re PR inline-asm/15740 (ICE caused by a memory operand in an asm statement)
[gcc.git] / gcc / cp / semantics.c
1 /* Perform the semantic phase of parsing, i.e., the process of
2 building tree structure, checking semantic consistency, and
3 building RTL. These routines are used both during actual parsing
4 and during the instantiation of template functions.
5
6 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004
7 Free Software Foundation, Inc.
8 Written by Mark Mitchell (mmitchell@usa.net) based on code found
9 formerly in parse.y and pt.c.
10
11 This file is part of GCC.
12
13 GCC is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GCC is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING. If not, write to the Free
25 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 02111-1307, USA. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "cp-tree.h"
34 #include "c-common.h"
35 #include "tree-inline.h"
36 #include "tree-mudflap.h"
37 #include "except.h"
38 #include "toplev.h"
39 #include "flags.h"
40 #include "rtl.h"
41 #include "expr.h"
42 #include "output.h"
43 #include "timevar.h"
44 #include "debug.h"
45 #include "diagnostic.h"
46 #include "cgraph.h"
47 #include "tree-iterator.h"
48 #include "vec.h"
49 #include "target.h"
50
51 /* There routines provide a modular interface to perform many parsing
52 operations. They may therefore be used during actual parsing, or
53 during template instantiation, which may be regarded as a
54 degenerate form of parsing. Since the current g++ parser is
55 lacking in several respects, and will be reimplemented, we are
56 attempting to move most code that is not directly related to
57 parsing into this file; that will make implementing the new parser
58 much easier since it will be able to make use of these routines. */
59
60 static tree maybe_convert_cond (tree);
61 static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
62 static void emit_associated_thunks (tree);
63 static tree finalize_nrv_r (tree *, int *, void *);
64
65
66 /* Deferred Access Checking Overview
67 ---------------------------------
68
69 Most C++ expressions and declarations require access checking
70 to be performed during parsing. However, in several cases,
71 this has to be treated differently.
72
73 For member declarations, access checking has to be deferred
74 until more information about the declaration is known. For
75 example:
76
77 class A {
78 typedef int X;
79 public:
80 X f();
81 };
82
83 A::X A::f();
84 A::X g();
85
86 When we are parsing the function return type `A::X', we don't
87 really know if this is allowed until we parse the function name.
88
89 Furthermore, some contexts require that access checking is
90 never performed at all. These include class heads, and template
91 instantiations.
92
93 Typical use of access checking functions is described here:
94
95 1. When we enter a context that requires certain access checking
96 mode, the function `push_deferring_access_checks' is called with
97 DEFERRING argument specifying the desired mode. Access checking
98 may be performed immediately (dk_no_deferred), deferred
99 (dk_deferred), or not performed (dk_no_check).
100
101 2. When a declaration such as a type, or a variable, is encountered,
102 the function `perform_or_defer_access_check' is called. It
103 maintains a TREE_LIST of all deferred checks.
104
105 3. The global `current_class_type' or `current_function_decl' is then
106 setup by the parser. `enforce_access' relies on these information
107 to check access.
108
109 4. Upon exiting the context mentioned in step 1,
110 `perform_deferred_access_checks' is called to check all declaration
111 stored in the TREE_LIST. `pop_deferring_access_checks' is then
112 called to restore the previous access checking mode.
113
114 In case of parsing error, we simply call `pop_deferring_access_checks'
115 without `perform_deferred_access_checks'. */
116
117 typedef struct deferred_access GTY(())
118 {
119 /* A TREE_LIST representing name-lookups for which we have deferred
120 checking access controls. We cannot check the accessibility of
121 names used in a decl-specifier-seq until we know what is being
122 declared because code like:
123
124 class A {
125 class B {};
126 B* f();
127 }
128
129 A::B* A::f() { return 0; }
130
131 is valid, even though `A::B' is not generally accessible.
132
133 The TREE_PURPOSE of each node is the scope used to qualify the
134 name being looked up; the TREE_VALUE is the DECL to which the
135 name was resolved. */
136 tree deferred_access_checks;
137
138 /* The current mode of access checks. */
139 enum deferring_kind deferring_access_checks_kind;
140
141 } deferred_access;
142 DEF_VEC_GC_O (deferred_access);
143
144 /* Data for deferred access checking. */
145 static GTY(()) VEC (deferred_access) *deferred_access_stack;
146 static GTY(()) unsigned deferred_access_no_check;
147
148 /* Save the current deferred access states and start deferred
149 access checking iff DEFER_P is true. */
150
151 void
152 push_deferring_access_checks (deferring_kind deferring)
153 {
154 /* For context like template instantiation, access checking
155 disabling applies to all nested context. */
156 if (deferred_access_no_check || deferring == dk_no_check)
157 deferred_access_no_check++;
158 else
159 {
160 deferred_access *ptr;
161
162 ptr = VEC_safe_push (deferred_access, deferred_access_stack, NULL);
163 ptr->deferred_access_checks = NULL_TREE;
164 ptr->deferring_access_checks_kind = deferring;
165 }
166 }
167
168 /* Resume deferring access checks again after we stopped doing
169 this previously. */
170
171 void
172 resume_deferring_access_checks (void)
173 {
174 if (!deferred_access_no_check)
175 VEC_last (deferred_access, deferred_access_stack)
176 ->deferring_access_checks_kind = dk_deferred;
177 }
178
179 /* Stop deferring access checks. */
180
181 void
182 stop_deferring_access_checks (void)
183 {
184 if (!deferred_access_no_check)
185 VEC_last (deferred_access, deferred_access_stack)
186 ->deferring_access_checks_kind = dk_no_deferred;
187 }
188
189 /* Discard the current deferred access checks and restore the
190 previous states. */
191
192 void
193 pop_deferring_access_checks (void)
194 {
195 if (deferred_access_no_check)
196 deferred_access_no_check--;
197 else
198 VEC_pop (deferred_access, deferred_access_stack);
199 }
200
201 /* Returns a TREE_LIST representing the deferred checks.
202 The TREE_PURPOSE of each node is the type through which the
203 access occurred; the TREE_VALUE is the declaration named.
204 */
205
206 tree
207 get_deferred_access_checks (void)
208 {
209 if (deferred_access_no_check)
210 return NULL;
211 else
212 return (VEC_last (deferred_access, deferred_access_stack)
213 ->deferred_access_checks);
214 }
215
216 /* Take current deferred checks and combine with the
217 previous states if we also defer checks previously.
218 Otherwise perform checks now. */
219
220 void
221 pop_to_parent_deferring_access_checks (void)
222 {
223 if (deferred_access_no_check)
224 deferred_access_no_check--;
225 else
226 {
227 tree checks;
228 deferred_access *ptr;
229
230 checks = (VEC_last (deferred_access, deferred_access_stack)
231 ->deferred_access_checks);
232
233 VEC_pop (deferred_access, deferred_access_stack);
234 ptr = VEC_last (deferred_access, deferred_access_stack);
235 if (ptr->deferring_access_checks_kind == dk_no_deferred)
236 {
237 /* Check access. */
238 for (; checks; checks = TREE_CHAIN (checks))
239 enforce_access (TREE_PURPOSE (checks),
240 TREE_VALUE (checks));
241 }
242 else
243 {
244 /* Merge with parent. */
245 tree next;
246 tree original = ptr->deferred_access_checks;
247
248 for (; checks; checks = next)
249 {
250 tree probe;
251
252 next = TREE_CHAIN (checks);
253
254 for (probe = original; probe; probe = TREE_CHAIN (probe))
255 if (TREE_VALUE (probe) == TREE_VALUE (checks)
256 && TREE_PURPOSE (probe) == TREE_PURPOSE (checks))
257 goto found;
258 /* Insert into parent's checks. */
259 TREE_CHAIN (checks) = ptr->deferred_access_checks;
260 ptr->deferred_access_checks = checks;
261 found:;
262 }
263 }
264 }
265 }
266
267 /* Perform the deferred access checks.
268
269 After performing the checks, we still have to keep the list
270 `deferred_access_stack->deferred_access_checks' since we may want
271 to check access for them again later in a different context.
272 For example:
273
274 class A {
275 typedef int X;
276 static X a;
277 };
278 A::X A::a, x; // No error for `A::a', error for `x'
279
280 We have to perform deferred access of `A::X', first with `A::a',
281 next with `x'. */
282
283 void
284 perform_deferred_access_checks (void)
285 {
286 tree deferred_check;
287
288 for (deferred_check = (VEC_last (deferred_access, deferred_access_stack)
289 ->deferred_access_checks);
290 deferred_check;
291 deferred_check = TREE_CHAIN (deferred_check))
292 /* Check access. */
293 enforce_access (TREE_PURPOSE (deferred_check),
294 TREE_VALUE (deferred_check));
295 }
296
297 /* Defer checking the accessibility of DECL, when looked up in
298 BINFO. */
299
300 void
301 perform_or_defer_access_check (tree binfo, tree decl)
302 {
303 tree check;
304 deferred_access *ptr;
305
306 /* Exit if we are in a context that no access checking is performed.
307 */
308 if (deferred_access_no_check)
309 return;
310
311 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
312
313 ptr = VEC_last (deferred_access, deferred_access_stack);
314
315 /* If we are not supposed to defer access checks, just check now. */
316 if (ptr->deferring_access_checks_kind == dk_no_deferred)
317 {
318 enforce_access (binfo, decl);
319 return;
320 }
321
322 /* See if we are already going to perform this check. */
323 for (check = ptr->deferred_access_checks;
324 check;
325 check = TREE_CHAIN (check))
326 if (TREE_VALUE (check) == decl && TREE_PURPOSE (check) == binfo)
327 return;
328 /* If not, record the check. */
329 ptr->deferred_access_checks
330 = tree_cons (binfo, decl, ptr->deferred_access_checks);
331 }
332
333 /* Returns nonzero if the current statement is a full expression,
334 i.e. temporaries created during that statement should be destroyed
335 at the end of the statement. */
336
337 int
338 stmts_are_full_exprs_p (void)
339 {
340 return current_stmt_tree ()->stmts_are_full_exprs_p;
341 }
342
343 /* Returns the stmt_tree (if any) to which statements are currently
344 being added. If there is no active statement-tree, NULL is
345 returned. */
346
347 stmt_tree
348 current_stmt_tree (void)
349 {
350 return (cfun
351 ? &cfun->language->base.x_stmt_tree
352 : &scope_chain->x_stmt_tree);
353 }
354
355 /* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
356
357 static tree
358 maybe_cleanup_point_expr (tree expr)
359 {
360 if (!processing_template_decl && stmts_are_full_exprs_p ())
361 expr = fold_build_cleanup_point_expr (TREE_TYPE (expr), expr);
362 return expr;
363 }
364
365 /* Like maybe_cleanup_point_expr except have the type of the new expression be
366 void so we don't need to create a temporary variable to hold the inner
367 expression. The reason why we do this is because the original type might be
368 an aggregate and we cannot create a temporary variable for that type. */
369
370 static tree
371 maybe_cleanup_point_expr_void (tree expr)
372 {
373 if (!processing_template_decl && stmts_are_full_exprs_p ())
374 expr = fold_build_cleanup_point_expr (void_type_node, expr);
375 return expr;
376 }
377
378
379
380 /* Create a declaration statement for the declaration given by the DECL. */
381
382 void
383 add_decl_expr (tree decl)
384 {
385 tree r = build_stmt (DECL_EXPR, decl);
386 if (DECL_INITIAL (decl)
387 || (DECL_SIZE (decl) && TREE_SIDE_EFFECTS (DECL_SIZE (decl))))
388 r = maybe_cleanup_point_expr_void (r);
389 add_stmt (r);
390 }
391
392 /* Nonzero if TYPE is an anonymous union or struct type. We have to use a
393 flag for this because "A union for which objects or pointers are
394 declared is not an anonymous union" [class.union]. */
395
396 int
397 anon_aggr_type_p (tree node)
398 {
399 return ANON_AGGR_TYPE_P (node);
400 }
401
402 /* Finish a scope. */
403
404 static tree
405 do_poplevel (tree stmt_list)
406 {
407 tree block = NULL;
408
409 if (stmts_are_full_exprs_p ())
410 block = poplevel (kept_level_p (), 1, 0);
411
412 stmt_list = pop_stmt_list (stmt_list);
413
414 if (!processing_template_decl)
415 {
416 stmt_list = c_build_bind_expr (block, stmt_list);
417 /* ??? See c_end_compound_stmt re statement expressions. */
418 }
419
420 return stmt_list;
421 }
422
423 /* Begin a new scope. */
424
425 static tree
426 do_pushlevel (scope_kind sk)
427 {
428 tree ret = push_stmt_list ();
429 if (stmts_are_full_exprs_p ())
430 begin_scope (sk, NULL);
431 return ret;
432 }
433
434 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
435 when the current scope is exited. EH_ONLY is true when this is not
436 meant to apply to normal control flow transfer. */
437
438 void
439 push_cleanup (tree decl, tree cleanup, bool eh_only)
440 {
441 tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl);
442 CLEANUP_EH_ONLY (stmt) = eh_only;
443 add_stmt (stmt);
444 CLEANUP_BODY (stmt) = push_stmt_list ();
445 }
446
447 /* Begin a conditional that might contain a declaration. When generating
448 normal code, we want the declaration to appear before the statement
449 containing the conditional. When generating template code, we want the
450 conditional to be rendered as the raw DECL_EXPR. */
451
452 static void
453 begin_cond (tree *cond_p)
454 {
455 if (processing_template_decl)
456 *cond_p = push_stmt_list ();
457 }
458
459 /* Finish such a conditional. */
460
461 static void
462 finish_cond (tree *cond_p, tree expr)
463 {
464 if (processing_template_decl)
465 {
466 tree cond = pop_stmt_list (*cond_p);
467 if (TREE_CODE (cond) == DECL_EXPR)
468 expr = cond;
469 }
470 *cond_p = expr;
471 }
472
473 /* If *COND_P specifies a conditional with a declaration, transform the
474 loop such that
475 while (A x = 42) { }
476 for (; A x = 42;) { }
477 becomes
478 while (true) { A x = 42; if (!x) break; }
479 for (;;) { A x = 42; if (!x) break; }
480 The statement list for BODY will be empty if the conditional did
481 not declare anything. */
482
483 static void
484 simplify_loop_decl_cond (tree *cond_p, tree body)
485 {
486 tree cond, if_stmt;
487
488 if (!TREE_SIDE_EFFECTS (body))
489 return;
490
491 cond = *cond_p;
492 *cond_p = boolean_true_node;
493
494 if_stmt = begin_if_stmt ();
495 cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
496 finish_if_stmt_cond (cond, if_stmt);
497 finish_break_stmt ();
498 finish_then_clause (if_stmt);
499 finish_if_stmt (if_stmt);
500 }
501
502 /* Finish a goto-statement. */
503
504 tree
505 finish_goto_stmt (tree destination)
506 {
507 if (TREE_CODE (destination) == IDENTIFIER_NODE)
508 destination = lookup_label (destination);
509
510 /* We warn about unused labels with -Wunused. That means we have to
511 mark the used labels as used. */
512 if (TREE_CODE (destination) == LABEL_DECL)
513 TREE_USED (destination) = 1;
514 else
515 {
516 /* The DESTINATION is being used as an rvalue. */
517 if (!processing_template_decl)
518 destination = decay_conversion (destination);
519 /* We don't inline calls to functions with computed gotos.
