re PR c++/28215 (Bootstrap failure on arm-eabi)
[gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37
38 static int is_subobject_of_p (tree, tree);
39 static tree dfs_lookup_base (tree, void *);
40 static tree dfs_dcast_hint_pre (tree, void *);
41 static tree dfs_dcast_hint_post (tree, void *);
42 static tree dfs_debug_mark (tree, void *);
43 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44 tree (*post_fn) (tree, void *), void *data);
45 static void dfs_unmark_r (tree);
46 static int check_hidden_convs (tree, int, int, tree, tree, tree);
47 static tree split_conversions (tree, tree, tree, tree);
48 static int lookup_conversions_r (tree, int, int,
49 tree, tree, tree, tree, tree *, tree *);
50 static int look_for_overrides_r (tree, tree);
51 static tree lookup_field_r (tree, void *);
52 static tree dfs_accessible_post (tree, void *);
53 static tree dfs_walk_once_accessible_r (tree, bool, bool,
54 tree (*pre_fn) (tree, void *),
55 tree (*post_fn) (tree, void *),
56 void *data);
57 static tree dfs_walk_once_accessible (tree, bool,
58 tree (*pre_fn) (tree, void *),
59 tree (*post_fn) (tree, void *),
60 void *data);
61 static tree dfs_access_in_type (tree, void *);
62 static access_kind access_in_type (tree, tree);
63 static int protected_accessible_p (tree, tree, tree);
64 static int friend_accessible_p (tree, tree, tree);
65 static int template_self_reference_p (tree, tree);
66 static tree dfs_get_pure_virtuals (tree, void *);
67
68 \f
69 /* Variables for gathering statistics. */
70 #ifdef GATHER_STATISTICS
71 static int n_fields_searched;
72 static int n_calls_lookup_field, n_calls_lookup_field_1;
73 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
74 static int n_calls_get_base_type;
75 static int n_outer_fields_searched;
76 static int n_contexts_saved;
77 #endif /* GATHER_STATISTICS */
78
79 \f
80 /* Data for lookup_base and its workers. */
81
82 struct lookup_base_data_s
83 {
84 tree t; /* type being searched. */
85 tree base; /* The base type we're looking for. */
86 tree binfo; /* Found binfo. */
87 bool via_virtual; /* Found via a virtual path. */
88 bool ambiguous; /* Found multiply ambiguous */
89 bool repeated_base; /* Whether there are repeated bases in the
90 hierarchy. */
91 bool want_any; /* Whether we want any matching binfo. */
92 };
93
94 /* Worker function for lookup_base. See if we've found the desired
95 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
96
97 static tree
98 dfs_lookup_base (tree binfo, void *data_)
99 {
100 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
101
102 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
103 {
104 if (!data->binfo)
105 {
106 data->binfo = binfo;
107 data->via_virtual
108 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
109
110 if (!data->repeated_base)
111 /* If there are no repeated bases, we can stop now. */
112 return binfo;
113
114 if (data->want_any && !data->via_virtual)
115 /* If this is a non-virtual base, then we can't do
116 better. */
117 return binfo;
118
119 return dfs_skip_bases;
120 }
121 else
122 {
123 gcc_assert (binfo != data->binfo);
124
125 /* We've found more than one matching binfo. */
126 if (!data->want_any)
127 {
128 /* This is immediately ambiguous. */
129 data->binfo = NULL_TREE;
130 data->ambiguous = true;
131 return error_mark_node;
132 }
133
134 /* Prefer one via a non-virtual path. */
135 if (!binfo_via_virtual (binfo, data->t))
136 {
137 data->binfo = binfo;
138 data->via_virtual = false;
139 return binfo;
140 }
141
142 /* There must be repeated bases, otherwise we'd have stopped
143 on the first base we found. */
144 return dfs_skip_bases;
145 }
146 }
147
148 return NULL_TREE;
149 }
150
151 /* Returns true if type BASE is accessible in T. (BASE is known to be
152 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
153 true, consider any special access of the current scope, or access
154 bestowed by friendship. */
155
156 bool
157 accessible_base_p (tree t, tree base, bool consider_local_p)
158 {
159 tree decl;
160
161 /* [class.access.base]
162
163 A base class is said to be accessible if an invented public
164 member of the base class is accessible.
165
166 If BASE is a non-proper base, this condition is trivially
167 true. */
168 if (same_type_p (t, base))
169 return true;
170 /* Rather than inventing a public member, we use the implicit
171 public typedef created in the scope of every class. */
172 decl = TYPE_FIELDS (base);
173 while (!DECL_SELF_REFERENCE_P (decl))
174 decl = TREE_CHAIN (decl);
175 while (ANON_AGGR_TYPE_P (t))
176 t = TYPE_CONTEXT (t);
177 return accessible_p (t, decl, consider_local_p);
178 }
179
180 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
181 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
182 non-NULL, fill with information about what kind of base we
183 discovered.
184
185 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
186 not set in ACCESS, then an error is issued and error_mark_node is
187 returned. If the ba_quiet bit is set, then no error is issued and
188 NULL_TREE is returned. */
189
190 tree
191 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
192 {
193 tree binfo;
194 tree t_binfo;
195 base_kind bk;
196
197 if (t == error_mark_node || base == error_mark_node)
198 {
199 if (kind_ptr)
200 *kind_ptr = bk_not_base;
201 return error_mark_node;
202 }
203 gcc_assert (TYPE_P (base));
204
205 if (!TYPE_P (t))
206 {
207 t_binfo = t;
208 t = BINFO_TYPE (t);
209 }
210 else
211 {
212 t = complete_type (TYPE_MAIN_VARIANT (t));
213 t_binfo = TYPE_BINFO (t);
214 }
215
216 base = complete_type (TYPE_MAIN_VARIANT (base));
217
218 if (t_binfo)
219 {
220 struct lookup_base_data_s data;
221
222 data.t = t;
223 data.base = base;
224 data.binfo = NULL_TREE;
225 data.ambiguous = data.via_virtual = false;
226 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
227 data.want_any = access == ba_any;
228
229 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
230 binfo = data.binfo;
231
232 if (!binfo)
233 bk = data.ambiguous ? bk_ambig : bk_not_base;
234 else if (binfo == t_binfo)
235 bk = bk_same_type;
236 else if (data.via_virtual)
237 bk = bk_via_virtual;
238 else
239 bk = bk_proper_base;
240 }
241 else
242 {
243 binfo = NULL_TREE;
244 bk = bk_not_base;
245 }
246
247 /* Check that the base is unambiguous and accessible. */
248 if (access != ba_any)
249 switch (bk)
250 {
251 case bk_not_base:
252 break;
253
254 case bk_ambig:
255 if (!(access & ba_quiet))
256 {
257 error ("%qT is an ambiguous base of %qT", base, t);
258 binfo = error_mark_node;
259 }
260 break;
261
262 default:
263 if ((access & ba_check_bit)
264 /* If BASE is incomplete, then BASE and TYPE are probably
265 the same, in which case BASE is accessible. If they
266 are not the same, then TYPE is invalid. In that case,
267 there's no need to issue another error here, and
268 there's no implicit typedef to use in the code that
269 follows, so we skip the check. */
270 && COMPLETE_TYPE_P (base)
271 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
272 {
273 if (!(access & ba_quiet))
274 {
275 error ("%qT is an inaccessible base of %qT", base, t);
276 binfo = error_mark_node;
277 }
278 else
279 binfo = NULL_TREE;
280 bk = bk_inaccessible;
281 }
282 break;
283 }
284
285 if (kind_ptr)
286 *kind_ptr = bk;
287
288 return binfo;
289 }
290
291 /* Data for dcast_base_hint walker. */
292
293 struct dcast_data_s
294 {
295 tree subtype; /* The base type we're looking for. */
296 int virt_depth; /* Number of virtual bases encountered from most
297 derived. */
298 tree offset; /* Best hint offset discovered so far. */
299 bool repeated_base; /* Whether there are repeated bases in the
300 hierarchy. */
301 };
302
303 /* Worker for dcast_base_hint. Search for the base type being cast
304 from. */
305
306 static tree
307 dfs_dcast_hint_pre (tree binfo, void *data_)
308 {
309 struct dcast_data_s *data = (struct dcast_data_s *) data_;
310
311 if (BINFO_VIRTUAL_P (binfo))
312 data->virt_depth++;
313
314 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
315 {
316 if (data->virt_depth)
317 {
318 data->offset = ssize_int (-1);
319 return data->offset;
320 }
321 if (data->offset)
322 data->offset = ssize_int (-3);
323 else
324 data->offset = BINFO_OFFSET (binfo);
325
326 return data->repeated_base ? dfs_skip_bases : data->offset;
327 }
328
329 return NULL_TREE;
330 }
331
332 /* Worker for dcast_base_hint. Track the virtual depth. */
333
334 static tree
335 dfs_dcast_hint_post (tree binfo, void *data_)
336 {
337 struct dcast_data_s *data = (struct dcast_data_s *) data_;
338
339 if (BINFO_VIRTUAL_P (binfo))
340 data->virt_depth--;
341
342 return NULL_TREE;
343 }
344
345 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
346 started from is related to the required TARGET type, in order to optimize
347 the inheritance graph search. This information is independent of the
348 current context, and ignores private paths, hence get_base_distance is
349 inappropriate. Return a TREE specifying the base offset, BOFF.
