re PR c/19472 (compiler internal error: in var_ann, at tree-flow-inline.h:34)
[gcc.git] / gcc / cp / semantics.c
1 /* Perform the semantic phase of parsing, i.e., the process of
2 building tree structure, checking semantic consistency, and
3 building RTL. These routines are used both during actual parsing
4 and during the instantiation of template functions.
5
6 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004
7 Free Software Foundation, Inc.
8 Written by Mark Mitchell (mmitchell@usa.net) based on code found
9 formerly in parse.y and pt.c.
10
11 This file is part of GCC.
12
13 GCC is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GCC is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING. If not, write to the Free
25 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 02111-1307, USA. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "cp-tree.h"
34 #include "c-common.h"
35 #include "tree-inline.h"
36 #include "tree-mudflap.h"
37 #include "except.h"
38 #include "toplev.h"
39 #include "flags.h"
40 #include "rtl.h"
41 #include "expr.h"
42 #include "output.h"
43 #include "timevar.h"
44 #include "debug.h"
45 #include "diagnostic.h"
46 #include "cgraph.h"
47 #include "tree-iterator.h"
48 #include "vec.h"
49 #include "target.h"
50
51 /* There routines provide a modular interface to perform many parsing
52 operations. They may therefore be used during actual parsing, or
53 during template instantiation, which may be regarded as a
54 degenerate form of parsing. Since the current g++ parser is
55 lacking in several respects, and will be reimplemented, we are
56 attempting to move most code that is not directly related to
57 parsing into this file; that will make implementing the new parser
58 much easier since it will be able to make use of these routines. */
59
60 static tree maybe_convert_cond (tree);
61 static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
62 static void emit_associated_thunks (tree);
63 static tree finalize_nrv_r (tree *, int *, void *);
64
65
66 /* Deferred Access Checking Overview
67 ---------------------------------
68
69 Most C++ expressions and declarations require access checking
70 to be performed during parsing. However, in several cases,
71 this has to be treated differently.
72
73 For member declarations, access checking has to be deferred
74 until more information about the declaration is known. For
75 example:
76
77 class A {
78 typedef int X;
79 public:
80 X f();
81 };
82
83 A::X A::f();
84 A::X g();
85
86 When we are parsing the function return type `A::X', we don't
87 really know if this is allowed until we parse the function name.
88
89 Furthermore, some contexts require that access checking is
90 never performed at all. These include class heads, and template
91 instantiations.
92
93 Typical use of access checking functions is described here:
94
95 1. When we enter a context that requires certain access checking
96 mode, the function `push_deferring_access_checks' is called with
97 DEFERRING argument specifying the desired mode. Access checking
98 may be performed immediately (dk_no_deferred), deferred
99 (dk_deferred), or not performed (dk_no_check).
100
101 2. When a declaration such as a type, or a variable, is encountered,
102 the function `perform_or_defer_access_check' is called. It
103 maintains a TREE_LIST of all deferred checks.
104
105 3. The global `current_class_type' or `current_function_decl' is then
106 setup by the parser. `enforce_access' relies on these information
107 to check access.
108
109 4. Upon exiting the context mentioned in step 1,
110 `perform_deferred_access_checks' is called to check all declaration
111 stored in the TREE_LIST. `pop_deferring_access_checks' is then
112 called to restore the previous access checking mode.
113
114 In case of parsing error, we simply call `pop_deferring_access_checks'
115 without `perform_deferred_access_checks'. */
116
117 typedef struct deferred_access GTY(())
118 {
119 /* A TREE_LIST representing name-lookups for which we have deferred
120 checking access controls. We cannot check the accessibility of
121 names used in a decl-specifier-seq until we know what is being
122 declared because code like:
123
124 class A {
125 class B {};
126 B* f();
127 }
128
129 A::B* A::f() { return 0; }
130
131 is valid, even though `A::B' is not generally accessible.
132
133 The TREE_PURPOSE of each node is the scope used to qualify the
134 name being looked up; the TREE_VALUE is the DECL to which the
135 name was resolved. */
136 tree deferred_access_checks;
137
138 /* The current mode of access checks. */
139 enum deferring_kind deferring_access_checks_kind;
140
141 } deferred_access;
142 DEF_VEC_GC_O (deferred_access);
143
144 /* Data for deferred access checking. */
145 static GTY(()) VEC (deferred_access) *deferred_access_stack;
146 static GTY(()) unsigned deferred_access_no_check;
147
148 /* Save the current deferred access states and start deferred
149 access checking iff DEFER_P is true. */
150
151 void
152 push_deferring_access_checks (deferring_kind deferring)
153 {
154 /* For context like template instantiation, access checking
155 disabling applies to all nested context. */
156 if (deferred_access_no_check || deferring == dk_no_check)
157 deferred_access_no_check++;
158 else
159 {
160 deferred_access *ptr;
161
162 ptr = VEC_safe_push (deferred_access, deferred_access_stack, NULL);
163 ptr->deferred_access_checks = NULL_TREE;
164 ptr->deferring_access_checks_kind = deferring;
165 }
166 }
167
168 /* Resume deferring access checks again after we stopped doing
169 this previously. */
170
171 void
172 resume_deferring_access_checks (void)
173 {
174 if (!deferred_access_no_check)
175 VEC_last (deferred_access, deferred_access_stack)
176 ->deferring_access_checks_kind = dk_deferred;
177 }
178
179 /* Stop deferring access checks. */
180
181 void
182 stop_deferring_access_checks (void)
183 {
184 if (!deferred_access_no_check)
185 VEC_last (deferred_access, deferred_access_stack)
186 ->deferring_access_checks_kind = dk_no_deferred;
187 }
188
189 /* Discard the current deferred access checks and restore the
190 previous states. */
191
192 void
193 pop_deferring_access_checks (void)
194 {
195 if (deferred_access_no_check)
196 deferred_access_no_check--;
197 else
198 VEC_pop (deferred_access, deferred_access_stack);
199 }
200
201 /* Returns a TREE_LIST representing the deferred checks.
202 The TREE_PURPOSE of each node is the type through which the
203 access occurred; the TREE_VALUE is the declaration named.
204 */
205
206 tree
207 get_deferred_access_checks (void)
208 {
209 if (deferred_access_no_check)
210 return NULL;
211 else
212 return (VEC_last (deferred_access, deferred_access_stack)
213 ->deferred_access_checks);
214 }
215
216 /* Take current deferred checks and combine with the
217 previous states if we also defer checks previously.
218 Otherwise perform checks now. */
219
220 void
221 pop_to_parent_deferring_access_checks (void)
222 {
223 if (deferred_access_no_check)
224 deferred_access_no_check--;
225 else
226 {
227 tree checks;
228 deferred_access *ptr;
229
230 checks = (VEC_last (deferred_access, deferred_access_stack)
231 ->deferred_access_checks);
232
233 VEC_pop (deferred_access, deferred_access_stack);
234 ptr = VEC_last (deferred_access, deferred_access_stack);
235 if (ptr->deferring_access_checks_kind == dk_no_deferred)
236 {
237 /* Check access. */
238 for (; checks; checks = TREE_CHAIN (checks))
239 enforce_access (TREE_PURPOSE (checks),
240 TREE_VALUE (checks));
241 }
242 else
243 {
244 /* Merge with parent. */
245 tree next;
246 tree original = ptr->deferred_access_checks;
247
248 for (; checks; checks = next)
249 {
250 tree probe;
251
252 next = TREE_CHAIN (checks);
253
254 for (probe = original; probe; probe = TREE_CHAIN (probe))
255 if (TREE_VALUE (probe) == TREE_VALUE (checks)
256 && TREE_PURPOSE (probe) == TREE_PURPOSE (checks))
257 goto found;
258 /* Insert into parent's checks. */
259 TREE_CHAIN (checks) = ptr->deferred_access_checks;
260 ptr->deferred_access_checks = checks;
261 found:;
262 }
263 }
264 }
265 }
266
267 /* Perform the deferred access checks.
268
269 After performing the checks, we still have to keep the list
270 `deferred_access_stack->deferred_access_checks' since we may want
271 to check access for them again later in a different context.
272 For example:
273
274 class A {
275 typedef int X;
276 static X a;
277 };
278 A::X A::a, x; // No error for `A::a', error for `x'
279
280 We have to perform deferred access of `A::X', first with `A::a',
281 next with `x'. */
282
283 void
284 perform_deferred_access_checks (void)
285 {
286 tree deferred_check;
287
288 for (deferred_check = (VEC_last (deferred_access, deferred_access_stack)
289 ->deferred_access_checks);
290 deferred_check;
291 deferred_check = TREE_CHAIN (deferred_check))
292 /* Check access. */
293 enforce_access (TREE_PURPOSE (deferred_check),
294 TREE_VALUE (deferred_check));
295 }
296
297 /* Defer checking the accessibility of DECL, when looked up in
298 BINFO. */
299
300 void
301 perform_or_defer_access_check (tree binfo, tree decl)
302 {
303 tree check;
304 deferred_access *ptr;
305
306 /* Exit if we are in a context that no access checking is performed.
307 */
308 if (deferred_access_no_check)
309 return;
310
311 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
312
313 ptr = VEC_last (deferred_access, deferred_access_stack);
314
315 /* If we are not supposed to defer access checks, just check now. */
316 if (ptr->deferring_access_checks_kind == dk_no_deferred)
317 {
318 enforce_access (binfo, decl);
319 return;
320 }
321
322 /* See if we are already going to perform this check. */
323 for (check = ptr->deferred_access_checks;
324 check;
325 check = TREE_CHAIN (check))
326 if (TREE_VALUE (check) == decl && TREE_PURPOSE (check) == binfo)
327 return;
328 /* If not, record the check. */
329 ptr->deferred_access_checks
330 = tree_cons (binfo, decl, ptr->deferred_access_checks);
331 }
332
333 /* Returns nonzero if the current statement is a full expression,
334 i.e. temporaries created during that statement should be destroyed
335 at the end of the statement. */
336
337 int
338 stmts_are_full_exprs_p (void)
339 {
340 return current_stmt_tree ()->stmts_are_full_exprs_p;
341 }
342
343 /* Returns the stmt_tree (if any) to which statements are currently
344 being added. If there is no active statement-tree, NULL is
345 returned. */
346
347 stmt_tree
348 current_stmt_tree (void)
349 {
350 return (cfun
351 ? &cfun->language->base.x_stmt_tree
352 : &scope_chain->x_stmt_tree);
353 }
354
355 /* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
356
357 static tree
358 maybe_cleanup_point_expr (tree expr)
359 {
360 if (!processing_template_decl && stmts_are_full_exprs_p ())
361 expr = fold_build_cleanup_point_expr (TREE_TYPE (expr), expr);
362 return expr;
363 }
364
365 /* Like maybe_cleanup_point_expr except have the type of the new expression be
366 void so we don't need to create a temporary variable to hold the inner
367 expression. The reason why we do this is because the original type might be
368 an aggregate and we cannot create a temporary variable for that type. */
369
370 static tree
371 maybe_cleanup_point_expr_void (tree expr)
372 {
373 if (!processing_template_decl && stmts_are_full_exprs_p ())
374 expr = fold_build_cleanup_point_expr (void_type_node, expr);
375 return expr;
376 }
377
378
379
380 /* Create a declaration statement for the declaration given by the DECL. */
381
382 void
383 add_decl_expr (tree decl)
384 {
385 tree r = build_stmt (DECL_EXPR, decl);
386 if (DECL_INITIAL (decl)
387 || (DECL_SIZE (decl) && TREE_SIDE_EFFECTS (DECL_SIZE (decl))))
388 r = maybe_cleanup_point_expr_void (r);
389 add_stmt (r);
390 }
391
392 /* Nonzero if TYPE is an anonymous union or struct type. We have to use a
393 flag for this because "A union for which objects or pointers are
394 declared is not an anonymous union" [class.union]. */
395
396 int
397 anon_aggr_type_p (tree node)
398 {
399 return ANON_AGGR_TYPE_P (node);
400 }
401
402 /* Finish a scope. */
403
404 static tree
405 do_poplevel (tree stmt_list)
406 {
407 tree block = NULL;
408
409 if (stmts_are_full_exprs_p ())
410 block = poplevel (kept_level_p (), 1, 0);
411
412 stmt_list = pop_stmt_list (stmt_list);
413
414 if (!processing_template_decl)
415 {
416 stmt_list = c_build_bind_expr (block, stmt_list);
417 /* ??? See c_end_compound_stmt re statement expressions. */
418 }
419
420 return stmt_list;
421 }
422
423 /* Begin a new scope. */
424
425 static tree
426 do_pushlevel (scope_kind sk)
427 {
428 tree ret = push_stmt_list ();
429 if (stmts_are_full_exprs_p ())
430 begin_scope (sk, NULL);
431 return ret;
432 }
433
434 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
435 when the current scope is exited. EH_ONLY is true when this is not
436 meant to apply to normal control flow transfer. */
437
438 void
439 push_cleanup (tree decl, tree cleanup, bool eh_only)
440 {
441 tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl);
442 CLEANUP_EH_ONLY (stmt) = eh_only;
443 add_stmt (stmt);
444 CLEANUP_BODY (stmt) = push_stmt_list ();
445 }
446
447 /* Begin a conditional that might contain a declaration. When generating
448 normal code, we want the declaration to appear before the statement
449 containing the conditional. When generating template code, we want the
450 conditional to be rendered as the raw DECL_EXPR. */
451
452 static void
453 begin_cond (tree *cond_p)
454 {
455 if (processing_template_decl)
456 *cond_p = push_stmt_list ();
457 }
458
459 /* Finish such a conditional. */
460
461 static void
462 finish_cond (tree *cond_p, tree expr)
463 {
464 if (processing_template_decl)
465 {
466 tree cond = pop_stmt_list (*cond_p);
467 if (TREE_CODE (cond) == DECL_EXPR)
468 expr = cond;
469 }
470 *cond_p = expr;
471 }
472
473 /* If *COND_P specifies a conditional with a declaration, transform the
474 loop such that
475 while (A x = 42) { }
476 for (; A x = 42;) { }
477 becomes
478 while (true) { A x = 42; if (!x) break; }
479 for (;;) { A x = 42; if (!x) break; }
480 The statement list for BODY will be empty if the conditional did
481 not declare anything. */
482
483 static void
484 simplify_loop_decl_cond (tree *cond_p, tree body)
485 {
486 tree cond, if_stmt;
487
488 if (!TREE_SIDE_EFFECTS (body))
489 return;
490
491 cond = *cond_p;
492 *cond_p = boolean_true_node;
493
494 if_stmt = begin_if_stmt ();
495 cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
496 finish_if_stmt_cond (cond, if_stmt);
497 finish_break_stmt ();
498 finish_then_clause (if_stmt);
499 finish_if_stmt (if_stmt);
500 }
501
502 /* Finish a goto-statement. */
503
504 tree
505 finish_goto_stmt (tree destination)
506 {
507 if (TREE_CODE (destination) == IDENTIFIER_NODE)
508 destination = lookup_label (destination);
509
510 /* We warn about unused labels with -Wunused. That means we have to
511 mark the used labels as used. */
512 if (TREE_CODE (destination) == LABEL_DECL)
513 TREE_USED (destination) = 1;
514 else
515 {
516 /* The DESTINATION is being used as an rvalue. */
517 if (!processing_template_decl)
518 destination = decay_conversion (destination);
519 /* We don't inline calls to functions with computed gotos.