520 Those functions are typically up to some funny business,
521 and may be depending on the labels being at particular
522 addresses, or some such. */
523 DECL_UNINLINABLE (current_function_decl) = 1;
524 }
525
526 check_goto (destination);
527
528 return add_stmt (build_stmt (GOTO_EXPR, destination));
529 }
530
531 /* COND is the condition-expression for an if, while, etc.,
532 statement. Convert it to a boolean value, if appropriate. */
533
534 static tree
535 maybe_convert_cond (tree cond)
536 {
537 /* Empty conditions remain empty. */
538 if (!cond)
539 return NULL_TREE;
540
541 /* Wait until we instantiate templates before doing conversion. */
542 if (processing_template_decl)
543 return cond;
544
545 /* Do the conversion. */
546 cond = convert_from_reference (cond);
547 return condition_conversion (cond);
548 }
549
550 /* Finish an expression-statement, whose EXPRESSION is as indicated. */
551
552 tree
553 finish_expr_stmt (tree expr)
554 {
555 tree r = NULL_TREE;
556
557 if (expr != NULL_TREE)
558 {
559 if (!processing_template_decl)
560 {
561 if (warn_sequence_point)
562 verify_sequence_points (expr);
563 expr = convert_to_void (expr, "statement");
564 }
565 else if (!type_dependent_expression_p (expr))
566 convert_to_void (build_non_dependent_expr (expr), "statement");
567
568 /* Simplification of inner statement expressions, compound exprs,
569 etc can result in us already having an EXPR_STMT. */
570 if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
571 {
572 if (TREE_CODE (expr) != EXPR_STMT)
573 expr = build_stmt (EXPR_STMT, expr);
574 expr = maybe_cleanup_point_expr_void (expr);
575 }
576
577 r = add_stmt (expr);
578 }
579
580 finish_stmt ();
581
582 return r;
583 }
584
585
586 /* Begin an if-statement. Returns a newly created IF_STMT if
587 appropriate. */
588
589 tree
590 begin_if_stmt (void)
591 {
592 tree r, scope;
593 scope = do_pushlevel (sk_block);
594 r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
595 TREE_CHAIN (r) = scope;
596 begin_cond (&IF_COND (r));
597 return r;
598 }
599
600 /* Process the COND of an if-statement, which may be given by
601 IF_STMT. */
602
603 void
604 finish_if_stmt_cond (tree cond, tree if_stmt)
605 {
606 finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond));
607 add_stmt (if_stmt);
608 THEN_CLAUSE (if_stmt) = push_stmt_list ();
609 }
610
611 /* Finish the then-clause of an if-statement, which may be given by
612 IF_STMT. */
613
614 tree
615 finish_then_clause (tree if_stmt)
616 {
617 THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
618 return if_stmt;
619 }
620
621 /* Begin the else-clause of an if-statement. */
622
623 void
624 begin_else_clause (tree if_stmt)
625 {
626 ELSE_CLAUSE (if_stmt) = push_stmt_list ();
627 }
628
629 /* Finish the else-clause of an if-statement, which may be given by
630 IF_STMT. */
631
632 void
633 finish_else_clause (tree if_stmt)
634 {
635 ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
636 }
637
638 /* Finish an if-statement. */
639
640 void
641 finish_if_stmt (tree if_stmt)
642 {
643 tree scope = TREE_CHAIN (if_stmt);
644 TREE_CHAIN (if_stmt) = NULL;
645 add_stmt (do_poplevel (scope));
646 finish_stmt ();
647 }
648
649 /* Begin a while-statement. Returns a newly created WHILE_STMT if
650 appropriate. */
651
652 tree
653 begin_while_stmt (void)
654 {
655 tree r;
656 r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
657 add_stmt (r);
658 WHILE_BODY (r) = do_pushlevel (sk_block);
659 begin_cond (&WHILE_COND (r));
660 return r;
661 }
662
663 /* Process the COND of a while-statement, which may be given by
664 WHILE_STMT. */
665
666 void
667 finish_while_stmt_cond (tree cond, tree while_stmt)
668 {
669 finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond));
670 simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt));
671 }
672
673 /* Finish a while-statement, which may be given by WHILE_STMT. */
674
675 void
676 finish_while_stmt (tree while_stmt)
677 {
678 WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
679 finish_stmt ();
680 }
681
682 /* Begin a do-statement. Returns a newly created DO_STMT if
683 appropriate. */
684
685 tree
686 begin_do_stmt (void)
687 {
688 tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
689 add_stmt (r);
690 DO_BODY (r) = push_stmt_list ();
691 return r;
692 }
693
694 /* Finish the body of a do-statement, which may be given by DO_STMT. */
695
696 void
697 finish_do_body (tree do_stmt)
698 {
699 DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
700 }
701
702 /* Finish a do-statement, which may be given by DO_STMT, and whose
703 COND is as indicated. */
704
705 void
706 finish_do_stmt (tree cond, tree do_stmt)
707 {
708 cond = maybe_convert_cond (cond);
709 DO_COND (do_stmt) = cond;
710 finish_stmt ();
711 }
712
713 /* Finish a return-statement. The EXPRESSION returned, if any, is as
714 indicated. */
715
716 tree
717 finish_return_stmt (tree expr)
718 {
719 tree r;
720
721 expr = check_return_expr (expr);
722 if (!processing_template_decl)
723 {
724 if (DECL_DESTRUCTOR_P (current_function_decl)
725 || (DECL_CONSTRUCTOR_P (current_function_decl)
726 && targetm.cxx.cdtor_returns_this ()))
727 {
728 /* Similarly, all destructors must run destructors for
729 base-classes before returning. So, all returns in a
730 destructor get sent to the DTOR_LABEL; finish_function emits
731 code to return a value there. */
732 return finish_goto_stmt (cdtor_label);
733 }
734 }
735
736 r = build_stmt (RETURN_EXPR, expr);
737 r = maybe_cleanup_point_expr_void (r);
738 r = add_stmt (r);
739 finish_stmt ();
740
741 return r;
742 }
743
744 /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
745
746 tree
747 begin_for_stmt (void)
748 {
749 tree r;
750
751 r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
752 NULL_TREE, NULL_TREE);
753
754 if (flag_new_for_scope > 0)
755 TREE_CHAIN (r) = do_pushlevel (sk_for);
756
757 if (processing_template_decl)
758 FOR_INIT_STMT (r) = push_stmt_list ();
759
760 return r;
761 }
762
763 /* Finish the for-init-statement of a for-statement, which may be
764 given by FOR_STMT. */
765
766 void
767 finish_for_init_stmt (tree for_stmt)
768 {
769 if (processing_template_decl)
770 FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
771 add_stmt (for_stmt);
772 FOR_BODY (for_stmt) = do_pushlevel (sk_block);
773 begin_cond (&FOR_COND (for_stmt));
774 }
775
776 /* Finish the COND of a for-statement, which may be given by
777 FOR_STMT. */
778
779 void
780 finish_for_cond (tree cond, tree for_stmt)
781 {
782 finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond));
783 simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt));
784 }
785
786 /* Finish the increment-EXPRESSION in a for-statement, which may be
787 given by FOR_STMT. */
788
789 void
790 finish_for_expr (tree expr, tree for_stmt)
791 {
792 if (!expr)
793 return;
794 /* If EXPR is an overloaded function, issue an error; there is no
795 context available to use to perform overload resolution. */
796 if (type_unknown_p (expr))
797 {
798 cxx_incomplete_type_error (expr, TREE_TYPE (expr));
799 expr = error_mark_node;
800 }
801 if (!processing_template_decl)
802 {
803 if (warn_sequence_point)
804 verify_sequence_points (expr);
805 expr = convert_to_void (expr, "3rd expression in for");
806 }
807 else if (!type_dependent_expression_p (expr))
808 convert_to_void (build_non_dependent_expr (expr), "3rd expression in for");
809 expr = maybe_cleanup_point_expr_void (expr);
810 FOR_EXPR (for_stmt) = expr;
811 }
812
813 /* Finish the body of a for-statement, which may be given by
814 FOR_STMT. The increment-EXPR for the loop must be
815 provided. */
816
817 void
818 finish_for_stmt (tree for_stmt)
819 {
820 FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
821
822 /* Pop the scope for the body of the loop. */
823 if (flag_new_for_scope > 0)
824 {
825 tree scope = TREE_CHAIN (for_stmt);
826 TREE_CHAIN (for_stmt) = NULL;
827 add_stmt (do_poplevel (scope));
828 }
829
830 finish_stmt ();
831 }
832
833 /* Finish a break-statement. */
834
835 tree
836 finish_break_stmt (void)
837 {
838 return add_stmt (build_break_stmt ());
839 }
840
841 /* Finish a continue-statement. */
842
843 tree
844 finish_continue_stmt (void)
845 {
846 return add_stmt (build_continue_stmt ());
847 }
848
849 /* Begin a switch-statement. Returns a new SWITCH_STMT if
850 appropriate. */
851
852 tree
853 begin_switch_stmt (void)
854 {
855 tree r, scope;
856
857 r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
858
859 scope = do_pushlevel (sk_block);
860 TREE_CHAIN (r) = scope;
861 begin_cond (&SWITCH_COND (r));
862
863 return r;
864 }
865
866 /* Finish the cond of a switch-statement. */
867
868 void
869 finish_switch_cond (tree cond, tree switch_stmt)
870 {
871 tree orig_type = NULL;
872 if (!processing_template_decl)
873 {
874 tree index;
875
876 /* Convert the condition to an integer or enumeration type. */
877 cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
878 if (cond == NULL_TREE)
879 {
880 error ("switch quantity not an integer");
881 cond = error_mark_node;
882 }
883 orig_type = TREE_TYPE (cond);
884 if (cond != error_mark_node)
885 {
886 /* [stmt.switch]
887
888 Integral promotions are performed. */
889 cond = perform_integral_promotions (cond);
890 cond = maybe_cleanup_point_expr (cond);
891 }
892
893 if (cond != error_mark_node)
894 {
895 index = get_unwidened (cond, NULL_TREE);
896 /* We can't strip a conversion from a signed type to an unsigned,
897 because if we did, int_fits_type_p would do the wrong thing
898 when checking case values for being in range,
899 and it's too hard to do the right thing. */
900 if (TYPE_UNSIGNED (TREE_TYPE (cond))
901 == TYPE_UNSIGNED (TREE_TYPE (index)))
902 cond = index;
903 }
904 }
905 finish_cond (&SWITCH_COND (switch_stmt), cond);
906 SWITCH_TYPE (switch_stmt) = orig_type;
907 add_stmt (switch_stmt);
908 push_switch (switch_stmt);
909 SWITCH_BODY (switch_stmt) = push_stmt_list ();
910 }
911
912 /* Finish the body of a switch-statement, which may be given by
913 SWITCH_STMT. The COND to switch on is indicated. */
914
915 void
916 finish_switch_stmt (tree switch_stmt)
917 {
918 tree scope;
919
920 SWITCH_BODY (switch_stmt) = pop_stmt_list (SWITCH_BODY (switch_stmt));
921 pop_switch ();
922 finish_stmt ();
923
924 scope = TREE_CHAIN (switch_stmt);
925 TREE_CHAIN (switch_stmt) = NULL;
926 add_stmt (do_poplevel (scope));
927 }
928
929 /* Begin a try-block. Returns a newly-created TRY_BLOCK if
930 appropriate. */
931
932 tree
933 begin_try_block (void)
934 {
935 tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
936 add_stmt (r);
937 TRY_STMTS (r) = push_stmt_list ();
938 return r;
939 }
940
941 /* Likewise, for a function-try-block. */
942
943 tree
944 begin_function_try_block (void)
945 {
946 tree r = begin_try_block ();
947 FN_TRY_BLOCK_P (r) = 1;
948 return r;
949 }
950
951 /* Finish a try-block, which may be given by TRY_BLOCK. */
952
953 void
954 finish_try_block (tree try_block)
955 {
956 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
957 TRY_HANDLERS (try_block) = push_stmt_list ();
958 }
959
960 /* Finish the body of a cleanup try-block, which may be given by
