c-decl.c (c_expand_body): Update call tree_rest_of_compilation.
[gcc.git] / gcc / cp / semantics.c
1 /* Perform the semantic phase of parsing, i.e., the process of
2 building tree structure, checking semantic consistency, and
3 building RTL. These routines are used both during actual parsing
4 and during the instantiation of template functions.
5
6 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004
7 Free Software Foundation, Inc.
8 Written by Mark Mitchell (mmitchell@usa.net) based on code found
9 formerly in parse.y and pt.c.
10
11 This file is part of GCC.
12
13 GCC is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GCC is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING. If not, write to the Free
25 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 02111-1307, USA. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "cp-tree.h"
34 #include "c-common.h"
35 #include "tree-inline.h"
36 #include "tree-mudflap.h"
37 #include "except.h"
38 #include "toplev.h"
39 #include "flags.h"
40 #include "rtl.h"
41 #include "expr.h"
42 #include "output.h"
43 #include "timevar.h"
44 #include "debug.h"
45 #include "diagnostic.h"
46 #include "cgraph.h"
47 #include "tree-iterator.h"
48 #include "vec.h"
49 #include "target.h"
50
51 /* There routines provide a modular interface to perform many parsing
52 operations. They may therefore be used during actual parsing, or
53 during template instantiation, which may be regarded as a
54 degenerate form of parsing. Since the current g++ parser is
55 lacking in several respects, and will be reimplemented, we are
56 attempting to move most code that is not directly related to
57 parsing into this file; that will make implementing the new parser
58 much easier since it will be able to make use of these routines. */
59
60 static tree maybe_convert_cond (tree);
61 static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
62 static void emit_associated_thunks (tree);
63 static tree finalize_nrv_r (tree *, int *, void *);
64
65
66 /* Deferred Access Checking Overview
67 ---------------------------------
68
69 Most C++ expressions and declarations require access checking
70 to be performed during parsing. However, in several cases,
71 this has to be treated differently.
72
73 For member declarations, access checking has to be deferred
74 until more information about the declaration is known. For
75 example:
76
77 class A {
78 typedef int X;
79 public:
80 X f();
81 };
82
83 A::X A::f();
84 A::X g();
85
86 When we are parsing the function return type `A::X', we don't
87 really know if this is allowed until we parse the function name.
88
89 Furthermore, some contexts require that access checking is
90 never performed at all. These include class heads, and template
91 instantiations.
92
93 Typical use of access checking functions is described here:
94
95 1. When we enter a context that requires certain access checking
96 mode, the function `push_deferring_access_checks' is called with
97 DEFERRING argument specifying the desired mode. Access checking
98 may be performed immediately (dk_no_deferred), deferred
99 (dk_deferred), or not performed (dk_no_check).
100
101 2. When a declaration such as a type, or a variable, is encountered,
102 the function `perform_or_defer_access_check' is called. It
103 maintains a TREE_LIST of all deferred checks.
104
105 3. The global `current_class_type' or `current_function_decl' is then
106 setup by the parser. `enforce_access' relies on these information
107 to check access.
108
109 4. Upon exiting the context mentioned in step 1,
110 `perform_deferred_access_checks' is called to check all declaration
111 stored in the TREE_LIST. `pop_deferring_access_checks' is then
112 called to restore the previous access checking mode.
113
114 In case of parsing error, we simply call `pop_deferring_access_checks'
115 without `perform_deferred_access_checks'. */
116
117 typedef struct deferred_access GTY(())
118 {
119 /* A TREE_LIST representing name-lookups for which we have deferred
120 checking access controls. We cannot check the accessibility of
121 names used in a decl-specifier-seq until we know what is being
122 declared because code like:
123
124 class A {
125 class B {};
126 B* f();
127 }
128
129 A::B* A::f() { return 0; }
130
131 is valid, even though `A::B' is not generally accessible.
132
133 The TREE_PURPOSE of each node is the scope used to qualify the
134 name being looked up; the TREE_VALUE is the DECL to which the
135 name was resolved. */
136 tree deferred_access_checks;
137
138 /* The current mode of access checks. */
139 enum deferring_kind deferring_access_checks_kind;
140
141 } deferred_access;
142 DEF_VEC_GC_O (deferred_access);
143
144 /* Data for deferred access checking. */
145 static GTY(()) VEC (deferred_access) *deferred_access_stack;
146 static GTY(()) unsigned deferred_access_no_check;
147
148 /* Save the current deferred access states and start deferred
149 access checking iff DEFER_P is true. */
150
151 void
152 push_deferring_access_checks (deferring_kind deferring)
153 {
154 /* For context like template instantiation, access checking
155 disabling applies to all nested context. */
156 if (deferred_access_no_check || deferring == dk_no_check)
157 deferred_access_no_check++;
158 else
159 {
160 deferred_access *ptr;
161
162 ptr = VEC_safe_push (deferred_access, deferred_access_stack, NULL);
163 ptr->deferred_access_checks = NULL_TREE;
164 ptr->deferring_access_checks_kind = deferring;
165 }
166 }
167
168 /* Resume deferring access checks again after we stopped doing
169 this previously. */
170
171 void
172 resume_deferring_access_checks (void)
173 {
174 if (!deferred_access_no_check)
175 VEC_last (deferred_access, deferred_access_stack)
176 ->deferring_access_checks_kind = dk_deferred;
177 }
178
179 /* Stop deferring access checks. */
180
181 void
182 stop_deferring_access_checks (void)
183 {
184 if (!deferred_access_no_check)
185 VEC_last (deferred_access, deferred_access_stack)
186 ->deferring_access_checks_kind = dk_no_deferred;
187 }
188
189 /* Discard the current deferred access checks and restore the
190 previous states. */
191
192 void
193 pop_deferring_access_checks (void)
194 {
195 if (deferred_access_no_check)
196 deferred_access_no_check--;
197 else
198 VEC_pop (deferred_access, deferred_access_stack);
199 }
200
201 /* Returns a TREE_LIST representing the deferred checks.
202 The TREE_PURPOSE of each node is the type through which the
203 access occurred; the TREE_VALUE is the declaration named.
204 */
205
206 tree
207 get_deferred_access_checks (void)
208 {
209 if (deferred_access_no_check)
210 return NULL;
211 else
212 return (VEC_last (deferred_access, deferred_access_stack)
213 ->deferred_access_checks);
214 }
215
216 /* Take current deferred checks and combine with the
217 previous states if we also defer checks previously.
218 Otherwise perform checks now. */
219
220 void
221 pop_to_parent_deferring_access_checks (void)
222 {
223 if (deferred_access_no_check)
224 deferred_access_no_check--;
225 else
226 {
227 tree checks;
228 deferred_access *ptr;
229
230 checks = (VEC_last (deferred_access, deferred_access_stack)
231 ->deferred_access_checks);
232
233 VEC_pop (deferred_access, deferred_access_stack);
234 ptr = VEC_last (deferred_access, deferred_access_stack);
235 if (ptr->deferring_access_checks_kind == dk_no_deferred)
236 {
237 /* Check access. */
238 for (; checks; checks = TREE_CHAIN (checks))
239 enforce_access (TREE_PURPOSE (checks),
240 TREE_VALUE (checks));
241 }
242 else
243 {
244 /* Merge with parent. */
245 tree next;
246 tree original = ptr->deferred_access_checks;
247
248 for (; checks; checks = next)
249 {
250 tree probe;
251
252 next = TREE_CHAIN (checks);
253
254 for (probe = original; probe; probe = TREE_CHAIN (probe))
255 if (TREE_VALUE (probe) == TREE_VALUE (checks)
256 && TREE_PURPOSE (probe) == TREE_PURPOSE (checks))
257 goto found;
258 /* Insert into parent's checks. */
259 TREE_CHAIN (checks) = ptr->deferred_access_checks;
260 ptr->deferred_access_checks = checks;
261 found:;
262 }
263 }
264 }
265 }
266
267 /* Perform the deferred access checks.
268
269 After performing the checks, we still have to keep the list
270 `deferred_access_stack->deferred_access_checks' since we may want
271 to check access for them again later in a different context.
272 For example:
273
274 class A {
275 typedef int X;
276 static X a;
277 };
278 A::X A::a, x; // No error for `A::a', error for `x'
279
280 We have to perform deferred access of `A::X', first with `A::a',
281 next with `x'. */
282
283 void
284 perform_deferred_access_checks (void)
285 {
286 tree deferred_check;
287
288 for (deferred_check = (VEC_last (deferred_access, deferred_access_stack)
289 ->deferred_access_checks);
290 deferred_check;
291 deferred_check = TREE_CHAIN (deferred_check))
292 /* Check access. */
293 enforce_access (TREE_PURPOSE (deferred_check),
294 TREE_VALUE (deferred_check));
295 }
296
297 /* Defer checking the accessibility of DECL, when looked up in
298 BINFO. */
299
300 void
301 perform_or_defer_access_check (tree binfo, tree decl)
302 {
303 tree check;
304 deferred_access *ptr;
305
306 /* Exit if we are in a context that no access checking is performed.
307 */
308 if (deferred_access_no_check)
309 return;
310
311 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
312
313 ptr = VEC_last (deferred_access, deferred_access_stack);
314
315 /* If we are not supposed to defer access checks, just check now. */
316 if (ptr->deferring_access_checks_kind == dk_no_deferred)
317 {
318 enforce_access (binfo, decl);
319 return;
320 }
321
322 /* See if we are already going to perform this check. */
323 for (check = ptr->deferred_access_checks;
324 check;
325 check = TREE_CHAIN (check))
326 if (TREE_VALUE (check) == decl && TREE_PURPOSE (check) == binfo)
327 return;
328 /* If not, record the check. */
329 ptr->deferred_access_checks
330 = tree_cons (binfo, decl, ptr->deferred_access_checks);
331 }
332
333 /* Returns nonzero if the current statement is a full expression,
334 i.e. temporaries created during that statement should be destroyed
335 at the end of the statement. */
336
337 int
338 stmts_are_full_exprs_p (void)
339 {
340 return current_stmt_tree ()->stmts_are_full_exprs_p;
341 }
342
343 /* Returns the stmt_tree (if any) to which statements are currently
344 being added. If there is no active statement-tree, NULL is
345 returned. */
346
347 stmt_tree
348 current_stmt_tree (void)
349 {
350 return (cfun
351 ? &cfun->language->base.x_stmt_tree
352 : &scope_chain->x_stmt_tree);
353 }
354
355 /* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
356
357 static tree
358 maybe_cleanup_point_expr (tree expr)
359 {
360 if (!processing_template_decl && stmts_are_full_exprs_p ())
361 expr = build1 (CLEANUP_POINT_EXPR, TREE_TYPE (expr), expr);
362 return expr;
363 }
364
365 /* Create a declaration statement for the declaration given by the DECL. */
366
367 void
368 add_decl_expr (tree decl)
369 {
370 tree r = build_stmt (DECL_EXPR, decl);
371 if (DECL_INITIAL (decl))
372 r = maybe_cleanup_point_expr (r);
373 add_stmt (r);
374 }
375
376 /* Nonzero if TYPE is an anonymous union or struct type. We have to use a
377 flag for this because "A union for which objects or pointers are
378 declared is not an anonymous union" [class.union]. */
379
380 int
381 anon_aggr_type_p (tree node)
382 {
383 return ANON_AGGR_TYPE_P (node);
384 }
385
386 /* Finish a scope. */
387
388 tree
389 do_poplevel (tree stmt_list)
390 {
391 tree block = NULL;
392
393 if (stmts_are_full_exprs_p ())
394 block = poplevel (kept_level_p (), 1, 0);
395
396 stmt_list = pop_stmt_list (stmt_list);
397
398 if (!processing_template_decl)
399 {
400 stmt_list = c_build_bind_expr (block, stmt_list);
401 /* ??? See c_end_compound_stmt re statement expressions. */
402 }
403
404 return stmt_list;
405 }
406
407 /* Begin a new scope. */
408
409 static tree
410 do_pushlevel (scope_kind sk)
411 {
412 tree ret = push_stmt_list ();
413 if (stmts_are_full_exprs_p ())
414 begin_scope (sk, NULL);
415 return ret;
416 }
417
418 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
419 when the current scope is exited. EH_ONLY is true when this is not
420 meant to apply to normal control flow transfer. */
421
422 void
423 push_cleanup (tree decl, tree cleanup, bool eh_only)
424 {
425 tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl);
426 CLEANUP_EH_ONLY (stmt) = eh_only;
427 add_stmt (stmt);
428 CLEANUP_BODY (stmt) = push_stmt_list ();
429 }
430
431 /* Begin a conditional that might contain a declaration. When generating
432 normal code, we want the declaration to appear before the statement
433 containing the conditional. When generating template code, we want the
434 conditional to be rendered as the raw DECL_EXPR. */
435
436 static void
437 begin_cond (tree *cond_p)
438 {
439 if (processing_template_decl)
440 *cond_p = push_stmt_list ();
441 }
442
443 /* Finish such a conditional. */
444
445 static void
446 finish_cond (tree *cond_p, tree expr)
447 {
448 if (processing_template_decl)
449 {
450 tree cond = pop_stmt_list (*cond_p);
451 if (TREE_CODE (cond) == DECL_EXPR)
452 expr = cond;
453 }
454 *cond_p = expr;
455 }
456
457 /* If *COND_P specifies a conditional with a declaration, transform the
458 loop such that
459 while (A x = 42) { }
460 for (; A x = 42;) { }
461 becomes
462 while (true) { A x = 42; if (!x) break; }
463 for (;;) { A x = 42; if (!x) break; }
464 The statement list for BODY will be empty if the conditional did
465 not declare anything. */
466
467 static void
468 simplify_loop_decl_cond (tree *cond_p, tree body)
469 {
470 tree cond, if_stmt;
471
472 if (!TREE_SIDE_EFFECTS (body))
473 return;
474
475 cond = *cond_p;
476 *cond_p = boolean_true_node;
477
478 if_stmt = begin_if_stmt ();
479 cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
480 finish_if_stmt_cond (cond, if_stmt);
481 finish_break_stmt ();
482 finish_then_clause (if_stmt);
483 finish_if_stmt (if_stmt);
484 }
485
486 /* Finish a goto-statement. */
487
488 tree
489 finish_goto_stmt (tree destination)
490 {
491 if (TREE_CODE (destination) == IDENTIFIER_NODE)
492 destination = lookup_label (destination);
493
494 /* We warn about unused labels with -Wunused. That means we have to
495 mark the used labels as used. */
496 if (TREE_CODE (destination) == LABEL_DECL)
497 TREE_USED (destination) = 1;
498 else
499 {
500 /* The DESTINATION is being used as an rvalue. */
501 if (!processing_template_decl)
502 destination = decay_conversion (destination);
503 /* We don't inline calls to functions with computed gotos.
