re PR c++/69095 (internal compiler error: in dependent_type_p, at cp/pt.c:19399)
[gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "cp-tree.h"
26 #include "gimple-expr.h"
27 #include "cgraph.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tree-iterator.h"
31 #include "tree-inline.h"
32 #include "debug.h"
33 #include "convert.h"
34 #include "gimplify.h"
35 #include "attribs.h"
36
37 static tree bot_manip (tree *, int *, void *);
38 static tree bot_replace (tree *, int *, void *);
39 static hashval_t list_hash_pieces (tree, tree, tree);
40 static tree build_target_expr (tree, tree, tsubst_flags_t);
41 static tree count_trees_r (tree *, int *, void *);
42 static tree verify_stmt_tree_r (tree *, int *, void *);
43 static tree build_local_temp (tree);
44
45 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
46 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
47 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
48
49 /* If REF is an lvalue, returns the kind of lvalue that REF is.
50 Otherwise, returns clk_none. */
51
52 cp_lvalue_kind
53 lvalue_kind (const_tree ref)
54 {
55 cp_lvalue_kind op1_lvalue_kind = clk_none;
56 cp_lvalue_kind op2_lvalue_kind = clk_none;
57
58 /* Expressions of reference type are sometimes wrapped in
59 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
60 representation, not part of the language, so we have to look
61 through them. */
62 if (REFERENCE_REF_P (ref))
63 return lvalue_kind (TREE_OPERAND (ref, 0));
64
65 if (TREE_TYPE (ref)
66 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
67 {
68 /* unnamed rvalue references are rvalues */
69 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
70 && TREE_CODE (ref) != PARM_DECL
71 && !VAR_P (ref)
72 && TREE_CODE (ref) != COMPONENT_REF
73 /* Functions are always lvalues. */
74 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
75 return clk_rvalueref;
76
77 /* lvalue references and named rvalue references are lvalues. */
78 return clk_ordinary;
79 }
80
81 if (ref == current_class_ptr)
82 return clk_none;
83
84 switch (TREE_CODE (ref))
85 {
86 case SAVE_EXPR:
87 return clk_none;
88 /* preincrements and predecrements are valid lvals, provided
89 what they refer to are valid lvals. */
90 case PREINCREMENT_EXPR:
91 case PREDECREMENT_EXPR:
92 case TRY_CATCH_EXPR:
93 case WITH_CLEANUP_EXPR:
94 case REALPART_EXPR:
95 case IMAGPART_EXPR:
96 return lvalue_kind (TREE_OPERAND (ref, 0));
97
98 case MEMBER_REF:
99 case DOTSTAR_EXPR:
100 if (TREE_CODE (ref) == MEMBER_REF)
101 op1_lvalue_kind = clk_ordinary;
102 else
103 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
104 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (ref, 1))))
105 op1_lvalue_kind = clk_none;
106 return op1_lvalue_kind;
107
108 case COMPONENT_REF:
109 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
110 /* Look at the member designator. */
111 if (!op1_lvalue_kind)
112 ;
113 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
114 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
115 situations. If we're seeing a COMPONENT_REF, it's a non-static
116 member, so it isn't an lvalue. */
117 op1_lvalue_kind = clk_none;
118 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
119 /* This can be IDENTIFIER_NODE in a template. */;
120 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
121 {
122 /* Clear the ordinary bit. If this object was a class
123 rvalue we want to preserve that information. */
124 op1_lvalue_kind &= ~clk_ordinary;
125 /* The lvalue is for a bitfield. */
126 op1_lvalue_kind |= clk_bitfield;
127 }
128 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
129 op1_lvalue_kind |= clk_packed;
130
131 return op1_lvalue_kind;
132
133 case STRING_CST:
134 case COMPOUND_LITERAL_EXPR:
135 return clk_ordinary;
136
137 case CONST_DECL:
138 /* CONST_DECL without TREE_STATIC are enumeration values and
139 thus not lvalues. With TREE_STATIC they are used by ObjC++
140 in objc_build_string_object and need to be considered as
141 lvalues. */
142 if (! TREE_STATIC (ref))
143 return clk_none;
144 case VAR_DECL:
145 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
146 && DECL_LANG_SPECIFIC (ref)
147 && DECL_IN_AGGR_P (ref))
148 return clk_none;
149 case INDIRECT_REF:
150 case ARROW_EXPR:
151 case ARRAY_REF:
152 case ARRAY_NOTATION_REF:
153 case PARM_DECL:
154 case RESULT_DECL:
155 case PLACEHOLDER_EXPR:
156 return clk_ordinary;
157
158 /* A scope ref in a template, left as SCOPE_REF to support later
159 access checking. */
160 case SCOPE_REF:
161 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
162 {
163 tree op = TREE_OPERAND (ref, 1);
164 if (TREE_CODE (op) == FIELD_DECL)
165 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
166 else
167 return lvalue_kind (op);
168 }
169
170 case MAX_EXPR:
171 case MIN_EXPR:
172 /* Disallow <? and >? as lvalues if either argument side-effects. */
173 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
174 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
175 return clk_none;
176 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
177 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
178 break;
179
180 case COND_EXPR:
181 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
182 ? TREE_OPERAND (ref, 1)
183 : TREE_OPERAND (ref, 0));
184 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
185 break;
186
187 case MODOP_EXPR:
188 /* We expect to see unlowered MODOP_EXPRs only during
189 template processing. */
190 gcc_assert (processing_template_decl);
191 return clk_ordinary;
192
193 case MODIFY_EXPR:
194 case TYPEID_EXPR:
195 return clk_ordinary;
196
197 case COMPOUND_EXPR:
198 return lvalue_kind (TREE_OPERAND (ref, 1));
199
200 case TARGET_EXPR:
201 return clk_class;
202
203 case VA_ARG_EXPR:
204 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
205
206 case CALL_EXPR:
207 /* We can see calls outside of TARGET_EXPR in templates. */
208 if (CLASS_TYPE_P (TREE_TYPE (ref)))
209 return clk_class;
210 return clk_none;
211
212 case FUNCTION_DECL:
213 /* All functions (except non-static-member functions) are
214 lvalues. */
215 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
216 ? clk_none : clk_ordinary);
217
218 case BASELINK:
219 /* We now represent a reference to a single static member function
220 with a BASELINK. */
221 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
222 its argument unmodified and we assign it to a const_tree. */
223 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
224
225 case NON_DEPENDENT_EXPR:
226 return lvalue_kind (TREE_OPERAND (ref, 0));
227
228 default:
229 if (!TREE_TYPE (ref))
230 return clk_none;
231 if (CLASS_TYPE_P (TREE_TYPE (ref)))
232 return clk_class;
233 break;
234 }
235
236 /* If one operand is not an lvalue at all, then this expression is
237 not an lvalue. */
238 if (!op1_lvalue_kind || !op2_lvalue_kind)
239 return clk_none;
240
241 /* Otherwise, it's an lvalue, and it has all the odd properties
242 contributed by either operand. */
243 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
244 /* It's not an ordinary lvalue if it involves any other kind. */
245 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
246 op1_lvalue_kind &= ~clk_ordinary;
247 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
248 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
249 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
250 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
251 op1_lvalue_kind = clk_none;
252 return op1_lvalue_kind;
253 }
254
255 /* Returns the kind of lvalue that REF is, in the sense of
256 [basic.lval]. This function should really be named lvalue_p; it
257 computes the C++ definition of lvalue. */
258
259 cp_lvalue_kind
260 real_lvalue_p (const_tree ref)
261 {
262 cp_lvalue_kind kind = lvalue_kind (ref);
263 if (kind & (clk_rvalueref|clk_class))
264 return clk_none;
265 else
266 return kind;
267 }
268
269 /* This differs from real_lvalue_p in that class rvalues are considered
270 lvalues. */
271
272 bool
273 lvalue_p (const_tree ref)
274 {
275 return (lvalue_kind (ref) != clk_none);
276 }
277
278 /* This differs from real_lvalue_p in that rvalues formed by dereferencing
279 rvalue references are considered rvalues. */
280
281 bool
282 lvalue_or_rvalue_with_address_p (const_tree ref)
283 {
284 cp_lvalue_kind kind = lvalue_kind (ref);
285 if (kind & clk_class)
286 return false;
287 else
288 return (kind != clk_none);
289 }
290
291 /* Returns true if REF is an xvalue, false otherwise. */
292
293 bool
294 xvalue_p (const_tree ref)
295 {
296 return (lvalue_kind (ref) == clk_rvalueref);
297 }
298
299 /* C++-specific version of stabilize_reference. */
300
301 tree
302 cp_stabilize_reference (tree ref)
303 {
304 switch (TREE_CODE (ref))
305 {
306 /* We need to treat specially anything stabilize_reference doesn't
307 handle specifically. */
308 case VAR_DECL:
309 case PARM_DECL:
310 case RESULT_DECL:
311 CASE_CONVERT:
312 case FLOAT_EXPR:
313 case FIX_TRUNC_EXPR:
314 case INDIRECT_REF:
315 case COMPONENT_REF:
316 case BIT_FIELD_REF:
317 case ARRAY_REF:
318 case ARRAY_RANGE_REF:
319 case ERROR_MARK:
320 break;
321 default:
322 cp_lvalue_kind kind = lvalue_kind (ref);
323 if ((kind & ~clk_class) != clk_none)
324 {
325 tree type = unlowered_expr_type (ref);
326 bool rval = !!(kind & clk_rvalueref);
327 type = cp_build_reference_type (type, rval);
328 /* This inhibits warnings in, eg, cxx_mark_addressable
329 (c++/60955). */
330 warning_sentinel s (extra_warnings);
331 ref = build_static_cast (type, ref, tf_error);
332 }
333 }
334
335 return stabilize_reference (ref);
336 }
337
338 /* Test whether DECL is a builtin that may appear in a
339 constant-expression. */
340
341 bool
342 builtin_valid_in_constant_expr_p (const_tree decl)
343 {
344 if (!(TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl)))
345 /* Not a built-in. */
346 return false;
347 switch (DECL_FUNCTION_CODE (decl))
348 {
349 /* These always have constant results like the corresponding
350 macros/symbol. */
351 case BUILT_IN_FILE:
352 case BUILT_IN_FUNCTION:
353 case BUILT_IN_LINE:
354
355 /* These have constant results even if their operands are
356 non-constant. */
357 case BUILT_IN_CONSTANT_P:
358 case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE:
359 return true;
360 default:
361 return false;
362 }
363 }
364
365 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
366
367 static tree
368 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
369 {
370 tree t;
371 tree type = TREE_TYPE (decl);
372
373 gcc_checking_assert (VOID_TYPE_P (TREE_TYPE (value))
374 || TREE_TYPE (decl) == TREE_TYPE (value)
375 /* On ARM ctors return 'this'. */
376 || (TYPE_PTR_P (TREE_TYPE (value))
377 && TREE_CODE (value) == CALL_EXPR)
378 || useless_type_conversion_p (TREE_TYPE (decl),
379 TREE_TYPE (value)));
380
381 t = cxx_maybe_build_cleanup (decl, complain);
382 if (t == error_mark_node)
383 return error_mark_node;
384 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
385 if (EXPR_HAS_LOCATION (value))
386 SET_EXPR_LOCATION (t, EXPR_LOCATION (value));
387 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
388 ignore the TARGET_EXPR. If there really turn out to be no
389 side-effects, then the optimizer should be able to get rid of
390 whatever code is generated anyhow. */
391 TREE_SIDE_EFFECTS (t) = 1;
392
393 return t;
394 }
395
396 /* Return an undeclared local temporary of type TYPE for use in building a
397 TARGET_EXPR. */
398
399 static tree
400 build_local_temp (tree type)
401 {
402 tree slot = build_decl (input_location,
403 VAR_DECL, NULL_TREE, type);
404 DECL_ARTIFICIAL (slot) = 1;
405 DECL_IGNORED_P (slot) = 1;
406 DECL_CONTEXT (slot) = current_function_decl;
407 layout_decl (slot, 0);
408 return slot;
409 }
410
411 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
412
413 static void
414 process_aggr_init_operands (tree t)
415 {
416 bool side_effects;
417
418 side_effects = TREE_SIDE_EFFECTS (t);
419 if (!side_effects)
420 {
421 int i, n;
422 n = TREE_OPERAND_LENGTH (t);
423 for (i = 1; i < n; i++)
424 {
425 tree op = TREE_OPERAND (t, i);
426 if (op && TREE_SIDE_EFFECTS (op))
427 {
428 side_effects = 1;
429 break;
430 }
431 }
432 }
433 TREE_SIDE_EFFECTS (t) = side_effects;
434 }
435
436 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
437 FN, and SLOT. NARGS is the number of call arguments which are specified
438 as a tree array ARGS. */
439
440 static tree
441 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
442 tree *args)
443 {
444 tree t;
445 int i;
446
447 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
448 TREE_TYPE (t) = return_type;
449 AGGR_INIT_EXPR_FN (t) = fn;
450 AGGR_INIT_EXPR_SLOT (t) = slot;
451 for (i = 0; i < nargs; i++)
452 AGGR_INIT_EXPR_ARG (t, i) = args[i];
453 process_aggr_init_operands (t);
454 return t;
455 }
456
457 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
458 target. TYPE is the type to be initialized.
459
460 Build an AGGR_INIT_EXPR to represent the initialization. This function
461 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
462 to initialize another object, whereas a TARGET_EXPR can either
463 initialize another object or create its own temporary object, and as a
464 result building up a TARGET_EXPR requires that the type's destructor be
465 callable. */
466
467 tree
468 build_aggr_init_expr (tree type, tree init)
469 {
470 tree fn;
471 tree slot;
472 tree rval;
473 int is_ctor;
474
475 /* Don't build AGGR_INIT_EXPR in a template. */
476 if (processing_template_decl)
477 return init;
478
479 fn = cp_get_callee (init);
480 if (fn == NULL_TREE)
481 return convert (type, init);
482
483 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
484 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
485 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
486
487 /* We split the CALL_EXPR into its function and its arguments here.
488 Then, in expand_expr, we put them back together. The reason for
489 this is that this expression might be a default argument
490 expression. In that case, we need a new temporary every time the
491 expression is used. That's what break_out_target_exprs does; it
492 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
493 temporary slot. Then, expand_expr builds up a call-expression
494 using the new slot. */
495
496 /* If we don't need to use a constructor to create an object of this
497 type, don't mess with AGGR_INIT_EXPR. */
498 if (is_ctor || TREE_ADDRESSABLE (type))
499 {
500 slot = build_local_temp (type);
501
502 if (TREE_CODE (init) == CALL_EXPR)
503 {
504 rval = build_aggr_init_array (void_type_node, fn, slot,
505 call_expr_nargs (init),
506 CALL_EXPR_ARGP (init));
507 AGGR_INIT_FROM_THUNK_P (rval)
508 = CALL_FROM_THUNK_P (init);
509 }
510 else
511 {
512 rval = build_aggr_init_array (void_type_node, fn, slot,
513 aggr_init_expr_nargs (init),
514 AGGR_INIT_EXPR_ARGP (init));
515 AGGR_INIT_FROM_THUNK_P (rval)
516 = AGGR_INIT_FROM_THUNK_P (init);
517 }
518 TREE_SIDE_EFFECTS (rval) = 1;
519 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
520 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
521 CALL_EXPR_LIST_INIT_P (rval) = CALL_EXPR_LIST_INIT_P (init);
522 }
523 else
524 rval = init;
525
526 return rval;
527 }
528
529 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
530 target. TYPE is the type that this initialization should appear to
531 have.
532
533 Build an encapsulation of the initialization to perform
534 and return it so that it can be processed by language-independent
535 and language-specific expression expanders. */
536
537 tree
538 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
539 {
540 tree rval = build_aggr_init_expr (type, init);
541 tree slot;
542
543 if (!complete_type_or_maybe_complain (type, init, complain))
544 return error_mark_node;
545
546 /* Make sure that we're not trying to create an instance of an
547 abstract class. */
548 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
549 return error_mark_node;
550
551 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
552 slot = AGGR_INIT_EXPR_SLOT (rval);
553 else if (TREE_CODE (rval) == CALL_EXPR
554 || TREE_CODE (rval) == CONSTRUCTOR)
555 slot = build_local_temp (type);
556 else
557 return rval;
558
559 rval = build_target_expr (slot, rval, complain);
560
561 if (rval != error_mark_node)
562 TARGET_EXPR_IMPLICIT_P (rval) = 1;
563
564 return rval;
565 }
566
567 /* Subroutine of build_vec_init_expr: Build up a single element
568 intialization as a proxy for the full array initialization to get things
569 marked as used and any appropriate diagnostics.