350 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
351 and there are no public virtual SUBTYPE bases.
352 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
353 BOFF == -2, SUBTYPE is not a public base.
354 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
355
356 tree
357 dcast_base_hint (tree subtype, tree target)
358 {
359 struct dcast_data_s data;
360
361 data.subtype = subtype;
362 data.virt_depth = 0;
363 data.offset = NULL_TREE;
364 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
365
366 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
367 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
368 return data.offset ? data.offset : ssize_int (-2);
369 }
370
371 /* Search for a member with name NAME in a multiple inheritance
372 lattice specified by TYPE. If it does not exist, return NULL_TREE.
373 If the member is ambiguously referenced, return `error_mark_node'.
374 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
375 true, type declarations are preferred. */
376
377 /* Do a 1-level search for NAME as a member of TYPE. The caller must
378 figure out whether it can access this field. (Since it is only one
379 level, this is reasonable.) */
380
381 tree
382 lookup_field_1 (tree type, tree name, bool want_type)
383 {
384 tree field;
385
386 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
387 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
388 || TREE_CODE (type) == TYPENAME_TYPE)
389 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
390 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
391 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
392 the code often worked even when we treated the index as a list
393 of fields!)
394 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
395 return NULL_TREE;
396
397 if (TYPE_NAME (type)
398 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
399 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
400 {
401 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
402 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
403 int i;
404
405 while (lo < hi)
406 {
407 i = (lo + hi) / 2;
408
409 #ifdef GATHER_STATISTICS
410 n_fields_searched++;
411 #endif /* GATHER_STATISTICS */
412
413 if (DECL_NAME (fields[i]) > name)
414 hi = i;
415 else if (DECL_NAME (fields[i]) < name)
416 lo = i + 1;
417 else
418 {
419 field = NULL_TREE;
420
421 /* We might have a nested class and a field with the
422 same name; we sorted them appropriately via
423 field_decl_cmp, so just look for the first or last
424 field with this name. */
425 if (want_type)
426 {
427 do
428 field = fields[i--];
429 while (i >= lo && DECL_NAME (fields[i]) == name);
430 if (TREE_CODE (field) != TYPE_DECL
431 && !DECL_CLASS_TEMPLATE_P (field))
432 field = NULL_TREE;
433 }
434 else
435 {
436 do
437 field = fields[i++];
438 while (i < hi && DECL_NAME (fields[i]) == name);
439 }
440 return field;
441 }
442 }
443 return NULL_TREE;
444 }
445
446 field = TYPE_FIELDS (type);
447
448 #ifdef GATHER_STATISTICS
449 n_calls_lookup_field_1++;
450 #endif /* GATHER_STATISTICS */
451 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
452 {
453 #ifdef GATHER_STATISTICS
454 n_fields_searched++;
455 #endif /* GATHER_STATISTICS */
456 gcc_assert (DECL_P (field));
457 if (DECL_NAME (field) == NULL_TREE
458 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
459 {
460 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
461 if (temp)
462 return temp;
463 }
464 if (TREE_CODE (field) == USING_DECL)
465 {
466 /* We generally treat class-scope using-declarations as
467 ARM-style access specifications, because support for the
468 ISO semantics has not been implemented. So, in general,
469 there's no reason to return a USING_DECL, and the rest of
470 the compiler cannot handle that. Once the class is
471 defined, USING_DECLs are purged from TYPE_FIELDS; see
472 handle_using_decl. However, we make special efforts to
473 make using-declarations in class templates and class
474 template partial specializations work correctly. */
475 if (!DECL_DEPENDENT_P (field))
476 continue;
477 }
478
479 if (DECL_NAME (field) == name
480 && (!want_type
481 || TREE_CODE (field) == TYPE_DECL
482 || DECL_CLASS_TEMPLATE_P (field)))
483 return field;
484 }
485 /* Not found. */
486 if (name == vptr_identifier)
487 {
488 /* Give the user what s/he thinks s/he wants. */
489 if (TYPE_POLYMORPHIC_P (type))
490 return TYPE_VFIELD (type);
491 }
492 return NULL_TREE;
493 }
494
495 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
496 NAMESPACE_DECL corresponding to the innermost non-block scope. */
497
498 tree
499 current_scope (void)
500 {
501 /* There are a number of cases we need to be aware of here:
502 current_class_type current_function_decl
503 global NULL NULL
504 fn-local NULL SET
505 class-local SET NULL
506 class->fn SET SET
507 fn->class SET SET
508
509 Those last two make life interesting. If we're in a function which is
510 itself inside a class, we need decls to go into the fn's decls (our
511 second case below). But if we're in a class and the class itself is
512 inside a function, we need decls to go into the decls for the class. To
513 achieve this last goal, we must see if, when both current_class_ptr and
514 current_function_decl are set, the class was declared inside that
515 function. If so, we know to put the decls into the class's scope. */
516 if (current_function_decl && current_class_type
517 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
518 && same_type_p (DECL_CONTEXT (current_function_decl),
519 current_class_type))
520 || (DECL_FRIEND_CONTEXT (current_function_decl)
521 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
522 current_class_type))))
523 return current_function_decl;
524 if (current_class_type)
525 return current_class_type;
526 if (current_function_decl)
527 return current_function_decl;
528 return current_namespace;
529 }
530
531 /* Returns nonzero if we are currently in a function scope. Note
532 that this function returns zero if we are within a local class, but
533 not within a member function body of the local class. */
534
535 int
536 at_function_scope_p (void)
537 {
538 tree cs = current_scope ();
539 return cs && TREE_CODE (cs) == FUNCTION_DECL;
540 }
541
542 /* Returns true if the innermost active scope is a class scope. */
543
544 bool
545 at_class_scope_p (void)
546 {
547 tree cs = current_scope ();
548 return cs && TYPE_P (cs);
549 }
550
551 /* Returns true if the innermost active scope is a namespace scope. */
552
553 bool
554 at_namespace_scope_p (void)
555 {
556 tree cs = current_scope ();
557 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
558 }
559
560 /* Return the scope of DECL, as appropriate when doing name-lookup. */
561
562 tree
563 context_for_name_lookup (tree decl)
564 {
565 /* [class.union]
566
567 For the purposes of name lookup, after the anonymous union
568 definition, the members of the anonymous union are considered to
569 have been defined in the scope in which the anonymous union is
570 declared. */
571 tree context = DECL_CONTEXT (decl);
572
573 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
574 context = TYPE_CONTEXT (context);
575 if (!context)
576 context = global_namespace;
577
578 return context;
579 }
580
581 /* The accessibility routines use BINFO_ACCESS for scratch space
582 during the computation of the accessibility of some declaration. */
583
584 #define BINFO_ACCESS(NODE) \
585 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
586
587 /* Set the access associated with NODE to ACCESS. */
588
589 #define SET_BINFO_ACCESS(NODE, ACCESS) \
590 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
591 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
592
593 /* Called from access_in_type via dfs_walk. Calculate the access to
594 DATA (which is really a DECL) in BINFO. */
595
596 static tree
597 dfs_access_in_type (tree binfo, void *data)
598 {
599 tree decl = (tree) data;
600 tree type = BINFO_TYPE (binfo);
601 access_kind access = ak_none;
602
603 if (context_for_name_lookup (decl) == type)
604 {
605 /* If we have descended to the scope of DECL, just note the
606 appropriate access. */
607 if (TREE_PRIVATE (decl))
608 access = ak_private;
609 else if (TREE_PROTECTED (decl))
610 access = ak_protected;
611 else
612 access = ak_public;
613 }
614 else
615 {
616 /* First, check for an access-declaration that gives us more
617 access to the DECL. The CONST_DECL for an enumeration
618 constant will not have DECL_LANG_SPECIFIC, and thus no
619 DECL_ACCESS. */
620 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
621 {
622 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
623
624 if (decl_access)
625 {
626 decl_access = TREE_VALUE (decl_access);
627
628 if (decl_access == access_public_node)
629 access = ak_public;
630 else if (decl_access == access_protected_node)
631 access = ak_protected;
632 else if (decl_access == access_private_node)
633 access = ak_private;
634 else
635 gcc_unreachable ();
636 }
637 }
638
639 if (!access)
640 {
641 int i;
642 tree base_binfo;
643 VEC(tree,gc) *accesses;
644
645 /* Otherwise, scan our baseclasses, and pick the most favorable
646 access. */
647 accesses = BINFO_BASE_ACCESSES (binfo);
648 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
649 {
650 tree base_access = VEC_index (tree, accesses, i);
651 access_kind base_access_now = BINFO_ACCESS (base_binfo);
652
653 if (base_access_now == ak_none || base_access_now == ak_private)
654 /* If it was not accessible in the base, or only
655 accessible as a private member, we can't access it
656 all. */
657 base_access_now = ak_none;
658 else if (base_access == access_protected_node)
659 /* Public and protected members in the base become
660 protected here. */
661 base_access_now = ak_protected;
662 else if (base_access == access_private_node)
663 /* Public and protected members in the base become
664 private here. */
665 base_access_now = ak_private;
666
667 /* See if the new access, via this base, gives more
668 access than our previous best access. */
669 if (base_access_now != ak_none
670 && (access == ak_none || base_access_now < access))
671 {
672 access = base_access_now;
673
674 /* If the new access is public, we can't do better. */
675 if (access == ak_public)
676 break;
677 }
678 }
679 }
680 }
681
682 /* Note the access to DECL in TYPE. */
683 SET_BINFO_ACCESS (binfo, access);
684
685 return NULL_TREE;
686 }
687
688 /* Return the access to DECL in TYPE. */
689
690 static access_kind
691 access_in_type (tree type, tree decl)
692 {
693 tree binfo = TYPE_BINFO (type);
694
695 /* We must take into account
696
697 [class.paths]
698
699 If a name can be reached by several paths through a multiple
700 inheritance graph, the access is that of the path that gives
701 most access.