961 TRY_BLOCK. */
962
963 void
964 finish_cleanup_try_block (tree try_block)
965 {
966 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
967 }
968
969 /* Finish an implicitly generated try-block, with a cleanup is given
970 by CLEANUP. */
971
972 void
973 finish_cleanup (tree cleanup, tree try_block)
974 {
975 TRY_HANDLERS (try_block) = cleanup;
976 CLEANUP_P (try_block) = 1;
977 }
978
979 /* Likewise, for a function-try-block. */
980
981 void
982 finish_function_try_block (tree try_block)
983 {
984 finish_try_block (try_block);
985 /* FIXME : something queer about CTOR_INITIALIZER somehow following
986 the try block, but moving it inside. */
987 in_function_try_handler = 1;
988 }
989
990 /* Finish a handler-sequence for a try-block, which may be given by
991 TRY_BLOCK. */
992
993 void
994 finish_handler_sequence (tree try_block)
995 {
996 TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
997 check_handlers (TRY_HANDLERS (try_block));
998 }
999
1000 /* Likewise, for a function-try-block. */
1001
1002 void
1003 finish_function_handler_sequence (tree try_block)
1004 {
1005 in_function_try_handler = 0;
1006 finish_handler_sequence (try_block);
1007 }
1008
1009 /* Begin a handler. Returns a HANDLER if appropriate. */
1010
1011 tree
1012 begin_handler (void)
1013 {
1014 tree r;
1015
1016 r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
1017 add_stmt (r);
1018
1019 /* Create a binding level for the eh_info and the exception object
1020 cleanup. */
1021 HANDLER_BODY (r) = do_pushlevel (sk_catch);
1022
1023 return r;
1024 }
1025
1026 /* Finish the handler-parameters for a handler, which may be given by
1027 HANDLER. DECL is the declaration for the catch parameter, or NULL
1028 if this is a `catch (...)' clause. */
1029
1030 void
1031 finish_handler_parms (tree decl, tree handler)
1032 {
1033 tree type = NULL_TREE;
1034 if (processing_template_decl)
1035 {
1036 if (decl)
1037 {
1038 decl = pushdecl (decl);
1039 decl = push_template_decl (decl);
1040 HANDLER_PARMS (handler) = decl;
1041 type = TREE_TYPE (decl);
1042 }
1043 }
1044 else
1045 type = expand_start_catch_block (decl);
1046
1047 HANDLER_TYPE (handler) = type;
1048 if (!processing_template_decl && type)
1049 mark_used (eh_type_info (type));
1050 }
1051
1052 /* Finish a handler, which may be given by HANDLER. The BLOCKs are
1053 the return value from the matching call to finish_handler_parms. */
1054
1055 void
1056 finish_handler (tree handler)
1057 {
1058 if (!processing_template_decl)
1059 expand_end_catch_block ();
1060 HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
1061 }
1062
1063 /* Begin a compound statement. FLAGS contains some bits that control the
1064 behavior and context. If BCS_NO_SCOPE is set, the compound statement
1065 does not define a scope. If BCS_FN_BODY is set, this is the outermost
1066 block of a function. If BCS_TRY_BLOCK is set, this is the block
1067 created on behalf of a TRY statement. Returns a token to be passed to
1068 finish_compound_stmt. */
1069
1070 tree
1071 begin_compound_stmt (unsigned int flags)
1072 {
1073 tree r;
1074
1075 if (flags & BCS_NO_SCOPE)
1076 {
1077 r = push_stmt_list ();
1078 STATEMENT_LIST_NO_SCOPE (r) = 1;
1079
1080 /* Normally, we try hard to keep the BLOCK for a statement-expression.
1081 But, if it's a statement-expression with a scopeless block, there's
1082 nothing to keep, and we don't want to accidentally keep a block
1083 *inside* the scopeless block. */
1084 keep_next_level (false);
1085 }
1086 else
1087 r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
1088
1089 /* When processing a template, we need to remember where the braces were,
1090 so that we can set up identical scopes when instantiating the template
1091 later. BIND_EXPR is a handy candidate for this.
1092 Note that do_poplevel won't create a BIND_EXPR itself here (and thus
1093 result in nested BIND_EXPRs), since we don't build BLOCK nodes when
1094 processing templates. */
1095 if (processing_template_decl)
1096 {
1097 r = build3 (BIND_EXPR, NULL, NULL, r, NULL);
1098 BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
1099 BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
1100 TREE_SIDE_EFFECTS (r) = 1;
1101 }
1102
1103 return r;
1104 }
1105
1106 /* Finish a compound-statement, which is given by STMT. */
1107
1108 void
1109 finish_compound_stmt (tree stmt)
1110 {
1111 if (TREE_CODE (stmt) == BIND_EXPR)
1112 BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
1113 else if (STATEMENT_LIST_NO_SCOPE (stmt))
1114 stmt = pop_stmt_list (stmt);
1115 else
1116 {
1117 /* Destroy any ObjC "super" receivers that may have been
1118 created. */
1119 objc_clear_super_receiver ();
1120
1121 stmt = do_poplevel (stmt);
1122 }
1123
1124 /* ??? See c_end_compound_stmt wrt statement expressions. */
1125 add_stmt (stmt);
1126 finish_stmt ();
1127 }
1128
1129 /* Finish an asm-statement, whose components are a STRING, some
1130 OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
1131 whether the asm-statement should be considered volatile. */
1132
1133 tree
1134 finish_asm_stmt (int volatile_p, tree string, tree output_operands,
1135 tree input_operands, tree clobbers)
1136 {
1137 tree r;
1138 tree t;
1139
1140 if (!processing_template_decl)
1141 {
1142 int ninputs, noutputs;
1143 const char *constraint;
1144 const char **oconstraints;
1145 bool allows_mem, allows_reg, is_inout;
1146 tree operand;
1147 int i;
1148
1149 ninputs = list_length (input_operands);
1150 noutputs = list_length (output_operands);
1151 oconstraints = (const char **) alloca (noutputs * sizeof (char *));
1152
1153 string = resolve_asm_operand_names (string, output_operands,
1154 input_operands);
1155
1156 for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
1157 {
1158 operand = TREE_VALUE (t);
1159
1160 /* ??? Really, this should not be here. Users should be using a
1161 proper lvalue, dammit. But there's a long history of using
1162 casts in the output operands. In cases like longlong.h, this
1163 becomes a primitive form of typechecking -- if the cast can be
1164 removed, then the output operand had a type of the proper width;
1165 otherwise we'll get an error. Gross, but ... */
1166 STRIP_NOPS (operand);
1167
1168 if (!lvalue_or_else (operand, lv_asm))
1169 operand = error_mark_node;
1170
1171 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1172 oconstraints[i] = constraint;
1173
1174 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
1175 &allows_mem, &allows_reg, &is_inout))
1176 {
1177 /* If the operand is going to end up in memory,
1178 mark it addressable. */
1179 if (!allows_reg && !cxx_mark_addressable (operand))
1180 operand = error_mark_node;
1181 }
1182 else
1183 operand = error_mark_node;
1184
1185 TREE_VALUE (t) = operand;
1186 }
1187
1188 for (i = 0, t = input_operands; t; ++i, t = TREE_CHAIN (t))
1189 {
1190 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1191 operand = decay_conversion (TREE_VALUE (t));
1192
1193 /* If the type of the operand hasn't been determined (e.g.,
1194 because it involves an overloaded function), then issue
1195 an error message. There's no context available to
1196 resolve the overloading. */
1197 if (TREE_TYPE (operand) == unknown_type_node)
1198 {
1199 error ("type of asm operand %qE could not be determined",
1200 TREE_VALUE (t));
1201 operand = error_mark_node;
1202 }
1203
1204 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
1205 oconstraints, &allows_mem, &allows_reg))
1206 {
1207 /* If the operand is going to end up in memory,
1208 mark it addressable. */
1209 if (!allows_reg && allows_mem && !cxx_mark_addressable (operand))
1210 operand = error_mark_node;
1211 }
1212 else
1213 operand = error_mark_node;
1214
1215 TREE_VALUE (t) = operand;
1216 }
1217 }
1218
1219 r = build_stmt (ASM_EXPR, string,
1220 output_operands, input_operands,
1221 clobbers);
1222 ASM_VOLATILE_P (r) = volatile_p;
1223 r = maybe_cleanup_point_expr_void (r);
1224 return add_stmt (r);
1225 }
1226
1227 /* Finish a label with the indicated NAME. */
1228
1229 tree
1230 finish_label_stmt (tree name)
1231 {
1232 tree decl = define_label (input_location, name);
1233 return add_stmt (build_stmt (LABEL_EXPR, decl));
1234 }
1235
1236 /* Finish a series of declarations for local labels. G++ allows users
1237 to declare "local" labels, i.e., labels with scope. This extension
1238 is useful when writing code involving statement-expressions. */
1239
1240 void
1241 finish_label_decl (tree name)
1242 {
1243 tree decl = declare_local_label (name);
1244 add_decl_expr (decl);
1245 }
1246
1247 /* When DECL goes out of scope, make sure that CLEANUP is executed. */
1248
1249 void
1250 finish_decl_cleanup (tree decl, tree cleanup)
1251 {
1252 push_cleanup (decl, cleanup, false);
1253 }
1254
1255 /* If the current scope exits with an exception, run CLEANUP. */
1256
1257 void
1258 finish_eh_cleanup (tree cleanup)
1259 {
1260 push_cleanup (NULL, cleanup, true);
1261 }
1262
1263 /* The MEM_INITS is a list of mem-initializers, in reverse of the
1264 order they were written by the user. Each node is as for
1265 emit_mem_initializers. */
1266
1267 void
1268 finish_mem_initializers (tree mem_inits)
1269 {
1270 /* Reorder the MEM_INITS so that they are in the order they appeared
1271 in the source program. */
1272 mem_inits = nreverse (mem_inits);
1273
1274 if (processing_template_decl)
1275 add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
1276 else
1277 emit_mem_initializers (mem_inits);
1278 }
1279
1280 /* Finish a parenthesized expression EXPR. */
1281
1282 tree
1283 finish_parenthesized_expr (tree expr)
1284 {
1285 if (EXPR_P (expr))
1286 /* This inhibits warnings in c_common_truthvalue_conversion. */
1287 TREE_NO_WARNING (expr) = 1;
1288
1289 if (TREE_CODE (expr) == OFFSET_REF)
1290 /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
1291 enclosed in parentheses. */
1292 PTRMEM_OK_P (expr) = 0;
1293
1294 if (TREE_CODE (expr) == STRING_CST)
1295 PAREN_STRING_LITERAL_P (expr) = 1;
1296
1297 return expr;
1298 }
1299
1300 /* Finish a reference to a non-static data member (DECL) that is not
1301 preceded by `.' or `->'. */
1302
1303 tree
1304 finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
1305 {
1306 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
1307
1308 if (!object)
1309 {
1310 if (current_function_decl
1311 && DECL_STATIC_FUNCTION_P (current_function_decl))
1312 cp_error_at ("invalid use of member %qD in static member function",
1313 decl);
1314 else
1315 cp_error_at ("invalid use of non-static data member %qD", decl);
1316 error ("from this location");
1317
1318 return error_mark_node;
1319 }
1320 TREE_USED (current_class_ptr) = 1;
1321 if (processing_template_decl && !qualifying_scope)
1322 {
1323 tree type = TREE_TYPE (decl);
1324
1325 if (TREE_CODE (type) == REFERENCE_TYPE)
1326 type = TREE_TYPE (type);
1327 else
1328 {
1329 /* Set the cv qualifiers. */
1330 int quals = cp_type_quals (TREE_TYPE (current_class_ref));
1331
1332 if (DECL_MUTABLE_P (decl))
1333 quals &= ~TYPE_QUAL_CONST;
1334
1335 quals |= cp_type_quals (TREE_TYPE (decl));
1336 type = cp_build_qualified_type (type, quals);
1337 }
1338