570
571 Since we're deferring building the actual constructor calls until
572 gimplification time, we need to build one now and throw it away so
573 that the relevant constructor gets mark_used before cgraph decides
574 what functions are needed. Here we assume that init is either
575 NULL_TREE, void_type_node (indicating value-initialization), or
576 another array to copy. */
577
578 static tree
579 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
580 {
581 tree inner_type = strip_array_types (type);
582 vec<tree, va_gc> *argvec;
583
584 if (integer_zerop (array_type_nelts_total (type))
585 || !CLASS_TYPE_P (inner_type))
586 /* No interesting initialization to do. */
587 return integer_zero_node;
588 else if (init == void_type_node)
589 return build_value_init (inner_type, complain);
590
591 gcc_assert (init == NULL_TREE
592 || (same_type_ignoring_top_level_qualifiers_p
593 (type, TREE_TYPE (init))));
594
595 argvec = make_tree_vector ();
596 if (init)
597 {
598 tree init_type = strip_array_types (TREE_TYPE (init));
599 tree dummy = build_dummy_object (init_type);
600 if (!real_lvalue_p (init))
601 dummy = move (dummy);
602 argvec->quick_push (dummy);
603 }
604 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
605 &argvec, inner_type, LOOKUP_NORMAL,
606 complain);
607 release_tree_vector (argvec);
608
609 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
610 we don't want one here because we aren't creating a temporary. */
611 if (TREE_CODE (init) == TARGET_EXPR)
612 init = TARGET_EXPR_INITIAL (init);
613
614 return init;
615 }
616
617 /* Return a TARGET_EXPR which expresses the initialization of an array to
618 be named later, either default-initialization or copy-initialization
619 from another array of the same type. */
620
621 tree
622 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
623 {
624 tree slot;
625 bool value_init = false;
626 tree elt_init = build_vec_init_elt (type, init, complain);
627
628 if (init == void_type_node)
629 {
630 value_init = true;
631 init = NULL_TREE;
632 }
633
634 slot = build_local_temp (type);
635 init = build2 (VEC_INIT_EXPR, type, slot, init);
636 TREE_SIDE_EFFECTS (init) = true;
637 SET_EXPR_LOCATION (init, input_location);
638
639 if (cxx_dialect >= cxx11
640 && potential_constant_expression (elt_init))
641 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
642 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
643
644 return init;
645 }
646
647 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
648 that requires a constant expression. */
649
650 void
651 diagnose_non_constexpr_vec_init (tree expr)
652 {
653 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
654 tree init, elt_init;
655 if (VEC_INIT_EXPR_VALUE_INIT (expr))
656 init = void_type_node;
657 else
658 init = VEC_INIT_EXPR_INIT (expr);
659
660 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
661 require_potential_constant_expression (elt_init);
662 }
663
664 tree
665 build_array_copy (tree init)
666 {
667 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
668 }
669
670 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
671 indicated TYPE. */
672
673 tree
674 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
675 {
676 gcc_assert (!VOID_TYPE_P (type));
677
678 if (TREE_CODE (init) == TARGET_EXPR
679 || init == error_mark_node)
680 return init;
681 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
682 && !VOID_TYPE_P (TREE_TYPE (init))
683 && TREE_CODE (init) != COND_EXPR
684 && TREE_CODE (init) != CONSTRUCTOR
685 && TREE_CODE (init) != VA_ARG_EXPR)
686 /* We need to build up a copy constructor call. A void initializer
687 means we're being called from bot_manip. COND_EXPR is a special
688 case because we already have copies on the arms and we don't want
689 another one here. A CONSTRUCTOR is aggregate initialization, which
690 is handled separately. A VA_ARG_EXPR is magic creation of an
691 aggregate; there's no additional work to be done. */
692 return force_rvalue (init, complain);
693
694 return force_target_expr (type, init, complain);
695 }
696
697 /* Like the above function, but without the checking. This function should
698 only be used by code which is deliberately trying to subvert the type
699 system, such as call_builtin_trap. Or build_over_call, to avoid
700 infinite recursion. */
701
702 tree
703 force_target_expr (tree type, tree init, tsubst_flags_t complain)
704 {
705 tree slot;
706
707 gcc_assert (!VOID_TYPE_P (type));
708
709 slot = build_local_temp (type);
710 return build_target_expr (slot, init, complain);
711 }
712
713 /* Like build_target_expr_with_type, but use the type of INIT. */
714
715 tree
716 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
717 {
718 if (TREE_CODE (init) == AGGR_INIT_EXPR)
719 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
720 else if (TREE_CODE (init) == VEC_INIT_EXPR)
721 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
722 else
723 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
724 }
725
726 tree
727 get_target_expr (tree init)
728 {
729 return get_target_expr_sfinae (init, tf_warning_or_error);
730 }
731
732 /* If EXPR is a bitfield reference, convert it to the declared type of
733 the bitfield, and return the resulting expression. Otherwise,
734 return EXPR itself. */
735
736 tree
737 convert_bitfield_to_declared_type (tree expr)
738 {
739 tree bitfield_type;
740
741 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
742 if (bitfield_type)
743 expr = convert_to_integer_nofold (TYPE_MAIN_VARIANT (bitfield_type),
744 expr);
745 return expr;
746 }
747
748 /* EXPR is being used in an rvalue context. Return a version of EXPR
749 that is marked as an rvalue. */
750
751 tree
752 rvalue (tree expr)
753 {
754 tree type;
755
756 if (error_operand_p (expr))
757 return expr;
758
759 expr = mark_rvalue_use (expr);
760
761 /* [basic.lval]
762
763 Non-class rvalues always have cv-unqualified types. */
764 type = TREE_TYPE (expr);
765 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
766 type = cv_unqualified (type);
767
768 /* We need to do this for rvalue refs as well to get the right answer
769 from decltype; see c++/36628. */
770 if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr))
771 expr = build1 (NON_LVALUE_EXPR, type, expr);
772 else if (type != TREE_TYPE (expr))
773 expr = build_nop (type, expr);
774
775 return expr;
776 }
777
778 \f
779 struct cplus_array_info
780 {
781 tree type;
782 tree domain;
783 };
784
785 struct cplus_array_hasher : ggc_ptr_hash<tree_node>
786 {
787 typedef cplus_array_info *compare_type;
788
789 static hashval_t hash (tree t);
790 static bool equal (tree, cplus_array_info *);
791 };
792
793 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
794
795 hashval_t
796 cplus_array_hasher::hash (tree t)
797 {
798 hashval_t hash;
799
800 hash = TYPE_UID (TREE_TYPE (t));
801 if (TYPE_DOMAIN (t))
802 hash ^= TYPE_UID (TYPE_DOMAIN (t));
803 return hash;
804 }
805
806 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
807 of type `cplus_array_info*'. */
808
809 bool
810 cplus_array_hasher::equal (tree t1, cplus_array_info *t2)
811 {
812 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
813 }
814
815 /* Hash table containing dependent array types, which are unsuitable for
816 the language-independent type hash table. */
817 static GTY (()) hash_table<cplus_array_hasher> *cplus_array_htab;
818
819 /* Build an ARRAY_TYPE without laying it out. */
820
821 static tree
822 build_min_array_type (tree elt_type, tree index_type)
823 {
824 tree t = cxx_make_type (ARRAY_TYPE);
825 TREE_TYPE (t) = elt_type;
826 TYPE_DOMAIN (t) = index_type;
827 return t;
828 }
829
830 /* Set TYPE_CANONICAL like build_array_type_1, but using
831 build_cplus_array_type. */
832
833 static void
834 set_array_type_canon (tree t, tree elt_type, tree index_type)
835 {
836 /* Set the canonical type for this new node. */
837 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
838 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
839 SET_TYPE_STRUCTURAL_EQUALITY (t);
840 else if (TYPE_CANONICAL (elt_type) != elt_type
841 || (index_type && TYPE_CANONICAL (index_type) != index_type))
842 TYPE_CANONICAL (t)
843 = build_cplus_array_type (TYPE_CANONICAL (elt_type),
844 index_type
845 ? TYPE_CANONICAL (index_type) : index_type);
846 else
847 TYPE_CANONICAL (t) = t;
848 }
849
850 /* Like build_array_type, but handle special C++ semantics: an array of a
851 variant element type is a variant of the array of the main variant of
852 the element type. */
853
854 tree
855 build_cplus_array_type (tree elt_type, tree index_type)
856 {
857 tree t;
858
859 if (elt_type == error_mark_node || index_type == error_mark_node)
860 return error_mark_node;
861
862 bool dependent = (uses_template_parms (elt_type)
863 || (index_type && uses_template_parms (index_type)));
864
865 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
866 /* Start with an array of the TYPE_MAIN_VARIANT. */
867 t = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
868 index_type);
869 else if (dependent)
870 {
871 /* Since type_hash_canon calls layout_type, we need to use our own
872 hash table. */
873 cplus_array_info cai;
874 hashval_t hash;
875
876 if (cplus_array_htab == NULL)
877 cplus_array_htab = hash_table<cplus_array_hasher>::create_ggc (61);
878
879 hash = TYPE_UID (elt_type);
880 if (index_type)
881 hash ^= TYPE_UID (index_type);
882 cai.type = elt_type;
883 cai.domain = index_type;
884
885 tree *e = cplus_array_htab->find_slot_with_hash (&cai, hash, INSERT);
886 if (*e)
887 /* We have found the type: we're done. */
888 return (tree) *e;
889 else
890 {
891 /* Build a new array type. */
892 t = build_min_array_type (elt_type, index_type);
893
894 /* Store it in the hash table. */
895 *e = t;
896
897 /* Set the canonical type for this new node. */
898 set_array_type_canon (t, elt_type, index_type);
899 }
900 }
901 else
902 {
903 t = build_array_type (elt_type, index_type);
904 }
905
906 /* Now check whether we already have this array variant. */
907 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
908 {
909 tree m = t;
910 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
911 if (TREE_TYPE (t) == elt_type
912 && TYPE_NAME (t) == NULL_TREE
913 && TYPE_ATTRIBUTES (t) == NULL_TREE)
914 break;
915 if (!t)
916 {
917 t = build_min_array_type (elt_type, index_type);
918 set_array_type_canon (t, elt_type, index_type);
919 if (!dependent)
920 {
921 layout_type (t);
922 /* Make sure sizes are shared with the main variant.
923 layout_type can't be called after setting TYPE_NEXT_VARIANT,
924 as it will overwrite alignment etc. of all variants. */
925 TYPE_SIZE (t) = TYPE_SIZE (m);
926 TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (m);
927 }
928
929 TYPE_MAIN_VARIANT (t) = m;
930 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
931 TYPE_NEXT_VARIANT (m) = t;
932 }
933 }
934
935 /* Avoid spurious warnings with VLAs (c++/54583). */
936 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
937 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
938
939 /* Push these needs up to the ARRAY_TYPE so that initialization takes
940 place more easily. */
941 bool needs_ctor = (TYPE_NEEDS_CONSTRUCTING (t)
942 = TYPE_NEEDS_CONSTRUCTING (elt_type));
943 bool needs_dtor = (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
944 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type));
945
946 if (!dependent && t == TYPE_MAIN_VARIANT (t)
947 && !COMPLETE_TYPE_P (t) && COMPLETE_TYPE_P (elt_type))
948 {
949 /* The element type has been completed since the last time we saw
950 this array type; update the layout and 'tor flags for any variants
951 that need it. */
952 layout_type (t);
953 for (tree v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
954 {
955 TYPE_NEEDS_CONSTRUCTING (v) = needs_ctor;
956 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (v) = needs_dtor;
957 }
958 }
959
960 return t;
961 }
962
963 /* Return an ARRAY_TYPE with element type ELT and length N. */
964
965 tree
966 build_array_of_n_type (tree elt, int n)
967 {
968 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
969 }
970
971 /* True iff T is an N3639 array of runtime bound (VLA). These were
972 approved for C++14 but then removed. */
973
974 bool
975 array_of_runtime_bound_p (tree t)
976 {
977 if (!t || TREE_CODE (t) != ARRAY_TYPE)
978 return false;
979 tree dom = TYPE_DOMAIN (t);
980 if (!dom)
981 return false;
982 tree max = TYPE_MAX_VALUE (dom);
983 return (!potential_rvalue_constant_expression (max)
984 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)));
985 }
986
987 /* Return a reference type node referring to TO_TYPE. If RVAL is
988 true, return an rvalue reference type, otherwise return an lvalue
989 reference type. If a type node exists, reuse it, otherwise create
990 a new one. */
991 tree
992 cp_build_reference_type (tree to_type, bool rval)
993 {
994 tree lvalue_ref, t;
995 lvalue_ref = build_reference_type (to_type);
996 if (!rval)
997 return lvalue_ref;
998
999 /* This code to create rvalue reference types is based on and tied
1000 to the code creating lvalue reference types in the middle-end
1001 functions build_reference_type_for_mode and build_reference_type.
1002
1003 It works by putting the rvalue reference type nodes after the
1004 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
1005 they will effectively be ignored by the middle end. */
1006
1007 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
1008 if (TYPE_REF_IS_RVALUE (t))
1009 return t;
1010
1011 t = build_distinct_type_copy (lvalue_ref);
1012
1013 TYPE_REF_IS_RVALUE (t) = true;
1014 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
1015 TYPE_NEXT_REF_TO (lvalue_ref) = t;
1016
1017 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
1018 SET_TYPE_STRUCTURAL_EQUALITY (t);
1019 else if (TYPE_CANONICAL (to_type) != to_type)
1020 TYPE_CANONICAL (t)
1021 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
1022 else
1023 TYPE_CANONICAL (t) = t;
1024
1025 layout_type (t);
1026
1027 return t;
1028
1029 }
1030
1031 /* Returns EXPR cast to rvalue reference type, like std::move. */
1032
1033 tree
1034 move (tree expr)
1035 {
1036 tree type = TREE_TYPE (expr);
1037 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
1038 type = cp_build_reference_type (type, /*rval*/true);
1039 return build_static_cast (type, expr, tf_warning_or_error);
1040 }
1041
1042 /* Used by the C++ front end to build qualified array types. However,
1043 the C version of this function does not properly maintain canonical
1044 types (which are not used in C). */
1045 tree
1046 c_build_qualified_type (tree type, int type_quals, tree /* orig_qual_type */,
1047 size_t /* orig_qual_indirect */)
1048 {
1049 return cp_build_qualified_type (type, type_quals);
1050 }
1051
1052 \f
1053 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
1054 arrays correctly. In particular, if TYPE is an array of T's, and
1055 TYPE_QUALS is non-empty, returns an array of qualified T's.
1056
1057 FLAGS determines how to deal with ill-formed qualifications. If
1058 tf_ignore_bad_quals is set, then bad qualifications are dropped
1059 (this is permitted if TYPE was introduced via a typedef or template
1060 type parameter). If bad qualifications are dropped and tf_warning
1061 is set, then a warning is issued for non-const qualifications. If
1062 tf_ignore_bad_quals is not set and tf_error is not set, we
1063 return error_mark_node. Otherwise, we issue an error, and ignore
1064 the qualifications.
1065
1066 Qualification of a reference type is valid when the reference came
1067 via a typedef or template type argument. [dcl.ref] No such
1068 dispensation is provided for qualifying a function type. [dcl.fct]
1069 DR 295 queries this and the proposed resolution brings it into line
1070 with qualifying a reference. We implement the DR. We also behave
1071 in a similar manner for restricting non-pointer types. */
1072
1073 tree
1074 cp_build_qualified_type_real (tree type,
1075 int type_quals,
1076 tsubst_flags_t complain)
1077 {
1078 tree result;
1079 int bad_quals = TYPE_UNQUALIFIED;
1080
1081 if (type == error_mark_node)
1082 return type;
1083
1084 if (type_quals == cp_type_quals (type))
1085 return type;
1086
1087 if (TREE_CODE (type) == ARRAY_TYPE)
1088 {
1089 /* In C++, the qualification really applies to the array element
1090 type. Obtain the appropriately qualified element type. */
1091 tree t;
1092 tree element_type
1093 = cp_build_qualified_type_real (TREE_TYPE (type),
1094 type_quals,
1095 complain);
1096
1097 if (element_type == error_mark_node)
1098 return error_mark_node;
1099
1100 /* See if we already have an identically qualified type. Tests
1101 should be equivalent to those in check_qualified_type. */
1102 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1103 if (TREE_TYPE (t) == element_type
1104 && TYPE_NAME (t) == TYPE_NAME (type)
1105 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
1106 && attribute_list_equal (TYPE_ATTRIBUTES (t),
1107 TYPE_ATTRIBUTES (type)))
1108 break;
1109
1110 if (!t)
1111 {
1112 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
1113
1114 /* Keep the typedef name. */
1115 if (TYPE_NAME (t) != TYPE_NAME (type))
1116 {
1117 t = build_variant_type_copy (t);
1118 TYPE_NAME (t) = TYPE_NAME (type);
1119 SET_TYPE_ALIGN (t, TYPE_ALIGN (type));
1120 TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (type);
1121 }
1122 }
1123
1124 /* Even if we already had this variant, we update
1125 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1126 they changed since the variant was originally created.
1127
1128 This seems hokey; if there is some way to use a previous
1129 variant *without* coming through here,
1130 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1131 TYPE_NEEDS_CONSTRUCTING (t)
1132 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1133 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1134 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1135 return t;
1136 }
1137 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1138 {
1139 tree t = PACK_EXPANSION_PATTERN (type);
1140
1141 t = cp_build_qualified_type_real (t, type_quals, complain);
1142 return make_pack_expansion (t);
1143 }
1144
1145 /* A reference or method type shall not be cv-qualified.