520 Those functions are typically up to some funny business,
521 and may be depending on the labels being at particular
522 addresses, or some such. */
523 DECL_UNINLINABLE (current_function_decl) = 1;
524 }
525
526 check_goto (destination);
527
528 return add_stmt (build_stmt (GOTO_EXPR, destination));
529 }
530
531 /* COND is the condition-expression for an if, while, etc.,
532 statement. Convert it to a boolean value, if appropriate. */
533
534 static tree
535 maybe_convert_cond (tree cond)
536 {
537 /* Empty conditions remain empty. */
538 if (!cond)
539 return NULL_TREE;
540
541 /* Wait until we instantiate templates before doing conversion. */
542 if (processing_template_decl)
543 return cond;
544
545 /* Do the conversion. */
546 cond = convert_from_reference (cond);
547 return condition_conversion (cond);
548 }
549
550 /* Finish an expression-statement, whose EXPRESSION is as indicated. */
551
552 tree
553 finish_expr_stmt (tree expr)
554 {
555 tree r = NULL_TREE;
556
557 if (expr != NULL_TREE)
558 {
559 if (!processing_template_decl)
560 {
561 if (warn_sequence_point)
562 verify_sequence_points (expr);
563 expr = convert_to_void (expr, "statement");
564 }
565 else if (!type_dependent_expression_p (expr))
566 convert_to_void (build_non_dependent_expr (expr), "statement");
567
568 /* Simplification of inner statement expressions, compound exprs,
569 etc can result in us already having an EXPR_STMT. */
570 if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
571 {
572 if (TREE_CODE (expr) != EXPR_STMT)
573 expr = build_stmt (EXPR_STMT, expr);
574 expr = maybe_cleanup_point_expr_void (expr);
575 }
576
577 r = add_stmt (expr);
578 }
579
580 finish_stmt ();
581
582 return r;
583 }
584
585
586 /* Begin an if-statement. Returns a newly created IF_STMT if
587 appropriate. */
588
589 tree
590 begin_if_stmt (void)
591 {
592 tree r, scope;
593 scope = do_pushlevel (sk_block);
594 r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
595 TREE_CHAIN (r) = scope;
596 begin_cond (&IF_COND (r));
597 return r;
598 }
599
600 /* Process the COND of an if-statement, which may be given by
601 IF_STMT. */
602
603 void
604 finish_if_stmt_cond (tree cond, tree if_stmt)
605 {
606 finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond));
607 add_stmt (if_stmt);
608 THEN_CLAUSE (if_stmt) = push_stmt_list ();
609 }
610
611 /* Finish the then-clause of an if-statement, which may be given by
612 IF_STMT. */
613
614 tree
615 finish_then_clause (tree if_stmt)
616 {
617 THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
618 return if_stmt;
619 }
620
621 /* Begin the else-clause of an if-statement. */
622
623 void
624 begin_else_clause (tree if_stmt)
625 {
626 ELSE_CLAUSE (if_stmt) = push_stmt_list ();
627 }
628
629 /* Finish the else-clause of an if-statement, which may be given by
630 IF_STMT. */
631
632 void
633 finish_else_clause (tree if_stmt)
634 {
635 ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
636 }
637
638 /* Finish an if-statement. */
639
640 void
641 finish_if_stmt (tree if_stmt)
642 {
643 tree scope = TREE_CHAIN (if_stmt);
644 TREE_CHAIN (if_stmt) = NULL;
645 add_stmt (do_poplevel (scope));
646 finish_stmt ();
647 }
648
649 /* Begin a while-statement. Returns a newly created WHILE_STMT if
650 appropriate. */
651
652 tree
653 begin_while_stmt (void)
654 {
655 tree r;
656 r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
657 add_stmt (r);
658 WHILE_BODY (r) = do_pushlevel (sk_block);
659 begin_cond (&WHILE_COND (r));
660 return r;
661 }
662
663 /* Process the COND of a while-statement, which may be given by
664 WHILE_STMT. */
665
666 void
667 finish_while_stmt_cond (tree cond, tree while_stmt)
668 {
669 finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond));
670 simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt));
671 }
672
673 /* Finish a while-statement, which may be given by WHILE_STMT. */
674
675 void
676 finish_while_stmt (tree while_stmt)
677 {
678 WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
679 finish_stmt ();
680 }
681
682 /* Begin a do-statement. Returns a newly created DO_STMT if
683 appropriate. */
684
685 tree
686 begin_do_stmt (void)
687 {
688 tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
689 add_stmt (r);
690 DO_BODY (r) = push_stmt_list ();
691 return r;
692 }
693
694 /* Finish the body of a do-statement, which may be given by DO_STMT. */
695
696 void
697 finish_do_body (tree do_stmt)
698 {
699 DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
700 }
701
702 /* Finish a do-statement, which may be given by DO_STMT, and whose
703 COND is as indicated. */
704
705 void
706 finish_do_stmt (tree cond, tree do_stmt)
707 {
708 cond = maybe_convert_cond (cond);
709 DO_COND (do_stmt) = cond;
710 finish_stmt ();
711 }
712
713 /* Finish a return-statement. The EXPRESSION returned, if any, is as
714 indicated. */
715
716 tree
717 finish_return_stmt (tree expr)
718 {
719 tree r;
720
721 expr = check_return_expr (expr);
722 if (!processing_template_decl)
723 {
724 if (DECL_DESTRUCTOR_P (current_function_decl)
725 || (DECL_CONSTRUCTOR_P (current_function_decl)
726 && targetm.cxx.cdtor_returns_this ()))
727 {
728 /* Similarly, all destructors must run destructors for
729 base-classes before returning. So, all returns in a
730 destructor get sent to the DTOR_LABEL; finish_function emits
731 code to return a value there. */
732 return finish_goto_stmt (cdtor_label);
733 }
734 }
735
736 r = build_stmt (RETURN_EXPR, expr);
737 r = maybe_cleanup_point_expr_void (r);
738 r = add_stmt (r);
739 finish_stmt ();
740
741 return r;
742 }
743
744 /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
745
746 tree
747 begin_for_stmt (void)
748 {
749 tree r;
750
751 r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
752 NULL_TREE, NULL_TREE);
753
754 if (flag_new_for_scope > 0)
755 TREE_CHAIN (r) = do_pushlevel (sk_for);
756
757 if (processing_template_decl)
758 FOR_INIT_STMT (r) = push_stmt_list ();
759
760 return r;
761 }
762
763 /* Finish the for-init-statement of a for-statement, which may be
764 given by FOR_STMT. */
765
766 void
767 finish_for_init_stmt (tree for_stmt)
768 {
769 if (processing_template_decl)
770 FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
771 add_stmt (for_stmt);
772 FOR_BODY (for_stmt) = do_pushlevel (sk_block);
773 begin_cond (&FOR_COND (for_stmt));
774 }
775
776 /* Finish the COND of a for-statement, which may be given by
777 FOR_STMT. */
778
779 void
780 finish_for_cond (tree cond, tree for_stmt)
781 {
782 finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond));
783 simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt));
784 }
785
786 /* Finish the increment-EXPRESSION in a for-statement, which may be
787 given by FOR_STMT. */
788
789 void
790 finish_for_expr (tree expr, tree for_stmt)
791 {
792 if (!expr)
793 return;
794 /* If EXPR is an overloaded function, issue an error; there is no
795 context available to use to perform overload resolution. */
796 if (type_unknown_p (expr))
797 {
798 cxx_incomplete_type_error (expr, TREE_TYPE (expr));
799 expr = error_mark_node;
800 }
801 if (!processing_template_decl)
802 {
803 if (warn_sequence_point)
804 verify_sequence_points (expr);
805 expr = convert_to_void (expr, "3rd expression in for");
806 }
807 else if (!type_dependent_expression_p (expr))
808 convert_to_void (build_non_dependent_expr (expr), "3rd expression in for");
809 expr = maybe_cleanup_point_expr_void (expr);
810 FOR_EXPR (for_stmt) = expr;
811 }
812
813 /* Finish the body of a for-statement, which may be given by
814 FOR_STMT. The increment-EXPR for the loop must be
815 provided. */
816
817 void
818 finish_for_stmt (tree for_stmt)
819 {
820 FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
821
822 /* Pop the scope for the body of the loop. */
823 if (flag_new_for_scope > 0)
824 {
825 tree scope = TREE_CHAIN (for_stmt);
826 TREE_CHAIN (for_stmt) = NULL;
827 add_stmt (do_poplevel (scope));
828 }
829
830 finish_stmt ();
831 }
832
833 /* Finish a break-statement. */
834
835 tree
836 finish_break_stmt (void)
837 {
838 return add_stmt (build_break_stmt ());
839 }
840
841 /* Finish a continue-statement. */
842
843 tree
844 finish_continue_stmt (void)
845 {
846 return add_stmt (build_continue_stmt ());
847 }
848
849 /* Begin a switch-statement. Returns a new SWITCH_STMT if
850 appropriate. */
851
852 tree
853 begin_switch_stmt (void)
854 {
855 tree r, scope;
856
857 r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
858
859 scope = do_pushlevel (sk_block);
860 TREE_CHAIN (r) = scope;
861 begin_cond (&SWITCH_COND (r));
862
863 return r;
864 }
865
866 /* Finish the cond of a switch-statement. */
867
868 void
869 finish_switch_cond (tree cond, tree switch_stmt)
870 {
871 tree orig_type = NULL;
872 if (!processing_template_decl)
873 {
874 tree index;
875
876 /* Convert the condition to an integer or enumeration type. */
877 cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
878 if (cond == NULL_TREE)
879 {
880 error ("switch quantity not an integer");
881 cond = error_mark_node;
882 }
883 orig_type = TREE_TYPE (cond);
884 if (cond != error_mark_node)
885 {
886 /* [stmt.switch]
887
888 Integral promotions are performed. */
889 cond = perform_integral_promotions (cond);
890 cond = maybe_cleanup_point_expr (cond);
891 }
892
893 if (cond != error_mark_node)
894 {
895 index = get_unwidened (cond, NULL_TREE);
896 /* We can't strip a conversion from a signed type to an unsigned,
897 because if we did, int_fits_type_p would do the wrong thing
898 when checking case values for being in range,
899 and it's too hard to do the right thing. */
900 if (TYPE_UNSIGNED (TREE_TYPE (cond))
901 == TYPE_UNSIGNED (TREE_TYPE (index)))
902 cond = index;
903 }
904 }
905 finish_cond (&SWITCH_COND (switch_stmt), cond);
906 SWITCH_TYPE (switch_stmt) = orig_type;
907 add_stmt (switch_stmt);
908 push_switch (switch_stmt);
909 SWITCH_BODY (switch_stmt) = push_stmt_list ();
910 }
911
912 /* Finish the body of a switch-statement, which may be given by
913 SWITCH_STMT. The COND to switch on is indicated. */
914
915 void
916 finish_switch_stmt (tree switch_stmt)
917 {
918 tree scope;
919
920 SWITCH_BODY (switch_stmt) = pop_stmt_list (SWITCH_BODY (switch_stmt));
921 pop_switch ();
922 finish_stmt ();
923
924 scope = TREE_CHAIN (switch_stmt);
925 TREE_CHAIN (switch_stmt) = NULL;
926 add_stmt (do_poplevel (scope));
927 }
928
929 /* Begin a try-block. Returns a newly-created TRY_BLOCK if
930 appropriate. */
931
932 tree
933 begin_try_block (void)
934 {
935 tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
936 add_stmt (r);
937 TRY_STMTS (r) = push_stmt_list ();
938 return r;
939 }
940
941 /* Likewise, for a function-try-block. */
942
943 tree
944 begin_function_try_block (void)
945 {
946 tree r = begin_try_block ();
947 FN_TRY_BLOCK_P (r) = 1;
948 return r;
949 }
950
951 /* Finish a try-block, which may be given by TRY_BLOCK. */
952
953 void
954 finish_try_block (tree try_block)
955 {
956 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
957 TRY_HANDLERS (try_block) = push_stmt_list ();
958 }
959
960 /* Finish the body of a cleanup try-block, which may be given by
961 TRY_BLOCK. */
962
963 void
964 finish_cleanup_try_block (tree try_block)
