c-common.c (c_common_truthvalue_conversion): Don't warn if TREE_NO_WARNING is set.
[gcc.git] / gcc / cp / semantics.c
1 /* Perform the semantic phase of parsing, i.e., the process of
2 building tree structure, checking semantic consistency, and
3 building RTL. These routines are used both during actual parsing
4 and during the instantiation of template functions.
5
6 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004
7 Free Software Foundation, Inc.
8 Written by Mark Mitchell (mmitchell@usa.net) based on code found
9 formerly in parse.y and pt.c.
10
11 This file is part of GCC.
12
13 GCC is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GCC is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING. If not, write to the Free
25 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 02111-1307, USA. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "cp-tree.h"
34 #include "tree-inline.h"
35 #include "tree-mudflap.h"
36 #include "except.h"
37 #include "toplev.h"
38 #include "flags.h"
39 #include "rtl.h"
40 #include "expr.h"
41 #include "output.h"
42 #include "timevar.h"
43 #include "debug.h"
44 #include "diagnostic.h"
45 #include "cgraph.h"
46 #include "tree-iterator.h"
47 #include "vec.h"
48
49 /* There routines provide a modular interface to perform many parsing
50 operations. They may therefore be used during actual parsing, or
51 during template instantiation, which may be regarded as a
52 degenerate form of parsing. Since the current g++ parser is
53 lacking in several respects, and will be reimplemented, we are
54 attempting to move most code that is not directly related to
55 parsing into this file; that will make implementing the new parser
56 much easier since it will be able to make use of these routines. */
57
58 static tree maybe_convert_cond (tree);
59 static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
60 static void emit_associated_thunks (tree);
61 static tree finalize_nrv_r (tree *, int *, void *);
62
63
64 /* Deferred Access Checking Overview
65 ---------------------------------
66
67 Most C++ expressions and declarations require access checking
68 to be performed during parsing. However, in several cases,
69 this has to be treated differently.
70
71 For member declarations, access checking has to be deferred
72 until more information about the declaration is known. For
73 example:
74
75 class A {
76 typedef int X;
77 public:
78 X f();
79 };
80
81 A::X A::f();
82 A::X g();
83
84 When we are parsing the function return type `A::X', we don't
85 really know if this is allowed until we parse the function name.
86
87 Furthermore, some contexts require that access checking is
88 never performed at all. These include class heads, and template
89 instantiations.
90
91 Typical use of access checking functions is described here:
92
93 1. When we enter a context that requires certain access checking
94 mode, the function `push_deferring_access_checks' is called with
95 DEFERRING argument specifying the desired mode. Access checking
96 may be performed immediately (dk_no_deferred), deferred
97 (dk_deferred), or not performed (dk_no_check).
98
99 2. When a declaration such as a type, or a variable, is encountered,
100 the function `perform_or_defer_access_check' is called. It
101 maintains a TREE_LIST of all deferred checks.
102
103 3. The global `current_class_type' or `current_function_decl' is then
104 setup by the parser. `enforce_access' relies on these information
105 to check access.
106
107 4. Upon exiting the context mentioned in step 1,
108 `perform_deferred_access_checks' is called to check all declaration
109 stored in the TREE_LIST. `pop_deferring_access_checks' is then
110 called to restore the previous access checking mode.
111
112 In case of parsing error, we simply call `pop_deferring_access_checks'
113 without `perform_deferred_access_checks'. */
114
115 typedef struct deferred_access GTY(())
116 {
117 /* A TREE_LIST representing name-lookups for which we have deferred
118 checking access controls. We cannot check the accessibility of
119 names used in a decl-specifier-seq until we know what is being
120 declared because code like:
121
122 class A {
123 class B {};
124 B* f();
125 }
126
127 A::B* A::f() { return 0; }
128
129 is valid, even though `A::B' is not generally accessible.
130
131 The TREE_PURPOSE of each node is the scope used to qualify the
132 name being looked up; the TREE_VALUE is the DECL to which the
133 name was resolved. */
134 tree deferred_access_checks;
135
136 /* The current mode of access checks. */
137 enum deferring_kind deferring_access_checks_kind;
138
139 } deferred_access;
140 DEF_VEC_O (deferred_access);
141
142 /* Data for deferred access checking. */
143 static GTY(()) VEC (deferred_access) *deferred_access_stack;
144 static GTY(()) unsigned deferred_access_no_check;
145
146 /* Save the current deferred access states and start deferred
147 access checking iff DEFER_P is true. */
148
149 void
150 push_deferring_access_checks (deferring_kind deferring)
151 {
152 /* For context like template instantiation, access checking
153 disabling applies to all nested context. */
154 if (deferred_access_no_check || deferring == dk_no_check)
155 deferred_access_no_check++;
156 else
157 {
158 deferred_access *ptr;
159
160 ptr = VEC_safe_push (deferred_access, deferred_access_stack, NULL);
161 ptr->deferred_access_checks = NULL_TREE;
162 ptr->deferring_access_checks_kind = deferring;
163 }
164 }
165
166 /* Resume deferring access checks again after we stopped doing
167 this previously. */
168
169 void
170 resume_deferring_access_checks (void)
171 {
172 if (!deferred_access_no_check)
173 VEC_last (deferred_access, deferred_access_stack)
174 ->deferring_access_checks_kind = dk_deferred;
175 }
176
177 /* Stop deferring access checks. */
178
179 void
180 stop_deferring_access_checks (void)
181 {
182 if (!deferred_access_no_check)
183 VEC_last (deferred_access, deferred_access_stack)
184 ->deferring_access_checks_kind = dk_no_deferred;
185 }
186
187 /* Discard the current deferred access checks and restore the
188 previous states. */
189
190 void
191 pop_deferring_access_checks (void)
192 {
193 if (deferred_access_no_check)
194 deferred_access_no_check--;
195 else
196 VEC_pop (deferred_access, deferred_access_stack);
197 }
198
199 /* Returns a TREE_LIST representing the deferred checks.
200 The TREE_PURPOSE of each node is the type through which the
201 access occurred; the TREE_VALUE is the declaration named.
202 */
203
204 tree
205 get_deferred_access_checks (void)
206 {
207 if (deferred_access_no_check)
208 return NULL;
209 else
210 return (VEC_last (deferred_access, deferred_access_stack)
211 ->deferred_access_checks);
212 }
213
214 /* Take current deferred checks and combine with the
215 previous states if we also defer checks previously.
216 Otherwise perform checks now. */
217
218 void
219 pop_to_parent_deferring_access_checks (void)
220 {
221 if (deferred_access_no_check)
222 deferred_access_no_check--;
223 else
224 {
225 tree checks;
226 deferred_access *ptr;
227
228 checks = (VEC_last (deferred_access, deferred_access_stack)
229 ->deferred_access_checks);
230
231 VEC_pop (deferred_access, deferred_access_stack);
232 ptr = VEC_last (deferred_access, deferred_access_stack);
233 if (ptr->deferring_access_checks_kind == dk_no_deferred)
234 {
235 /* Check access. */
236 for (; checks; checks = TREE_CHAIN (checks))
237 enforce_access (TREE_PURPOSE (checks),
238 TREE_VALUE (checks));
239 }
240 else
241 {
242 /* Merge with parent. */
243 tree next;
244 tree original = ptr->deferred_access_checks;
245
246 for (; checks; checks = next)
247 {
248 tree probe;
249
250 next = TREE_CHAIN (checks);
251
252 for (probe = original; probe; probe = TREE_CHAIN (probe))
253 if (TREE_VALUE (probe) == TREE_VALUE (checks)
254 && TREE_PURPOSE (probe) == TREE_PURPOSE (checks))
255 goto found;
256 /* Insert into parent's checks. */
257 TREE_CHAIN (checks) = ptr->deferred_access_checks;
258 ptr->deferred_access_checks = checks;
259 found:;
260 }
261 }
262 }
263 }
264
265 /* Perform the deferred access checks.
266
267 After performing the checks, we still have to keep the list
268 `deferred_access_stack->deferred_access_checks' since we may want
269 to check access for them again later in a different context.
270 For example:
271
272 class A {
273 typedef int X;
274 static X a;
275 };
276 A::X A::a, x; // No error for `A::a', error for `x'
277
278 We have to perform deferred access of `A::X', first with `A::a',
279 next with `x'. */
280
281 void
282 perform_deferred_access_checks (void)
283 {
284 tree deferred_check;
285
286 for (deferred_check = (VEC_last (deferred_access, deferred_access_stack)
287 ->deferred_access_checks);
288 deferred_check;
289 deferred_check = TREE_CHAIN (deferred_check))
290 /* Check access. */
291 enforce_access (TREE_PURPOSE (deferred_check),
292 TREE_VALUE (deferred_check));
293 }
294
295 /* Defer checking the accessibility of DECL, when looked up in
296 BINFO. */
297
298 void
299 perform_or_defer_access_check (tree binfo, tree decl)
300 {
301 tree check;
302 deferred_access *ptr;
303
304 /* Exit if we are in a context that no access checking is performed.
305 */
306 if (deferred_access_no_check)
307 return;
308
309 my_friendly_assert (TREE_CODE (binfo) == TREE_BINFO, 20030623);
310
311 ptr = VEC_last (deferred_access, deferred_access_stack);
312
313 /* If we are not supposed to defer access checks, just check now. */
314 if (ptr->deferring_access_checks_kind == dk_no_deferred)
315 {
316 enforce_access (binfo, decl);
317 return;
318 }
319
320 /* See if we are already going to perform this check. */
321 for (check = ptr->deferred_access_checks;
322 check;
323 check = TREE_CHAIN (check))
324 if (TREE_VALUE (check) == decl && TREE_PURPOSE (check) == binfo)
325 return;
326 /* If not, record the check. */
327 ptr->deferred_access_checks
328 = tree_cons (binfo, decl, ptr->deferred_access_checks);
329 }
330
331 /* Returns nonzero if the current statement is a full expression,
332 i.e. temporaries created during that statement should be destroyed
333 at the end of the statement. */
334
335 int
336 stmts_are_full_exprs_p (void)
337 {
338 return current_stmt_tree ()->stmts_are_full_exprs_p;
339 }
340
341 /* Returns the stmt_tree (if any) to which statements are currently
342 being added. If there is no active statement-tree, NULL is
343 returned. */
344
345 stmt_tree
346 current_stmt_tree (void)
347 {
348 return (cfun
349 ? &cfun->language->base.x_stmt_tree
350 : &scope_chain->x_stmt_tree);
351 }
352
353 /* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
354
355 static tree
356 maybe_cleanup_point_expr (tree expr)
357 {
358 if (!processing_template_decl && stmts_are_full_exprs_p ())
359 expr = fold (build1 (CLEANUP_POINT_EXPR, TREE_TYPE (expr), expr));
360 return expr;
361 }
362
363 /* Create a declaration statement for the declaration given by the DECL. */
364
365 void
366 add_decl_expr (tree decl)
367 {
368 tree r = build_stmt (DECL_EXPR, decl);
369 if (DECL_INITIAL (decl))
370 r = maybe_cleanup_point_expr (r);
371 add_stmt (r);
372 }
373
374 /* Nonzero if TYPE is an anonymous union or struct type. We have to use a
375 flag for this because "A union for which objects or pointers are
376 declared is not an anonymous union" [class.union]. */
377
378 int
379 anon_aggr_type_p (tree node)
380 {
381 return ANON_AGGR_TYPE_P (node);
382 }
383
384 /* Finish a scope. */
385
386 static tree
387 do_poplevel (tree stmt_list)
388 {
389 tree block = NULL;
390
391 if (stmts_are_full_exprs_p ())
392 block = poplevel (kept_level_p (), 1, 0);
393
394 stmt_list = pop_stmt_list (stmt_list);
395
396 if (!processing_template_decl)
397 {
398 stmt_list = c_build_bind_expr (block, stmt_list);
399 /* ??? See c_end_compound_stmt re statement expressions. */
400 }
401
402 return stmt_list;
403 }
404
405 /* Begin a new scope. */
406
407 static tree
408 do_pushlevel (scope_kind sk)
409 {
410 tree ret = push_stmt_list ();
411 if (stmts_are_full_exprs_p ())
412 begin_scope (sk, NULL);
413 return ret;
414 }
415
416 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
417 when the current scope is exited. EH_ONLY is true when this is not
418 meant to apply to normal control flow transfer. */
419
420 void
421 push_cleanup (tree decl, tree cleanup, bool eh_only)
422 {
423 tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl);
424 CLEANUP_EH_ONLY (stmt) = eh_only;
425 add_stmt (stmt);
426 CLEANUP_BODY (stmt) = push_stmt_list ();
427 }
428
429 /* Begin a conditional that might contain a declaration. When generating
430 normal code, we want the declaration to appear before the statement
431 containing the conditional. When generating template code, we want the
432 conditional to be rendered as the raw DECL_EXPR. */
433
434 static void
435 begin_cond (tree *cond_p)
436 {
437 if (processing_template_decl)
438 *cond_p = push_stmt_list ();
439 }
440
441 /* Finish such a conditional. */
442
443 static void
444 finish_cond (tree *cond_p, tree expr)
445 {
446 if (processing_template_decl)
447 {
448 tree cond = pop_stmt_list (*cond_p);
449 if (TREE_CODE (cond) == DECL_EXPR)
450 expr = cond;
451 }
452 *cond_p = expr;
453 }
454
455 /* If *COND_P specifies a conditional with a declaration, transform the
456 loop such that
457 while (A x = 42) { }
458 for (; A x = 42;) { }
459 becomes
460 while (true) { A x = 42; if (!x) break; }
461 for (;;) { A x = 42; if (!x) break; }
462 The statement list for BODY will be empty if the conditional did
463 not declare anything. */
464
465 static void
466 simplify_loop_decl_cond (tree *cond_p, tree body)
467 {
468 tree cond, if_stmt;
469
470 if (!TREE_SIDE_EFFECTS (body))
471 return;
472
473 cond = *cond_p;
474 *cond_p = boolean_true_node;
475
476 if_stmt = begin_if_stmt ();
477 cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
478 finish_if_stmt_cond (cond, if_stmt);
479 finish_break_stmt ();
480 finish_then_clause (if_stmt);
481 finish_if_stmt (if_stmt);
482 }
483
484 /* Finish a goto-statement. */
485
486 tree
487 finish_goto_stmt (tree destination)
488 {
489 if (TREE_CODE (destination) == IDENTIFIER_NODE)
490 destination = lookup_label (destination);
491
492 /* We warn about unused labels with -Wunused. That means we have to
493 mark the used labels as used. */
494 if (TREE_CODE (destination) == LABEL_DECL)
495 TREE_USED (destination) = 1;
496 else
497 {
498 /* The DESTINATION is being used as an rvalue. */
499 if (!processing_template_decl)
500 destination = decay_conversion (destination);
501 /* We don't inline calls to functions with computed gotos.
