree binfo;
2525 VEC(tree,gc) *vbases;
2526
2527 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2528 VEC_iterate (tree, vbases, ix, binfo); ix++)
2529 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2530 return binfo;
2531 return NULL;
2532 }
2533
2534 /* BINFO is some base binfo of HERE, within some other
2535 hierarchy. Return the equivalent binfo, but in the hierarchy
2536 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2537 is not a base binfo of HERE, returns NULL_TREE. */
2538
2539 tree
2540 original_binfo (tree binfo, tree here)
2541 {
2542 tree result = NULL;
2543
2544 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2545 result = here;
2546 else if (BINFO_VIRTUAL_P (binfo))
2547 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2548 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2549 : NULL_TREE);
2550 else if (BINFO_INHERITANCE_CHAIN (binfo))
2551 {
2552 tree base_binfos;
2553
2554 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2555 if (base_binfos)
2556 {
2557 int ix;
2558 tree base_binfo;
2559
2560 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2561 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2562 BINFO_TYPE (binfo)))
2563 {
2564 result = base_binfo;
2565 break;
2566 }
2567 }
2568 }
2569
2570 return result;
2571 }
2572