702
703 The algorithm we use is to make a post-order depth-first traversal
704 of the base-class hierarchy. As we come up the tree, we annotate
705 each node with the most lenient access. */
706 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
707
708 return BINFO_ACCESS (binfo);
709 }
710
711 /* Returns nonzero if it is OK to access DECL through an object
712 indicated by BINFO in the context of DERIVED. */
713
714 static int
715 protected_accessible_p (tree decl, tree derived, tree binfo)
716 {
717 access_kind access;
718
719 /* We're checking this clause from [class.access.base]
720
721 m as a member of N is protected, and the reference occurs in a
722 member or friend of class N, or in a member or friend of a
723 class P derived from N, where m as a member of P is private or
724 protected.
725
726 Here DERIVED is a possible P and DECL is m. accessible_p will
727 iterate over various values of N, but the access to m in DERIVED
728 does not change.
729
730 Note that I believe that the passage above is wrong, and should read
731 "...is private or protected or public"; otherwise you get bizarre results
732 whereby a public using-decl can prevent you from accessing a protected
733 member of a base. (jason 2000/02/28) */
734
735 /* If DERIVED isn't derived from m's class, then it can't be a P. */
736 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
737 return 0;
738
739 access = access_in_type (derived, decl);
740
741 /* If m is inaccessible in DERIVED, then it's not a P. */
742 if (access == ak_none)
743 return 0;
744
745 /* [class.protected]
746
747 When a friend or a member function of a derived class references
748 a protected nonstatic member of a base class, an access check
749 applies in addition to those described earlier in clause
750 _class.access_) Except when forming a pointer to member
751 (_expr.unary.op_), the access must be through a pointer to,
752 reference to, or object of the derived class itself (or any class
753 derived from that class) (_expr.ref_). If the access is to form
754 a pointer to member, the nested-name-specifier shall name the
755 derived class (or any class derived from that class). */
756 if (DECL_NONSTATIC_MEMBER_P (decl))
757 {
758 /* We can tell through what the reference is occurring by
759 chasing BINFO up to the root. */
760 tree t = binfo;
761 while (BINFO_INHERITANCE_CHAIN (t))
762 t = BINFO_INHERITANCE_CHAIN (t);
763
764 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
765 return 0;
766 }
767
768 return 1;
769 }
770
771 /* Returns nonzero if SCOPE is a friend of a type which would be able
772 to access DECL through the object indicated by BINFO. */
773
774 static int
775 friend_accessible_p (tree scope, tree decl, tree binfo)
776 {
777 tree befriending_classes;
778 tree t;
779
780 if (!scope)
781 return 0;
782
783 if (TREE_CODE (scope) == FUNCTION_DECL
784 || DECL_FUNCTION_TEMPLATE_P (scope))
785 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
786 else if (TYPE_P (scope))
787 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
788 else
789 return 0;
790
791 for (t = befriending_classes; t; t = TREE_CHAIN (t))
792 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
793 return 1;
794
795 /* Nested classes have the same access as their enclosing types, as
796 per core issue 45 (this is a change from the standard). */
797 if (TYPE_P (scope))
798 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
799 if (protected_accessible_p (decl, t, binfo)
800 || friend_accessible_p (t, decl, binfo))
801 return 1;
802
803 if (TREE_CODE (scope) == FUNCTION_DECL
804 || DECL_FUNCTION_TEMPLATE_P (scope))
805 {
806 /* Perhaps this SCOPE is a member of a class which is a
807 friend. */
808 if (DECL_CLASS_SCOPE_P (scope)
809 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
810 return 1;
811
812 /* Or an instantiation of something which is a friend. */
813 if (DECL_TEMPLATE_INFO (scope))
814 {
815 int ret;
816 /* Increment processing_template_decl to make sure that
817 dependent_type_p works correctly. */
818 ++processing_template_decl;
819 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
820 --processing_template_decl;
821 return ret;
822 }
823 }
824
825 return 0;
826 }
827
828 /* Called via dfs_walk_once_accessible from accessible_p */
829
830 static tree
831 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
832 {
833 if (BINFO_ACCESS (binfo) != ak_none)
834 {
835 tree scope = current_scope ();
836 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
837 && is_friend (BINFO_TYPE (binfo), scope))
838 return binfo;
839 }
840
841 return NULL_TREE;
842 }
843
844 /* DECL is a declaration from a base class of TYPE, which was the
845 class used to name DECL. Return nonzero if, in the current
846 context, DECL is accessible. If TYPE is actually a BINFO node,
847 then we can tell in what context the access is occurring by looking
848 at the most derived class along the path indicated by BINFO. If
849 CONSIDER_LOCAL is true, do consider special access the current
850 scope or friendship thereof we might have. */
851
852 int
853 accessible_p (tree type, tree decl, bool consider_local_p)
854 {
855 tree binfo;
856 tree scope;
857 access_kind access;
858
859 /* Nonzero if it's OK to access DECL if it has protected
860 accessibility in TYPE. */
861 int protected_ok = 0;
862
863 /* If this declaration is in a block or namespace scope, there's no
864 access control. */
865 if (!TYPE_P (context_for_name_lookup (decl)))
866 return 1;
867
868 /* There is no need to perform access checks inside a thunk. */
869 scope = current_scope ();
870 if (scope && DECL_THUNK_P (scope))
871 return 1;
872
873 /* In a template declaration, we cannot be sure whether the
874 particular specialization that is instantiated will be a friend
875 or not. Therefore, all access checks are deferred until
876 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
877 parameter list for a template (because we may see dependent types
878 in default arguments for template parameters), and access
879 checking should be performed in the outermost parameter list. */
880 if (processing_template_decl
881 && (!processing_template_parmlist || processing_template_decl > 1))
882 return 1;
883
884 if (!TYPE_P (type))
885 {
886 binfo = type;
887 type = BINFO_TYPE (type);
888 }
889 else
890 binfo = TYPE_BINFO (type);
891
892 /* [class.access.base]
893
894 A member m is accessible when named in class N if
895
896 --m as a member of N is public, or
897
898 --m as a member of N is private, and the reference occurs in a
899 member or friend of class N, or
900
901 --m as a member of N is protected, and the reference occurs in a
902 member or friend of class N, or in a member or friend of a
903 class P derived from N, where m as a member of P is private or
904 protected, or
905
906 --there exists a base class B of N that is accessible at the point
907 of reference, and m is accessible when named in class B.
908
909 We walk the base class hierarchy, checking these conditions. */
910
911 if (consider_local_p)
912 {
913 /* Figure out where the reference is occurring. Check to see if
914 DECL is private or protected in this scope, since that will
915 determine whether protected access is allowed. */
916 if (current_class_type)
917 protected_ok = protected_accessible_p (decl,
918 current_class_type, binfo);
919
920 /* Now, loop through the classes of which we are a friend. */
921 if (!protected_ok)
922 protected_ok = friend_accessible_p (scope, decl, binfo);
923 }
924
925 /* Standardize the binfo that access_in_type will use. We don't
926 need to know what path was chosen from this point onwards. */
927 binfo = TYPE_BINFO (type);
928
929 /* Compute the accessibility of DECL in the class hierarchy
930 dominated by type. */
931 access = access_in_type (type, decl);
932 if (access == ak_public
933 || (access == ak_protected && protected_ok))
934 return 1;
935
936 if (!consider_local_p)
937 return 0;
938
939 /* Walk the hierarchy again, looking for a base class that allows
940 access. */
941 return dfs_walk_once_accessible (binfo, /*friends=*/true,
942 NULL, dfs_accessible_post, NULL)
943 != NULL_TREE;
944 }
945
946 struct lookup_field_info {
947 /* The type in which we're looking. */
948 tree type;
949 /* The name of the field for which we're looking. */
950 tree name;
951 /* If non-NULL, the current result of the lookup. */
952 tree rval;
953 /* The path to RVAL. */
954 tree rval_binfo;
955 /* If non-NULL, the lookup was ambiguous, and this is a list of the
956 candidates. */
957 tree ambiguous;
958 /* If nonzero, we are looking for types, not data members. */
959 int want_type;
960 /* If something went wrong, a message indicating what. */
961 const char *errstr;
962 };
963
964 /* Within the scope of a template class, you can refer to the to the
965 current specialization with the name of the template itself. For
966 example:
967
968 template <typename T> struct S { S* sp; }
969
970 Returns nonzero if DECL is such a declaration in a class TYPE. */
971
972 static int
973 template_self_reference_p (tree type, tree decl)
974 {
975 return (CLASSTYPE_USE_TEMPLATE (type)
976 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
977 && TREE_CODE (decl) == TYPE_DECL
978 && DECL_ARTIFICIAL (decl)
979 && DECL_NAME (decl) == constructor_name (type));
980 }
981
982 /* Nonzero for a class member means that it is shared between all objects
983 of that class.