502 Those functions are typically up to some funny business,
503 and may be depending on the labels being at particular
504 addresses, or some such. */
505 DECL_UNINLINABLE (current_function_decl) = 1;
506 }
507
508 check_goto (destination);
509
510 return add_stmt (build_stmt (GOTO_EXPR, destination));
511 }
512
513 /* COND is the condition-expression for an if, while, etc.,
514 statement. Convert it to a boolean value, if appropriate. */
515
516 static tree
517 maybe_convert_cond (tree cond)
518 {
519 /* Empty conditions remain empty. */
520 if (!cond)
521 return NULL_TREE;
522
523 /* Wait until we instantiate templates before doing conversion. */
524 if (processing_template_decl)
525 return cond;
526
527 /* Do the conversion. */
528 cond = convert_from_reference (cond);
529 return condition_conversion (cond);
530 }
531
532 /* Finish an expression-statement, whose EXPRESSION is as indicated. */
533
534 tree
535 finish_expr_stmt (tree expr)
536 {
537 tree r = NULL_TREE;
538
539 if (expr != NULL_TREE)
540 {
541 if (!processing_template_decl)
542 {
543 if (warn_sequence_point)
544 verify_sequence_points (expr);
545 expr = convert_to_void (expr, "statement");
546 }
547 else if (!type_dependent_expression_p (expr))
548 convert_to_void (build_non_dependent_expr (expr), "statement");
549
550 /* Simplification of inner statement expressions, compound exprs,
551 etc can result in the us already having an EXPR_STMT. */
552 if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
553 {
554 if (TREE_CODE (expr) != EXPR_STMT)
555 expr = build_stmt (EXPR_STMT, expr);
556 expr = maybe_cleanup_point_expr (expr);
557 }
558
559 r = add_stmt (expr);
560 }
561
562 finish_stmt ();
563
564 return r;
565 }
566
567
568 /* Begin an if-statement. Returns a newly created IF_STMT if
569 appropriate. */
570
571 tree
572 begin_if_stmt (void)
573 {
574 tree r, scope;
575 scope = do_pushlevel (sk_block);
576 r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
577 TREE_CHAIN (r) = scope;
578 begin_cond (&IF_COND (r));
579 return r;
580 }
581
582 /* Process the COND of an if-statement, which may be given by
583 IF_STMT. */
584
585 void
586 finish_if_stmt_cond (tree cond, tree if_stmt)
587 {
588 finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond));
589 add_stmt (if_stmt);
590 THEN_CLAUSE (if_stmt) = push_stmt_list ();
591 }
592
593 /* Finish the then-clause of an if-statement, which may be given by
594 IF_STMT. */
595
596 tree
597 finish_then_clause (tree if_stmt)
598 {
599 THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
600 return if_stmt;
601 }
602
603 /* Begin the else-clause of an if-statement. */
604
605 void
606 begin_else_clause (tree if_stmt)
607 {
608 ELSE_CLAUSE (if_stmt) = push_stmt_list ();
609 }
610
611 /* Finish the else-clause of an if-statement, which may be given by
612 IF_STMT. */
613
614 void
615 finish_else_clause (tree if_stmt)
616 {
617 ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
618 }
619
620 /* Finish an if-statement. */
621
622 void
623 finish_if_stmt (tree if_stmt)
624 {
625 tree scope = TREE_CHAIN (if_stmt);
626 TREE_CHAIN (if_stmt) = NULL;
627 add_stmt (do_poplevel (scope));
628 finish_stmt ();
629 }
630
631 /* Begin a while-statement. Returns a newly created WHILE_STMT if
632 appropriate. */
633
634 tree
635 begin_while_stmt (void)
636 {
637 tree r;
638 r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
639 add_stmt (r);
640 WHILE_BODY (r) = do_pushlevel (sk_block);
641 begin_cond (&WHILE_COND (r));
642 return r;
643 }
644
645 /* Process the COND of a while-statement, which may be given by
646 WHILE_STMT. */
647
648 void
649 finish_while_stmt_cond (tree cond, tree while_stmt)
650 {
651 finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond));
652 simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt));
653 }
654
655 /* Finish a while-statement, which may be given by WHILE_STMT. */
656
657 void
658 finish_while_stmt (tree while_stmt)
659 {
660 WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
661 finish_stmt ();
662 }
663
664 /* Begin a do-statement. Returns a newly created DO_STMT if
665 appropriate. */
666
667 tree
668 begin_do_stmt (void)
669 {
670 tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
671 add_stmt (r);
672 DO_BODY (r) = push_stmt_list ();
673 return r;
674 }
675
676 /* Finish the body of a do-statement, which may be given by DO_STMT. */
677
678 void
679 finish_do_body (tree do_stmt)
680 {
681 DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
682 }
683
684 /* Finish a do-statement, which may be given by DO_STMT, and whose
685 COND is as indicated. */
686
687 void
688 finish_do_stmt (tree cond, tree do_stmt)
689 {
690 cond = maybe_convert_cond (cond);
691 DO_COND (do_stmt) = cond;
692 finish_stmt ();
693 }
694
695 /* Finish a return-statement. The EXPRESSION returned, if any, is as
696 indicated. */
697
698 tree
699 finish_return_stmt (tree expr)
700 {
701 tree r;
702
703 expr = check_return_expr (expr);
704 if (!processing_template_decl)
705 {
706 if (DECL_DESTRUCTOR_P (current_function_decl))
707 {
708 /* Similarly, all destructors must run destructors for
709 base-classes before returning. So, all returns in a
710 destructor get sent to the DTOR_LABEL; finish_function emits
711 code to return a value there. */
712 return finish_goto_stmt (dtor_label);
713 }
714 }
715
716 r = build_stmt (RETURN_EXPR, expr);
717 r = maybe_cleanup_point_expr (r);
718 r = add_stmt (r);
719 finish_stmt ();
720
721 return r;
722 }
723
724 /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
725
726 tree
727 begin_for_stmt (void)
728 {
729 tree r;
730
731 r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
732 NULL_TREE, NULL_TREE);
733
734 if (flag_new_for_scope > 0)
735 TREE_CHAIN (r) = do_pushlevel (sk_for);
736
737 if (processing_template_decl)
738 FOR_INIT_STMT (r) = push_stmt_list ();
739
740 return r;
741 }
742
743 /* Finish the for-init-statement of a for-statement, which may be
744 given by FOR_STMT. */
745
746 void
747 finish_for_init_stmt (tree for_stmt)
748 {
749 if (processing_template_decl)
750 FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
751 add_stmt (for_stmt);
752 FOR_BODY (for_stmt) = do_pushlevel (sk_block);
753 begin_cond (&FOR_COND (for_stmt));
754 }
755
756 /* Finish the COND of a for-statement, which may be given by
757 FOR_STMT. */
758
759 void
760 finish_for_cond (tree cond, tree for_stmt)
761 {
762 finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond));
763 simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt));
764 }
765
766 /* Finish the increment-EXPRESSION in a for-statement, which may be
767 given by FOR_STMT. */
768
769 void
770 finish_for_expr (tree expr, tree for_stmt)
771 {
772 if (!expr)
773 return;
774 /* If EXPR is an overloaded function, issue an error; there is no
775 context available to use to perform overload resolution. */
776 if (type_unknown_p (expr))
777 {
778 cxx_incomplete_type_error (expr, TREE_TYPE (expr));
779 expr = error_mark_node;
780 }
781 expr = maybe_cleanup_point_expr (expr);
782 FOR_EXPR (for_stmt) = expr;
783 }
784
785 /* Finish the body of a for-statement, which may be given by
786 FOR_STMT. The increment-EXPR for the loop must be
787 provided. */
788
789 void
790 finish_for_stmt (tree for_stmt)
791 {
792 FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
793
794 /* Pop the scope for the body of the loop. */
795 if (flag_new_for_scope > 0)
796 {
797 tree scope = TREE_CHAIN (for_stmt);
798 TREE_CHAIN (for_stmt) = NULL;
799 add_stmt (do_poplevel (scope));
800 }
801
802 finish_stmt ();
803 }
804
805 /* Finish a break-statement. */
806
807 tree
808 finish_break_stmt (void)
809 {
810 return add_stmt (build_break_stmt ());
811 }
812
813 /* Finish a continue-statement. */
814
815 tree
816 finish_continue_stmt (void)
817 {
818 return add_stmt (build_continue_stmt ());
819 }
820
821 /* Begin a switch-statement. Returns a new SWITCH_STMT if
822 appropriate. */
823
824 tree
825 begin_switch_stmt (void)
826 {
827 tree r, scope;
828
829 r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
830
831 scope = do_pushlevel (sk_block);
832 TREE_CHAIN (r) = scope;
833 begin_cond (&SWITCH_COND (r));
834
835 return r;
836 }
837
838 /* Finish the cond of a switch-statement. */
839
840 void
841 finish_switch_cond (tree cond, tree switch_stmt)
842 {
843 tree orig_type = NULL;
844 if (!processing_template_decl)
845 {
846 tree index;
847
848 /* Convert the condition to an integer or enumeration type. */
849 cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
850 if (cond == NULL_TREE)
851 {
852 error ("switch quantity not an integer");
853 cond = error_mark_node;
854 }
855 orig_type = TREE_TYPE (cond);
856 if (cond != error_mark_node)
857 {
858 /* [stmt.switch]
859
860 Integral promotions are performed. */
861 cond = perform_integral_promotions (cond);
862 cond = maybe_cleanup_point_expr (cond);
863 }
864
865 if (cond != error_mark_node)
866 {
867 index = get_unwidened (cond, NULL_TREE);
868 /* We can't strip a conversion from a signed type to an unsigned,
869 because if we did, int_fits_type_p would do the wrong thing
870 when checking case values for being in range,
871 and it's too hard to do the right thing. */
872 if (TYPE_UNSIGNED (TREE_TYPE (cond))
873 == TYPE_UNSIGNED (TREE_TYPE (index)))
874 cond = index;
875 }
876 }
877 finish_cond (&SWITCH_COND (switch_stmt), cond);
878 SWITCH_TYPE (switch_stmt) = orig_type;
879 add_stmt (switch_stmt);
880 push_switch (switch_stmt);
881 SWITCH_BODY (switch_stmt) = push_stmt_list ();
882 }
883
884 /* Finish the body of a switch-statement, which may be given by
885 SWITCH_STMT. The COND to switch on is indicated. */
886
887 void
888 finish_switch_stmt (tree switch_stmt)
889 {
890 tree scope;
891
892 SWITCH_BODY (switch_stmt) = pop_stmt_list (SWITCH_BODY (switch_stmt));
893 pop_switch ();
894 finish_stmt ();
895
896 scope = TREE_CHAIN (switch_stmt);
897 TREE_CHAIN (switch_stmt) = NULL;
898 add_stmt (do_poplevel (scope));
899 }
900
901 /* Begin a try-block. Returns a newly-created TRY_BLOCK if
902 appropriate. */
903
904 tree
905 begin_try_block (void)
906 {
907 tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
908 add_stmt (r);
909 TRY_STMTS (r) = push_stmt_list ();
910 return r;
911 }
912
913 /* Likewise, for a function-try-block. */
914
915 tree
916 begin_function_try_block (void)
917 {
918 tree r = begin_try_block ();
919 FN_TRY_BLOCK_P (r) = 1;
920 return r;
921 }
922
923 /* Finish a try-block, which may be given by TRY_BLOCK. */
924
925 void
926 finish_try_block (tree try_block)
927 {
928 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
929 TRY_HANDLERS (try_block) = push_stmt_list ();
930 }
931