1146 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1147 (in CD1) we always ignore extra cv-quals on functions. */
1148 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1149 && (TREE_CODE (type) == REFERENCE_TYPE
1150 || TREE_CODE (type) == FUNCTION_TYPE
1151 || TREE_CODE (type) == METHOD_TYPE))
1152 {
1153 if (TREE_CODE (type) == REFERENCE_TYPE)
1154 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1155 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1156 }
1157
1158 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1159 if (TREE_CODE (type) == FUNCTION_TYPE)
1160 type_quals |= type_memfn_quals (type);
1161
1162 /* A restrict-qualified type must be a pointer (or reference)
1163 to object or incomplete type. */
1164 if ((type_quals & TYPE_QUAL_RESTRICT)
1165 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1166 && TREE_CODE (type) != TYPENAME_TYPE
1167 && !POINTER_TYPE_P (type))
1168 {
1169 bad_quals |= TYPE_QUAL_RESTRICT;
1170 type_quals &= ~TYPE_QUAL_RESTRICT;
1171 }
1172
1173 if (bad_quals == TYPE_UNQUALIFIED
1174 || (complain & tf_ignore_bad_quals))
1175 /*OK*/;
1176 else if (!(complain & tf_error))
1177 return error_mark_node;
1178 else
1179 {
1180 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1181 error ("%qV qualifiers cannot be applied to %qT",
1182 bad_type, type);
1183 }
1184
1185 /* Retrieve (or create) the appropriately qualified variant. */
1186 result = build_qualified_type (type, type_quals);
1187
1188 /* Preserve exception specs and ref-qualifier since build_qualified_type
1189 doesn't know about them. */
1190 if (TREE_CODE (result) == FUNCTION_TYPE
1191 || TREE_CODE (result) == METHOD_TYPE)
1192 {
1193 result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (type));
1194 result = build_ref_qualified_type (result, type_memfn_rqual (type));
1195 }
1196
1197 return result;
1198 }
1199
1200 /* Return TYPE with const and volatile removed. */
1201
1202 tree
1203 cv_unqualified (tree type)
1204 {
1205 int quals;
1206
1207 if (type == error_mark_node)
1208 return type;
1209
1210 quals = cp_type_quals (type);
1211 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1212 return cp_build_qualified_type (type, quals);
1213 }
1214
1215 /* Subroutine of strip_typedefs. We want to apply to RESULT the attributes
1216 from ATTRIBS that affect type identity, and no others. If any are not
1217 applied, set *remove_attributes to true. */
1218
1219 static tree
1220 apply_identity_attributes (tree result, tree attribs, bool *remove_attributes)
1221 {
1222 tree first_ident = NULL_TREE;
1223 tree new_attribs = NULL_TREE;
1224 tree *p = &new_attribs;
1225
1226 if (OVERLOAD_TYPE_P (result))
1227 {
1228 /* On classes and enums all attributes are ingrained. */
1229 gcc_assert (attribs == TYPE_ATTRIBUTES (result));
1230 return result;
1231 }
1232
1233 for (tree a = attribs; a; a = TREE_CHAIN (a))
1234 {
1235 const attribute_spec *as
1236 = lookup_attribute_spec (get_attribute_name (a));
1237 if (as && as->affects_type_identity)
1238 {
1239 if (!first_ident)
1240 first_ident = a;
1241 else if (first_ident == error_mark_node)
1242 {
1243 *p = tree_cons (TREE_PURPOSE (a), TREE_VALUE (a), NULL_TREE);
1244 p = &TREE_CHAIN (*p);
1245 }
1246 }
1247 else if (first_ident)
1248 {
1249 for (tree a2 = first_ident; a2; a2 = TREE_CHAIN (a2))
1250 {
1251 *p = tree_cons (TREE_PURPOSE (a2), TREE_VALUE (a2), NULL_TREE);
1252 p = &TREE_CHAIN (*p);
1253 }
1254 first_ident = error_mark_node;
1255 }
1256 }
1257 if (first_ident != error_mark_node)
1258 new_attribs = first_ident;
1259
1260 if (first_ident == attribs)
1261 /* All attributes affected type identity. */;
1262 else
1263 *remove_attributes = true;
1264
1265 return cp_build_type_attribute_variant (result, new_attribs);
1266 }
1267
1268 /* Builds a qualified variant of T that is not a typedef variant.
1269 E.g. consider the following declarations:
1270 typedef const int ConstInt;
1271 typedef ConstInt* PtrConstInt;
1272 If T is PtrConstInt, this function returns a type representing
1273 const int*.
1274 In other words, if T is a typedef, the function returns the underlying type.
1275 The cv-qualification and attributes of the type returned match the
1276 input type.
1277 They will always be compatible types.
1278 The returned type is built so that all of its subtypes
1279 recursively have their typedefs stripped as well.
1280
1281 This is different from just returning TYPE_CANONICAL (T)
1282 Because of several reasons:
1283 * If T is a type that needs structural equality
1284 its TYPE_CANONICAL (T) will be NULL.
1285 * TYPE_CANONICAL (T) desn't carry type attributes
1286 and loses template parameter names.
1287
1288 If REMOVE_ATTRIBUTES is non-null, also strip attributes that don't
1289 affect type identity, and set the referent to true if any were
1290 stripped. */
1291
1292 tree
1293 strip_typedefs (tree t, bool *remove_attributes)
1294 {
1295 tree result = NULL, type = NULL, t0 = NULL;
1296
1297 if (!t || t == error_mark_node)
1298 return t;
1299
1300 if (TREE_CODE (t) == TREE_LIST)
1301 {
1302 bool changed = false;
1303 vec<tree,va_gc> *vec = make_tree_vector ();
1304 tree r = t;
1305 for (; t; t = TREE_CHAIN (t))
1306 {
1307 gcc_assert (!TREE_PURPOSE (t));
1308 tree elt = strip_typedefs (TREE_VALUE (t), remove_attributes);
1309 if (elt != TREE_VALUE (t))
1310 changed = true;
1311 vec_safe_push (vec, elt);
1312 }
1313 if (changed)
1314 r = build_tree_list_vec (vec);
1315 release_tree_vector (vec);
1316 return r;
1317 }
1318
1319 gcc_assert (TYPE_P (t));
1320
1321 if (t == TYPE_CANONICAL (t))
1322 return t;
1323
1324 if (dependent_alias_template_spec_p (t))
1325 /* DR 1558: However, if the template-id is dependent, subsequent
1326 template argument substitution still applies to the template-id. */
1327 return t;
1328
1329 switch (TREE_CODE (t))
1330 {
1331 case POINTER_TYPE:
1332 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1333 result = build_pointer_type (type);
1334 break;
1335 case REFERENCE_TYPE:
1336 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1337 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1338 break;
1339 case OFFSET_TYPE:
1340 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t), remove_attributes);
1341 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1342 result = build_offset_type (t0, type);
1343 break;
1344 case RECORD_TYPE:
1345 if (TYPE_PTRMEMFUNC_P (t))
1346 {
1347 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t), remove_attributes);
1348 result = build_ptrmemfunc_type (t0);
1349 }
1350 break;
1351 case ARRAY_TYPE:
1352 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1353 t0 = strip_typedefs (TYPE_DOMAIN (t), remove_attributes);
1354 result = build_cplus_array_type (type, t0);
1355 break;
1356 case FUNCTION_TYPE:
1357 case METHOD_TYPE:
1358 {
1359 tree arg_types = NULL, arg_node, arg_node2, arg_type;
1360 bool changed;
1361
1362 /* Because we stomp on TREE_PURPOSE of TYPE_ARG_TYPES in many places
1363 around the compiler (e.g. cp_parser_late_parsing_default_args), we
1364 can't expect that re-hashing a function type will find a previous
1365 equivalent type, so try to reuse the input type if nothing has
1366 changed. If the type is itself a variant, that will change. */
1367 bool is_variant = typedef_variant_p (t);
1368 if (remove_attributes
1369 && (TYPE_ATTRIBUTES (t) || TYPE_USER_ALIGN (t)))
1370 is_variant = true;
1371
1372 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1373 changed = type != TREE_TYPE (t) || is_variant;
1374
1375 for (arg_node = TYPE_ARG_TYPES (t);
1376 arg_node;
1377 arg_node = TREE_CHAIN (arg_node))
1378 {
1379 if (arg_node == void_list_node)
1380 break;
1381 arg_type = strip_typedefs (TREE_VALUE (arg_node),
1382 remove_attributes);
1383 gcc_assert (arg_type);
1384 if (arg_type == TREE_VALUE (arg_node) && !changed)
1385 continue;
1386
1387 if (!changed)
1388 {
1389 changed = true;
1390 for (arg_node2 = TYPE_ARG_TYPES (t);
1391 arg_node2 != arg_node;
1392 arg_node2 = TREE_CHAIN (arg_node2))
1393 arg_types
1394 = tree_cons (TREE_PURPOSE (arg_node2),
1395 TREE_VALUE (arg_node2), arg_types);
1396 }
1397
1398 arg_types
1399 = tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1400 }
1401
1402 if (!changed)
1403 return t;
1404
1405 if (arg_types)
1406 arg_types = nreverse (arg_types);
1407
1408 /* A list of parameters not ending with an ellipsis
1409 must end with void_list_node. */
1410 if (arg_node)
1411 arg_types = chainon (arg_types, void_list_node);
1412
1413 if (TREE_CODE (t) == METHOD_TYPE)
1414 {
1415 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1416 gcc_assert (class_type);
1417 result =
1418 build_method_type_directly (class_type, type,
1419 TREE_CHAIN (arg_types));
1420 result
1421 = build_ref_qualified_type (result, type_memfn_rqual (t));
1422 }
1423 else
1424 {
1425 result = build_function_type (type,
1426 arg_types);
1427 result = apply_memfn_quals (result,
1428 type_memfn_quals (t),
1429 type_memfn_rqual (t));
1430 }
1431
1432 if (TYPE_RAISES_EXCEPTIONS (t))
1433 result = build_exception_variant (result,
1434 TYPE_RAISES_EXCEPTIONS (t));
1435 if (TYPE_HAS_LATE_RETURN_TYPE (t))
1436 TYPE_HAS_LATE_RETURN_TYPE (result) = 1;
1437 }
1438 break;
1439 case TYPENAME_TYPE:
1440 {
1441 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1442 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1443 && TREE_OPERAND (fullname, 1))
1444 {
1445 tree args = TREE_OPERAND (fullname, 1);
1446 tree new_args = copy_node (args);
1447 bool changed = false;
1448 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1449 {
1450 tree arg = TREE_VEC_ELT (args, i);
1451 tree strip_arg;
1452 if (TYPE_P (arg))
1453 strip_arg = strip_typedefs (arg, remove_attributes);
1454 else
1455 strip_arg = strip_typedefs_expr (arg, remove_attributes);
1456 TREE_VEC_ELT (new_args, i) = strip_arg;
1457 if (strip_arg != arg)
1458 changed = true;
1459 }
1460 if (changed)
1461 {
1462 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args)
1463 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args);
1464 fullname
1465 = lookup_template_function (TREE_OPERAND (fullname, 0),
1466 new_args);
1467 }
1468 else
1469 ggc_free (new_args);
1470 }
1471 result = make_typename_type (strip_typedefs (TYPE_CONTEXT (t),
1472 remove_attributes),
1473 fullname, typename_type, tf_none);
1474 /* Handle 'typedef typename A::N N;' */
1475 if (typedef_variant_p (result))
1476 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (result)));
1477 }
1478 break;
1479 case DECLTYPE_TYPE:
1480 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t),
1481 remove_attributes);
1482 if (result == DECLTYPE_TYPE_EXPR (t))
1483 result = NULL_TREE;
1484 else
1485 result = (finish_decltype_type
1486 (result,
1487 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1488 tf_none));
1489 break;
1490 default:
1491 break;
1492 }
1493
1494 if (!result)
1495 {
1496 if (typedef_variant_p (t))
1497 {
1498 /* Explicitly get the underlying type, as TYPE_MAIN_VARIANT doesn't
1499 strip typedefs with attributes. */
1500 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (t)));
1501 result = strip_typedefs (result);
1502 }
1503 else
1504 result = TYPE_MAIN_VARIANT (t);
1505 }
1506 gcc_assert (!typedef_variant_p (result));
1507 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1508 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1509 {
1510 gcc_assert (TYPE_USER_ALIGN (t));
1511 if (remove_attributes)
1512 *remove_attributes = true;
1513 else
1514 {
1515 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1516 result = build_variant_type_copy (result);
1517 else
1518 result = build_aligned_type (result, TYPE_ALIGN (t));
1519 TYPE_USER_ALIGN (result) = true;
1520 }
1521 }
1522 if (TYPE_ATTRIBUTES (t))
1523 {
1524 if (remove_attributes)
1525 result = apply_identity_attributes (result, TYPE_ATTRIBUTES (t),
1526 remove_attributes);
1527 else
1528 result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t));
1529 }
1530 return cp_build_qualified_type (result, cp_type_quals (t));
1531 }
1532
1533 /* Like strip_typedefs above, but works on expressions, so that in
1534
1535 template<class T> struct A
1536 {
1537 typedef T TT;
1538 B<sizeof(TT)> b;
1539 };
1540
1541 sizeof(TT) is replaced by sizeof(T). */
1542
1543 tree
1544 strip_typedefs_expr (tree t, bool *remove_attributes)
1545 {
1546 unsigned i,n;
1547 tree r, type, *ops;
1548 enum tree_code code;
1549
1550 if (t == NULL_TREE || t == error_mark_node)
1551 return t;
1552
1553 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1554 return t;
1555
1556 /* Some expressions have type operands, so let's handle types here rather
1557 than check TYPE_P in multiple places below. */
1558 if (TYPE_P (t))
1559 return strip_typedefs (t, remove_attributes);
1560
1561 code = TREE_CODE (t);
1562 switch (code)
1563 {
1564 case IDENTIFIER_NODE:
1565 case TEMPLATE_PARM_INDEX:
1566 case OVERLOAD:
1567 case BASELINK:
1568 case ARGUMENT_PACK_SELECT:
1569 return t;
1570
1571 case TRAIT_EXPR:
1572 {
1573 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t), remove_attributes);
1574 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t), remove_attributes);
1575 if (type1 == TRAIT_EXPR_TYPE1 (t)
1576 && type2 == TRAIT_EXPR_TYPE2 (t))
1577 return t;
1578 r = copy_node (t);
1579 TRAIT_EXPR_TYPE1 (r) = type1;
1580 TRAIT_EXPR_TYPE2 (r) = type2;
1581 return r;
1582 }
1583
1584 case TREE_LIST:
1585 {
1586 vec<tree, va_gc> *vec = make_tree_vector ();
1587 bool changed = false;
1588 tree it;
1589 for (it = t; it; it = TREE_CHAIN (it))
1590 {
1591 tree val = strip_typedefs_expr (TREE_VALUE (t), remove_attributes);
1592 vec_safe_push (vec, val);
1593 if (val != TREE_VALUE (t))
1594 changed = true;
1595 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1596 }
1597 if (changed)
1598 {
1599 r = NULL_TREE;
1600 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1601 r = tree_cons (NULL_TREE, it, r);
1602 }
1603 else
1604 r = t;
1605 release_tree_vector (vec);
1606 return r;
1607 }
1608
1609 case TREE_VEC:
1610 {
1611 bool changed = false;
1612 vec<tree, va_gc> *vec = make_tree_vector ();
1613 n = TREE_VEC_LENGTH (t);
1614 vec_safe_reserve (vec, n);
1615 for (i = 0; i < n; ++i)
1616 {
1617 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i),
1618 remove_attributes);
1619 vec->quick_push (op);
1620 if (op != TREE_VEC_ELT (t, i))
1621 changed = true;
1622 }
1623 if (changed)
1624 {
1625 r = copy_node (t);
1626 for (i = 0; i < n; ++i)
1627 TREE_VEC_ELT (r, i) = (*vec)[i];
1628 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r)
1629 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t);
1630 }
1631 else
1632 r = t;
1633 release_tree_vector (vec);
1634 return r;
1635 }
1636
1637 case CONSTRUCTOR:
1638 {
1639 bool changed = false;
1640 vec<constructor_elt, va_gc> *vec
1641 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1642 n = CONSTRUCTOR_NELTS (t);
1643 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1644 for (i = 0; i < n; ++i)
1645 {
1646 constructor_elt *e = &(*vec)[i];
1647 tree op = strip_typedefs_expr (e->value, remove_attributes);
1648 if (op != e->value)
1649 {
1650 changed = true;
1651 e->value = op;
1652 }
1653 gcc_checking_assert
1654 (e->index == strip_typedefs_expr (e->index, remove_attributes));
1655 }
1656
1657 if (!changed && type == TREE_TYPE (t))
1658 {
1659 vec_free (vec);
1660 return t;
1661 }
1662 else
1663 {
1664 r = copy_node (t);
1665 TREE_TYPE (r) = type;
1666 CONSTRUCTOR_ELTS (r) = vec;
1667 return r;
1668 }
1669 }
1670
1671 case LAMBDA_EXPR:
1672 error ("lambda-expression in a constant expression");
1673 return error_mark_node;
1674
1675 default:
1676 break;
1677 }
1678
1679 gcc_assert (EXPR_P (t));
1680
1681 n = TREE_OPERAND_LENGTH (t);
1682 ops = XALLOCAVEC (tree, n);
1683 type = TREE_TYPE (t);
1684
1685 switch (code)
1686 {
1687 CASE_CONVERT:
1688 case IMPLICIT_CONV_EXPR:
1689 case DYNAMIC_CAST_EXPR:
1690 case STATIC_CAST_EXPR:
1691 case CONST_CAST_EXPR:
1692 case REINTERPRET_CAST_EXPR:
1693 case CAST_EXPR:
1694 case NEW_EXPR:
1695 type = strip_typedefs (type, remove_attributes);
1696 /* fallthrough */
1697
1698 default:
1699 for (i = 0; i < n; ++i)
1700 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i), remove_attributes);
1701 break;
1702 }
1703
1704 /* If nothing changed, return t. */
1705 for (i = 0; i < n; ++i)
1706 if (ops[i] != TREE_OPERAND (t, i))
1707 break;
1708 if (i == n && type == TREE_TYPE (t))
1709 return t;
1710
1711 r = copy_node (t);
1712 TREE_TYPE (r) = type;
1713 for (i = 0; i < n; ++i)
1714 TREE_OPERAND (r, i) = ops[i];
1715 return r;
1716 }
1717
1718 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1719 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1720 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1721 VIRT indicates whether TYPE is inherited virtually or not.