965 {
966 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
967 }
968
969 /* Finish an implicitly generated try-block, with a cleanup is given
970 by CLEANUP. */
971
972 void
973 finish_cleanup (tree cleanup, tree try_block)
974 {
975 TRY_HANDLERS (try_block) = cleanup;
976 CLEANUP_P (try_block) = 1;
977 }
978
979 /* Likewise, for a function-try-block. */
980
981 void
982 finish_function_try_block (tree try_block)
983 {
984 finish_try_block (try_block);
985 /* FIXME : something queer about CTOR_INITIALIZER somehow following
986 the try block, but moving it inside. */
987 in_function_try_handler = 1;
988 }
989
990 /* Finish a handler-sequence for a try-block, which may be given by
991 TRY_BLOCK. */
992
993 void
994 finish_handler_sequence (tree try_block)
995 {
996 TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
997 check_handlers (TRY_HANDLERS (try_block));
998 }
999
1000 /* Likewise, for a function-try-block. */
1001
1002 void
1003 finish_function_handler_sequence (tree try_block)
1004 {
1005 in_function_try_handler = 0;
1006 finish_handler_sequence (try_block);
1007 }
1008
1009 /* Begin a handler. Returns a HANDLER if appropriate. */
1010
1011 tree
1012 begin_handler (void)
1013 {
1014 tree r;
1015
1016 r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
1017 add_stmt (r);
1018
1019 /* Create a binding level for the eh_info and the exception object
1020 cleanup. */
1021 HANDLER_BODY (r) = do_pushlevel (sk_catch);
1022
1023 return r;
1024 }
1025
1026 /* Finish the handler-parameters for a handler, which may be given by
1027 HANDLER. DECL is the declaration for the catch parameter, or NULL
1028 if this is a `catch (...)' clause. */
1029
1030 void
1031 finish_handler_parms (tree decl, tree handler)
1032 {
1033 tree type = NULL_TREE;
1034 if (processing_template_decl)
1035 {
1036 if (decl)
1037 {
1038 decl = pushdecl (decl);
1039 decl = push_template_decl (decl);
1040 HANDLER_PARMS (handler) = decl;
1041 type = TREE_TYPE (decl);
1042 }
1043 }
1044 else
1045 type = expand_start_catch_block (decl);
1046
1047 HANDLER_TYPE (handler) = type;
1048 if (!processing_template_decl && type)
1049 mark_used (eh_type_info (type));
1050 }
1051
1052 /* Finish a handler, which may be given by HANDLER. The BLOCKs are
1053 the return value from the matching call to finish_handler_parms. */
1054
1055 void
1056 finish_handler (tree handler)
1057 {
1058 if (!processing_template_decl)
1059 expand_end_catch_block ();
1060 HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
1061 }
1062
1063 /* Begin a compound statement. FLAGS contains some bits that control the
1064 behavior and context. If BCS_NO_SCOPE is set, the compound statement
1065 does not define a scope. If BCS_FN_BODY is set, this is the outermost
1066 block of a function. If BCS_TRY_BLOCK is set, this is the block
1067 created on behalf of a TRY statement. Returns a token to be passed to
1068 finish_compound_stmt. */
1069
1070 tree
1071 begin_compound_stmt (unsigned int flags)
1072 {
1073 tree r;
1074
1075 if (flags & BCS_NO_SCOPE)
1076 {
1077 r = push_stmt_list ();
1078 STATEMENT_LIST_NO_SCOPE (r) = 1;
1079
1080 /* Normally, we try hard to keep the BLOCK for a statement-expression.
1081 But, if it's a statement-expression with a scopeless block, there's
1082 nothing to keep, and we don't want to accidentally keep a block
1083 *inside* the scopeless block. */
1084 keep_next_level (false);
1085 }
1086 else
1087 r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
1088
1089 /* When processing a template, we need to remember where the braces were,
1090 so that we can set up identical scopes when instantiating the template
1091 later. BIND_EXPR is a handy candidate for this.
1092 Note that do_poplevel won't create a BIND_EXPR itself here (and thus
1093 result in nested BIND_EXPRs), since we don't build BLOCK nodes when
1094 processing templates. */
1095 if (processing_template_decl)
1096 {
1097 r = build3 (BIND_EXPR, NULL, NULL, r, NULL);
1098 BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
1099 BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
1100 TREE_SIDE_EFFECTS (r) = 1;
1101 }
1102
1103 return r;
1104 }
1105
1106 /* Finish a compound-statement, which is given by STMT. */
1107
1108 void
1109 finish_compound_stmt (tree stmt)
1110 {
1111 if (TREE_CODE (stmt) == BIND_EXPR)
1112 BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
1113 else if (STATEMENT_LIST_NO_SCOPE (stmt))
1114 stmt = pop_stmt_list (stmt);
1115 else
1116 {
1117 /* Destroy any ObjC "super" receivers that may have been
1118 created. */
1119 objc_clear_super_receiver ();
1120
1121 stmt = do_poplevel (stmt);
1122 }
1123
1124 /* ??? See c_end_compound_stmt wrt statement expressions. */
1125 add_stmt (stmt);
1126 finish_stmt ();
1127 }
1128
1129 /* Finish an asm-statement, whose components are a STRING, some
1130 OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
1131 whether the asm-statement should be considered volatile. */
1132
1133 tree
1134 finish_asm_stmt (int volatile_p, tree string, tree output_operands,
1135 tree input_operands, tree clobbers)
1136 {
1137 tree r;
1138 tree t;
1139
1140 if (!processing_template_decl)
1141 {
1142 int ninputs, noutputs;
1143 const char *constraint;
1144 const char **oconstraints;
1145 bool allows_mem, allows_reg, is_inout;
1146 tree operand;
1147 int i;
1148
1149 ninputs = list_length (input_operands);
1150 noutputs = list_length (output_operands);
1151 oconstraints = (const char **) alloca (noutputs * sizeof (char *));
1152
1153 string = resolve_asm_operand_names (string, output_operands,
1154 input_operands);
1155
1156 for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
1157 {
1158 operand = TREE_VALUE (t);
1159
1160 /* ??? Really, this should not be here. Users should be using a
1161 proper lvalue, dammit. But there's a long history of using
1162 casts in the output operands. In cases like longlong.h, this
1163 becomes a primitive form of typechecking -- if the cast can be
1164 removed, then the output operand had a type of the proper width;
1165 otherwise we'll get an error. Gross, but ... */
1166 STRIP_NOPS (operand);
1167
1168 if (!lvalue_or_else (operand, lv_asm))
1169 operand = error_mark_node;
1170
1171 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1172 oconstraints[i] = constraint;
1173
1174 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
1175 &allows_mem, &allows_reg, &is_inout))
1176 {
1177 /* If the operand is going to end up in memory,
1178 mark it addressable. */
1179 if (!allows_reg && !cxx_mark_addressable (operand))
1180 operand = error_mark_node;
1181 }
1182 else
1183 operand = error_mark_node;
1184
1185 TREE_VALUE (t) = operand;
1186 }
1187
1188 for (i = 0, t = input_operands; t; ++i, t = TREE_CHAIN (t))
1189 {
1190 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1191 operand = decay_conversion (TREE_VALUE (t));
1192
1193 /* If the type of the operand hasn't been determined (e.g.,
1194 because it involves an overloaded function), then issue
1195 an error message. There's no context available to
1196 resolve the overloading. */
1197 if (TREE_TYPE (operand) == unknown_type_node)
1198 {
1199 error ("type of asm operand %qE could not be determined",
1200 TREE_VALUE (t));
1201 operand = error_mark_node;
1202 }
1203
1204 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
1205 oconstraints, &allows_mem, &allows_reg))
1206 {
1207 /* If the operand is going to end up in memory,
1208 mark it addressable. */
1209 if (!allows_reg && allows_mem)
1210 {
1211 /* Strip the nops as we allow this case. FIXME, this really
1212 should be rejected or made deprecated. */
1213 STRIP_NOPS (operand);
1214 if (!cxx_mark_addressable (operand))
1215 operand = error_mark_node;
1216 }
1217 }
1218 else
1219 operand = error_mark_node;
1220
1221 TREE_VALUE (t) = operand;
1222 }
1223 }
1224
1225 r = build_stmt (ASM_EXPR, string,
1226 output_operands, input_operands,
1227 clobbers);
1228 ASM_VOLATILE_P (r) = volatile_p;
1229 r = maybe_cleanup_point_expr_void (r);
1230 return add_stmt (r);
1231 }
1232
1233 /* Finish a label with the indicated NAME. */
1234
1235 tree
1236 finish_label_stmt (tree name)
1237 {
1238 tree decl = define_label (input_location, name);
1239 return add_stmt (build_stmt (LABEL_EXPR, decl));
1240 }
1241
1242 /* Finish a series of declarations for local labels. G++ allows users
1243 to declare "local" labels, i.e., labels with scope. This extension
1244 is useful when writing code involving statement-expressions. */
1245
1246 void
1247 finish_label_decl (tree name)
1248 {
1249 tree decl = declare_local_label (name);
1250 add_decl_expr (decl);
1251 }
1252
1253 /* When DECL goes out of scope, make sure that CLEANUP is executed. */
1254
1255 void
1256 finish_decl_cleanup (tree decl, tree cleanup)
1257 {
1258 push_cleanup (decl, cleanup, false);
1259 }
1260
1261 /* If the current scope exits with an exception, run CLEANUP. */
1262
1263 void
1264 finish_eh_cleanup (tree cleanup)
1265 {
1266 push_cleanup (NULL, cleanup, true);
1267 }
1268
1269 /* The MEM_INITS is a list of mem-initializers, in reverse of the
1270 order they were written by the user. Each node is as for
1271 emit_mem_initializers. */
1272
1273 void
1274 finish_mem_initializers (tree mem_inits)
1275 {
1276 /* Reorder the MEM_INITS so that they are in the order they appeared
1277 in the source program. */
1278 mem_inits = nreverse (mem_inits);
1279
1280 if (processing_template_decl)
1281 add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
1282 else
1283 emit_mem_initializers (mem_inits);
1284 }
1285
1286 /* Finish a parenthesized expression EXPR. */
1287
1288 tree
1289 finish_parenthesized_expr (tree expr)
1290 {
1291 if (EXPR_P (expr))
1292 /* This inhibits warnings in c_common_truthvalue_conversion. */
1293 TREE_NO_WARNING (expr) = 1;
1294
1295 if (TREE_CODE (expr) == OFFSET_REF)
1296 /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
1297 enclosed in parentheses. */
1298 PTRMEM_OK_P (expr) = 0;
1299
1300 if (TREE_CODE (expr) == STRING_CST)
1301 PAREN_STRING_LITERAL_P (expr) = 1;
1302
1303 return expr;
1304 }
1305
1306 /* Finish a reference to a non-static data member (DECL) that is not
1307 preceded by `.' or `->'. */
1308
1309 tree
1310 finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
1311 {
1312 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
1313
1314 if (!object)
1315 {
1316 if (current_function_decl
1317 && DECL_STATIC_FUNCTION_P (current_function_decl))
1318 cp_error_at ("invalid use of member %qD in static member function",
1319 decl);
1320 else
1321 cp_error_at ("invalid use of non-static data member %qD", decl);
1322 error ("from this location");
1323
1324 return error_mark_node;
1325 }
1326 TREE_USED (current_class_ptr) = 1;
1327 if (processing_template_decl && !qualifying_scope)
1328 {
1329 tree type = TREE_TYPE (decl);
1330
1331 if (TREE_CODE (type) == REFERENCE_TYPE)
1332 type = TREE_TYPE (type);
1333 else
1334 {
1335 /* Set the cv qualifiers. */
1336 int quals = cp_type_quals (TREE_TYPE (current_class_ref));
1337
1338 if (DECL_MUTABLE_P (decl))
1339 quals &= ~TYPE_QUAL_CONST;
1340
1341 quals |= cp_type_quals (TREE_TYPE (decl));
1342 type = cp_build_qualified_type (type, quals);