932 /* Finish the body of a cleanup try-block, which may be given by
933 TRY_BLOCK. */
934
935 void
936 finish_cleanup_try_block (tree try_block)
937 {
938 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
939 }
940
941 /* Finish an implicitly generated try-block, with a cleanup is given
942 by CLEANUP. */
943
944 void
945 finish_cleanup (tree cleanup, tree try_block)
946 {
947 TRY_HANDLERS (try_block) = cleanup;
948 CLEANUP_P (try_block) = 1;
949 }
950
951 /* Likewise, for a function-try-block. */
952
953 void
954 finish_function_try_block (tree try_block)
955 {
956 finish_try_block (try_block);
957 /* FIXME : something queer about CTOR_INITIALIZER somehow following
958 the try block, but moving it inside. */
959 in_function_try_handler = 1;
960 }
961
962 /* Finish a handler-sequence for a try-block, which may be given by
963 TRY_BLOCK. */
964
965 void
966 finish_handler_sequence (tree try_block)
967 {
968 TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
969 check_handlers (TRY_HANDLERS (try_block));
970 }
971
972 /* Likewise, for a function-try-block. */
973
974 void
975 finish_function_handler_sequence (tree try_block)
976 {
977 in_function_try_handler = 0;
978 finish_handler_sequence (try_block);
979 }
980
981 /* Begin a handler. Returns a HANDLER if appropriate. */
982
983 tree
984 begin_handler (void)
985 {
986 tree r;
987
988 r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
989 add_stmt (r);
990
991 /* Create a binding level for the eh_info and the exception object
992 cleanup. */
993 HANDLER_BODY (r) = do_pushlevel (sk_catch);
994
995 return r;
996 }
997
998 /* Finish the handler-parameters for a handler, which may be given by
999 HANDLER. DECL is the declaration for the catch parameter, or NULL
1000 if this is a `catch (...)' clause. */
1001
1002 void
1003 finish_handler_parms (tree decl, tree handler)
1004 {
1005 tree type = NULL_TREE;
1006 if (processing_template_decl)
1007 {
1008 if (decl)
1009 {
1010 decl = pushdecl (decl);
1011 decl = push_template_decl (decl);
1012 HANDLER_PARMS (handler) = decl;
1013 type = TREE_TYPE (decl);
1014 }
1015 }
1016 else
1017 type = expand_start_catch_block (decl);
1018
1019 HANDLER_TYPE (handler) = type;
1020 if (!processing_template_decl && type)
1021 mark_used (eh_type_info (type));
1022 }
1023
1024 /* Finish a handler, which may be given by HANDLER. The BLOCKs are
1025 the return value from the matching call to finish_handler_parms. */
1026
1027 void
1028 finish_handler (tree handler)
1029 {
1030 if (!processing_template_decl)
1031 expand_end_catch_block ();
1032 HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
1033 }
1034
1035 /* Begin a compound statement. FLAGS contains some bits that control the
1036 behaviour and context. If BCS_NO_SCOPE is set, the compound statement
1037 does not define a scope. If BCS_FN_BODY is set, this is the outermost
1038 block of a function. If BCS_TRY_BLOCK is set, this is the block
1039 created on behalf of a TRY statement. Returns a token to be passed to
1040 finish_compound_stmt. */
1041
1042 tree
1043 begin_compound_stmt (unsigned int flags)
1044 {
1045 tree r;
1046
1047 if (flags & BCS_NO_SCOPE)
1048 {
1049 r = push_stmt_list ();
1050 STATEMENT_LIST_NO_SCOPE (r) = 1;
1051
1052 /* Normally, we try hard to keep the BLOCK for a statement-expression.
1053 But, if it's a statement-expression with a scopeless block, there's
1054 nothing to keep, and we don't want to accidentally keep a block
1055 *inside* the scopeless block. */
1056 keep_next_level (false);
1057 }
1058 else
1059 r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
1060
1061 /* When processing a template, we need to remember where the braces were,
1062 so that we can set up identical scopes when instantiating the template
1063 later. BIND_EXPR is a handy candidate for this.
1064 Note that do_poplevel won't create a BIND_EXPR itself here (and thus
1065 result in nested BIND_EXPRs), since we don't build BLOCK nodes when
1066 processing templates. */
1067 if (processing_template_decl)
1068 {
1069 r = build (BIND_EXPR, NULL, NULL, r, NULL);
1070 BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
1071 BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
1072 TREE_SIDE_EFFECTS (r) = 1;
1073 }
1074
1075 return r;
1076 }
1077
1078 /* Finish a compound-statement, which is given by STMT. */
1079
1080 void
1081 finish_compound_stmt (tree stmt)
1082 {
1083 if (TREE_CODE (stmt) == BIND_EXPR)
1084 BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
1085 else if (STATEMENT_LIST_NO_SCOPE (stmt))
1086 stmt = pop_stmt_list (stmt);
1087 else
1088 stmt = do_poplevel (stmt);
1089
1090 /* ??? See c_end_compound_stmt wrt statement expressions. */
1091 add_stmt (stmt);
1092 finish_stmt ();
1093 }
1094
1095 /* Finish an asm-statement, whose components are a STRING, some
1096 OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
1097 whether the asm-statement should be considered volatile. */
1098
1099 tree
1100 finish_asm_stmt (int volatile_p, tree string, tree output_operands,
1101 tree input_operands, tree clobbers)
1102 {
1103 tree r;
1104 tree t;
1105
1106 if (!processing_template_decl)
1107 {
1108 int i;
1109 int ninputs;
1110 int noutputs;
1111
1112 for (t = input_operands; t; t = TREE_CHAIN (t))
1113 {
1114 tree converted_operand
1115 = decay_conversion (TREE_VALUE (t));
1116
1117 /* If the type of the operand hasn't been determined (e.g.,
1118 because it involves an overloaded function), then issue
1119 an error message. There's no context available to
1120 resolve the overloading. */
1121 if (TREE_TYPE (converted_operand) == unknown_type_node)
1122 {
1123 error ("type of asm operand `%E' could not be determined",
1124 TREE_VALUE (t));
1125 converted_operand = error_mark_node;
1126 }
1127 TREE_VALUE (t) = converted_operand;
1128 }
1129
1130 ninputs = list_length (input_operands);
1131 noutputs = list_length (output_operands);
1132
1133 for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
1134 {
1135 bool allows_mem;
1136 bool allows_reg;
1137 bool is_inout;
1138 const char *constraint;
1139 tree operand;
1140
1141 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1142 operand = TREE_VALUE (t);
1143
1144 if (!parse_output_constraint (&constraint,
1145 i, ninputs, noutputs,
1146 &allows_mem,
1147 &allows_reg,
1148 &is_inout))
1149 {
1150 /* By marking this operand as erroneous, we will not try
1151 to process this operand again in expand_asm_operands. */
1152 TREE_VALUE (t) = error_mark_node;
1153 continue;
1154 }
1155
1156 /* If the operand is a DECL that is going to end up in
1157 memory, assume it is addressable. This is a bit more
1158 conservative than it would ideally be; the exact test is
1159 buried deep in expand_asm_operands and depends on the
1160 DECL_RTL for the OPERAND -- which we don't have at this
1161 point. */
1162 if (!allows_reg && DECL_P (operand))
1163 cxx_mark_addressable (operand);
1164 }
1165 }
1166
1167 r = build_stmt (ASM_EXPR, string,
1168 output_operands, input_operands,
1169 clobbers);
1170 ASM_VOLATILE_P (r) = volatile_p;
1171 return add_stmt (r);
1172 }
1173
1174 /* Finish a label with the indicated NAME. */
1175
1176 tree
1177 finish_label_stmt (tree name)
1178 {
1179 tree decl = define_label (input_location, name);
1180 return add_stmt (build_stmt (LABEL_EXPR, decl));
1181 }
1182
1183 /* Finish a series of declarations for local labels. G++ allows users
1184 to declare "local" labels, i.e., labels with scope. This extension
1185 is useful when writing code involving statement-expressions. */
1186
1187 void
1188 finish_label_decl (tree name)
1189 {
1190 tree decl = declare_local_label (name);
1191 add_decl_expr (decl);
1192 }
1193
1194 /* When DECL goes out of scope, make sure that CLEANUP is executed. */
1195
1196 void
1197 finish_decl_cleanup (tree decl, tree cleanup)
1198 {
1199 push_cleanup (decl, cleanup, false);
1200 }
1201
1202 /* If the current scope exits with an exception, run CLEANUP. */
1203
1204 void
1205 finish_eh_cleanup (tree cleanup)
1206 {
1207 push_cleanup (NULL, cleanup, true);
1208 }
1209
1210 /* The MEM_INITS is a list of mem-initializers, in reverse of the
1211 order they were written by the user. Each node is as for
1212 emit_mem_initializers. */
1213
1214 void
1215 finish_mem_initializers (tree mem_inits)
1216 {
1217 /* Reorder the MEM_INITS so that they are in the order they appeared
1218 in the source program. */
1219 mem_inits = nreverse (mem_inits);
1220
1221 if (processing_template_decl)
1222 add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
1223 else
1224 emit_mem_initializers (mem_inits);
1225 }
1226
1227 /* Finish a parenthesized expression EXPR. */
1228
1229 tree
1230 finish_parenthesized_expr (tree expr)
1231 {
1232 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (expr))))
1233 /* This inhibits warnings in c_common_truthvalue_conversion. */
1234 TREE_NO_WARNING (expr) = 1;
1235
1236 if (TREE_CODE (expr) == OFFSET_REF)
1237 /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
1238 enclosed in parentheses. */
1239 PTRMEM_OK_P (expr) = 0;
1240 return expr;
1241 }
1242
1243 /* Finish a reference to a non-static data member (DECL) that is not
1244 preceded by `.' or `->'. */
1245
1246 tree
1247 finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
1248 {
1249 my_friendly_assert (TREE_CODE (decl) == FIELD_DECL, 20020909);
1250
1251 if (!object)
1252 {
1253 if (current_function_decl
1254 && DECL_STATIC_FUNCTION_P (current_function_decl))
1255 cp_error_at ("invalid use of member `%D' in static member function",
1256 decl);
1257 else
1258 cp_error_at ("invalid use of non-static data member `%D'", decl);
1259 error ("from this location");
1260
1261 return error_mark_node;
1262 }
1263 TREE_USED (current_class_ptr) = 1;
1264 if (processing_template_decl && !qualifying_scope)
1265 {
1266 tree type = TREE_TYPE (decl);
1267
1268 if (TREE_CODE (type) == REFERENCE_TYPE)
1269 type = TREE_TYPE (type);
1270 else
1271 {
1272 /* Set the cv qualifiers. */
1273 int quals = cp_type_quals (TREE_TYPE (current_class_ref));
1274
1275 if (DECL_MUTABLE_P (decl))
1276 quals &= ~TYPE_QUAL_CONST;
1277
1278 quals |= cp_type_quals (TREE_TYPE (decl));
1279 type = cp_build_qualified_type (type, quals);
1280 }
1281
1282 return build_min (COMPONENT_REF, type, object, decl, NULL_TREE);
1283 }
1284 else
1285 {
1286 tree access_type = TREE_TYPE (object);
1287 tree lookup_context = context_for_name_lookup (decl);
1288
1289 while (!DERIVED_FROM_P (lookup_context, access_type))
1290 {
1291 access_type = TYPE_CONTEXT (access_type);
1292 while (access_type && DECL_P (access_type))
1293 access_type = DECL_CONTEXT (access_type);
1294
1295 if (!access_type)
1296 {
1297 cp_error_at ("object missing in reference to `%D'", decl);