1339 return build_min (COMPONENT_REF, type, object, decl, NULL_TREE);
1340 }
1341 else
1342 {
1343 tree access_type = TREE_TYPE (object);
1344 tree lookup_context = context_for_name_lookup (decl);
1345
1346 while (!DERIVED_FROM_P (lookup_context, access_type))
1347 {
1348 access_type = TYPE_CONTEXT (access_type);
1349 while (access_type && DECL_P (access_type))
1350 access_type = DECL_CONTEXT (access_type);
1351
1352 if (!access_type)
1353 {
1354 cp_error_at ("object missing in reference to %qD", decl);
1355 error ("from this location");
1356 return error_mark_node;
1357 }
1358 }
1359
1360 /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
1361 QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
1362 for now. */
1363 if (processing_template_decl)
1364 return build_min (SCOPE_REF, TREE_TYPE (decl),
1365 qualifying_scope, DECL_NAME (decl));
1366
1367 perform_or_defer_access_check (TYPE_BINFO (access_type), decl);
1368
1369 /* If the data member was named `C::M', convert `*this' to `C'
1370 first. */
1371 if (qualifying_scope)
1372 {
1373 tree binfo = NULL_TREE;
1374 object = build_scoped_ref (object, qualifying_scope,
1375 &binfo);
1376 }
1377
1378 return build_class_member_access_expr (object, decl,
1379 /*access_path=*/NULL_TREE,
1380 /*preserve_reference=*/false);
1381 }
1382 }
1383
1384 /* DECL was the declaration to which a qualified-id resolved. Issue
1385 an error message if it is not accessible. If OBJECT_TYPE is
1386 non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
1387 type of `*x', or `x', respectively. If the DECL was named as
1388 `A::B' then NESTED_NAME_SPECIFIER is `A'. */
1389
1390 void
1391 check_accessibility_of_qualified_id (tree decl,
1392 tree object_type,
1393 tree nested_name_specifier)
1394 {
1395 tree scope;
1396 tree qualifying_type = NULL_TREE;
1397
1398 /* If we're not checking, return immediately. */
1399 if (deferred_access_no_check)
1400 return;
1401
1402 /* Determine the SCOPE of DECL. */
1403 scope = context_for_name_lookup (decl);
1404 /* If the SCOPE is not a type, then DECL is not a member. */
1405 if (!TYPE_P (scope))
1406 return;
1407 /* Compute the scope through which DECL is being accessed. */
1408 if (object_type
1409 /* OBJECT_TYPE might not be a class type; consider:
1410
1411 class A { typedef int I; };
1412 I *p;
1413 p->A::I::~I();
1414
1415 In this case, we will have "A::I" as the DECL, but "I" as the
1416 OBJECT_TYPE. */
1417 && CLASS_TYPE_P (object_type)
1418 && DERIVED_FROM_P (scope, object_type))
1419 /* If we are processing a `->' or `.' expression, use the type of the
1420 left-hand side. */
1421 qualifying_type = object_type;
1422 else if (nested_name_specifier)
1423 {
1424 /* If the reference is to a non-static member of the
1425 current class, treat it as if it were referenced through
1426 `this'. */
1427 if (DECL_NONSTATIC_MEMBER_P (decl)
1428 && current_class_ptr
1429 && DERIVED_FROM_P (scope, current_class_type))
1430 qualifying_type = current_class_type;
1431 /* Otherwise, use the type indicated by the
1432 nested-name-specifier. */
1433 else
1434 qualifying_type = nested_name_specifier;
1435 }
1436 else
1437 /* Otherwise, the name must be from the current class or one of
1438 its bases. */
1439 qualifying_type = currently_open_derived_class (scope);
1440
1441 if (qualifying_type && IS_AGGR_TYPE_CODE (TREE_CODE (qualifying_type)))
1442 /* It is possible for qualifying type to be a TEMPLATE_TYPE_PARM
1443 or similar in a default argument value. */
1444 perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl);
1445 }
1446
1447 /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
1448 class named to the left of the "::" operator. DONE is true if this
1449 expression is a complete postfix-expression; it is false if this
1450 expression is followed by '->', '[', '(', etc. ADDRESS_P is true
1451 iff this expression is the operand of '&'. */
1452
1453 tree
1454 finish_qualified_id_expr (tree qualifying_class, tree expr, bool done,
1455 bool address_p)
1456 {
1457 if (error_operand_p (expr))
1458 return error_mark_node;
1459
1460 /* If EXPR occurs as the operand of '&', use special handling that
1461 permits a pointer-to-member. */
1462 if (address_p && done)
1463 {
1464 if (TREE_CODE (expr) == SCOPE_REF)
1465 expr = TREE_OPERAND (expr, 1);
1466 expr = build_offset_ref (qualifying_class, expr,
1467 /*address_p=*/true);
1468 return expr;
1469 }
1470
1471 if (TREE_CODE (expr) == FIELD_DECL)
1472 expr = finish_non_static_data_member (expr, current_class_ref,
1473 qualifying_class);
1474 else if (BASELINK_P (expr) && !processing_template_decl)
1475 {
1476 tree fns;
1477
1478 /* See if any of the functions are non-static members. */
1479 fns = BASELINK_FUNCTIONS (expr);
1480 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
1481 fns = TREE_OPERAND (fns, 0);
1482 /* If so, the expression may be relative to the current
1483 class. */
1484 if (!shared_member_p (fns)
1485 && current_class_type
1486 && DERIVED_FROM_P (qualifying_class, current_class_type))
1487 expr = (build_class_member_access_expr
1488 (maybe_dummy_object (qualifying_class, NULL),
1489 expr,
1490 BASELINK_ACCESS_BINFO (expr),
1491 /*preserve_reference=*/false));
1492 else if (done)
1493 /* The expression is a qualified name whose address is not
1494 being taken. */
1495 expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
1496 }
1497
1498 return expr;
1499 }
1500
1501 /* Begin a statement-expression. The value returned must be passed to
1502 finish_stmt_expr. */
1503
1504 tree
1505 begin_stmt_expr (void)
1506 {
1507 return push_stmt_list ();
1508 }
1509
1510 /* Process the final expression of a statement expression. EXPR can be
1511 NULL, if the final expression is empty. Build up a TARGET_EXPR so
1512 that the result value can be safely returned to the enclosing
1513 expression. */
1514
1515 tree
1516 finish_stmt_expr_expr (tree expr, tree stmt_expr)
1517 {
1518 tree result = NULL_TREE;
1519
1520 if (expr)
1521 {
1522 if (!processing_template_decl && !VOID_TYPE_P (TREE_TYPE (expr)))
1523 {
1524 tree type = TREE_TYPE (expr);
1525
1526 if (TREE_CODE (type) == ARRAY_TYPE
1527 || TREE_CODE (type) == FUNCTION_TYPE)
1528 expr = decay_conversion (expr);
1529
1530 expr = require_complete_type (expr);
1531
1532 type = TREE_TYPE (expr);
1533
1534 /* Build a TARGET_EXPR for this aggregate. finish_stmt_expr
1535 will then pull it apart so the lifetime of the target is
1536 within the scope of the expression containing this statement
1537 expression. */
1538 if (TREE_CODE (expr) == TARGET_EXPR)
1539 ;
1540 else if (!IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_INIT_REF (type))
1541 expr = build_target_expr_with_type (expr, type);
1542 else
1543 {
1544 /* Copy construct. */
1545 expr = build_special_member_call
1546 (NULL_TREE, complete_ctor_identifier,
1547 build_tree_list (NULL_TREE, expr),
1548 type, LOOKUP_NORMAL);
1549 expr = build_cplus_new (type, expr);
1550 gcc_assert (TREE_CODE (expr) == TARGET_EXPR);
1551 }
1552 }
1553
1554 if (expr != error_mark_node)
1555 {
1556 result = build_stmt (EXPR_STMT, expr);
1557 EXPR_STMT_STMT_EXPR_RESULT (result) = 1;
1558 add_stmt (result);
1559 }
1560 }
1561
1562 finish_stmt ();
1563
1564 /* Remember the last expression so that finish_stmt_expr
1565 can pull it apart. */
1566 TREE_TYPE (stmt_expr) = result;
1567
1568 return result;
1569 }
1570
1571 /* Finish a statement-expression. EXPR should be the value returned
1572 by the previous begin_stmt_expr. Returns an expression
1573 representing the statement-expression. */
1574
1575 tree
1576 finish_stmt_expr (tree stmt_expr, bool has_no_scope)
1577 {
1578 tree result, result_stmt, type;
1579 tree *result_stmt_p = NULL;
1580
1581 result_stmt = TREE_TYPE (stmt_expr);
1582 TREE_TYPE (stmt_expr) = void_type_node;
1583 result = pop_stmt_list (stmt_expr);
1584
1585 if (!result_stmt || VOID_TYPE_P (result_stmt))
1586 type = void_type_node;
1587 else
1588 {
1589 /* We need to search the statement expression for the result_stmt,
1590 since we'll need to replace it entirely. */
1591 tree t;
1592 result_stmt_p = &result;
1593 while (1)
1594 {
1595 t = *result_stmt_p;
1596 if (t == result_stmt)
1597 break;
1598
1599 switch (TREE_CODE (t))
1600 {
1601 case STATEMENT_LIST:
1602 {
1603 tree_stmt_iterator i = tsi_last (t);
1604 result_stmt_p = tsi_stmt_ptr (i);
1605 break;
1606 }
1607 case BIND_EXPR:
1608 result_stmt_p = &BIND_EXPR_BODY (t);
1609 break;
1610 case TRY_FINALLY_EXPR:
1611 case TRY_CATCH_EXPR:
1612 case CLEANUP_STMT:
1613 result_stmt_p = &TREE_OPERAND (t, 0);
1614 break;
1615 default:
1616 gcc_unreachable ();
1617 }
1618 }
1619 type = TREE_TYPE (EXPR_STMT_EXPR (result_stmt));
1620 }
1621
1622 if (processing_template_decl)
1623 {
1624 result = build_min (STMT_EXPR, type, result);
1625 TREE_SIDE_EFFECTS (result) = 1;
1626 STMT_EXPR_NO_SCOPE (result) = has_no_scope;
1627 }
1628 else if (!VOID_TYPE_P (type))
1629 {
1630 /* Pull out the TARGET_EXPR that is the final expression. Put
1631 the target's init_expr as the final expression and then put
1632 the statement expression itself as the target's init
1633 expr. Finally, return the target expression. */
1634 tree init, target_expr = EXPR_STMT_EXPR (result_stmt);
1635 gcc_assert (TREE_CODE (target_expr) == TARGET_EXPR);
1636
1637 /* The initializer will be void if the initialization is done by
1638 AGGR_INIT_EXPR; propagate that out to the statement-expression as
1639 a whole. */
1640 init = TREE_OPERAND (target_expr, 1);
1641 type = TREE_TYPE (init);
1642
1643 init = maybe_cleanup_point_expr (init);
1644 *result_stmt_p = init;
1645
1646 if (VOID_TYPE_P (type))
1647 /* No frobbing needed. */;
1648 else if (TREE_CODE (result) == BIND_EXPR)
1649 {
1650 /* The BIND_EXPR created in finish_compound_stmt is void; if we're
1651 returning a value directly, give it the appropriate type. */
1652 if (VOID_TYPE_P (TREE_TYPE (result)))
1653 TREE_TYPE (result) = type;
1654 else
1655 gcc_assert (same_type_p (TREE_TYPE (result), type));
1656 }
1657 else if (TREE_CODE (result) == STATEMENT_LIST)
1658 /* We need to wrap a STATEMENT_LIST in a BIND_EXPR so it can have a
1659 type other than void. FIXME why can't we just return a value
1660 from STATEMENT_LIST? */
1661 result = build3 (BIND_EXPR, type, NULL, result, NULL);
1662
1663 TREE_OPERAND (target_expr, 1) = result;
1664 result = target_expr;
1665 }
1666
1667 return result;
1668 }
1669
1670 /* Perform Koenig lookup. FN is the postfix-expression representing
1671 the function (or functions) to call; ARGS are the arguments to the
1672 call. Returns the functions to be considered by overload
1673 resolution. */
1674
1675 tree
1676 perform_koenig_lookup (tree fn, tree args)
1677 {
1678 tree identifier = NULL_TREE;
1679 tree functions = NULL_TREE;
1680
1681 /* Find the name of the overloaded function. */
1682 if (TREE_CODE (fn) == IDENTIFIER_NODE)
1683 identifier = fn;
1684 else if (is_overloaded_fn (fn))
1685 {
1686 functions = fn;
1687 identifier = DECL_NAME (get_first_fn (functions));
1688 }
1689 else if (DECL_P (fn))
1690 {
1691 functions = fn;
1692 identifier = DECL_NAME (fn);
1693 }
1694
1695 /* A call to a namespace-scope function using an unqualified name.
