cp-tree.h (do_poplevel): New prototype.
[gcc.git] / gcc / cp / semantics.c
1 /* Perform the semantic phase of parsing, i.e., the process of
2 building tree structure, checking semantic consistency, and
3 building RTL. These routines are used both during actual parsing
4 and during the instantiation of template functions.
5
6 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004
7 Free Software Foundation, Inc.
8 Written by Mark Mitchell (mmitchell@usa.net) based on code found
9 formerly in parse.y and pt.c.
10
11 This file is part of GCC.
12
13 GCC is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GCC is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING. If not, write to the Free
25 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 02111-1307, USA. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "cp-tree.h"
34 #include "tree-inline.h"
35 #include "tree-mudflap.h"
36 #include "except.h"
37 #include "toplev.h"
38 #include "flags.h"
39 #include "rtl.h"
40 #include "expr.h"
41 #include "output.h"
42 #include "timevar.h"
43 #include "debug.h"
44 #include "diagnostic.h"
45 #include "cgraph.h"
46 #include "tree-iterator.h"
47 #include "vec.h"
48 #include "target.h"
49
50 /* There routines provide a modular interface to perform many parsing
51 operations. They may therefore be used during actual parsing, or
52 during template instantiation, which may be regarded as a
53 degenerate form of parsing. Since the current g++ parser is
54 lacking in several respects, and will be reimplemented, we are
55 attempting to move most code that is not directly related to
56 parsing into this file; that will make implementing the new parser
57 much easier since it will be able to make use of these routines. */
58
59 static tree maybe_convert_cond (tree);
60 static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
61 static void emit_associated_thunks (tree);
62 static tree finalize_nrv_r (tree *, int *, void *);
63
64
65 /* Deferred Access Checking Overview
66 ---------------------------------
67
68 Most C++ expressions and declarations require access checking
69 to be performed during parsing. However, in several cases,
70 this has to be treated differently.
71
72 For member declarations, access checking has to be deferred
73 until more information about the declaration is known. For
74 example:
75
76 class A {
77 typedef int X;
78 public:
79 X f();
80 };
81
82 A::X A::f();
83 A::X g();
84
85 When we are parsing the function return type `A::X', we don't
86 really know if this is allowed until we parse the function name.
87
88 Furthermore, some contexts require that access checking is
89 never performed at all. These include class heads, and template
90 instantiations.
91
92 Typical use of access checking functions is described here:
93
94 1. When we enter a context that requires certain access checking
95 mode, the function `push_deferring_access_checks' is called with
96 DEFERRING argument specifying the desired mode. Access checking
97 may be performed immediately (dk_no_deferred), deferred
98 (dk_deferred), or not performed (dk_no_check).
99
100 2. When a declaration such as a type, or a variable, is encountered,
101 the function `perform_or_defer_access_check' is called. It
102 maintains a TREE_LIST of all deferred checks.
103
104 3. The global `current_class_type' or `current_function_decl' is then
105 setup by the parser. `enforce_access' relies on these information
106 to check access.
107
108 4. Upon exiting the context mentioned in step 1,
109 `perform_deferred_access_checks' is called to check all declaration
110 stored in the TREE_LIST. `pop_deferring_access_checks' is then
111 called to restore the previous access checking mode.
112
113 In case of parsing error, we simply call `pop_deferring_access_checks'
114 without `perform_deferred_access_checks'. */
115
116 typedef struct deferred_access GTY(())
117 {
118 /* A TREE_LIST representing name-lookups for which we have deferred
119 checking access controls. We cannot check the accessibility of
120 names used in a decl-specifier-seq until we know what is being
121 declared because code like:
122
123 class A {
124 class B {};
125 B* f();
126 }
127
128 A::B* A::f() { return 0; }
129
130 is valid, even though `A::B' is not generally accessible.
131
132 The TREE_PURPOSE of each node is the scope used to qualify the
133 name being looked up; the TREE_VALUE is the DECL to which the
134 name was resolved. */
135 tree deferred_access_checks;
136
137 /* The current mode of access checks. */
138 enum deferring_kind deferring_access_checks_kind;
139
140 } deferred_access;
141 DEF_VEC_GC_O (deferred_access);
142
143 /* Data for deferred access checking. */
144 static GTY(()) VEC (deferred_access) *deferred_access_stack;
145 static GTY(()) unsigned deferred_access_no_check;
146
147 /* Save the current deferred access states and start deferred
148 access checking iff DEFER_P is true. */
149
150 void
151 push_deferring_access_checks (deferring_kind deferring)
152 {
153 /* For context like template instantiation, access checking
154 disabling applies to all nested context. */
155 if (deferred_access_no_check || deferring == dk_no_check)
156 deferred_access_no_check++;
157 else
158 {
159 deferred_access *ptr;
160
161 ptr = VEC_safe_push (deferred_access, deferred_access_stack, NULL);
162 ptr->deferred_access_checks = NULL_TREE;
163 ptr->deferring_access_checks_kind = deferring;
164 }
165 }
166
167 /* Resume deferring access checks again after we stopped doing
168 this previously. */
169
170 void
171 resume_deferring_access_checks (void)
172 {
173 if (!deferred_access_no_check)
174 VEC_last (deferred_access, deferred_access_stack)
175 ->deferring_access_checks_kind = dk_deferred;
176 }
177
178 /* Stop deferring access checks. */
179
180 void
181 stop_deferring_access_checks (void)
182 {
183 if (!deferred_access_no_check)
184 VEC_last (deferred_access, deferred_access_stack)
185 ->deferring_access_checks_kind = dk_no_deferred;
186 }
187
188 /* Discard the current deferred access checks and restore the
189 previous states. */
190
191 void
192 pop_deferring_access_checks (void)
193 {
194 if (deferred_access_no_check)
195 deferred_access_no_check--;
196 else
197 VEC_pop (deferred_access, deferred_access_stack);
198 }
199
200 /* Returns a TREE_LIST representing the deferred checks.
201 The TREE_PURPOSE of each node is the type through which the
202 access occurred; the TREE_VALUE is the declaration named.
203 */
204
205 tree
206 get_deferred_access_checks (void)
207 {
208 if (deferred_access_no_check)
209 return NULL;
210 else
211 return (VEC_last (deferred_access, deferred_access_stack)
212 ->deferred_access_checks);
213 }
214
215 /* Take current deferred checks and combine with the
216 previous states if we also defer checks previously.
217 Otherwise perform checks now. */
218
219 void
220 pop_to_parent_deferring_access_checks (void)
221 {
222 if (deferred_access_no_check)
223 deferred_access_no_check--;
224 else
225 {
226 tree checks;
227 deferred_access *ptr;
228
229 checks = (VEC_last (deferred_access, deferred_access_stack)
230 ->deferred_access_checks);
231
232 VEC_pop (deferred_access, deferred_access_stack);
233 ptr = VEC_last (deferred_access, deferred_access_stack);
234 if (ptr->deferring_access_checks_kind == dk_no_deferred)
235 {
236 /* Check access. */
237 for (; checks; checks = TREE_CHAIN (checks))
238 enforce_access (TREE_PURPOSE (checks),
239 TREE_VALUE (checks));
240 }
241 else
242 {
243 /* Merge with parent. */
244 tree next;
245 tree original = ptr->deferred_access_checks;
246
247 for (; checks; checks = next)
248 {
249 tree probe;
250
251 next = TREE_CHAIN (checks);
252
253 for (probe = original; probe; probe = TREE_CHAIN (probe))
254 if (TREE_VALUE (probe) == TREE_VALUE (checks)
255 && TREE_PURPOSE (probe) == TREE_PURPOSE (checks))
256 goto found;
257 /* Insert into parent's checks. */
258 TREE_CHAIN (checks) = ptr->deferred_access_checks;
259 ptr->deferred_access_checks = checks;
260 found:;
261 }
262 }
263 }
264 }
265
266 /* Perform the deferred access checks.
267
268 After performing the checks, we still have to keep the list
269 `deferred_access_stack->deferred_access_checks' since we may want
270 to check access for them again later in a different context.
271 For example:
272
273 class A {
274 typedef int X;
275 static X a;
276 };
277 A::X A::a, x; // No error for `A::a', error for `x'
278
279 We have to perform deferred access of `A::X', first with `A::a',
280 next with `x'. */
281
282 void
283 perform_deferred_access_checks (void)
284 {
285 tree deferred_check;
286
287 for (deferred_check = (VEC_last (deferred_access, deferred_access_stack)
288 ->deferred_access_checks);
289 deferred_check;
290 deferred_check = TREE_CHAIN (deferred_check))
291 /* Check access. */
292 enforce_access (TREE_PURPOSE (deferred_check),
293 TREE_VALUE (deferred_check));
294 }
295
296 /* Defer checking the accessibility of DECL, when looked up in
297 BINFO. */
298
299 void
300 perform_or_defer_access_check (tree binfo, tree decl)
301 {
302 tree check;
303 deferred_access *ptr;
304
305 /* Exit if we are in a context that no access checking is performed.
306 */
307 if (deferred_access_no_check)
308 return;
309
310 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
311
312 ptr = VEC_last (deferred_access, deferred_access_stack);
313
314 /* If we are not supposed to defer access checks, just check now. */
315 if (ptr->deferring_access_checks_kind == dk_no_deferred)
316 {
317 enforce_access (binfo, decl);
318 return;
319 }
320
321 /* See if we are already going to perform this check. */
322 for (check = ptr->deferred_access_checks;
323 check;
324 check = TREE_CHAIN (check))
325 if (TREE_VALUE (check) == decl && TREE_PURPOSE (check) == binfo)
326 return;
327 /* If not, record the check. */
328 ptr->deferred_access_checks
329 = tree_cons (binfo, decl, ptr->deferred_access_checks);
330 }
331
332 /* Returns nonzero if the current statement is a full expression,
333 i.e. temporaries created during that statement should be destroyed
334 at the end of the statement. */
335
336 int
337 stmts_are_full_exprs_p (void)
338 {
339 return current_stmt_tree ()->stmts_are_full_exprs_p;
340 }
341
342 /* Returns the stmt_tree (if any) to which statements are currently
343 being added. If there is no active statement-tree, NULL is
344 returned. */
345
346 stmt_tree
347 current_stmt_tree (void)
348 {
349 return (cfun
350 ? &cfun->language->base.x_stmt_tree
351 : &scope_chain->x_stmt_tree);
352 }
353
354 /* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
355
356 static tree
357 maybe_cleanup_point_expr (tree expr)
358 {
359 if (!processing_template_decl && stmts_are_full_exprs_p ())
360 expr = fold (build1 (CLEANUP_POINT_EXPR, TREE_TYPE (expr), expr));
361 return expr;
362 }
363
364 /* Create a declaration statement for the declaration given by the DECL. */
365
366 void
367 add_decl_expr (tree decl)
368 {
369 tree r = build_stmt (DECL_EXPR, decl);
370 if (DECL_INITIAL (decl))
371 r = maybe_cleanup_point_expr (r);
372 add_stmt (r);
373 }
374
375 /* Nonzero if TYPE is an anonymous union or struct type. We have to use a
376 flag for this because "A union for which objects or pointers are
377 declared is not an anonymous union" [class.union]. */
378
379 int
380 anon_aggr_type_p (tree node)
381 {
382 return ANON_AGGR_TYPE_P (node);
383 }
384
385 /* Finish a scope. */
386
387 tree
388 do_poplevel (tree stmt_list)
389 {
390 tree block = NULL;
391
392 if (stmts_are_full_exprs_p ())
393 block = poplevel (kept_level_p (), 1, 0);
394
395 stmt_list = pop_stmt_list (stmt_list);
396
397 if (!processing_template_decl)
398 {
399 stmt_list = c_build_bind_expr (block, stmt_list);
400 /* ??? See c_end_compound_stmt re statement expressions. */
401 }
402
403 return stmt_list;
404 }
405
406 /* Begin a new scope. */
407
408 static tree
409 do_pushlevel (scope_kind sk)
410 {
411 tree ret = push_stmt_list ();
412 if (stmts_are_full_exprs_p ())
413 begin_scope (sk, NULL);
414 return ret;
415 }
416
417 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
418 when the current scope is exited. EH_ONLY is true when this is not
419 meant to apply to normal control flow transfer. */
420
421 void
422 push_cleanup (tree decl, tree cleanup, bool eh_only)
423 {
424 tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl);
425 CLEANUP_EH_ONLY (stmt) = eh_only;
426 add_stmt (stmt);
427 CLEANUP_BODY (stmt) = push_stmt_list ();
428 }
429
430 /* Begin a conditional that might contain a declaration. When generating
431 normal code, we want the declaration to appear before the statement
432 containing the conditional. When generating template code, we want the
433 conditional to be rendered as the raw DECL_EXPR. */
434
435 static void
436 begin_cond (tree *cond_p)
437 {
438 if (processing_template_decl)
439 *cond_p = push_stmt_list ();
440 }
441
442 /* Finish such a conditional. */
443
444 static void
445 finish_cond (tree *cond_p, tree expr)
446 {
447 if (processing_template_decl)
448 {
449 tree cond = pop_stmt_list (*cond_p);
450 if (TREE_CODE (cond) == DECL_EXPR)
451 expr = cond;
452 }
453 *cond_p = expr;
454 }
455
456 /* If *COND_P specifies a conditional with a declaration, transform the
457 loop such that
458 while (A x = 42) { }
459 for (; A x = 42;) { }
460 becomes
461 while (true) { A x = 42; if (!x) break; }
462 for (;;) { A x = 42; if (!x) break; }
463 The statement list for BODY will be empty if the conditional did
464 not declare anything. */
465
466 static void
467 simplify_loop_decl_cond (tree *cond_p, tree body)
468 {
469 tree cond, if_stmt;
470
471 if (!TREE_SIDE_EFFECTS (body))
472 return;
473
474 cond = *cond_p;
475 *cond_p = boolean_true_node;
476
477 if_stmt = begin_if_stmt ();
478 cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
479 finish_if_stmt_cond (cond, if_stmt);
480 finish_break_stmt ();
481 finish_then_clause (if_stmt);
482 finish_if_stmt (if_stmt);
483 }
484
485 /* Finish a goto-statement. */
486
487 tree
488 finish_goto_stmt (tree destination)
489 {
490 if (TREE_CODE (destination) == IDENTIFIER_NODE)
491 destination = lookup_label (destination);
492
493 /* We warn about unused labels with -Wunused. That means we have to
494 mark the used labels as used. */
495 if (TREE_CODE (destination) == LABEL_DECL)
496 TREE_USED (destination) = 1;
497 else
498 {
499 /* The DESTINATION is being used as an rvalue. */
500 if (!processing_template_decl)
501 destination = decay_conversion (destination);
502 /* We don't inline calls to functions with computed gotos.