1298 error ("from this location");
1299 return error_mark_node;
1300 }
1301 }
1302
1303 /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
1304 QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
1305 for now. */
1306 if (processing_template_decl)
1307 return build_min (SCOPE_REF, TREE_TYPE (decl),
1308 qualifying_scope, DECL_NAME (decl));
1309
1310 perform_or_defer_access_check (TYPE_BINFO (access_type), decl);
1311
1312 /* If the data member was named `C::M', convert `*this' to `C'
1313 first. */
1314 if (qualifying_scope)
1315 {
1316 tree binfo = NULL_TREE;
1317 object = build_scoped_ref (object, qualifying_scope,
1318 &binfo);
1319 }
1320
1321 return build_class_member_access_expr (object, decl,
1322 /*access_path=*/NULL_TREE,
1323 /*preserve_reference=*/false);
1324 }
1325 }
1326
1327 /* DECL was the declaration to which a qualified-id resolved. Issue
1328 an error message if it is not accessible. If OBJECT_TYPE is
1329 non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
1330 type of `*x', or `x', respectively. If the DECL was named as
1331 `A::B' then NESTED_NAME_SPECIFIER is `A'. */
1332
1333 void
1334 check_accessibility_of_qualified_id (tree decl,
1335 tree object_type,
1336 tree nested_name_specifier)
1337 {
1338 tree scope;
1339 tree qualifying_type = NULL_TREE;
1340
1341 /* If we're not checking, return imediately. */
1342 if (deferred_access_no_check)
1343 return;
1344
1345 /* Determine the SCOPE of DECL. */
1346 scope = context_for_name_lookup (decl);
1347 /* If the SCOPE is not a type, then DECL is not a member. */
1348 if (!TYPE_P (scope))
1349 return;
1350 /* Compute the scope through which DECL is being accessed. */
1351 if (object_type
1352 /* OBJECT_TYPE might not be a class type; consider:
1353
1354 class A { typedef int I; };
1355 I *p;
1356 p->A::I::~I();
1357
1358 In this case, we will have "A::I" as the DECL, but "I" as the
1359 OBJECT_TYPE. */
1360 && CLASS_TYPE_P (object_type)
1361 && DERIVED_FROM_P (scope, object_type))
1362 /* If we are processing a `->' or `.' expression, use the type of the
1363 left-hand side. */
1364 qualifying_type = object_type;
1365 else if (nested_name_specifier)
1366 {
1367 /* If the reference is to a non-static member of the
1368 current class, treat it as if it were referenced through
1369 `this'. */
1370 if (DECL_NONSTATIC_MEMBER_P (decl)
1371 && current_class_ptr
1372 && DERIVED_FROM_P (scope, current_class_type))
1373 qualifying_type = current_class_type;
1374 /* Otherwise, use the type indicated by the
1375 nested-name-specifier. */
1376 else
1377 qualifying_type = nested_name_specifier;
1378 }
1379 else
1380 /* Otherwise, the name must be from the current class or one of
1381 its bases. */
1382 qualifying_type = currently_open_derived_class (scope);
1383
1384 if (qualifying_type)
1385 perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl);
1386 }
1387
1388 /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
1389 class named to the left of the "::" operator. DONE is true if this
1390 expression is a complete postfix-expression; it is false if this
1391 expression is followed by '->', '[', '(', etc. ADDRESS_P is true
1392 iff this expression is the operand of '&'. */
1393
1394 tree
1395 finish_qualified_id_expr (tree qualifying_class, tree expr, bool done,
1396 bool address_p)
1397 {
1398 if (error_operand_p (expr))
1399 return error_mark_node;
1400
1401 /* If EXPR occurs as the operand of '&', use special handling that
1402 permits a pointer-to-member. */
1403 if (address_p && done)
1404 {
1405 if (TREE_CODE (expr) == SCOPE_REF)
1406 expr = TREE_OPERAND (expr, 1);
1407 expr = build_offset_ref (qualifying_class, expr,
1408 /*address_p=*/true);
1409 return expr;
1410 }
1411
1412 if (TREE_CODE (expr) == FIELD_DECL)
1413 expr = finish_non_static_data_member (expr, current_class_ref,
1414 qualifying_class);
1415 else if (BASELINK_P (expr) && !processing_template_decl)
1416 {
1417 tree fn;
1418 tree fns;
1419
1420 /* See if any of the functions are non-static members. */
1421 fns = BASELINK_FUNCTIONS (expr);
1422 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
1423 fns = TREE_OPERAND (fns, 0);
1424 for (fn = fns; fn; fn = OVL_NEXT (fn))
1425 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1426 break;
1427 /* If so, the expression may be relative to the current
1428 class. */
1429 if (fn && current_class_type
1430 && DERIVED_FROM_P (qualifying_class, current_class_type))
1431 expr = (build_class_member_access_expr
1432 (maybe_dummy_object (qualifying_class, NULL),
1433 expr,
1434 BASELINK_ACCESS_BINFO (expr),
1435 /*preserve_reference=*/false));
1436 else if (done)
1437 /* The expression is a qualified name whose address is not
1438 being taken. */
1439 expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
1440 }
1441
1442 return expr;
1443 }
1444
1445 /* Begin a statement-expression. The value returned must be passed to
1446 finish_stmt_expr. */
1447
1448 tree
1449 begin_stmt_expr (void)
1450 {
1451 return push_stmt_list ();
1452 }
1453
1454 /* Process the final expression of a statement expression. EXPR can be
1455 NULL, if the final expression is empty. Build up a TARGET_EXPR so
1456 that the result value can be safely returned to the enclosing
1457 expression. */
1458
1459 tree
1460 finish_stmt_expr_expr (tree expr, tree stmt_expr)
1461 {
1462 tree result = NULL_TREE;
1463
1464 if (expr)
1465 {
1466 if (!processing_template_decl && !VOID_TYPE_P (TREE_TYPE (expr)))
1467 {
1468 tree type = TREE_TYPE (expr);
1469
1470 if (TREE_CODE (type) == ARRAY_TYPE
1471 || TREE_CODE (type) == FUNCTION_TYPE)
1472 expr = decay_conversion (expr);
1473
1474 expr = convert_from_reference (expr);
1475 expr = require_complete_type (expr);
1476
1477 type = TREE_TYPE (expr);
1478
1479 /* Build a TARGET_EXPR for this aggregate. finish_stmt_expr
1480 will then pull it apart so the lifetime of the target is
1481 within the scope of the expression containing this statement
1482 expression. */
1483 if (TREE_CODE (expr) == TARGET_EXPR)
1484 ;
1485 else if (!IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_INIT_REF (type))
1486 expr = build_target_expr_with_type (expr, type);
1487 else
1488 {
1489 /* Copy construct. */
1490 expr = build_special_member_call
1491 (NULL_TREE, complete_ctor_identifier,
1492 build_tree_list (NULL_TREE, expr),
1493 type, LOOKUP_NORMAL);
1494 expr = build_cplus_new (type, expr);
1495 my_friendly_assert (TREE_CODE (expr) == TARGET_EXPR, 20030729);
1496 }
1497 }
1498
1499 if (expr != error_mark_node)
1500 {
1501 result = build_stmt (EXPR_STMT, expr);
1502 EXPR_STMT_STMT_EXPR_RESULT (result) = 1;
1503 add_stmt (result);
1504 }
1505 }
1506
1507 finish_stmt ();
1508
1509 /* Remember the last expression so that finish_stmt_expr
1510 can pull it apart. */
1511 TREE_TYPE (stmt_expr) = result;
1512
1513 return result;
1514 }
1515
1516 /* Finish a statement-expression. EXPR should be the value returned
1517 by the previous begin_stmt_expr. Returns an expression
1518 representing the statement-expression. */
1519
1520 tree
1521 finish_stmt_expr (tree stmt_expr, bool has_no_scope)
1522 {
1523 tree result, result_stmt, type;
1524 tree *result_stmt_p = NULL;
1525
1526 result_stmt = TREE_TYPE (stmt_expr);
1527 TREE_TYPE (stmt_expr) = void_type_node;
1528 result = pop_stmt_list (stmt_expr);
1529
1530 if (!result_stmt || VOID_TYPE_P (result_stmt))
1531 type = void_type_node;
1532 else
1533 {
1534 /* We need to search the statement expression for the result_stmt,
1535 since we'll need to replace it entirely. */
1536 tree t;
1537 result_stmt_p = &result;
1538 while (1)
1539 {
1540 t = *result_stmt_p;
1541 if (t == result_stmt)
1542 break;
1543
1544 switch (TREE_CODE (t))
1545 {
1546 case STATEMENT_LIST:
1547 {
1548 tree_stmt_iterator i = tsi_last (t);
1549 result_stmt_p = tsi_stmt_ptr (i);
1550 break;
1551 }
1552 case BIND_EXPR:
1553 result_stmt_p = &BIND_EXPR_BODY (t);
1554 break;
1555 case TRY_FINALLY_EXPR:
1556 case TRY_CATCH_EXPR:
1557 case CLEANUP_STMT:
1558 result_stmt_p = &TREE_OPERAND (t, 0);
1559 break;
1560 default:
1561 abort ();
1562 }
1563 }
1564 type = TREE_TYPE (EXPR_STMT_EXPR (result_stmt));
1565 }
1566
1567 if (processing_template_decl)
1568 {
1569 result = build_min (STMT_EXPR, type, result);
1570 TREE_SIDE_EFFECTS (result) = 1;
1571 STMT_EXPR_NO_SCOPE (result) = has_no_scope;
1572 }
1573 else if (!VOID_TYPE_P (type))
1574 {
1575 /* Pull out the TARGET_EXPR that is the final expression. Put
1576 the target's init_expr as the final expression and then put
1577 the statement expression itself as the target's init
1578 expr. Finally, return the target expression. */
1579 tree init, target_expr = EXPR_STMT_EXPR (result_stmt);
1580 my_friendly_assert (TREE_CODE (target_expr) == TARGET_EXPR, 20030729);
1581
1582 /* The initializer will be void if the initialization is done by
1583 AGGR_INIT_EXPR; propagate that out to the statement-expression as
1584 a whole. */
1585 init = TREE_OPERAND (target_expr, 1);
1586 type = TREE_TYPE (init);
1587
1588 init = maybe_cleanup_point_expr (init);
1589 *result_stmt_p = init;
1590
1591 if (VOID_TYPE_P (type))
1592 /* No frobbing needed. */;
1593 else if (TREE_CODE (result) == BIND_EXPR)
1594 {
1595 /* The BIND_EXPR created in finish_compound_stmt is void; if we're
1596 returning a value directly, give it the appropriate type. */
1597 if (VOID_TYPE_P (TREE_TYPE (result)))
1598 TREE_TYPE (result) = type;
1599 else if (same_type_p (TREE_TYPE (result), type))
1600 ;
1601 else
1602 abort ();
1603 }
1604 else if (TREE_CODE (result) == STATEMENT_LIST)
1605 /* We need to wrap a STATEMENT_LIST in a BIND_EXPR so it can have a
1606 type other than void. FIXME why can't we just return a value
1607 from STATEMENT_LIST? */
1608 result = build3 (BIND_EXPR, type, NULL, result, NULL);
1609
1610 TREE_OPERAND (target_expr, 1) = result;
1611 result = target_expr;
1612 }
1613
1614 return result;
1615 }
1616
1617 /* Perform Koenig lookup. FN is the postfix-expression representing
1618 the function (or functions) to call; ARGS are the arguments to the
1619 call. Returns the functions to be considered by overload
1620 resolution. */
1621
1622 tree
1623 perform_koenig_lookup (tree fn, tree args)
1624 {
1625 tree identifier = NULL_TREE;
1626 tree functions = NULL_TREE;
1627
1628 /* Find the name of the overloaded function. */
1629 if (TREE_CODE (fn) == IDENTIFIER_NODE)
1630 identifier = fn;
1631 else if (is_overloaded_fn (fn))
1632 {
1633 functions = fn;
1634 identifier = DECL_NAME (get_first_fn (functions));
1635 }
1636 else if (DECL_P (fn))
1637 {
1638 functions = fn;
1639 identifier = DECL_NAME (fn);
1640 }
1641
1642 /* A call to a namespace-scope function using an unqualified name.