504 Those functions are typically up to some funny business,
505 and may be depending on the labels being at particular
506 addresses, or some such. */
507 DECL_UNINLINABLE (current_function_decl) = 1;
508 }
509
510 check_goto (destination);
511
512 return add_stmt (build_stmt (GOTO_EXPR, destination));
513 }
514
515 /* COND is the condition-expression for an if, while, etc.,
516 statement. Convert it to a boolean value, if appropriate. */
517
518 static tree
519 maybe_convert_cond (tree cond)
520 {
521 /* Empty conditions remain empty. */
522 if (!cond)
523 return NULL_TREE;
524
525 /* Wait until we instantiate templates before doing conversion. */
526 if (processing_template_decl)
527 return cond;
528
529 /* Do the conversion. */
530 cond = convert_from_reference (cond);
531 return condition_conversion (cond);
532 }
533
534 /* Finish an expression-statement, whose EXPRESSION is as indicated. */
535
536 tree
537 finish_expr_stmt (tree expr)
538 {
539 tree r = NULL_TREE;
540
541 if (expr != NULL_TREE)
542 {
543 if (!processing_template_decl)
544 {
545 if (warn_sequence_point)
546 verify_sequence_points (expr);
547 expr = convert_to_void (expr, "statement");
548 }
549 else if (!type_dependent_expression_p (expr))
550 convert_to_void (build_non_dependent_expr (expr), "statement");
551
552 /* Simplification of inner statement expressions, compound exprs,
553 etc can result in the us already having an EXPR_STMT. */
554 if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
555 {
556 if (TREE_CODE (expr) != EXPR_STMT)
557 expr = build_stmt (EXPR_STMT, expr);
558 expr = maybe_cleanup_point_expr (expr);
559 }
560
561 r = add_stmt (expr);
562 }
563
564 finish_stmt ();
565
566 return r;
567 }
568
569
570 /* Begin an if-statement. Returns a newly created IF_STMT if
571 appropriate. */
572
573 tree
574 begin_if_stmt (void)
575 {
576 tree r, scope;
577 scope = do_pushlevel (sk_block);
578 r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
579 TREE_CHAIN (r) = scope;
580 begin_cond (&IF_COND (r));
581 return r;
582 }
583
584 /* Process the COND of an if-statement, which may be given by
585 IF_STMT. */
586
587 void
588 finish_if_stmt_cond (tree cond, tree if_stmt)
589 {
590 finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond));
591 add_stmt (if_stmt);
592 THEN_CLAUSE (if_stmt) = push_stmt_list ();
593 }
594
595 /* Finish the then-clause of an if-statement, which may be given by
596 IF_STMT. */
597
598 tree
599 finish_then_clause (tree if_stmt)
600 {
601 THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
602 return if_stmt;
603 }
604
605 /* Begin the else-clause of an if-statement. */
606
607 void
608 begin_else_clause (tree if_stmt)
609 {
610 ELSE_CLAUSE (if_stmt) = push_stmt_list ();
611 }
612
613 /* Finish the else-clause of an if-statement, which may be given by
614 IF_STMT. */
615
616 void
617 finish_else_clause (tree if_stmt)
618 {
619 ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
620 }
621
622 /* Finish an if-statement. */
623
624 void
625 finish_if_stmt (tree if_stmt)
626 {
627 tree scope = TREE_CHAIN (if_stmt);
628 TREE_CHAIN (if_stmt) = NULL;
629 add_stmt (do_poplevel (scope));
630 finish_stmt ();
631 }
632
633 /* Begin a while-statement. Returns a newly created WHILE_STMT if
634 appropriate. */
635
636 tree
637 begin_while_stmt (void)
638 {
639 tree r;
640 r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
641 add_stmt (r);
642 WHILE_BODY (r) = do_pushlevel (sk_block);
643 begin_cond (&WHILE_COND (r));
644 return r;
645 }
646
647 /* Process the COND of a while-statement, which may be given by
648 WHILE_STMT. */
649
650 void
651 finish_while_stmt_cond (tree cond, tree while_stmt)
652 {
653 finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond));
654 simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt));
655 }
656
657 /* Finish a while-statement, which may be given by WHILE_STMT. */
658
659 void
660 finish_while_stmt (tree while_stmt)
661 {
662 WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
663 finish_stmt ();
664 }
665
666 /* Begin a do-statement. Returns a newly created DO_STMT if
667 appropriate. */
668
669 tree
670 begin_do_stmt (void)
671 {
672 tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
673 add_stmt (r);
674 DO_BODY (r) = push_stmt_list ();
675 return r;
676 }
677
678 /* Finish the body of a do-statement, which may be given by DO_STMT. */
679
680 void
681 finish_do_body (tree do_stmt)
682 {
683 DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
684 }
685
686 /* Finish a do-statement, which may be given by DO_STMT, and whose
687 COND is as indicated. */
688
689 void
690 finish_do_stmt (tree cond, tree do_stmt)
691 {
692 cond = maybe_convert_cond (cond);
693 DO_COND (do_stmt) = cond;
694 finish_stmt ();
695 }
696
697 /* Finish a return-statement. The EXPRESSION returned, if any, is as
698 indicated. */
699
700 tree
701 finish_return_stmt (tree expr)
702 {
703 tree r;
704
705 expr = check_return_expr (expr);
706 if (!processing_template_decl)
707 {
708 if (DECL_DESTRUCTOR_P (current_function_decl)
709 || (DECL_CONSTRUCTOR_P (current_function_decl)
710 && targetm.cxx.cdtor_returns_this ()))
711 {
712 /* Similarly, all destructors must run destructors for
713 base-classes before returning. So, all returns in a
714 destructor get sent to the DTOR_LABEL; finish_function emits
715 code to return a value there. */
716 return finish_goto_stmt (cdtor_label);
717 }
718 }
719
720 r = build_stmt (RETURN_EXPR, expr);
721 r = maybe_cleanup_point_expr (r);
722 r = add_stmt (r);
723 finish_stmt ();
724
725 return r;
726 }
727
728 /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
729
730 tree
731 begin_for_stmt (void)
732 {
733 tree r;
734
735 r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
736 NULL_TREE, NULL_TREE);
737
738 if (flag_new_for_scope > 0)
739 TREE_CHAIN (r) = do_pushlevel (sk_for);
740
741 if (processing_template_decl)
742 FOR_INIT_STMT (r) = push_stmt_list ();
743
744 return r;
745 }
746
747 /* Finish the for-init-statement of a for-statement, which may be
748 given by FOR_STMT. */
749
750 void
751 finish_for_init_stmt (tree for_stmt)
752 {
753 if (processing_template_decl)
754 FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
755 add_stmt (for_stmt);
756 FOR_BODY (for_stmt) = do_pushlevel (sk_block);
757 begin_cond (&FOR_COND (for_stmt));
758 }
759
760 /* Finish the COND of a for-statement, which may be given by
761 FOR_STMT. */
762
763 void
764 finish_for_cond (tree cond, tree for_stmt)
765 {
766 finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond));
767 simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt));
768 }
769
770 /* Finish the increment-EXPRESSION in a for-statement, which may be
771 given by FOR_STMT. */
772
773 void
774 finish_for_expr (tree expr, tree for_stmt)
775 {
776 if (!expr)
777 return;
778 /* If EXPR is an overloaded function, issue an error; there is no
779 context available to use to perform overload resolution. */
780 if (type_unknown_p (expr))
781 {
782 cxx_incomplete_type_error (expr, TREE_TYPE (expr));
783 expr = error_mark_node;
784 }
785 expr = maybe_cleanup_point_expr (expr);
786 FOR_EXPR (for_stmt) = expr;
787 }
788
789 /* Finish the body of a for-statement, which may be given by
790 FOR_STMT. The increment-EXPR for the loop must be
791 provided. */
792
793 void
794 finish_for_stmt (tree for_stmt)
795 {
796 FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
797
798 /* Pop the scope for the body of the loop. */
799 if (flag_new_for_scope > 0)
800 {
801 tree scope = TREE_CHAIN (for_stmt);
802 TREE_CHAIN (for_stmt) = NULL;
803 add_stmt (do_poplevel (scope));
804 }
805
806 finish_stmt ();
807 }
808
809 /* Finish a break-statement. */
810
811 tree
812 finish_break_stmt (void)
813 {
814 return add_stmt (build_break_stmt ());
815 }
816
817 /* Finish a continue-statement. */
818
819 tree
820 finish_continue_stmt (void)
821 {
822 return add_stmt (build_continue_stmt ());
823 }
824
825 /* Begin a switch-statement. Returns a new SWITCH_STMT if
826 appropriate. */
827
828 tree
829 begin_switch_stmt (void)
830 {
831 tree r, scope;
832
833 r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
834
835 scope = do_pushlevel (sk_block);
836 TREE_CHAIN (r) = scope;
837 begin_cond (&SWITCH_COND (r));
838
839 return r;
840 }
841
842 /* Finish the cond of a switch-statement. */
843
844 void
845 finish_switch_cond (tree cond, tree switch_stmt)
846 {
847 tree orig_type = NULL;
848 if (!processing_template_decl)
849 {
850 tree index;
851
852 /* Convert the condition to an integer or enumeration type. */
853 cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
854 if (cond == NULL_TREE)
855 {
856 error ("switch quantity not an integer");
857 cond = error_mark_node;
858 }
859 orig_type = TREE_TYPE (cond);
860 if (cond != error_mark_node)
861 {
862 /* [stmt.switch]
863
864 Integral promotions are performed. */
865 cond = perform_integral_promotions (cond);
866 cond = maybe_cleanup_point_expr (cond);
867 }
868
869 if (cond != error_mark_node)
870 {
871 index = get_unwidened (cond, NULL_TREE);
872 /* We can't strip a conversion from a signed type to an unsigned,
873 because if we did, int_fits_type_p would do the wrong thing
874 when checking case values for being in range,
875 and it's too hard to do the right thing. */
876 if (TYPE_UNSIGNED (TREE_TYPE (cond))
877 == TYPE_UNSIGNED (TREE_TYPE (index)))
878 cond = index;
879 }
880 }
881 finish_cond (&SWITCH_COND (switch_stmt), cond);
882 SWITCH_TYPE (switch_stmt) = orig_type;
883 add_stmt (switch_stmt);
884 push_switch (switch_stmt);
885 SWITCH_BODY (switch_stmt) = push_stmt_list ();
886 }
887
888 /* Finish the body of a switch-statement, which may be given by
889 SWITCH_STMT. The COND to switch on is indicated. */
890
891 void
892 finish_switch_stmt (tree switch_stmt)
893 {
894 tree scope;
895
896 SWITCH_BODY (switch_stmt) = pop_stmt_list (SWITCH_BODY (switch_stmt));
897 pop_switch ();
898 finish_stmt ();
899
900 scope = TREE_CHAIN (switch_stmt);
901 TREE_CHAIN (switch_stmt) = NULL;
902 add_stmt (do_poplevel (scope));
903 }
904
905 /* Begin a try-block. Returns a newly-created TRY_BLOCK if
906 appropriate. */
907
908 tree
909 begin_try_block (void)
910 {
911 tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
912 add_stmt (r);
913 TRY_STMTS (r) = push_stmt_list ();
914 return r;
915 }
916
917 /* Likewise, for a function-try-block. */
918
919 tree
920 begin_function_try_block (void)
921 {
922 tree r = begin_try_block ();
923 FN_TRY_BLOCK_P (r) = 1;
924 return r;
925 }
926
927 /* Finish a try-block, which may be given by TRY_BLOCK. */
928
929 void
930 finish_try_block (tree try_block)
931 {
932 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
933 TRY_HANDLERS (try_block) = push_stmt_list ();
934 }
935