1696
1697 Do Koenig lookup -- unless any of the arguments are
1698 type-dependent. */
1699 if (!any_type_dependent_arguments_p (args))
1700 {
1701 fn = lookup_arg_dependent (identifier, functions, args);
1702 if (!fn)
1703 /* The unqualified name could not be resolved. */
1704 fn = unqualified_fn_lookup_error (identifier);
1705 }
1706 else
1707 fn = identifier;
1708
1709 return fn;
1710 }
1711
1712 /* Generate an expression for `FN (ARGS)'.
1713
1714 If DISALLOW_VIRTUAL is true, the call to FN will be not generated
1715 as a virtual call, even if FN is virtual. (This flag is set when
1716 encountering an expression where the function name is explicitly
1717 qualified. For example a call to `X::f' never generates a virtual
1718 call.)
1719
1720 Returns code for the call. */
1721
1722 tree
1723 finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
1724 {
1725 tree result;
1726 tree orig_fn;
1727 tree orig_args;
1728
1729 if (fn == error_mark_node || args == error_mark_node)
1730 return error_mark_node;
1731
1732 /* ARGS should be a list of arguments. */
1733 gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
1734
1735 orig_fn = fn;
1736 orig_args = args;
1737
1738 if (processing_template_decl)
1739 {
1740 if (type_dependent_expression_p (fn)
1741 || any_type_dependent_arguments_p (args))
1742 {
1743 result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
1744 KOENIG_LOOKUP_P (result) = koenig_p;
1745 return result;
1746 }
1747 if (!BASELINK_P (fn)
1748 && TREE_CODE (fn) != PSEUDO_DTOR_EXPR
1749 && TREE_TYPE (fn) != unknown_type_node)
1750 fn = build_non_dependent_expr (fn);
1751 args = build_non_dependent_args (orig_args);
1752 }
1753
1754 /* A reference to a member function will appear as an overloaded
1755 function (rather than a BASELINK) if an unqualified name was used
1756 to refer to it. */
1757 if (!BASELINK_P (fn) && is_overloaded_fn (fn))
1758 {
1759 tree f = fn;
1760
1761 if (TREE_CODE (f) == TEMPLATE_ID_EXPR)
1762 f = TREE_OPERAND (f, 0);
1763 f = get_first_fn (f);
1764 if (DECL_FUNCTION_MEMBER_P (f))
1765 {
1766 tree type = currently_open_derived_class (DECL_CONTEXT (f));
1767 if (!type)
1768 type = DECL_CONTEXT (f);
1769 fn = build_baselink (TYPE_BINFO (type),
1770 TYPE_BINFO (type),
1771 fn, /*optype=*/NULL_TREE);
1772 }
1773 }
1774
1775 result = NULL_TREE;
1776 if (BASELINK_P (fn))
1777 {
1778 tree object;
1779
1780 /* A call to a member function. From [over.call.func]:
1781
1782 If the keyword this is in scope and refers to the class of
1783 that member function, or a derived class thereof, then the
1784 function call is transformed into a qualified function call
1785 using (*this) as the postfix-expression to the left of the
1786 . operator.... [Otherwise] a contrived object of type T
1787 becomes the implied object argument.
1788
1789 This paragraph is unclear about this situation:
1790
1791 struct A { void f(); };
1792 struct B : public A {};
1793 struct C : public A { void g() { B::f(); }};
1794
1795 In particular, for `B::f', this paragraph does not make clear
1796 whether "the class of that member function" refers to `A' or
1797 to `B'. We believe it refers to `B'. */
1798 if (current_class_type
1799 && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1800 current_class_type)
1801 && current_class_ref)
1802 object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1803 NULL);
1804 else
1805 {
1806 tree representative_fn;
1807
1808 representative_fn = BASELINK_FUNCTIONS (fn);
1809 if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
1810 representative_fn = TREE_OPERAND (representative_fn, 0);
1811 representative_fn = get_first_fn (representative_fn);
1812 object = build_dummy_object (DECL_CONTEXT (representative_fn));
1813 }
1814
1815 if (processing_template_decl)
1816 {
1817 if (type_dependent_expression_p (object))
1818 return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
1819 object = build_non_dependent_expr (object);
1820 }
1821
1822 result = build_new_method_call (object, fn, args, NULL_TREE,
1823 (disallow_virtual
1824 ? LOOKUP_NONVIRTUAL : 0));
1825 }
1826 else if (is_overloaded_fn (fn))
1827 /* A call to a namespace-scope function. */
1828 result = build_new_function_call (fn, args);
1829 else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
1830 {
1831 if (args)
1832 error ("arguments to destructor are not allowed");
1833 /* Mark the pseudo-destructor call as having side-effects so
1834 that we do not issue warnings about its use. */
1835 result = build1 (NOP_EXPR,
1836 void_type_node,
1837 TREE_OPERAND (fn, 0));
1838 TREE_SIDE_EFFECTS (result) = 1;
1839 }
1840 else if (CLASS_TYPE_P (TREE_TYPE (fn)))
1841 /* If the "function" is really an object of class type, it might
1842 have an overloaded `operator ()'. */
1843 result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
1844 /*overloaded_p=*/NULL);
1845 if (!result)
1846 /* A call where the function is unknown. */
1847 result = build_function_call (fn, args);
1848
1849 if (processing_template_decl)
1850 {
1851 result = build3 (CALL_EXPR, TREE_TYPE (result), orig_fn,
1852 orig_args, NULL_TREE);
1853 KOENIG_LOOKUP_P (result) = koenig_p;
1854 }
1855 return result;
1856 }
1857
1858 /* Finish a call to a postfix increment or decrement or EXPR. (Which
1859 is indicated by CODE, which should be POSTINCREMENT_EXPR or
1860 POSTDECREMENT_EXPR.) */
1861
1862 tree
1863 finish_increment_expr (tree expr, enum tree_code code)
1864 {
1865 return build_x_unary_op (code, expr);
1866 }
1867
1868 /* Finish a use of `this'. Returns an expression for `this'. */
1869
1870 tree
1871 finish_this_expr (void)
1872 {
1873 tree result;
1874
1875 if (current_class_ptr)
1876 {
1877 result = current_class_ptr;
1878 }
1879 else if (current_function_decl
1880 && DECL_STATIC_FUNCTION_P (current_function_decl))
1881 {
1882 error ("%<this%> is unavailable for static member functions");
1883 result = error_mark_node;
1884 }
1885 else
1886 {
1887 if (current_function_decl)
1888 error ("invalid use of %<this%> in non-member function");
1889 else
1890 error ("invalid use of %<this%> at top level");
1891 result = error_mark_node;
1892 }
1893
1894 return result;
1895 }
1896
1897 /* Finish a pseudo-destructor expression. If SCOPE is NULL, the
1898 expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
1899 the TYPE for the type given. If SCOPE is non-NULL, the expression
1900 was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
1901
1902 tree
1903 finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
1904 {
1905 if (destructor == error_mark_node)
1906 return error_mark_node;
1907
1908 gcc_assert (TYPE_P (destructor));
1909
1910 if (!processing_template_decl)
1911 {
1912 if (scope == error_mark_node)
1913 {
1914 error ("invalid qualifying scope in pseudo-destructor name");
1915 return error_mark_node;
1916 }
1917
1918 /* [expr.pseudo] says both:
1919
1920 The type designated by the pseudo-destructor-name shall be
1921 the same as the object type.
1922
1923 and:
1924
1925 The cv-unqualified versions of the object type and of the
1926 type designated by the pseudo-destructor-name shall be the
1927 same type.
1928
1929 We implement the more generous second sentence, since that is
1930 what most other compilers do. */
1931 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
1932 destructor))
1933 {
1934 error ("%qE is not of type %qT", object, destructor);
1935 return error_mark_node;
1936 }
1937 }
1938
1939 return build3 (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
1940 }
1941
1942 /* Finish an expression of the form CODE EXPR. */
1943
1944 tree
1945 finish_unary_op_expr (enum tree_code code, tree expr)
1946 {
1947 tree result = build_x_unary_op (code, expr);
1948 /* Inside a template, build_x_unary_op does not fold the
1949 expression. So check whether the result is folded before
1950 setting TREE_NEGATED_INT. */
1951 if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
1952 && TREE_CODE (result) == INTEGER_CST
1953 && !TYPE_UNSIGNED (TREE_TYPE (result))
1954 && INT_CST_LT (result, integer_zero_node))
1955 TREE_NEGATED_INT (result) = 1;
1956 overflow_warning (result);
1957 return result;
1958 }
1959
1960 /* Finish a compound-literal expression. TYPE is the type to which
1961 the INITIALIZER_LIST is being cast. */
1962
1963 tree
1964 finish_compound_literal (tree type, tree initializer_list)
1965 {
1966 tree compound_literal;
1967
1968 /* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
1969 compound_literal = build_constructor (NULL_TREE, initializer_list);
1970 /* Mark it as a compound-literal. */
1971 TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
1972 if (processing_template_decl)
1973 TREE_TYPE (compound_literal) = type;
1974 else
1975 {
1976 /* Check the initialization. */
1977 compound_literal = digest_init (type, compound_literal, NULL);
1978 /* If the TYPE was an array type with an unknown bound, then we can
1979 figure out the dimension now. For example, something like:
1980
1981 `(int []) { 2, 3 }'
1982
1983 implies that the array has two elements. */
1984 if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
1985 complete_array_type (type, compound_literal, 1);
1986 }
1987
1988 return compound_literal;
1989 }
1990
1991 /* Return the declaration for the function-name variable indicated by
1992 ID. */
1993
1994 tree
1995 finish_fname (tree id)
1996 {
1997 tree decl;
1998
1999 decl = fname_decl (C_RID_CODE (id), id);
2000 if (processing_template_decl)
2001 decl = DECL_NAME (decl);
2002 return decl;
2003 }
2004
2005 /* Finish a translation unit. */
2006
2007 void
2008 finish_translation_unit (void)
2009 {
2010 /* In case there were missing closebraces,
2011 get us back to the global binding level. */
2012 pop_everything ();
2013 while (current_namespace != global_namespace)
2014 pop_namespace ();
2015
2016 /* Do file scope __FUNCTION__ et al. */
2017 finish_fname_decls ();
2018 }
2019
2020 /* Finish a template type parameter, specified as AGGR IDENTIFIER.
2021 Returns the parameter. */
2022
2023 tree
2024 finish_template_type_parm (tree aggr, tree identifier)
2025 {
2026 if (aggr != class_type_node)
2027 {
2028 pedwarn ("template type parameters must use the keyword %<class%> or %<typename%>");
2029 aggr = class_type_node;
2030 }
2031
2032 return build_tree_list (aggr, identifier);
2033 }
2034
2035 /* Finish a template template parameter, specified as AGGR IDENTIFIER.
2036 Returns the parameter. */
2037
2038 tree
2039 finish_template_template_parm (tree aggr, tree identifier)
2040 {
2041 tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
2042 tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
2043 DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
2044 DECL_TEMPLATE_RESULT (tmpl) = decl;
2045 DECL_ARTIFICIAL (decl) = 1;
2046 end_template_decl ();
2047
2048 gcc_assert (DECL_TEMPLATE_PARMS (tmpl));
2049
2050 return finish_template_type_parm (aggr, tmpl);
2051 }
2052
2053 /* ARGUMENT is the default-argument value for a template template
2054 parameter. If ARGUMENT is invalid, issue error messages and return
2055 the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
2056
2057 tree
2058 check_template_template_default_arg (tree argument)
2059 {
2060 if (TREE_CODE (argument) != TEMPLATE_DECL
2061 && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
2062 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
2063 {
2064 if (TREE_CODE (argument) == TYPE_DECL)
2065 {
2066 tree t = TREE_TYPE (argument);
2067
2068 /* Try to emit a slightly smarter error message if we detect
2069 that the user is using a template instantiation. */
2070 if (CLASSTYPE_TEMPLATE_INFO (t)
2071 && CLASSTYPE_TEMPLATE_INSTANTIATION (t))
2072 error ("invalid use of type %qT as a default value for a "
2073 "template template-parameter", t);
2074 else
2075 error ("invalid use of %qD as a default value for a template "
2076 "template-parameter", argument);
2077 }
2078 else
2079 error ("invalid default argument for a template template parameter");
2080 return error_mark_node;
2081 }
2082
2083 return argument;
2084 }
2085
2086 /* Begin a class definition, as indicated by T. */
2087
2088 tree
2089 begin_class_definition (tree t)
2090 {
2091 if (t == error_mark_node)
2092 return error_mark_node;
2093
2094 if (processing_template_parmlist)
2095 {
2096 error ("definition of %q#T inside template parameter list", t);
2097 return error_mark_node;
2098 }
2099 /* A non-implicit typename comes from code like:
2100
2101 template <typename T> struct A {
2102 template <typename U> struct A<T>::B ...