1643
1644 Do Koenig lookup -- unless any of the arguments are
1645 type-dependent. */
1646 if (!any_type_dependent_arguments_p (args))
1647 {
1648 fn = lookup_arg_dependent (identifier, functions, args);
1649 if (!fn)
1650 /* The unqualified name could not be resolved. */
1651 fn = unqualified_fn_lookup_error (identifier);
1652 }
1653 else
1654 fn = identifier;
1655
1656 return fn;
1657 }
1658
1659 /* Generate an expression for `FN (ARGS)'.
1660
1661 If DISALLOW_VIRTUAL is true, the call to FN will be not generated
1662 as a virtual call, even if FN is virtual. (This flag is set when
1663 encountering an expression where the function name is explicitly
1664 qualified. For example a call to `X::f' never generates a virtual
1665 call.)
1666
1667 Returns code for the call. */
1668
1669 tree
1670 finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
1671 {
1672 tree result;
1673 tree orig_fn;
1674 tree orig_args;
1675
1676 if (fn == error_mark_node || args == error_mark_node)
1677 return error_mark_node;
1678
1679 /* ARGS should be a list of arguments. */
1680 my_friendly_assert (!args || TREE_CODE (args) == TREE_LIST,
1681 20020712);
1682
1683 orig_fn = fn;
1684 orig_args = args;
1685
1686 if (processing_template_decl)
1687 {
1688 if (type_dependent_expression_p (fn)
1689 || any_type_dependent_arguments_p (args))
1690 {
1691 result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
1692 KOENIG_LOOKUP_P (result) = koenig_p;
1693 return result;
1694 }
1695 if (!BASELINK_P (fn)
1696 && TREE_CODE (fn) != PSEUDO_DTOR_EXPR
1697 && TREE_TYPE (fn) != unknown_type_node)
1698 fn = build_non_dependent_expr (fn);
1699 args = build_non_dependent_args (orig_args);
1700 }
1701
1702 /* A reference to a member function will appear as an overloaded
1703 function (rather than a BASELINK) if an unqualified name was used
1704 to refer to it. */
1705 if (!BASELINK_P (fn) && is_overloaded_fn (fn))
1706 {
1707 tree f = fn;
1708
1709 if (TREE_CODE (f) == TEMPLATE_ID_EXPR)
1710 f = TREE_OPERAND (f, 0);
1711 f = get_first_fn (f);
1712 if (DECL_FUNCTION_MEMBER_P (f))
1713 {
1714 tree type = currently_open_derived_class (DECL_CONTEXT (f));
1715 if (!type)
1716 type = DECL_CONTEXT (f);
1717 fn = build_baselink (TYPE_BINFO (type),
1718 TYPE_BINFO (type),
1719 fn, /*optype=*/NULL_TREE);
1720 }
1721 }
1722
1723 result = NULL_TREE;
1724 if (BASELINK_P (fn))
1725 {
1726 tree object;
1727
1728 /* A call to a member function. From [over.call.func]:
1729
1730 If the keyword this is in scope and refers to the class of
1731 that member function, or a derived class thereof, then the
1732 function call is transformed into a qualified function call
1733 using (*this) as the postfix-expression to the left of the
1734 . operator.... [Otherwise] a contrived object of type T
1735 becomes the implied object argument.
1736
1737 This paragraph is unclear about this situation:
1738
1739 struct A { void f(); };
1740 struct B : public A {};
1741 struct C : public A { void g() { B::f(); }};
1742
1743 In particular, for `B::f', this paragraph does not make clear
1744 whether "the class of that member function" refers to `A' or
1745 to `B'. We believe it refers to `B'. */
1746 if (current_class_type
1747 && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1748 current_class_type)
1749 && current_class_ref)
1750 object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1751 NULL);
1752 else
1753 {
1754 tree representative_fn;
1755
1756 representative_fn = BASELINK_FUNCTIONS (fn);
1757 if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
1758 representative_fn = TREE_OPERAND (representative_fn, 0);
1759 representative_fn = get_first_fn (representative_fn);
1760 object = build_dummy_object (DECL_CONTEXT (representative_fn));
1761 }
1762
1763 if (processing_template_decl)
1764 {
1765 if (type_dependent_expression_p (object))
1766 return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
1767 object = build_non_dependent_expr (object);
1768 }
1769
1770 result = build_new_method_call (object, fn, args, NULL_TREE,
1771 (disallow_virtual
1772 ? LOOKUP_NONVIRTUAL : 0));
1773 }
1774 else if (is_overloaded_fn (fn))
1775 /* A call to a namespace-scope function. */
1776 result = build_new_function_call (fn, args);
1777 else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
1778 {
1779 if (args)
1780 error ("arguments to destructor are not allowed");
1781 /* Mark the pseudo-destructor call as having side-effects so
1782 that we do not issue warnings about its use. */
1783 result = build1 (NOP_EXPR,
1784 void_type_node,
1785 TREE_OPERAND (fn, 0));
1786 TREE_SIDE_EFFECTS (result) = 1;
1787 }
1788 else if (CLASS_TYPE_P (TREE_TYPE (fn)))
1789 /* If the "function" is really an object of class type, it might
1790 have an overloaded `operator ()'. */
1791 result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
1792 /*overloaded_p=*/NULL);
1793 if (!result)
1794 /* A call where the function is unknown. */
1795 result = build_function_call (fn, args);
1796
1797 if (processing_template_decl)
1798 {
1799 result = build (CALL_EXPR, TREE_TYPE (result), orig_fn,
1800 orig_args, NULL_TREE);
1801 KOENIG_LOOKUP_P (result) = koenig_p;
1802 }
1803 return result;
1804 }
1805
1806 /* Finish a call to a postfix increment or decrement or EXPR. (Which
1807 is indicated by CODE, which should be POSTINCREMENT_EXPR or
1808 POSTDECREMENT_EXPR.) */
1809
1810 tree
1811 finish_increment_expr (tree expr, enum tree_code code)
1812 {
1813 return build_x_unary_op (code, expr);
1814 }
1815
1816 /* Finish a use of `this'. Returns an expression for `this'. */
1817
1818 tree
1819 finish_this_expr (void)
1820 {
1821 tree result;
1822
1823 if (current_class_ptr)
1824 {
1825 result = current_class_ptr;
1826 }
1827 else if (current_function_decl
1828 && DECL_STATIC_FUNCTION_P (current_function_decl))
1829 {
1830 error ("`this' is unavailable for static member functions");
1831 result = error_mark_node;
1832 }
1833 else
1834 {
1835 if (current_function_decl)
1836 error ("invalid use of `this' in non-member function");
1837 else
1838 error ("invalid use of `this' at top level");
1839 result = error_mark_node;
1840 }
1841
1842 return result;
1843 }
1844
1845 /* Finish a pseudo-destructor expression. If SCOPE is NULL, the
1846 expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
1847 the TYPE for the type given. If SCOPE is non-NULL, the expression
1848 was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
1849
1850 tree
1851 finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
1852 {
1853 if (destructor == error_mark_node)
1854 return error_mark_node;
1855
1856 my_friendly_assert (TYPE_P (destructor), 20010905);
1857
1858 if (!processing_template_decl)
1859 {
1860 if (scope == error_mark_node)
1861 {
1862 error ("invalid qualifying scope in pseudo-destructor name");
1863 return error_mark_node;
1864 }
1865
1866 /* [expr.pseudo] says both:
1867
1868 The type designated by the pseudo-destructor-name shall be
1869 the same as the object type.
1870
1871 and:
1872
1873 The cv-unqualified versions of the object type and of the
1874 type designated by the pseudo-destructor-name shall be the
1875 same type.
1876
1877 We implement the more generous second sentence, since that is
1878 what most other compilers do. */
1879 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
1880 destructor))
1881 {
1882 error ("`%E' is not of type `%T'", object, destructor);
1883 return error_mark_node;
1884 }
1885 }
1886
1887 return build (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
1888 }
1889
1890 /* Finish an expression of the form CODE EXPR. */
1891
1892 tree
1893 finish_unary_op_expr (enum tree_code code, tree expr)
1894 {
1895 tree result = build_x_unary_op (code, expr);
1896 /* Inside a template, build_x_unary_op does not fold the
1897 expression. So check whether the result is folded before
1898 setting TREE_NEGATED_INT. */
1899 if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
1900 && TREE_CODE (result) == INTEGER_CST
1901 && !TYPE_UNSIGNED (TREE_TYPE (result))
1902 && INT_CST_LT (result, integer_zero_node))
1903 TREE_NEGATED_INT (result) = 1;
1904 overflow_warning (result);
1905 return result;
1906 }
1907
1908 /* Finish a compound-literal expression. TYPE is the type to which
1909 the INITIALIZER_LIST is being cast. */
1910
1911 tree
1912 finish_compound_literal (tree type, tree initializer_list)
1913 {
1914 tree compound_literal;
1915
1916 /* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
1917 compound_literal = build_constructor (NULL_TREE, initializer_list);
1918 /* Mark it as a compound-literal. */
1919 TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
1920 if (processing_template_decl)
1921 TREE_TYPE (compound_literal) = type;
1922 else
1923 {
1924 /* Check the initialization. */
1925 compound_literal = digest_init (type, compound_literal, NULL);
1926 /* If the TYPE was an array type with an unknown bound, then we can
1927 figure out the dimension now. For example, something like:
1928
1929 `(int []) { 2, 3 }'
1930
1931 implies that the array has two elements. */
1932 if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
1933 complete_array_type (type, compound_literal, 1);
1934 }
1935
1936 return compound_literal;
1937 }
1938
1939 /* Return the declaration for the function-name variable indicated by
1940 ID. */
1941
1942 tree
1943 finish_fname (tree id)
1944 {
1945 tree decl;
1946
1947 decl = fname_decl (C_RID_CODE (id), id);
1948 if (processing_template_decl)
1949 decl = DECL_NAME (decl);
1950 return decl;
1951 }
1952
1953 /* Finish a translation unit. */
1954
1955 void
1956 finish_translation_unit (void)
1957 {
1958 /* In case there were missing closebraces,
1959 get us back to the global binding level. */
1960 pop_everything ();
1961 while (current_namespace != global_namespace)
1962 pop_namespace ();
1963
1964 /* Do file scope __FUNCTION__ et al. */
1965 finish_fname_decls ();
1966 }
1967
1968 /* Finish a template type parameter, specified as AGGR IDENTIFIER.
1969 Returns the parameter. */
1970
1971 tree
1972 finish_template_type_parm (tree aggr, tree identifier)
1973 {
1974 if (aggr != class_type_node)
1975 {
1976 pedwarn ("template type parameters must use the keyword `class' or `typename'");
1977 aggr = class_type_node;
1978 }
1979
1980 return build_tree_list (aggr, identifier);
1981 }
1982
1983 /* Finish a template template parameter, specified as AGGR IDENTIFIER.