1722 IGO_PREV points at the previous binfo of the inheritance graph
1723 order chain. The newly copied binfo's TREE_CHAIN forms this
1724 ordering.
1725
1726 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1727 correct order. That is in the order the bases themselves should be
1728 constructed in.
1729
1730 The BINFO_INHERITANCE of a virtual base class points to the binfo
1731 of the most derived type. ??? We could probably change this so that
1732 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1733 remove a field. They currently can only differ for primary virtual
1734 virtual bases. */
1735
1736 tree
1737 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1738 {
1739 tree new_binfo;
1740
1741 if (virt)
1742 {
1743 /* See if we've already made this virtual base. */
1744 new_binfo = binfo_for_vbase (type, t);
1745 if (new_binfo)
1746 return new_binfo;
1747 }
1748
1749 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1750 BINFO_TYPE (new_binfo) = type;
1751
1752 /* Chain it into the inheritance graph. */
1753 TREE_CHAIN (*igo_prev) = new_binfo;
1754 *igo_prev = new_binfo;
1755
1756 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1757 {
1758 int ix;
1759 tree base_binfo;
1760
1761 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1762
1763 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1764 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1765
1766 /* We do not need to copy the accesses, as they are read only. */
1767 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1768
1769 /* Recursively copy base binfos of BINFO. */
1770 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1771 {
1772 tree new_base_binfo;
1773 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1774 t, igo_prev,
1775 BINFO_VIRTUAL_P (base_binfo));
1776
1777 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1778 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1779 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1780 }
1781 }
1782 else
1783 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1784
1785 if (virt)
1786 {
1787 /* Push it onto the list after any virtual bases it contains
1788 will have been pushed. */
1789 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1790 BINFO_VIRTUAL_P (new_binfo) = 1;
1791 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1792 }
1793
1794 return new_binfo;
1795 }
1796 \f
1797 /* Hashing of lists so that we don't make duplicates.
1798 The entry point is `list_hash_canon'. */
1799
1800 struct list_proxy
1801 {
1802 tree purpose;
1803 tree value;
1804 tree chain;
1805 };
1806
1807 struct list_hasher : ggc_ptr_hash<tree_node>
1808 {
1809 typedef list_proxy *compare_type;
1810
1811 static hashval_t hash (tree);
1812 static bool equal (tree, list_proxy *);
1813 };
1814
1815 /* Now here is the hash table. When recording a list, it is added
1816 to the slot whose index is the hash code mod the table size.
1817 Note that the hash table is used for several kinds of lists.
1818 While all these live in the same table, they are completely independent,
1819 and the hash code is computed differently for each of these. */
1820
1821 static GTY (()) hash_table<list_hasher> *list_hash_table;
1822
1823 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1824 for a node we are thinking about adding). */
1825
1826 bool
1827 list_hasher::equal (tree t, list_proxy *proxy)
1828 {
1829 return (TREE_VALUE (t) == proxy->value
1830 && TREE_PURPOSE (t) == proxy->purpose
1831 && TREE_CHAIN (t) == proxy->chain);
1832 }
1833
1834 /* Compute a hash code for a list (chain of TREE_LIST nodes
1835 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1836 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1837
1838 static hashval_t
1839 list_hash_pieces (tree purpose, tree value, tree chain)
1840 {
1841 hashval_t hashcode = 0;
1842
1843 if (chain)
1844 hashcode += TREE_HASH (chain);
1845
1846 if (value)
1847 hashcode += TREE_HASH (value);
1848 else
1849 hashcode += 1007;
1850 if (purpose)
1851 hashcode += TREE_HASH (purpose);
1852 else
1853 hashcode += 1009;
1854 return hashcode;
1855 }
1856
1857 /* Hash an already existing TREE_LIST. */
1858
1859 hashval_t
1860 list_hasher::hash (tree t)
1861 {
1862 return list_hash_pieces (TREE_PURPOSE (t),
1863 TREE_VALUE (t),
1864 TREE_CHAIN (t));
1865 }
1866
1867 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1868 object for an identical list if one already exists. Otherwise, build a
1869 new one, and record it as the canonical object. */
1870
1871 tree
1872 hash_tree_cons (tree purpose, tree value, tree chain)
1873 {
1874 int hashcode = 0;
1875 tree *slot;
1876 struct list_proxy proxy;
1877
1878 /* Hash the list node. */
1879 hashcode = list_hash_pieces (purpose, value, chain);
1880 /* Create a proxy for the TREE_LIST we would like to create. We
1881 don't actually create it so as to avoid creating garbage. */
1882 proxy.purpose = purpose;
1883 proxy.value = value;
1884 proxy.chain = chain;
1885 /* See if it is already in the table. */
1886 slot = list_hash_table->find_slot_with_hash (&proxy, hashcode, INSERT);
1887 /* If not, create a new node. */
1888 if (!*slot)
1889 *slot = tree_cons (purpose, value, chain);
1890 return (tree) *slot;
1891 }
1892
1893 /* Constructor for hashed lists. */
1894
1895 tree
1896 hash_tree_chain (tree value, tree chain)
1897 {
1898 return hash_tree_cons (NULL_TREE, value, chain);
1899 }
1900 \f
1901 void
1902 debug_binfo (tree elem)
1903 {
1904 HOST_WIDE_INT n;
1905 tree virtuals;
1906
1907 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1908 "\nvtable type:\n",
1909 TYPE_NAME_STRING (BINFO_TYPE (elem)),
1910 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
1911 debug_tree (BINFO_TYPE (elem));
1912 if (BINFO_VTABLE (elem))
1913 fprintf (stderr, "vtable decl \"%s\"\n",
1914 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
1915 else
1916 fprintf (stderr, "no vtable decl yet\n");
1917 fprintf (stderr, "virtuals:\n");
1918 virtuals = BINFO_VIRTUALS (elem);
1919 n = 0;
1920
1921 while (virtuals)
1922 {
1923 tree fndecl = TREE_VALUE (virtuals);
1924 fprintf (stderr, "%s [%ld =? %ld]\n",
1925 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
1926 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
1927 ++n;
1928 virtuals = TREE_CHAIN (virtuals);
1929 }
1930 }
1931
1932 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
1933 the type of the result expression, if known, or NULL_TREE if the
1934 resulting expression is type-dependent. If TEMPLATE_P is true,
1935 NAME is known to be a template because the user explicitly used the
1936 "template" keyword after the "::".
1937
1938 All SCOPE_REFs should be built by use of this function. */
1939
1940 tree
1941 build_qualified_name (tree type, tree scope, tree name, bool template_p)
1942 {
1943 tree t;
1944 if (type == error_mark_node
1945 || scope == error_mark_node
1946 || name == error_mark_node)
1947 return error_mark_node;
1948 t = build2 (SCOPE_REF, type, scope, name);
1949 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
1950 PTRMEM_OK_P (t) = true;
1951 if (type)
1952 t = convert_from_reference (t);
1953 return t;
1954 }
1955
1956 /* Like check_qualified_type, but also check ref-qualifier and exception
1957 specification. */
1958
1959 static bool
1960 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
1961 cp_ref_qualifier rqual, tree raises)
1962 {
1963 return (check_qualified_type (cand, base, type_quals)
1964 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
1965 ce_exact)
1966 && type_memfn_rqual (cand) == rqual);
1967 }
1968
1969 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
1970
1971 tree
1972 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
1973 {
1974 tree t;
1975
1976 if (rqual == type_memfn_rqual (type))
1977 return type;
1978
1979 int type_quals = TYPE_QUALS (type);
1980 tree raises = TYPE_RAISES_EXCEPTIONS (type);
1981 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1982 if (cp_check_qualified_type (t, type, type_quals, rqual, raises))
1983 return t;
1984
1985 t = build_variant_type_copy (type);
1986 switch (rqual)
1987 {
1988 case REF_QUAL_RVALUE:
1989 FUNCTION_RVALUE_QUALIFIED (t) = 1;
1990 FUNCTION_REF_QUALIFIED (t) = 1;
1991 break;
1992 case REF_QUAL_LVALUE:
1993 FUNCTION_RVALUE_QUALIFIED (t) = 0;
1994 FUNCTION_REF_QUALIFIED (t) = 1;
1995 break;
1996 default:
1997 FUNCTION_REF_QUALIFIED (t) = 0;
1998 break;
1999 }
2000
2001 if (TYPE_STRUCTURAL_EQUALITY_P (type))
2002 /* Propagate structural equality. */
2003 SET_TYPE_STRUCTURAL_EQUALITY (t);
2004 else if (TYPE_CANONICAL (type) != type)
2005 /* Build the underlying canonical type, since it is different
2006 from TYPE. */
2007 TYPE_CANONICAL (t) = build_ref_qualified_type (TYPE_CANONICAL (type),
2008 rqual);
2009 else
2010 /* T is its own canonical type. */
2011 TYPE_CANONICAL (t) = t;
2012
2013 return t;
2014 }
2015
2016 /* Returns nonzero if X is an expression for a (possibly overloaded)
2017 function. If "f" is a function or function template, "f", "c->f",
2018 "c.f", "C::f", and "f<int>" will all be considered possibly
2019 overloaded functions. Returns 2 if the function is actually
2020 overloaded, i.e., if it is impossible to know the type of the
2021 function without performing overload resolution. */
2022
2023 int
2024 is_overloaded_fn (tree x)
2025 {
2026 /* A baselink is also considered an overloaded function. */
2027 if (TREE_CODE (x) == OFFSET_REF
2028 || TREE_CODE (x) == COMPONENT_REF)
2029 x = TREE_OPERAND (x, 1);
2030 if (BASELINK_P (x))
2031 x = BASELINK_FUNCTIONS (x);
2032 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
2033 x = TREE_OPERAND (x, 0);
2034 if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
2035 || (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
2036 return 2;
2037 return (TREE_CODE (x) == FUNCTION_DECL
2038 || TREE_CODE (x) == OVERLOAD);
2039 }
2040
2041 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
2042 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
2043 NULL_TREE. */
2044
2045 tree
2046 dependent_name (tree x)
2047 {
2048 if (identifier_p (x))
2049 return x;
2050 if (TREE_CODE (x) != COMPONENT_REF
2051 && TREE_CODE (x) != OFFSET_REF
2052 && TREE_CODE (x) != BASELINK
2053 && is_overloaded_fn (x))
2054 return DECL_NAME (get_first_fn (x));
2055 return NULL_TREE;
2056 }
2057
2058 /* Returns true iff X is an expression for an overloaded function
2059 whose type cannot be known without performing overload
2060 resolution. */
2061
2062 bool
2063 really_overloaded_fn (tree x)
2064 {
2065 return is_overloaded_fn (x) == 2;
2066 }
2067
2068 tree
2069 get_fns (tree from)
2070 {
2071 gcc_assert (is_overloaded_fn (from));
2072 /* A baselink is also considered an overloaded function. */
2073 if (TREE_CODE (from) == OFFSET_REF
2074 || TREE_CODE (from) == COMPONENT_REF)
2075 from = TREE_OPERAND (from, 1);
2076 if (BASELINK_P (from))
2077 from = BASELINK_FUNCTIONS (from);
2078 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
2079 from = TREE_OPERAND (from, 0);
2080 return from;
2081 }
2082
2083 tree
2084 get_first_fn (tree from)
2085 {
2086 return OVL_CURRENT (get_fns (from));
2087 }
2088
2089 /* Return a new OVL node, concatenating it with the old one. */
2090
2091 tree
2092 ovl_cons (tree decl, tree chain)
2093 {
2094 tree result = make_node (OVERLOAD);
2095 TREE_TYPE (result) = unknown_type_node;
2096 OVL_FUNCTION (result) = decl;
2097 TREE_CHAIN (result) = chain;
2098
2099 return result;
2100 }
2101
2102 /* Build a new overloaded function. If this is the first one,
2103 just return it; otherwise, ovl_cons the _DECLs */
2104
2105 tree
2106 build_overload (tree decl, tree chain)
2107 {
2108 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
2109 return decl;
2110 return ovl_cons (decl, chain);
2111 }
2112
2113 /* Return the scope where the overloaded functions OVL were found. */
2114
2115 tree
2116 ovl_scope (tree ovl)
2117 {
2118 if (TREE_CODE (ovl) == OFFSET_REF
2119 || TREE_CODE (ovl) == COMPONENT_REF)
2120 ovl = TREE_OPERAND (ovl, 1);
2121 if (TREE_CODE (ovl) == BASELINK)
2122 return BINFO_TYPE (BASELINK_BINFO (ovl));
2123 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
2124 ovl = TREE_OPERAND (ovl, 0);
2125 /* Skip using-declarations. */
2126 while (TREE_CODE (ovl) == OVERLOAD && OVL_USED (ovl) && OVL_CHAIN (ovl))
2127 ovl = OVL_CHAIN (ovl);
2128 return CP_DECL_CONTEXT (OVL_CURRENT (ovl));
2129 }
2130 \f
2131 #define PRINT_RING_SIZE 4
2132
2133 static const char *
2134 cxx_printable_name_internal (tree decl, int v, bool translate)
2135 {
2136 static unsigned int uid_ring[PRINT_RING_SIZE];
2137 static char *print_ring[PRINT_RING_SIZE];
2138 static bool trans_ring[PRINT_RING_SIZE];
2139 static int ring_counter;
2140 int i;
2141
2142 /* Only cache functions. */
2143 if (v < 2
2144 || TREE_CODE (decl) != FUNCTION_DECL
2145 || DECL_LANG_SPECIFIC (decl) == 0)
2146 return lang_decl_name (decl, v, translate);
2147
2148 /* See if this print name is lying around. */
2149 for (i = 0; i < PRINT_RING_SIZE; i++)
2150 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
2151 /* yes, so return it. */
2152 return print_ring[i];
2153
2154 if (++ring_counter == PRINT_RING_SIZE)
2155 ring_counter = 0;
2156
2157 if (current_function_decl != NULL_TREE)
2158 {
2159 /* There may be both translated and untranslated versions of the
2160 name cached. */
2161 for (i = 0; i < 2; i++)
2162 {
2163 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
2164 ring_counter += 1;
2165 if (ring_counter == PRINT_RING_SIZE)
2166 ring_counter = 0;
2167 }
2168 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
2169 }
2170
2171 free (print_ring[ring_counter]);
2172
2173 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
2174 uid_ring[ring_counter] = DECL_UID (decl);
2175 trans_ring[ring_counter] = translate;
2176 return print_ring[ring_counter];
2177 }
2178
2179 const char *
2180 cxx_printable_name (tree decl, int v)
2181 {
2182 return cxx_printable_name_internal (decl, v, false);
2183 }
2184
2185 const char *
2186 cxx_printable_name_translate (tree decl, int v)
2187 {
2188 return cxx_printable_name_internal (decl, v, true);
2189 }
2190 \f
2191 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
2192 listed in RAISES. */
2193
2194 tree
2195 build_exception_variant (tree type, tree raises)
2196 {
2197 tree v;
2198 int type_quals;
2199
2200 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
2201 return type;
2202
2203 type_quals = TYPE_QUALS (type);
2204 cp_ref_qualifier rqual = type_memfn_rqual (type);
2205 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
2206 if (cp_check_qualified_type (v, type, type_quals, rqual, raises))
2207 return v;
2208
2209 /* Need to build a new variant. */
2210 v = build_variant_type_copy (type);
2211 TYPE_RAISES_EXCEPTIONS (v) = raises;
2212 return v;
2213 }
2214
2215 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
2216 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
2217 arguments. */
2218
2219 tree
2220 bind_template_template_parm (tree t, tree newargs)
2221 {
2222 tree decl = TYPE_NAME (t);
2223 tree t2;
2224
2225 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2226 decl = build_decl (input_location,
2227 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2228
2229 /* These nodes have to be created to reflect new TYPE_DECL and template
2230 arguments. */
2231 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2232 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2233 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2234 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2235
2236 TREE_TYPE (decl) = t2;
2237 TYPE_NAME (t2) = decl;
2238 TYPE_STUB_DECL (t2) = decl;
2239 TYPE_SIZE (t2) = 0;
2240 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2241
2242 return t2;
2243 }
2244
2245 /* Called from count_trees via walk_tree. */
2246
2247 static tree
2248 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2249 {
2250 ++*((int *) data);
2251
2252 if (TYPE_P (*tp))
2253 *walk_subtrees = 0;
2254
2255 return NULL_TREE;
2256 }
2257
2258 /* Debugging function for measuring the rough complexity of a tree
2259 representation. */
2260
2261 int
2262 count_trees (tree t)
2263 {
2264 int n_trees = 0;
2265 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2266 return n_trees;
2267 }
2268
2269 /* Called from verify_stmt_tree via walk_tree. */
2270
2271 static tree
2272 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2273 {
2274 tree t = *tp;
2275 hash_table<nofree_ptr_hash <tree_node> > *statements
2276 = static_cast <hash_table<nofree_ptr_hash <tree_node> > *> (data);
2277 tree_node **slot;
2278
2279 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2280 return NULL_TREE;
2281
2282 /* If this statement is already present in the hash table, then
2283 there is a circularity in the statement tree. */
2284 gcc_assert (!statements->find (t));
2285
2286 slot = statements->find_slot (t, INSERT);
2287 *slot = t;
2288
2289 return NULL_TREE;
2290 }
2291
2292 /* Debugging function to check that the statement T has not been
2293 corrupted. For now, this function simply checks that T contains no
2294 circularities. */
2295
2296 void
2297 verify_stmt_tree (tree t)
2298 {
2299 hash_table<nofree_ptr_hash <tree_node> > statements (37);
2300 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2301 }
2302
2303 /* Check if the type T depends on a type with no linkage and if so, return
2304 it. If RELAXED_P then do not consider a class type declared within
2305 a vague-linkage function to have no linkage. */
2306
2307 tree
2308 no_linkage_check (tree t, bool relaxed_p)
2309 {
2310 tree r;
2311
2312 /* There's no point in checking linkage on template functions; we
2313 can't know their complete types. */
2314 if (processing_template_decl)
2315 return NULL_TREE;
2316
2317 switch (TREE_CODE (t))
2318 {
2319 case RECORD_TYPE:
2320 if (TYPE_PTRMEMFUNC_P (t))
2321 goto ptrmem;
2322 /* Lambda types that don't have mangling scope have no linkage. We
2323 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2324 when we get here from pushtag none of the lambda information is
2325 set up yet, so we want to assume that the lambda has linkage and
2326 fix it up later if not. */
2327 if (CLASSTYPE_LAMBDA_EXPR (t)
2328 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2329 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2330 return t;
2331 /* Fall through. */
2332 case UNION_TYPE:
2333 if (!CLASS_TYPE_P (t))
2334 return NULL_TREE;
2335 /* Fall through. */
2336 case ENUMERAL_TYPE:
2337 /* Only treat anonymous types as having no linkage if they're at
2338 namespace scope. This is core issue 966. */
2339 if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2340 return t;
2341
2342 for (r = CP_TYPE_CONTEXT (t); ; )
2343 {
2344 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2345 have linkage, or we might just be in an anonymous namespace.