503 Those functions are typically up to some funny business,
504 and may be depending on the labels being at particular
505 addresses, or some such. */
506 DECL_UNINLINABLE (current_function_decl) = 1;
507 }
508
509 check_goto (destination);
510
511 return add_stmt (build_stmt (GOTO_EXPR, destination));
512 }
513
514 /* COND is the condition-expression for an if, while, etc.,
515 statement. Convert it to a boolean value, if appropriate. */
516
517 static tree
518 maybe_convert_cond (tree cond)
519 {
520 /* Empty conditions remain empty. */
521 if (!cond)
522 return NULL_TREE;
523
524 /* Wait until we instantiate templates before doing conversion. */
525 if (processing_template_decl)
526 return cond;
527
528 /* Do the conversion. */
529 cond = convert_from_reference (cond);
530 return condition_conversion (cond);
531 }
532
533 /* Finish an expression-statement, whose EXPRESSION is as indicated. */
534
535 tree
536 finish_expr_stmt (tree expr)
537 {
538 tree r = NULL_TREE;
539
540 if (expr != NULL_TREE)
541 {
542 if (!processing_template_decl)
543 {
544 if (warn_sequence_point)
545 verify_sequence_points (expr);
546 expr = convert_to_void (expr, "statement");
547 }
548 else if (!type_dependent_expression_p (expr))
549 convert_to_void (build_non_dependent_expr (expr), "statement");
550
551 /* Simplification of inner statement expressions, compound exprs,
552 etc can result in the us already having an EXPR_STMT. */
553 if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
554 {
555 if (TREE_CODE (expr) != EXPR_STMT)
556 expr = build_stmt (EXPR_STMT, expr);
557 expr = maybe_cleanup_point_expr (expr);
558 }
559
560 r = add_stmt (expr);
561 }
562
563 finish_stmt ();
564
565 return r;
566 }
567
568
569 /* Begin an if-statement. Returns a newly created IF_STMT if
570 appropriate. */
571
572 tree
573 begin_if_stmt (void)
574 {
575 tree r, scope;
576 scope = do_pushlevel (sk_block);
577 r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
578 TREE_CHAIN (r) = scope;
579 begin_cond (&IF_COND (r));
580 return r;
581 }
582
583 /* Process the COND of an if-statement, which may be given by
584 IF_STMT. */
585
586 void
587 finish_if_stmt_cond (tree cond, tree if_stmt)
588 {
589 finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond));
590 add_stmt (if_stmt);
591 THEN_CLAUSE (if_stmt) = push_stmt_list ();
592 }
593
594 /* Finish the then-clause of an if-statement, which may be given by
595 IF_STMT. */
596
597 tree
598 finish_then_clause (tree if_stmt)
599 {
600 THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
601 return if_stmt;
602 }
603
604 /* Begin the else-clause of an if-statement. */
605
606 void
607 begin_else_clause (tree if_stmt)
608 {
609 ELSE_CLAUSE (if_stmt) = push_stmt_list ();
610 }
611
612 /* Finish the else-clause of an if-statement, which may be given by
613 IF_STMT. */
614
615 void
616 finish_else_clause (tree if_stmt)
617 {
618 ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
619 }
620
621 /* Finish an if-statement. */
622
623 void
624 finish_if_stmt (tree if_stmt)
625 {
626 tree scope = TREE_CHAIN (if_stmt);
627 TREE_CHAIN (if_stmt) = NULL;
628 add_stmt (do_poplevel (scope));
629 finish_stmt ();
630 }
631
632 /* Begin a while-statement. Returns a newly created WHILE_STMT if
633 appropriate. */
634
635 tree
636 begin_while_stmt (void)
637 {
638 tree r;
639 r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
640 add_stmt (r);
641 WHILE_BODY (r) = do_pushlevel (sk_block);
642 begin_cond (&WHILE_COND (r));
643 return r;
644 }
645
646 /* Process the COND of a while-statement, which may be given by
647 WHILE_STMT. */
648
649 void
650 finish_while_stmt_cond (tree cond, tree while_stmt)
651 {
652 finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond));
653 simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt));
654 }
655
656 /* Finish a while-statement, which may be given by WHILE_STMT. */
657
658 void
659 finish_while_stmt (tree while_stmt)
660 {
661 WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
662 finish_stmt ();
663 }
664
665 /* Begin a do-statement. Returns a newly created DO_STMT if
666 appropriate. */
667
668 tree
669 begin_do_stmt (void)
670 {
671 tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
672 add_stmt (r);
673 DO_BODY (r) = push_stmt_list ();
674 return r;
675 }
676
677 /* Finish the body of a do-statement, which may be given by DO_STMT. */
678
679 void
680 finish_do_body (tree do_stmt)
681 {
682 DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
683 }
684
685 /* Finish a do-statement, which may be given by DO_STMT, and whose
686 COND is as indicated. */
687
688 void
689 finish_do_stmt (tree cond, tree do_stmt)
690 {
691 cond = maybe_convert_cond (cond);
692 DO_COND (do_stmt) = cond;
693 finish_stmt ();
694 }
695
696 /* Finish a return-statement. The EXPRESSION returned, if any, is as
697 indicated. */
698
699 tree
700 finish_return_stmt (tree expr)
701 {
702 tree r;
703
704 expr = check_return_expr (expr);
705 if (!processing_template_decl)
706 {
707 if (DECL_DESTRUCTOR_P (current_function_decl)
708 || (DECL_CONSTRUCTOR_P (current_function_decl)
709 && targetm.cxx.cdtor_returns_this ()))
710 {
711 /* Similarly, all destructors must run destructors for
712 base-classes before returning. So, all returns in a
713 destructor get sent to the DTOR_LABEL; finish_function emits
714 code to return a value there. */
715 return finish_goto_stmt (cdtor_label);
716 }
717 }
718
719 r = build_stmt (RETURN_EXPR, expr);
720 r = maybe_cleanup_point_expr (r);
721 r = add_stmt (r);
722 finish_stmt ();
723
724 return r;
725 }
726
727 /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
728
729 tree
730 begin_for_stmt (void)
731 {
732 tree r;
733
734 r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
735 NULL_TREE, NULL_TREE);
736
737 if (flag_new_for_scope > 0)
738 TREE_CHAIN (r) = do_pushlevel (sk_for);
739
740 if (processing_template_decl)
741 FOR_INIT_STMT (r) = push_stmt_list ();
742
743 return r;
744 }
745
746 /* Finish the for-init-statement of a for-statement, which may be
747 given by FOR_STMT. */
748
749 void
750 finish_for_init_stmt (tree for_stmt)
751 {
752 if (processing_template_decl)
753 FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
754 add_stmt (for_stmt);
755 FOR_BODY (for_stmt) = do_pushlevel (sk_block);
756 begin_cond (&FOR_COND (for_stmt));
757 }
758
759 /* Finish the COND of a for-statement, which may be given by
760 FOR_STMT. */
761
762 void
763 finish_for_cond (tree cond, tree for_stmt)
764 {
765 finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond));
766 simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt));
767 }
768
769 /* Finish the increment-EXPRESSION in a for-statement, which may be
770 given by FOR_STMT. */
771
772 void
773 finish_for_expr (tree expr, tree for_stmt)
774 {
775 if (!expr)
776 return;
777 /* If EXPR is an overloaded function, issue an error; there is no
778 context available to use to perform overload resolution. */
779 if (type_unknown_p (expr))
780 {
781 cxx_incomplete_type_error (expr, TREE_TYPE (expr));
782 expr = error_mark_node;
783 }
784 expr = maybe_cleanup_point_expr (expr);
785 FOR_EXPR (for_stmt) = expr;
786 }
787
788 /* Finish the body of a for-statement, which may be given by
789 FOR_STMT. The increment-EXPR for the loop must be
790 provided. */
791
792 void
793 finish_for_stmt (tree for_stmt)
794 {
795 FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
796
797 /* Pop the scope for the body of the loop. */
798 if (flag_new_for_scope > 0)
799 {
800 tree scope = TREE_CHAIN (for_stmt);
801 TREE_CHAIN (for_stmt) = NULL;
802 add_stmt (do_poplevel (scope));
803 }
804
805 finish_stmt ();
806 }
807
808 /* Finish a break-statement. */
809
810 tree
811 finish_break_stmt (void)
812 {
813 return add_stmt (build_break_stmt ());
814 }
815
816 /* Finish a continue-statement. */
817
818 tree
819 finish_continue_stmt (void)
820 {
821 return add_stmt (build_continue_stmt ());
822 }
823
824 /* Begin a switch-statement. Returns a new SWITCH_STMT if
825 appropriate. */
826
827 tree
828 begin_switch_stmt (void)
829 {
830 tree r, scope;
831
832 r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
833
834 scope = do_pushlevel (sk_block);
835 TREE_CHAIN (r) = scope;
836 begin_cond (&SWITCH_COND (r));
837
838 return r;
839 }
840
841 /* Finish the cond of a switch-statement. */
842
843 void
844 finish_switch_cond (tree cond, tree switch_stmt)
845 {
846 tree orig_type = NULL;
847 if (!processing_template_decl)
848 {
849 tree index;
850
851 /* Convert the condition to an integer or enumeration type. */
852 cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
853 if (cond == NULL_TREE)
854 {
855 error ("switch quantity not an integer");
856 cond = error_mark_node;
857 }
858 orig_type = TREE_TYPE (cond);
859 if (cond != error_mark_node)
860 {
861 /* [stmt.switch]
862
863 Integral promotions are performed. */
864 cond = perform_integral_promotions (cond);
865 cond = maybe_cleanup_point_expr (cond);
866 }
867
868 if (cond != error_mark_node)
869 {
870 index = get_unwidened (cond, NULL_TREE);
871 /* We can't strip a conversion from a signed type to an unsigned,
872 because if we did, int_fits_type_p would do the wrong thing
873 when checking case values for being in range,
874 and it's too hard to do the right thing. */
875 if (TYPE_UNSIGNED (TREE_TYPE (cond))
876 == TYPE_UNSIGNED (TREE_TYPE (index)))
877 cond = index;
878 }
879 }
880 finish_cond (&SWITCH_COND (switch_stmt), cond);
881 SWITCH_TYPE (switch_stmt) = orig_type;
882 add_stmt (switch_stmt);
883 push_switch (switch_stmt);
884 SWITCH_BODY (switch_stmt) = push_stmt_list ();
885 }
886
887 /* Finish the body of a switch-statement, which may be given by
888 SWITCH_STMT. The COND to switch on is indicated. */
889
890 void
891 finish_switch_stmt (tree switch_stmt)
892 {
893 tree scope;
894
895 SWITCH_BODY (switch_stmt) = pop_stmt_list (SWITCH_BODY (switch_stmt));
896 pop_switch ();
897 finish_stmt ();
898
899 scope = TREE_CHAIN (switch_stmt);
900 TREE_CHAIN (switch_stmt) = NULL;
901 add_stmt (do_poplevel (scope));
902 }
903
904 /* Begin a try-block. Returns a newly-created TRY_BLOCK if
905 appropriate. */
906
907 tree
908 begin_try_block (void)
909 {
910 tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
911 add_stmt (r);
912 TRY_STMTS (r) = push_stmt_list ();
913 return r;
914 }
915
916 /* Likewise, for a function-try-block. */
917
918 tree
919 begin_function_try_block (void)
920 {
921 tree r = begin_try_block ();
922 FN_TRY_BLOCK_P (r) = 1;
923 return r;
924 }
925
926 /* Finish a try-block, which may be given by TRY_BLOCK. */
927
928 void
929 finish_try_block (tree try_block)
930 {
931 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
932 TRY_HANDLERS (try_block) = push_stmt_list ();
933 }
934