1984 Returns the parameter. */
1985
1986 tree
1987 finish_template_template_parm (tree aggr, tree identifier)
1988 {
1989 tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
1990 tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
1991 DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
1992 DECL_TEMPLATE_RESULT (tmpl) = decl;
1993 DECL_ARTIFICIAL (decl) = 1;
1994 end_template_decl ();
1995
1996 my_friendly_assert (DECL_TEMPLATE_PARMS (tmpl), 20010110);
1997
1998 return finish_template_type_parm (aggr, tmpl);
1999 }
2000
2001 /* ARGUMENT is the default-argument value for a template template
2002 parameter. If ARGUMENT is invalid, issue error messages and return
2003 the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
2004
2005 tree
2006 check_template_template_default_arg (tree argument)
2007 {
2008 if (TREE_CODE (argument) != TEMPLATE_DECL
2009 && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
2010 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
2011 {
2012 if (TREE_CODE (argument) == TYPE_DECL)
2013 {
2014 tree t = TREE_TYPE (argument);
2015
2016 /* Try to emit a slightly smarter error message if we detect
2017 that the user is using a template instantiation. */
2018 if (CLASSTYPE_TEMPLATE_INFO (t)
2019 && CLASSTYPE_TEMPLATE_INSTANTIATION (t))
2020 error ("invalid use of type `%T' as a default value for a "
2021 "template template-parameter", t);
2022 else
2023 error ("invalid use of `%D' as a default value for a template "
2024 "template-parameter", argument);
2025 }
2026 else
2027 error ("invalid default argument for a template template parameter");
2028 return error_mark_node;
2029 }
2030
2031 return argument;
2032 }
2033
2034 /* Begin a class definition, as indicated by T. */
2035
2036 tree
2037 begin_class_definition (tree t)
2038 {
2039 if (t == error_mark_node)
2040 return error_mark_node;
2041
2042 if (processing_template_parmlist)
2043 {
2044 error ("definition of `%#T' inside template parameter list", t);
2045 return error_mark_node;
2046 }
2047 /* A non-implicit typename comes from code like:
2048
2049 template <typename T> struct A {
2050 template <typename U> struct A<T>::B ...
2051
2052 This is erroneous. */
2053 else if (TREE_CODE (t) == TYPENAME_TYPE)
2054 {
2055 error ("invalid definition of qualified type `%T'", t);
2056 t = error_mark_node;
2057 }
2058
2059 if (t == error_mark_node || ! IS_AGGR_TYPE (t))
2060 {
2061 t = make_aggr_type (RECORD_TYPE);
2062 pushtag (make_anon_name (), t, 0);
2063 }
2064
2065 /* If this type was already complete, and we see another definition,
2066 that's an error. */
2067 if (COMPLETE_TYPE_P (t))
2068 {
2069 error ("redefinition of `%#T'", t);
2070 cp_error_at ("previous definition of `%#T'", t);
2071 return error_mark_node;
2072 }
2073
2074 /* Update the location of the decl. */
2075 DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
2076
2077 if (TYPE_BEING_DEFINED (t))
2078 {
2079 t = make_aggr_type (TREE_CODE (t));
2080 pushtag (TYPE_IDENTIFIER (t), t, 0);
2081 }
2082 maybe_process_partial_specialization (t);
2083 pushclass (t);
2084 TYPE_BEING_DEFINED (t) = 1;
2085 if (flag_pack_struct)
2086 {
2087 tree v;
2088 TYPE_PACKED (t) = 1;
2089 /* Even though the type is being defined for the first time
2090 here, there might have been a forward declaration, so there
2091 might be cv-qualified variants of T. */
2092 for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
2093 TYPE_PACKED (v) = 1;
2094 }
2095 /* Reset the interface data, at the earliest possible
2096 moment, as it might have been set via a class foo;
2097 before. */
2098 if (! TYPE_ANONYMOUS_P (t))
2099 {
2100 CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
2101 SET_CLASSTYPE_INTERFACE_UNKNOWN_X
2102 (t, interface_unknown);
2103 }
2104 reset_specialization();
2105
2106 /* Make a declaration for this class in its own scope. */
2107 build_self_reference ();
2108
2109 return t;
2110 }
2111
2112 /* Finish the member declaration given by DECL. */
2113
2114 void
2115 finish_member_declaration (tree decl)
2116 {
2117 if (decl == error_mark_node || decl == NULL_TREE)
2118 return;
2119
2120 if (decl == void_type_node)
2121 /* The COMPONENT was a friend, not a member, and so there's
2122 nothing for us to do. */
2123 return;
2124
2125 /* We should see only one DECL at a time. */
2126 my_friendly_assert (TREE_CHAIN (decl) == NULL_TREE, 0);
2127
2128 /* Set up access control for DECL. */
2129 TREE_PRIVATE (decl)
2130 = (current_access_specifier == access_private_node);
2131 TREE_PROTECTED (decl)
2132 = (current_access_specifier == access_protected_node);
2133 if (TREE_CODE (decl) == TEMPLATE_DECL)
2134 {
2135 TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
2136 TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
2137 }
2138
2139 /* Mark the DECL as a member of the current class. */
2140 DECL_CONTEXT (decl) = current_class_type;
2141
2142 /* [dcl.link]
2143
2144 A C language linkage is ignored for the names of class members
2145 and the member function type of class member functions. */
2146 if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
2147 SET_DECL_LANGUAGE (decl, lang_cplusplus);
2148
2149 /* Put functions on the TYPE_METHODS list and everything else on the
2150 TYPE_FIELDS list. Note that these are built up in reverse order.
2151 We reverse them (to obtain declaration order) in finish_struct. */
2152 if (TREE_CODE (decl) == FUNCTION_DECL
2153 || DECL_FUNCTION_TEMPLATE_P (decl))
2154 {
2155 /* We also need to add this function to the
2156 CLASSTYPE_METHOD_VEC. */
2157 add_method (current_class_type, decl);
2158
2159 TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
2160 TYPE_METHODS (current_class_type) = decl;
2161
2162 maybe_add_class_template_decl_list (current_class_type, decl,
2163 /*friend_p=*/0);
2164 }
2165 /* Enter the DECL into the scope of the class. */
2166 else if ((TREE_CODE (decl) == USING_DECL && TREE_TYPE (decl))
2167 || pushdecl_class_level (decl))
2168 {
2169 /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
2170 go at the beginning. The reason is that lookup_field_1
2171 searches the list in order, and we want a field name to
2172 override a type name so that the "struct stat hack" will
2173 work. In particular:
2174
2175 struct S { enum E { }; int E } s;
2176 s.E = 3;
2177
2178 is valid. In addition, the FIELD_DECLs must be maintained in
2179 declaration order so that class layout works as expected.
2180 However, we don't need that order until class layout, so we
2181 save a little time by putting FIELD_DECLs on in reverse order
2182 here, and then reversing them in finish_struct_1. (We could
2183 also keep a pointer to the correct insertion points in the
2184 list.) */
2185
2186 if (TREE_CODE (decl) == TYPE_DECL)
2187 TYPE_FIELDS (current_class_type)
2188 = chainon (TYPE_FIELDS (current_class_type), decl);
2189 else
2190 {
2191 TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
2192 TYPE_FIELDS (current_class_type) = decl;
2193 }
2194
2195 maybe_add_class_template_decl_list (current_class_type, decl,
2196 /*friend_p=*/0);
2197 }
2198 }
2199
2200 /* Finish processing a complete template declaration. The PARMS are
2201 the template parameters. */
2202
2203 void
2204 finish_template_decl (tree parms)
2205 {
2206 if (parms)
2207 end_template_decl ();
2208 else
2209 end_specialization ();
2210 }
2211
2212 /* Finish processing a template-id (which names a type) of the form
2213 NAME < ARGS >. Return the TYPE_DECL for the type named by the
2214 template-id. If ENTERING_SCOPE is nonzero we are about to enter
2215 the scope of template-id indicated. */
2216
2217 tree
2218 finish_template_type (tree name, tree args, int entering_scope)
2219 {
2220 tree decl;
2221
2222 decl = lookup_template_class (name, args,
2223 NULL_TREE, NULL_TREE, entering_scope,
2224 tf_error | tf_warning | tf_user);
2225 if (decl != error_mark_node)
2226 decl = TYPE_STUB_DECL (decl);
2227
2228 return decl;
2229 }
2230
2231 /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
2232 Return a TREE_LIST containing the ACCESS_SPECIFIER and the
2233 BASE_CLASS, or NULL_TREE if an error occurred. The
2234 ACCESS_SPECIFIER is one of
2235 access_{default,public,protected_private}_node. For a virtual base
2236 we set TREE_TYPE. */
2237
2238 tree
2239 finish_base_specifier (tree base, tree access, bool virtual_p)
2240 {
2241 tree result;
2242
2243 if (base == error_mark_node)
2244 {
2245 error ("invalid base-class specification");
2246 result = NULL_TREE;
2247 }
2248 else if (! is_aggr_type (base, 1))
2249 result = NULL_TREE;
2250 else
2251 {
2252 if (cp_type_quals (base) != 0)
2253 {
2254 error ("base class `%T' has cv qualifiers", base);
2255 base = TYPE_MAIN_VARIANT (base);
2256 }
2257 result = build_tree_list (access, base);
2258 if (virtual_p)
2259 TREE_TYPE (result) = integer_type_node;
2260 }
2261
2262 return result;
2263 }
2264
2265 /* Called when multiple declarators are processed. If that is not
2266 permitted in this context, an error is issued. */
2267
2268 void
2269 check_multiple_declarators (void)
2270 {
2271 /* [temp]
2272
2273 In a template-declaration, explicit specialization, or explicit
2274 instantiation the init-declarator-list in the declaration shall
2275 contain at most one declarator.
2276
2277 We don't just use PROCESSING_TEMPLATE_DECL for the first
2278 condition since that would disallow the perfectly valid code,
2279 like `template <class T> struct S { int i, j; };'. */
2280 if (at_function_scope_p ())
2281 /* It's OK to write `template <class T> void f() { int i, j;}'. */
2282 return;
2283
2284 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
2285 || processing_explicit_instantiation
2286 || processing_specialization)
2287 error ("multiple declarators in template declaration");
2288 }
2289
2290 /* Issue a diagnostic that NAME cannot be found in SCOPE. */
2291
2292 void
2293 qualified_name_lookup_error (tree scope, tree name)
2294 {
2295 if (TYPE_P (scope))
2296 {
2297 if (!COMPLETE_TYPE_P (scope))
2298 error ("incomplete type `%T' used in nested name specifier", scope);
2299 else
2300 error ("`%D' is not a member of `%T'", name, scope);
2301 }
2302 else if (scope != global_namespace)
2303 error ("`%D' is not a member of `%D'", name, scope);
2304 else
2305 error ("`::%D' has not been declared", name);
2306 }
2307
2308 /* ID_EXPRESSION is a representation of parsed, but unprocessed,
2309 id-expression. (See cp_parser_id_expression for details.) SCOPE,
2310 if non-NULL, is the type or namespace used to explicitly qualify
2311 ID_EXPRESSION. DECL is the entity to which that name has been
2312 resolved.
2313
2314 *CONSTANT_EXPRESSION_P is true if we are presently parsing a
2315 constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
2316 be set to true if this expression isn't permitted in a
2317 constant-expression, but it is otherwise not set by this function.
2318 *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
2319 constant-expression, but a non-constant expression is also
2320 permissible.
2321
2322 If an error occurs, and it is the kind of error that might cause
2323 the parser to abort a tentative parse, *ERROR_MSG is filled in. It
2324 is the caller's responsibility to issue the message. *ERROR_MSG
2325 will be a string with static storage duration, so the caller need
2326 not "free" it.
2327
2328 Return an expression for the entity, after issuing appropriate
2329 diagnostics. This function is also responsible for transforming a
2330 reference to a non-static member into a COMPONENT_REF that makes
2331 the use of "this" explicit.