1343 }
1344
1345 return build_min (COMPONENT_REF, type, object, decl, NULL_TREE);
1346 }
1347 else
1348 {
1349 tree access_type = TREE_TYPE (object);
1350 tree lookup_context = context_for_name_lookup (decl);
1351
1352 while (!DERIVED_FROM_P (lookup_context, access_type))
1353 {
1354 access_type = TYPE_CONTEXT (access_type);
1355 while (access_type && DECL_P (access_type))
1356 access_type = DECL_CONTEXT (access_type);
1357
1358 if (!access_type)
1359 {
1360 cp_error_at ("object missing in reference to %qD", decl);
1361 error ("from this location");
1362 return error_mark_node;
1363 }
1364 }
1365
1366 /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
1367 QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
1368 for now. */
1369 if (processing_template_decl)
1370 return build_min (SCOPE_REF, TREE_TYPE (decl),
1371 qualifying_scope, DECL_NAME (decl));
1372
1373 perform_or_defer_access_check (TYPE_BINFO (access_type), decl);
1374
1375 /* If the data member was named `C::M', convert `*this' to `C'
1376 first. */
1377 if (qualifying_scope)
1378 {
1379 tree binfo = NULL_TREE;
1380 object = build_scoped_ref (object, qualifying_scope,
1381 &binfo);
1382 }
1383
1384 return build_class_member_access_expr (object, decl,
1385 /*access_path=*/NULL_TREE,
1386 /*preserve_reference=*/false);
1387 }
1388 }
1389
1390 /* DECL was the declaration to which a qualified-id resolved. Issue
1391 an error message if it is not accessible. If OBJECT_TYPE is
1392 non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
1393 type of `*x', or `x', respectively. If the DECL was named as
1394 `A::B' then NESTED_NAME_SPECIFIER is `A'. */
1395
1396 void
1397 check_accessibility_of_qualified_id (tree decl,
1398 tree object_type,
1399 tree nested_name_specifier)
1400 {
1401 tree scope;
1402 tree qualifying_type = NULL_TREE;
1403
1404 /* If we're not checking, return immediately. */
1405 if (deferred_access_no_check)
1406 return;
1407
1408 /* Determine the SCOPE of DECL. */
1409 scope = context_for_name_lookup (decl);
1410 /* If the SCOPE is not a type, then DECL is not a member. */
1411 if (!TYPE_P (scope))
1412 return;
1413 /* Compute the scope through which DECL is being accessed. */
1414 if (object_type
1415 /* OBJECT_TYPE might not be a class type; consider:
1416
1417 class A { typedef int I; };
1418 I *p;
1419 p->A::I::~I();
1420
1421 In this case, we will have "A::I" as the DECL, but "I" as the
1422 OBJECT_TYPE. */
1423 && CLASS_TYPE_P (object_type)
1424 && DERIVED_FROM_P (scope, object_type))
1425 /* If we are processing a `->' or `.' expression, use the type of the
1426 left-hand side. */
1427 qualifying_type = object_type;
1428 else if (nested_name_specifier)
1429 {
1430 /* If the reference is to a non-static member of the
1431 current class, treat it as if it were referenced through
1432 `this'. */
1433 if (DECL_NONSTATIC_MEMBER_P (decl)
1434 && current_class_ptr
1435 && DERIVED_FROM_P (scope, current_class_type))
1436 qualifying_type = current_class_type;
1437 /* Otherwise, use the type indicated by the
1438 nested-name-specifier. */
1439 else
1440 qualifying_type = nested_name_specifier;
1441 }
1442 else
1443 /* Otherwise, the name must be from the current class or one of
1444 its bases. */
1445 qualifying_type = currently_open_derived_class (scope);
1446
1447 if (qualifying_type && IS_AGGR_TYPE_CODE (TREE_CODE (qualifying_type)))
1448 /* It is possible for qualifying type to be a TEMPLATE_TYPE_PARM
1449 or similar in a default argument value. */
1450 perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl);
1451 }
1452
1453 /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
1454 class named to the left of the "::" operator. DONE is true if this
1455 expression is a complete postfix-expression; it is false if this
1456 expression is followed by '->', '[', '(', etc. ADDRESS_P is true
1457 iff this expression is the operand of '&'. */
1458
1459 tree
1460 finish_qualified_id_expr (tree qualifying_class, tree expr, bool done,
1461 bool address_p)
1462 {
1463 if (error_operand_p (expr))
1464 return error_mark_node;
1465
1466 /* If EXPR occurs as the operand of '&', use special handling that
1467 permits a pointer-to-member. */
1468 if (address_p && done)
1469 {
1470 if (TREE_CODE (expr) == SCOPE_REF)
1471 expr = TREE_OPERAND (expr, 1);
1472 expr = build_offset_ref (qualifying_class, expr,
1473 /*address_p=*/true);
1474 return expr;
1475 }
1476
1477 if (TREE_CODE (expr) == FIELD_DECL)
1478 expr = finish_non_static_data_member (expr, current_class_ref,
1479 qualifying_class);
1480 else if (BASELINK_P (expr) && !processing_template_decl)
1481 {
1482 tree fns;
1483
1484 /* See if any of the functions are non-static members. */
1485 fns = BASELINK_FUNCTIONS (expr);
1486 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
1487 fns = TREE_OPERAND (fns, 0);
1488 /* If so, the expression may be relative to the current
1489 class. */
1490 if (!shared_member_p (fns)
1491 && current_class_type
1492 && DERIVED_FROM_P (qualifying_class, current_class_type))
1493 expr = (build_class_member_access_expr
1494 (maybe_dummy_object (qualifying_class, NULL),
1495 expr,
1496 BASELINK_ACCESS_BINFO (expr),
1497 /*preserve_reference=*/false));
1498 else if (done)
1499 /* The expression is a qualified name whose address is not
1500 being taken. */
1501 expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
1502 }
1503
1504 return expr;
1505 }
1506
1507 /* Begin a statement-expression. The value returned must be passed to
1508 finish_stmt_expr. */
1509
1510 tree
1511 begin_stmt_expr (void)
1512 {
1513 return push_stmt_list ();
1514 }
1515
1516 /* Process the final expression of a statement expression. EXPR can be
1517 NULL, if the final expression is empty. Build up a TARGET_EXPR so
1518 that the result value can be safely returned to the enclosing
1519 expression. */
1520
1521 tree
1522 finish_stmt_expr_expr (tree expr, tree stmt_expr)
1523 {
1524 tree result = NULL_TREE;
1525
1526 if (expr)
1527 {
1528 if (!processing_template_decl && !VOID_TYPE_P (TREE_TYPE (expr)))
1529 {
1530 tree type = TREE_TYPE (expr);
1531
1532 if (TREE_CODE (type) == ARRAY_TYPE
1533 || TREE_CODE (type) == FUNCTION_TYPE)
1534 expr = decay_conversion (expr);
1535
1536 expr = require_complete_type (expr);
1537
1538 type = TREE_TYPE (expr);
1539
1540 /* Build a TARGET_EXPR for this aggregate. finish_stmt_expr
1541 will then pull it apart so the lifetime of the target is
1542 within the scope of the expression containing this statement
1543 expression. */
1544 if (TREE_CODE (expr) == TARGET_EXPR)
1545 ;
1546 else if (!IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_INIT_REF (type))
1547 expr = build_target_expr_with_type (expr, type);
1548 else
1549 {
1550 /* Copy construct. */
1551 expr = build_special_member_call
1552 (NULL_TREE, complete_ctor_identifier,
1553 build_tree_list (NULL_TREE, expr),
1554 type, LOOKUP_NORMAL);
1555 expr = build_cplus_new (type, expr);
1556 gcc_assert (TREE_CODE (expr) == TARGET_EXPR);
1557 }
1558 }
1559
1560 if (expr != error_mark_node)
1561 {
1562 result = build_stmt (EXPR_STMT, expr);
1563 EXPR_STMT_STMT_EXPR_RESULT (result) = 1;
1564 add_stmt (result);
1565 }
1566 }
1567
1568 finish_stmt ();
1569
1570 /* Remember the last expression so that finish_stmt_expr
1571 can pull it apart. */
1572 TREE_TYPE (stmt_expr) = result;
1573
1574 return result;
1575 }
1576
1577 /* Finish a statement-expression. EXPR should be the value returned
1578 by the previous begin_stmt_expr. Returns an expression
1579 representing the statement-expression. */
1580
1581 tree
1582 finish_stmt_expr (tree stmt_expr, bool has_no_scope)
1583 {
1584 tree result, result_stmt, type;
1585 tree *result_stmt_p = NULL;
1586
1587 result_stmt = TREE_TYPE (stmt_expr);
1588 TREE_TYPE (stmt_expr) = void_type_node;
1589 result = pop_stmt_list (stmt_expr);
1590
1591 if (!result_stmt || VOID_TYPE_P (result_stmt))
1592 type = void_type_node;
1593 else
1594 {
1595 /* We need to search the statement expression for the result_stmt,
1596 since we'll need to replace it entirely. */
1597 tree t;
1598 result_stmt_p = &result;
1599 while (1)
1600 {
1601 t = *result_stmt_p;
1602 if (t == result_stmt)
1603 break;
1604
1605 switch (TREE_CODE (t))
1606 {
1607 case STATEMENT_LIST:
1608 {
1609 tree_stmt_iterator i = tsi_last (t);
1610 result_stmt_p = tsi_stmt_ptr (i);
1611 break;
1612 }
1613 case BIND_EXPR:
1614 result_stmt_p = &BIND_EXPR_BODY (t);
1615 break;
1616 case TRY_FINALLY_EXPR:
1617 case TRY_CATCH_EXPR:
1618 case CLEANUP_STMT:
1619 result_stmt_p = &TREE_OPERAND (t, 0);
1620 break;
1621 default:
1622 gcc_unreachable ();
1623 }
1624 }
1625 type = TREE_TYPE (EXPR_STMT_EXPR (result_stmt));
1626 }
1627
1628 if (processing_template_decl)
1629 {
1630 result = build_min (STMT_EXPR, type, result);
1631 TREE_SIDE_EFFECTS (result) = 1;
1632 STMT_EXPR_NO_SCOPE (result) = has_no_scope;
1633 }
1634 else if (!VOID_TYPE_P (type))
1635 {
1636 /* Pull out the TARGET_EXPR that is the final expression. Put
1637 the target's init_expr as the final expression and then put
1638 the statement expression itself as the target's init
1639 expr. Finally, return the target expression. */
1640 tree init, target_expr = EXPR_STMT_EXPR (result_stmt);
1641 gcc_assert (TREE_CODE (target_expr) == TARGET_EXPR);
1642
1643 /* The initializer will be void if the initialization is done by
1644 AGGR_INIT_EXPR; propagate that out to the statement-expression as
1645 a whole. */
1646 init = TREE_OPERAND (target_expr, 1);
1647 type = TREE_TYPE (init);
1648
1649 init = maybe_cleanup_point_expr (init);
1650 *result_stmt_p = init;
1651
1652 if (VOID_TYPE_P (type))
1653 /* No frobbing needed. */;
1654 else if (TREE_CODE (result) == BIND_EXPR)
1655 {
1656 /* The BIND_EXPR created in finish_compound_stmt is void; if we're
1657 returning a value directly, give it the appropriate type. */
1658 if (VOID_TYPE_P (TREE_TYPE (result)))
1659 TREE_TYPE (result) = type;
1660 else
1661 gcc_assert (same_type_p (TREE_TYPE (result), type));
1662 }
1663 else if (TREE_CODE (result) == STATEMENT_LIST)
1664 /* We need to wrap a STATEMENT_LIST in a BIND_EXPR so it can have a
1665 type other than void. FIXME why can't we just return a value
1666 from STATEMENT_LIST? */
1667 result = build3 (BIND_EXPR, type, NULL, result, NULL);
1668
1669 TREE_OPERAND (target_expr, 1) = result;
1670 result = target_expr;
1671 }
1672
1673 return result;
1674 }
1675
1676 /* Perform Koenig lookup. FN is the postfix-expression representing
1677 the function (or functions) to call; ARGS are the arguments to the
1678 call. Returns the functions to be considered by overload
1679 resolution. */
1680
1681 tree
1682 perform_koenig_lookup (tree fn, tree args)
1683 {
1684 tree identifier = NULL_TREE;
1685 tree functions = NULL_TREE;
1686
1687 /* Find the name of the overloaded function. */
1688 if (TREE_CODE (fn) == IDENTIFIER_NODE)
1689 identifier = fn;
1690 else if (is_overloaded_fn (fn))
1691 {
1692 functions = fn;
1693 identifier = DECL_NAME (get_first_fn (functions));
1694 }
1695 else if (DECL_P (fn))
1696 {
1697 functions = fn;
1698 identifier = DECL_NAME (fn);
1699 }
1700
1701 /* A call to a namespace-scope function using an unqualified name.