2346 If we're in a TREE_PUBLIC class, we have linkage. */
2347 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2348 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2349 else if (TREE_CODE (r) == FUNCTION_DECL)
2350 {
2351 if (!relaxed_p || !vague_linkage_p (r))
2352 return t;
2353 else
2354 r = CP_DECL_CONTEXT (r);
2355 }
2356 else
2357 break;
2358 }
2359
2360 return NULL_TREE;
2361
2362 case ARRAY_TYPE:
2363 case POINTER_TYPE:
2364 case REFERENCE_TYPE:
2365 case VECTOR_TYPE:
2366 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2367
2368 case OFFSET_TYPE:
2369 ptrmem:
2370 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2371 relaxed_p);
2372 if (r)
2373 return r;
2374 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2375
2376 case METHOD_TYPE:
2377 case FUNCTION_TYPE:
2378 {
2379 tree parm = TYPE_ARG_TYPES (t);
2380 if (TREE_CODE (t) == METHOD_TYPE)
2381 /* The 'this' pointer isn't interesting; a method has the same
2382 linkage (or lack thereof) as its enclosing class. */
2383 parm = TREE_CHAIN (parm);
2384 for (;
2385 parm && parm != void_list_node;
2386 parm = TREE_CHAIN (parm))
2387 {
2388 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2389 if (r)
2390 return r;
2391 }
2392 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2393 }
2394
2395 default:
2396 return NULL_TREE;
2397 }
2398 }
2399
2400 extern int depth_reached;
2401
2402 void
2403 cxx_print_statistics (void)
2404 {
2405 print_search_statistics ();
2406 print_class_statistics ();
2407 print_template_statistics ();
2408 if (GATHER_STATISTICS)
2409 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2410 depth_reached);
2411 }
2412
2413 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2414 (which is an ARRAY_TYPE). This counts only elements of the top
2415 array. */
2416
2417 tree
2418 array_type_nelts_top (tree type)
2419 {
2420 return fold_build2_loc (input_location,
2421 PLUS_EXPR, sizetype,
2422 array_type_nelts (type),
2423 size_one_node);
2424 }
2425
2426 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2427 (which is an ARRAY_TYPE). This one is a recursive count of all
2428 ARRAY_TYPEs that are clumped together. */
2429
2430 tree
2431 array_type_nelts_total (tree type)
2432 {
2433 tree sz = array_type_nelts_top (type);
2434 type = TREE_TYPE (type);
2435 while (TREE_CODE (type) == ARRAY_TYPE)
2436 {
2437 tree n = array_type_nelts_top (type);
2438 sz = fold_build2_loc (input_location,
2439 MULT_EXPR, sizetype, sz, n);
2440 type = TREE_TYPE (type);
2441 }
2442 return sz;
2443 }
2444
2445 /* Called from break_out_target_exprs via mapcar. */
2446
2447 static tree
2448 bot_manip (tree* tp, int* walk_subtrees, void* data)
2449 {
2450 splay_tree target_remap = ((splay_tree) data);
2451 tree t = *tp;
2452
2453 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2454 {
2455 /* There can't be any TARGET_EXPRs or their slot variables below this
2456 point. But we must make a copy, in case subsequent processing
2457 alters any part of it. For example, during gimplification a cast
2458 of the form (T) &X::f (where "f" is a member function) will lead
2459 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2460 *walk_subtrees = 0;
2461 *tp = unshare_expr (t);
2462 return NULL_TREE;
2463 }
2464 if (TREE_CODE (t) == TARGET_EXPR)
2465 {
2466 tree u;
2467
2468 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2469 {
2470 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2471 tf_warning_or_error);
2472 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2473 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2474 }
2475 else
2476 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2477 tf_warning_or_error);
2478
2479 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2480 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2481 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2482
2483 /* Map the old variable to the new one. */
2484 splay_tree_insert (target_remap,
2485 (splay_tree_key) TREE_OPERAND (t, 0),
2486 (splay_tree_value) TREE_OPERAND (u, 0));
2487
2488 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2489
2490 /* Replace the old expression with the new version. */
2491 *tp = u;
2492 /* We don't have to go below this point; the recursive call to
2493 break_out_target_exprs will have handled anything below this
2494 point. */
2495 *walk_subtrees = 0;
2496 return NULL_TREE;
2497 }
2498 if (TREE_CODE (*tp) == SAVE_EXPR)
2499 {
2500 t = *tp;
2501 splay_tree_node n = splay_tree_lookup (target_remap,
2502 (splay_tree_key) t);
2503 if (n)
2504 {
2505 *tp = (tree)n->value;
2506 *walk_subtrees = 0;
2507 }
2508 else
2509 {
2510 copy_tree_r (tp, walk_subtrees, NULL);
2511 splay_tree_insert (target_remap,
2512 (splay_tree_key)t,
2513 (splay_tree_value)*tp);
2514 /* Make sure we don't remap an already-remapped SAVE_EXPR. */
2515 splay_tree_insert (target_remap,
2516 (splay_tree_key)*tp,
2517 (splay_tree_value)*tp);
2518 }
2519 return NULL_TREE;
2520 }
2521
2522 /* Make a copy of this node. */
2523 t = copy_tree_r (tp, walk_subtrees, NULL);
2524 if (TREE_CODE (*tp) == CALL_EXPR)
2525 {
2526 set_flags_from_callee (*tp);
2527
2528 /* builtin_LINE and builtin_FILE get the location where the default
2529 argument is expanded, not where the call was written. */
2530 tree callee = get_callee_fndecl (*tp);
2531 if (callee && DECL_BUILT_IN (callee))
2532 switch (DECL_FUNCTION_CODE (callee))
2533 {
2534 case BUILT_IN_FILE:
2535 case BUILT_IN_LINE:
2536 SET_EXPR_LOCATION (*tp, input_location);
2537 default:
2538 break;
2539 }
2540 }
2541 return t;
2542 }
2543
2544 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2545 DATA is really a splay-tree mapping old variables to new
2546 variables. */
2547
2548 static tree
2549 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2550 {
2551 splay_tree target_remap = ((splay_tree) data);
2552
2553 if (VAR_P (*t))
2554 {
2555 splay_tree_node n = splay_tree_lookup (target_remap,
2556 (splay_tree_key) *t);
2557 if (n)
2558 *t = (tree) n->value;
2559 }
2560 else if (TREE_CODE (*t) == PARM_DECL
2561 && DECL_NAME (*t) == this_identifier
2562 && !DECL_CONTEXT (*t))
2563 {
2564 /* In an NSDMI we need to replace the 'this' parameter we used for
2565 parsing with the real one for this function. */
2566 *t = current_class_ptr;
2567 }
2568 else if (TREE_CODE (*t) == CONVERT_EXPR
2569 && CONVERT_EXPR_VBASE_PATH (*t))
2570 {
2571 /* In an NSDMI build_base_path defers building conversions to virtual
2572 bases, and we handle it here. */
2573 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2574 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2575 int i; tree binfo;
2576 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2577 if (BINFO_TYPE (binfo) == basetype)
2578 break;
2579 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
2580 tf_warning_or_error);
2581 }
2582
2583 return NULL_TREE;
2584 }
2585
2586 /* When we parse a default argument expression, we may create
2587 temporary variables via TARGET_EXPRs. When we actually use the
2588 default-argument expression, we make a copy of the expression
2589 and replace the temporaries with appropriate local versions. */
2590
2591 tree
2592 break_out_target_exprs (tree t)
2593 {
2594 static int target_remap_count;
2595 static splay_tree target_remap;
2596
2597 if (!target_remap_count++)
2598 target_remap = splay_tree_new (splay_tree_compare_pointers,
2599 /*splay_tree_delete_key_fn=*/NULL,
2600 /*splay_tree_delete_value_fn=*/NULL);
2601 cp_walk_tree (&t, bot_manip, target_remap, NULL);
2602 cp_walk_tree (&t, bot_replace, target_remap, NULL);
2603
2604 if (!--target_remap_count)
2605 {
2606 splay_tree_delete (target_remap);
2607 target_remap = NULL;
2608 }
2609
2610 return t;
2611 }
2612
2613 /* Build an expression for the subobject of OBJ at CONSTRUCTOR index INDEX,
2614 which we expect to have type TYPE. */
2615
2616 tree
2617 build_ctor_subob_ref (tree index, tree type, tree obj)
2618 {
2619 if (index == NULL_TREE)
2620 /* Can't refer to a particular member of a vector. */
2621 obj = NULL_TREE;
2622 else if (TREE_CODE (index) == INTEGER_CST)
2623 obj = cp_build_array_ref (input_location, obj, index, tf_none);
2624 else
2625 obj = build_class_member_access_expr (obj, index, NULL_TREE,
2626 /*reference*/false, tf_none);
2627 if (obj)
2628 {
2629 tree objtype = TREE_TYPE (obj);
2630 if (TREE_CODE (objtype) == ARRAY_TYPE && !TYPE_DOMAIN (objtype))
2631 {
2632 /* When the destination object refers to a flexible array member
2633 verify that it matches the type of the source object except
2634 for its domain and qualifiers. */
2635 gcc_assert (comptypes (TYPE_MAIN_VARIANT (type),
2636 TYPE_MAIN_VARIANT (objtype),
2637 COMPARE_REDECLARATION));
2638 }
2639 else
2640 gcc_assert (same_type_ignoring_top_level_qualifiers_p (type, objtype));
2641 }
2642
2643 return obj;
2644 }
2645
2646 /* Like substitute_placeholder_in_expr, but handle C++ tree codes and
2647 build up subexpressions as we go deeper. */
2648
2649 static tree
2650 replace_placeholders_r (tree* t, int* walk_subtrees, void* data_)
2651 {
2652 tree obj = static_cast<tree>(data_);
2653
2654 if (TREE_CONSTANT (*t))
2655 {
2656 *walk_subtrees = false;
2657 return NULL_TREE;
2658 }
2659
2660 switch (TREE_CODE (*t))
2661 {
2662 case PLACEHOLDER_EXPR:
2663 {
2664 tree x = obj;
2665 for (; !(same_type_ignoring_top_level_qualifiers_p
2666 (TREE_TYPE (*t), TREE_TYPE (x)));
2667 x = TREE_OPERAND (x, 0))
2668 gcc_assert (TREE_CODE (x) == COMPONENT_REF);
2669 *t = x;
2670 *walk_subtrees = false;
2671 }
2672 break;
2673
2674 case CONSTRUCTOR:
2675 {
2676 constructor_elt *ce;
2677 vec<constructor_elt,va_gc> *v = CONSTRUCTOR_ELTS (*t);
2678 for (unsigned i = 0; vec_safe_iterate (v, i, &ce); ++i)
2679 {
2680 tree *valp = &ce->value;
2681 tree type = TREE_TYPE (*valp);
2682 tree subob = obj;
2683
2684 if (TREE_CODE (*valp) == CONSTRUCTOR
2685 && AGGREGATE_TYPE_P (type))
2686 {
2687 /* If we're looking at the initializer for OBJ, then build
2688 a sub-object reference. If we're looking at an
2689 initializer for another object, just pass OBJ down. */
2690 if (same_type_ignoring_top_level_qualifiers_p
2691 (TREE_TYPE (*t), TREE_TYPE (obj)))
2692 subob = build_ctor_subob_ref (ce->index, type, obj);
2693 if (TREE_CODE (*valp) == TARGET_EXPR)
2694 valp = &TARGET_EXPR_INITIAL (*valp);
2695 }
2696
2697 cp_walk_tree (valp, replace_placeholders_r,
2698 subob, NULL);
2699 }
2700 *walk_subtrees = false;
2701 break;
2702 }
2703
2704 default:
2705 break;
2706 }
2707
2708 return NULL_TREE;
2709 }
2710
2711 tree
2712 replace_placeholders (tree exp, tree obj)
2713 {
2714 tree *tp = &exp;
2715 if (TREE_CODE (exp) == TARGET_EXPR)
2716 tp = &TARGET_EXPR_INITIAL (exp);
2717 cp_walk_tree (tp, replace_placeholders_r, obj, NULL);
2718 return exp;
2719 }
2720
2721 /* Similar to `build_nt', but for template definitions of dependent
2722 expressions */
2723
2724 tree
2725 build_min_nt_loc (location_t loc, enum tree_code code, ...)
2726 {
2727 tree t;
2728 int length;
2729 int i;
2730 va_list p;
2731
2732 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2733
2734 va_start (p, code);
2735
2736 t = make_node (code);
2737 SET_EXPR_LOCATION (t, loc);
2738 length = TREE_CODE_LENGTH (code);
2739
2740 for (i = 0; i < length; i++)
2741 {
2742 tree x = va_arg (p, tree);
2743 TREE_OPERAND (t, i) = x;
2744 }
2745
2746 va_end (p);
2747 return t;
2748 }
2749
2750
2751 /* Similar to `build', but for template definitions. */
2752
2753 tree
2754 build_min (enum tree_code code, tree tt, ...)
2755 {
2756 tree t;
2757 int length;
2758 int i;
2759 va_list p;
2760
2761 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2762
2763 va_start (p, tt);
2764
2765 t = make_node (code);
2766 length = TREE_CODE_LENGTH (code);
2767 TREE_TYPE (t) = tt;
2768
2769 for (i = 0; i < length; i++)
2770 {
2771 tree x = va_arg (p, tree);
2772 TREE_OPERAND (t, i) = x;
2773 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
2774 TREE_SIDE_EFFECTS (t) = 1;
2775 }
2776
2777 va_end (p);
2778 return t;
2779 }
2780
2781 /* Similar to `build', but for template definitions of non-dependent
2782 expressions. NON_DEP is the non-dependent expression that has been
2783 built. */
2784
2785 tree
2786 build_min_non_dep (enum tree_code code, tree non_dep, ...)