935 /* Finish the body of a cleanup try-block, which may be given by
936 TRY_BLOCK. */
937
938 void
939 finish_cleanup_try_block (tree try_block)
940 {
941 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
942 }
943
944 /* Finish an implicitly generated try-block, with a cleanup is given
945 by CLEANUP. */
946
947 void
948 finish_cleanup (tree cleanup, tree try_block)
949 {
950 TRY_HANDLERS (try_block) = cleanup;
951 CLEANUP_P (try_block) = 1;
952 }
953
954 /* Likewise, for a function-try-block. */
955
956 void
957 finish_function_try_block (tree try_block)
958 {
959 finish_try_block (try_block);
960 /* FIXME : something queer about CTOR_INITIALIZER somehow following
961 the try block, but moving it inside. */
962 in_function_try_handler = 1;
963 }
964
965 /* Finish a handler-sequence for a try-block, which may be given by
966 TRY_BLOCK. */
967
968 void
969 finish_handler_sequence (tree try_block)
970 {
971 TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
972 check_handlers (TRY_HANDLERS (try_block));
973 }
974
975 /* Likewise, for a function-try-block. */
976
977 void
978 finish_function_handler_sequence (tree try_block)
979 {
980 in_function_try_handler = 0;
981 finish_handler_sequence (try_block);
982 }
983
984 /* Begin a handler. Returns a HANDLER if appropriate. */
985
986 tree
987 begin_handler (void)
988 {
989 tree r;
990
991 r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
992 add_stmt (r);
993
994 /* Create a binding level for the eh_info and the exception object
995 cleanup. */
996 HANDLER_BODY (r) = do_pushlevel (sk_catch);
997
998 return r;
999 }
1000
1001 /* Finish the handler-parameters for a handler, which may be given by
1002 HANDLER. DECL is the declaration for the catch parameter, or NULL
1003 if this is a `catch (...)' clause. */
1004
1005 void
1006 finish_handler_parms (tree decl, tree handler)
1007 {
1008 tree type = NULL_TREE;
1009 if (processing_template_decl)
1010 {
1011 if (decl)
1012 {
1013 decl = pushdecl (decl);
1014 decl = push_template_decl (decl);
1015 HANDLER_PARMS (handler) = decl;
1016 type = TREE_TYPE (decl);
1017 }
1018 }
1019 else
1020 type = expand_start_catch_block (decl);
1021
1022 HANDLER_TYPE (handler) = type;
1023 if (!processing_template_decl && type)
1024 mark_used (eh_type_info (type));
1025 }
1026
1027 /* Finish a handler, which may be given by HANDLER. The BLOCKs are
1028 the return value from the matching call to finish_handler_parms. */
1029
1030 void
1031 finish_handler (tree handler)
1032 {
1033 if (!processing_template_decl)
1034 expand_end_catch_block ();
1035 HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
1036 }
1037
1038 /* Begin a compound statement. FLAGS contains some bits that control the
1039 behaviour and context. If BCS_NO_SCOPE is set, the compound statement
1040 does not define a scope. If BCS_FN_BODY is set, this is the outermost
1041 block of a function. If BCS_TRY_BLOCK is set, this is the block
1042 created on behalf of a TRY statement. Returns a token to be passed to
1043 finish_compound_stmt. */
1044
1045 tree
1046 begin_compound_stmt (unsigned int flags)
1047 {
1048 tree r;
1049
1050 if (flags & BCS_NO_SCOPE)
1051 {
1052 r = push_stmt_list ();
1053 STATEMENT_LIST_NO_SCOPE (r) = 1;
1054
1055 /* Normally, we try hard to keep the BLOCK for a statement-expression.
1056 But, if it's a statement-expression with a scopeless block, there's
1057 nothing to keep, and we don't want to accidentally keep a block
1058 *inside* the scopeless block. */
1059 keep_next_level (false);
1060 }
1061 else
1062 r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
1063
1064 /* When processing a template, we need to remember where the braces were,
1065 so that we can set up identical scopes when instantiating the template
1066 later. BIND_EXPR is a handy candidate for this.
1067 Note that do_poplevel won't create a BIND_EXPR itself here (and thus
1068 result in nested BIND_EXPRs), since we don't build BLOCK nodes when
1069 processing templates. */
1070 if (processing_template_decl)
1071 {
1072 r = build3 (BIND_EXPR, NULL, NULL, r, NULL);
1073 BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
1074 BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
1075 TREE_SIDE_EFFECTS (r) = 1;
1076 }
1077
1078 return r;
1079 }
1080
1081 /* Finish a compound-statement, which is given by STMT. */
1082
1083 void
1084 finish_compound_stmt (tree stmt)
1085 {
1086 if (TREE_CODE (stmt) == BIND_EXPR)
1087 BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
1088 else if (STATEMENT_LIST_NO_SCOPE (stmt))
1089 stmt = pop_stmt_list (stmt);
1090 else
1091 stmt = do_poplevel (stmt);
1092
1093 /* ??? See c_end_compound_stmt wrt statement expressions. */
1094 add_stmt (stmt);
1095 finish_stmt ();
1096 }
1097
1098 /* Finish an asm-statement, whose components are a STRING, some
1099 OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
1100 whether the asm-statement should be considered volatile. */
1101
1102 tree
1103 finish_asm_stmt (int volatile_p, tree string, tree output_operands,
1104 tree input_operands, tree clobbers)
1105 {
1106 tree r;
1107 tree t;
1108
1109 if (!processing_template_decl)
1110 {
1111 int i;
1112 int ninputs;
1113 int noutputs;
1114
1115 for (t = input_operands; t; t = TREE_CHAIN (t))
1116 {
1117 tree converted_operand
1118 = decay_conversion (TREE_VALUE (t));
1119
1120 /* If the type of the operand hasn't been determined (e.g.,
1121 because it involves an overloaded function), then issue
1122 an error message. There's no context available to
1123 resolve the overloading. */
1124 if (TREE_TYPE (converted_operand) == unknown_type_node)
1125 {
1126 error ("type of asm operand `%E' could not be determined",
1127 TREE_VALUE (t));
1128 converted_operand = error_mark_node;
1129 }
1130 TREE_VALUE (t) = converted_operand;
1131 }
1132
1133 ninputs = list_length (input_operands);
1134 noutputs = list_length (output_operands);
1135
1136 for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
1137 {
1138 bool allows_mem;
1139 bool allows_reg;
1140 bool is_inout;
1141 const char *constraint;
1142 tree operand;
1143
1144 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1145 operand = TREE_VALUE (t);
1146
1147 if (!parse_output_constraint (&constraint,
1148 i, ninputs, noutputs,
1149 &allows_mem,
1150 &allows_reg,
1151 &is_inout))
1152 {
1153 /* By marking this operand as erroneous, we will not try
1154 to process this operand again in expand_asm_operands. */
1155 TREE_VALUE (t) = error_mark_node;
1156 continue;
1157 }
1158
1159 /* If the operand is a DECL that is going to end up in
1160 memory, assume it is addressable. This is a bit more
1161 conservative than it would ideally be; the exact test is
1162 buried deep in expand_asm_operands and depends on the
1163 DECL_RTL for the OPERAND -- which we don't have at this
1164 point. */
1165 if (!allows_reg && DECL_P (operand))
1166 cxx_mark_addressable (operand);
1167 }
1168 }
1169
1170 r = build_stmt (ASM_EXPR, string,
1171 output_operands, input_operands,
1172 clobbers);
1173 ASM_VOLATILE_P (r) = volatile_p;
1174 return add_stmt (r);
1175 }
1176
1177 /* Finish a label with the indicated NAME. */
1178
1179 tree
1180 finish_label_stmt (tree name)
1181 {
1182 tree decl = define_label (input_location, name);
1183 return add_stmt (build_stmt (LABEL_EXPR, decl));
1184 }
1185
1186 /* Finish a series of declarations for local labels. G++ allows users
1187 to declare "local" labels, i.e., labels with scope. This extension
1188 is useful when writing code involving statement-expressions. */
1189
1190 void
1191 finish_label_decl (tree name)
1192 {
1193 tree decl = declare_local_label (name);
1194 add_decl_expr (decl);
1195 }
1196
1197 /* When DECL goes out of scope, make sure that CLEANUP is executed. */
1198
1199 void
1200 finish_decl_cleanup (tree decl, tree cleanup)
1201 {
1202 push_cleanup (decl, cleanup, false);
1203 }
1204
1205 /* If the current scope exits with an exception, run CLEANUP. */
1206
1207 void
1208 finish_eh_cleanup (tree cleanup)
1209 {
1210 push_cleanup (NULL, cleanup, true);
1211 }
1212
1213 /* The MEM_INITS is a list of mem-initializers, in reverse of the
1214 order they were written by the user. Each node is as for
1215 emit_mem_initializers. */
1216
1217 void
1218 finish_mem_initializers (tree mem_inits)
1219 {
1220 /* Reorder the MEM_INITS so that they are in the order they appeared
1221 in the source program. */
1222 mem_inits = nreverse (mem_inits);
1223
1224 if (processing_template_decl)
1225 add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
1226 else
1227 emit_mem_initializers (mem_inits);
1228 }
1229
1230 /* Finish a parenthesized expression EXPR. */
1231
1232 tree
1233 finish_parenthesized_expr (tree expr)
1234 {
1235 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (expr))))
1236 /* This inhibits warnings in c_common_truthvalue_conversion. */
1237 TREE_NO_WARNING (expr) = 1;
1238
1239 if (TREE_CODE (expr) == OFFSET_REF)
1240 /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
1241 enclosed in parentheses. */
1242 PTRMEM_OK_P (expr) = 0;
1243 return expr;
1244 }
1245
1246 /* Finish a reference to a non-static data member (DECL) that is not
1247 preceded by `.' or `->'. */
1248
1249 tree
1250 finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
1251 {
1252 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
1253
1254 if (!object)
1255 {
1256 if (current_function_decl
1257 && DECL_STATIC_FUNCTION_P (current_function_decl))
1258 cp_error_at ("invalid use of member `%D' in static member function",
1259 decl);
1260 else
1261 cp_error_at ("invalid use of non-static data member `%D'", decl);
1262 error ("from this location");
1263
1264 return error_mark_node;
1265 }
1266 TREE_USED (current_class_ptr) = 1;
1267 if (processing_template_decl && !qualifying_scope)
1268 {
1269 tree type = TREE_TYPE (decl);
1270
1271 if (TREE_CODE (type) == REFERENCE_TYPE)
1272 type = TREE_TYPE (type);
1273 else
1274 {
1275 /* Set the cv qualifiers. */
1276 int quals = cp_type_quals (TREE_TYPE (current_class_ref));
1277
1278 if (DECL_MUTABLE_P (decl))
1279 quals &= ~TYPE_QUAL_CONST;
1280
1281 quals |= cp_type_quals (TREE_TYPE (decl));
1282 type = cp_build_qualified_type (type, quals);
1283 }
1284
1285 return build_min (COMPONENT_REF, type, object, decl, NULL_TREE);
1286 }
1287 else
1288 {
1289 tree access_type = TREE_TYPE (object);
1290 tree lookup_context = context_for_name_lookup (decl);
1291
1292 while (!DERIVED_FROM_P (lookup_context, access_type))
1293 {
1294 access_type = TYPE_CONTEXT (access_type);
1295 while (access_type && DECL_P (access_type))
1296 access_type = DECL_CONTEXT (access_type);
1297
1298 if (!access_type)
1299 {
1300 cp_error_at ("object missing in reference to `%D'", decl);
1301 error ("from this location");