936 /* Finish the body of a cleanup try-block, which may be given by
937 TRY_BLOCK. */
938
939 void
940 finish_cleanup_try_block (tree try_block)
941 {
942 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
943 }
944
945 /* Finish an implicitly generated try-block, with a cleanup is given
946 by CLEANUP. */
947
948 void
949 finish_cleanup (tree cleanup, tree try_block)
950 {
951 TRY_HANDLERS (try_block) = cleanup;
952 CLEANUP_P (try_block) = 1;
953 }
954
955 /* Likewise, for a function-try-block. */
956
957 void
958 finish_function_try_block (tree try_block)
959 {
960 finish_try_block (try_block);
961 /* FIXME : something queer about CTOR_INITIALIZER somehow following
962 the try block, but moving it inside. */
963 in_function_try_handler = 1;
964 }
965
966 /* Finish a handler-sequence for a try-block, which may be given by
967 TRY_BLOCK. */
968
969 void
970 finish_handler_sequence (tree try_block)
971 {
972 TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
973 check_handlers (TRY_HANDLERS (try_block));
974 }
975
976 /* Likewise, for a function-try-block. */
977
978 void
979 finish_function_handler_sequence (tree try_block)
980 {
981 in_function_try_handler = 0;
982 finish_handler_sequence (try_block);
983 }
984
985 /* Begin a handler. Returns a HANDLER if appropriate. */
986
987 tree
988 begin_handler (void)
989 {
990 tree r;
991
992 r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
993 add_stmt (r);
994
995 /* Create a binding level for the eh_info and the exception object
996 cleanup. */
997 HANDLER_BODY (r) = do_pushlevel (sk_catch);
998
999 return r;
1000 }
1001
1002 /* Finish the handler-parameters for a handler, which may be given by
1003 HANDLER. DECL is the declaration for the catch parameter, or NULL
1004 if this is a `catch (...)' clause. */
1005
1006 void
1007 finish_handler_parms (tree decl, tree handler)
1008 {
1009 tree type = NULL_TREE;
1010 if (processing_template_decl)
1011 {
1012 if (decl)
1013 {
1014 decl = pushdecl (decl);
1015 decl = push_template_decl (decl);
1016 HANDLER_PARMS (handler) = decl;
1017 type = TREE_TYPE (decl);
1018 }
1019 }
1020 else
1021 type = expand_start_catch_block (decl);
1022
1023 HANDLER_TYPE (handler) = type;
1024 if (!processing_template_decl && type)
1025 mark_used (eh_type_info (type));
1026 }
1027
1028 /* Finish a handler, which may be given by HANDLER. The BLOCKs are
1029 the return value from the matching call to finish_handler_parms. */
1030
1031 void
1032 finish_handler (tree handler)
1033 {
1034 if (!processing_template_decl)
1035 expand_end_catch_block ();
1036 HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
1037 }
1038
1039 /* Begin a compound statement. FLAGS contains some bits that control the
1040 behavior and context. If BCS_NO_SCOPE is set, the compound statement
1041 does not define a scope. If BCS_FN_BODY is set, this is the outermost
1042 block of a function. If BCS_TRY_BLOCK is set, this is the block
1043 created on behalf of a TRY statement. Returns a token to be passed to
1044 finish_compound_stmt. */
1045
1046 tree
1047 begin_compound_stmt (unsigned int flags)
1048 {
1049 tree r;
1050
1051 if (flags & BCS_NO_SCOPE)
1052 {
1053 r = push_stmt_list ();
1054 STATEMENT_LIST_NO_SCOPE (r) = 1;
1055
1056 /* Normally, we try hard to keep the BLOCK for a statement-expression.
1057 But, if it's a statement-expression with a scopeless block, there's
1058 nothing to keep, and we don't want to accidentally keep a block
1059 *inside* the scopeless block. */
1060 keep_next_level (false);
1061 }
1062 else
1063 r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
1064
1065 /* When processing a template, we need to remember where the braces were,
1066 so that we can set up identical scopes when instantiating the template
1067 later. BIND_EXPR is a handy candidate for this.
1068 Note that do_poplevel won't create a BIND_EXPR itself here (and thus
1069 result in nested BIND_EXPRs), since we don't build BLOCK nodes when
1070 processing templates. */
1071 if (processing_template_decl)
1072 {
1073 r = build3 (BIND_EXPR, NULL, NULL, r, NULL);
1074 BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
1075 BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
1076 TREE_SIDE_EFFECTS (r) = 1;
1077 }
1078
1079 return r;
1080 }
1081
1082 /* Finish a compound-statement, which is given by STMT. */
1083
1084 void
1085 finish_compound_stmt (tree stmt)
1086 {
1087 if (TREE_CODE (stmt) == BIND_EXPR)
1088 BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
1089 else if (STATEMENT_LIST_NO_SCOPE (stmt))
1090 stmt = pop_stmt_list (stmt);
1091 else
1092 {
1093 /* Destroy any ObjC "super" receivers that may have been
1094 created. */
1095 objc_clear_super_receiver ();
1096
1097 stmt = do_poplevel (stmt);
1098 }
1099
1100 /* ??? See c_end_compound_stmt wrt statement expressions. */
1101 add_stmt (stmt);
1102 finish_stmt ();
1103 }
1104
1105 /* Finish an asm-statement, whose components are a STRING, some
1106 OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
1107 whether the asm-statement should be considered volatile. */
1108
1109 tree
1110 finish_asm_stmt (int volatile_p, tree string, tree output_operands,
1111 tree input_operands, tree clobbers)
1112 {
1113 tree r;
1114 tree t;
1115
1116 if (!processing_template_decl)
1117 {
1118 int i;
1119 int ninputs;
1120 int noutputs;
1121
1122 for (t = input_operands; t; t = TREE_CHAIN (t))
1123 {
1124 tree converted_operand
1125 = decay_conversion (TREE_VALUE (t));
1126
1127 /* If the type of the operand hasn't been determined (e.g.,
1128 because it involves an overloaded function), then issue
1129 an error message. There's no context available to
1130 resolve the overloading. */
1131 if (TREE_TYPE (converted_operand) == unknown_type_node)
1132 {
1133 error ("type of asm operand `%E' could not be determined",
1134 TREE_VALUE (t));
1135 converted_operand = error_mark_node;
1136 }
1137 TREE_VALUE (t) = converted_operand;
1138 }
1139
1140 ninputs = list_length (input_operands);
1141 noutputs = list_length (output_operands);
1142
1143 for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
1144 {
1145 bool allows_mem;
1146 bool allows_reg;
1147 bool is_inout;
1148 const char *constraint;
1149 tree operand;
1150
1151 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1152 operand = TREE_VALUE (t);
1153
1154 if (!parse_output_constraint (&constraint,
1155 i, ninputs, noutputs,
1156 &allows_mem,
1157 &allows_reg,
1158 &is_inout))
1159 {
1160 /* By marking this operand as erroneous, we will not try
1161 to process this operand again in expand_asm_operands. */
1162 TREE_VALUE (t) = error_mark_node;
1163 continue;
1164 }
1165
1166 /* If the operand is a DECL that is going to end up in
1167 memory, assume it is addressable. This is a bit more
1168 conservative than it would ideally be; the exact test is
1169 buried deep in expand_asm_operands and depends on the
1170 DECL_RTL for the OPERAND -- which we don't have at this
1171 point. */
1172 if (!allows_reg && DECL_P (operand))
1173 cxx_mark_addressable (operand);
1174 }
1175 }
1176
1177 r = build_stmt (ASM_EXPR, string,
1178 output_operands, input_operands,
1179 clobbers);
1180 ASM_VOLATILE_P (r) = volatile_p;
1181 return add_stmt (r);
1182 }
1183
1184 /* Finish a label with the indicated NAME. */
1185
1186 tree
1187 finish_label_stmt (tree name)
1188 {
1189 tree decl = define_label (input_location, name);
1190 return add_stmt (build_stmt (LABEL_EXPR, decl));
1191 }
1192
1193 /* Finish a series of declarations for local labels. G++ allows users
1194 to declare "local" labels, i.e., labels with scope. This extension
1195 is useful when writing code involving statement-expressions. */
1196
1197 void
1198 finish_label_decl (tree name)
1199 {
1200 tree decl = declare_local_label (name);
1201 add_decl_expr (decl);
1202 }
1203
1204 /* When DECL goes out of scope, make sure that CLEANUP is executed. */
1205
1206 void
1207 finish_decl_cleanup (tree decl, tree cleanup)
1208 {
1209 push_cleanup (decl, cleanup, false);
1210 }
1211
1212 /* If the current scope exits with an exception, run CLEANUP. */
1213
1214 void
1215 finish_eh_cleanup (tree cleanup)
1216 {
1217 push_cleanup (NULL, cleanup, true);
1218 }
1219
1220 /* The MEM_INITS is a list of mem-initializers, in reverse of the
1221 order they were written by the user. Each node is as for
1222 emit_mem_initializers. */
1223
1224 void
1225 finish_mem_initializers (tree mem_inits)
1226 {
1227 /* Reorder the MEM_INITS so that they are in the order they appeared
1228 in the source program. */
1229 mem_inits = nreverse (mem_inits);
1230
1231 if (processing_template_decl)
1232 add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
1233 else
1234 emit_mem_initializers (mem_inits);
1235 }
1236
1237 /* Finish a parenthesized expression EXPR. */
1238
1239 tree
1240 finish_parenthesized_expr (tree expr)
1241 {
1242 if (EXPR_P (expr))
1243 /* This inhibits warnings in c_common_truthvalue_conversion. */
1244 TREE_NO_WARNING (expr) = 1;
1245
1246 if (TREE_CODE (expr) == OFFSET_REF)
1247 /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
1248 enclosed in parentheses. */
1249 PTRMEM_OK_P (expr) = 0;
1250 return expr;
1251 }
1252
1253 /* Finish a reference to a non-static data member (DECL) that is not
1254 preceded by `.' or `->'. */
1255
1256 tree
1257 finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
1258 {
1259 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
1260
1261 if (!object)
1262 {
1263 if (current_function_decl
1264 && DECL_STATIC_FUNCTION_P (current_function_decl))
1265 cp_error_at ("invalid use of member `%D' in static member function",
1266 decl);
1267 else
1268 cp_error_at ("invalid use of non-static data member `%D'", decl);
1269 error ("from this location");
1270
1271 return error_mark_node;
1272 }
1273 TREE_USED (current_class_ptr) = 1;
1274 if (processing_template_decl && !qualifying_scope)
1275 {
1276 tree type = TREE_TYPE (decl);
1277
1278 if (TREE_CODE (type) == REFERENCE_TYPE)
1279 type = TREE_TYPE (type);
1280 else
1281 {
1282 /* Set the cv qualifiers. */
1283 int quals = cp_type_quals (TREE_TYPE (current_class_ref));
1284
1285 if (DECL_MUTABLE_P (decl))
1286 quals &= ~TYPE_QUAL_CONST;
1287
1288 quals |= cp_type_quals (TREE_TYPE (decl));
1289 type = cp_build_qualified_type (type, quals);
1290 }
1291
1292 return build_min (COMPONENT_REF, type, object, decl, NULL_TREE);
1293 }
1294 else
1295 {
1296 tree access_type = TREE_TYPE (object);
1297 tree lookup_context = context_for_name_lookup (decl);
1298
1299 while (!DERIVED_FROM_P (lookup_context, access_type))
1300 {
1301 access_type = TYPE_CONTEXT (access_type);
1302 while (access_type && DECL_P (access_type))
1303 access_type = DECL_CONTEXT (access_type);
1304
1305 if (!access_type)
1306 {