2787 {
2788 tree t;
2789 int length;
2790 int i;
2791 va_list p;
2792
2793 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2794
2795 va_start (p, non_dep);
2796
2797 if (REFERENCE_REF_P (non_dep))
2798 non_dep = TREE_OPERAND (non_dep, 0);
2799
2800 t = make_node (code);
2801 length = TREE_CODE_LENGTH (code);
2802 TREE_TYPE (t) = TREE_TYPE (non_dep);
2803 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2804
2805 for (i = 0; i < length; i++)
2806 {
2807 tree x = va_arg (p, tree);
2808 TREE_OPERAND (t, i) = x;
2809 }
2810
2811 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
2812 /* This should not be considered a COMPOUND_EXPR, because it
2813 resolves to an overload. */
2814 COMPOUND_EXPR_OVERLOADED (t) = 1;
2815
2816 va_end (p);
2817 return convert_from_reference (t);
2818 }
2819
2820 /* Similar to `build_nt_call_vec', but for template definitions of
2821 non-dependent expressions. NON_DEP is the non-dependent expression
2822 that has been built. */
2823
2824 tree
2825 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
2826 {
2827 tree t = build_nt_call_vec (fn, argvec);
2828 if (REFERENCE_REF_P (non_dep))
2829 non_dep = TREE_OPERAND (non_dep, 0);
2830 TREE_TYPE (t) = TREE_TYPE (non_dep);
2831 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2832 return convert_from_reference (t);
2833 }
2834
2835 /* Similar to build_min_non_dep, but for expressions that have been resolved to
2836 a call to an operator overload. OP is the operator that has been
2837 overloaded. NON_DEP is the non-dependent expression that's been built,
2838 which should be a CALL_EXPR or an INDIRECT_REF to a CALL_EXPR. OVERLOAD is
2839 the overload that NON_DEP is calling. */
2840
2841 tree
2842 build_min_non_dep_op_overload (enum tree_code op,
2843 tree non_dep,
2844 tree overload, ...)
2845 {
2846 va_list p;
2847 int nargs, expected_nargs;
2848 tree fn, call;
2849 vec<tree, va_gc> *args;
2850
2851 if (REFERENCE_REF_P (non_dep))
2852 non_dep = TREE_OPERAND (non_dep, 0);
2853
2854 nargs = call_expr_nargs (non_dep);
2855
2856 expected_nargs = cp_tree_code_length (op);
2857 if (op == POSTINCREMENT_EXPR
2858 || op == POSTDECREMENT_EXPR)
2859 expected_nargs += 1;
2860 gcc_assert (nargs == expected_nargs);
2861
2862 args = make_tree_vector ();
2863 va_start (p, overload);
2864
2865 if (TREE_CODE (TREE_TYPE (overload)) == FUNCTION_TYPE)
2866 {
2867 fn = overload;
2868 for (int i = 0; i < nargs; i++)
2869 {
2870 tree arg = va_arg (p, tree);
2871 vec_safe_push (args, arg);
2872 }
2873 }
2874 else if (TREE_CODE (TREE_TYPE (overload)) == METHOD_TYPE)
2875 {
2876 tree object = va_arg (p, tree);
2877 tree binfo = TYPE_BINFO (TREE_TYPE (object));
2878 tree method = build_baselink (binfo, binfo, overload, NULL_TREE);
2879 fn = build_min (COMPONENT_REF, TREE_TYPE (overload),
2880 object, method, NULL_TREE);
2881 for (int i = 1; i < nargs; i++)
2882 {
2883 tree arg = va_arg (p, tree);
2884 vec_safe_push (args, arg);
2885 }
2886 }
2887 else
2888 gcc_unreachable ();
2889
2890 va_end (p);
2891 call = build_min_non_dep_call_vec (non_dep, fn, args);
2892 release_tree_vector (args);
2893
2894 tree call_expr = call;
2895 if (REFERENCE_REF_P (call_expr))
2896 call_expr = TREE_OPERAND (call_expr, 0);
2897 KOENIG_LOOKUP_P (call_expr) = KOENIG_LOOKUP_P (non_dep);
2898
2899 return call;
2900 }
2901
2902 tree
2903 get_type_decl (tree t)
2904 {
2905 if (TREE_CODE (t) == TYPE_DECL)
2906 return t;
2907 if (TYPE_P (t))
2908 return TYPE_STUB_DECL (t);
2909 gcc_assert (t == error_mark_node);
2910 return t;
2911 }
2912
2913 /* Returns the namespace that contains DECL, whether directly or
2914 indirectly. */
2915
2916 tree
2917 decl_namespace_context (tree decl)
2918 {
2919 while (1)
2920 {
2921 if (TREE_CODE (decl) == NAMESPACE_DECL)
2922 return decl;
2923 else if (TYPE_P (decl))
2924 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
2925 else
2926 decl = CP_DECL_CONTEXT (decl);
2927 }
2928 }
2929
2930 /* Returns true if decl is within an anonymous namespace, however deeply
2931 nested, or false otherwise. */
2932
2933 bool
2934 decl_anon_ns_mem_p (const_tree decl)
2935 {
2936 while (1)
2937 {
2938 if (decl == NULL_TREE || decl == error_mark_node)
2939 return false;
2940 if (TREE_CODE (decl) == NAMESPACE_DECL
2941 && DECL_NAME (decl) == NULL_TREE)
2942 return true;
2943 /* Classes and namespaces inside anonymous namespaces have
2944 TREE_PUBLIC == 0, so we can shortcut the search. */
2945 else if (TYPE_P (decl))
2946 return (TREE_PUBLIC (TYPE_MAIN_DECL (decl)) == 0);
2947 else if (TREE_CODE (decl) == NAMESPACE_DECL)
2948 return (TREE_PUBLIC (decl) == 0);
2949 else
2950 decl = DECL_CONTEXT (decl);
2951 }
2952 }
2953
2954 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
2955 CALL_EXPRS. Return whether they are equivalent. */
2956
2957 static bool
2958 called_fns_equal (tree t1, tree t2)
2959 {
2960 /* Core 1321: dependent names are equivalent even if the overload sets
2961 are different. But do compare explicit template arguments. */
2962 tree name1 = dependent_name (t1);
2963 tree name2 = dependent_name (t2);
2964 if (name1 || name2)
2965 {
2966 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
2967
2968 if (name1 != name2)
2969 return false;
2970
2971 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
2972 targs1 = TREE_OPERAND (t1, 1);
2973 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
2974 targs2 = TREE_OPERAND (t2, 1);
2975 return cp_tree_equal (targs1, targs2);
2976 }
2977 else
2978 return cp_tree_equal (t1, t2);
2979 }
2980
2981 /* Return truthvalue of whether T1 is the same tree structure as T2.
2982 Return 1 if they are the same. Return 0 if they are different. */
2983
2984 bool
2985 cp_tree_equal (tree t1, tree t2)
2986 {
2987 enum tree_code code1, code2;
2988
2989 if (t1 == t2)
2990 return true;
2991 if (!t1 || !t2)
2992 return false;
2993
2994 code1 = TREE_CODE (t1);
2995 code2 = TREE_CODE (t2);
2996
2997 if (code1 != code2)
2998 return false;
2999
3000 switch (code1)
3001 {
3002 case VOID_CST:
3003 /* There's only a single VOID_CST node, so we should never reach
3004 here. */
3005 gcc_unreachable ();
3006
3007 case INTEGER_CST:
3008 return tree_int_cst_equal (t1, t2);
3009
3010 case REAL_CST:
3011 return real_equal (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
3012
3013 case STRING_CST:
3014 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3015 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3016 TREE_STRING_LENGTH (t1));
3017
3018 case FIXED_CST:
3019 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
3020 TREE_FIXED_CST (t2));
3021
3022 case COMPLEX_CST:
3023 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
3024 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
3025
3026 case VECTOR_CST:
3027 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
3028
3029 case CONSTRUCTOR:
3030 /* We need to do this when determining whether or not two
3031 non-type pointer to member function template arguments
3032 are the same. */
3033 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
3034 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
3035 return false;
3036 {
3037 tree field, value;
3038 unsigned int i;
3039 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
3040 {
3041 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
3042 if (!cp_tree_equal (field, elt2->index)
3043 || !cp_tree_equal (value, elt2->value))
3044 return false;
3045 }
3046 }
3047 return true;
3048
3049 case TREE_LIST:
3050 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
3051 return false;
3052 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
3053 return false;
3054 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
3055
3056 case SAVE_EXPR:
3057 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3058
3059 case CALL_EXPR:
3060 {
3061 tree arg1, arg2;
3062 call_expr_arg_iterator iter1, iter2;
3063 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
3064 return false;
3065 for (arg1 = first_call_expr_arg (t1, &iter1),
3066 arg2 = first_call_expr_arg (t2, &iter2);
3067 arg1 && arg2;
3068 arg1 = next_call_expr_arg (&iter1),
3069 arg2 = next_call_expr_arg (&iter2))
3070 if (!cp_tree_equal (arg1, arg2))
3071 return false;
3072 if (arg1 || arg2)
3073 return false;
3074 return true;
3075 }
3076
3077 case TARGET_EXPR:
3078 {
3079 tree o1 = TREE_OPERAND (t1, 0);
3080 tree o2 = TREE_OPERAND (t2, 0);
3081
3082 /* Special case: if either target is an unallocated VAR_DECL,
3083 it means that it's going to be unified with whatever the
3084 TARGET_EXPR is really supposed to initialize, so treat it
3085 as being equivalent to anything. */
3086 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
3087 && !DECL_RTL_SET_P (o1))
3088 /*Nop*/;
3089 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
3090 && !DECL_RTL_SET_P (o2))
3091 /*Nop*/;
3092 else if (!cp_tree_equal (o1, o2))
3093 return false;
3094
3095 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3096 }
3097
3098 case WITH_CLEANUP_EXPR:
3099 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3100 return false;
3101 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3102
3103 case COMPONENT_REF:
3104 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
3105 return false;
3106 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3107
3108 case PARM_DECL:
3109 /* For comparing uses of parameters in late-specified return types
3110 with an out-of-class definition of the function, but can also come
3111 up for expressions that involve 'this' in a member function
3112 template. */
3113
3114 if (comparing_specializations && !CONSTRAINT_VAR_P (t1))
3115 /* When comparing hash table entries, only an exact match is
3116 good enough; we don't want to replace 'this' with the
3117 version from another function. But be more flexible
3118 with local parameters in a requires-expression. */
3119 return false;
3120
3121 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3122 {
3123 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
3124 return false;
3125 if (CONSTRAINT_VAR_P (t1) ^ CONSTRAINT_VAR_P (t2))
3126 return false;
3127 if (DECL_ARTIFICIAL (t1)
3128 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
3129 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
3130 return true;
3131 }
3132 return false;
3133
3134 case VAR_DECL:
3135 case CONST_DECL:
3136 case FIELD_DECL:
3137 case FUNCTION_DECL:
3138 case TEMPLATE_DECL:
3139 case IDENTIFIER_NODE:
3140 case SSA_NAME:
3141 return false;
3142
3143 case BASELINK:
3144 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
3145 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
3146 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
3147 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
3148 BASELINK_FUNCTIONS (t2)));
3149
3150 case TEMPLATE_PARM_INDEX:
3151 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
3152 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
3153 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
3154 == TEMPLATE_PARM_PARAMETER_PACK (t2))
3155 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
3156 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
3157
3158 case TEMPLATE_ID_EXPR:
3159 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
3160 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
3161
3162 case CONSTRAINT_INFO:
3163 return cp_tree_equal (CI_ASSOCIATED_CONSTRAINTS (t1),
3164 CI_ASSOCIATED_CONSTRAINTS (t2));
3165
3166 case TREE_VEC:
3167 {
3168 unsigned ix;
3169 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
3170 return false;
3171 for (ix = TREE_VEC_LENGTH (t1); ix--;)
3172 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
3173 TREE_VEC_ELT (t2, ix)))
3174 return false;
3175 return true;
3176 }
3177
3178 case SIZEOF_EXPR:
3179 case ALIGNOF_EXPR:
3180 {
3181 tree o1 = TREE_OPERAND (t1, 0);
3182 tree o2 = TREE_OPERAND (t2, 0);
3183
3184 if (code1 == SIZEOF_EXPR)
3185 {
3186 if (SIZEOF_EXPR_TYPE_P (t1))
3187 o1 = TREE_TYPE (o1);
3188 if (SIZEOF_EXPR_TYPE_P (t2))
3189 o2 = TREE_TYPE (o2);
3190 }
3191 if (TREE_CODE (o1) != TREE_CODE (o2))
3192 return false;
3193 if (TYPE_P (o1))
3194 return same_type_p (o1, o2);
3195 else
3196 return cp_tree_equal (o1, o2);
3197 }
3198
3199 case MODOP_EXPR:
3200 {
3201 tree t1_op1, t2_op1;
3202
3203 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3204 return false;
3205
3206 t1_op1 = TREE_OPERAND (t1, 1);
3207 t2_op1 = TREE_OPERAND (t2, 1);
3208 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
3209 return false;
3210
3211 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
3212 }
3213
3214 case PTRMEM_CST:
3215 /* Two pointer-to-members are the same if they point to the same
3216 field or function in the same class. */
3217 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
3218 return false;
3219
3220 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
3221
3222 case OVERLOAD:
3223 if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
3224 return false;
3225 return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
3226
3227 case TRAIT_EXPR:
3228 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
3229 return false;
3230 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
3231 && cp_tree_equal (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
3232
3233 case CAST_EXPR:
3234 case STATIC_CAST_EXPR:
3235 case REINTERPRET_CAST_EXPR:
3236 case CONST_CAST_EXPR:
3237 case DYNAMIC_CAST_EXPR:
3238 case IMPLICIT_CONV_EXPR:
3239 case NEW_EXPR:
3240 CASE_CONVERT:
3241 case NON_LVALUE_EXPR:
3242 case VIEW_CONVERT_EXPR:
3243 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3244 return false;
3245 /* Now compare operands as usual. */
3246 break;
3247
3248 case DEFERRED_NOEXCEPT:
3249 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
3250 DEFERRED_NOEXCEPT_PATTERN (t2))
3251 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
3252 DEFERRED_NOEXCEPT_ARGS (t2)));
3253 break;
3254
3255 default:
3256 break;
3257 }
3258
3259 switch (TREE_CODE_CLASS (code1))
3260 {
3261 case tcc_unary:
3262 case tcc_binary:
3263 case tcc_comparison:
3264 case tcc_expression:
3265 case tcc_vl_exp:
3266 case tcc_reference:
3267 case tcc_statement:
3268 {
3269 int i, n;
3270
3271 n = cp_tree_operand_length (t1);
3272 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
3273 && n != TREE_OPERAND_LENGTH (t2))
3274 return false;
3275
3276 for (i = 0; i < n; ++i)
3277 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
3278 return false;
3279
3280 return true;
3281 }
3282
3283 case tcc_type:
3284 return same_type_p (t1, t2);
3285 default:
3286 gcc_unreachable ();
3287 }
3288 /* We can get here with --disable-checking. */
3289 return false;
3290 }
3291
3292 /* The type of ARG when used as an lvalue. */
3293
3294 tree
3295 lvalue_type (tree arg)
3296 {
3297 tree type = TREE_TYPE (arg);
3298 return type;
3299 }
3300
3301 /* The type of ARG for printing error messages; denote lvalues with
3302 reference types. */
3303
3304 tree
3305 error_type (tree arg)
3306 {
3307 tree type = TREE_TYPE (arg);
3308
3309 if (TREE_CODE (type) == ARRAY_TYPE)
3310 ;
3311 else if (TREE_CODE (type) == ERROR_MARK)
3312 ;
3313 else if (real_lvalue_p (arg))
3314 type = build_reference_type (lvalue_type (arg));
3315 else if (MAYBE_CLASS_TYPE_P (type))
3316 type = lvalue_type (arg);
3317
3318 return type;
3319 }
3320
3321 /* Does FUNCTION use a variable-length argument list? */
3322
3323 int
3324 varargs_function_p (const_tree function)
3325 {
3326 return stdarg_p (TREE_TYPE (function));
3327 }
3328
3329 /* Returns 1 if decl is a member of a class. */
3330
3331 int
3332 member_p (const_tree decl)
3333 {
3334 const_tree const ctx = DECL_CONTEXT (decl);
3335 return (ctx && TYPE_P (ctx));
3336 }
3337
3338 /* Create a placeholder for member access where we don't actually have an
3339 object that the access is against. */
3340
3341 tree
3342 build_dummy_object (tree type)
3343 {
3344 tree decl = build1 (CONVERT_EXPR, build_pointer_type (type), void_node);
3345 return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
3346 }
3347
3348 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
3349 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
3350 binfo path from current_class_type to TYPE, or 0. */
3351
3352 tree
3353 maybe_dummy_object (tree type, tree* binfop)
3354 {
3355 tree decl, context;
3356 tree binfo;
3357 tree current = current_nonlambda_class_type ();
3358
3359 if (current
3360 && (binfo = lookup_base (current, type, ba_any, NULL,
3361 tf_warning_or_error)))
3362 context = current;
3363 else
3364 {
3365 /* Reference from a nested class member function. */
3366 context = type;
3367 binfo = TYPE_BINFO (type);
3368 }
3369
3370 if (binfop)
3371 *binfop = binfo;
3372
3373 if (current_class_ref
3374 /* current_class_ref might not correspond to current_class_type if
3375 we're in tsubst_default_argument or a lambda-declarator; in either
3376 case, we want to use current_class_ref if it matches CONTEXT. */
3377 && (same_type_ignoring_top_level_qualifiers_p
3378 (TREE_TYPE (current_class_ref), context)))
3379 decl = current_class_ref;
3380 else
3381 decl = build_dummy_object (context);
3382
3383 return decl;
3384 }
3385
3386 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
3387
3388 int
3389 is_dummy_object (const_tree ob)
3390 {
3391 if (INDIRECT_REF_P (ob))
3392 ob = TREE_OPERAND (ob, 0);
3393 return (TREE_CODE (ob) == CONVERT_EXPR
3394 && TREE_OPERAND (ob, 0) == void_node);
3395 }
3396
3397 /* Returns 1 iff type T is something we want to treat as a scalar type for
3398 the purpose of deciding whether it is trivial/POD/standard-layout. */
3399
3400 bool
3401 scalarish_type_p (const_tree t)
3402 {
3403 if (t == error_mark_node)
3404 return 1;
3405
3406 return (SCALAR_TYPE_P (t) || VECTOR_TYPE_P (t));
3407 }
3408
3409 /* Returns true iff T requires non-trivial default initialization. */
3410
3411 bool
3412 type_has_nontrivial_default_init (const_tree t)
3413 {
3414 t = strip_array_types (CONST_CAST_TREE (t));
3415
3416 if (CLASS_TYPE_P (t))
3417 return TYPE_HAS_COMPLEX_DFLT (t);
3418 else
3419 return 0;
3420 }
3421
3422 /* Returns true iff copying an object of type T (including via move
3423 constructor) is non-trivial. That is, T has no non-trivial copy
3424 constructors and no non-trivial move constructors. */
3425
3426 bool
3427 type_has_nontrivial_copy_init (const_tree t)
3428 {
3429 t = strip_array_types (CONST_CAST_TREE (t));
3430
3431 if (CLASS_TYPE_P (t))
3432 {
3433 gcc_assert (COMPLETE_TYPE_P (t));
3434 return ((TYPE_HAS_COPY_CTOR (t)
3435 && TYPE_HAS_COMPLEX_COPY_CTOR (t))
3436 || TYPE_HAS_COMPLEX_MOVE_CTOR (t));
3437 }
3438 else
3439 return 0;
3440 }
3441
3442 /* Returns 1 iff type T is a trivially copyable type, as defined in
3443 [basic.types] and [class]. */
3444
3445 bool
3446 trivially_copyable_p (const_tree t)
3447 {
3448 t = strip_array_types (CONST_CAST_TREE (t));
3449
3450 if (CLASS_TYPE_P (t))
3451 return ((!TYPE_HAS_COPY_CTOR (t)
3452 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
3453 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
3454 && (!TYPE_HAS_COPY_ASSIGN (t)
3455 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
3456 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
3457 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
3458 else
3459 return !CP_TYPE_VOLATILE_P (t) && scalarish_type_p (t);
3460 }
3461
3462 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
3463 [class]. */
3464
3465 bool
3466 trivial_type_p (const_tree t)
3467 {
3468 t = strip_array_types (CONST_CAST_TREE (t));
3469
3470 if (CLASS_TYPE_P (t))
3471 return (TYPE_HAS_TRIVIAL_DFLT (t)
3472 && trivially_copyable_p (t));
3473 else
3474 return scalarish_type_p (t);
3475 }
3476
3477 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
3478
3479 bool
3480 pod_type_p (const_tree t)
3481 {
3482 /* This CONST_CAST is okay because strip_array_types returns its
3483 argument unmodified and we assign it to a const_tree. */
3484 t = strip_array_types (CONST_CAST_TREE(t));
3485
3486 if (!CLASS_TYPE_P (t))
3487 return scalarish_type_p (t);
3488 else if (cxx_dialect > cxx98)
3489 /* [class]/10: A POD struct is a class that is both a trivial class and a
3490 standard-layout class, and has no non-static data members of type
3491 non-POD struct, non-POD union (or array of such types).