984
985 [class.member.lookup]:If the resulting set of declarations are not all
986 from sub-objects of the same type, or the set has a nonstatic member
987 and includes members from distinct sub-objects, there is an ambiguity
988 and the program is ill-formed.
989
990 This function checks that T contains no nonstatic members. */
991
992 int
993 shared_member_p (tree t)
994 {
995 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
996 || TREE_CODE (t) == CONST_DECL)
997 return 1;
998 if (is_overloaded_fn (t))
999 {
1000 for (; t; t = OVL_NEXT (t))
1001 {
1002 tree fn = OVL_CURRENT (t);
1003 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1004 return 0;
1005 }
1006 return 1;
1007 }
1008 return 0;
1009 }
1010
1011 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1012 found as a base class and sub-object of the object denoted by
1013 BINFO. */
1014
1015 static int
1016 is_subobject_of_p (tree parent, tree binfo)
1017 {
1018 tree probe;
1019
1020 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1021 {
1022 if (probe == binfo)
1023 return 1;
1024 if (BINFO_VIRTUAL_P (probe))
1025 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1026 != NULL_TREE);
1027 }
1028 return 0;
1029 }
1030
1031 /* DATA is really a struct lookup_field_info. Look for a field with
1032 the name indicated there in BINFO. If this function returns a
1033 non-NULL value it is the result of the lookup. Called from
1034 lookup_field via breadth_first_search. */
1035
1036 static tree
1037 lookup_field_r (tree binfo, void *data)
1038 {
1039 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1040 tree type = BINFO_TYPE (binfo);
1041 tree nval = NULL_TREE;
1042
1043 /* If this is a dependent base, don't look in it. */
1044 if (BINFO_DEPENDENT_BASE_P (binfo))
1045 return NULL_TREE;
1046
1047 /* If this base class is hidden by the best-known value so far, we
1048 don't need to look. */
1049 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1050 && !BINFO_VIRTUAL_P (binfo))
1051 return dfs_skip_bases;
1052
1053 /* First, look for a function. There can't be a function and a data
1054 member with the same name, and if there's a function and a type
1055 with the same name, the type is hidden by the function. */
1056 if (!lfi->want_type)
1057 {
1058 int idx = lookup_fnfields_1 (type, lfi->name);
1059 if (idx >= 0)
1060 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1061 }
1062
1063 if (!nval)
1064 /* Look for a data member or type. */
1065 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1066
1067 /* If there is no declaration with the indicated name in this type,
1068 then there's nothing to do. */
1069 if (!nval)
1070 goto done;
1071
1072 /* If we're looking up a type (as with an elaborated type specifier)
1073 we ignore all non-types we find. */
1074 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1075 && !DECL_CLASS_TEMPLATE_P (nval))
1076 {
1077 if (lfi->name == TYPE_IDENTIFIER (type))
1078 {
1079 /* If the aggregate has no user defined constructors, we allow
1080 it to have fields with the same name as the enclosing type.
1081 If we are looking for that name, find the corresponding
1082 TYPE_DECL. */
1083 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1084 if (DECL_NAME (nval) == lfi->name
1085 && TREE_CODE (nval) == TYPE_DECL)
1086 break;
1087 }
1088 else
1089 nval = NULL_TREE;
1090 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1091 {
1092 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1093 lfi->name);
1094 if (e != NULL)
1095 nval = TYPE_MAIN_DECL (e->type);
1096 else
1097 goto done;
1098 }
1099 }
1100
1101 /* You must name a template base class with a template-id. */
1102 if (!same_type_p (type, lfi->type)
1103 && template_self_reference_p (type, nval))
1104 goto done;
1105
1106 /* If the lookup already found a match, and the new value doesn't
1107 hide the old one, we might have an ambiguity. */
1108 if (lfi->rval_binfo
1109 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1110
1111 {
1112 if (nval == lfi->rval && shared_member_p (nval))
1113 /* The two things are really the same. */
1114 ;
1115 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1116 /* The previous value hides the new one. */
1117 ;
1118 else
1119 {
1120 /* We have a real ambiguity. We keep a chain of all the
1121 candidates. */
1122 if (!lfi->ambiguous && lfi->rval)
1123 {
1124 /* This is the first time we noticed an ambiguity. Add
1125 what we previously thought was a reasonable candidate
1126 to the list. */
1127 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1128 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1129 }
1130
1131 /* Add the new value. */
1132 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1133 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1134 lfi->errstr = "request for member %qD is ambiguous";
1135 }
1136 }
1137 else
1138 {
1139 lfi->rval = nval;
1140 lfi->rval_binfo = binfo;
1141 }
1142
1143 done:
1144 /* Don't look for constructors or destructors in base classes. */
1145 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1146 return dfs_skip_bases;
1147 return NULL_TREE;
1148 }
1149
1150 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1151 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1152 FUNCTIONS, and OPTYPE respectively. */
1153
1154 tree
1155 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1156 {
1157 tree baselink;
1158
1159 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1160 || TREE_CODE (functions) == TEMPLATE_DECL
1161 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1162 || TREE_CODE (functions) == OVERLOAD);
1163 gcc_assert (!optype || TYPE_P (optype));
1164 gcc_assert (TREE_TYPE (functions));
1165
1166 baselink = make_node (BASELINK);
1167 TREE_TYPE (baselink) = TREE_TYPE (functions);
1168 BASELINK_BINFO (baselink) = binfo;
1169 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1170 BASELINK_FUNCTIONS (baselink) = functions;
1171 BASELINK_OPTYPE (baselink) = optype;
1172
1173 return baselink;
1174 }
1175
1176 /* Look for a member named NAME in an inheritance lattice dominated by
1177 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1178 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1179 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1180 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1181 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1182 TREE_VALUEs are the list of ambiguous candidates.
1183
1184 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1185
1186 If nothing can be found return NULL_TREE and do not issue an error. */
1187
1188 tree
1189 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1190 {
1191 tree rval, rval_binfo = NULL_TREE;
1192 tree type = NULL_TREE, basetype_path = NULL_TREE;
1193 struct lookup_field_info lfi;
1194
1195 /* rval_binfo is the binfo associated with the found member, note,
1196 this can be set with useful information, even when rval is not
1197 set, because it must deal with ALL members, not just non-function
1198 members. It is used for ambiguity checking and the hidden
1199 checks. Whereas rval is only set if a proper (not hidden)
1200 non-function member is found. */
1201
1202 const char *errstr = 0;
1203
1204 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1205
1206 if (TREE_CODE (xbasetype) == TREE_BINFO)
1207 {
1208 type = BINFO_TYPE (xbasetype);
1209 basetype_path = xbasetype;
1210 }
1211 else
1212 {
1213 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1214 type = xbasetype;
1215 xbasetype = NULL_TREE;
1216 }
1217
1218 type = complete_type (type);
1219 if (!basetype_path)
1220 basetype_path = TYPE_BINFO (type);
1221
1222 if (!basetype_path)
1223 return NULL_TREE;
1224
1225 #ifdef GATHER_STATISTICS
1226 n_calls_lookup_field++;
1227 #endif /* GATHER_STATISTICS */
1228
1229 memset (&lfi, 0, sizeof (lfi));
1230 lfi.type = type;
1231 lfi.name = name;
1232 lfi.want_type = want_type;
1233 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1234 rval = lfi.rval;
1235 rval_binfo = lfi.rval_binfo;
1236 if (rval_binfo)
1237 type = BINFO_TYPE (rval_binfo);
1238 errstr = lfi.errstr;
1239