1307 cp_error_at ("object missing in reference to `%D'", decl);
1308 error ("from this location");
1309 return error_mark_node;
1310 }
1311 }
1312
1313 /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
1314 QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
1315 for now. */
1316 if (processing_template_decl)
1317 return build_min (SCOPE_REF, TREE_TYPE (decl),
1318 qualifying_scope, DECL_NAME (decl));
1319
1320 perform_or_defer_access_check (TYPE_BINFO (access_type), decl);
1321
1322 /* If the data member was named `C::M', convert `*this' to `C'
1323 first. */
1324 if (qualifying_scope)
1325 {
1326 tree binfo = NULL_TREE;
1327 object = build_scoped_ref (object, qualifying_scope,
1328 &binfo);
1329 }
1330
1331 return build_class_member_access_expr (object, decl,
1332 /*access_path=*/NULL_TREE,
1333 /*preserve_reference=*/false);
1334 }
1335 }
1336
1337 /* DECL was the declaration to which a qualified-id resolved. Issue
1338 an error message if it is not accessible. If OBJECT_TYPE is
1339 non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
1340 type of `*x', or `x', respectively. If the DECL was named as
1341 `A::B' then NESTED_NAME_SPECIFIER is `A'. */
1342
1343 void
1344 check_accessibility_of_qualified_id (tree decl,
1345 tree object_type,
1346 tree nested_name_specifier)
1347 {
1348 tree scope;
1349 tree qualifying_type = NULL_TREE;
1350
1351 /* If we're not checking, return immediately. */
1352 if (deferred_access_no_check)
1353 return;
1354
1355 /* Determine the SCOPE of DECL. */
1356 scope = context_for_name_lookup (decl);
1357 /* If the SCOPE is not a type, then DECL is not a member. */
1358 if (!TYPE_P (scope))
1359 return;
1360 /* Compute the scope through which DECL is being accessed. */
1361 if (object_type
1362 /* OBJECT_TYPE might not be a class type; consider:
1363
1364 class A { typedef int I; };
1365 I *p;
1366 p->A::I::~I();
1367
1368 In this case, we will have "A::I" as the DECL, but "I" as the
1369 OBJECT_TYPE. */
1370 && CLASS_TYPE_P (object_type)
1371 && DERIVED_FROM_P (scope, object_type))
1372 /* If we are processing a `->' or `.' expression, use the type of the
1373 left-hand side. */
1374 qualifying_type = object_type;
1375 else if (nested_name_specifier)
1376 {
1377 /* If the reference is to a non-static member of the
1378 current class, treat it as if it were referenced through
1379 `this'. */
1380 if (DECL_NONSTATIC_MEMBER_P (decl)
1381 && current_class_ptr
1382 && DERIVED_FROM_P (scope, current_class_type))
1383 qualifying_type = current_class_type;
1384 /* Otherwise, use the type indicated by the
1385 nested-name-specifier. */
1386 else
1387 qualifying_type = nested_name_specifier;
1388 }
1389 else
1390 /* Otherwise, the name must be from the current class or one of
1391 its bases. */
1392 qualifying_type = currently_open_derived_class (scope);
1393
1394 if (qualifying_type && IS_AGGR_TYPE_CODE (TREE_CODE (qualifying_type)))
1395 /* It is possible for qualifying type to be a TEMPLATE_TYPE_PARM
1396 or similar in a default argument value. */
1397 perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl);
1398 }
1399
1400 /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
1401 class named to the left of the "::" operator. DONE is true if this
1402 expression is a complete postfix-expression; it is false if this
1403 expression is followed by '->', '[', '(', etc. ADDRESS_P is true
1404 iff this expression is the operand of '&'. */
1405
1406 tree
1407 finish_qualified_id_expr (tree qualifying_class, tree expr, bool done,
1408 bool address_p)
1409 {
1410 if (error_operand_p (expr))
1411 return error_mark_node;
1412
1413 /* If EXPR occurs as the operand of '&', use special handling that
1414 permits a pointer-to-member. */
1415 if (address_p && done)
1416 {
1417 if (TREE_CODE (expr) == SCOPE_REF)
1418 expr = TREE_OPERAND (expr, 1);
1419 expr = build_offset_ref (qualifying_class, expr,
1420 /*address_p=*/true);
1421 return expr;
1422 }
1423
1424 if (TREE_CODE (expr) == FIELD_DECL)
1425 expr = finish_non_static_data_member (expr, current_class_ref,
1426 qualifying_class);
1427 else if (BASELINK_P (expr) && !processing_template_decl)
1428 {
1429 tree fns;
1430
1431 /* See if any of the functions are non-static members. */
1432 fns = BASELINK_FUNCTIONS (expr);
1433 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
1434 fns = TREE_OPERAND (fns, 0);
1435 /* If so, the expression may be relative to the current
1436 class. */
1437 if (!shared_member_p (fns)
1438 && current_class_type
1439 && DERIVED_FROM_P (qualifying_class, current_class_type))
1440 expr = (build_class_member_access_expr
1441 (maybe_dummy_object (qualifying_class, NULL),
1442 expr,
1443 BASELINK_ACCESS_BINFO (expr),
1444 /*preserve_reference=*/false));
1445 else if (done)
1446 /* The expression is a qualified name whose address is not
1447 being taken. */
1448 expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
1449 }
1450
1451 return expr;
1452 }
1453
1454 /* Begin a statement-expression. The value returned must be passed to
1455 finish_stmt_expr. */
1456
1457 tree
1458 begin_stmt_expr (void)
1459 {
1460 return push_stmt_list ();
1461 }
1462
1463 /* Process the final expression of a statement expression. EXPR can be
1464 NULL, if the final expression is empty. Build up a TARGET_EXPR so
1465 that the result value can be safely returned to the enclosing
1466 expression. */
1467
1468 tree
1469 finish_stmt_expr_expr (tree expr, tree stmt_expr)
1470 {
1471 tree result = NULL_TREE;
1472
1473 if (expr)
1474 {
1475 if (!processing_template_decl && !VOID_TYPE_P (TREE_TYPE (expr)))
1476 {
1477 tree type = TREE_TYPE (expr);
1478
1479 if (TREE_CODE (type) == ARRAY_TYPE
1480 || TREE_CODE (type) == FUNCTION_TYPE)
1481 expr = decay_conversion (expr);
1482
1483 expr = convert_from_reference (expr);
1484 expr = require_complete_type (expr);
1485
1486 type = TREE_TYPE (expr);
1487
1488 /* Build a TARGET_EXPR for this aggregate. finish_stmt_expr
1489 will then pull it apart so the lifetime of the target is
1490 within the scope of the expression containing this statement
1491 expression. */
1492 if (TREE_CODE (expr) == TARGET_EXPR)
1493 ;
1494 else if (!IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_INIT_REF (type))
1495 expr = build_target_expr_with_type (expr, type);
1496 else
1497 {
1498 /* Copy construct. */
1499 expr = build_special_member_call
1500 (NULL_TREE, complete_ctor_identifier,
1501 build_tree_list (NULL_TREE, expr),
1502 type, LOOKUP_NORMAL);
1503 expr = build_cplus_new (type, expr);
1504 gcc_assert (TREE_CODE (expr) == TARGET_EXPR);
1505 }
1506 }
1507
1508 if (expr != error_mark_node)
1509 {
1510 result = build_stmt (EXPR_STMT, expr);
1511 EXPR_STMT_STMT_EXPR_RESULT (result) = 1;
1512 add_stmt (result);
1513 }
1514 }
1515
1516 finish_stmt ();
1517
1518 /* Remember the last expression so that finish_stmt_expr
1519 can pull it apart. */
1520 TREE_TYPE (stmt_expr) = result;
1521
1522 return result;
1523 }
1524
1525 /* Finish a statement-expression. EXPR should be the value returned
1526 by the previous begin_stmt_expr. Returns an expression
1527 representing the statement-expression. */
1528
1529 tree
1530 finish_stmt_expr (tree stmt_expr, bool has_no_scope)
1531 {
1532 tree result, result_stmt, type;
1533 tree *result_stmt_p = NULL;
1534
1535 result_stmt = TREE_TYPE (stmt_expr);
1536 TREE_TYPE (stmt_expr) = void_type_node;
1537 result = pop_stmt_list (stmt_expr);
1538
1539 if (!result_stmt || VOID_TYPE_P (result_stmt))
1540 type = void_type_node;
1541 else
1542 {
1543 /* We need to search the statement expression for the result_stmt,
1544 since we'll need to replace it entirely. */
1545 tree t;
1546 result_stmt_p = &result;
1547 while (1)
1548 {
1549 t = *result_stmt_p;
1550 if (t == result_stmt)
1551 break;
1552
1553 switch (TREE_CODE (t))
1554 {
1555 case STATEMENT_LIST:
1556 {
1557 tree_stmt_iterator i = tsi_last (t);
1558 result_stmt_p = tsi_stmt_ptr (i);
1559 break;
1560 }
1561 case BIND_EXPR:
1562 result_stmt_p = &BIND_EXPR_BODY (t);
1563 break;
1564 case TRY_FINALLY_EXPR:
1565 case TRY_CATCH_EXPR:
1566 case CLEANUP_STMT:
1567 result_stmt_p = &TREE_OPERAND (t, 0);
1568 break;
1569 default:
1570 gcc_unreachable ();
1571 }
1572 }
1573 type = TREE_TYPE (EXPR_STMT_EXPR (result_stmt));
1574 }
1575
1576 if (processing_template_decl)
1577 {
1578 result = build_min (STMT_EXPR, type, result);
1579 TREE_SIDE_EFFECTS (result) = 1;
1580 STMT_EXPR_NO_SCOPE (result) = has_no_scope;
1581 }
1582 else if (!VOID_TYPE_P (type))
1583 {
1584 /* Pull out the TARGET_EXPR that is the final expression. Put
1585 the target's init_expr as the final expression and then put
1586 the statement expression itself as the target's init
1587 expr. Finally, return the target expression. */
1588 tree init, target_expr = EXPR_STMT_EXPR (result_stmt);
1589 gcc_assert (TREE_CODE (target_expr) == TARGET_EXPR);
1590
1591 /* The initializer will be void if the initialization is done by
1592 AGGR_INIT_EXPR; propagate that out to the statement-expression as
1593 a whole. */
1594 init = TREE_OPERAND (target_expr, 1);
1595 type = TREE_TYPE (init);
1596
1597 init = maybe_cleanup_point_expr (init);
1598 *result_stmt_p = init;
1599
1600 if (VOID_TYPE_P (type))
1601 /* No frobbing needed. */;
1602 else if (TREE_CODE (result) == BIND_EXPR)
1603 {
1604 /* The BIND_EXPR created in finish_compound_stmt is void; if we're
1605 returning a value directly, give it the appropriate type. */
1606 if (VOID_TYPE_P (TREE_TYPE (result)))
1607 TREE_TYPE (result) = type;
1608 else
1609 gcc_assert (same_type_p (TREE_TYPE (result), type));
1610 }
1611 else if (TREE_CODE (result) == STATEMENT_LIST)
1612 /* We need to wrap a STATEMENT_LIST in a BIND_EXPR so it can have a
1613 type other than void. FIXME why can't we just return a value
1614 from STATEMENT_LIST? */
1615 result = build3 (BIND_EXPR, type, NULL, result, NULL);
1616
1617 TREE_OPERAND (target_expr, 1) = result;
1618 result = target_expr;
1619 }
1620
1621 return result;
1622 }
1623
1624 /* Perform Koenig lookup. FN is the postfix-expression representing
1625 the function (or functions) to call; ARGS are the arguments to the
1626 call. Returns the functions to be considered by overload
1627 resolution. */
1628
1629 tree
1630 perform_koenig_lookup (tree fn, tree args)
1631 {
1632 tree identifier = NULL_TREE;
1633 tree functions = NULL_TREE;
1634
1635 /* Find the name of the overloaded function. */
1636 if (TREE_CODE (fn) == IDENTIFIER_NODE)
1637 identifier = fn;
1638 else if (is_overloaded_fn (fn))
1639 {
1640 functions = fn;
1641 identifier = DECL_NAME (get_first_fn (functions));
1642 }
1643 else if (DECL_P (fn))
1644 {
1645 functions = fn;
1646 identifier = DECL_NAME (fn);
1647 }
1648
1649 /* A call to a namespace-scope function using an unqualified name.