1302 return error_mark_node;
1303 }
1304 }
1305
1306 /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
1307 QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
1308 for now. */
1309 if (processing_template_decl)
1310 return build_min (SCOPE_REF, TREE_TYPE (decl),
1311 qualifying_scope, DECL_NAME (decl));
1312
1313 perform_or_defer_access_check (TYPE_BINFO (access_type), decl);
1314
1315 /* If the data member was named `C::M', convert `*this' to `C'
1316 first. */
1317 if (qualifying_scope)
1318 {
1319 tree binfo = NULL_TREE;
1320 object = build_scoped_ref (object, qualifying_scope,
1321 &binfo);
1322 }
1323
1324 return build_class_member_access_expr (object, decl,
1325 /*access_path=*/NULL_TREE,
1326 /*preserve_reference=*/false);
1327 }
1328 }
1329
1330 /* DECL was the declaration to which a qualified-id resolved. Issue
1331 an error message if it is not accessible. If OBJECT_TYPE is
1332 non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
1333 type of `*x', or `x', respectively. If the DECL was named as
1334 `A::B' then NESTED_NAME_SPECIFIER is `A'. */
1335
1336 void
1337 check_accessibility_of_qualified_id (tree decl,
1338 tree object_type,
1339 tree nested_name_specifier)
1340 {
1341 tree scope;
1342 tree qualifying_type = NULL_TREE;
1343
1344 /* If we're not checking, return imediately. */
1345 if (deferred_access_no_check)
1346 return;
1347
1348 /* Determine the SCOPE of DECL. */
1349 scope = context_for_name_lookup (decl);
1350 /* If the SCOPE is not a type, then DECL is not a member. */
1351 if (!TYPE_P (scope))
1352 return;
1353 /* Compute the scope through which DECL is being accessed. */
1354 if (object_type
1355 /* OBJECT_TYPE might not be a class type; consider:
1356
1357 class A { typedef int I; };
1358 I *p;
1359 p->A::I::~I();
1360
1361 In this case, we will have "A::I" as the DECL, but "I" as the
1362 OBJECT_TYPE. */
1363 && CLASS_TYPE_P (object_type)
1364 && DERIVED_FROM_P (scope, object_type))
1365 /* If we are processing a `->' or `.' expression, use the type of the
1366 left-hand side. */
1367 qualifying_type = object_type;
1368 else if (nested_name_specifier)
1369 {
1370 /* If the reference is to a non-static member of the
1371 current class, treat it as if it were referenced through
1372 `this'. */
1373 if (DECL_NONSTATIC_MEMBER_P (decl)
1374 && current_class_ptr
1375 && DERIVED_FROM_P (scope, current_class_type))
1376 qualifying_type = current_class_type;
1377 /* Otherwise, use the type indicated by the
1378 nested-name-specifier. */
1379 else
1380 qualifying_type = nested_name_specifier;
1381 }
1382 else
1383 /* Otherwise, the name must be from the current class or one of
1384 its bases. */
1385 qualifying_type = currently_open_derived_class (scope);
1386
1387 if (qualifying_type && IS_AGGR_TYPE_CODE (TREE_CODE (qualifying_type)))
1388 /* It is possible for qualifying type to be a TEMPLATE_TYPE_PARM
1389 or similar in a default argument value. */
1390 perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl);
1391 }
1392
1393 /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
1394 class named to the left of the "::" operator. DONE is true if this
1395 expression is a complete postfix-expression; it is false if this
1396 expression is followed by '->', '[', '(', etc. ADDRESS_P is true
1397 iff this expression is the operand of '&'. */
1398
1399 tree
1400 finish_qualified_id_expr (tree qualifying_class, tree expr, bool done,
1401 bool address_p)
1402 {
1403 if (error_operand_p (expr))
1404 return error_mark_node;
1405
1406 /* If EXPR occurs as the operand of '&', use special handling that
1407 permits a pointer-to-member. */
1408 if (address_p && done)
1409 {
1410 if (TREE_CODE (expr) == SCOPE_REF)
1411 expr = TREE_OPERAND (expr, 1);
1412 expr = build_offset_ref (qualifying_class, expr,
1413 /*address_p=*/true);
1414 return expr;
1415 }
1416
1417 if (TREE_CODE (expr) == FIELD_DECL)
1418 expr = finish_non_static_data_member (expr, current_class_ref,
1419 qualifying_class);
1420 else if (BASELINK_P (expr) && !processing_template_decl)
1421 {
1422 tree fn;
1423 tree fns;
1424
1425 /* See if any of the functions are non-static members. */
1426 fns = BASELINK_FUNCTIONS (expr);
1427 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
1428 fns = TREE_OPERAND (fns, 0);
1429 for (fn = fns; fn; fn = OVL_NEXT (fn))
1430 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1431 break;
1432 /* If so, the expression may be relative to the current
1433 class. */
1434 if (fn && current_class_type
1435 && DERIVED_FROM_P (qualifying_class, current_class_type))
1436 expr = (build_class_member_access_expr
1437 (maybe_dummy_object (qualifying_class, NULL),
1438 expr,
1439 BASELINK_ACCESS_BINFO (expr),
1440 /*preserve_reference=*/false));
1441 else if (done)
1442 /* The expression is a qualified name whose address is not
1443 being taken. */
1444 expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
1445 }
1446
1447 return expr;
1448 }
1449
1450 /* Begin a statement-expression. The value returned must be passed to
1451 finish_stmt_expr. */
1452
1453 tree
1454 begin_stmt_expr (void)
1455 {
1456 return push_stmt_list ();
1457 }
1458
1459 /* Process the final expression of a statement expression. EXPR can be
1460 NULL, if the final expression is empty. Build up a TARGET_EXPR so
1461 that the result value can be safely returned to the enclosing
1462 expression. */
1463
1464 tree
1465 finish_stmt_expr_expr (tree expr, tree stmt_expr)
1466 {
1467 tree result = NULL_TREE;
1468
1469 if (expr)
1470 {
1471 if (!processing_template_decl && !VOID_TYPE_P (TREE_TYPE (expr)))
1472 {
1473 tree type = TREE_TYPE (expr);
1474
1475 if (TREE_CODE (type) == ARRAY_TYPE
1476 || TREE_CODE (type) == FUNCTION_TYPE)
1477 expr = decay_conversion (expr);
1478
1479 expr = convert_from_reference (expr);
1480 expr = require_complete_type (expr);
1481
1482 type = TREE_TYPE (expr);
1483
1484 /* Build a TARGET_EXPR for this aggregate. finish_stmt_expr
1485 will then pull it apart so the lifetime of the target is
1486 within the scope of the expression containing this statement
1487 expression. */
1488 if (TREE_CODE (expr) == TARGET_EXPR)
1489 ;
1490 else if (!IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_INIT_REF (type))
1491 expr = build_target_expr_with_type (expr, type);
1492 else
1493 {
1494 /* Copy construct. */
1495 expr = build_special_member_call
1496 (NULL_TREE, complete_ctor_identifier,
1497 build_tree_list (NULL_TREE, expr),
1498 type, LOOKUP_NORMAL);
1499 expr = build_cplus_new (type, expr);
1500 gcc_assert (TREE_CODE (expr) == TARGET_EXPR);
1501 }
1502 }
1503
1504 if (expr != error_mark_node)
1505 {
1506 result = build_stmt (EXPR_STMT, expr);
1507 EXPR_STMT_STMT_EXPR_RESULT (result) = 1;
1508 add_stmt (result);
1509 }
1510 }
1511
1512 finish_stmt ();
1513
1514 /* Remember the last expression so that finish_stmt_expr
1515 can pull it apart. */
1516 TREE_TYPE (stmt_expr) = result;
1517
1518 return result;
1519 }
1520
1521 /* Finish a statement-expression. EXPR should be the value returned
1522 by the previous begin_stmt_expr. Returns an expression
1523 representing the statement-expression. */
1524
1525 tree
1526 finish_stmt_expr (tree stmt_expr, bool has_no_scope)
1527 {
1528 tree result, result_stmt, type;
1529 tree *result_stmt_p = NULL;
1530
1531 result_stmt = TREE_TYPE (stmt_expr);
1532 TREE_TYPE (stmt_expr) = void_type_node;
1533 result = pop_stmt_list (stmt_expr);
1534
1535 if (!result_stmt || VOID_TYPE_P (result_stmt))
1536 type = void_type_node;
1537 else
1538 {
1539 /* We need to search the statement expression for the result_stmt,
1540 since we'll need to replace it entirely. */
1541 tree t;
1542 result_stmt_p = &result;
1543 while (1)
1544 {
1545 t = *result_stmt_p;
1546 if (t == result_stmt)
1547 break;
1548
1549 switch (TREE_CODE (t))
1550 {
1551 case STATEMENT_LIST:
1552 {
1553 tree_stmt_iterator i = tsi_last (t);
1554 result_stmt_p = tsi_stmt_ptr (i);
1555 break;
1556 }
1557 case BIND_EXPR:
1558 result_stmt_p = &BIND_EXPR_BODY (t);
1559 break;
1560 case TRY_FINALLY_EXPR:
1561 case TRY_CATCH_EXPR:
1562 case CLEANUP_STMT:
1563 result_stmt_p = &TREE_OPERAND (t, 0);
1564 break;
1565 default:
1566 gcc_unreachable ();
1567 }
1568 }
1569 type = TREE_TYPE (EXPR_STMT_EXPR (result_stmt));
1570 }
1571
1572 if (processing_template_decl)
1573 {
1574 result = build_min (STMT_EXPR, type, result);
1575 TREE_SIDE_EFFECTS (result) = 1;
1576 STMT_EXPR_NO_SCOPE (result) = has_no_scope;
1577 }
1578 else if (!VOID_TYPE_P (type))
1579 {
1580 /* Pull out the TARGET_EXPR that is the final expression. Put
1581 the target's init_expr as the final expression and then put
1582 the statement expression itself as the target's init
1583 expr. Finally, return the target expression. */
1584 tree init, target_expr = EXPR_STMT_EXPR (result_stmt);
1585 gcc_assert (TREE_CODE (target_expr) == TARGET_EXPR);
1586
1587 /* The initializer will be void if the initialization is done by
1588 AGGR_INIT_EXPR; propagate that out to the statement-expression as
1589 a whole. */
1590 init = TREE_OPERAND (target_expr, 1);
1591 type = TREE_TYPE (init);
1592
1593 init = maybe_cleanup_point_expr (init);
1594 *result_stmt_p = init;
1595
1596 if (VOID_TYPE_P (type))
1597 /* No frobbing needed. */;
1598 else if (TREE_CODE (result) == BIND_EXPR)
1599 {
1600 /* The BIND_EXPR created in finish_compound_stmt is void; if we're
1601 returning a value directly, give it the appropriate type. */
1602 if (VOID_TYPE_P (TREE_TYPE (result)))
1603 TREE_TYPE (result) = type;
1604 else
1605 gcc_assert (same_type_p (TREE_TYPE (result), type));
1606 }
1607 else if (TREE_CODE (result) == STATEMENT_LIST)
1608 /* We need to wrap a STATEMENT_LIST in a BIND_EXPR so it can have a
1609 type other than void. FIXME why can't we just return a value
1610 from STATEMENT_LIST? */
1611 result = build3 (BIND_EXPR, type, NULL, result, NULL);
1612
1613 TREE_OPERAND (target_expr, 1) = result;
1614 result = target_expr;
1615 }
1616
1617 return result;
1618 }
1619
1620 /* Perform Koenig lookup. FN is the postfix-expression representing
1621 the function (or functions) to call; ARGS are the arguments to the
1622 call. Returns the functions to be considered by overload
1623 resolution. */
1624
1625 tree
1626 perform_koenig_lookup (tree fn, tree args)
1627 {
1628 tree identifier = NULL_TREE;
1629 tree functions = NULL_TREE;
1630
1631 /* Find the name of the overloaded function. */
1632 if (TREE_CODE (fn) == IDENTIFIER_NODE)
1633 identifier = fn;
1634 else if (is_overloaded_fn (fn))
1635 {
1636 functions = fn;
1637 identifier = DECL_NAME (get_first_fn (functions));
1638 }
1639 else if (DECL_P (fn))
1640 {
1641 functions = fn;
1642 identifier = DECL_NAME (fn);
1643 }
1644
1645 /* A call to a namespace-scope function using an unqualified name.