2103
2104 This is erroneous. */
2105 else if (TREE_CODE (t) == TYPENAME_TYPE)
2106 {
2107 error ("invalid definition of qualified type %qT", t);
2108 t = error_mark_node;
2109 }
2110
2111 if (t == error_mark_node || ! IS_AGGR_TYPE (t))
2112 {
2113 t = make_aggr_type (RECORD_TYPE);
2114 pushtag (make_anon_name (), t, 0);
2115 }
2116
2117 /* If this type was already complete, and we see another definition,
2118 that's an error. */
2119 if (COMPLETE_TYPE_P (t))
2120 {
2121 error ("redefinition of %q#T", t);
2122 cp_error_at ("previous definition of %q#T", t);
2123 return error_mark_node;
2124 }
2125
2126 /* Update the location of the decl. */
2127 DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
2128
2129 if (TYPE_BEING_DEFINED (t))
2130 {
2131 t = make_aggr_type (TREE_CODE (t));
2132 pushtag (TYPE_IDENTIFIER (t), t, 0);
2133 }
2134 maybe_process_partial_specialization (t);
2135 pushclass (t);
2136 TYPE_BEING_DEFINED (t) = 1;
2137 if (flag_pack_struct)
2138 {
2139 tree v;
2140 TYPE_PACKED (t) = 1;
2141 /* Even though the type is being defined for the first time
2142 here, there might have been a forward declaration, so there
2143 might be cv-qualified variants of T. */
2144 for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
2145 TYPE_PACKED (v) = 1;
2146 }
2147 /* Reset the interface data, at the earliest possible
2148 moment, as it might have been set via a class foo;
2149 before. */
2150 if (! TYPE_ANONYMOUS_P (t))
2151 {
2152 struct c_fileinfo *finfo = get_fileinfo (lbasename (input_filename));
2153 CLASSTYPE_INTERFACE_ONLY (t) = finfo->interface_only;
2154 SET_CLASSTYPE_INTERFACE_UNKNOWN_X
2155 (t, finfo->interface_unknown);
2156 }
2157 reset_specialization();
2158
2159 /* Make a declaration for this class in its own scope. */
2160 build_self_reference ();
2161
2162 return t;
2163 }
2164
2165 /* Finish the member declaration given by DECL. */
2166
2167 void
2168 finish_member_declaration (tree decl)
2169 {
2170 if (decl == error_mark_node || decl == NULL_TREE)
2171 return;
2172
2173 if (decl == void_type_node)
2174 /* The COMPONENT was a friend, not a member, and so there's
2175 nothing for us to do. */
2176 return;
2177
2178 /* We should see only one DECL at a time. */
2179 gcc_assert (TREE_CHAIN (decl) == NULL_TREE);
2180
2181 /* Set up access control for DECL. */
2182 TREE_PRIVATE (decl)
2183 = (current_access_specifier == access_private_node);
2184 TREE_PROTECTED (decl)
2185 = (current_access_specifier == access_protected_node);
2186 if (TREE_CODE (decl) == TEMPLATE_DECL)
2187 {
2188 TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
2189 TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
2190 }
2191
2192 /* Mark the DECL as a member of the current class. */
2193 DECL_CONTEXT (decl) = current_class_type;
2194
2195 /* [dcl.link]
2196
2197 A C language linkage is ignored for the names of class members
2198 and the member function type of class member functions. */
2199 if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
2200 SET_DECL_LANGUAGE (decl, lang_cplusplus);
2201
2202 /* Put functions on the TYPE_METHODS list and everything else on the
2203 TYPE_FIELDS list. Note that these are built up in reverse order.
2204 We reverse them (to obtain declaration order) in finish_struct. */
2205 if (TREE_CODE (decl) == FUNCTION_DECL
2206 || DECL_FUNCTION_TEMPLATE_P (decl))
2207 {
2208 /* We also need to add this function to the
2209 CLASSTYPE_METHOD_VEC. */
2210 add_method (current_class_type, decl);
2211
2212 TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
2213 TYPE_METHODS (current_class_type) = decl;
2214
2215 maybe_add_class_template_decl_list (current_class_type, decl,
2216 /*friend_p=*/0);
2217 }
2218 /* Enter the DECL into the scope of the class. */
2219 else if ((TREE_CODE (decl) == USING_DECL && TREE_TYPE (decl))
2220 || pushdecl_class_level (decl))
2221 {
2222 /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
2223 go at the beginning. The reason is that lookup_field_1
2224 searches the list in order, and we want a field name to
2225 override a type name so that the "struct stat hack" will
2226 work. In particular:
2227
2228 struct S { enum E { }; int E } s;
2229 s.E = 3;
2230
2231 is valid. In addition, the FIELD_DECLs must be maintained in
2232 declaration order so that class layout works as expected.
2233 However, we don't need that order until class layout, so we
2234 save a little time by putting FIELD_DECLs on in reverse order
2235 here, and then reversing them in finish_struct_1. (We could
2236 also keep a pointer to the correct insertion points in the
2237 list.) */
2238
2239 if (TREE_CODE (decl) == TYPE_DECL)
2240 TYPE_FIELDS (current_class_type)
2241 = chainon (TYPE_FIELDS (current_class_type), decl);
2242 else
2243 {
2244 TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
2245 TYPE_FIELDS (current_class_type) = decl;
2246 }
2247
2248 maybe_add_class_template_decl_list (current_class_type, decl,
2249 /*friend_p=*/0);
2250 }
2251
2252 if (pch_file)
2253 note_decl_for_pch (decl);
2254 }
2255
2256 /* DECL has been declared while we are building a PCH file. Perform
2257 actions that we might normally undertake lazily, but which can be
2258 performed now so that they do not have to be performed in
2259 translation units which include the PCH file. */
2260
2261 void
2262 note_decl_for_pch (tree decl)
2263 {
2264 gcc_assert (pch_file);
2265
2266 /* A non-template inline function with external linkage will always
2267 be COMDAT. As we must eventually determine the linkage of all
2268 functions, and as that causes writes to the data mapped in from
2269 the PCH file, it's advantageous to mark the functions at this
2270 point. */
2271 if (TREE_CODE (decl) == FUNCTION_DECL
2272 && TREE_PUBLIC (decl)
2273 && DECL_DECLARED_INLINE_P (decl)
2274 && !DECL_IMPLICIT_INSTANTIATION (decl))
2275 {
2276 comdat_linkage (decl);
2277 DECL_INTERFACE_KNOWN (decl) = 1;
2278 }
2279
2280 /* There's a good chance that we'll have to mangle names at some
2281 point, even if only for emission in debugging information. */
2282 if (TREE_CODE (decl) == VAR_DECL
2283 || TREE_CODE (decl) == FUNCTION_DECL)
2284 mangle_decl (decl);
2285 }
2286
2287 /* Finish processing a complete template declaration. The PARMS are
2288 the template parameters. */
2289
2290 void
2291 finish_template_decl (tree parms)
2292 {
2293 if (parms)
2294 end_template_decl ();
2295 else
2296 end_specialization ();
2297 }
2298
2299 /* Finish processing a template-id (which names a type) of the form
2300 NAME < ARGS >. Return the TYPE_DECL for the type named by the
2301 template-id. If ENTERING_SCOPE is nonzero we are about to enter
2302 the scope of template-id indicated. */
2303
2304 tree
2305 finish_template_type (tree name, tree args, int entering_scope)
2306 {
2307 tree decl;
2308
2309 decl = lookup_template_class (name, args,
2310 NULL_TREE, NULL_TREE, entering_scope,
2311 tf_error | tf_warning | tf_user);
2312 if (decl != error_mark_node)
2313 decl = TYPE_STUB_DECL (decl);
2314
2315 return decl;
2316 }
2317
2318 /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
2319 Return a TREE_LIST containing the ACCESS_SPECIFIER and the
2320 BASE_CLASS, or NULL_TREE if an error occurred. The
2321 ACCESS_SPECIFIER is one of
2322 access_{default,public,protected_private}_node. For a virtual base
2323 we set TREE_TYPE. */
2324
2325 tree
2326 finish_base_specifier (tree base, tree access, bool virtual_p)
2327 {
2328 tree result;
2329
2330 if (base == error_mark_node)
2331 {
2332 error ("invalid base-class specification");
2333 result = NULL_TREE;
2334 }
2335 else if (! is_aggr_type (base, 1))
2336 result = NULL_TREE;
2337 else
2338 {
2339 if (cp_type_quals (base) != 0)
2340 {
2341 error ("base class %qT has cv qualifiers", base);
2342 base = TYPE_MAIN_VARIANT (base);
2343 }
2344 result = build_tree_list (access, base);
2345 if (virtual_p)
2346 TREE_TYPE (result) = integer_type_node;
2347 }
2348
2349 return result;
2350 }
2351
2352 /* Issue a diagnostic that NAME cannot be found in SCOPE. DECL is
2353 what we found when we tried to do the lookup. */
2354
2355 void
2356 qualified_name_lookup_error (tree scope, tree name, tree decl)
2357 {
2358 if (TYPE_P (scope))
2359 {
2360 if (!COMPLETE_TYPE_P (scope))
2361 error ("incomplete type %qT used in nested name specifier", scope);
2362 else if (TREE_CODE (decl) == TREE_LIST)
2363 {
2364 error ("reference to %<%T::%D%> is ambiguous", scope, name);
2365 print_candidates (decl);
2366 }
2367 else
2368 error ("%qD is not a member of %qT", name, scope);
2369 }
2370 else if (scope != global_namespace)
2371 error ("%qD is not a member of %qD", name, scope);
2372 else
2373 error ("%<::%D%> has not been declared", name);
2374 }
2375
2376 /* ID_EXPRESSION is a representation of parsed, but unprocessed,
2377 id-expression. (See cp_parser_id_expression for details.) SCOPE,
2378 if non-NULL, is the type or namespace used to explicitly qualify
2379 ID_EXPRESSION. DECL is the entity to which that name has been
2380 resolved.
2381
2382 *CONSTANT_EXPRESSION_P is true if we are presently parsing a
2383 constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
2384 be set to true if this expression isn't permitted in a
2385 constant-expression, but it is otherwise not set by this function.
2386 *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
2387 constant-expression, but a non-constant expression is also
2388 permissible.
2389
2390 If an error occurs, and it is the kind of error that might cause
2391 the parser to abort a tentative parse, *ERROR_MSG is filled in. It
2392 is the caller's responsibility to issue the message. *ERROR_MSG
2393 will be a string with static storage duration, so the caller need
2394 not "free" it.
2395
2396 Return an expression for the entity, after issuing appropriate
2397 diagnostics. This function is also responsible for transforming a
2398 reference to a non-static member into a COMPONENT_REF that makes
2399 the use of "this" explicit.