1650
1651 Do Koenig lookup -- unless any of the arguments are
1652 type-dependent. */
1653 if (!any_type_dependent_arguments_p (args))
1654 {
1655 fn = lookup_arg_dependent (identifier, functions, args);
1656 if (!fn)
1657 /* The unqualified name could not be resolved. */
1658 fn = unqualified_fn_lookup_error (identifier);
1659 }
1660 else
1661 fn = identifier;
1662
1663 return fn;
1664 }
1665
1666 /* Generate an expression for `FN (ARGS)'.
1667
1668 If DISALLOW_VIRTUAL is true, the call to FN will be not generated
1669 as a virtual call, even if FN is virtual. (This flag is set when
1670 encountering an expression where the function name is explicitly
1671 qualified. For example a call to `X::f' never generates a virtual
1672 call.)
1673
1674 Returns code for the call. */
1675
1676 tree
1677 finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
1678 {
1679 tree result;
1680 tree orig_fn;
1681 tree orig_args;
1682
1683 if (fn == error_mark_node || args == error_mark_node)
1684 return error_mark_node;
1685
1686 /* ARGS should be a list of arguments. */
1687 gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
1688
1689 orig_fn = fn;
1690 orig_args = args;
1691
1692 if (processing_template_decl)
1693 {
1694 if (type_dependent_expression_p (fn)
1695 || any_type_dependent_arguments_p (args))
1696 {
1697 result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
1698 KOENIG_LOOKUP_P (result) = koenig_p;
1699 return result;
1700 }
1701 if (!BASELINK_P (fn)
1702 && TREE_CODE (fn) != PSEUDO_DTOR_EXPR
1703 && TREE_TYPE (fn) != unknown_type_node)
1704 fn = build_non_dependent_expr (fn);
1705 args = build_non_dependent_args (orig_args);
1706 }
1707
1708 /* A reference to a member function will appear as an overloaded
1709 function (rather than a BASELINK) if an unqualified name was used
1710 to refer to it. */
1711 if (!BASELINK_P (fn) && is_overloaded_fn (fn))
1712 {
1713 tree f = fn;
1714
1715 if (TREE_CODE (f) == TEMPLATE_ID_EXPR)
1716 f = TREE_OPERAND (f, 0);
1717 f = get_first_fn (f);
1718 if (DECL_FUNCTION_MEMBER_P (f))
1719 {
1720 tree type = currently_open_derived_class (DECL_CONTEXT (f));
1721 if (!type)
1722 type = DECL_CONTEXT (f);
1723 fn = build_baselink (TYPE_BINFO (type),
1724 TYPE_BINFO (type),
1725 fn, /*optype=*/NULL_TREE);
1726 }
1727 }
1728
1729 result = NULL_TREE;
1730 if (BASELINK_P (fn))
1731 {
1732 tree object;
1733
1734 /* A call to a member function. From [over.call.func]:
1735
1736 If the keyword this is in scope and refers to the class of
1737 that member function, or a derived class thereof, then the
1738 function call is transformed into a qualified function call
1739 using (*this) as the postfix-expression to the left of the
1740 . operator.... [Otherwise] a contrived object of type T
1741 becomes the implied object argument.
1742
1743 This paragraph is unclear about this situation:
1744
1745 struct A { void f(); };
1746 struct B : public A {};
1747 struct C : public A { void g() { B::f(); }};
1748
1749 In particular, for `B::f', this paragraph does not make clear
1750 whether "the class of that member function" refers to `A' or
1751 to `B'. We believe it refers to `B'. */
1752 if (current_class_type
1753 && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1754 current_class_type)
1755 && current_class_ref)
1756 object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1757 NULL);
1758 else
1759 {
1760 tree representative_fn;
1761
1762 representative_fn = BASELINK_FUNCTIONS (fn);
1763 if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
1764 representative_fn = TREE_OPERAND (representative_fn, 0);
1765 representative_fn = get_first_fn (representative_fn);
1766 object = build_dummy_object (DECL_CONTEXT (representative_fn));
1767 }
1768
1769 if (processing_template_decl)
1770 {
1771 if (type_dependent_expression_p (object))
1772 return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
1773 object = build_non_dependent_expr (object);
1774 }
1775
1776 result = build_new_method_call (object, fn, args, NULL_TREE,
1777 (disallow_virtual
1778 ? LOOKUP_NONVIRTUAL : 0));
1779 }
1780 else if (is_overloaded_fn (fn))
1781 /* A call to a namespace-scope function. */
1782 result = build_new_function_call (fn, args);
1783 else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
1784 {
1785 if (args)
1786 error ("arguments to destructor are not allowed");
1787 /* Mark the pseudo-destructor call as having side-effects so
1788 that we do not issue warnings about its use. */
1789 result = build1 (NOP_EXPR,
1790 void_type_node,
1791 TREE_OPERAND (fn, 0));
1792 TREE_SIDE_EFFECTS (result) = 1;
1793 }
1794 else if (CLASS_TYPE_P (TREE_TYPE (fn)))
1795 /* If the "function" is really an object of class type, it might
1796 have an overloaded `operator ()'. */
1797 result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
1798 /*overloaded_p=*/NULL);
1799 if (!result)
1800 /* A call where the function is unknown. */
1801 result = build_function_call (fn, args);
1802
1803 if (processing_template_decl)
1804 {
1805 result = build3 (CALL_EXPR, TREE_TYPE (result), orig_fn,
1806 orig_args, NULL_TREE);
1807 KOENIG_LOOKUP_P (result) = koenig_p;
1808 }
1809 return result;
1810 }
1811
1812 /* Finish a call to a postfix increment or decrement or EXPR. (Which
1813 is indicated by CODE, which should be POSTINCREMENT_EXPR or
1814 POSTDECREMENT_EXPR.) */
1815
1816 tree
1817 finish_increment_expr (tree expr, enum tree_code code)
1818 {
1819 return build_x_unary_op (code, expr);
1820 }
1821
1822 /* Finish a use of `this'. Returns an expression for `this'. */
1823
1824 tree
1825 finish_this_expr (void)
1826 {
1827 tree result;
1828
1829 if (current_class_ptr)
1830 {
1831 result = current_class_ptr;
1832 }
1833 else if (current_function_decl
1834 && DECL_STATIC_FUNCTION_P (current_function_decl))
1835 {
1836 error ("`this' is unavailable for static member functions");
1837 result = error_mark_node;
1838 }
1839 else
1840 {
1841 if (current_function_decl)
1842 error ("invalid use of `this' in non-member function");
1843 else
1844 error ("invalid use of `this' at top level");
1845 result = error_mark_node;
1846 }
1847
1848 return result;
1849 }
1850
1851 /* Finish a pseudo-destructor expression. If SCOPE is NULL, the
1852 expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
1853 the TYPE for the type given. If SCOPE is non-NULL, the expression
1854 was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
1855
1856 tree
1857 finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
1858 {
1859 if (destructor == error_mark_node)
1860 return error_mark_node;
1861
1862 gcc_assert (TYPE_P (destructor));
1863
1864 if (!processing_template_decl)
1865 {
1866 if (scope == error_mark_node)
1867 {
1868 error ("invalid qualifying scope in pseudo-destructor name");
1869 return error_mark_node;
1870 }
1871
1872 /* [expr.pseudo] says both:
1873
1874 The type designated by the pseudo-destructor-name shall be
1875 the same as the object type.
1876
1877 and:
1878
1879 The cv-unqualified versions of the object type and of the
1880 type designated by the pseudo-destructor-name shall be the
1881 same type.
1882
1883 We implement the more generous second sentence, since that is
1884 what most other compilers do. */
1885 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
1886 destructor))
1887 {
1888 error ("`%E' is not of type `%T'", object, destructor);
1889 return error_mark_node;
1890 }
1891 }
1892
1893 return build3 (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
1894 }
1895
1896 /* Finish an expression of the form CODE EXPR. */
1897
1898 tree
1899 finish_unary_op_expr (enum tree_code code, tree expr)
1900 {
1901 tree result = build_x_unary_op (code, expr);
1902 /* Inside a template, build_x_unary_op does not fold the
1903 expression. So check whether the result is folded before
1904 setting TREE_NEGATED_INT. */
1905 if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
1906 && TREE_CODE (result) == INTEGER_CST
1907 && !TYPE_UNSIGNED (TREE_TYPE (result))
1908 && INT_CST_LT (result, integer_zero_node))
1909 TREE_NEGATED_INT (result) = 1;
1910 overflow_warning (result);
1911 return result;
1912 }
1913
1914 /* Finish a compound-literal expression. TYPE is the type to which
1915 the INITIALIZER_LIST is being cast. */
1916
1917 tree
1918 finish_compound_literal (tree type, tree initializer_list)
1919 {
1920 tree compound_literal;
1921
1922 /* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
1923 compound_literal = build_constructor (NULL_TREE, initializer_list);
1924 /* Mark it as a compound-literal. */
1925 TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
1926 if (processing_template_decl)
1927 TREE_TYPE (compound_literal) = type;
1928 else
1929 {
1930 /* Check the initialization. */
1931 compound_literal = digest_init (type, compound_literal, NULL);
1932 /* If the TYPE was an array type with an unknown bound, then we can
1933 figure out the dimension now. For example, something like:
1934
1935 `(int []) { 2, 3 }'
1936
1937 implies that the array has two elements. */
1938 if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
1939 complete_array_type (type, compound_literal, 1);
1940 }
1941
1942 return compound_literal;
1943 }
1944
1945 /* Return the declaration for the function-name variable indicated by
1946 ID. */
1947
1948 tree
1949 finish_fname (tree id)
1950 {
1951 tree decl;
1952
1953 decl = fname_decl (C_RID_CODE (id), id);
1954 if (processing_template_decl)
1955 decl = DECL_NAME (decl);
1956 return decl;
1957 }
1958
1959 /* Finish a translation unit. */
1960
1961 void
1962 finish_translation_unit (void)
1963 {
1964 /* In case there were missing closebraces,
1965 get us back to the global binding level. */
1966 pop_everything ();
1967 while (current_namespace != global_namespace)
1968 pop_namespace ();
1969
1970 /* Do file scope __FUNCTION__ et al. */
1971 finish_fname_decls ();
1972 }
1973
1974 /* Finish a template type parameter, specified as AGGR IDENTIFIER.
1975 Returns the parameter. */
1976
1977 tree
1978 finish_template_type_parm (tree aggr, tree identifier)
1979 {
1980 if (aggr != class_type_node)
1981 {
1982 pedwarn ("template type parameters must use the keyword `class' or `typename'");
1983 aggr = class_type_node;
1984 }
1985
1986 return build_tree_list (aggr, identifier);
1987 }
1988
1989 /* Finish a template template parameter, specified as AGGR IDENTIFIER.
1990 Returns the parameter. */
1991
1992 tree
1993 finish_template_template_parm (tree aggr, tree identifier)
1994 {
1995 tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
1996 tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
1997 DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
1998 DECL_TEMPLATE_RESULT (tmpl) = decl;
1999 DECL_ARTIFICIAL (decl) = 1;
2000 end_template_decl ();
2001
2002 gcc_assert (DECL_TEMPLATE_PARMS (tmpl));
2003
2004 return finish_template_type_parm (aggr, tmpl);
2005 }
2006
2007 /* ARGUMENT is the default-argument value for a template template
2008 parameter. If ARGUMENT is invalid, issue error messages and return
2009 the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
2010
2011 tree
2012 check_template_template_default_arg (tree argument)
2013 {
2014 if (TREE_CODE (argument) != TEMPLATE_DECL
2015 && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
2016 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
2017 {
2018 if (TREE_CODE (argument) == TYPE_DECL)
2019 {
2020 tree t = TREE_TYPE (argument);
2021
2022 /* Try to emit a slightly smarter error message if we detect
2023 that the user is using a template instantiation. */
2024 if (CLASSTYPE_TEMPLATE_INFO (t)
2025 && CLASSTYPE_TEMPLATE_INSTANTIATION (t))
2026 error ("invalid use of type `%T' as a default value for a "
2027 "template template-parameter", t);
2028 else
2029 error ("invalid use of `%D' as a default value for a template "
2030 "template-parameter", argument);
2031 }
2032 else
2033 error ("invalid default argument for a template template parameter");
2034 return error_mark_node;
2035 }
2036
2037 return argument;
2038 }
2039
2040 /* Begin a class definition, as indicated by T. */
2041
2042 tree
2043 begin_class_definition (tree t)
2044 {
2045 if (t == error_mark_node)
2046 return error_mark_node;
2047
2048 if (processing_template_parmlist)
2049 {
2050 error ("definition of `%#T' inside template parameter list", t);
2051 return error_mark_node;
2052 }
2053 /* A non-implicit typename comes from code like:
2054
2055 template <typename T> struct A {
2056 template <typename U> struct A<T>::B ...