1702
1703 Do Koenig lookup -- unless any of the arguments are
1704 type-dependent. */
1705 if (!any_type_dependent_arguments_p (args))
1706 {
1707 fn = lookup_arg_dependent (identifier, functions, args);
1708 if (!fn)
1709 /* The unqualified name could not be resolved. */
1710 fn = unqualified_fn_lookup_error (identifier);
1711 }
1712 else
1713 fn = identifier;
1714
1715 return fn;
1716 }
1717
1718 /* Generate an expression for `FN (ARGS)'.
1719
1720 If DISALLOW_VIRTUAL is true, the call to FN will be not generated
1721 as a virtual call, even if FN is virtual. (This flag is set when
1722 encountering an expression where the function name is explicitly
1723 qualified. For example a call to `X::f' never generates a virtual
1724 call.)
1725
1726 Returns code for the call. */
1727
1728 tree
1729 finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
1730 {
1731 tree result;
1732 tree orig_fn;
1733 tree orig_args;
1734
1735 if (fn == error_mark_node || args == error_mark_node)
1736 return error_mark_node;
1737
1738 /* ARGS should be a list of arguments. */
1739 gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
1740
1741 orig_fn = fn;
1742 orig_args = args;
1743
1744 if (processing_template_decl)
1745 {
1746 if (type_dependent_expression_p (fn)
1747 || any_type_dependent_arguments_p (args))
1748 {
1749 result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
1750 KOENIG_LOOKUP_P (result) = koenig_p;
1751 return result;
1752 }
1753 if (!BASELINK_P (fn)
1754 && TREE_CODE (fn) != PSEUDO_DTOR_EXPR
1755 && TREE_TYPE (fn) != unknown_type_node)
1756 fn = build_non_dependent_expr (fn);
1757 args = build_non_dependent_args (orig_args);
1758 }
1759
1760 /* A reference to a member function will appear as an overloaded
1761 function (rather than a BASELINK) if an unqualified name was used
1762 to refer to it. */
1763 if (!BASELINK_P (fn) && is_overloaded_fn (fn))
1764 {
1765 tree f = fn;
1766
1767 if (TREE_CODE (f) == TEMPLATE_ID_EXPR)
1768 f = TREE_OPERAND (f, 0);
1769 f = get_first_fn (f);
1770 if (DECL_FUNCTION_MEMBER_P (f))
1771 {
1772 tree type = currently_open_derived_class (DECL_CONTEXT (f));
1773 if (!type)
1774 type = DECL_CONTEXT (f);
1775 fn = build_baselink (TYPE_BINFO (type),
1776 TYPE_BINFO (type),
1777 fn, /*optype=*/NULL_TREE);
1778 }
1779 }
1780
1781 result = NULL_TREE;
1782 if (BASELINK_P (fn))
1783 {
1784 tree object;
1785
1786 /* A call to a member function. From [over.call.func]:
1787
1788 If the keyword this is in scope and refers to the class of
1789 that member function, or a derived class thereof, then the
1790 function call is transformed into a qualified function call
1791 using (*this) as the postfix-expression to the left of the
1792 . operator.... [Otherwise] a contrived object of type T
1793 becomes the implied object argument.
1794
1795 This paragraph is unclear about this situation:
1796
1797 struct A { void f(); };
1798 struct B : public A {};
1799 struct C : public A { void g() { B::f(); }};
1800
1801 In particular, for `B::f', this paragraph does not make clear
1802 whether "the class of that member function" refers to `A' or
1803 to `B'. We believe it refers to `B'. */
1804 if (current_class_type
1805 && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1806 current_class_type)
1807 && current_class_ref)
1808 object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1809 NULL);
1810 else
1811 {
1812 tree representative_fn;
1813
1814 representative_fn = BASELINK_FUNCTIONS (fn);
1815 if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
1816 representative_fn = TREE_OPERAND (representative_fn, 0);
1817 representative_fn = get_first_fn (representative_fn);
1818 object = build_dummy_object (DECL_CONTEXT (representative_fn));
1819 }
1820
1821 if (processing_template_decl)
1822 {
1823 if (type_dependent_expression_p (object))
1824 return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
1825 object = build_non_dependent_expr (object);
1826 }
1827
1828 result = build_new_method_call (object, fn, args, NULL_TREE,
1829 (disallow_virtual
1830 ? LOOKUP_NONVIRTUAL : 0));
1831 }
1832 else if (is_overloaded_fn (fn))
1833 /* A call to a namespace-scope function. */
1834 result = build_new_function_call (fn, args);
1835 else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
1836 {
1837 if (args)
1838 error ("arguments to destructor are not allowed");
1839 /* Mark the pseudo-destructor call as having side-effects so
1840 that we do not issue warnings about its use. */
1841 result = build1 (NOP_EXPR,
1842 void_type_node,
1843 TREE_OPERAND (fn, 0));
1844 TREE_SIDE_EFFECTS (result) = 1;
1845 }
1846 else if (CLASS_TYPE_P (TREE_TYPE (fn)))
1847 /* If the "function" is really an object of class type, it might
1848 have an overloaded `operator ()'. */
1849 result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
1850 /*overloaded_p=*/NULL);
1851 if (!result)
1852 /* A call where the function is unknown. */
1853 result = build_function_call (fn, args);
1854
1855 if (processing_template_decl)
1856 {
1857 result = build3 (CALL_EXPR, TREE_TYPE (result), orig_fn,
1858 orig_args, NULL_TREE);
1859 KOENIG_LOOKUP_P (result) = koenig_p;
1860 }
1861 return result;
1862 }
1863
1864 /* Finish a call to a postfix increment or decrement or EXPR. (Which
1865 is indicated by CODE, which should be POSTINCREMENT_EXPR or
1866 POSTDECREMENT_EXPR.) */
1867
1868 tree
1869 finish_increment_expr (tree expr, enum tree_code code)
1870 {
1871 return build_x_unary_op (code, expr);
1872 }
1873
1874 /* Finish a use of `this'. Returns an expression for `this'. */
1875
1876 tree
1877 finish_this_expr (void)
1878 {
1879 tree result;
1880
1881 if (current_class_ptr)
1882 {
1883 result = current_class_ptr;
1884 }
1885 else if (current_function_decl
1886 && DECL_STATIC_FUNCTION_P (current_function_decl))
1887 {
1888 error ("%<this%> is unavailable for static member functions");
1889 result = error_mark_node;
1890 }
1891 else
1892 {
1893 if (current_function_decl)
1894 error ("invalid use of %<this%> in non-member function");
1895 else
1896 error ("invalid use of %<this%> at top level");
1897 result = error_mark_node;
1898 }
1899
1900 return result;
1901 }
1902
1903 /* Finish a pseudo-destructor expression. If SCOPE is NULL, the
1904 expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
1905 the TYPE for the type given. If SCOPE is non-NULL, the expression
1906 was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
1907
1908 tree
1909 finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
1910 {
1911 if (destructor == error_mark_node)
1912 return error_mark_node;
1913
1914 gcc_assert (TYPE_P (destructor));
1915
1916 if (!processing_template_decl)
1917 {
1918 if (scope == error_mark_node)
1919 {
1920 error ("invalid qualifying scope in pseudo-destructor name");
1921 return error_mark_node;
1922 }
1923
1924 /* [expr.pseudo] says both:
1925
1926 The type designated by the pseudo-destructor-name shall be
1927 the same as the object type.
1928
1929 and:
1930
1931 The cv-unqualified versions of the object type and of the
1932 type designated by the pseudo-destructor-name shall be the
1933 same type.
1934
1935 We implement the more generous second sentence, since that is
1936 what most other compilers do. */
1937 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
1938 destructor))
1939 {
1940 error ("%qE is not of type %qT", object, destructor);
1941 return error_mark_node;
1942 }
1943 }
1944
1945 return build3 (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
1946 }
1947
1948 /* Finish an expression of the form CODE EXPR. */
1949
1950 tree
1951 finish_unary_op_expr (enum tree_code code, tree expr)
1952 {
1953 tree result = build_x_unary_op (code, expr);
1954 /* Inside a template, build_x_unary_op does not fold the
1955 expression. So check whether the result is folded before
1956 setting TREE_NEGATED_INT. */
1957 if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
1958 && TREE_CODE (result) == INTEGER_CST
1959 && !TYPE_UNSIGNED (TREE_TYPE (result))
1960 && INT_CST_LT (result, integer_zero_node))
1961 TREE_NEGATED_INT (result) = 1;
1962 overflow_warning (result);
1963 return result;
1964 }
1965
1966 /* Finish a compound-literal expression. TYPE is the type to which
1967 the INITIALIZER_LIST is being cast. */
1968
1969 tree
1970 finish_compound_literal (tree type, tree initializer_list)
1971 {
1972 tree compound_literal;
1973
1974 /* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
1975 compound_literal = build_constructor (NULL_TREE, initializer_list);
1976 /* Mark it as a compound-literal. */
1977 TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
1978 if (processing_template_decl)
1979 TREE_TYPE (compound_literal) = type;
1980 else
1981 {
1982 /* Check the initialization. */
1983 compound_literal = digest_init (type, compound_literal, NULL);
1984 /* If the TYPE was an array type with an unknown bound, then we can
1985 figure out the dimension now. For example, something like:
1986
1987 `(int []) { 2, 3 }'
1988
1989 implies that the array has two elements. */
1990 if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
1991 complete_array_type (type, compound_literal, 1);
1992 }
1993
1994 return compound_literal;
1995 }
1996
1997 /* Return the declaration for the function-name variable indicated by
1998 ID. */
1999
2000 tree
2001 finish_fname (tree id)
2002 {
2003 tree decl;
2004
2005 decl = fname_decl (C_RID_CODE (id), id);
2006 if (processing_template_decl)
2007 decl = DECL_NAME (decl);
2008 return decl;
2009 }
2010
2011 /* Finish a translation unit. */
2012
2013 void
2014 finish_translation_unit (void)
2015 {
2016 /* In case there were missing closebraces,
2017 get us back to the global binding level. */
2018 pop_everything ();
2019 while (current_namespace != global_namespace)
2020 pop_namespace ();
2021
2022 /* Do file scope __FUNCTION__ et al. */
2023 finish_fname_decls ();
2024 }
2025
2026 /* Finish a template type parameter, specified as AGGR IDENTIFIER.
2027 Returns the parameter. */
2028
2029 tree
2030 finish_template_type_parm (tree aggr, tree identifier)
2031 {
2032 if (aggr != class_type_node)
2033 {
2034 pedwarn ("template type parameters must use the keyword %<class%> or %<typename%>");
2035 aggr = class_type_node;
2036 }
2037
2038 return build_tree_list (aggr, identifier);
2039 }
2040
2041 /* Finish a template template parameter, specified as AGGR IDENTIFIER.