2400
2401 Upon return, *IDK will be filled in appropriately. */
2402
2403 tree
2404 finish_id_expression (tree id_expression,
2405 tree decl,
2406 tree scope,
2407 cp_id_kind *idk,
2408 tree *qualifying_class,
2409 bool integral_constant_expression_p,
2410 bool allow_non_integral_constant_expression_p,
2411 bool *non_integral_constant_expression_p,
2412 const char **error_msg)
2413 {
2414 /* Initialize the output parameters. */
2415 *idk = CP_ID_KIND_NONE;
2416 *error_msg = NULL;
2417
2418 if (id_expression == error_mark_node)
2419 return error_mark_node;
2420 /* If we have a template-id, then no further lookup is
2421 required. If the template-id was for a template-class, we
2422 will sometimes have a TYPE_DECL at this point. */
2423 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2424 || TREE_CODE (decl) == TYPE_DECL)
2425 ;
2426 /* Look up the name. */
2427 else
2428 {
2429 if (decl == error_mark_node)
2430 {
2431 /* Name lookup failed. */
2432 if (scope
2433 && (!TYPE_P (scope)
2434 || (!dependent_type_p (scope)
2435 && !(TREE_CODE (id_expression) == IDENTIFIER_NODE
2436 && IDENTIFIER_TYPENAME_P (id_expression)
2437 && dependent_type_p (TREE_TYPE (id_expression))))))
2438 {
2439 /* If the qualifying type is non-dependent (and the name
2440 does not name a conversion operator to a dependent
2441 type), issue an error. */
2442 qualified_name_lookup_error (scope, id_expression, decl);
2443 return error_mark_node;
2444 }
2445 else if (!scope)
2446 {
2447 /* It may be resolved via Koenig lookup. */
2448 *idk = CP_ID_KIND_UNQUALIFIED;
2449 return id_expression;
2450 }
2451 else
2452 decl = id_expression;
2453 }
2454 /* If DECL is a variable that would be out of scope under
2455 ANSI/ISO rules, but in scope in the ARM, name lookup
2456 will succeed. Issue a diagnostic here. */
2457 else
2458 decl = check_for_out_of_scope_variable (decl);
2459
2460 /* Remember that the name was used in the definition of
2461 the current class so that we can check later to see if
2462 the meaning would have been different after the class
2463 was entirely defined. */
2464 if (!scope && decl != error_mark_node)
2465 maybe_note_name_used_in_class (id_expression, decl);
2466 }
2467
2468 /* If we didn't find anything, or what we found was a type,
2469 then this wasn't really an id-expression. */
2470 if (TREE_CODE (decl) == TEMPLATE_DECL
2471 && !DECL_FUNCTION_TEMPLATE_P (decl))
2472 {
2473 *error_msg = "missing template arguments";
2474 return error_mark_node;
2475 }
2476 else if (TREE_CODE (decl) == TYPE_DECL
2477 || TREE_CODE (decl) == NAMESPACE_DECL)
2478 {
2479 *error_msg = "expected primary-expression";
2480 return error_mark_node;
2481 }
2482
2483 /* If the name resolved to a template parameter, there is no
2484 need to look it up again later. */
2485 if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
2486 || TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2487 {
2488 tree r;
2489
2490 *idk = CP_ID_KIND_NONE;
2491 if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2492 decl = TEMPLATE_PARM_DECL (decl);
2493 r = convert_from_reference (DECL_INITIAL (decl));
2494
2495 if (integral_constant_expression_p
2496 && !dependent_type_p (TREE_TYPE (decl))
2497 && !(INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (r))))
2498 {
2499 if (!allow_non_integral_constant_expression_p)
2500 error ("template parameter %qD of type %qT is not allowed in "
2501 "an integral constant expression because it is not of "
2502 "integral or enumeration type", decl, TREE_TYPE (decl));
2503 *non_integral_constant_expression_p = true;
2504 }
2505 return r;
2506 }
2507 /* Similarly, we resolve enumeration constants to their
2508 underlying values. */
2509 else if (TREE_CODE (decl) == CONST_DECL)
2510 {
2511 *idk = CP_ID_KIND_NONE;
2512 if (!processing_template_decl)
2513 return DECL_INITIAL (decl);
2514 return decl;
2515 }
2516 else
2517 {
2518 bool dependent_p;
2519
2520 /* If the declaration was explicitly qualified indicate
2521 that. The semantics of `A::f(3)' are different than
2522 `f(3)' if `f' is virtual. */
2523 *idk = (scope
2524 ? CP_ID_KIND_QUALIFIED
2525 : (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2526 ? CP_ID_KIND_TEMPLATE_ID
2527 : CP_ID_KIND_UNQUALIFIED));
2528
2529
2530 /* [temp.dep.expr]
2531
2532 An id-expression is type-dependent if it contains an
2533 identifier that was declared with a dependent type.
2534
2535 The standard is not very specific about an id-expression that
2536 names a set of overloaded functions. What if some of them
2537 have dependent types and some of them do not? Presumably,
2538 such a name should be treated as a dependent name. */
2539 /* Assume the name is not dependent. */
2540 dependent_p = false;
2541 if (!processing_template_decl)
2542 /* No names are dependent outside a template. */
2543 ;
2544 /* A template-id where the name of the template was not resolved
2545 is definitely dependent. */
2546 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2547 && (TREE_CODE (TREE_OPERAND (decl, 0))
2548 == IDENTIFIER_NODE))
2549 dependent_p = true;
2550 /* For anything except an overloaded function, just check its
2551 type. */
2552 else if (!is_overloaded_fn (decl))
2553 dependent_p
2554 = dependent_type_p (TREE_TYPE (decl));
2555 /* For a set of overloaded functions, check each of the
2556 functions. */
2557 else
2558 {
2559 tree fns = decl;
2560
2561 if (BASELINK_P (fns))
2562 fns = BASELINK_FUNCTIONS (fns);
2563
2564 /* For a template-id, check to see if the template
2565 arguments are dependent. */
2566 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
2567 {
2568 tree args = TREE_OPERAND (fns, 1);
2569 dependent_p = any_dependent_template_arguments_p (args);
2570 /* The functions are those referred to by the
2571 template-id. */
2572 fns = TREE_OPERAND (fns, 0);
2573 }
2574
2575 /* If there are no dependent template arguments, go through
2576 the overloaded functions. */
2577 while (fns && !dependent_p)
2578 {
2579 tree fn = OVL_CURRENT (fns);
2580
2581 /* Member functions of dependent classes are
2582 dependent. */
2583 if (TREE_CODE (fn) == FUNCTION_DECL
2584 && type_dependent_expression_p (fn))
2585 dependent_p = true;
2586 else if (TREE_CODE (fn) == TEMPLATE_DECL
2587 && dependent_template_p (fn))
2588 dependent_p = true;
2589
2590 fns = OVL_NEXT (fns);
2591 }
2592 }
2593
2594 /* If the name was dependent on a template parameter, we will
2595 resolve the name at instantiation time. */
2596 if (dependent_p)
2597 {
2598 /* Create a SCOPE_REF for qualified names, if the scope is
2599 dependent. */
2600 if (scope)
2601 {
2602 if (TYPE_P (scope))
2603 *qualifying_class = scope;
2604 /* Since this name was dependent, the expression isn't
2605 constant -- yet. No error is issued because it might
2606 be constant when things are instantiated. */
2607 if (integral_constant_expression_p)
2608 *non_integral_constant_expression_p = true;
2609 if (TYPE_P (scope) && dependent_type_p (scope))
2610 return build_nt (SCOPE_REF, scope, id_expression);
2611 else if (TYPE_P (scope) && DECL_P (decl))
2612 return convert_from_reference
2613 (build2 (SCOPE_REF, TREE_TYPE (decl), scope, id_expression));
2614 else
2615 return convert_from_reference (decl);
2616 }
2617 /* A TEMPLATE_ID already contains all the information we
2618 need. */
2619 if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
2620 return id_expression;
2621 /* Since this name was dependent, the expression isn't
2622 constant -- yet. No error is issued because it might be
2623 constant when things are instantiated. */
2624 if (integral_constant_expression_p)
2625 *non_integral_constant_expression_p = true;
2626 *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
2627 /* If we found a variable, then name lookup during the
2628 instantiation will always resolve to the same VAR_DECL
2629 (or an instantiation thereof). */
2630 if (TREE_CODE (decl) == VAR_DECL
2631 || TREE_CODE (decl) == PARM_DECL)
2632 return convert_from_reference (decl);
2633 /* The same is true for FIELD_DECL, but we also need to
2634 make sure that the syntax is correct. */
2635 else if (TREE_CODE (decl) == FIELD_DECL)
2636 return finish_non_static_data_member
2637 (decl, current_class_ref,
2638 /*qualifying_scope=*/NULL_TREE);
2639 return id_expression;
2640 }
2641
2642 /* Only certain kinds of names are allowed in constant
2643 expression. Enumerators and template parameters have already
2644 been handled above. */
2645 if (integral_constant_expression_p
2646 && !DECL_INTEGRAL_CONSTANT_VAR_P (decl))
2647 {
2648 if (!allow_non_integral_constant_expression_p)
2649 {
2650 error ("%qD cannot appear in a constant-expression", decl);
2651 return error_mark_node;
2652 }
2653 *non_integral_constant_expression_p = true;
2654 }
2655
2656 if (TREE_CODE (decl) == NAMESPACE_DECL)
2657 {
2658 error ("use of namespace %qD as expression", decl);
2659 return error_mark_node;
2660 }
2661 else if (DECL_CLASS_TEMPLATE_P (decl))
2662 {
2663 error ("use of class template %qT as expression", decl);
2664 return error_mark_node;
2665 }
2666 else if (TREE_CODE (decl) == TREE_LIST)
2667 {
2668 /* Ambiguous reference to base members. */
2669 error ("request for member %qD is ambiguous in "
2670 "multiple inheritance lattice", id_expression);
2671 print_candidates (decl);
2672 return error_mark_node;
2673 }
2674
2675 /* Mark variable-like entities as used. Functions are similarly
2676 marked either below or after overload resolution. */
2677 if (TREE_CODE (decl) == VAR_DECL
2678 || TREE_CODE (decl) == PARM_DECL
2679 || TREE_CODE (decl) == RESULT_DECL)
2680 mark_used (decl);
2681
2682 if (scope)
2683 {
2684 decl = (adjust_result_of_qualified_name_lookup
2685 (decl, scope, current_class_type));
2686
2687 if (TREE_CODE (decl) == FUNCTION_DECL)
2688 mark_used (decl);
2689
2690 if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
2691 *qualifying_class = scope;
2692 else
2693 {
2694 tree r = convert_from_reference (decl);
2695
2696 if (processing_template_decl
2697 && TYPE_P (scope))
2698 r = build2 (SCOPE_REF, TREE_TYPE (r), scope, decl);
2699 decl = r;
2700 }
2701 }
2702 else if (TREE_CODE (decl) == FIELD_DECL)
2703 decl = finish_non_static_data_member (decl, current_class_ref,
2704 /*qualifying_scope=*/NULL_TREE);
2705 else if (is_overloaded_fn (decl))
2706 {
2707 tree first_fn = OVL_CURRENT (decl);
2708
2709 if (TREE_CODE (first_fn) == TEMPLATE_DECL)
2710 first_fn = DECL_TEMPLATE_RESULT (first_fn);
2711
2712 if (!really_overloaded_fn (decl))
2713 mark_used (first_fn);
2714
2715 if (TREE_CODE (first_fn) == FUNCTION_DECL
2716 && DECL_FUNCTION_MEMBER_P (first_fn)
2717 && !shared_member_p (decl))
2718 {
2719 /* A set of member functions. */
2720 decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
2721 return finish_class_member_access_expr (decl, id_expression);
2722 }
2723 }
2724 else
2725 {
2726 if (TREE_CODE (decl) == VAR_DECL
2727 || TREE_CODE (decl) == PARM_DECL
2728 || TREE_CODE (decl) == RESULT_DECL)
2729 {
2730 tree context = decl_function_context (decl);
2731
2732 if (context != NULL_TREE && context != current_function_decl
2733 && ! TREE_STATIC (decl))
2734 {
2735 error ("use of %s from containing function",
2736 (TREE_CODE (decl) == VAR_DECL
2737 ? "%<auto%> variable" : "parameter"));
2738 cp_error_at (" %q#D declared here", decl);
2739 return error_mark_node;
2740 }
2741 }
2742
2743 if (DECL_P (decl) && DECL_NONLOCAL (decl)
2744 && DECL_CLASS_SCOPE_P (decl)
2745 && DECL_CONTEXT (decl) != current_class_type)
2746 {
2747 tree path;
2748
2749 path = currently_open_derived_class (DECL_CONTEXT (decl));
2750 perform_or_defer_access_check (TYPE_BINFO (path), decl);
2751 }
2752
2753 decl = convert_from_reference (decl);
2754 }
2755
2756 /* Resolve references to variables of anonymous unions
2757 into COMPONENT_REFs. */
2758 if (TREE_CODE (decl) == ALIAS_DECL)
2759 decl = unshare_expr (DECL_INITIAL (decl));
2760 }
2761
2762 if (TREE_DEPRECATED (decl))
2763 warn_deprecated_use (decl);
2764
2765 return decl;
2766 }
2767
2768 /* Implement the __typeof keyword: Return the type of EXPR, suitable for
2769 use as a type-specifier. */
2770
2771 tree
2772 finish_typeof (tree expr)
2773 {
2774 tree type;
2775