1240 /* If we are not interested in ambiguities, don't report them;
1241 just return NULL_TREE. */
1242 if (!protect && lfi.ambiguous)
1243 return NULL_TREE;
1244
1245 if (protect == 2)
1246 {
1247 if (lfi.ambiguous)
1248 return lfi.ambiguous;
1249 else
1250 protect = 0;
1251 }
1252
1253 /* [class.access]
1254
1255 In the case of overloaded function names, access control is
1256 applied to the function selected by overloaded resolution. */
1257 if (rval && protect && !is_overloaded_fn (rval))
1258 perform_or_defer_access_check (basetype_path, rval);
1259
1260 if (errstr && protect)
1261 {
1262 error (errstr, name, type);
1263 if (lfi.ambiguous)
1264 print_candidates (lfi.ambiguous);
1265 rval = error_mark_node;
1266 }
1267
1268 if (rval && is_overloaded_fn (rval))
1269 rval = build_baselink (rval_binfo, basetype_path, rval,
1270 (IDENTIFIER_TYPENAME_P (name)
1271 ? TREE_TYPE (name): NULL_TREE));
1272 return rval;
1273 }
1274
1275 /* Like lookup_member, except that if we find a function member we
1276 return NULL_TREE. */
1277
1278 tree
1279 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1280 {
1281 tree rval = lookup_member (xbasetype, name, protect, want_type);
1282
1283 /* Ignore functions, but propagate the ambiguity list. */
1284 if (!error_operand_p (rval)
1285 && (rval && BASELINK_P (rval)))
1286 return NULL_TREE;
1287
1288 return rval;
1289 }
1290
1291 /* Like lookup_member, except that if we find a non-function member we
1292 return NULL_TREE. */
1293
1294 tree
1295 lookup_fnfields (tree xbasetype, tree name, int protect)
1296 {
1297 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1298
1299 /* Ignore non-functions, but propagate the ambiguity list. */
1300 if (!error_operand_p (rval)
1301 && (rval && !BASELINK_P (rval)))
1302 return NULL_TREE;
1303
1304 return rval;
1305 }
1306
1307 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1308 corresponding to "operator TYPE ()", or -1 if there is no such
1309 operator. Only CLASS_TYPE itself is searched; this routine does
1310 not scan the base classes of CLASS_TYPE. */
1311
1312 static int
1313 lookup_conversion_operator (tree class_type, tree type)
1314 {
1315 int tpl_slot = -1;
1316
1317 if (TYPE_HAS_CONVERSION (class_type))
1318 {
1319 int i;
1320 tree fn;
1321 VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1322
1323 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1324 VEC_iterate (tree, methods, i, fn); ++i)
1325 {
1326 /* All the conversion operators come near the beginning of
1327 the class. Therefore, if FN is not a conversion
1328 operator, there is no matching conversion operator in
1329 CLASS_TYPE. */
1330 fn = OVL_CURRENT (fn);
1331 if (!DECL_CONV_FN_P (fn))
1332 break;
1333
1334 if (TREE_CODE (fn) == TEMPLATE_DECL)
1335 /* All the templated conversion functions are on the same
1336 slot, so remember it. */
1337 tpl_slot = i;
1338 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1339 return i;
1340 }
1341 }
1342
1343 return tpl_slot;
1344 }
1345
1346 /* TYPE is a class type. Return the index of the fields within
1347 the method vector with name NAME, or -1 is no such field exists. */
1348
1349 int
1350 lookup_fnfields_1 (tree type, tree name)
1351 {
1352 VEC(tree,gc) *method_vec;
1353 tree fn;
1354 tree tmp;
1355 size_t i;
1356
1357 if (!CLASS_TYPE_P (type))
1358 return -1;
1359
1360 if (COMPLETE_TYPE_P (type))
1361 {
1362 if ((name == ctor_identifier
1363 || name == base_ctor_identifier
1364 || name == complete_ctor_identifier))
1365 {
1366 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1367 lazily_declare_fn (sfk_constructor, type);
1368 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1369 lazily_declare_fn (sfk_copy_constructor, type);
1370 }
1371 else if (name == ansi_assopname(NOP_EXPR)
1372 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1373 lazily_declare_fn (sfk_assignment_operator, type);
1374 else if ((name == dtor_identifier
1375 || name == base_dtor_identifier
1376 || name == complete_dtor_identifier
1377 || name == deleting_dtor_identifier)
1378 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1379 lazily_declare_fn (sfk_destructor, type);
1380 }
1381
1382 method_vec = CLASSTYPE_METHOD_VEC (type);
1383 if (!method_vec)
1384 return -1;
1385
1386 #ifdef GATHER_STATISTICS
1387 n_calls_lookup_fnfields_1++;
1388 #endif /* GATHER_STATISTICS */
1389
1390 /* Constructors are first... */
1391 if (name == ctor_identifier)
1392 {
1393 fn = CLASSTYPE_CONSTRUCTORS (type);
1394 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1395 }
1396 /* and destructors are second. */
1397 if (name == dtor_identifier)
1398 {
1399 fn = CLASSTYPE_DESTRUCTORS (type);
1400 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1401 }
1402 if (IDENTIFIER_TYPENAME_P (name))
1403 return lookup_conversion_operator (type, TREE_TYPE (name));
1404
1405 /* Skip the conversion operators. */
1406 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1407 VEC_iterate (tree, method_vec, i, fn);
1408 ++i)
1409 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1410 break;
1411
1412 /* If the type is complete, use binary search. */
1413 if (COMPLETE_TYPE_P (type))
1414 {
1415 int lo;
1416 int hi;
1417
1418 lo = i;
1419 hi = VEC_length (tree, method_vec);
1420 while (lo < hi)
1421 {
1422 i = (lo + hi) / 2;
1423
1424 #ifdef GATHER_STATISTICS
1425 n_outer_fields_searched++;
1426 #endif /* GATHER_STATISTICS */
1427
1428 tmp = VEC_index (tree, method_vec, i);
1429 tmp = DECL_NAME (OVL_CURRENT (tmp));
1430 if (tmp > name)
1431 hi = i;
1432 else if (tmp < name)
1433 lo = i + 1;
1434 else
1435 return i;
1436 }
1437 }
1438 else
1439 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1440 {
1441 #ifdef GATHER_STATISTICS
1442 n_outer_fields_searched++;
1443 #endif /* GATHER_STATISTICS */
1444 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1445 return i;
1446 }
1447
1448 return -1;
1449 }
1450
1451 /* Like lookup_fnfields_1, except that the name is extracted from
1452 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1453
1454 int
1455 class_method_index_for_fn (tree class_type, tree function)
1456 {
1457 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1458 || DECL_FUNCTION_TEMPLATE_P (function));
1459
1460 return lookup_fnfields_1 (class_type,
1461 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1462 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1463 DECL_NAME (function));
1464 }
1465
1466
1467 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1468 the class or namespace used to qualify the name. CONTEXT_CLASS is
1469 the class corresponding to the object in which DECL will be used.
1470 Return a possibly modified version of DECL that takes into account
1471 the CONTEXT_CLASS.
1472
1473 In particular, consider an expression like `B::m' in the context of
1474 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1475 then the most derived class indicated by the BASELINK_BINFO will be
1476 `B', not `D'. This function makes that adjustment. */
1477
1478 tree
1479 adjust_result_of_qualified_name_lookup (tree decl,
1480 tree qualifying_scope,
1481 tree context_class)
1482 {
1483 if (context_class && context_class != error_mark_node
1484 && CLASS_TYPE_P (qualifying_scope)
1485 && DERIVED_FROM_P (qualifying_scope, context_class)
1486 && BASELINK_P (decl))
1487 {
1488 tree base;
1489
1490 gcc_assert (CLASS_TYPE_P (context_class));
1491
1492 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1493 Because we do not yet know which function will be chosen by
1494 overload resolution, we cannot yet check either accessibility
1495 or ambiguity -- in either case, the choice of a static member
1496 function might make the usage valid. */
1497 base = lookup_base (context_class, qualifying_scope,
1498 ba_unique | ba_quiet, NULL);
1499 if (base)
1500 {
1501 BASELINK_ACCESS_BINFO (decl) = base;
1502 BASELINK_BINFO (decl)
1503 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1504 ba_unique | ba_quiet,
1505 NULL);
1506 }
1507 }
1508
1509 return decl;
1510 }
1511
1512 \f
1513 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1514 PRE_FN is called in preorder, while POST_FN is called in postorder.