2042 Returns the parameter. */
2043
2044 tree
2045 finish_template_template_parm (tree aggr, tree identifier)
2046 {
2047 tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
2048 tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
2049 DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
2050 DECL_TEMPLATE_RESULT (tmpl) = decl;
2051 DECL_ARTIFICIAL (decl) = 1;
2052 end_template_decl ();
2053
2054 gcc_assert (DECL_TEMPLATE_PARMS (tmpl));
2055
2056 return finish_template_type_parm (aggr, tmpl);
2057 }
2058
2059 /* ARGUMENT is the default-argument value for a template template
2060 parameter. If ARGUMENT is invalid, issue error messages and return
2061 the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
2062
2063 tree
2064 check_template_template_default_arg (tree argument)
2065 {
2066 if (TREE_CODE (argument) != TEMPLATE_DECL
2067 && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
2068 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
2069 {
2070 if (TREE_CODE (argument) == TYPE_DECL)
2071 {
2072 tree t = TREE_TYPE (argument);
2073
2074 /* Try to emit a slightly smarter error message if we detect
2075 that the user is using a template instantiation. */
2076 if (CLASSTYPE_TEMPLATE_INFO (t)
2077 && CLASSTYPE_TEMPLATE_INSTANTIATION (t))
2078 error ("invalid use of type %qT as a default value for a "
2079 "template template-parameter", t);
2080 else
2081 error ("invalid use of %qD as a default value for a template "
2082 "template-parameter", argument);
2083 }
2084 else
2085 error ("invalid default argument for a template template parameter");
2086 return error_mark_node;
2087 }
2088
2089 return argument;
2090 }
2091
2092 /* Begin a class definition, as indicated by T. */
2093
2094 tree
2095 begin_class_definition (tree t)
2096 {
2097 if (t == error_mark_node)
2098 return error_mark_node;
2099
2100 if (processing_template_parmlist)
2101 {
2102 error ("definition of %q#T inside template parameter list", t);
2103 return error_mark_node;
2104 }
2105 /* A non-implicit typename comes from code like:
2106
2107 template <typename T> struct A {
2108 template <typename U> struct A<T>::B ...
2109
2110 This is erroneous. */
2111 else if (TREE_CODE (t) == TYPENAME_TYPE)
2112 {
2113 error ("invalid definition of qualified type %qT", t);
2114 t = error_mark_node;
2115 }
2116
2117 if (t == error_mark_node || ! IS_AGGR_TYPE (t))
2118 {
2119 t = make_aggr_type (RECORD_TYPE);
2120 pushtag (make_anon_name (), t, 0);
2121 }
2122
2123 /* If this type was already complete, and we see another definition,
2124 that's an error. */
2125 if (COMPLETE_TYPE_P (t))
2126 {
2127 error ("redefinition of %q#T", t);
2128 cp_error_at ("previous definition of %q#T", t);
2129 return error_mark_node;
2130 }
2131
2132 /* Update the location of the decl. */
2133 DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
2134
2135 if (TYPE_BEING_DEFINED (t))
2136 {
2137 t = make_aggr_type (TREE_CODE (t));
2138 pushtag (TYPE_IDENTIFIER (t), t, 0);
2139 }
2140 maybe_process_partial_specialization (t);
2141 pushclass (t);
2142 TYPE_BEING_DEFINED (t) = 1;
2143 if (flag_pack_struct)
2144 {
2145 tree v;
2146 TYPE_PACKED (t) = 1;
2147 /* Even though the type is being defined for the first time
2148 here, there might have been a forward declaration, so there
2149 might be cv-qualified variants of T. */
2150 for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
2151 TYPE_PACKED (v) = 1;
2152 }
2153 /* Reset the interface data, at the earliest possible
2154 moment, as it might have been set via a class foo;
2155 before. */
2156 if (! TYPE_ANONYMOUS_P (t))
2157 {
2158 struct c_fileinfo *finfo = get_fileinfo (lbasename (input_filename));
2159 CLASSTYPE_INTERFACE_ONLY (t) = finfo->interface_only;
2160 SET_CLASSTYPE_INTERFACE_UNKNOWN_X
2161 (t, finfo->interface_unknown);
2162 }
2163 reset_specialization();
2164
2165 /* Make a declaration for this class in its own scope. */
2166 build_self_reference ();
2167
2168 return t;
2169 }
2170
2171 /* Finish the member declaration given by DECL. */
2172
2173 void
2174 finish_member_declaration (tree decl)
2175 {
2176 if (decl == error_mark_node || decl == NULL_TREE)
2177 return;
2178
2179 if (decl == void_type_node)
2180 /* The COMPONENT was a friend, not a member, and so there's
2181 nothing for us to do. */
2182 return;
2183
2184 /* We should see only one DECL at a time. */
2185 gcc_assert (TREE_CHAIN (decl) == NULL_TREE);
2186
2187 /* Set up access control for DECL. */
2188 TREE_PRIVATE (decl)
2189 = (current_access_specifier == access_private_node);
2190 TREE_PROTECTED (decl)
2191 = (current_access_specifier == access_protected_node);
2192 if (TREE_CODE (decl) == TEMPLATE_DECL)
2193 {
2194 TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
2195 TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
2196 }
2197
2198 /* Mark the DECL as a member of the current class. */
2199 DECL_CONTEXT (decl) = current_class_type;
2200
2201 /* [dcl.link]
2202
2203 A C language linkage is ignored for the names of class members
2204 and the member function type of class member functions. */
2205 if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
2206 SET_DECL_LANGUAGE (decl, lang_cplusplus);
2207
2208 /* Put functions on the TYPE_METHODS list and everything else on the
2209 TYPE_FIELDS list. Note that these are built up in reverse order.
2210 We reverse them (to obtain declaration order) in finish_struct. */
2211 if (TREE_CODE (decl) == FUNCTION_DECL
2212 || DECL_FUNCTION_TEMPLATE_P (decl))
2213 {
2214 /* We also need to add this function to the
2215 CLASSTYPE_METHOD_VEC. */
2216 add_method (current_class_type, decl);
2217
2218 TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
2219 TYPE_METHODS (current_class_type) = decl;
2220
2221 maybe_add_class_template_decl_list (current_class_type, decl,
2222 /*friend_p=*/0);
2223 }
2224 /* Enter the DECL into the scope of the class. */
2225 else if ((TREE_CODE (decl) == USING_DECL && TREE_TYPE (decl))
2226 || pushdecl_class_level (decl))
2227 {
2228 /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
2229 go at the beginning. The reason is that lookup_field_1
2230 searches the list in order, and we want a field name to
2231 override a type name so that the "struct stat hack" will
2232 work. In particular:
2233
2234 struct S { enum E { }; int E } s;
2235 s.E = 3;
2236
2237 is valid. In addition, the FIELD_DECLs must be maintained in
2238 declaration order so that class layout works as expected.
2239 However, we don't need that order until class layout, so we
2240 save a little time by putting FIELD_DECLs on in reverse order
2241 here, and then reversing them in finish_struct_1. (We could
2242 also keep a pointer to the correct insertion points in the
2243 list.) */
2244
2245 if (TREE_CODE (decl) == TYPE_DECL)
2246 TYPE_FIELDS (current_class_type)
2247 = chainon (TYPE_FIELDS (current_class_type), decl);
2248 else
2249 {
2250 TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
2251 TYPE_FIELDS (current_class_type) = decl;
2252 }
2253
2254 maybe_add_class_template_decl_list (current_class_type, decl,
2255 /*friend_p=*/0);
2256 }
2257
2258 if (pch_file)
2259 note_decl_for_pch (decl);
2260 }
2261
2262 /* DECL has been declared while we are building a PCH file. Perform
2263 actions that we might normally undertake lazily, but which can be
2264 performed now so that they do not have to be performed in
2265 translation units which include the PCH file. */
2266
2267 void
2268 note_decl_for_pch (tree decl)
2269 {
2270 gcc_assert (pch_file);
2271
2272 /* A non-template inline function with external linkage will always
2273 be COMDAT. As we must eventually determine the linkage of all
2274 functions, and as that causes writes to the data mapped in from
2275 the PCH file, it's advantageous to mark the functions at this
2276 point. */
2277 if (TREE_CODE (decl) == FUNCTION_DECL
2278 && TREE_PUBLIC (decl)
2279 && DECL_DECLARED_INLINE_P (decl)
2280 && !DECL_IMPLICIT_INSTANTIATION (decl))
2281 {
2282 comdat_linkage (decl);
2283 DECL_INTERFACE_KNOWN (decl) = 1;
2284 }
2285
2286 /* There's a good chance that we'll have to mangle names at some
2287 point, even if only for emission in debugging information. */
2288 if (TREE_CODE (decl) == VAR_DECL
2289 || TREE_CODE (decl) == FUNCTION_DECL)
2290 mangle_decl (decl);
2291 }
2292
2293 /* Finish processing a complete template declaration. The PARMS are
2294 the template parameters. */
2295
2296 void
2297 finish_template_decl (tree parms)
2298 {
2299 if (parms)
2300 end_template_decl ();
2301 else
2302 end_specialization ();
2303 }
2304
2305 /* Finish processing a template-id (which names a type) of the form
2306 NAME < ARGS >. Return the TYPE_DECL for the type named by the
2307 template-id. If ENTERING_SCOPE is nonzero we are about to enter
2308 the scope of template-id indicated. */
2309
2310 tree
2311 finish_template_type (tree name, tree args, int entering_scope)
2312 {
2313 tree decl;
2314
2315 decl = lookup_template_class (name, args,
2316 NULL_TREE, NULL_TREE, entering_scope,
2317 tf_error | tf_warning | tf_user);
2318 if (decl != error_mark_node)
2319 decl = TYPE_STUB_DECL (decl);
2320
2321 return decl;
2322 }
2323
2324 /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
2325 Return a TREE_LIST containing the ACCESS_SPECIFIER and the
2326 BASE_CLASS, or NULL_TREE if an error occurred. The
2327 ACCESS_SPECIFIER is one of
2328 access_{default,public,protected_private}_node. For a virtual base
2329 we set TREE_TYPE. */
2330
2331 tree
2332 finish_base_specifier (tree base, tree access, bool virtual_p)
2333 {
2334 tree result;
2335
2336 if (base == error_mark_node)
2337 {
2338 error ("invalid base-class specification");
2339 result = NULL_TREE;
2340 }
2341 else if (! is_aggr_type (base, 1))
2342 result = NULL_TREE;
2343 else
2344 {
2345 if (cp_type_quals (base) != 0)
2346 {
2347 error ("base class %qT has cv qualifiers", base);
2348 base = TYPE_MAIN_VARIANT (base);
2349 }
2350 result = build_tree_list (access, base);
2351 if (virtual_p)
2352 TREE_TYPE (result) = integer_type_node;
2353 }
2354
2355 return result;
2356 }
2357
2358 /* Issue a diagnostic that NAME cannot be found in SCOPE. DECL is
2359 what we found when we tried to do the lookup. */
2360
2361 void
2362 qualified_name_lookup_error (tree scope, tree name, tree decl)
2363 {
2364 if (TYPE_P (scope))
2365 {
2366 if (!COMPLETE_TYPE_P (scope))
2367 error ("incomplete type %qT used in nested name specifier", scope);
2368 else if (TREE_CODE (decl) == TREE_LIST)
2369 {
2370 error ("reference to %<%T::%D%> is ambiguous", scope, name);
2371 print_candidates (decl);
2372 }
2373 else
2374 error ("%qD is not a member of %qT", name, scope);
2375 }
2376 else if (scope != global_namespace)
2377 error ("%qD is not a member of %qD", name, scope);
2378 else
2379 error ("%<::%D%> has not been declared", name);
2380 }
2381
2382 /* ID_EXPRESSION is a representation of parsed, but unprocessed,
2383 id-expression. (See cp_parser_id_expression for details.) SCOPE,
2384 if non-NULL, is the type or namespace used to explicitly qualify
2385 ID_EXPRESSION. DECL is the entity to which that name has been
2386 resolved.
2387
2388 *CONSTANT_EXPRESSION_P is true if we are presently parsing a
2389 constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
2390 be set to true if this expression isn't permitted in a
2391 constant-expression, but it is otherwise not set by this function.
2392 *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
2393 constant-expression, but a non-constant expression is also
2394 permissible.
2395
2396 If an error occurs, and it is the kind of error that might cause
2397 the parser to abort a tentative parse, *ERROR_MSG is filled in. It
2398 is the caller's responsibility to issue the message. *ERROR_MSG
2399 will be a string with static storage duration, so the caller need
2400 not "free" it.
2401
2402 Return an expression for the entity, after issuing appropriate
2403 diagnostics. This function is also responsible for transforming a
2404 reference to a non-static member into a COMPONENT_REF that makes
2405 the use of "this" explicit.