2776 if (type_dependent_expression_p (expr))
2777 {
2778 type = make_aggr_type (TYPEOF_TYPE);
2779 TYPEOF_TYPE_EXPR (type) = expr;
2780
2781 return type;
2782 }
2783
2784 type = TREE_TYPE (expr);
2785
2786 if (!type || type == unknown_type_node)
2787 {
2788 error ("type of %qE is unknown", expr);
2789 return error_mark_node;
2790 }
2791
2792 return type;
2793 }
2794
2795 /* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
2796 with equivalent CALL_EXPRs. */
2797
2798 static tree
2799 simplify_aggr_init_exprs_r (tree* tp,
2800 int* walk_subtrees,
2801 void* data ATTRIBUTE_UNUSED)
2802 {
2803 /* We don't need to walk into types; there's nothing in a type that
2804 needs simplification. (And, furthermore, there are places we
2805 actively don't want to go. For example, we don't want to wander
2806 into the default arguments for a FUNCTION_DECL that appears in a
2807 CALL_EXPR.) */
2808 if (TYPE_P (*tp))
2809 {
2810 *walk_subtrees = 0;
2811 return NULL_TREE;
2812 }
2813 /* Only AGGR_INIT_EXPRs are interesting. */
2814 else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
2815 return NULL_TREE;
2816
2817 simplify_aggr_init_expr (tp);
2818
2819 /* Keep iterating. */
2820 return NULL_TREE;
2821 }
2822
2823 /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
2824 function is broken out from the above for the benefit of the tree-ssa
2825 project. */
2826
2827 void
2828 simplify_aggr_init_expr (tree *tp)
2829 {
2830 tree aggr_init_expr = *tp;
2831
2832 /* Form an appropriate CALL_EXPR. */
2833 tree fn = TREE_OPERAND (aggr_init_expr, 0);
2834 tree args = TREE_OPERAND (aggr_init_expr, 1);
2835 tree slot = TREE_OPERAND (aggr_init_expr, 2);
2836 tree type = TREE_TYPE (slot);
2837
2838 tree call_expr;
2839 enum style_t { ctor, arg, pcc } style;
2840
2841 if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
2842 style = ctor;
2843 #ifdef PCC_STATIC_STRUCT_RETURN
2844 else if (1)
2845 style = pcc;
2846 #endif
2847 else
2848 {
2849 gcc_assert (TREE_ADDRESSABLE (type));
2850 style = arg;
2851 }
2852
2853 if (style == ctor || style == arg)
2854 {
2855 /* Pass the address of the slot. If this is a constructor, we
2856 replace the first argument; otherwise, we tack on a new one. */
2857 tree addr;
2858
2859 if (style == ctor)
2860 args = TREE_CHAIN (args);
2861
2862 cxx_mark_addressable (slot);
2863 addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
2864 if (style == arg)
2865 {
2866 /* The return type might have different cv-quals from the slot. */
2867 tree fntype = TREE_TYPE (TREE_TYPE (fn));
2868
2869 gcc_assert (TREE_CODE (fntype) == FUNCTION_TYPE
2870 || TREE_CODE (fntype) == METHOD_TYPE);
2871 addr = convert (build_pointer_type (TREE_TYPE (fntype)), addr);
2872 }
2873
2874 args = tree_cons (NULL_TREE, addr, args);
2875 }
2876
2877 call_expr = build3 (CALL_EXPR,
2878 TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
2879 fn, args, NULL_TREE);
2880
2881 if (style == arg)
2882 /* Tell the backend that we've added our return slot to the argument
2883 list. */
2884 CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr) = 1;
2885 else if (style == pcc)
2886 {
2887 /* If we're using the non-reentrant PCC calling convention, then we
2888 need to copy the returned value out of the static buffer into the
2889 SLOT. */
2890 push_deferring_access_checks (dk_no_check);
2891 call_expr = build_aggr_init (slot, call_expr,
2892 DIRECT_BIND | LOOKUP_ONLYCONVERTING);
2893 pop_deferring_access_checks ();
2894 }
2895
2896 *tp = call_expr;
2897 }
2898
2899 /* Emit all thunks to FN that should be emitted when FN is emitted. */
2900
2901 static void
2902 emit_associated_thunks (tree fn)
2903 {
2904 /* When we use vcall offsets, we emit thunks with the virtual
2905 functions to which they thunk. The whole point of vcall offsets
2906 is so that you can know statically the entire set of thunks that
2907 will ever be needed for a given virtual function, thereby
2908 enabling you to output all the thunks with the function itself. */
2909 if (DECL_VIRTUAL_P (fn))
2910 {
2911 tree thunk;
2912
2913 for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
2914 {
2915 if (!THUNK_ALIAS (thunk))
2916 {
2917 use_thunk (thunk, /*emit_p=*/1);
2918 if (DECL_RESULT_THUNK_P (thunk))
2919 {
2920 tree probe;
2921
2922 for (probe = DECL_THUNKS (thunk);
2923 probe; probe = TREE_CHAIN (probe))
2924 use_thunk (probe, /*emit_p=*/1);
2925 }
2926 }
2927 else
2928 gcc_assert (!DECL_THUNKS (thunk));
2929 }
2930 }
2931 }
2932
2933 /* Generate RTL for FN. */
2934
2935 void
2936 expand_body (tree fn)
2937 {
2938 tree saved_function;
2939
2940 /* Compute the appropriate object-file linkage for inline
2941 functions. */
2942 if (DECL_DECLARED_INLINE_P (fn))
2943 import_export_decl (fn);
2944
2945 /* If FN is external, then there's no point in generating RTL for
2946 it. This situation can arise with an inline function under
2947 `-fexternal-templates'; we instantiate the function, even though
2948 we're not planning on emitting it, in case we get a chance to
2949 inline it. */
2950 if (DECL_EXTERNAL (fn))
2951 return;
2952
2953 /* ??? When is this needed? */
2954 saved_function = current_function_decl;
2955
2956 /* Emit any thunks that should be emitted at the same time as FN. */
2957 emit_associated_thunks (fn);
2958
2959 /* This function is only called from cgraph, or recursively from
2960 emit_associated_thunks. In neither case should we be currently
2961 generating trees for a function. */
2962 gcc_assert (function_depth == 0);
2963
2964 tree_rest_of_compilation (fn);
2965
2966 current_function_decl = saved_function;
2967
2968 if (DECL_CLONED_FUNCTION_P (fn))
2969 {
2970 /* If this is a clone, go through the other clones now and mark
2971 their parameters used. We have to do that here, as we don't
2972 know whether any particular clone will be expanded, and
2973 therefore cannot pick one arbitrarily. */
2974 tree probe;
2975
2976 for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
2977 probe && DECL_CLONED_FUNCTION_P (probe);
2978 probe = TREE_CHAIN (probe))
2979 {
2980 tree parms;
2981
2982 for (parms = DECL_ARGUMENTS (probe);
2983 parms; parms = TREE_CHAIN (parms))
2984 TREE_USED (parms) = 1;
2985 }
2986 }
2987 }
2988
2989 /* Generate RTL for FN. */
2990
2991 void
2992 expand_or_defer_fn (tree fn)
2993 {
2994 /* When the parser calls us after finishing the body of a template
2995 function, we don't really want to expand the body. */
2996 if (processing_template_decl)
2997 {
2998 /* Normally, collection only occurs in rest_of_compilation. So,
2999 if we don't collect here, we never collect junk generated
3000 during the processing of templates until we hit a
3001 non-template function. */
3002 ggc_collect ();
3003 return;
3004 }
3005
3006 /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
3007 walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
3008 simplify_aggr_init_exprs_r,
3009 NULL);
3010
3011 /* If this is a constructor or destructor body, we have to clone
3012 it. */
3013 if (maybe_clone_body (fn))
3014 {
3015 /* We don't want to process FN again, so pretend we've written
3016 it out, even though we haven't. */
3017 TREE_ASM_WRITTEN (fn) = 1;
3018 return;
3019 }
3020
3021 /* If this function is marked with the constructor attribute, add it
3022 to the list of functions to be called along with constructors
3023 from static duration objects. */
3024 if (DECL_STATIC_CONSTRUCTOR (fn))
3025 static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
3026
3027 /* If this function is marked with the destructor attribute, add it
3028 to the list of functions to be called along with destructors from
3029 static duration objects. */
3030 if (DECL_STATIC_DESTRUCTOR (fn))
3031 static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
3032
3033 /* We make a decision about linkage for these functions at the end
3034 of the compilation. Until that point, we do not want the back
3035 end to output them -- but we do want it to see the bodies of
3036 these functions so that it can inline them as appropriate. */
3037 if (DECL_DECLARED_INLINE_P (fn) || DECL_IMPLICIT_INSTANTIATION (fn))
3038 {
3039 if (!at_eof)
3040 {
3041 DECL_EXTERNAL (fn) = 1;
3042 DECL_NOT_REALLY_EXTERN (fn) = 1;
3043 note_vague_linkage_fn (fn);
3044 }
3045 else
3046 import_export_decl (fn);
3047
3048 /* If the user wants us to keep all inline functions, then mark
3049 this function as needed so that finish_file will make sure to
3050 output it later. */
3051 if (flag_keep_inline_functions && DECL_DECLARED_INLINE_P (fn))
3052 mark_needed (fn);
3053 }
3054
3055 /* There's no reason to do any of the work here if we're only doing
3056 semantic analysis; this code just generates RTL. */
3057 if (flag_syntax_only)
3058 return;
3059
3060 function_depth++;
3061
3062 /* Expand or defer, at the whim of the compilation unit manager. */
3063 cgraph_finalize_function (fn, function_depth > 1);
3064
3065 function_depth--;
3066 }
3067
3068 struct nrv_data
3069 {
3070 tree var;
3071 tree result;
3072 htab_t visited;
3073 };
3074
3075 /* Helper function for walk_tree, used by finalize_nrv below. */
3076
3077 static tree
3078 finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
3079 {
3080 struct nrv_data *dp = (struct nrv_data *)data;
3081 void **slot;
3082
3083 /* No need to walk into types. There wouldn't be any need to walk into
3084 non-statements, except that we have to consider STMT_EXPRs. */
3085 if (TYPE_P (*tp))
3086 *walk_subtrees = 0;
3087 /* Change all returns to just refer to the RESULT_DECL; this is a nop,
3088 but differs from using NULL_TREE in that it indicates that we care
3089 about the value of the RESULT_DECL. */
3090 else if (TREE_CODE (*tp) == RETURN_EXPR)
3091 TREE_OPERAND (*tp, 0) = dp->result;
3092 /* Change all cleanups for the NRV to only run when an exception is
3093 thrown. */
3094 else if (TREE_CODE (*tp) == CLEANUP_STMT
3095 && CLEANUP_DECL (*tp) == dp->var)
3096 CLEANUP_EH_ONLY (*tp) = 1;
3097 /* Replace the DECL_EXPR for the NRV with an initialization of the
3098 RESULT_DECL, if needed. */
3099 else if (TREE_CODE (*tp) == DECL_EXPR
3100 && DECL_EXPR_DECL (*tp) == dp->var)
3101 {
3102 tree init;
3103 if (DECL_INITIAL (dp->var)
3104 && DECL_INITIAL (dp->var) != error_mark_node)
3105 {
3106 init = build2 (INIT_EXPR, void_type_node, dp->result,
3107 DECL_INITIAL (dp->var));
3108 DECL_INITIAL (dp->var) = error_mark_node;
3109 }
3110 else
3111 init = build_empty_stmt ();
3112 SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
3113 *tp = init;
3114 }
3115 /* And replace all uses of the NRV with the RESULT_DECL. */
3116 else if (*tp == dp->var)
3117 *tp = dp->result;
3118
3119 /* Avoid walking into the same tree more than once. Unfortunately, we
3120 can't just use walk_tree_without duplicates because it would only call
3121 us for the first occurrence of dp->var in the function body. */
3122 slot = htab_find_slot (dp->visited, *tp, INSERT);
3123 if (*slot)
3124 *walk_subtrees = 0;
3125 else
3126 *slot = *tp;
3127
3128 /* Keep iterating. */
3129 return NULL_TREE;
3130 }
3131
3132 /* Called from finish_function to implement the named return value
3133 optimization by overriding all the RETURN_EXPRs and pertinent
3134 CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
3135 RESULT_DECL for the function. */
3136
3137 void
3138 finalize_nrv (tree *tp, tree var, tree result)
3139 {
3140 struct nrv_data data;
3141
3142 /* Copy debugging information from VAR to RESULT. */
3143 DECL_NAME (result) = DECL_NAME (var);
3144 DECL_ARTIFICIAL (result) = DECL_ARTIFICIAL (var);
3145 DECL_IGNORED_P (result) = DECL_IGNORED_P (var);
3146 DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
3147 DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
3148 /* Don't forget that we take its address. */
3149 TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
3150
3151 data.var = var;
3152 data.result = result;
3153 data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3154 walk_tree (tp, finalize_nrv_r, &data, 0);
3155 htab_delete (data.visited);
3156 }
3157
3158 /* Perform initialization related to this module. */
3159
3160 void
3161 init_cp_semantics (void)
3162 {
3163 }
3164
3165 #include "gt-cp-semantics.h"