2057
2058 This is erroneous. */
2059 else if (TREE_CODE (t) == TYPENAME_TYPE)
2060 {
2061 error ("invalid definition of qualified type `%T'", t);
2062 t = error_mark_node;
2063 }
2064
2065 if (t == error_mark_node || ! IS_AGGR_TYPE (t))
2066 {
2067 t = make_aggr_type (RECORD_TYPE);
2068 pushtag (make_anon_name (), t, 0);
2069 }
2070
2071 /* If this type was already complete, and we see another definition,
2072 that's an error. */
2073 if (COMPLETE_TYPE_P (t))
2074 {
2075 error ("redefinition of `%#T'", t);
2076 cp_error_at ("previous definition of `%#T'", t);
2077 return error_mark_node;
2078 }
2079
2080 /* Update the location of the decl. */
2081 DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
2082
2083 if (TYPE_BEING_DEFINED (t))
2084 {
2085 t = make_aggr_type (TREE_CODE (t));
2086 pushtag (TYPE_IDENTIFIER (t), t, 0);
2087 }
2088 maybe_process_partial_specialization (t);
2089 pushclass (t);
2090 TYPE_BEING_DEFINED (t) = 1;
2091 if (flag_pack_struct)
2092 {
2093 tree v;
2094 TYPE_PACKED (t) = 1;
2095 /* Even though the type is being defined for the first time
2096 here, there might have been a forward declaration, so there
2097 might be cv-qualified variants of T. */
2098 for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
2099 TYPE_PACKED (v) = 1;
2100 }
2101 /* Reset the interface data, at the earliest possible
2102 moment, as it might have been set via a class foo;
2103 before. */
2104 if (! TYPE_ANONYMOUS_P (t))
2105 {
2106 struct c_fileinfo *finfo = get_fileinfo (lbasename (input_filename));
2107 CLASSTYPE_INTERFACE_ONLY (t) = finfo->interface_only;
2108 SET_CLASSTYPE_INTERFACE_UNKNOWN_X
2109 (t, finfo->interface_unknown);
2110 }
2111 reset_specialization();
2112
2113 /* Make a declaration for this class in its own scope. */
2114 build_self_reference ();
2115
2116 return t;
2117 }
2118
2119 /* Finish the member declaration given by DECL. */
2120
2121 void
2122 finish_member_declaration (tree decl)
2123 {
2124 if (decl == error_mark_node || decl == NULL_TREE)
2125 return;
2126
2127 if (decl == void_type_node)
2128 /* The COMPONENT was a friend, not a member, and so there's
2129 nothing for us to do. */
2130 return;
2131
2132 /* We should see only one DECL at a time. */
2133 gcc_assert (TREE_CHAIN (decl) == NULL_TREE);
2134
2135 /* Set up access control for DECL. */
2136 TREE_PRIVATE (decl)
2137 = (current_access_specifier == access_private_node);
2138 TREE_PROTECTED (decl)
2139 = (current_access_specifier == access_protected_node);
2140 if (TREE_CODE (decl) == TEMPLATE_DECL)
2141 {
2142 TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
2143 TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
2144 }
2145
2146 /* Mark the DECL as a member of the current class. */
2147 DECL_CONTEXT (decl) = current_class_type;
2148
2149 /* [dcl.link]
2150
2151 A C language linkage is ignored for the names of class members
2152 and the member function type of class member functions. */
2153 if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
2154 SET_DECL_LANGUAGE (decl, lang_cplusplus);
2155
2156 /* Put functions on the TYPE_METHODS list and everything else on the
2157 TYPE_FIELDS list. Note that these are built up in reverse order.
2158 We reverse them (to obtain declaration order) in finish_struct. */
2159 if (TREE_CODE (decl) == FUNCTION_DECL
2160 || DECL_FUNCTION_TEMPLATE_P (decl))
2161 {
2162 /* We also need to add this function to the
2163 CLASSTYPE_METHOD_VEC. */
2164 add_method (current_class_type, decl);
2165
2166 TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
2167 TYPE_METHODS (current_class_type) = decl;
2168
2169 maybe_add_class_template_decl_list (current_class_type, decl,
2170 /*friend_p=*/0);
2171 }
2172 /* Enter the DECL into the scope of the class. */
2173 else if ((TREE_CODE (decl) == USING_DECL && TREE_TYPE (decl))
2174 || pushdecl_class_level (decl))
2175 {
2176 /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
2177 go at the beginning. The reason is that lookup_field_1
2178 searches the list in order, and we want a field name to
2179 override a type name so that the "struct stat hack" will
2180 work. In particular:
2181
2182 struct S { enum E { }; int E } s;
2183 s.E = 3;
2184
2185 is valid. In addition, the FIELD_DECLs must be maintained in
2186 declaration order so that class layout works as expected.
2187 However, we don't need that order until class layout, so we
2188 save a little time by putting FIELD_DECLs on in reverse order
2189 here, and then reversing them in finish_struct_1. (We could
2190 also keep a pointer to the correct insertion points in the
2191 list.) */
2192
2193 if (TREE_CODE (decl) == TYPE_DECL)
2194 TYPE_FIELDS (current_class_type)
2195 = chainon (TYPE_FIELDS (current_class_type), decl);
2196 else
2197 {
2198 TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
2199 TYPE_FIELDS (current_class_type) = decl;
2200 }
2201
2202 maybe_add_class_template_decl_list (current_class_type, decl,
2203 /*friend_p=*/0);
2204 }
2205 }
2206
2207 /* Finish processing a complete template declaration. The PARMS are
2208 the template parameters. */
2209
2210 void
2211 finish_template_decl (tree parms)
2212 {
2213 if (parms)
2214 end_template_decl ();
2215 else
2216 end_specialization ();
2217 }
2218
2219 /* Finish processing a template-id (which names a type) of the form
2220 NAME < ARGS >. Return the TYPE_DECL for the type named by the
2221 template-id. If ENTERING_SCOPE is nonzero we are about to enter
2222 the scope of template-id indicated. */
2223
2224 tree
2225 finish_template_type (tree name, tree args, int entering_scope)
2226 {
2227 tree decl;
2228
2229 decl = lookup_template_class (name, args,
2230 NULL_TREE, NULL_TREE, entering_scope,
2231 tf_error | tf_warning | tf_user);
2232 if (decl != error_mark_node)
2233 decl = TYPE_STUB_DECL (decl);
2234
2235 return decl;
2236 }
2237
2238 /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
2239 Return a TREE_LIST containing the ACCESS_SPECIFIER and the
2240 BASE_CLASS, or NULL_TREE if an error occurred. The
2241 ACCESS_SPECIFIER is one of
2242 access_{default,public,protected_private}_node. For a virtual base
2243 we set TREE_TYPE. */
2244
2245 tree
2246 finish_base_specifier (tree base, tree access, bool virtual_p)
2247 {
2248 tree result;
2249
2250 if (base == error_mark_node)
2251 {
2252 error ("invalid base-class specification");
2253 result = NULL_TREE;
2254 }
2255 else if (! is_aggr_type (base, 1))
2256 result = NULL_TREE;
2257 else
2258 {
2259 if (cp_type_quals (base) != 0)
2260 {
2261 error ("base class `%T' has cv qualifiers", base);
2262 base = TYPE_MAIN_VARIANT (base);
2263 }
2264 result = build_tree_list (access, base);
2265 if (virtual_p)
2266 TREE_TYPE (result) = integer_type_node;
2267 }
2268
2269 return result;
2270 }
2271
2272 /* Called when multiple declarators are processed. If that is not
2273 permitted in this context, an error is issued. */
2274
2275 void
2276 check_multiple_declarators (void)
2277 {
2278 /* [temp]
2279
2280 In a template-declaration, explicit specialization, or explicit
2281 instantiation the init-declarator-list in the declaration shall
2282 contain at most one declarator.
2283
2284 We don't just use PROCESSING_TEMPLATE_DECL for the first
2285 condition since that would disallow the perfectly valid code,
2286 like `template <class T> struct S { int i, j; };'. */
2287 if (at_function_scope_p ())
2288 /* It's OK to write `template <class T> void f() { int i, j;}'. */
2289 return;
2290
2291 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
2292 || processing_explicit_instantiation
2293 || processing_specialization)
2294 error ("multiple declarators in template declaration");
2295 }
2296
2297 /* Issue a diagnostic that NAME cannot be found in SCOPE. DECL is
2298 what we found when we tried to do the lookup. */
2299
2300 void
2301 qualified_name_lookup_error (tree scope, tree name, tree decl)
2302 {
2303 if (TYPE_P (scope))
2304 {
2305 if (!COMPLETE_TYPE_P (scope))
2306 error ("incomplete type `%T' used in nested name specifier", scope);
2307 else if (TREE_CODE (decl) == TREE_LIST)
2308 {
2309 error ("reference to `%T::%D' is ambiguous", scope, name);
2310 print_candidates (decl);
2311 }
2312 else
2313 error ("`%D' is not a member of `%T'", name, scope);
2314 }
2315 else if (scope != global_namespace)
2316 error ("`%D' is not a member of `%D'", name, scope);
2317 else
2318 error ("`::%D' has not been declared", name);
2319 }
2320
2321 /* ID_EXPRESSION is a representation of parsed, but unprocessed,
2322 id-expression. (See cp_parser_id_expression for details.) SCOPE,
2323 if non-NULL, is the type or namespace used to explicitly qualify
2324 ID_EXPRESSION. DECL is the entity to which that name has been
2325 resolved.
2326
2327 *CONSTANT_EXPRESSION_P is true if we are presently parsing a
2328 constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
2329 be set to true if this expression isn't permitted in a
2330 constant-expression, but it is otherwise not set by this function.
2331 *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
2332 constant-expression, but a non-constant expression is also
2333 permissible.
2334
2335 If an error occurs, and it is the kind of error that might cause
2336 the parser to abort a tentative parse, *ERROR_MSG is filled in. It
2337 is the caller's responsibility to issue the message. *ERROR_MSG
2338 will be a string with static storage duration, so the caller need
2339 not "free" it.
2340
2341 Return an expression for the entity, after issuing appropriate
2342 diagnostics. This function is also responsible for transforming a
2343 reference to a non-static member into a COMPONENT_REF that makes
2344 the use of "this" explicit.