2406
2407 Upon return, *IDK will be filled in appropriately. */
2408
2409 tree
2410 finish_id_expression (tree id_expression,
2411 tree decl,
2412 tree scope,
2413 cp_id_kind *idk,
2414 tree *qualifying_class,
2415 bool integral_constant_expression_p,
2416 bool allow_non_integral_constant_expression_p,
2417 bool *non_integral_constant_expression_p,
2418 const char **error_msg)
2419 {
2420 /* Initialize the output parameters. */
2421 *idk = CP_ID_KIND_NONE;
2422 *error_msg = NULL;
2423
2424 if (id_expression == error_mark_node)
2425 return error_mark_node;
2426 /* If we have a template-id, then no further lookup is
2427 required. If the template-id was for a template-class, we
2428 will sometimes have a TYPE_DECL at this point. */
2429 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2430 || TREE_CODE (decl) == TYPE_DECL)
2431 ;
2432 /* Look up the name. */
2433 else
2434 {
2435 if (decl == error_mark_node)
2436 {
2437 /* Name lookup failed. */
2438 if (scope
2439 && (!TYPE_P (scope)
2440 || (!dependent_type_p (scope)
2441 && !(TREE_CODE (id_expression) == IDENTIFIER_NODE
2442 && IDENTIFIER_TYPENAME_P (id_expression)
2443 && dependent_type_p (TREE_TYPE (id_expression))))))
2444 {
2445 /* If the qualifying type is non-dependent (and the name
2446 does not name a conversion operator to a dependent
2447 type), issue an error. */
2448 qualified_name_lookup_error (scope, id_expression, decl);
2449 return error_mark_node;
2450 }
2451 else if (!scope)
2452 {
2453 /* It may be resolved via Koenig lookup. */
2454 *idk = CP_ID_KIND_UNQUALIFIED;
2455 return id_expression;
2456 }
2457 else
2458 decl = id_expression;
2459 }
2460 /* If DECL is a variable that would be out of scope under
2461 ANSI/ISO rules, but in scope in the ARM, name lookup
2462 will succeed. Issue a diagnostic here. */
2463 else
2464 decl = check_for_out_of_scope_variable (decl);
2465
2466 /* Remember that the name was used in the definition of
2467 the current class so that we can check later to see if
2468 the meaning would have been different after the class
2469 was entirely defined. */
2470 if (!scope && decl != error_mark_node)
2471 maybe_note_name_used_in_class (id_expression, decl);
2472 }
2473
2474 /* If we didn't find anything, or what we found was a type,
2475 then this wasn't really an id-expression. */
2476 if (TREE_CODE (decl) == TEMPLATE_DECL
2477 && !DECL_FUNCTION_TEMPLATE_P (decl))
2478 {
2479 *error_msg = "missing template arguments";
2480 return error_mark_node;
2481 }
2482 else if (TREE_CODE (decl) == TYPE_DECL
2483 || TREE_CODE (decl) == NAMESPACE_DECL)
2484 {
2485 *error_msg = "expected primary-expression";
2486 return error_mark_node;
2487 }
2488
2489 /* If the name resolved to a template parameter, there is no
2490 need to look it up again later. */
2491 if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
2492 || TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2493 {
2494 tree r;
2495
2496 *idk = CP_ID_KIND_NONE;
2497 if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2498 decl = TEMPLATE_PARM_DECL (decl);
2499 r = convert_from_reference (DECL_INITIAL (decl));
2500
2501 if (integral_constant_expression_p
2502 && !dependent_type_p (TREE_TYPE (decl))
2503 && !(INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (r))))
2504 {
2505 if (!allow_non_integral_constant_expression_p)
2506 error ("template parameter %qD of type %qT is not allowed in "
2507 "an integral constant expression because it is not of "
2508 "integral or enumeration type", decl, TREE_TYPE (decl));
2509 *non_integral_constant_expression_p = true;
2510 }
2511 return r;
2512 }
2513 /* Similarly, we resolve enumeration constants to their
2514 underlying values. */
2515 else if (TREE_CODE (decl) == CONST_DECL)
2516 {
2517 *idk = CP_ID_KIND_NONE;
2518 if (!processing_template_decl)
2519 return DECL_INITIAL (decl);
2520 return decl;
2521 }
2522 else
2523 {
2524 bool dependent_p;
2525
2526 /* If the declaration was explicitly qualified indicate
2527 that. The semantics of `A::f(3)' are different than
2528 `f(3)' if `f' is virtual. */
2529 *idk = (scope
2530 ? CP_ID_KIND_QUALIFIED
2531 : (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2532 ? CP_ID_KIND_TEMPLATE_ID
2533 : CP_ID_KIND_UNQUALIFIED));
2534
2535
2536 /* [temp.dep.expr]
2537
2538 An id-expression is type-dependent if it contains an
2539 identifier that was declared with a dependent type.
2540
2541 The standard is not very specific about an id-expression that
2542 names a set of overloaded functions. What if some of them
2543 have dependent types and some of them do not? Presumably,
2544 such a name should be treated as a dependent name. */
2545 /* Assume the name is not dependent. */
2546 dependent_p = false;
2547 if (!processing_template_decl)
2548 /* No names are dependent outside a template. */
2549 ;
2550 /* A template-id where the name of the template was not resolved
2551 is definitely dependent. */
2552 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2553 && (TREE_CODE (TREE_OPERAND (decl, 0))
2554 == IDENTIFIER_NODE))
2555 dependent_p = true;
2556 /* For anything except an overloaded function, just check its
2557 type. */
2558 else if (!is_overloaded_fn (decl))
2559 dependent_p
2560 = dependent_type_p (TREE_TYPE (decl));
2561 /* For a set of overloaded functions, check each of the
2562 functions. */
2563 else
2564 {
2565 tree fns = decl;
2566
2567 if (BASELINK_P (fns))
2568 fns = BASELINK_FUNCTIONS (fns);
2569
2570 /* For a template-id, check to see if the template
2571 arguments are dependent. */
2572 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
2573 {
2574 tree args = TREE_OPERAND (fns, 1);
2575 dependent_p = any_dependent_template_arguments_p (args);
2576 /* The functions are those referred to by the
2577 template-id. */
2578 fns = TREE_OPERAND (fns, 0);
2579 }
2580
2581 /* If there are no dependent template arguments, go through
2582 the overloaded functions. */
2583 while (fns && !dependent_p)
2584 {
2585 tree fn = OVL_CURRENT (fns);
2586
2587 /* Member functions of dependent classes are
2588 dependent. */
2589 if (TREE_CODE (fn) == FUNCTION_DECL
2590 && type_dependent_expression_p (fn))
2591 dependent_p = true;
2592 else if (TREE_CODE (fn) == TEMPLATE_DECL
2593 && dependent_template_p (fn))
2594 dependent_p = true;
2595
2596 fns = OVL_NEXT (fns);
2597 }
2598 }
2599
2600 /* If the name was dependent on a template parameter, we will
2601 resolve the name at instantiation time. */
2602 if (dependent_p)
2603 {
2604 /* Create a SCOPE_REF for qualified names, if the scope is
2605 dependent. */
2606 if (scope)
2607 {
2608 if (TYPE_P (scope))
2609 *qualifying_class = scope;
2610 /* Since this name was dependent, the expression isn't
2611 constant -- yet. No error is issued because it might
2612 be constant when things are instantiated. */
2613 if (integral_constant_expression_p)
2614 *non_integral_constant_expression_p = true;
2615 if (TYPE_P (scope) && dependent_type_p (scope))
2616 return build_nt (SCOPE_REF, scope, id_expression);
2617 else if (TYPE_P (scope) && DECL_P (decl))
2618 return convert_from_reference
2619 (build2 (SCOPE_REF, TREE_TYPE (decl), scope, id_expression));
2620 else
2621 return convert_from_reference (decl);
2622 }
2623 /* A TEMPLATE_ID already contains all the information we
2624 need. */
2625 if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
2626 return id_expression;
2627 /* Since this name was dependent, the expression isn't
2628 constant -- yet. No error is issued because it might be
2629 constant when things are instantiated. */
2630 if (integral_constant_expression_p)
2631 *non_integral_constant_expression_p = true;
2632 *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
2633 /* If we found a variable, then name lookup during the
2634 instantiation will always resolve to the same VAR_DECL
2635 (or an instantiation thereof). */
2636 if (TREE_CODE (decl) == VAR_DECL
2637 || TREE_CODE (decl) == PARM_DECL)
2638 return convert_from_reference (decl);
2639 /* The same is true for FIELD_DECL, but we also need to
2640 make sure that the syntax is correct. */
2641 else if (TREE_CODE (decl) == FIELD_DECL)
2642 return finish_non_static_data_member
2643 (decl, current_class_ref,
2644 /*qualifying_scope=*/NULL_TREE);
2645 return id_expression;
2646 }
2647
2648 /* Only certain kinds of names are allowed in constant
2649 expression. Enumerators and template parameters have already
2650 been handled above. */
2651 if (integral_constant_expression_p
2652 && !DECL_INTEGRAL_CONSTANT_VAR_P (decl))
2653 {
2654 if (!allow_non_integral_constant_expression_p)
2655 {
2656 error ("%qD cannot appear in a constant-expression", decl);
2657 return error_mark_node;
2658 }
2659 *non_integral_constant_expression_p = true;
2660 }
2661
2662 if (TREE_CODE (decl) == NAMESPACE_DECL)
2663 {
2664 error ("use of namespace %qD as expression", decl);
2665 return error_mark_node;
2666 }
2667 else if (DECL_CLASS_TEMPLATE_P (decl))
2668 {
2669 error ("use of class template %qT as expression", decl);
2670 return error_mark_node;
2671 }
2672 else if (TREE_CODE (decl) == TREE_LIST)
2673 {
2674 /* Ambiguous reference to base members. */
2675 error ("request for member %qD is ambiguous in "
2676 "multiple inheritance lattice", id_expression);
2677 print_candidates (decl);
2678 return error_mark_node;
2679 }
2680
2681 /* Mark variable-like entities as used. Functions are similarly
2682 marked either below or after overload resolution. */
2683 if (TREE_CODE (decl) == VAR_DECL
2684 || TREE_CODE (decl) == PARM_DECL
2685 || TREE_CODE (decl) == RESULT_DECL)
2686 mark_used (decl);
2687
2688 if (scope)
2689 {
2690 decl = (adjust_result_of_qualified_name_lookup
2691 (decl, scope, current_class_type));
2692
2693 if (TREE_CODE (decl) == FUNCTION_DECL)
2694 mark_used (decl);
2695
2696 if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
2697 *qualifying_class = scope;
2698 else
2699 {
2700 tree r = convert_from_reference (decl);
2701
2702 if (processing_template_decl
2703 && TYPE_P (scope))
2704 r = build2 (SCOPE_REF, TREE_TYPE (r), scope, decl);
2705 decl = r;
2706 }
2707 }
2708 else if (TREE_CODE (decl) == FIELD_DECL)
2709 decl = finish_non_static_data_member (decl, current_class_ref,
2710 /*qualifying_scope=*/NULL_TREE);
2711 else if (is_overloaded_fn (decl))
2712 {
2713 tree first_fn = OVL_CURRENT (decl);
2714
2715 if (TREE_CODE (first_fn) == TEMPLATE_DECL)
2716 first_fn = DECL_TEMPLATE_RESULT (first_fn);
2717
2718 if (!really_overloaded_fn (decl))
2719 mark_used (first_fn);
2720
2721 if (TREE_CODE (first_fn) == FUNCTION_DECL
2722 && DECL_FUNCTION_MEMBER_P (first_fn)
2723 && !shared_member_p (decl))
2724 {
2725 /* A set of member functions. */
2726 decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
2727 return finish_class_member_access_expr (decl, id_expression);
2728 }
2729 }
2730 else
2731 {
2732 if (TREE_CODE (decl) == VAR_DECL
2733 || TREE_CODE (decl) == PARM_DECL
2734 || TREE_CODE (decl) == RESULT_DECL)
2735 {
2736 tree context = decl_function_context (decl);
2737
2738 if (context != NULL_TREE && context != current_function_decl
2739 && ! TREE_STATIC (decl))
2740 {
2741 error ("use of %s from containing function",
2742 (TREE_CODE (decl) == VAR_DECL
2743 ? "%<auto%> variable" : "parameter"));
2744 cp_error_at (" %q#D declared here", decl);
2745 return error_mark_node;
2746 }
2747 }
2748
2749 if (DECL_P (decl) && DECL_NONLOCAL (decl)
2750 && DECL_CLASS_SCOPE_P (decl)
2751 && DECL_CONTEXT (decl) != current_class_type)
2752 {
2753 tree path;
2754
2755 path = currently_open_derived_class (DECL_CONTEXT (decl));
2756 perform_or_defer_access_check (TYPE_BINFO (path), decl);
2757 }
2758
2759 decl = convert_from_reference (decl);
2760 }
2761
2762 /* Resolve references to variables of anonymous unions
2763 into COMPONENT_REFs. */
2764 if (TREE_CODE (decl) == ALIAS_DECL)
2765 decl = unshare_expr (DECL_INITIAL (decl));
2766 }
2767
2768 if (TREE_DEPRECATED (decl))
2769 warn_deprecated_use (decl);
2770
2771 return decl;
2772 }
2773
2774 /* Implement the __typeof keyword: Return the type of EXPR, suitable for
2775 use as a type-specifier. */
2776
2777 tree
2778 finish_typeof (tree expr)
2779 {
2780 tree type;
2781