1646
1647 Do Koenig lookup -- unless any of the arguments are
1648 type-dependent. */
1649 if (!any_type_dependent_arguments_p (args))
1650 {
1651 fn = lookup_arg_dependent (identifier, functions, args);
1652 if (!fn)
1653 /* The unqualified name could not be resolved. */
1654 fn = unqualified_fn_lookup_error (identifier);
1655 }
1656 else
1657 fn = identifier;
1658
1659 return fn;
1660 }
1661
1662 /* Generate an expression for `FN (ARGS)'.
1663
1664 If DISALLOW_VIRTUAL is true, the call to FN will be not generated
1665 as a virtual call, even if FN is virtual. (This flag is set when
1666 encountering an expression where the function name is explicitly
1667 qualified. For example a call to `X::f' never generates a virtual
1668 call.)
1669
1670 Returns code for the call. */
1671
1672 tree
1673 finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
1674 {
1675 tree result;
1676 tree orig_fn;
1677 tree orig_args;
1678
1679 if (fn == error_mark_node || args == error_mark_node)
1680 return error_mark_node;
1681
1682 /* ARGS should be a list of arguments. */
1683 gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
1684
1685 orig_fn = fn;
1686 orig_args = args;
1687
1688 if (processing_template_decl)
1689 {
1690 if (type_dependent_expression_p (fn)
1691 || any_type_dependent_arguments_p (args))
1692 {
1693 result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
1694 KOENIG_LOOKUP_P (result) = koenig_p;
1695 return result;
1696 }
1697 if (!BASELINK_P (fn)
1698 && TREE_CODE (fn) != PSEUDO_DTOR_EXPR
1699 && TREE_TYPE (fn) != unknown_type_node)
1700 fn = build_non_dependent_expr (fn);
1701 args = build_non_dependent_args (orig_args);
1702 }
1703
1704 /* A reference to a member function will appear as an overloaded
1705 function (rather than a BASELINK) if an unqualified name was used
1706 to refer to it. */
1707 if (!BASELINK_P (fn) && is_overloaded_fn (fn))
1708 {
1709 tree f = fn;
1710
1711 if (TREE_CODE (f) == TEMPLATE_ID_EXPR)
1712 f = TREE_OPERAND (f, 0);
1713 f = get_first_fn (f);
1714 if (DECL_FUNCTION_MEMBER_P (f))
1715 {
1716 tree type = currently_open_derived_class (DECL_CONTEXT (f));
1717 if (!type)
1718 type = DECL_CONTEXT (f);
1719 fn = build_baselink (TYPE_BINFO (type),
1720 TYPE_BINFO (type),
1721 fn, /*optype=*/NULL_TREE);
1722 }
1723 }
1724
1725 result = NULL_TREE;
1726 if (BASELINK_P (fn))
1727 {
1728 tree object;
1729
1730 /* A call to a member function. From [over.call.func]:
1731
1732 If the keyword this is in scope and refers to the class of
1733 that member function, or a derived class thereof, then the
1734 function call is transformed into a qualified function call
1735 using (*this) as the postfix-expression to the left of the
1736 . operator.... [Otherwise] a contrived object of type T
1737 becomes the implied object argument.
1738
1739 This paragraph is unclear about this situation:
1740
1741 struct A { void f(); };
1742 struct B : public A {};
1743 struct C : public A { void g() { B::f(); }};
1744
1745 In particular, for `B::f', this paragraph does not make clear
1746 whether "the class of that member function" refers to `A' or
1747 to `B'. We believe it refers to `B'. */
1748 if (current_class_type
1749 && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1750 current_class_type)
1751 && current_class_ref)
1752 object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1753 NULL);
1754 else
1755 {
1756 tree representative_fn;
1757
1758 representative_fn = BASELINK_FUNCTIONS (fn);
1759 if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
1760 representative_fn = TREE_OPERAND (representative_fn, 0);
1761 representative_fn = get_first_fn (representative_fn);
1762 object = build_dummy_object (DECL_CONTEXT (representative_fn));
1763 }
1764
1765 if (processing_template_decl)
1766 {
1767 if (type_dependent_expression_p (object))
1768 return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
1769 object = build_non_dependent_expr (object);
1770 }
1771
1772 result = build_new_method_call (object, fn, args, NULL_TREE,
1773 (disallow_virtual
1774 ? LOOKUP_NONVIRTUAL : 0));
1775 }
1776 else if (is_overloaded_fn (fn))
1777 /* A call to a namespace-scope function. */
1778 result = build_new_function_call (fn, args);
1779 else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
1780 {
1781 if (args)
1782 error ("arguments to destructor are not allowed");
1783 /* Mark the pseudo-destructor call as having side-effects so
1784 that we do not issue warnings about its use. */
1785 result = build1 (NOP_EXPR,
1786 void_type_node,
1787 TREE_OPERAND (fn, 0));
1788 TREE_SIDE_EFFECTS (result) = 1;
1789 }
1790 else if (CLASS_TYPE_P (TREE_TYPE (fn)))
1791 /* If the "function" is really an object of class type, it might
1792 have an overloaded `operator ()'. */
1793 result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
1794 /*overloaded_p=*/NULL);
1795 if (!result)
1796 /* A call where the function is unknown. */
1797 result = build_function_call (fn, args);
1798
1799 if (processing_template_decl)
1800 {
1801 result = build3 (CALL_EXPR, TREE_TYPE (result), orig_fn,
1802 orig_args, NULL_TREE);
1803 KOENIG_LOOKUP_P (result) = koenig_p;
1804 }
1805 return result;
1806 }
1807
1808 /* Finish a call to a postfix increment or decrement or EXPR. (Which
1809 is indicated by CODE, which should be POSTINCREMENT_EXPR or
1810 POSTDECREMENT_EXPR.) */
1811
1812 tree
1813 finish_increment_expr (tree expr, enum tree_code code)
1814 {
1815 return build_x_unary_op (code, expr);
1816 }
1817
1818 /* Finish a use of `this'. Returns an expression for `this'. */
1819
1820 tree
1821 finish_this_expr (void)
1822 {
1823 tree result;
1824
1825 if (current_class_ptr)
1826 {
1827 result = current_class_ptr;
1828 }
1829 else if (current_function_decl
1830 && DECL_STATIC_FUNCTION_P (current_function_decl))
1831 {
1832 error ("`this' is unavailable for static member functions");
1833 result = error_mark_node;
1834 }
1835 else
1836 {
1837 if (current_function_decl)
1838 error ("invalid use of `this' in non-member function");
1839 else
1840 error ("invalid use of `this' at top level");
1841 result = error_mark_node;
1842 }
1843
1844 return result;
1845 }
1846
1847 /* Finish a pseudo-destructor expression. If SCOPE is NULL, the
1848 expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
1849 the TYPE for the type given. If SCOPE is non-NULL, the expression
1850 was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
1851
1852 tree
1853 finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
1854 {
1855 if (destructor == error_mark_node)
1856 return error_mark_node;
1857
1858 gcc_assert (TYPE_P (destructor));
1859
1860 if (!processing_template_decl)
1861 {
1862 if (scope == error_mark_node)
1863 {
1864 error ("invalid qualifying scope in pseudo-destructor name");
1865 return error_mark_node;
1866 }
1867
1868 /* [expr.pseudo] says both:
1869
1870 The type designated by the pseudo-destructor-name shall be
1871 the same as the object type.
1872
1873 and:
1874
1875 The cv-unqualified versions of the object type and of the
1876 type designated by the pseudo-destructor-name shall be the
1877 same type.
1878
1879 We implement the more generous second sentence, since that is
1880 what most other compilers do. */
1881 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
1882 destructor))
1883 {
1884 error ("`%E' is not of type `%T'", object, destructor);
1885 return error_mark_node;
1886 }
1887 }
1888
1889 return build3 (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
1890 }
1891
1892 /* Finish an expression of the form CODE EXPR. */
1893
1894 tree
1895 finish_unary_op_expr (enum tree_code code, tree expr)
1896 {
1897 tree result = build_x_unary_op (code, expr);
1898 /* Inside a template, build_x_unary_op does not fold the
1899 expression. So check whether the result is folded before
1900 setting TREE_NEGATED_INT. */
1901 if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
1902 && TREE_CODE (result) == INTEGER_CST
1903 && !TYPE_UNSIGNED (TREE_TYPE (result))
1904 && INT_CST_LT (result, integer_zero_node))
1905 TREE_NEGATED_INT (result) = 1;
1906 overflow_warning (result);
1907 return result;
1908 }
1909
1910 /* Finish a compound-literal expression. TYPE is the type to which
1911 the INITIALIZER_LIST is being cast. */
1912
1913 tree
1914 finish_compound_literal (tree type, tree initializer_list)
1915 {
1916 tree compound_literal;
1917
1918 /* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
1919 compound_literal = build_constructor (NULL_TREE, initializer_list);
1920 /* Mark it as a compound-literal. */
1921 TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
1922 if (processing_template_decl)
1923 TREE_TYPE (compound_literal) = type;
1924 else
1925 {
1926 /* Check the initialization. */
1927 compound_literal = digest_init (type, compound_literal, NULL);
1928 /* If the TYPE was an array type with an unknown bound, then we can
1929 figure out the dimension now. For example, something like:
1930
1931 `(int []) { 2, 3 }'
1932
1933 implies that the array has two elements. */
1934 if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
1935 complete_array_type (type, compound_literal, 1);
1936 }
1937
1938 return compound_literal;
1939 }
1940
1941 /* Return the declaration for the function-name variable indicated by
1942 ID. */
1943
1944 tree
1945 finish_fname (tree id)
1946 {
1947 tree decl;
1948
1949 decl = fname_decl (C_RID_CODE (id), id);
1950 if (processing_template_decl)
1951 decl = DECL_NAME (decl);
1952 return decl;
1953 }
1954
1955 /* Finish a translation unit. */
1956
1957 void
1958 finish_translation_unit (void)
1959 {
1960 /* In case there were missing closebraces,
1961 get us back to the global binding level. */
1962 pop_everything ();
1963 while (current_namespace != global_namespace)
1964 pop_namespace ();
1965
1966 /* Do file scope __FUNCTION__ et al. */
1967 finish_fname_decls ();
1968 }
1969
1970 /* Finish a template type parameter, specified as AGGR IDENTIFIER.
1971 Returns the parameter. */
1972
1973 tree
1974 finish_template_type_parm (tree aggr, tree identifier)
1975 {
1976 if (aggr != class_type_node)
1977 {
1978 pedwarn ("template type parameters must use the keyword `class' or `typename'");
1979 aggr = class_type_node;
1980 }
1981
1982 return build_tree_list (aggr, identifier);
1983 }
1984
1985 /* Finish a template template parameter, specified as AGGR IDENTIFIER.
1986 Returns the parameter. */
1987
1988 tree
1989 finish_template_template_parm (tree aggr, tree identifier)
1990 {
1991 tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
1992 tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
1993 DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
1994 DECL_TEMPLATE_RESULT (tmpl) = decl;
1995 DECL_ARTIFICIAL (decl) = 1;
1996 end_template_decl ();
1997
1998 gcc_assert (DECL_TEMPLATE_PARMS (tmpl));
1999
2000 return finish_template_type_parm (aggr, tmpl);
2001 }
2002
2003 /* ARGUMENT is the default-argument value for a template template
2004 parameter. If ARGUMENT is invalid, issue error messages and return
2005 the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
2006
2007 tree
2008 check_template_template_default_arg (tree argument)
2009 {
2010 if (TREE_CODE (argument) != TEMPLATE_DECL
2011 && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
2012 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
2013 {
2014 if (TREE_CODE (argument) == TYPE_DECL)
2015 {
2016 tree t = TREE_TYPE (argument);
2017
2018 /* Try to emit a slightly smarter error message if we detect
2019 that the user is using a template instantiation. */
2020 if (CLASSTYPE_TEMPLATE_INFO (t)
2021 && CLASSTYPE_TEMPLATE_INSTANTIATION (t))
2022 error ("invalid use of type `%T' as a default value for a "
2023 "template template-parameter", t);
2024 else
2025 error ("invalid use of `%D' as a default value for a template "
2026 "template-parameter", argument);
2027 }
2028 else
2029 error ("invalid default argument for a template template parameter");
2030 return error_mark_node;
2031 }
2032
2033 return argument;
2034 }
2035
2036 /* Begin a class definition, as indicated by T. */
2037
2038 tree
2039 begin_class_definition (tree t)
2040 {
2041 if (t == error_mark_node)
2042 return error_mark_node;
2043
2044 if (processing_template_parmlist)
2045 {
2046 error ("definition of `%#T' inside template parameter list", t);
2047 return error_mark_node;
2048 }
2049 /* A non-implicit typename comes from code like:
2050
2051 template <typename T> struct A {
2052 template <typename U> struct A<T>::B ...