2345
2346 Upon return, *IDK will be filled in appropriately. */
2347
2348 tree
2349 finish_id_expression (tree id_expression,
2350 tree decl,
2351 tree scope,
2352 cp_id_kind *idk,
2353 tree *qualifying_class,
2354 bool integral_constant_expression_p,
2355 bool allow_non_integral_constant_expression_p,
2356 bool *non_integral_constant_expression_p,
2357 const char **error_msg)
2358 {
2359 /* Initialize the output parameters. */
2360 *idk = CP_ID_KIND_NONE;
2361 *error_msg = NULL;
2362
2363 if (id_expression == error_mark_node)
2364 return error_mark_node;
2365 /* If we have a template-id, then no further lookup is
2366 required. If the template-id was for a template-class, we
2367 will sometimes have a TYPE_DECL at this point. */
2368 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2369 || TREE_CODE (decl) == TYPE_DECL)
2370 ;
2371 /* Look up the name. */
2372 else
2373 {
2374 if (decl == error_mark_node)
2375 {
2376 /* Name lookup failed. */
2377 if (scope
2378 && (!TYPE_P (scope)
2379 || (!dependent_type_p (scope)
2380 && !(TREE_CODE (id_expression) == IDENTIFIER_NODE
2381 && IDENTIFIER_TYPENAME_P (id_expression)
2382 && dependent_type_p (TREE_TYPE (id_expression))))))
2383 {
2384 /* If the qualifying type is non-dependent (and the name
2385 does not name a conversion operator to a dependent
2386 type), issue an error. */
2387 qualified_name_lookup_error (scope, id_expression, decl);
2388 return error_mark_node;
2389 }
2390 else if (!scope)
2391 {
2392 /* It may be resolved via Koenig lookup. */
2393 *idk = CP_ID_KIND_UNQUALIFIED;
2394 return id_expression;
2395 }
2396 else
2397 decl = id_expression;
2398 }
2399 /* If DECL is a variable that would be out of scope under
2400 ANSI/ISO rules, but in scope in the ARM, name lookup
2401 will succeed. Issue a diagnostic here. */
2402 else
2403 decl = check_for_out_of_scope_variable (decl);
2404
2405 /* Remember that the name was used in the definition of
2406 the current class so that we can check later to see if
2407 the meaning would have been different after the class
2408 was entirely defined. */
2409 if (!scope && decl != error_mark_node)
2410 maybe_note_name_used_in_class (id_expression, decl);
2411 }
2412
2413 /* If we didn't find anything, or what we found was a type,
2414 then this wasn't really an id-expression. */
2415 if (TREE_CODE (decl) == TEMPLATE_DECL
2416 && !DECL_FUNCTION_TEMPLATE_P (decl))
2417 {
2418 *error_msg = "missing template arguments";
2419 return error_mark_node;
2420 }
2421 else if (TREE_CODE (decl) == TYPE_DECL
2422 || TREE_CODE (decl) == NAMESPACE_DECL)
2423 {
2424 *error_msg = "expected primary-expression";
2425 return error_mark_node;
2426 }
2427
2428 /* If the name resolved to a template parameter, there is no
2429 need to look it up again later. */
2430 if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
2431 || TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2432 {
2433 *idk = CP_ID_KIND_NONE;
2434 if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2435 decl = TEMPLATE_PARM_DECL (decl);
2436 if (integral_constant_expression_p
2437 && !dependent_type_p (TREE_TYPE (decl))
2438 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl)))
2439 {
2440 if (!allow_non_integral_constant_expression_p)
2441 error ("template parameter `%D' of type `%T' is not allowed in "
2442 "an integral constant expression because it is not of "
2443 "integral or enumeration type", decl, TREE_TYPE (decl));
2444 *non_integral_constant_expression_p = true;
2445 }
2446 return DECL_INITIAL (decl);
2447 }
2448 /* Similarly, we resolve enumeration constants to their
2449 underlying values. */
2450 else if (TREE_CODE (decl) == CONST_DECL)
2451 {
2452 *idk = CP_ID_KIND_NONE;
2453 if (!processing_template_decl)
2454 return DECL_INITIAL (decl);
2455 return decl;
2456 }
2457 else
2458 {
2459 bool dependent_p;
2460
2461 /* If the declaration was explicitly qualified indicate
2462 that. The semantics of `A::f(3)' are different than
2463 `f(3)' if `f' is virtual. */
2464 *idk = (scope
2465 ? CP_ID_KIND_QUALIFIED
2466 : (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2467 ? CP_ID_KIND_TEMPLATE_ID
2468 : CP_ID_KIND_UNQUALIFIED));
2469
2470
2471 /* [temp.dep.expr]
2472
2473 An id-expression is type-dependent if it contains an
2474 identifier that was declared with a dependent type.
2475
2476 The standard is not very specific about an id-expression that
2477 names a set of overloaded functions. What if some of them
2478 have dependent types and some of them do not? Presumably,
2479 such a name should be treated as a dependent name. */
2480 /* Assume the name is not dependent. */
2481 dependent_p = false;
2482 if (!processing_template_decl)
2483 /* No names are dependent outside a template. */
2484 ;
2485 /* A template-id where the name of the template was not resolved
2486 is definitely dependent. */
2487 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2488 && (TREE_CODE (TREE_OPERAND (decl, 0))
2489 == IDENTIFIER_NODE))
2490 dependent_p = true;
2491 /* For anything except an overloaded function, just check its
2492 type. */
2493 else if (!is_overloaded_fn (decl))
2494 dependent_p
2495 = dependent_type_p (TREE_TYPE (decl));
2496 /* For a set of overloaded functions, check each of the
2497 functions. */
2498 else
2499 {
2500 tree fns = decl;
2501
2502 if (BASELINK_P (fns))
2503 fns = BASELINK_FUNCTIONS (fns);
2504
2505 /* For a template-id, check to see if the template
2506 arguments are dependent. */
2507 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
2508 {
2509 tree args = TREE_OPERAND (fns, 1);
2510 dependent_p = any_dependent_template_arguments_p (args);
2511 /* The functions are those referred to by the
2512 template-id. */
2513 fns = TREE_OPERAND (fns, 0);
2514 }
2515
2516 /* If there are no dependent template arguments, go through
2517 the overloaded functions. */
2518 while (fns && !dependent_p)
2519 {
2520 tree fn = OVL_CURRENT (fns);
2521
2522 /* Member functions of dependent classes are
2523 dependent. */
2524 if (TREE_CODE (fn) == FUNCTION_DECL
2525 && type_dependent_expression_p (fn))
2526 dependent_p = true;
2527 else if (TREE_CODE (fn) == TEMPLATE_DECL
2528 && dependent_template_p (fn))
2529 dependent_p = true;
2530
2531 fns = OVL_NEXT (fns);
2532 }
2533 }
2534
2535 /* If the name was dependent on a template parameter, we will
2536 resolve the name at instantiation time. */
2537 if (dependent_p)
2538 {
2539 /* Create a SCOPE_REF for qualified names, if the scope is
2540 dependent. */
2541 if (scope)
2542 {
2543 if (TYPE_P (scope))
2544 *qualifying_class = scope;
2545 /* Since this name was dependent, the expression isn't
2546 constant -- yet. No error is issued because it might
2547 be constant when things are instantiated. */
2548 if (integral_constant_expression_p)
2549 *non_integral_constant_expression_p = true;
2550 if (TYPE_P (scope) && dependent_type_p (scope))
2551 return build_nt (SCOPE_REF, scope, id_expression);
2552 else if (TYPE_P (scope) && DECL_P (decl))
2553 return build2 (SCOPE_REF, TREE_TYPE (decl), scope,
2554 id_expression);
2555 else
2556 return decl;
2557 }
2558 /* A TEMPLATE_ID already contains all the information we
2559 need. */
2560 if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
2561 return id_expression;
2562 /* Since this name was dependent, the expression isn't
2563 constant -- yet. No error is issued because it might be
2564 constant when things are instantiated. */
2565 if (integral_constant_expression_p)
2566 *non_integral_constant_expression_p = true;
2567 *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
2568 /* If we found a variable, then name lookup during the
2569 instantiation will always resolve to the same VAR_DECL
2570 (or an instantiation thereof). */
2571 if (TREE_CODE (decl) == VAR_DECL
2572 || TREE_CODE (decl) == PARM_DECL)
2573 return decl;
2574 return id_expression;
2575 }
2576
2577 /* Only certain kinds of names are allowed in constant
2578 expression. Enumerators and template parameters
2579 have already been handled above. */
2580 if (integral_constant_expression_p
2581 && !DECL_INTEGRAL_CONSTANT_VAR_P (decl))
2582 {
2583 if (!allow_non_integral_constant_expression_p)
2584 {
2585 error ("`%D' cannot appear in a constant-expression", decl);
2586 return error_mark_node;
2587 }
2588 *non_integral_constant_expression_p = true;
2589 }
2590
2591 if (TREE_CODE (decl) == NAMESPACE_DECL)
2592 {
2593 error ("use of namespace `%D' as expression", decl);
2594 return error_mark_node;
2595 }
2596 else if (DECL_CLASS_TEMPLATE_P (decl))
2597 {
2598 error ("use of class template `%T' as expression", decl);
2599 return error_mark_node;
2600 }
2601 else if (TREE_CODE (decl) == TREE_LIST)
2602 {
2603 /* Ambiguous reference to base members. */
2604 error ("request for member `%D' is ambiguous in "
2605 "multiple inheritance lattice", id_expression);
2606 print_candidates (decl);
2607 return error_mark_node;
2608 }
2609
2610 /* Mark variable-like entities as used. Functions are similarly
2611 marked either below or after overload resolution. */
2612 if (TREE_CODE (decl) == VAR_DECL
2613 || TREE_CODE (decl) == PARM_DECL
2614 || TREE_CODE (decl) == RESULT_DECL)
2615 mark_used (decl);
2616
2617 if (scope)
2618 {
2619 decl = (adjust_result_of_qualified_name_lookup
2620 (decl, scope, current_class_type));
2621
2622 if (TREE_CODE (decl) == FUNCTION_DECL)
2623 mark_used (decl);
2624
2625 if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
2626 *qualifying_class = scope;
2627 else if (!processing_template_decl)
2628 decl = convert_from_reference (decl);
2629 else if (TYPE_P (scope))
2630 decl = build2 (SCOPE_REF, TREE_TYPE (decl), scope, decl);
2631 }
2632 else if (TREE_CODE (decl) == FIELD_DECL)
2633 decl = finish_non_static_data_member (decl, current_class_ref,
2634 /*qualifying_scope=*/NULL_TREE);
2635 else if (is_overloaded_fn (decl))
2636 {
2637 tree first_fn = OVL_CURRENT (decl);
2638
2639 if (TREE_CODE (first_fn) == TEMPLATE_DECL)
2640 first_fn = DECL_TEMPLATE_RESULT (first_fn);
2641
2642 if (!really_overloaded_fn (decl))
2643 mark_used (first_fn);
2644
2645 if (TREE_CODE (first_fn) == FUNCTION_DECL
2646 && DECL_FUNCTION_MEMBER_P (first_fn)
2647 && !shared_member_p (decl))
2648 {
2649 /* A set of member functions. */
2650 decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
2651 return finish_class_member_access_expr (decl, id_expression);
2652 }
2653 }
2654 else
2655 {
2656 if (TREE_CODE (decl) == VAR_DECL
2657 || TREE_CODE (decl) == PARM_DECL
2658 || TREE_CODE (decl) == RESULT_DECL)
2659 {
2660 tree context = decl_function_context (decl);
2661
2662 if (context != NULL_TREE && context != current_function_decl
2663 && ! TREE_STATIC (decl))
2664 {
2665 error ("use of %s from containing function",
2666 (TREE_CODE (decl) == VAR_DECL
2667 ? "`auto' variable" : "parameter"));
2668 cp_error_at (" `%#D' declared here", decl);
2669 return error_mark_node;
2670 }
2671 }
2672
2673 if (DECL_P (decl) && DECL_NONLOCAL (decl)
2674 && DECL_CLASS_SCOPE_P (decl)
2675 && DECL_CONTEXT (decl) != current_class_type)
2676 {
2677 tree path;
2678
2679 path = currently_open_derived_class (DECL_CONTEXT (decl));
2680 perform_or_defer_access_check (TYPE_BINFO (path), decl);
2681 }
2682
2683 if (! processing_template_decl)
2684 decl = convert_from_reference (decl);
2685 }
2686
2687 /* Resolve references to variables of anonymous unions
2688 into COMPONENT_REFs. */
2689 if (TREE_CODE (decl) == ALIAS_DECL)
2690 decl = unshare_expr (DECL_INITIAL (decl));
2691 }
2692
2693 if (TREE_DEPRECATED (decl))
2694 warn_deprecated_use (decl);
2695
2696 return decl;
2697 }
2698
2699 /* Implement the __typeof keyword: Return the type of EXPR, suitable for
2700 use as a type-specifier. */
2701
2702 tree
2703 finish_typeof (tree expr)
2704 {
2705 tree type;
2706
2707 if (type_dependent_expression_p (expr))
2708 {
2709 type = make_aggr_type (TYPEOF_TYPE);
2710 TYPEOF_TYPE_EXPR (type) = expr;
2711
2712 return type;
2713 }
2714
2715 type = TREE_TYPE (expr);
2716