2332
2333 Upon return, *IDK will be filled in appropriately. */
2334
2335 tree
2336 finish_id_expression (tree id_expression,
2337 tree decl,
2338 tree scope,
2339 cp_id_kind *idk,
2340 tree *qualifying_class,
2341 bool integral_constant_expression_p,
2342 bool allow_non_integral_constant_expression_p,
2343 bool *non_integral_constant_expression_p,
2344 const char **error_msg)
2345 {
2346 /* Initialize the output parameters. */
2347 *idk = CP_ID_KIND_NONE;
2348 *error_msg = NULL;
2349
2350 if (id_expression == error_mark_node)
2351 return error_mark_node;
2352 /* If we have a template-id, then no further lookup is
2353 required. If the template-id was for a template-class, we
2354 will sometimes have a TYPE_DECL at this point. */
2355 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2356 || TREE_CODE (decl) == TYPE_DECL)
2357 ;
2358 /* Look up the name. */
2359 else
2360 {
2361 if (decl == error_mark_node)
2362 {
2363 /* Name lookup failed. */
2364 if (scope
2365 && (!TYPE_P (scope)
2366 || (!dependent_type_p (scope)
2367 && !(TREE_CODE (id_expression) == IDENTIFIER_NODE
2368 && IDENTIFIER_TYPENAME_P (id_expression)
2369 && dependent_type_p (TREE_TYPE (id_expression))))))
2370 {
2371 /* If the qualifying type is non-dependent (and the name
2372 does not name a conversion operator to a dependent
2373 type), issue an error. */
2374 qualified_name_lookup_error (scope, id_expression);
2375 return error_mark_node;
2376 }
2377 else if (!scope)
2378 {
2379 /* It may be resolved via Koenig lookup. */
2380 *idk = CP_ID_KIND_UNQUALIFIED;
2381 return id_expression;
2382 }
2383 else
2384 decl = id_expression;
2385 }
2386 /* If DECL is a variable that would be out of scope under
2387 ANSI/ISO rules, but in scope in the ARM, name lookup
2388 will succeed. Issue a diagnostic here. */
2389 else
2390 decl = check_for_out_of_scope_variable (decl);
2391
2392 /* Remember that the name was used in the definition of
2393 the current class so that we can check later to see if
2394 the meaning would have been different after the class
2395 was entirely defined. */
2396 if (!scope && decl != error_mark_node)
2397 maybe_note_name_used_in_class (id_expression, decl);
2398 }
2399
2400 /* If we didn't find anything, or what we found was a type,
2401 then this wasn't really an id-expression. */
2402 if (TREE_CODE (decl) == TEMPLATE_DECL
2403 && !DECL_FUNCTION_TEMPLATE_P (decl))
2404 {
2405 *error_msg = "missing template arguments";
2406 return error_mark_node;
2407 }
2408 else if (TREE_CODE (decl) == TYPE_DECL
2409 || TREE_CODE (decl) == NAMESPACE_DECL)
2410 {
2411 *error_msg = "expected primary-expression";
2412 return error_mark_node;
2413 }
2414
2415 /* If the name resolved to a template parameter, there is no
2416 need to look it up again later. */
2417 if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
2418 || TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2419 {
2420 *idk = CP_ID_KIND_NONE;
2421 if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2422 decl = TEMPLATE_PARM_DECL (decl);
2423 if (integral_constant_expression_p
2424 && !dependent_type_p (TREE_TYPE (decl))
2425 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl)))
2426 {
2427 if (!allow_non_integral_constant_expression_p)
2428 error ("template parameter `%D' of type `%T' is not allowed in "
2429 "an integral constant expression because it is not of "
2430 "integral or enumeration type", decl, TREE_TYPE (decl));
2431 *non_integral_constant_expression_p = true;
2432 }
2433 return DECL_INITIAL (decl);
2434 }
2435 /* Similarly, we resolve enumeration constants to their
2436 underlying values. */
2437 else if (TREE_CODE (decl) == CONST_DECL)
2438 {
2439 *idk = CP_ID_KIND_NONE;
2440 if (!processing_template_decl)
2441 return DECL_INITIAL (decl);
2442 return decl;
2443 }
2444 else
2445 {
2446 bool dependent_p;
2447
2448 /* If the declaration was explicitly qualified indicate
2449 that. The semantics of `A::f(3)' are different than
2450 `f(3)' if `f' is virtual. */
2451 *idk = (scope
2452 ? CP_ID_KIND_QUALIFIED
2453 : (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2454 ? CP_ID_KIND_TEMPLATE_ID
2455 : CP_ID_KIND_UNQUALIFIED));
2456
2457
2458 /* [temp.dep.expr]
2459
2460 An id-expression is type-dependent if it contains an
2461 identifier that was declared with a dependent type.
2462
2463 The standard is not very specific about an id-expression that
2464 names a set of overloaded functions. What if some of them
2465 have dependent types and some of them do not? Presumably,
2466 such a name should be treated as a dependent name. */
2467 /* Assume the name is not dependent. */
2468 dependent_p = false;
2469 if (!processing_template_decl)
2470 /* No names are dependent outside a template. */
2471 ;
2472 /* A template-id where the name of the template was not resolved
2473 is definitely dependent. */
2474 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2475 && (TREE_CODE (TREE_OPERAND (decl, 0))
2476 == IDENTIFIER_NODE))
2477 dependent_p = true;
2478 /* For anything except an overloaded function, just check its
2479 type. */
2480 else if (!is_overloaded_fn (decl))
2481 dependent_p
2482 = dependent_type_p (TREE_TYPE (decl));
2483 /* For a set of overloaded functions, check each of the
2484 functions. */
2485 else
2486 {
2487 tree fns = decl;
2488
2489 if (BASELINK_P (fns))
2490 fns = BASELINK_FUNCTIONS (fns);
2491
2492 /* For a template-id, check to see if the template
2493 arguments are dependent. */
2494 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
2495 {
2496 tree args = TREE_OPERAND (fns, 1);
2497 dependent_p = any_dependent_template_arguments_p (args);
2498 /* The functions are those referred to by the
2499 template-id. */
2500 fns = TREE_OPERAND (fns, 0);
2501 }
2502
2503 /* If there are no dependent template arguments, go through
2504 the overloaded functions. */
2505 while (fns && !dependent_p)
2506 {
2507 tree fn = OVL_CURRENT (fns);
2508
2509 /* Member functions of dependent classes are
2510 dependent. */
2511 if (TREE_CODE (fn) == FUNCTION_DECL
2512 && type_dependent_expression_p (fn))
2513 dependent_p = true;
2514 else if (TREE_CODE (fn) == TEMPLATE_DECL
2515 && dependent_template_p (fn))
2516 dependent_p = true;
2517
2518 fns = OVL_NEXT (fns);
2519 }
2520 }
2521
2522 /* If the name was dependent on a template parameter, we will
2523 resolve the name at instantiation time. */
2524 if (dependent_p)
2525 {
2526 /* Create a SCOPE_REF for qualified names, if the scope is
2527 dependent. */
2528 if (scope)
2529 {
2530 if (TYPE_P (scope))
2531 *qualifying_class = scope;
2532 /* Since this name was dependent, the expression isn't
2533 constant -- yet. No error is issued because it might
2534 be constant when things are instantiated. */
2535 if (integral_constant_expression_p)
2536 *non_integral_constant_expression_p = true;
2537 if (TYPE_P (scope) && dependent_type_p (scope))
2538 return build_nt (SCOPE_REF, scope, id_expression);
2539 else if (TYPE_P (scope) && DECL_P (decl))
2540 return build (SCOPE_REF, TREE_TYPE (decl), scope,
2541 id_expression);
2542 else
2543 return decl;
2544 }
2545 /* A TEMPLATE_ID already contains all the information we
2546 need. */
2547 if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
2548 return id_expression;
2549 /* Since this name was dependent, the expression isn't
2550 constant -- yet. No error is issued because it might be
2551 constant when things are instantiated. */
2552 if (integral_constant_expression_p)
2553 *non_integral_constant_expression_p = true;
2554 *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
2555 /* If we found a variable, then name lookup during the
2556 instantiation will always resolve to the same VAR_DECL
2557 (or an instantiation thereof). */
2558 if (TREE_CODE (decl) == VAR_DECL
2559 || TREE_CODE (decl) == PARM_DECL)
2560 return decl;
2561 return id_expression;
2562 }
2563
2564 /* Only certain kinds of names are allowed in constant
2565 expression. Enumerators and template parameters
2566 have already been handled above. */
2567 if (integral_constant_expression_p)
2568 {
2569 /* Const variables or static data members of integral or
2570 enumeration types initialized with constant expressions
2571 are OK. */
2572 if (TREE_CODE (decl) == VAR_DECL
2573 && CP_TYPE_CONST_P (TREE_TYPE (decl))
2574 && INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl))
2575 && DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2576 ;
2577 else
2578 {
2579 if (!allow_non_integral_constant_expression_p)
2580 {
2581 error ("`%D' cannot appear in a constant-expression", decl);
2582 return error_mark_node;
2583 }
2584 *non_integral_constant_expression_p = true;
2585 }
2586 }
2587
2588 if (TREE_CODE (decl) == NAMESPACE_DECL)
2589 {
2590 error ("use of namespace `%D' as expression", decl);
2591 return error_mark_node;
2592 }
2593 else if (DECL_CLASS_TEMPLATE_P (decl))
2594 {
2595 error ("use of class template `%T' as expression", decl);
2596 return error_mark_node;
2597 }
2598 else if (TREE_CODE (decl) == TREE_LIST)
2599 {
2600 /* Ambiguous reference to base members. */
2601 error ("request for member `%D' is ambiguous in "
2602 "multiple inheritance lattice", id_expression);
2603 print_candidates (decl);
2604 return error_mark_node;
2605 }
2606
2607 /* Mark variable-like entities as used. Functions are similarly
2608 marked either below or after overload resolution. */
2609 if (TREE_CODE (decl) == VAR_DECL
2610 || TREE_CODE (decl) == PARM_DECL
2611 || TREE_CODE (decl) == RESULT_DECL)
2612 mark_used (decl);
2613
2614 if (scope)
2615 {
2616 decl = (adjust_result_of_qualified_name_lookup
2617 (decl, scope, current_class_type));
2618
2619 if (TREE_CODE (decl) == FUNCTION_DECL)
2620 mark_used (decl);
2621
2622 if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
2623 *qualifying_class = scope;
2624 else if (!processing_template_decl)
2625 decl = convert_from_reference (decl);
2626 else if (TYPE_P (scope))
2627 decl = build (SCOPE_REF, TREE_TYPE (decl), scope, decl);
2628 }
2629 else if (TREE_CODE (decl) == FIELD_DECL)
2630 decl = finish_non_static_data_member (decl, current_class_ref,
2631 /*qualifying_scope=*/NULL_TREE);
2632 else if (is_overloaded_fn (decl))
2633 {
2634 tree first_fn = OVL_CURRENT (decl);
2635
2636 if (TREE_CODE (first_fn) == TEMPLATE_DECL)
2637 first_fn = DECL_TEMPLATE_RESULT (first_fn);
2638
2639 if (!really_overloaded_fn (decl))
2640 mark_used (first_fn);
2641
2642 if (TREE_CODE (first_fn) == FUNCTION_DECL
2643 && DECL_FUNCTION_MEMBER_P (first_fn))
2644 {
2645 /* A set of member functions. */
2646 decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
2647 return finish_class_member_access_expr (decl, id_expression);
2648 }
2649 }
2650 else
2651 {
2652 if (TREE_CODE (decl) == VAR_DECL
2653 || TREE_CODE (decl) == PARM_DECL
2654 || TREE_CODE (decl) == RESULT_DECL)
2655 {
2656 tree context = decl_function_context (decl);
2657
2658 if (context != NULL_TREE && context != current_function_decl
2659 && ! TREE_STATIC (decl))
2660 {
2661 error ("use of %s from containing function",
2662 (TREE_CODE (decl) == VAR_DECL
2663 ? "`auto' variable" : "parameter"));
2664 cp_error_at (" `%#D' declared here", decl);
2665 return error_mark_node;
2666 }
2667 }
2668
2669 if (DECL_P (decl) && DECL_NONLOCAL (decl)
2670 && DECL_CLASS_SCOPE_P (decl)
2671 && DECL_CONTEXT (decl) != current_class_type)
2672 {
2673 tree path;
2674
2675 path = currently_open_derived_class (DECL_CONTEXT (decl));
2676 perform_or_defer_access_check (TYPE_BINFO (path), decl);
2677 }
2678
2679 if (! processing_template_decl)
2680 decl = convert_from_reference (decl);
2681 }
2682
2683 /* Resolve references to variables of anonymous unions
2684 into COMPONENT_REFs. */
2685 if (TREE_CODE (decl) == ALIAS_DECL)
2686 decl = unshare_expr (DECL_INITIAL (decl));