3492
3493 We don't need to check individual members because if a member is
3494 non-std-layout or non-trivial, the class will be too. */
3495 return (std_layout_type_p (t) && trivial_type_p (t));
3496 else
3497 /* The C++98 definition of POD is different. */
3498 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3499 }
3500
3501 /* Returns true iff T is POD for the purpose of layout, as defined in the
3502 C++ ABI. */
3503
3504 bool
3505 layout_pod_type_p (const_tree t)
3506 {
3507 t = strip_array_types (CONST_CAST_TREE (t));
3508
3509 if (CLASS_TYPE_P (t))
3510 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3511 else
3512 return scalarish_type_p (t);
3513 }
3514
3515 /* Returns true iff T is a standard-layout type, as defined in
3516 [basic.types]. */
3517
3518 bool
3519 std_layout_type_p (const_tree t)
3520 {
3521 t = strip_array_types (CONST_CAST_TREE (t));
3522
3523 if (CLASS_TYPE_P (t))
3524 return !CLASSTYPE_NON_STD_LAYOUT (t);
3525 else
3526 return scalarish_type_p (t);
3527 }
3528
3529 /* Nonzero iff type T is a class template implicit specialization. */
3530
3531 bool
3532 class_tmpl_impl_spec_p (const_tree t)
3533 {
3534 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
3535 }
3536
3537 /* Returns 1 iff zero initialization of type T means actually storing
3538 zeros in it. */
3539
3540 int
3541 zero_init_p (const_tree t)
3542 {
3543 /* This CONST_CAST is okay because strip_array_types returns its
3544 argument unmodified and we assign it to a const_tree. */
3545 t = strip_array_types (CONST_CAST_TREE(t));
3546
3547 if (t == error_mark_node)
3548 return 1;
3549
3550 /* NULL pointers to data members are initialized with -1. */
3551 if (TYPE_PTRDATAMEM_P (t))
3552 return 0;
3553
3554 /* Classes that contain types that can't be zero-initialized, cannot
3555 be zero-initialized themselves. */
3556 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
3557 return 0;
3558
3559 return 1;
3560 }
3561
3562 /* Handle the C++17 [[nodiscard]] attribute, which is similar to the GNU
3563 warn_unused_result attribute. */
3564
3565 static tree
3566 handle_nodiscard_attribute (tree *node, tree name, tree /*args*/,
3567 int /*flags*/, bool *no_add_attrs)
3568 {
3569 if (TREE_CODE (*node) == FUNCTION_DECL)
3570 {
3571 if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
3572 warning (OPT_Wattributes, "%qE attribute applied to %qD with void "
3573 "return type", name, *node);
3574 }
3575 else if (OVERLOAD_TYPE_P (*node))
3576 /* OK */;
3577 else
3578 {
3579 warning (OPT_Wattributes, "%qE attribute can only be applied to "
3580 "functions or to class or enumeration types", name);
3581 *no_add_attrs = true;
3582 }
3583 return NULL_TREE;
3584 }
3585
3586 /* Table of valid C++ attributes. */
3587 const struct attribute_spec cxx_attribute_table[] =
3588 {
3589 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3590 affects_type_identity } */
3591 { "java_interface", 0, 0, false, false, false,
3592 handle_java_interface_attribute, false },
3593 { "init_priority", 1, 1, true, false, false,
3594 handle_init_priority_attribute, false },
3595 { "abi_tag", 1, -1, false, false, false,
3596 handle_abi_tag_attribute, true },
3597 { NULL, 0, 0, false, false, false, NULL, false }
3598 };
3599
3600 /* Table of C++ standard attributes. */
3601 const struct attribute_spec std_attribute_table[] =
3602 {
3603 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3604 affects_type_identity } */
3605 { "maybe_unused", 0, 0, false, false, false,
3606 handle_unused_attribute, false },
3607 { "nodiscard", 0, 0, false, false, false,
3608 handle_nodiscard_attribute, false },
3609 { NULL, 0, 0, false, false, false, NULL, false }
3610 };
3611
3612 /* Handle a "java_interface" attribute; arguments as in
3613 struct attribute_spec.handler. */
3614 static tree
3615 handle_java_interface_attribute (tree* node,
3616 tree name,
3617 tree /*args*/,
3618 int flags,
3619 bool* no_add_attrs)
3620 {
3621 if (DECL_P (*node)
3622 || !CLASS_TYPE_P (*node)
3623 || !TYPE_FOR_JAVA (*node))
3624 {
3625 error ("%qE attribute can only be applied to Java class definitions",
3626 name);
3627 *no_add_attrs = true;
3628 return NULL_TREE;
3629 }
3630 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
3631 *node = build_variant_type_copy (*node);
3632 TYPE_JAVA_INTERFACE (*node) = 1;
3633
3634 return NULL_TREE;
3635 }
3636
3637 /* Handle an "init_priority" attribute; arguments as in
3638 struct attribute_spec.handler. */
3639 static tree
3640 handle_init_priority_attribute (tree* node,
3641 tree name,
3642 tree args,
3643 int /*flags*/,
3644 bool* no_add_attrs)
3645 {
3646 tree initp_expr = TREE_VALUE (args);
3647 tree decl = *node;
3648 tree type = TREE_TYPE (decl);
3649 int pri;
3650
3651 STRIP_NOPS (initp_expr);
3652 initp_expr = default_conversion (initp_expr);
3653 if (initp_expr)
3654 initp_expr = maybe_constant_value (initp_expr);
3655
3656 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
3657 {
3658 error ("requested init_priority is not an integer constant");
3659 cxx_constant_value (initp_expr);
3660 *no_add_attrs = true;
3661 return NULL_TREE;
3662 }
3663
3664 pri = TREE_INT_CST_LOW (initp_expr);
3665
3666 type = strip_array_types (type);
3667
3668 if (decl == NULL_TREE
3669 || !VAR_P (decl)
3670 || !TREE_STATIC (decl)
3671 || DECL_EXTERNAL (decl)
3672 || (TREE_CODE (type) != RECORD_TYPE
3673 && TREE_CODE (type) != UNION_TYPE)
3674 /* Static objects in functions are initialized the
3675 first time control passes through that
3676 function. This is not precise enough to pin down an
3677 init_priority value, so don't allow it. */
3678 || current_function_decl)
3679 {
3680 error ("can only use %qE attribute on file-scope definitions "
3681 "of objects of class type", name);
3682 *no_add_attrs = true;
3683 return NULL_TREE;
3684 }
3685
3686 if (pri > MAX_INIT_PRIORITY || pri <= 0)
3687 {
3688 error ("requested init_priority is out of range");
3689 *no_add_attrs = true;
3690 return NULL_TREE;
3691 }
3692
3693 /* Check for init_priorities that are reserved for
3694 language and runtime support implementations.*/
3695 if (pri <= MAX_RESERVED_INIT_PRIORITY)
3696 {
3697 warning
3698 (0, "requested init_priority is reserved for internal use");
3699 }
3700
3701 if (SUPPORTS_INIT_PRIORITY)
3702 {
3703 SET_DECL_INIT_PRIORITY (decl, pri);
3704 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
3705 return NULL_TREE;
3706 }
3707 else
3708 {
3709 error ("%qE attribute is not supported on this platform", name);
3710 *no_add_attrs = true;
3711 return NULL_TREE;
3712 }
3713 }
3714
3715 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
3716 and the new one has the tags in NEW_. Give an error if there are tags
3717 in NEW_ that weren't in OLD. */
3718
3719 bool
3720 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
3721 {
3722 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
3723 old = TREE_VALUE (old);
3724 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
3725 new_ = TREE_VALUE (new_);
3726 bool err = false;
3727 for (const_tree t = new_; t; t = TREE_CHAIN (t))
3728 {
3729 tree str = TREE_VALUE (t);
3730 for (const_tree in = old; in; in = TREE_CHAIN (in))
3731 {
3732 tree ostr = TREE_VALUE (in);
3733 if (cp_tree_equal (str, ostr))
3734 goto found;
3735 }
3736 error ("redeclaration of %qD adds abi tag %E", decl, str);
3737 err = true;
3738 found:;
3739 }
3740 if (err)
3741 {
3742 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
3743 return false;
3744 }
3745 return true;
3746 }
3747
3748 /* The abi_tag attribute with the name NAME was given ARGS. If they are
3749 ill-formed, give an error and return false; otherwise, return true. */
3750
3751 bool
3752 check_abi_tag_args (tree args, tree name)
3753 {
3754 if (!args)
3755 {
3756 error ("the %qE attribute requires arguments", name);
3757 return false;
3758 }
3759 for (tree arg = args; arg; arg = TREE_CHAIN (arg))
3760 {
3761 tree elt = TREE_VALUE (arg);
3762 if (TREE_CODE (elt) != STRING_CST
3763 || (!same_type_ignoring_top_level_qualifiers_p
3764 (strip_array_types (TREE_TYPE (elt)),
3765 char_type_node)))
3766 {
3767 error ("arguments to the %qE attribute must be narrow string "
3768 "literals", name);
3769 return false;
3770 }
3771 const char *begin = TREE_STRING_POINTER (elt);
3772 const char *end = begin + TREE_STRING_LENGTH (elt);
3773 for (const char *p = begin; p != end; ++p)
3774 {
3775 char c = *p;
3776 if (p == begin)
3777 {
3778 if (!ISALPHA (c) && c != '_')
3779 {
3780 error ("arguments to the %qE attribute must contain valid "
3781 "identifiers", name);
3782 inform (input_location, "%<%c%> is not a valid first "
3783 "character for an identifier", c);
3784 return false;
3785 }
3786 }
3787 else if (p == end - 1)
3788 gcc_assert (c == 0);
3789 else
3790 {
3791 if (!ISALNUM (c) && c != '_')
3792 {
3793 error ("arguments to the %qE attribute must contain valid "
3794 "identifiers", name);
3795 inform (input_location, "%<%c%> is not a valid character "
3796 "in an identifier", c);
3797 return false;
3798 }
3799 }
3800 }
3801 }
3802 return true;
3803 }
3804
3805 /* Handle an "abi_tag" attribute; arguments as in
3806 struct attribute_spec.handler. */
3807
3808 static tree
3809 handle_abi_tag_attribute (tree* node, tree name, tree args,
3810 int flags, bool* no_add_attrs)
3811 {
3812 if (!check_abi_tag_args (args, name))
3813 goto fail;
3814
3815 if (TYPE_P (*node))
3816 {
3817 if (!OVERLOAD_TYPE_P (*node))
3818 {
3819 error ("%qE attribute applied to non-class, non-enum type %qT",
3820 name, *node);
3821 goto fail;
3822 }
3823 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
3824 {
3825 error ("%qE attribute applied to %qT after its definition",
3826 name, *node);
3827 goto fail;
3828 }
3829 else if (CLASS_TYPE_P (*node)
3830 && CLASSTYPE_TEMPLATE_INSTANTIATION (*node))
3831 {
3832 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
3833 "template instantiation %qT", name, *node);
3834 goto fail;
3835 }
3836 else if (CLASS_TYPE_P (*node)
3837 && CLASSTYPE_TEMPLATE_SPECIALIZATION (*node))
3838 {
3839 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
3840 "template specialization %qT", name, *node);
3841 goto fail;
3842 }
3843
3844 tree attributes = TYPE_ATTRIBUTES (*node);
3845 tree decl = TYPE_NAME (*node);
3846
3847 /* Make sure all declarations have the same abi tags. */
3848 if (DECL_SOURCE_LOCATION (decl) != input_location)
3849 {
3850 if (!check_abi_tag_redeclaration (decl,
3851 lookup_attribute ("abi_tag",
3852 attributes),
3853 args))
3854 goto fail;
3855 }
3856 }
3857 else
3858 {
3859 if (!VAR_OR_FUNCTION_DECL_P (*node))
3860 {
3861 error ("%qE attribute applied to non-function, non-variable %qD",
3862 name, *node);
3863 goto fail;
3864 }
3865 else if (DECL_LANGUAGE (*node) == lang_c)
3866 {
3867 error ("%qE attribute applied to extern \"C\" declaration %qD",
3868 name, *node);
3869 goto fail;
3870 }
3871 }
3872
3873 return NULL_TREE;
3874
3875 fail:
3876 *no_add_attrs = true;
3877 return NULL_TREE;
3878 }
3879
3880 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
3881 thing pointed to by the constant. */
3882
3883 tree
3884 make_ptrmem_cst (tree type, tree member)
3885 {
3886 tree ptrmem_cst = make_node (PTRMEM_CST);
3887 TREE_TYPE (ptrmem_cst) = type;
3888 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
3889 return ptrmem_cst;
3890 }
3891
3892 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
3893 return an existing type if an appropriate type already exists. */
3894
3895 tree
3896 cp_build_type_attribute_variant (tree type, tree attributes)
3897 {
3898 tree new_type;
3899
3900 new_type = build_type_attribute_variant (type, attributes);
3901 if (TREE_CODE (new_type) == FUNCTION_TYPE
3902 || TREE_CODE (new_type) == METHOD_TYPE)
3903 {
3904 new_type = build_exception_variant (new_type,
3905 TYPE_RAISES_EXCEPTIONS (type));
3906 new_type = build_ref_qualified_type (new_type,
3907 type_memfn_rqual (type));
3908 }
3909
3910 /* Making a new main variant of a class type is broken. */
3911 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
3912
3913 return new_type;
3914 }
3915
3916 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
3917 Called only after doing all language independent checks. Only
3918 to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already
3919 compared in type_hash_eq. */
3920
3921 bool
3922 cxx_type_hash_eq (const_tree typea, const_tree typeb)
3923 {
3924 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
3925 || TREE_CODE (typea) == METHOD_TYPE);
3926
3927 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
3928 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
3929 }
3930
3931 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
3932 traversal. Called from walk_tree. */
3933
3934 tree
3935 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
3936 void *data, hash_set<tree> *pset)
3937 {
3938 enum tree_code code = TREE_CODE (*tp);
3939 tree result;
3940
3941 #define WALK_SUBTREE(NODE) \
3942 do \
3943 { \
3944 result = cp_walk_tree (&(NODE), func, data, pset); \
3945 if (result) goto out; \
3946 } \
3947 while (0)
3948
3949 /* Not one of the easy cases. We must explicitly go through the
3950 children. */
3951 result = NULL_TREE;
3952 switch (code)
3953 {
3954 case DEFAULT_ARG:
3955 case TEMPLATE_TEMPLATE_PARM:
3956 case BOUND_TEMPLATE_TEMPLATE_PARM:
3957 case UNBOUND_CLASS_TEMPLATE:
3958 case TEMPLATE_PARM_INDEX:
3959 case TEMPLATE_TYPE_PARM:
3960 case TYPENAME_TYPE:
3961 case TYPEOF_TYPE:
3962 case UNDERLYING_TYPE:
3963 /* None of these have subtrees other than those already walked
3964 above. */
3965 *walk_subtrees_p = 0;
3966 break;
3967
3968 case BASELINK:
3969 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
3970 *walk_subtrees_p = 0;
3971 break;
3972
3973 case PTRMEM_CST:
3974 WALK_SUBTREE (TREE_TYPE (*tp));
3975 *walk_subtrees_p = 0;
3976 break;
3977
3978 case TREE_LIST:
3979 WALK_SUBTREE (TREE_PURPOSE (*tp));
3980 break;
3981
3982 case OVERLOAD:
3983 WALK_SUBTREE (OVL_FUNCTION (*tp));
3984 WALK_SUBTREE (OVL_CHAIN (*tp));
3985 *walk_subtrees_p = 0;
3986 break;
3987
3988 case USING_DECL:
3989 WALK_SUBTREE (DECL_NAME (*tp));
3990 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
3991 WALK_SUBTREE (USING_DECL_DECLS (*tp));
3992 *walk_subtrees_p = 0;
3993 break;
3994
3995 case RECORD_TYPE:
3996 if (TYPE_PTRMEMFUNC_P (*tp))
3997 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE_RAW (*tp));
3998 break;
3999
4000 case TYPE_ARGUMENT_PACK:
4001 case NONTYPE_ARGUMENT_PACK:
4002 {
4003 tree args = ARGUMENT_PACK_ARGS (*tp);
4004 int i, len = TREE_VEC_LENGTH (args);
4005 for (i = 0; i < len; i++)
4006 WALK_SUBTREE (TREE_VEC_ELT (args, i));
4007 }
4008 break;
4009
4010 case TYPE_PACK_EXPANSION:
4011 WALK_SUBTREE (TREE_TYPE (*tp));
4012 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4013 *walk_subtrees_p = 0;
4014 break;
4015
4016 case EXPR_PACK_EXPANSION:
4017 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
4018 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4019 *walk_subtrees_p = 0;
4020 break;
4021
4022 case CAST_EXPR:
4023 case REINTERPRET_CAST_EXPR:
4024 case STATIC_CAST_EXPR:
4025 case CONST_CAST_EXPR:
4026 case DYNAMIC_CAST_EXPR:
4027 case IMPLICIT_CONV_EXPR:
4028 if (TREE_TYPE (*tp))
4029 WALK_SUBTREE (TREE_TYPE (*tp));
4030
4031 {
4032 int i;
4033 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
4034 WALK_SUBTREE (TREE_OPERAND (*tp, i));
4035 }
4036 *walk_subtrees_p = 0;
4037 break;
4038
4039 case TRAIT_EXPR:
4040 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
4041 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
4042 *walk_subtrees_p = 0;
4043 break;
4044
4045 case DECLTYPE_TYPE:
4046 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
4047 *walk_subtrees_p = 0;
4048 break;
4049
4050 case REQUIRES_EXPR:
4051 // Only recurse through the nested expression. Do not
4052 // walk the parameter list. Doing so causes false
4053 // positives in the pack expansion checker since the
4054 // requires parameters are introduced as pack expansions.