2053
2054 This is erroneous. */
2055 else if (TREE_CODE (t) == TYPENAME_TYPE)
2056 {
2057 error ("invalid definition of qualified type `%T'", t);
2058 t = error_mark_node;
2059 }
2060
2061 if (t == error_mark_node || ! IS_AGGR_TYPE (t))
2062 {
2063 t = make_aggr_type (RECORD_TYPE);
2064 pushtag (make_anon_name (), t, 0);
2065 }
2066
2067 /* If this type was already complete, and we see another definition,
2068 that's an error. */
2069 if (COMPLETE_TYPE_P (t))
2070 {
2071 error ("redefinition of `%#T'", t);
2072 cp_error_at ("previous definition of `%#T'", t);
2073 return error_mark_node;
2074 }
2075
2076 /* Update the location of the decl. */
2077 DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
2078
2079 if (TYPE_BEING_DEFINED (t))
2080 {
2081 t = make_aggr_type (TREE_CODE (t));
2082 pushtag (TYPE_IDENTIFIER (t), t, 0);
2083 }
2084 maybe_process_partial_specialization (t);
2085 pushclass (t);
2086 TYPE_BEING_DEFINED (t) = 1;
2087 if (flag_pack_struct)
2088 {
2089 tree v;
2090 TYPE_PACKED (t) = 1;
2091 /* Even though the type is being defined for the first time
2092 here, there might have been a forward declaration, so there
2093 might be cv-qualified variants of T. */
2094 for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
2095 TYPE_PACKED (v) = 1;
2096 }
2097 /* Reset the interface data, at the earliest possible
2098 moment, as it might have been set via a class foo;
2099 before. */
2100 if (! TYPE_ANONYMOUS_P (t))
2101 {
2102 CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
2103 SET_CLASSTYPE_INTERFACE_UNKNOWN_X
2104 (t, interface_unknown);
2105 }
2106 reset_specialization();
2107
2108 /* Make a declaration for this class in its own scope. */
2109 build_self_reference ();
2110
2111 return t;
2112 }
2113
2114 /* Finish the member declaration given by DECL. */
2115
2116 void
2117 finish_member_declaration (tree decl)
2118 {
2119 if (decl == error_mark_node || decl == NULL_TREE)
2120 return;
2121
2122 if (decl == void_type_node)
2123 /* The COMPONENT was a friend, not a member, and so there's
2124 nothing for us to do. */
2125 return;
2126
2127 /* We should see only one DECL at a time. */
2128 gcc_assert (TREE_CHAIN (decl) == NULL_TREE);
2129
2130 /* Set up access control for DECL. */
2131 TREE_PRIVATE (decl)
2132 = (current_access_specifier == access_private_node);
2133 TREE_PROTECTED (decl)
2134 = (current_access_specifier == access_protected_node);
2135 if (TREE_CODE (decl) == TEMPLATE_DECL)
2136 {
2137 TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
2138 TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
2139 }
2140
2141 /* Mark the DECL as a member of the current class. */
2142 DECL_CONTEXT (decl) = current_class_type;
2143
2144 /* [dcl.link]
2145
2146 A C language linkage is ignored for the names of class members
2147 and the member function type of class member functions. */
2148 if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
2149 SET_DECL_LANGUAGE (decl, lang_cplusplus);
2150
2151 /* Put functions on the TYPE_METHODS list and everything else on the
2152 TYPE_FIELDS list. Note that these are built up in reverse order.
2153 We reverse them (to obtain declaration order) in finish_struct. */
2154 if (TREE_CODE (decl) == FUNCTION_DECL
2155 || DECL_FUNCTION_TEMPLATE_P (decl))
2156 {
2157 /* We also need to add this function to the
2158 CLASSTYPE_METHOD_VEC. */
2159 add_method (current_class_type, decl);
2160
2161 TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
2162 TYPE_METHODS (current_class_type) = decl;
2163
2164 maybe_add_class_template_decl_list (current_class_type, decl,
2165 /*friend_p=*/0);
2166 }
2167 /* Enter the DECL into the scope of the class. */
2168 else if ((TREE_CODE (decl) == USING_DECL && TREE_TYPE (decl))
2169 || pushdecl_class_level (decl))
2170 {
2171 /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
2172 go at the beginning. The reason is that lookup_field_1
2173 searches the list in order, and we want a field name to
2174 override a type name so that the "struct stat hack" will
2175 work. In particular:
2176
2177 struct S { enum E { }; int E } s;
2178 s.E = 3;
2179
2180 is valid. In addition, the FIELD_DECLs must be maintained in
2181 declaration order so that class layout works as expected.
2182 However, we don't need that order until class layout, so we
2183 save a little time by putting FIELD_DECLs on in reverse order
2184 here, and then reversing them in finish_struct_1. (We could
2185 also keep a pointer to the correct insertion points in the
2186 list.) */
2187
2188 if (TREE_CODE (decl) == TYPE_DECL)
2189 TYPE_FIELDS (current_class_type)
2190 = chainon (TYPE_FIELDS (current_class_type), decl);
2191 else
2192 {
2193 TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
2194 TYPE_FIELDS (current_class_type) = decl;
2195 }
2196
2197 maybe_add_class_template_decl_list (current_class_type, decl,
2198 /*friend_p=*/0);
2199 }
2200 }
2201
2202 /* Finish processing a complete template declaration. The PARMS are
2203 the template parameters. */
2204
2205 void
2206 finish_template_decl (tree parms)
2207 {
2208 if (parms)
2209 end_template_decl ();
2210 else
2211 end_specialization ();
2212 }
2213
2214 /* Finish processing a template-id (which names a type) of the form
2215 NAME < ARGS >. Return the TYPE_DECL for the type named by the
2216 template-id. If ENTERING_SCOPE is nonzero we are about to enter
2217 the scope of template-id indicated. */
2218
2219 tree
2220 finish_template_type (tree name, tree args, int entering_scope)
2221 {
2222 tree decl;
2223
2224 decl = lookup_template_class (name, args,
2225 NULL_TREE, NULL_TREE, entering_scope,
2226 tf_error | tf_warning | tf_user);
2227 if (decl != error_mark_node)
2228 decl = TYPE_STUB_DECL (decl);
2229
2230 return decl;
2231 }
2232
2233 /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
2234 Return a TREE_LIST containing the ACCESS_SPECIFIER and the
2235 BASE_CLASS, or NULL_TREE if an error occurred. The
2236 ACCESS_SPECIFIER is one of
2237 access_{default,public,protected_private}_node. For a virtual base
2238 we set TREE_TYPE. */
2239
2240 tree
2241 finish_base_specifier (tree base, tree access, bool virtual_p)
2242 {
2243 tree result;
2244
2245 if (base == error_mark_node)
2246 {
2247 error ("invalid base-class specification");
2248 result = NULL_TREE;
2249 }
2250 else if (! is_aggr_type (base, 1))
2251 result = NULL_TREE;
2252 else
2253 {
2254 if (cp_type_quals (base) != 0)
2255 {
2256 error ("base class `%T' has cv qualifiers", base);
2257 base = TYPE_MAIN_VARIANT (base);
2258 }
2259 result = build_tree_list (access, base);
2260 if (virtual_p)
2261 TREE_TYPE (result) = integer_type_node;
2262 }
2263
2264 return result;
2265 }
2266
2267 /* Called when multiple declarators are processed. If that is not
2268 permitted in this context, an error is issued. */
2269
2270 void
2271 check_multiple_declarators (void)
2272 {
2273 /* [temp]
2274
2275 In a template-declaration, explicit specialization, or explicit
2276 instantiation the init-declarator-list in the declaration shall
2277 contain at most one declarator.
2278
2279 We don't just use PROCESSING_TEMPLATE_DECL for the first
2280 condition since that would disallow the perfectly valid code,
2281 like `template <class T> struct S { int i, j; };'. */
2282 if (at_function_scope_p ())
2283 /* It's OK to write `template <class T> void f() { int i, j;}'. */
2284 return;
2285
2286 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
2287 || processing_explicit_instantiation
2288 || processing_specialization)
2289 error ("multiple declarators in template declaration");
2290 }
2291
2292 /* Issue a diagnostic that NAME cannot be found in SCOPE. DECL is
2293 what we found when we tried to do the lookup. */
2294
2295 void
2296 qualified_name_lookup_error (tree scope, tree name, tree decl)
2297 {
2298 if (TYPE_P (scope))
2299 {
2300 if (!COMPLETE_TYPE_P (scope))
2301 error ("incomplete type `%T' used in nested name specifier", scope);
2302 else if (TREE_CODE (decl) == TREE_LIST)
2303 {
2304 error ("reference to `%T::%D' is ambiguous", scope, name);
2305 print_candidates (decl);
2306 }
2307 else
2308 error ("`%D' is not a member of `%T'", name, scope);
2309 }
2310 else if (scope != global_namespace)
2311 error ("`%D' is not a member of `%D'", name, scope);
2312 else
2313 error ("`::%D' has not been declared", name);
2314 }
2315
2316 /* ID_EXPRESSION is a representation of parsed, but unprocessed,
2317 id-expression. (See cp_parser_id_expression for details.) SCOPE,
2318 if non-NULL, is the type or namespace used to explicitly qualify
2319 ID_EXPRESSION. DECL is the entity to which that name has been
2320 resolved.
2321
2322 *CONSTANT_EXPRESSION_P is true if we are presently parsing a
2323 constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
2324 be set to true if this expression isn't permitted in a
2325 constant-expression, but it is otherwise not set by this function.
2326 *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
2327 constant-expression, but a non-constant expression is also
2328 permissible.
2329
2330 If an error occurs, and it is the kind of error that might cause
2331 the parser to abort a tentative parse, *ERROR_MSG is filled in. It
2332 is the caller's responsibility to issue the message. *ERROR_MSG
2333 will be a string with static storage duration, so the caller need
2334 not "free" it.
2335
2336 Return an expression for the entity, after issuing appropriate
2337 diagnostics. This function is also responsible for transforming a
2338 reference to a non-static member into a COMPONENT_REF that makes
2339 the use of "this" explicit.