1515 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1516 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1517 that value is immediately returned and the walk is terminated. One
1518 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1519 POST_FN are passed the binfo to examine and the caller's DATA
1520 value. All paths are walked, thus virtual and morally virtual
1521 binfos can be multiply walked. */
1522
1523 tree
1524 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1525 tree (*post_fn) (tree, void *), void *data)
1526 {
1527 tree rval;
1528 unsigned ix;
1529 tree base_binfo;
1530
1531 /* Call the pre-order walking function. */
1532 if (pre_fn)
1533 {
1534 rval = pre_fn (binfo, data);
1535 if (rval)
1536 {
1537 if (rval == dfs_skip_bases)
1538 goto skip_bases;
1539 return rval;
1540 }
1541 }
1542
1543 /* Find the next child binfo to walk. */
1544 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1545 {
1546 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1547 if (rval)
1548 return rval;
1549 }
1550
1551 skip_bases:
1552 /* Call the post-order walking function. */
1553 if (post_fn)
1554 {
1555 rval = post_fn (binfo, data);
1556 gcc_assert (rval != dfs_skip_bases);
1557 return rval;
1558 }
1559
1560 return NULL_TREE;
1561 }
1562
1563 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1564 that binfos are walked at most once. */
1565
1566 static tree
1567 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1568 tree (*post_fn) (tree, void *), void *data)
1569 {
1570 tree rval;
1571 unsigned ix;
1572 tree base_binfo;
1573
1574 /* Call the pre-order walking function. */
1575 if (pre_fn)
1576 {
1577 rval = pre_fn (binfo, data);
1578 if (rval)
1579 {
1580 if (rval == dfs_skip_bases)
1581 goto skip_bases;
1582
1583 return rval;
1584 }
1585 }
1586
1587 /* Find the next child binfo to walk. */
1588 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1589 {
1590 if (BINFO_VIRTUAL_P (base_binfo))
1591 {
1592 if (BINFO_MARKED (base_binfo))
1593 continue;
1594 BINFO_MARKED (base_binfo) = 1;
1595 }
1596
1597 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1598 if (rval)
1599 return rval;
1600 }
1601
1602 skip_bases:
1603 /* Call the post-order walking function. */
1604 if (post_fn)
1605 {
1606 rval = post_fn (binfo, data);
1607 gcc_assert (rval != dfs_skip_bases);
1608 return rval;
1609 }
1610
1611 return NULL_TREE;
1612 }
1613
1614 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1615 BINFO. */
1616
1617 static void
1618 dfs_unmark_r (tree binfo)
1619 {
1620 unsigned ix;
1621 tree base_binfo;
1622
1623 /* Process the basetypes. */
1624 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1625 {
1626 if (BINFO_VIRTUAL_P (base_binfo))
1627 {
1628 if (!BINFO_MARKED (base_binfo))
1629 continue;
1630 BINFO_MARKED (base_binfo) = 0;
1631 }
1632 /* Only walk, if it can contain more virtual bases. */
1633 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1634 dfs_unmark_r (base_binfo);
1635 }
1636 }
1637
1638 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1639 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1640 For diamond shaped hierarchies we must mark the virtual bases, to
1641 avoid multiple walks. */
1642
1643 tree
1644 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1645 tree (*post_fn) (tree, void *), void *data)
1646 {
1647 static int active = 0; /* We must not be called recursively. */
1648 tree rval;
1649
1650 gcc_assert (pre_fn || post_fn);
1651 gcc_assert (!active);
1652 active++;
1653
1654 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1655 /* We are not diamond shaped, and therefore cannot encounter the
1656 same binfo twice. */
1657 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1658 else
1659 {
1660 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1661 if (!BINFO_INHERITANCE_CHAIN (binfo))
1662 {
1663 /* We are at the top of the hierarchy, and can use the
1664 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1665 bases. */
1666 VEC(tree,gc) *vbases;
1667 unsigned ix;
1668 tree base_binfo;
1669
1670 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1671 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1672 BINFO_MARKED (base_binfo) = 0;
1673 }
1674 else
1675 dfs_unmark_r (binfo);
1676 }
1677
1678 active--;
1679
1680 return rval;
1681 }
1682
1683 /* Worker function for dfs_walk_once_accessible. Behaves like
1684 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1685 access given by the current context should be considered, (b) ONCE
1686 indicates whether bases should be marked during traversal. */
1687
1688 static tree
1689 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1690 tree (*pre_fn) (tree, void *),
1691 tree (*post_fn) (tree, void *), void *data)
1692 {
1693 tree rval = NULL_TREE;
1694 unsigned ix;
1695 tree base_binfo;
1696
1697 /* Call the pre-order walking function. */
1698 if (pre_fn)
1699 {
1700 rval = pre_fn (binfo, data);
1701 if (rval)
1702 {
1703 if (rval == dfs_skip_bases)
1704 goto skip_bases;
1705
1706 return rval;
1707 }
1708 }
1709
1710 /* Find the next child binfo to walk. */
1711 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1712 {
1713 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1714
1715 if (mark && BINFO_MARKED (base_binfo))
1716 continue;
1717
1718 /* If the base is inherited via private or protected
1719 inheritance, then we can't see it, unless we are a friend of
1720 the current binfo. */
1721 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1722 {
1723 tree scope;
1724 if (!friends_p)
1725 continue;
1726 scope = current_scope ();
1727 if (!scope
1728 || TREE_CODE (scope) == NAMESPACE_DECL
1729 || !is_friend (BINFO_TYPE (binfo), scope))
1730 continue;
1731 }
1732
1733 if (mark)
1734 BINFO_MARKED (base_binfo) = 1;
1735
1736 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1737 pre_fn, post_fn, data);
1738 if (rval)
1739 return rval;
1740 }
1741
1742 skip_bases:
1743 /* Call the post-order walking function. */
1744 if (post_fn)
1745 {
1746 rval = post_fn (binfo, data);
1747 gcc_assert (rval != dfs_skip_bases);
1748 return rval;
1749 }
1750
1751 return NULL_TREE;
1752 }
1753
1754 /* Like dfs_walk_once except that only accessible bases are walked.
1755 FRIENDS_P indicates whether friendship of the local context
1756 should be considered when determining accessibility. */
1757
1758 static tree
1759 dfs_walk_once_accessible (tree binfo, bool friends_p,
1760 tree (*pre_fn) (tree, void *),
1761 tree (*post_fn) (tree, void *), void *data)
1762 {
1763 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1764 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1765 pre_fn, post_fn, data);
1766
1767 if (diamond_shaped)
1768 {
1769 if (!BINFO_INHERITANCE_CHAIN (binfo))
1770 {
1771 /* We are at the top of the hierarchy, and can use the
1772 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1773 bases. */
1774 VEC(tree,gc) *vbases;
1775 unsigned ix;
1776 tree base_binfo;
1777
1778 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1779 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1780 BINFO_MARKED (base_binfo) = 0;
1781 }
1782 else
1783 dfs_unmark_r (binfo);
1784 }
1785 return rval;
1786 }
1787
1788 /* Check that virtual overrider OVERRIDER is acceptable for base function
1789 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1790
1791 static int
1792 check_final_overrider (tree overrider, tree basefn)
1793 {
1794 tree over_type = TREE_TYPE (overrider);
1795 tree base_type = TREE_TYPE (basefn);
1796 tree over_return = TREE_TYPE (over_type);
1797 tree base_return = TREE_TYPE (base_type);
1798 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1799 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1800 int fail = 0;
1801
1802 if (DECL_INVALID_OVERRIDER_P (overrider))
1803 return 0;
1804
1805 if (same_type_p (base_return, over_return))
1806 /* OK */;
1807 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1808 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1809 && POINTER_TYPE_P (base_return)))
1810 {
1811 /* Potentially covariant. */
1812 unsigned base_quals, over_quals;
1813
1814 fail = !POINTER_TYPE_P (base_return);
1815 if (!fail)
1816 {
1817 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1818
1819 base_return = TREE_TYPE (base_return);
1820 over_return = TREE_TYPE (over_return);
1821 }
1822 base_quals = cp_type_quals (base_return);
1823 over_quals = cp_type_quals (over_return);
1824
1825 if ((base_quals & over_quals) != over_quals)
1826 fail = 1;
1827
1828 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1829 {
1830 tree binfo = lookup_base (over_return, base_return,
1831 ba_check | ba_quiet, NULL);
1832
1833 if (!binfo)
1834 fail = 1;
1835 }
1836 else if (!pedantic
1837 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1838 /* GNU extension, allow trivial pointer conversions such as
1839 converting to void *, or qualification conversion. */
1840 {
1841 /* can_convert will permit user defined conversion from a
1842 (reference to) class type. We must reject them. */
1843 over_return = non_reference (TREE_TYPE (over_type));
1844 if (CLASS_TYPE_P (over_return))
1845 fail = 2;
1846 else
1847 {
1848 warning (0, "deprecated covariant return type for %q+#D",
1849 overrider);
1850 warning (0, " overriding %q+#D", basefn);
1851 }
1852 }
1853 else
1854 fail = 2;
1855 }
1856 else
1857 fail = 2;
1858 if (!fail)
1859 /* OK */;
1860 else
1861 {
1862 if (fail == 1)
1863 {
1864 error ("invalid covariant return type for %q+#D", overrider);
1865 error (" overriding %q+#D", basefn);
1866 }
1867 else
1868 {
1869 error ("conflicting return type specified for %q+#D", overrider);
1870 error (" overriding %q+#D", basefn);
1871 }
1872 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1873 return 0;
1874 }
1875
1876 /* Check throw specifier is at least as strict. */
1877 if (!comp_except_specs (base_throw, over_throw, 0))
1878 {
1879 error ("looser throw specifier for %q+#F", overrider);
1880 error (" overriding %q+#F", basefn);
1881 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1882 return 0;
1883 }
1884
1885 return 1;
1886 }
1887
1888 /* Given a class TYPE, and a function decl FNDECL, look for
1889 virtual functions in TYPE's hierarchy which FNDECL overrides.
1890 We do not look in TYPE itself, only its bases.
1891
1892 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1893 find that it overrides anything.