2782 if (type_dependent_expression_p (expr))
2783 {
2784 type = make_aggr_type (TYPEOF_TYPE);
2785 TYPEOF_TYPE_EXPR (type) = expr;
2786
2787 return type;
2788 }
2789
2790 type = TREE_TYPE (expr);
2791
2792 if (!type || type == unknown_type_node)
2793 {
2794 error ("type of %qE is unknown", expr);
2795 return error_mark_node;
2796 }
2797
2798 return type;
2799 }
2800
2801 /* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
2802 with equivalent CALL_EXPRs. */
2803
2804 static tree
2805 simplify_aggr_init_exprs_r (tree* tp,
2806 int* walk_subtrees,
2807 void* data ATTRIBUTE_UNUSED)
2808 {
2809 /* We don't need to walk into types; there's nothing in a type that
2810 needs simplification. (And, furthermore, there are places we
2811 actively don't want to go. For example, we don't want to wander
2812 into the default arguments for a FUNCTION_DECL that appears in a
2813 CALL_EXPR.) */
2814 if (TYPE_P (*tp))
2815 {
2816 *walk_subtrees = 0;
2817 return NULL_TREE;
2818 }
2819 /* Only AGGR_INIT_EXPRs are interesting. */
2820 else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
2821 return NULL_TREE;
2822
2823 simplify_aggr_init_expr (tp);
2824
2825 /* Keep iterating. */
2826 return NULL_TREE;
2827 }
2828
2829 /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
2830 function is broken out from the above for the benefit of the tree-ssa
2831 project. */
2832
2833 void
2834 simplify_aggr_init_expr (tree *tp)
2835 {
2836 tree aggr_init_expr = *tp;
2837
2838 /* Form an appropriate CALL_EXPR. */
2839 tree fn = TREE_OPERAND (aggr_init_expr, 0);
2840 tree args = TREE_OPERAND (aggr_init_expr, 1);
2841 tree slot = TREE_OPERAND (aggr_init_expr, 2);
2842 tree type = TREE_TYPE (slot);
2843
2844 tree call_expr;
2845 enum style_t { ctor, arg, pcc } style;
2846
2847 if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
2848 style = ctor;
2849 #ifdef PCC_STATIC_STRUCT_RETURN
2850 else if (1)
2851 style = pcc;
2852 #endif
2853 else
2854 {
2855 gcc_assert (TREE_ADDRESSABLE (type));
2856 style = arg;
2857 }
2858
2859 if (style == ctor || style == arg)
2860 {
2861 /* Pass the address of the slot. If this is a constructor, we
2862 replace the first argument; otherwise, we tack on a new one. */
2863 tree addr;
2864
2865 if (style == ctor)
2866 args = TREE_CHAIN (args);
2867
2868 cxx_mark_addressable (slot);
2869 addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
2870 if (style == arg)
2871 {
2872 /* The return type might have different cv-quals from the slot. */
2873 tree fntype = TREE_TYPE (TREE_TYPE (fn));
2874
2875 gcc_assert (TREE_CODE (fntype) == FUNCTION_TYPE
2876 || TREE_CODE (fntype) == METHOD_TYPE);
2877 addr = convert (build_pointer_type (TREE_TYPE (fntype)), addr);
2878 }
2879
2880 args = tree_cons (NULL_TREE, addr, args);
2881 }
2882
2883 call_expr = build3 (CALL_EXPR,
2884 TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
2885 fn, args, NULL_TREE);
2886
2887 if (style == arg)
2888 /* Tell the backend that we've added our return slot to the argument
2889 list. */
2890 CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr) = 1;
2891 else if (style == pcc)
2892 {
2893 /* If we're using the non-reentrant PCC calling convention, then we
2894 need to copy the returned value out of the static buffer into the
2895 SLOT. */
2896 push_deferring_access_checks (dk_no_check);
2897 call_expr = build_aggr_init (slot, call_expr,
2898 DIRECT_BIND | LOOKUP_ONLYCONVERTING);
2899 pop_deferring_access_checks ();
2900 }
2901
2902 *tp = call_expr;
2903 }
2904
2905 /* Emit all thunks to FN that should be emitted when FN is emitted. */
2906
2907 static void
2908 emit_associated_thunks (tree fn)
2909 {
2910 /* When we use vcall offsets, we emit thunks with the virtual
2911 functions to which they thunk. The whole point of vcall offsets
2912 is so that you can know statically the entire set of thunks that
2913 will ever be needed for a given virtual function, thereby
2914 enabling you to output all the thunks with the function itself. */
2915 if (DECL_VIRTUAL_P (fn))
2916 {
2917 tree thunk;
2918
2919 for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
2920 {
2921 if (!THUNK_ALIAS (thunk))
2922 {
2923 use_thunk (thunk, /*emit_p=*/1);
2924 if (DECL_RESULT_THUNK_P (thunk))
2925 {
2926 tree probe;
2927
2928 for (probe = DECL_THUNKS (thunk);
2929 probe; probe = TREE_CHAIN (probe))
2930 use_thunk (probe, /*emit_p=*/1);
2931 }
2932 }
2933 else
2934 gcc_assert (!DECL_THUNKS (thunk));
2935 }
2936 }
2937 }
2938
2939 /* Generate RTL for FN. */
2940
2941 void
2942 expand_body (tree fn)
2943 {
2944 tree saved_function;
2945
2946 /* Compute the appropriate object-file linkage for inline
2947 functions. */
2948 if (DECL_DECLARED_INLINE_P (fn))
2949 import_export_decl (fn);
2950
2951 /* If FN is external, then there's no point in generating RTL for
2952 it. This situation can arise with an inline function under
2953 `-fexternal-templates'; we instantiate the function, even though
2954 we're not planning on emitting it, in case we get a chance to
2955 inline it. */
2956 if (DECL_EXTERNAL (fn))
2957 return;
2958
2959 /* ??? When is this needed? */
2960 saved_function = current_function_decl;
2961
2962 /* Emit any thunks that should be emitted at the same time as FN. */
2963 emit_associated_thunks (fn);
2964
2965 /* This function is only called from cgraph, or recursively from
2966 emit_associated_thunks. In neither case should we be currently
2967 generating trees for a function. */
2968 gcc_assert (function_depth == 0);
2969
2970 tree_rest_of_compilation (fn);
2971
2972 current_function_decl = saved_function;
2973
2974 if (DECL_CLONED_FUNCTION_P (fn))
2975 {
2976 /* If this is a clone, go through the other clones now and mark
2977 their parameters used. We have to do that here, as we don't
2978 know whether any particular clone will be expanded, and
2979 therefore cannot pick one arbitrarily. */
2980 tree probe;
2981
2982 for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
2983 probe && DECL_CLONED_FUNCTION_P (probe);
2984 probe = TREE_CHAIN (probe))
2985 {
2986 tree parms;
2987
2988 for (parms = DECL_ARGUMENTS (probe);
2989 parms; parms = TREE_CHAIN (parms))
2990 TREE_USED (parms) = 1;
2991 }
2992 }
2993 }
2994
2995 /* Generate RTL for FN. */
2996
2997 void
2998 expand_or_defer_fn (tree fn)
2999 {
3000 /* When the parser calls us after finishing the body of a template
3001 function, we don't really want to expand the body. */
3002 if (processing_template_decl)
3003 {
3004 /* Normally, collection only occurs in rest_of_compilation. So,
3005 if we don't collect here, we never collect junk generated
3006 during the processing of templates until we hit a
3007 non-template function. */
3008 ggc_collect ();
3009 return;
3010 }
3011
3012 /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
3013 walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
3014 simplify_aggr_init_exprs_r,
3015 NULL);
3016
3017 /* If this is a constructor or destructor body, we have to clone
3018 it. */
3019 if (maybe_clone_body (fn))
3020 {
3021 /* We don't want to process FN again, so pretend we've written
3022 it out, even though we haven't. */
3023 TREE_ASM_WRITTEN (fn) = 1;
3024 return;
3025 }
3026
3027 /* If this function is marked with the constructor attribute, add it
3028 to the list of functions to be called along with constructors
3029 from static duration objects. */
3030 if (DECL_STATIC_CONSTRUCTOR (fn))
3031 static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
3032
3033 /* If this function is marked with the destructor attribute, add it
3034 to the list of functions to be called along with destructors from
3035 static duration objects. */
3036 if (DECL_STATIC_DESTRUCTOR (fn))
3037 static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
3038
3039 /* We make a decision about linkage for these functions at the end
3040 of the compilation. Until that point, we do not want the back
3041 end to output them -- but we do want it to see the bodies of
3042 these functions so that it can inline them as appropriate. */
3043 if (DECL_DECLARED_INLINE_P (fn) || DECL_IMPLICIT_INSTANTIATION (fn))
3044 {
3045 if (!at_eof)
3046 {
3047 DECL_EXTERNAL (fn) = 1;
3048 DECL_NOT_REALLY_EXTERN (fn) = 1;
3049 note_vague_linkage_fn (fn);
3050 }
3051 else
3052 import_export_decl (fn);
3053
3054 /* If the user wants us to keep all inline functions, then mark
3055 this function as needed so that finish_file will make sure to
3056 output it later. */
3057 if (flag_keep_inline_functions && DECL_DECLARED_INLINE_P (fn))
3058 mark_needed (fn);
3059 }
3060
3061 /* There's no reason to do any of the work here if we're only doing
3062 semantic analysis; this code just generates RTL. */
3063 if (flag_syntax_only)
3064 return;
3065
3066 function_depth++;
3067
3068 /* Expand or defer, at the whim of the compilation unit manager. */
3069 cgraph_finalize_function (fn, function_depth > 1);
3070
3071 function_depth--;
3072 }
3073
3074 struct nrv_data
3075 {
3076 tree var;
3077 tree result;
3078 htab_t visited;
3079 };
3080
3081 /* Helper function for walk_tree, used by finalize_nrv below. */
3082
3083 static tree
3084 finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
3085 {
3086 struct nrv_data *dp = (struct nrv_data *)data;
3087 void **slot;
3088
3089 /* No need to walk into types. There wouldn't be any need to walk into
3090 non-statements, except that we have to consider STMT_EXPRs. */
3091 if (TYPE_P (*tp))
3092 *walk_subtrees = 0;
3093 /* Change all returns to just refer to the RESULT_DECL; this is a nop,
3094 but differs from using NULL_TREE in that it indicates that we care
3095 about the value of the RESULT_DECL. */
3096 else if (TREE_CODE (*tp) == RETURN_EXPR)
3097 TREE_OPERAND (*tp, 0) = dp->result;
3098 /* Change all cleanups for the NRV to only run when an exception is
3099 thrown. */
3100 else if (TREE_CODE (*tp) == CLEANUP_STMT
3101 && CLEANUP_DECL (*tp) == dp->var)
3102 CLEANUP_EH_ONLY (*tp) = 1;
3103 /* Replace the DECL_EXPR for the NRV with an initialization of the
3104 RESULT_DECL, if needed. */
3105 else if (TREE_CODE (*tp) == DECL_EXPR
3106 && DECL_EXPR_DECL (*tp) == dp->var)
3107 {
3108 tree init;
3109 if (DECL_INITIAL (dp->var)
3110 && DECL_INITIAL (dp->var) != error_mark_node)
3111 {
3112 init = build2 (INIT_EXPR, void_type_node, dp->result,
3113 DECL_INITIAL (dp->var));
3114 DECL_INITIAL (dp->var) = error_mark_node;
3115 }
3116 else
3117 init = build_empty_stmt ();
3118 SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
3119 *tp = init;
3120 }
3121 /* And replace all uses of the NRV with the RESULT_DECL. */
3122 else if (*tp == dp->var)
3123 *tp = dp->result;
3124
3125 /* Avoid walking into the same tree more than once. Unfortunately, we
3126 can't just use walk_tree_without duplicates because it would only call
3127 us for the first occurrence of dp->var in the function body. */
3128 slot = htab_find_slot (dp->visited, *tp, INSERT);
3129 if (*slot)
3130 *walk_subtrees = 0;
3131 else
3132 *slot = *tp;
3133
3134 /* Keep iterating. */
3135 return NULL_TREE;
3136 }
3137
3138 /* Called from finish_function to implement the named return value
3139 optimization by overriding all the RETURN_EXPRs and pertinent
3140 CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
3141 RESULT_DECL for the function. */
3142
3143 void
3144 finalize_nrv (tree *tp, tree var, tree result)
3145 {
3146 struct nrv_data data;
3147
3148 /* Copy debugging information from VAR to RESULT. */
3149 DECL_NAME (result) = DECL_NAME (var);
3150 DECL_ARTIFICIAL (result) = DECL_ARTIFICIAL (var);
3151 DECL_IGNORED_P (result) = DECL_IGNORED_P (var);
3152 DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
3153 DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
3154 /* Don't forget that we take its address. */
3155 TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
3156
3157 data.var = var;
3158 data.result = result;
3159 data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3160 walk_tree (tp, finalize_nrv_r, &data, 0);
3161 htab_delete (data.visited);
3162 }
3163
3164 /* Perform initialization related to this module. */
3165
3166 void
3167 init_cp_semantics (void)
3168 {
3169 }
3170
3171 #include "gt-cp-semantics.h"