2340
2341 Upon return, *IDK will be filled in appropriately. */
2342
2343 tree
2344 finish_id_expression (tree id_expression,
2345 tree decl,
2346 tree scope,
2347 cp_id_kind *idk,
2348 tree *qualifying_class,
2349 bool integral_constant_expression_p,
2350 bool allow_non_integral_constant_expression_p,
2351 bool *non_integral_constant_expression_p,
2352 const char **error_msg)
2353 {
2354 /* Initialize the output parameters. */
2355 *idk = CP_ID_KIND_NONE;
2356 *error_msg = NULL;
2357
2358 if (id_expression == error_mark_node)
2359 return error_mark_node;
2360 /* If we have a template-id, then no further lookup is
2361 required. If the template-id was for a template-class, we
2362 will sometimes have a TYPE_DECL at this point. */
2363 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2364 || TREE_CODE (decl) == TYPE_DECL)
2365 ;
2366 /* Look up the name. */
2367 else
2368 {
2369 if (decl == error_mark_node)
2370 {
2371 /* Name lookup failed. */
2372 if (scope
2373 && (!TYPE_P (scope)
2374 || (!dependent_type_p (scope)
2375 && !(TREE_CODE (id_expression) == IDENTIFIER_NODE
2376 && IDENTIFIER_TYPENAME_P (id_expression)
2377 && dependent_type_p (TREE_TYPE (id_expression))))))
2378 {
2379 /* If the qualifying type is non-dependent (and the name
2380 does not name a conversion operator to a dependent
2381 type), issue an error. */
2382 qualified_name_lookup_error (scope, id_expression, decl);
2383 return error_mark_node;
2384 }
2385 else if (!scope)
2386 {
2387 /* It may be resolved via Koenig lookup. */
2388 *idk = CP_ID_KIND_UNQUALIFIED;
2389 return id_expression;
2390 }
2391 else
2392 decl = id_expression;
2393 }
2394 /* If DECL is a variable that would be out of scope under
2395 ANSI/ISO rules, but in scope in the ARM, name lookup
2396 will succeed. Issue a diagnostic here. */
2397 else
2398 decl = check_for_out_of_scope_variable (decl);
2399
2400 /* Remember that the name was used in the definition of
2401 the current class so that we can check later to see if
2402 the meaning would have been different after the class
2403 was entirely defined. */
2404 if (!scope && decl != error_mark_node)
2405 maybe_note_name_used_in_class (id_expression, decl);
2406 }
2407
2408 /* If we didn't find anything, or what we found was a type,
2409 then this wasn't really an id-expression. */
2410 if (TREE_CODE (decl) == TEMPLATE_DECL
2411 && !DECL_FUNCTION_TEMPLATE_P (decl))
2412 {
2413 *error_msg = "missing template arguments";
2414 return error_mark_node;
2415 }
2416 else if (TREE_CODE (decl) == TYPE_DECL
2417 || TREE_CODE (decl) == NAMESPACE_DECL)
2418 {
2419 *error_msg = "expected primary-expression";
2420 return error_mark_node;
2421 }
2422
2423 /* If the name resolved to a template parameter, there is no
2424 need to look it up again later. */
2425 if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
2426 || TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2427 {
2428 *idk = CP_ID_KIND_NONE;
2429 if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2430 decl = TEMPLATE_PARM_DECL (decl);
2431 if (integral_constant_expression_p
2432 && !dependent_type_p (TREE_TYPE (decl))
2433 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl)))
2434 {
2435 if (!allow_non_integral_constant_expression_p)
2436 error ("template parameter `%D' of type `%T' is not allowed in "
2437 "an integral constant expression because it is not of "
2438 "integral or enumeration type", decl, TREE_TYPE (decl));
2439 *non_integral_constant_expression_p = true;
2440 }
2441 return DECL_INITIAL (decl);
2442 }
2443 /* Similarly, we resolve enumeration constants to their
2444 underlying values. */
2445 else if (TREE_CODE (decl) == CONST_DECL)
2446 {
2447 *idk = CP_ID_KIND_NONE;
2448 if (!processing_template_decl)
2449 return DECL_INITIAL (decl);
2450 return decl;
2451 }
2452 else
2453 {
2454 bool dependent_p;
2455
2456 /* If the declaration was explicitly qualified indicate
2457 that. The semantics of `A::f(3)' are different than
2458 `f(3)' if `f' is virtual. */
2459 *idk = (scope
2460 ? CP_ID_KIND_QUALIFIED
2461 : (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2462 ? CP_ID_KIND_TEMPLATE_ID
2463 : CP_ID_KIND_UNQUALIFIED));
2464
2465
2466 /* [temp.dep.expr]
2467
2468 An id-expression is type-dependent if it contains an
2469 identifier that was declared with a dependent type.
2470
2471 The standard is not very specific about an id-expression that
2472 names a set of overloaded functions. What if some of them
2473 have dependent types and some of them do not? Presumably,
2474 such a name should be treated as a dependent name. */
2475 /* Assume the name is not dependent. */
2476 dependent_p = false;
2477 if (!processing_template_decl)
2478 /* No names are dependent outside a template. */
2479 ;
2480 /* A template-id where the name of the template was not resolved
2481 is definitely dependent. */
2482 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2483 && (TREE_CODE (TREE_OPERAND (decl, 0))
2484 == IDENTIFIER_NODE))
2485 dependent_p = true;
2486 /* For anything except an overloaded function, just check its
2487 type. */
2488 else if (!is_overloaded_fn (decl))
2489 dependent_p
2490 = dependent_type_p (TREE_TYPE (decl));
2491 /* For a set of overloaded functions, check each of the
2492 functions. */
2493 else
2494 {
2495 tree fns = decl;
2496
2497 if (BASELINK_P (fns))
2498 fns = BASELINK_FUNCTIONS (fns);
2499
2500 /* For a template-id, check to see if the template
2501 arguments are dependent. */
2502 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
2503 {
2504 tree args = TREE_OPERAND (fns, 1);
2505 dependent_p = any_dependent_template_arguments_p (args);
2506 /* The functions are those referred to by the
2507 template-id. */
2508 fns = TREE_OPERAND (fns, 0);
2509 }
2510
2511 /* If there are no dependent template arguments, go through
2512 the overloaded functions. */
2513 while (fns && !dependent_p)
2514 {
2515 tree fn = OVL_CURRENT (fns);
2516
2517 /* Member functions of dependent classes are
2518 dependent. */
2519 if (TREE_CODE (fn) == FUNCTION_DECL
2520 && type_dependent_expression_p (fn))
2521 dependent_p = true;
2522 else if (TREE_CODE (fn) == TEMPLATE_DECL
2523 && dependent_template_p (fn))
2524 dependent_p = true;
2525
2526 fns = OVL_NEXT (fns);
2527 }
2528 }
2529
2530 /* If the name was dependent on a template parameter, we will
2531 resolve the name at instantiation time. */
2532 if (dependent_p)
2533 {
2534 /* Create a SCOPE_REF for qualified names, if the scope is
2535 dependent. */
2536 if (scope)
2537 {
2538 if (TYPE_P (scope))
2539 *qualifying_class = scope;
2540 /* Since this name was dependent, the expression isn't
2541 constant -- yet. No error is issued because it might
2542 be constant when things are instantiated. */
2543 if (integral_constant_expression_p)
2544 *non_integral_constant_expression_p = true;
2545 if (TYPE_P (scope) && dependent_type_p (scope))
2546 return build_nt (SCOPE_REF, scope, id_expression);
2547 else if (TYPE_P (scope) && DECL_P (decl))
2548 return build2 (SCOPE_REF, TREE_TYPE (decl), scope,
2549 id_expression);
2550 else
2551 return decl;
2552 }
2553 /* A TEMPLATE_ID already contains all the information we
2554 need. */
2555 if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
2556 return id_expression;
2557 /* Since this name was dependent, the expression isn't
2558 constant -- yet. No error is issued because it might be
2559 constant when things are instantiated. */
2560 if (integral_constant_expression_p)
2561 *non_integral_constant_expression_p = true;
2562 *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
2563 /* If we found a variable, then name lookup during the
2564 instantiation will always resolve to the same VAR_DECL
2565 (or an instantiation thereof). */
2566 if (TREE_CODE (decl) == VAR_DECL
2567 || TREE_CODE (decl) == PARM_DECL)
2568 return decl;
2569 return id_expression;
2570 }
2571
2572 /* Only certain kinds of names are allowed in constant
2573 expression. Enumerators and template parameters
2574 have already been handled above. */
2575 if (integral_constant_expression_p
2576 && !DECL_INTEGRAL_CONSTANT_VAR_P (decl))
2577 {
2578 if (!allow_non_integral_constant_expression_p)
2579 {
2580 error ("`%D' cannot appear in a constant-expression", decl);
2581 return error_mark_node;
2582 }
2583 *non_integral_constant_expression_p = true;
2584 }
2585
2586 if (TREE_CODE (decl) == NAMESPACE_DECL)
2587 {
2588 error ("use of namespace `%D' as expression", decl);
2589 return error_mark_node;
2590 }
2591 else if (DECL_CLASS_TEMPLATE_P (decl))
2592 {
2593 error ("use of class template `%T' as expression", decl);
2594 return error_mark_node;
2595 }
2596 else if (TREE_CODE (decl) == TREE_LIST)
2597 {
2598 /* Ambiguous reference to base members. */
2599 error ("request for member `%D' is ambiguous in "
2600 "multiple inheritance lattice", id_expression);
2601 print_candidates (decl);
2602 return error_mark_node;
2603 }
2604
2605 /* Mark variable-like entities as used. Functions are similarly
2606 marked either below or after overload resolution. */
2607 if (TREE_CODE (decl) == VAR_DECL
2608 || TREE_CODE (decl) == PARM_DECL
2609 || TREE_CODE (decl) == RESULT_DECL)
2610 mark_used (decl);
2611
2612 if (scope)
2613 {
2614 decl = (adjust_result_of_qualified_name_lookup
2615 (decl, scope, current_class_type));
2616
2617 if (TREE_CODE (decl) == FUNCTION_DECL)
2618 mark_used (decl);
2619
2620 if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
2621 *qualifying_class = scope;
2622 else if (!processing_template_decl)
2623 decl = convert_from_reference (decl);
2624 else if (TYPE_P (scope))
2625 decl = build2 (SCOPE_REF, TREE_TYPE (decl), scope, decl);
2626 }
2627 else if (TREE_CODE (decl) == FIELD_DECL)
2628 decl = finish_non_static_data_member (decl, current_class_ref,
2629 /*qualifying_scope=*/NULL_TREE);
2630 else if (is_overloaded_fn (decl))
2631 {
2632 tree first_fn = OVL_CURRENT (decl);
2633
2634 if (TREE_CODE (first_fn) == TEMPLATE_DECL)
2635 first_fn = DECL_TEMPLATE_RESULT (first_fn);
2636
2637 if (!really_overloaded_fn (decl))
2638 mark_used (first_fn);
2639
2640 if (TREE_CODE (first_fn) == FUNCTION_DECL
2641 && DECL_FUNCTION_MEMBER_P (first_fn))
2642 {
2643 /* A set of member functions. */
2644 decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
2645 return finish_class_member_access_expr (decl, id_expression);
2646 }
2647 }
2648 else
2649 {
2650 if (TREE_CODE (decl) == VAR_DECL
2651 || TREE_CODE (decl) == PARM_DECL
2652 || TREE_CODE (decl) == RESULT_DECL)
2653 {
2654 tree context = decl_function_context (decl);
2655
2656 if (context != NULL_TREE && context != current_function_decl
2657 && ! TREE_STATIC (decl))
2658 {
2659 error ("use of %s from containing function",
2660 (TREE_CODE (decl) == VAR_DECL
2661 ? "`auto' variable" : "parameter"));
2662 cp_error_at (" `%#D' declared here", decl);
2663 return error_mark_node;
2664 }
2665 }
2666
2667 if (DECL_P (decl) && DECL_NONLOCAL (decl)
2668 && DECL_CLASS_SCOPE_P (decl)
2669 && DECL_CONTEXT (decl) != current_class_type)
2670 {
2671 tree path;
2672
2673 path = currently_open_derived_class (DECL_CONTEXT (decl));
2674 perform_or_defer_access_check (TYPE_BINFO (path), decl);
2675 }
2676
2677 if (! processing_template_decl)
2678 decl = convert_from_reference (decl);
2679 }
2680
2681 /* Resolve references to variables of anonymous unions
2682 into COMPONENT_REFs. */
2683 if (TREE_CODE (decl) == ALIAS_DECL)
2684 decl = unshare_expr (DECL_INITIAL (decl));
2685 }
2686
2687 if (TREE_DEPRECATED (decl))
2688 warn_deprecated_use (decl);
2689
2690 return decl;
2691 }
2692
2693 /* Implement the __typeof keyword: Return the type of EXPR, suitable for
2694 use as a type-specifier. */
2695
2696 tree
2697 finish_typeof (tree expr)
2698 {
2699 tree type;
2700
2701 if (type_dependent_expression_p (expr))
2702 {
2703 type = make_aggr_type (TYPEOF_TYPE);
2704 TYPEOF_TYPE_EXPR (type) = expr;
2705
2706 return type;
2707 }
2708
2709 type = TREE_TYPE (expr);
2710
2711 if (!type || type == unknown_type_node)