1894
1895 We check that every function which is overridden, is correctly
1896 overridden. */
1897
1898 int
1899 look_for_overrides (tree type, tree fndecl)
1900 {
1901 tree binfo = TYPE_BINFO (type);
1902 tree base_binfo;
1903 int ix;
1904 int found = 0;
1905
1906 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1907 {
1908 tree basetype = BINFO_TYPE (base_binfo);
1909
1910 if (TYPE_POLYMORPHIC_P (basetype))
1911 found += look_for_overrides_r (basetype, fndecl);
1912 }
1913 return found;
1914 }
1915
1916 /* Look in TYPE for virtual functions with the same signature as
1917 FNDECL. */
1918
1919 tree
1920 look_for_overrides_here (tree type, tree fndecl)
1921 {
1922 int ix;
1923
1924 /* If there are no methods in TYPE (meaning that only implicitly
1925 declared methods will ever be provided for TYPE), then there are
1926 no virtual functions. */
1927 if (!CLASSTYPE_METHOD_VEC (type))
1928 return NULL_TREE;
1929
1930 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1931 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1932 else
1933 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1934 if (ix >= 0)
1935 {
1936 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1937
1938 for (; fns; fns = OVL_NEXT (fns))
1939 {
1940 tree fn = OVL_CURRENT (fns);
1941
1942 if (!DECL_VIRTUAL_P (fn))
1943 /* Not a virtual. */;
1944 else if (DECL_CONTEXT (fn) != type)
1945 /* Introduced with a using declaration. */;
1946 else if (DECL_STATIC_FUNCTION_P (fndecl))
1947 {
1948 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1949 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1950 if (compparms (TREE_CHAIN (btypes), dtypes))
1951 return fn;
1952 }
1953 else if (same_signature_p (fndecl, fn))
1954 return fn;
1955 }
1956 }
1957 return NULL_TREE;
1958 }
1959
1960 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1961 TYPE itself and its bases. */
1962
1963 static int
1964 look_for_overrides_r (tree type, tree fndecl)
1965 {
1966 tree fn = look_for_overrides_here (type, fndecl);
1967 if (fn)
1968 {
1969 if (DECL_STATIC_FUNCTION_P (fndecl))
1970 {
1971 /* A static member function cannot match an inherited
1972 virtual member function. */
1973 error ("%q+#D cannot be declared", fndecl);
1974 error (" since %q+#D declared in base class", fn);
1975 }
1976 else
1977 {
1978 /* It's definitely virtual, even if not explicitly set. */
1979 DECL_VIRTUAL_P (fndecl) = 1;
1980 check_final_overrider (fndecl, fn);
1981 }
1982 return 1;
1983 }
1984
1985 /* We failed to find one declared in this class. Look in its bases. */
1986 return look_for_overrides (type, fndecl);
1987 }
1988
1989 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1990
1991 static tree
1992 dfs_get_pure_virtuals (tree binfo, void *data)
1993 {
1994 tree type = (tree) data;
1995
1996 /* We're not interested in primary base classes; the derived class
1997 of which they are a primary base will contain the information we
1998 need. */
1999 if (!BINFO_PRIMARY_P (binfo))
2000 {
2001 tree virtuals;
2002
2003 for (virtuals = BINFO_VIRTUALS (binfo);
2004 virtuals;
2005 virtuals = TREE_CHAIN (virtuals))
2006 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2007 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2008 BV_FN (virtuals));
2009 }
2010
2011 return NULL_TREE;
2012 }
2013
2014 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2015
2016 void
2017 get_pure_virtuals (tree type)
2018 {
2019 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2020 is going to be overridden. */
2021 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2022 /* Now, run through all the bases which are not primary bases, and
2023 collect the pure virtual functions. We look at the vtable in
2024 each class to determine what pure virtual functions are present.
2025 (A primary base is not interesting because the derived class of
2026 which it is a primary base will contain vtable entries for the
2027 pure virtuals in the base class. */
2028 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2029 }
2030 \f
2031 /* Debug info for C++ classes can get very large; try to avoid
2032 emitting it everywhere.
2033
2034 Note that this optimization wins even when the target supports
2035 BINCL (if only slightly), and reduces the amount of work for the
2036 linker. */
2037
2038 void
2039 maybe_suppress_debug_info (tree t)
2040 {
2041 if (write_symbols == NO_DEBUG)
2042 return;
2043
2044 /* We might have set this earlier in cp_finish_decl. */
2045 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2046
2047 /* Always emit the information for each class every time. */
2048 if (flag_emit_class_debug_always)
2049 return;
2050
2051 /* If we already know how we're handling this class, handle debug info
2052 the same way. */
2053 if (CLASSTYPE_INTERFACE_KNOWN (t))
2054 {
2055 if (CLASSTYPE_INTERFACE_ONLY (t))
2056 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2057 /* else don't set it. */
2058 }
2059 /* If the class has a vtable, write out the debug info along with
2060 the vtable. */
2061 else if (TYPE_CONTAINS_VPTR_P (t))
2062 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2063
2064 /* Otherwise, just emit the debug info normally. */
2065 }
2066
2067 /* Note that we want debugging information for a base class of a class
2068 whose vtable is being emitted. Normally, this would happen because
2069 calling the constructor for a derived class implies calling the
2070 constructors for all bases, which involve initializing the
2071 appropriate vptr with the vtable for the base class; but in the
2072 presence of optimization, this initialization may be optimized
2073 away, so we tell finish_vtable_vardecl that we want the debugging
2074 information anyway. */
2075
2076 static tree
2077 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2078 {
2079 tree t = BINFO_TYPE (binfo);
2080
2081 if (CLASSTYPE_DEBUG_REQUESTED (t))
2082 return dfs_skip_bases;
2083
2084 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2085
2086 return NULL_TREE;
2087 }
2088
2089 /* Write out the debugging information for TYPE, whose vtable is being
2090 emitted. Also walk through our bases and note that we want to
2091 write out information for them. This avoids the problem of not
2092 writing any debug info for intermediate basetypes whose
2093 constructors, and thus the references to their vtables, and thus
2094 the vtables themselves, were optimized away. */
2095
2096 void
2097 note_debug_info_needed (tree type)
2098 {
2099 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2100 {
2101 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2102 rest_of_type_compilation (type, toplevel_bindings_p ());
2103 }
2104
2105 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2106 }
2107 \f
2108 void
2109 print_search_statistics (void)
2110 {
2111 #ifdef GATHER_STATISTICS
2112 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2113 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2114 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2115 n_outer_fields_searched, n_calls_lookup_fnfields);
2116 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2117 #else /* GATHER_STATISTICS */
2118 fprintf (stderr, "no search statistics\n");
2119 #endif /* GATHER_STATISTICS */
2120 }
2121
2122 void
2123 reinit_search_statistics (void)
2124 {
2125 #ifdef GATHER_STATISTICS
2126 n_fields_searched = 0;
2127 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2128 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2129 n_calls_get_base_type = 0;
2130 n_outer_fields_searched = 0;
2131 n_contexts_saved = 0;
2132 #endif /* GATHER_STATISTICS */
2133 }
2134
2135 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2136 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2137 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2138 bases have been encountered already in the tree walk. PARENT_CONVS
2139 is the list of lists of conversion functions that could hide CONV
2140 and OTHER_CONVS is the list of lists of conversion functions that
2141 could hide or be hidden by CONV, should virtualness be involved in
2142 the hierarchy. Merely checking the conversion op's name is not
2143 enough because two conversion operators to the same type can have
2144 different names. Return nonzero if we are visible. */
2145
2146 static int
2147 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2148 tree to_type, tree parent_convs, tree other_convs)
2149 {
2150 tree level, probe;
2151
2152 /* See if we are hidden by a parent conversion. */
2153 for (level = parent_convs; level; level = TREE_CHAIN (level))
2154 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2155 if (same_type_p (to_type, TREE_TYPE (probe)))
2156 return 0;
2157
2158 if (virtual_depth || virtualness)
2159 {
2160 /* In a virtual hierarchy, we could be hidden, or could hide a
2161 conversion function on the other_convs list. */
2162 for (level = other_convs; level; level = TREE_CHAIN (level))
2163 {
2164 int we_hide_them;
2165 int they_hide_us;
2166 tree *prev, other;
2167
2168 if (!(virtual_depth || TREE_STATIC (level)))
2169 /* Neither is morally virtual, so cannot hide each other. */
2170 continue;
2171
2172 if (!TREE_VALUE (level))
2173 /* They evaporated away already. */
2174 continue;
2175
2176 they_hide_us = (virtual_depth
2177 && original_binfo (binfo, TREE_PURPOSE (level)));
2178 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2179 && original_binfo (TREE_PURPOSE (level), binfo));
2180
2181 if (!(we_hide_them || they_hide_us))
2182 /* Neither is within the other, so no hiding can occur. */
2183 continue;
2184
2185 for (prev = &TREE_VALUE (level), other = *prev; other;)
2186 {
2187 if (same_type_p (to_type, TREE_TYPE (other)))
2188 {
2189 if (they_hide_us)
2190 /* We are hidden. */
2191 return 0;
2192
2193 if (we_hide_them)
2194 {
2195 /* We hide the other one. */
2196 other = TREE_CHAIN (other);
2197 *prev = other;
2198 continue;
2199 }
2200 }
2201 prev = &TREE_CHAIN (other);
2202 other = *prev;
2203 }
2204 }
2205 }
2206 return 1;
2207 }
2208
2209 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2210 of conversion functions, the first slot will be for the current
2211 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2212 of conversion functions from children of the current binfo,
2213 concatenated with conversions from elsewhere in the hierarchy --
2214 that list begins with OTHER_CONVS. Return a single list of lists
2215 containing only conversions from the current binfo and its
2216 children. */
2217
2218 static tree
2219 split_conversions (tree my_convs, tree parent_convs,
2220 tree child_convs, tree other_convs)
2221 {
2222 tree t;
2223 tree prev;
2224
2225 /* Remove the original other_convs portion from child_convs. */
2226 for (prev = NULL, t = child_convs;
2227 t != other_convs; prev = t, t = TREE_CHAIN (t))
2228 continue;
2229
2230 if (prev)
2231 TREE_CHAIN (prev) = NULL_TREE;
2232 else
2233 child_convs = NULL_TREE;
2234
2235 /* Attach the child convs to any we had at this level. */
2236 if (my_convs)
2237 {
2238 my_convs = parent_convs;
2239 TREE_CHAIN (my_convs) = child_convs;
2240 }
2241 else
2242 my_convs = child_convs;
2243
2244 return my_convs;
2245 }
2246
2247 /* Worker for lookup_conversions. Lookup conversion functions in
2248 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2249 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2250 encountered virtual bases already in the tree walk. PARENT_CONVS &
2251 PARENT_TPL_CONVS are lists of list of conversions within parent
2252 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2253 elsewhere in the tree. Return the conversions found within this
2254 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2255 encountered virtualness. We keep template and non-template
2256 conversions separate, to avoid unnecessary type comparisons.