2717 if (!type || type == unknown_type_node)
2718 {
2719 error ("type of `%E' is unknown", expr);
2720 return error_mark_node;
2721 }
2722
2723 return type;
2724 }
2725
2726 /* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
2727 with equivalent CALL_EXPRs. */
2728
2729 static tree
2730 simplify_aggr_init_exprs_r (tree* tp,
2731 int* walk_subtrees,
2732 void* data ATTRIBUTE_UNUSED)
2733 {
2734 /* We don't need to walk into types; there's nothing in a type that
2735 needs simplification. (And, furthermore, there are places we
2736 actively don't want to go. For example, we don't want to wander
2737 into the default arguments for a FUNCTION_DECL that appears in a
2738 CALL_EXPR.) */
2739 if (TYPE_P (*tp))
2740 {
2741 *walk_subtrees = 0;
2742 return NULL_TREE;
2743 }
2744 /* Only AGGR_INIT_EXPRs are interesting. */
2745 else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
2746 return NULL_TREE;
2747
2748 simplify_aggr_init_expr (tp);
2749
2750 /* Keep iterating. */
2751 return NULL_TREE;
2752 }
2753
2754 /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
2755 function is broken out from the above for the benefit of the tree-ssa
2756 project. */
2757
2758 void
2759 simplify_aggr_init_expr (tree *tp)
2760 {
2761 tree aggr_init_expr = *tp;
2762
2763 /* Form an appropriate CALL_EXPR. */
2764 tree fn = TREE_OPERAND (aggr_init_expr, 0);
2765 tree args = TREE_OPERAND (aggr_init_expr, 1);
2766 tree slot = TREE_OPERAND (aggr_init_expr, 2);
2767 tree type = TREE_TYPE (slot);
2768
2769 tree call_expr;
2770 enum style_t { ctor, arg, pcc } style;
2771
2772 if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
2773 style = ctor;
2774 #ifdef PCC_STATIC_STRUCT_RETURN
2775 else if (1)
2776 style = pcc;
2777 #endif
2778 else
2779 {
2780 gcc_assert (TREE_ADDRESSABLE (type));
2781 style = arg;
2782 }
2783
2784 if (style == ctor || style == arg)
2785 {
2786 /* Pass the address of the slot. If this is a constructor, we
2787 replace the first argument; otherwise, we tack on a new one. */
2788 tree addr;
2789
2790 if (style == ctor)
2791 args = TREE_CHAIN (args);
2792
2793 cxx_mark_addressable (slot);
2794 addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
2795 if (style == arg)
2796 {
2797 /* The return type might have different cv-quals from the slot. */
2798 tree fntype = TREE_TYPE (TREE_TYPE (fn));
2799
2800 gcc_assert (TREE_CODE (fntype) == FUNCTION_TYPE
2801 || TREE_CODE (fntype) == METHOD_TYPE);
2802 addr = convert (build_pointer_type (TREE_TYPE (fntype)), addr);
2803 }
2804
2805 args = tree_cons (NULL_TREE, addr, args);
2806 }
2807
2808 call_expr = build3 (CALL_EXPR,
2809 TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
2810 fn, args, NULL_TREE);
2811
2812 if (style == arg)
2813 /* Tell the backend that we've added our return slot to the argument
2814 list. */
2815 CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr) = 1;
2816 else if (style == pcc)
2817 {
2818 /* If we're using the non-reentrant PCC calling convention, then we
2819 need to copy the returned value out of the static buffer into the
2820 SLOT. */
2821 push_deferring_access_checks (dk_no_check);
2822 call_expr = build_aggr_init (slot, call_expr,
2823 DIRECT_BIND | LOOKUP_ONLYCONVERTING);
2824 pop_deferring_access_checks ();
2825 }
2826
2827 *tp = call_expr;
2828 }
2829
2830 /* Emit all thunks to FN that should be emitted when FN is emitted. */
2831
2832 static void
2833 emit_associated_thunks (tree fn)
2834 {
2835 /* When we use vcall offsets, we emit thunks with the virtual
2836 functions to which they thunk. The whole point of vcall offsets
2837 is so that you can know statically the entire set of thunks that
2838 will ever be needed for a given virtual function, thereby
2839 enabling you to output all the thunks with the function itself. */
2840 if (DECL_VIRTUAL_P (fn))
2841 {
2842 tree thunk;
2843
2844 for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
2845 {
2846 if (!THUNK_ALIAS (thunk))
2847 {
2848 use_thunk (thunk, /*emit_p=*/1);
2849 if (DECL_RESULT_THUNK_P (thunk))
2850 {
2851 tree probe;
2852
2853 for (probe = DECL_THUNKS (thunk);
2854 probe; probe = TREE_CHAIN (probe))
2855 use_thunk (probe, /*emit_p=*/1);
2856 }
2857 }
2858 else
2859 gcc_assert (!DECL_THUNKS (thunk));
2860 }
2861 }
2862 }
2863
2864 /* Generate RTL for FN. */
2865
2866 void
2867 expand_body (tree fn)
2868 {
2869 tree saved_function;
2870
2871 /* Compute the appropriate object-file linkage for inline
2872 functions. */
2873 if (DECL_DECLARED_INLINE_P (fn))
2874 import_export_decl (fn);
2875
2876 /* If FN is external, then there's no point in generating RTL for
2877 it. This situation can arise with an inline function under
2878 `-fexternal-templates'; we instantiate the function, even though
2879 we're not planning on emitting it, in case we get a chance to
2880 inline it. */
2881 if (DECL_EXTERNAL (fn))
2882 return;
2883
2884 /* ??? When is this needed? */
2885 saved_function = current_function_decl;
2886
2887 /* Emit any thunks that should be emitted at the same time as FN. */
2888 emit_associated_thunks (fn);
2889
2890 /* This function is only called from cgraph, or recursively from
2891 emit_associated_thunks. In neither case should we be currently
2892 generating trees for a function. */
2893 gcc_assert (function_depth == 0);
2894
2895 tree_rest_of_compilation (fn);
2896
2897 current_function_decl = saved_function;
2898
2899 if (DECL_CLONED_FUNCTION_P (fn))
2900 {
2901 /* If this is a clone, go through the other clones now and mark
2902 their parameters used. We have to do that here, as we don't
2903 know whether any particular clone will be expanded, and
2904 therefore cannot pick one arbitrarily. */
2905 tree probe;
2906
2907 for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
2908 probe && DECL_CLONED_FUNCTION_P (probe);
2909 probe = TREE_CHAIN (probe))
2910 {
2911 tree parms;
2912
2913 for (parms = DECL_ARGUMENTS (probe);
2914 parms; parms = TREE_CHAIN (parms))
2915 TREE_USED (parms) = 1;
2916 }
2917 }
2918 }
2919
2920 /* Generate RTL for FN. */
2921
2922 void
2923 expand_or_defer_fn (tree fn)
2924 {
2925 /* When the parser calls us after finishing the body of a template
2926 function, we don't really want to expand the body. */
2927 if (processing_template_decl)
2928 {
2929 /* Normally, collection only occurs in rest_of_compilation. So,
2930 if we don't collect here, we never collect junk generated
2931 during the processing of templates until we hit a
2932 non-template function. */
2933 ggc_collect ();
2934 return;
2935 }
2936
2937 /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
2938 walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
2939 simplify_aggr_init_exprs_r,
2940 NULL);
2941
2942 /* If this is a constructor or destructor body, we have to clone
2943 it. */
2944 if (maybe_clone_body (fn))
2945 {
2946 /* We don't want to process FN again, so pretend we've written
2947 it out, even though we haven't. */
2948 TREE_ASM_WRITTEN (fn) = 1;
2949 return;
2950 }
2951
2952 /* If this function is marked with the constructor attribute, add it
2953 to the list of functions to be called along with constructors
2954 from static duration objects. */
2955 if (DECL_STATIC_CONSTRUCTOR (fn))
2956 static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
2957
2958 /* If this function is marked with the destructor attribute, add it
2959 to the list of functions to be called along with destructors from
2960 static duration objects. */
2961 if (DECL_STATIC_DESTRUCTOR (fn))
2962 static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
2963
2964 /* We make a decision about linkage for these functions at the end
2965 of the compilation. Until that point, we do not want the back
2966 end to output them -- but we do want it to see the bodies of
2967 these functions so that it can inline them as appropriate. */
2968 if (DECL_DECLARED_INLINE_P (fn) || DECL_IMPLICIT_INSTANTIATION (fn))
2969 {
2970 if (!at_eof)
2971 {
2972 DECL_EXTERNAL (fn) = 1;
2973 DECL_NOT_REALLY_EXTERN (fn) = 1;
2974 note_vague_linkage_fn (fn);
2975 }
2976 else
2977 import_export_decl (fn);
2978
2979 /* If the user wants us to keep all inline functions, then mark
2980 this function as needed so that finish_file will make sure to
2981 output it later. */
2982 if (flag_keep_inline_functions && DECL_DECLARED_INLINE_P (fn))
2983 mark_needed (fn);
2984 }
2985
2986 /* There's no reason to do any of the work here if we're only doing
2987 semantic analysis; this code just generates RTL. */
2988 if (flag_syntax_only)
2989 return;
2990
2991 function_depth++;
2992
2993 /* Expand or defer, at the whim of the compilation unit manager. */
2994 cgraph_finalize_function (fn, function_depth > 1);
2995
2996 function_depth--;
2997 }
2998
2999 struct nrv_data
3000 {
3001 tree var;
3002 tree result;
3003 htab_t visited;
3004 };
3005
3006 /* Helper function for walk_tree, used by finalize_nrv below. */
3007
3008 static tree
3009 finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
3010 {
3011 struct nrv_data *dp = (struct nrv_data *)data;
3012 void **slot;
3013
3014 /* No need to walk into types. There wouldn't be any need to walk into
3015 non-statements, except that we have to consider STMT_EXPRs. */
3016 if (TYPE_P (*tp))
3017 *walk_subtrees = 0;
3018 /* Change all returns to just refer to the RESULT_DECL; this is a nop,
3019 but differs from using NULL_TREE in that it indicates that we care
3020 about the value of the RESULT_DECL. */
3021 else if (TREE_CODE (*tp) == RETURN_EXPR)
3022 TREE_OPERAND (*tp, 0) = dp->result;
3023 /* Change all cleanups for the NRV to only run when an exception is
3024 thrown. */
3025 else if (TREE_CODE (*tp) == CLEANUP_STMT
3026 && CLEANUP_DECL (*tp) == dp->var)
3027 CLEANUP_EH_ONLY (*tp) = 1;
3028 /* Replace the DECL_EXPR for the NRV with an initialization of the
3029 RESULT_DECL, if needed. */
3030 else if (TREE_CODE (*tp) == DECL_EXPR
3031 && DECL_EXPR_DECL (*tp) == dp->var)
3032 {
3033 tree init;
3034 if (DECL_INITIAL (dp->var)
3035 && DECL_INITIAL (dp->var) != error_mark_node)
3036 {
3037 init = build2 (INIT_EXPR, void_type_node, dp->result,
3038 DECL_INITIAL (dp->var));
3039 DECL_INITIAL (dp->var) = error_mark_node;
3040 }
3041 else
3042 init = build_empty_stmt ();
3043 SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
3044 *tp = init;
3045 }
3046 /* And replace all uses of the NRV with the RESULT_DECL. */
3047 else if (*tp == dp->var)
3048 *tp = dp->result;
3049
3050 /* Avoid walking into the same tree more than once. Unfortunately, we
3051 can't just use walk_tree_without duplicates because it would only call
3052 us for the first occurrence of dp->var in the function body. */
3053 slot = htab_find_slot (dp->visited, *tp, INSERT);
3054 if (*slot)
3055 *walk_subtrees = 0;
3056 else
3057 *slot = *tp;
3058
3059 /* Keep iterating. */
3060 return NULL_TREE;
3061 }
3062
3063 /* Called from finish_function to implement the named return value
3064 optimization by overriding all the RETURN_EXPRs and pertinent
3065 CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
3066 RESULT_DECL for the function. */
3067
3068 void
3069 finalize_nrv (tree *tp, tree var, tree result)
3070 {
3071 struct nrv_data data;
3072
3073 /* Copy debugging information from VAR to RESULT. */
3074 DECL_NAME (result) = DECL_NAME (var);
3075 DECL_ARTIFICIAL (result) = DECL_ARTIFICIAL (var);
3076 DECL_IGNORED_P (result) = DECL_IGNORED_P (var);
3077 DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
3078 DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
3079 /* Don't forget that we take its address. */
3080 TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
3081
3082 data.var = var;
3083 data.result = result;
3084 data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3085 walk_tree (tp, finalize_nrv_r, &data, 0);
3086 htab_delete (data.visited);
3087 }
3088
3089 /* Perform initialization related to this module. */
3090
3091 void
3092 init_cp_semantics (void)
3093 {
3094 }
3095
3096 #include "gt-cp-semantics.h"