2712 {
2713 error ("type of `%E' is unknown", expr);
2714 return error_mark_node;
2715 }
2716
2717 return type;
2718 }
2719
2720 /* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
2721 with equivalent CALL_EXPRs. */
2722
2723 static tree
2724 simplify_aggr_init_exprs_r (tree* tp,
2725 int* walk_subtrees,
2726 void* data ATTRIBUTE_UNUSED)
2727 {
2728 /* We don't need to walk into types; there's nothing in a type that
2729 needs simplification. (And, furthermore, there are places we
2730 actively don't want to go. For example, we don't want to wander
2731 into the default arguments for a FUNCTION_DECL that appears in a
2732 CALL_EXPR.) */
2733 if (TYPE_P (*tp))
2734 {
2735 *walk_subtrees = 0;
2736 return NULL_TREE;
2737 }
2738 /* Only AGGR_INIT_EXPRs are interesting. */
2739 else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
2740 return NULL_TREE;
2741
2742 simplify_aggr_init_expr (tp);
2743
2744 /* Keep iterating. */
2745 return NULL_TREE;
2746 }
2747
2748 /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
2749 function is broken out from the above for the benefit of the tree-ssa
2750 project. */
2751
2752 void
2753 simplify_aggr_init_expr (tree *tp)
2754 {
2755 tree aggr_init_expr = *tp;
2756
2757 /* Form an appropriate CALL_EXPR. */
2758 tree fn = TREE_OPERAND (aggr_init_expr, 0);
2759 tree args = TREE_OPERAND (aggr_init_expr, 1);
2760 tree slot = TREE_OPERAND (aggr_init_expr, 2);
2761 tree type = TREE_TYPE (slot);
2762
2763 tree call_expr;
2764 enum style_t { ctor, arg, pcc } style;
2765
2766 if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
2767 style = ctor;
2768 #ifdef PCC_STATIC_STRUCT_RETURN
2769 else if (1)
2770 style = pcc;
2771 #endif
2772 else
2773 {
2774 gcc_assert (TREE_ADDRESSABLE (type));
2775 style = arg;
2776 }
2777
2778 if (style == ctor || style == arg)
2779 {
2780 /* Pass the address of the slot. If this is a constructor, we
2781 replace the first argument; otherwise, we tack on a new one. */
2782 tree addr;
2783
2784 if (style == ctor)
2785 args = TREE_CHAIN (args);
2786
2787 cxx_mark_addressable (slot);
2788 addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
2789 if (style == arg)
2790 {
2791 /* The return type might have different cv-quals from the slot. */
2792 tree fntype = TREE_TYPE (TREE_TYPE (fn));
2793
2794 gcc_assert (TREE_CODE (fntype) == FUNCTION_TYPE
2795 || TREE_CODE (fntype) == METHOD_TYPE);
2796 addr = convert (build_pointer_type (TREE_TYPE (fntype)), addr);
2797 }
2798
2799 args = tree_cons (NULL_TREE, addr, args);
2800 }
2801
2802 call_expr = build3 (CALL_EXPR,
2803 TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
2804 fn, args, NULL_TREE);
2805
2806 if (style == arg)
2807 /* Tell the backend that we've added our return slot to the argument
2808 list. */
2809 CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr) = 1;
2810 else if (style == pcc)
2811 {
2812 /* If we're using the non-reentrant PCC calling convention, then we
2813 need to copy the returned value out of the static buffer into the
2814 SLOT. */
2815 push_deferring_access_checks (dk_no_check);
2816 call_expr = build_aggr_init (slot, call_expr,
2817 DIRECT_BIND | LOOKUP_ONLYCONVERTING);
2818 pop_deferring_access_checks ();
2819 }
2820
2821 *tp = call_expr;
2822 }
2823
2824 /* Emit all thunks to FN that should be emitted when FN is emitted. */
2825
2826 static void
2827 emit_associated_thunks (tree fn)
2828 {
2829 /* When we use vcall offsets, we emit thunks with the virtual
2830 functions to which they thunk. The whole point of vcall offsets
2831 is so that you can know statically the entire set of thunks that
2832 will ever be needed for a given virtual function, thereby
2833 enabling you to output all the thunks with the function itself. */
2834 if (DECL_VIRTUAL_P (fn))
2835 {
2836 tree thunk;
2837
2838 for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
2839 {
2840 if (!THUNK_ALIAS (thunk))
2841 {
2842 use_thunk (thunk, /*emit_p=*/1);
2843 if (DECL_RESULT_THUNK_P (thunk))
2844 {
2845 tree probe;
2846
2847 for (probe = DECL_THUNKS (thunk);
2848 probe; probe = TREE_CHAIN (probe))
2849 use_thunk (probe, /*emit_p=*/1);
2850 }
2851 }
2852 else
2853 gcc_assert (!DECL_THUNKS (thunk));
2854 }
2855 }
2856 }
2857
2858 /* Generate RTL for FN. */
2859
2860 void
2861 expand_body (tree fn)
2862 {
2863 tree saved_function;
2864
2865 /* Compute the appropriate object-file linkage for inline
2866 functions. */
2867 if (DECL_DECLARED_INLINE_P (fn))
2868 import_export_decl (fn);
2869
2870 /* If FN is external, then there's no point in generating RTL for
2871 it. This situation can arise with an inline function under
2872 `-fexternal-templates'; we instantiate the function, even though
2873 we're not planning on emitting it, in case we get a chance to
2874 inline it. */
2875 if (DECL_EXTERNAL (fn))
2876 return;
2877
2878 /* ??? When is this needed? */
2879 saved_function = current_function_decl;
2880
2881 /* Emit any thunks that should be emitted at the same time as FN. */
2882 emit_associated_thunks (fn);
2883
2884 /* This function is only called from cgraph, or recursively from
2885 emit_associated_thunks. In neither case should we be currently
2886 generating trees for a function. */
2887 gcc_assert (function_depth == 0);
2888
2889 tree_rest_of_compilation (fn, 0);
2890
2891 current_function_decl = saved_function;
2892
2893 extract_interface_info ();
2894
2895 if (DECL_CLONED_FUNCTION_P (fn))
2896 {
2897 /* If this is a clone, go through the other clones now and mark
2898 their parameters used. We have to do that here, as we don't
2899 know whether any particular clone will be expanded, and
2900 therefore cannot pick one arbitrarily. */
2901 tree probe;
2902
2903 for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
2904 probe && DECL_CLONED_FUNCTION_P (probe);
2905 probe = TREE_CHAIN (probe))
2906 {
2907 tree parms;
2908
2909 for (parms = DECL_ARGUMENTS (probe);
2910 parms; parms = TREE_CHAIN (parms))
2911 TREE_USED (parms) = 1;
2912 }
2913 }
2914 }
2915
2916 /* Generate RTL for FN. */
2917
2918 void
2919 expand_or_defer_fn (tree fn)
2920 {
2921 /* When the parser calls us after finishing the body of a template
2922 function, we don't really want to expand the body. */
2923 if (processing_template_decl)
2924 {
2925 /* Normally, collection only occurs in rest_of_compilation. So,
2926 if we don't collect here, we never collect junk generated
2927 during the processing of templates until we hit a
2928 non-template function. */
2929 ggc_collect ();
2930 return;
2931 }
2932
2933 /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
2934 walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
2935 simplify_aggr_init_exprs_r,
2936 NULL);
2937
2938 /* If this is a constructor or destructor body, we have to clone
2939 it. */
2940 if (maybe_clone_body (fn))
2941 {
2942 /* We don't want to process FN again, so pretend we've written
2943 it out, even though we haven't. */
2944 TREE_ASM_WRITTEN (fn) = 1;
2945 return;
2946 }
2947
2948 /* If this function is marked with the constructor attribute, add it
2949 to the list of functions to be called along with constructors
2950 from static duration objects. */
2951 if (DECL_STATIC_CONSTRUCTOR (fn))
2952 static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
2953
2954 /* If this function is marked with the destructor attribute, add it
2955 to the list of functions to be called along with destructors from
2956 static duration objects. */
2957 if (DECL_STATIC_DESTRUCTOR (fn))
2958 static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
2959
2960 /* We make a decision about linkage for these functions at the end
2961 of the compilation. Until that point, we do not want the back
2962 end to output them -- but we do want it to see the bodies of
2963 these functions so that it can inline them as appropriate. */
2964 if (DECL_DECLARED_INLINE_P (fn) || DECL_IMPLICIT_INSTANTIATION (fn))
2965 {
2966 if (!at_eof)
2967 {
2968 DECL_EXTERNAL (fn) = 1;
2969 DECL_NOT_REALLY_EXTERN (fn) = 1;
2970 note_vague_linkage_fn (fn);
2971 }
2972 else
2973 import_export_decl (fn);
2974
2975 /* If the user wants us to keep all inline functions, then mark
2976 this function as needed so that finish_file will make sure to
2977 output it later. */
2978 if (flag_keep_inline_functions && DECL_DECLARED_INLINE_P (fn))
2979 mark_needed (fn);
2980 }
2981
2982 /* There's no reason to do any of the work here if we're only doing
2983 semantic analysis; this code just generates RTL. */
2984 if (flag_syntax_only)
2985 return;
2986
2987 function_depth++;
2988
2989 /* Expand or defer, at the whim of the compilation unit manager. */
2990 cgraph_finalize_function (fn, function_depth > 1);
2991
2992 function_depth--;
2993 }
2994
2995 struct nrv_data
2996 {
2997 tree var;
2998 tree result;
2999 htab_t visited;
3000 };
3001
3002 /* Helper function for walk_tree, used by finalize_nrv below. */
3003
3004 static tree
3005 finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
3006 {
3007 struct nrv_data *dp = (struct nrv_data *)data;
3008 void **slot;
3009
3010 /* No need to walk into types. There wouldn't be any need to walk into
3011 non-statements, except that we have to consider STMT_EXPRs. */
3012 if (TYPE_P (*tp))
3013 *walk_subtrees = 0;
3014 /* Change all returns to just refer to the RESULT_DECL; this is a nop,
3015 but differs from using NULL_TREE in that it indicates that we care
3016 about the value of the RESULT_DECL. */
3017 else if (TREE_CODE (*tp) == RETURN_EXPR)
3018 TREE_OPERAND (*tp, 0) = dp->result;
3019 /* Change all cleanups for the NRV to only run when an exception is
3020 thrown. */
3021 else if (TREE_CODE (*tp) == CLEANUP_STMT
3022 && CLEANUP_DECL (*tp) == dp->var)
3023 CLEANUP_EH_ONLY (*tp) = 1;
3024 /* Replace the DECL_EXPR for the NRV with an initialization of the
3025 RESULT_DECL, if needed. */
3026 else if (TREE_CODE (*tp) == DECL_EXPR
3027 && DECL_EXPR_DECL (*tp) == dp->var)
3028 {
3029 tree init;
3030 if (DECL_INITIAL (dp->var)
3031 && DECL_INITIAL (dp->var) != error_mark_node)
3032 {
3033 init = build2 (INIT_EXPR, void_type_node, dp->result,
3034 DECL_INITIAL (dp->var));
3035 DECL_INITIAL (dp->var) = error_mark_node;
3036 }
3037 else
3038 init = build_empty_stmt ();
3039 SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
3040 *tp = init;
3041 }
3042 /* And replace all uses of the NRV with the RESULT_DECL. */
3043 else if (*tp == dp->var)
3044 *tp = dp->result;
3045
3046 /* Avoid walking into the same tree more than once. Unfortunately, we
3047 can't just use walk_tree_without duplicates because it would only call
3048 us for the first occurrence of dp->var in the function body. */
3049 slot = htab_find_slot (dp->visited, *tp, INSERT);
3050 if (*slot)
3051 *walk_subtrees = 0;
3052 else
3053 *slot = *tp;
3054
3055 /* Keep iterating. */
3056 return NULL_TREE;
3057 }
3058
3059 /* Called from finish_function to implement the named return value
3060 optimization by overriding all the RETURN_EXPRs and pertinent
3061 CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
3062 RESULT_DECL for the function. */
3063
3064 void
3065 finalize_nrv (tree *tp, tree var, tree result)
3066 {
3067 struct nrv_data data;
3068
3069 /* Copy debugging information from VAR to RESULT. */
3070 DECL_NAME (result) = DECL_NAME (var);
3071 DECL_ARTIFICIAL (result) = DECL_ARTIFICIAL (var);
3072 DECL_IGNORED_P (result) = DECL_IGNORED_P (var);
3073 DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
3074 DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
3075 /* Don't forget that we take its address. */
3076 TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
3077
3078 data.var = var;
3079 data.result = result;
3080 data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3081 walk_tree (tp, finalize_nrv_r, &data, 0);
3082 htab_delete (data.visited);
3083 }
3084
3085 /* Perform initialization related to this module. */
3086
3087 void
3088 init_cp_semantics (void)
3089 {
3090 }
3091
3092 #include "gt-cp-semantics.h"