2257
2258 The located conversion functions are held in lists of lists. The
2259 TREE_VALUE of the outer list is the list of conversion functions
2260 found in a particular binfo. The TREE_PURPOSE of both the outer
2261 and inner lists is the binfo at which those conversions were
2262 found. TREE_STATIC is set for those lists within of morally
2263 virtual binfos. The TREE_VALUE of the inner list is the conversion
2264 function or overload itself. The TREE_TYPE of each inner list node
2265 is the converted-to type. */
2266
2267 static int
2268 lookup_conversions_r (tree binfo,
2269 int virtual_depth, int virtualness,
2270 tree parent_convs, tree parent_tpl_convs,
2271 tree other_convs, tree other_tpl_convs,
2272 tree *convs, tree *tpl_convs)
2273 {
2274 int my_virtualness = 0;
2275 tree my_convs = NULL_TREE;
2276 tree my_tpl_convs = NULL_TREE;
2277 tree child_convs = NULL_TREE;
2278 tree child_tpl_convs = NULL_TREE;
2279 unsigned i;
2280 tree base_binfo;
2281 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2282 tree conv;
2283
2284 /* If we have no conversion operators, then don't look. */
2285 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2286 {
2287 *convs = *tpl_convs = NULL_TREE;
2288
2289 return 0;
2290 }
2291
2292 if (BINFO_VIRTUAL_P (binfo))
2293 virtual_depth++;
2294
2295 /* First, locate the unhidden ones at this level. */
2296 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2297 VEC_iterate (tree, method_vec, i, conv);
2298 ++i)
2299 {
2300 tree cur = OVL_CURRENT (conv);
2301
2302 if (!DECL_CONV_FN_P (cur))
2303 break;
2304
2305 if (TREE_CODE (cur) == TEMPLATE_DECL)
2306 {
2307 /* Only template conversions can be overloaded, and we must
2308 flatten them out and check each one individually. */
2309 tree tpls;
2310
2311 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2312 {
2313 tree tpl = OVL_CURRENT (tpls);
2314 tree type = DECL_CONV_FN_TYPE (tpl);
2315
2316 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2317 type, parent_tpl_convs, other_tpl_convs))
2318 {
2319 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2320 TREE_TYPE (my_tpl_convs) = type;
2321 if (virtual_depth)
2322 {
2323 TREE_STATIC (my_tpl_convs) = 1;
2324 my_virtualness = 1;
2325 }
2326 }
2327 }
2328 }
2329 else
2330 {
2331 tree name = DECL_NAME (cur);
2332
2333 if (!IDENTIFIER_MARKED (name))
2334 {
2335 tree type = DECL_CONV_FN_TYPE (cur);
2336
2337 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2338 type, parent_convs, other_convs))
2339 {
2340 my_convs = tree_cons (binfo, conv, my_convs);
2341 TREE_TYPE (my_convs) = type;
2342 if (virtual_depth)
2343 {
2344 TREE_STATIC (my_convs) = 1;
2345 my_virtualness = 1;
2346 }
2347 IDENTIFIER_MARKED (name) = 1;
2348 }
2349 }
2350 }
2351 }
2352
2353 if (my_convs)
2354 {
2355 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2356 if (virtual_depth)
2357 TREE_STATIC (parent_convs) = 1;
2358 }
2359
2360 if (my_tpl_convs)
2361 {
2362 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2363 if (virtual_depth)
2364 TREE_STATIC (parent_tpl_convs) = 1;
2365 }
2366
2367 child_convs = other_convs;
2368 child_tpl_convs = other_tpl_convs;
2369
2370 /* Now iterate over each base, looking for more conversions. */
2371 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2372 {
2373 tree base_convs, base_tpl_convs;
2374 unsigned base_virtualness;
2375
2376 base_virtualness = lookup_conversions_r (base_binfo,
2377 virtual_depth, virtualness,
2378 parent_convs, parent_tpl_convs,
2379 child_convs, child_tpl_convs,
2380 &base_convs, &base_tpl_convs);
2381 if (base_virtualness)
2382 my_virtualness = virtualness = 1;
2383 child_convs = chainon (base_convs, child_convs);
2384 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2385 }
2386
2387 /* Unmark the conversions found at this level */
2388 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2389 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2390
2391 *convs = split_conversions (my_convs, parent_convs,
2392 child_convs, other_convs);
2393 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2394 child_tpl_convs, other_tpl_convs);
2395
2396 return my_virtualness;
2397 }
2398
2399 /* Return a TREE_LIST containing all the non-hidden user-defined
2400 conversion functions for TYPE (and its base-classes). The
2401 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2402 function. The TREE_PURPOSE is the BINFO from which the conversion
2403 functions in this node were selected. This function is effectively
2404 performing a set of member lookups as lookup_fnfield does, but
2405 using the type being converted to as the unique key, rather than the
2406 field name. */
2407
2408 tree
2409 lookup_conversions (tree type)
2410 {
2411 tree convs, tpl_convs;
2412 tree list = NULL_TREE;
2413
2414 complete_type (type);
2415 if (!TYPE_BINFO (type))
2416 return NULL_TREE;
2417
2418 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2419 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2420 &convs, &tpl_convs);
2421
2422 /* Flatten the list-of-lists */
2423 for (; convs; convs = TREE_CHAIN (convs))
2424 {
2425 tree probe, next;
2426
2427 for (probe = TREE_VALUE (convs); probe; probe = next)
2428 {
2429 next = TREE_CHAIN (probe);
2430
2431 TREE_CHAIN (probe) = list;
2432 list = probe;
2433 }
2434 }
2435
2436 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2437 {
2438 tree probe, next;
2439
2440 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2441 {
2442 next = TREE_CHAIN (probe);
2443
2444 TREE_CHAIN (probe) = list;
2445 list = probe;
2446 }
2447 }
2448
2449 return list;
2450 }
2451
2452 /* Returns the binfo of the first direct or indirect virtual base derived
2453 from BINFO, or NULL if binfo is not via virtual. */
2454
2455 tree
2456 binfo_from_vbase (tree binfo)
2457 {
2458 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2459 {
2460 if (BINFO_VIRTUAL_P (binfo))
2461 return binfo;
2462 }
2463 return NULL_TREE;
2464 }
2465
2466 /* Returns the binfo of the first direct or indirect virtual base derived
2467 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2468 via virtual. */
2469
2470 tree
2471 binfo_via_virtual (tree binfo, tree limit)
2472 {
2473 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2474 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2475 return NULL_TREE;
2476
2477 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2478 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2479 {
2480 if (BINFO_VIRTUAL_P (binfo))
2481 return binfo;
2482 }
2483 return NULL_TREE;
2484 }
2485
2486 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2487 Find the equivalent binfo within whatever graph HERE is located.
2488 This is the inverse of original_binfo. */
2489
2490 tree
2491 copied_binfo (tree binfo, tree here)
2492 {
2493 tree result = NULL_TREE;
2494
2495 if (BINFO_VIRTUAL_P (binfo))
2496 {
2497 tree t;
2498
2499 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2500 t = BINFO_INHERITANCE_CHAIN (t))
2501 continue;
2502
2503 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2504 }
2505 else if (BINFO_INHERITANCE_CHAIN (binfo))
2506 {
2507 tree cbinfo;
2508 tree base_binfo;
2509 int ix;
2510
2511 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2512 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2513 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2514 {
2515 result = base_binfo;
2516 break;
2517 }
2518 }
2519 else
2520 {
2521 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2522 result = here;
2523 }
2524
2525 gcc_assert (result);
2526 return result;
2527 }
2528
2529 tree
2530 binfo_for_vbase (tree base, tree t)
2531 {
2532 unsigned ix;
2533 tree binfo;
2534 VEC(tree,gc) *vbases;
2535
2536 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2537 VEC_iterate (tree, vbases, ix, binfo); ix++)
2538 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2539 return binfo;
2540 return NULL;
2541 }
2542
2543 /* BINFO is some base binfo of HERE, within some other
2544 hierarchy. Return the equivalent binfo, but in the hierarchy
2545 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2546 is not a base binfo of HERE, returns NULL_TREE. */
2547
2548 tree
2549 original_binfo (tree binfo, tree here)
2550 {
2551 tree result = NULL;
2552
2553 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2554 result = here;
2555 else if (BINFO_VIRTUAL_P (binfo))
2556 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2557 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2558 : NULL_TREE);
2559 else if (BINFO_INHERITANCE_CHAIN (binfo))
2560 {
2561 tree base_binfos;
2562
2563 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2564 if (base_binfos)
2565 {
2566 int ix;
2567 tree base_binfo;
2568
2569 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2570 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2571 BINFO_TYPE (binfo)))
2572 {
2573 result = base_binfo;
2574 break;
2575 }
2576 }
2577 }
2578
2579 return result;
2580 }
2581