2687 }
2688
2689 if (TREE_DEPRECATED (decl))
2690 warn_deprecated_use (decl);
2691
2692 return decl;
2693 }
2694
2695 /* Implement the __typeof keyword: Return the type of EXPR, suitable for
2696 use as a type-specifier. */
2697
2698 tree
2699 finish_typeof (tree expr)
2700 {
2701 tree type;
2702
2703 if (type_dependent_expression_p (expr))
2704 {
2705 type = make_aggr_type (TYPEOF_TYPE);
2706 TYPEOF_TYPE_EXPR (type) = expr;
2707
2708 return type;
2709 }
2710
2711 type = TREE_TYPE (expr);
2712
2713 if (!type || type == unknown_type_node)
2714 {
2715 error ("type of `%E' is unknown", expr);
2716 return error_mark_node;
2717 }
2718
2719 return type;
2720 }
2721
2722 /* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
2723 with equivalent CALL_EXPRs. */
2724
2725 static tree
2726 simplify_aggr_init_exprs_r (tree* tp,
2727 int* walk_subtrees,
2728 void* data ATTRIBUTE_UNUSED)
2729 {
2730 /* We don't need to walk into types; there's nothing in a type that
2731 needs simplification. (And, furthermore, there are places we
2732 actively don't want to go. For example, we don't want to wander
2733 into the default arguments for a FUNCTION_DECL that appears in a
2734 CALL_EXPR.) */
2735 if (TYPE_P (*tp))
2736 {
2737 *walk_subtrees = 0;
2738 return NULL_TREE;
2739 }
2740 /* Only AGGR_INIT_EXPRs are interesting. */
2741 else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
2742 return NULL_TREE;
2743
2744 simplify_aggr_init_expr (tp);
2745
2746 /* Keep iterating. */
2747 return NULL_TREE;
2748 }
2749
2750 /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
2751 function is broken out from the above for the benefit of the tree-ssa
2752 project. */
2753
2754 void
2755 simplify_aggr_init_expr (tree *tp)
2756 {
2757 tree aggr_init_expr = *tp;
2758
2759 /* Form an appropriate CALL_EXPR. */
2760 tree fn = TREE_OPERAND (aggr_init_expr, 0);
2761 tree args = TREE_OPERAND (aggr_init_expr, 1);
2762 tree slot = TREE_OPERAND (aggr_init_expr, 2);
2763 tree type = TREE_TYPE (slot);
2764
2765 tree call_expr;
2766 enum style_t { ctor, arg, pcc } style;
2767
2768 if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
2769 style = ctor;
2770 #ifdef PCC_STATIC_STRUCT_RETURN
2771 else if (1)
2772 style = pcc;
2773 #endif
2774 else if (TREE_ADDRESSABLE (type))
2775 style = arg;
2776 else
2777 /* We shouldn't build an AGGR_INIT_EXPR if we don't need any special
2778 handling. See build_cplus_new. */
2779 abort ();
2780
2781 if (style == ctor || style == arg)
2782 {
2783 /* Pass the address of the slot. If this is a constructor, we
2784 replace the first argument; otherwise, we tack on a new one. */
2785 tree addr;
2786
2787 if (style == ctor)
2788 args = TREE_CHAIN (args);
2789
2790 cxx_mark_addressable (slot);
2791 addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
2792 if (style == arg)
2793 {
2794 /* The return type might have different cv-quals from the slot. */
2795 tree fntype = TREE_TYPE (TREE_TYPE (fn));
2796 #ifdef ENABLE_CHECKING
2797 if (TREE_CODE (fntype) != FUNCTION_TYPE
2798 && TREE_CODE (fntype) != METHOD_TYPE)
2799 abort ();
2800 #endif
2801 addr = convert (build_pointer_type (TREE_TYPE (fntype)), addr);
2802 }
2803
2804 args = tree_cons (NULL_TREE, addr, args);
2805 }
2806
2807 call_expr = build (CALL_EXPR,
2808 TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
2809 fn, args, NULL_TREE);
2810
2811 if (style == arg)
2812 /* Tell the backend that we've added our return slot to the argument
2813 list. */
2814 CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr) = 1;
2815 else if (style == pcc)
2816 {
2817 /* If we're using the non-reentrant PCC calling convention, then we
2818 need to copy the returned value out of the static buffer into the
2819 SLOT. */
2820 push_deferring_access_checks (dk_no_check);
2821 call_expr = build_aggr_init (slot, call_expr,
2822 DIRECT_BIND | LOOKUP_ONLYCONVERTING);
2823 pop_deferring_access_checks ();
2824 }
2825
2826 *tp = call_expr;
2827 }
2828
2829 /* Emit all thunks to FN that should be emitted when FN is emitted. */
2830
2831 static void
2832 emit_associated_thunks (tree fn)
2833 {
2834 /* When we use vcall offsets, we emit thunks with the virtual
2835 functions to which they thunk. The whole point of vcall offsets
2836 is so that you can know statically the entire set of thunks that
2837 will ever be needed for a given virtual function, thereby
2838 enabling you to output all the thunks with the function itself. */
2839 if (DECL_VIRTUAL_P (fn))
2840 {
2841 tree thunk;
2842
2843 for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
2844 {
2845 if (!THUNK_ALIAS (thunk))
2846 {
2847 use_thunk (thunk, /*emit_p=*/1);
2848 if (DECL_RESULT_THUNK_P (thunk))
2849 {
2850 tree probe;
2851
2852 for (probe = DECL_THUNKS (thunk);
2853 probe; probe = TREE_CHAIN (probe))
2854 use_thunk (probe, /*emit_p=*/1);
2855 }
2856 }
2857 else
2858 my_friendly_assert (!DECL_THUNKS (thunk), 20031023);
2859 }
2860 }
2861 }
2862
2863 /* Generate RTL for FN. */
2864
2865 void
2866 expand_body (tree fn)
2867 {
2868 tree saved_function;
2869
2870 /* Compute the appropriate object-file linkage for inline
2871 functions. */
2872 if (DECL_DECLARED_INLINE_P (fn))
2873 import_export_decl (fn);
2874
2875 /* If FN is external, then there's no point in generating RTL for
2876 it. This situation can arise with an inline function under
2877 `-fexternal-templates'; we instantiate the function, even though
2878 we're not planning on emitting it, in case we get a chance to
2879 inline it. */
2880 if (DECL_EXTERNAL (fn))
2881 return;
2882
2883 /* ??? When is this needed? */
2884 saved_function = current_function_decl;
2885
2886 /* Emit any thunks that should be emitted at the same time as FN. */
2887 emit_associated_thunks (fn);
2888
2889 tree_rest_of_compilation (fn, function_depth > 1);
2890
2891 current_function_decl = saved_function;
2892
2893 extract_interface_info ();
2894
2895 /* If this function is marked with the constructor attribute, add it
2896 to the list of functions to be called along with constructors
2897 from static duration objects. */
2898 if (DECL_STATIC_CONSTRUCTOR (fn))
2899 static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
2900
2901 /* If this function is marked with the destructor attribute, add it
2902 to the list of functions to be called along with destructors from
2903 static duration objects. */
2904 if (DECL_STATIC_DESTRUCTOR (fn))
2905 static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
2906
2907 if (DECL_CLONED_FUNCTION_P (fn))
2908 {
2909 /* If this is a clone, go through the other clones now and mark
2910 their parameters used. We have to do that here, as we don't
2911 know whether any particular clone will be expanded, and
2912 therefore cannot pick one arbitrarily. */
2913 tree probe;
2914
2915 for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
2916 probe && DECL_CLONED_FUNCTION_P (probe);
2917 probe = TREE_CHAIN (probe))
2918 {
2919 tree parms;
2920
2921 for (parms = DECL_ARGUMENTS (probe);
2922 parms; parms = TREE_CHAIN (parms))
2923 TREE_USED (parms) = 1;
2924 }
2925 }
2926 }
2927
2928 /* Generate RTL for FN. */
2929
2930 void
2931 expand_or_defer_fn (tree fn)
2932 {
2933 /* When the parser calls us after finishing the body of a template
2934 function, we don't really want to expand the body. */
2935 if (processing_template_decl)
2936 {
2937 /* Normally, collection only occurs in rest_of_compilation. So,
2938 if we don't collect here, we never collect junk generated
2939 during the processing of templates until we hit a
2940 non-template function. */
2941 ggc_collect ();
2942 return;
2943 }
2944
2945 /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
2946 walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
2947 simplify_aggr_init_exprs_r,
2948 NULL);
2949
2950 /* If this is a constructor or destructor body, we have to clone
2951 it. */
2952 if (maybe_clone_body (fn))
2953 {
2954 /* We don't want to process FN again, so pretend we've written
2955 it out, even though we haven't. */
2956 TREE_ASM_WRITTEN (fn) = 1;
2957 return;
2958 }
2959
2960 /* There's no reason to do any of the work here if we're only doing
2961 semantic analysis; this code just generates RTL. */
2962 if (flag_syntax_only)
2963 return;
2964
2965 /* Compute the appropriate object-file linkage for inline functions. */
2966 if (DECL_DECLARED_INLINE_P (fn))
2967 import_export_decl (fn);
2968
2969 function_depth++;
2970
2971 /* Expand or defer, at the whim of the compilation unit manager. */
2972 cgraph_finalize_function (fn, function_depth > 1);
2973
2974 function_depth--;
2975 }
2976
2977 struct nrv_data
2978 {
2979 tree var;
2980 tree result;
2981 htab_t visited;
2982 };
2983
2984 /* Helper function for walk_tree, used by finalize_nrv below. */
2985
2986 static tree
2987 finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
2988 {
2989 struct nrv_data *dp = (struct nrv_data *)data;
2990 void **slot;
2991
2992 /* No need to walk into types. There wouldn't be any need to walk into
2993 non-statements, except that we have to consider STMT_EXPRs. */
2994 if (TYPE_P (*tp))
2995 *walk_subtrees = 0;
2996 /* Change all returns to just refer to the RESULT_DECL; this is a nop,
2997 but differs from using NULL_TREE in that it indicates that we care
2998 about the value of the RESULT_DECL. */
2999 else if (TREE_CODE (*tp) == RETURN_EXPR)
3000 TREE_OPERAND (*tp, 0) = dp->result;
3001 /* Change all cleanups for the NRV to only run when an exception is
3002 thrown. */
3003 else if (TREE_CODE (*tp) == CLEANUP_STMT
3004 && CLEANUP_DECL (*tp) == dp->var)
3005 CLEANUP_EH_ONLY (*tp) = 1;
3006 /* Replace the DECL_EXPR for the NRV with an initialization of the
3007 RESULT_DECL, if needed. */
3008 else if (TREE_CODE (*tp) == DECL_EXPR
3009 && DECL_EXPR_DECL (*tp) == dp->var)
3010 {
3011 tree init;
3012 if (DECL_INITIAL (dp->var)
3013 && DECL_INITIAL (dp->var) != error_mark_node)
3014 {
3015 init = build (INIT_EXPR, void_type_node, dp->result,
3016 DECL_INITIAL (dp->var));
3017 DECL_INITIAL (dp->var) = error_mark_node;
3018 }
3019 else
3020 init = build_empty_stmt ();
3021 SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
3022 *tp = init;
3023 }
3024 /* And replace all uses of the NRV with the RESULT_DECL. */
3025 else if (*tp == dp->var)
3026 *tp = dp->result;
3027
3028 /* Avoid walking into the same tree more than once. Unfortunately, we
3029 can't just use walk_tree_without duplicates because it would only call
3030 us for the first occurrence of dp->var in the function body. */
3031 slot = htab_find_slot (dp->visited, *tp, INSERT);
3032 if (*slot)
3033 *walk_subtrees = 0;
3034 else
3035 *slot = *tp;
3036
3037 /* Keep iterating. */
3038 return NULL_TREE;
3039 }
3040
3041 /* Called from finish_function to implement the named return value
3042 optimization by overriding all the RETURN_EXPRs and pertinent
3043 CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
3044 RESULT_DECL for the function. */
3045
3046 void
3047 finalize_nrv (tree *tp, tree var, tree result)
3048 {
3049 struct nrv_data data;
3050
3051 /* Copy debugging information from VAR to RESULT. */
3052 DECL_NAME (result) = DECL_NAME (var);
3053 DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
3054 DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
3055 /* Don't forget that we take its address. */
3056 TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
3057
3058 data.var = var;
3059 data.result = result;
3060 data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3061 walk_tree (tp, finalize_nrv_r, &data, 0);
3062 htab_delete (data.visited);
3063 }
3064
3065 /* Perform initialization related to this module. */
3066
3067 void
3068 init_cp_semantics (void)
3069 {
3070 }
3071
3072 #include "gt-cp-semantics.h"