4055 WALK_SUBTREE (TREE_OPERAND (*tp, 1));
4056 *walk_subtrees_p = 0;
4057 break;
4058
4059 default:
4060 return NULL_TREE;
4061 }
4062
4063 /* We didn't find what we were looking for. */
4064 out:
4065 return result;
4066
4067 #undef WALK_SUBTREE
4068 }
4069
4070 /* Like save_expr, but for C++. */
4071
4072 tree
4073 cp_save_expr (tree expr)
4074 {
4075 /* There is no reason to create a SAVE_EXPR within a template; if
4076 needed, we can create the SAVE_EXPR when instantiating the
4077 template. Furthermore, the middle-end cannot handle C++-specific
4078 tree codes. */
4079 if (processing_template_decl)
4080 return expr;
4081 return save_expr (expr);
4082 }
4083
4084 /* Initialize tree.c. */
4085
4086 void
4087 init_tree (void)
4088 {
4089 list_hash_table = hash_table<list_hasher>::create_ggc (61);
4090 register_scoped_attributes (std_attribute_table, NULL);
4091 }
4092
4093 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
4094 is. Note that sfk_none is zero, so this function can be used as a
4095 predicate to test whether or not DECL is a special function. */
4096
4097 special_function_kind
4098 special_function_p (const_tree decl)
4099 {
4100 /* Rather than doing all this stuff with magic names, we should
4101 probably have a field of type `special_function_kind' in
4102 DECL_LANG_SPECIFIC. */
4103 if (DECL_INHERITED_CTOR_BASE (decl))
4104 return sfk_inheriting_constructor;
4105 if (DECL_COPY_CONSTRUCTOR_P (decl))
4106 return sfk_copy_constructor;
4107 if (DECL_MOVE_CONSTRUCTOR_P (decl))
4108 return sfk_move_constructor;
4109 if (DECL_CONSTRUCTOR_P (decl))
4110 return sfk_constructor;
4111 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
4112 {
4113 if (copy_fn_p (decl))
4114 return sfk_copy_assignment;
4115 if (move_fn_p (decl))
4116 return sfk_move_assignment;
4117 }
4118 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
4119 return sfk_destructor;
4120 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
4121 return sfk_complete_destructor;
4122 if (DECL_BASE_DESTRUCTOR_P (decl))
4123 return sfk_base_destructor;
4124 if (DECL_DELETING_DESTRUCTOR_P (decl))
4125 return sfk_deleting_destructor;
4126 if (DECL_CONV_FN_P (decl))
4127 return sfk_conversion;
4128
4129 return sfk_none;
4130 }
4131
4132 /* Returns nonzero if TYPE is a character type, including wchar_t. */
4133
4134 int
4135 char_type_p (tree type)
4136 {
4137 return (same_type_p (type, char_type_node)
4138 || same_type_p (type, unsigned_char_type_node)
4139 || same_type_p (type, signed_char_type_node)
4140 || same_type_p (type, char16_type_node)
4141 || same_type_p (type, char32_type_node)
4142 || same_type_p (type, wchar_type_node));
4143 }
4144
4145 /* Returns the kind of linkage associated with the indicated DECL. Th
4146 value returned is as specified by the language standard; it is
4147 independent of implementation details regarding template
4148 instantiation, etc. For example, it is possible that a declaration
4149 to which this function assigns external linkage would not show up
4150 as a global symbol when you run `nm' on the resulting object file. */
4151
4152 linkage_kind
4153 decl_linkage (tree decl)
4154 {
4155 /* This function doesn't attempt to calculate the linkage from first
4156 principles as given in [basic.link]. Instead, it makes use of
4157 the fact that we have already set TREE_PUBLIC appropriately, and
4158 then handles a few special cases. Ideally, we would calculate
4159 linkage first, and then transform that into a concrete
4160 implementation. */
4161
4162 /* Things that don't have names have no linkage. */
4163 if (!DECL_NAME (decl))
4164 return lk_none;
4165
4166 /* Fields have no linkage. */
4167 if (TREE_CODE (decl) == FIELD_DECL)
4168 return lk_none;
4169
4170 /* Things that are TREE_PUBLIC have external linkage. */
4171 if (TREE_PUBLIC (decl))
4172 return lk_external;
4173
4174 if (TREE_CODE (decl) == NAMESPACE_DECL)
4175 return lk_external;
4176
4177 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
4178 type. */
4179 if (TREE_CODE (decl) == CONST_DECL)
4180 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
4181
4182 /* Things in local scope do not have linkage, if they don't have
4183 TREE_PUBLIC set. */
4184 if (decl_function_context (decl))
4185 return lk_none;
4186
4187 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
4188 are considered to have external linkage for language purposes, as do
4189 template instantiations on targets without weak symbols. DECLs really
4190 meant to have internal linkage have DECL_THIS_STATIC set. */
4191 if (TREE_CODE (decl) == TYPE_DECL)
4192 return lk_external;
4193 if (VAR_OR_FUNCTION_DECL_P (decl))
4194 {
4195 if (!DECL_THIS_STATIC (decl))
4196 return lk_external;
4197
4198 /* Static data members and static member functions from classes
4199 in anonymous namespace also don't have TREE_PUBLIC set. */
4200 if (DECL_CLASS_CONTEXT (decl))
4201 return lk_external;
4202 }
4203
4204 /* Everything else has internal linkage. */
4205 return lk_internal;
4206 }
4207
4208 /* Returns the storage duration of the object or reference associated with
4209 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
4210
4211 duration_kind
4212 decl_storage_duration (tree decl)
4213 {
4214 if (TREE_CODE (decl) == PARM_DECL)
4215 return dk_auto;
4216 if (TREE_CODE (decl) == FUNCTION_DECL)
4217 return dk_static;
4218 gcc_assert (VAR_P (decl));
4219 if (!TREE_STATIC (decl)
4220 && !DECL_EXTERNAL (decl))
4221 return dk_auto;
4222 if (CP_DECL_THREAD_LOCAL_P (decl))
4223 return dk_thread;
4224 return dk_static;
4225 }
4226 \f
4227 /* EXP is an expression that we want to pre-evaluate. Returns (in
4228 *INITP) an expression that will perform the pre-evaluation. The
4229 value returned by this function is a side-effect free expression
4230 equivalent to the pre-evaluated expression. Callers must ensure
4231 that *INITP is evaluated before EXP. */
4232
4233 tree
4234 stabilize_expr (tree exp, tree* initp)
4235 {
4236 tree init_expr;
4237
4238 if (!TREE_SIDE_EFFECTS (exp))
4239 init_expr = NULL_TREE;
4240 else if (VOID_TYPE_P (TREE_TYPE (exp)))
4241 {
4242 init_expr = exp;
4243 exp = void_node;
4244 }
4245 /* There are no expressions with REFERENCE_TYPE, but there can be call
4246 arguments with such a type; just treat it as a pointer. */
4247 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
4248 || SCALAR_TYPE_P (TREE_TYPE (exp))
4249 || !lvalue_or_rvalue_with_address_p (exp))
4250 {
4251 init_expr = get_target_expr (exp);
4252 exp = TARGET_EXPR_SLOT (init_expr);
4253 if (CLASS_TYPE_P (TREE_TYPE (exp)))
4254 exp = move (exp);
4255 else
4256 exp = rvalue (exp);
4257 }
4258 else
4259 {
4260 bool xval = !real_lvalue_p (exp);
4261 exp = cp_build_addr_expr (exp, tf_warning_or_error);
4262 init_expr = get_target_expr (exp);
4263 exp = TARGET_EXPR_SLOT (init_expr);
4264 exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
4265 if (xval)
4266 exp = move (exp);
4267 }
4268 *initp = init_expr;
4269
4270 gcc_assert (!TREE_SIDE_EFFECTS (exp));
4271 return exp;
4272 }
4273
4274 /* Add NEW_EXPR, an expression whose value we don't care about, after the
4275 similar expression ORIG. */
4276
4277 tree
4278 add_stmt_to_compound (tree orig, tree new_expr)
4279 {
4280 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
4281 return orig;
4282 if (!orig || !TREE_SIDE_EFFECTS (orig))
4283 return new_expr;
4284 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
4285 }
4286
4287 /* Like stabilize_expr, but for a call whose arguments we want to
4288 pre-evaluate. CALL is modified in place to use the pre-evaluated
4289 arguments, while, upon return, *INITP contains an expression to
4290 compute the arguments. */
4291
4292 void
4293 stabilize_call (tree call, tree *initp)
4294 {
4295 tree inits = NULL_TREE;
4296 int i;
4297 int nargs = call_expr_nargs (call);
4298
4299 if (call == error_mark_node || processing_template_decl)
4300 {
4301 *initp = NULL_TREE;
4302 return;
4303 }
4304
4305 gcc_assert (TREE_CODE (call) == CALL_EXPR);
4306
4307 for (i = 0; i < nargs; i++)
4308 {
4309 tree init;
4310 CALL_EXPR_ARG (call, i) =
4311 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
4312 inits = add_stmt_to_compound (inits, init);
4313 }
4314
4315 *initp = inits;
4316 }
4317
4318 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
4319 to pre-evaluate. CALL is modified in place to use the pre-evaluated
4320 arguments, while, upon return, *INITP contains an expression to
4321 compute the arguments. */
4322
4323 static void
4324 stabilize_aggr_init (tree call, tree *initp)
4325 {
4326 tree inits = NULL_TREE;
4327 int i;
4328 int nargs = aggr_init_expr_nargs (call);
4329
4330 if (call == error_mark_node)
4331 return;
4332
4333 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
4334
4335 for (i = 0; i < nargs; i++)
4336 {
4337 tree init;
4338 AGGR_INIT_EXPR_ARG (call, i) =
4339 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
4340 inits = add_stmt_to_compound (inits, init);
4341 }
4342
4343 *initp = inits;
4344 }
4345
4346 /* Like stabilize_expr, but for an initialization.
4347
4348 If the initialization is for an object of class type, this function
4349 takes care not to introduce additional temporaries.
4350
4351 Returns TRUE iff the expression was successfully pre-evaluated,
4352 i.e., if INIT is now side-effect free, except for, possibly, a
4353 single call to a constructor. */
4354
4355 bool
4356 stabilize_init (tree init, tree *initp)
4357 {
4358 tree t = init;
4359
4360 *initp = NULL_TREE;
4361
4362 if (t == error_mark_node || processing_template_decl)
4363 return true;
4364
4365 if (TREE_CODE (t) == INIT_EXPR)
4366 t = TREE_OPERAND (t, 1);
4367 if (TREE_CODE (t) == TARGET_EXPR)
4368 t = TARGET_EXPR_INITIAL (t);
4369
4370 /* If the RHS can be stabilized without breaking copy elision, stabilize
4371 it. We specifically don't stabilize class prvalues here because that
4372 would mean an extra copy, but they might be stabilized below. */
4373 if (TREE_CODE (init) == INIT_EXPR
4374 && TREE_CODE (t) != CONSTRUCTOR
4375 && TREE_CODE (t) != AGGR_INIT_EXPR
4376 && (SCALAR_TYPE_P (TREE_TYPE (t))
4377 || lvalue_or_rvalue_with_address_p (t)))
4378 {
4379 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
4380 return true;
4381 }
4382
4383 if (TREE_CODE (t) == COMPOUND_EXPR
4384 && TREE_CODE (init) == INIT_EXPR)
4385 {
4386 tree last = expr_last (t);
4387 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
4388 if (!TREE_SIDE_EFFECTS (last))
4389 {
4390 *initp = t;
4391 TREE_OPERAND (init, 1) = last;
4392 return true;
4393 }
4394 }
4395
4396 if (TREE_CODE (t) == CONSTRUCTOR)
4397 {
4398 /* Aggregate initialization: stabilize each of the field
4399 initializers. */
4400 unsigned i;
4401 constructor_elt *ce;
4402 bool good = true;
4403 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
4404 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
4405 {
4406 tree type = TREE_TYPE (ce->value);
4407 tree subinit;
4408 if (TREE_CODE (type) == REFERENCE_TYPE
4409 || SCALAR_TYPE_P (type))
4410 ce->value = stabilize_expr (ce->value, &subinit);
4411 else if (!stabilize_init (ce->value, &subinit))
4412 good = false;
4413 *initp = add_stmt_to_compound (*initp, subinit);
4414 }
4415 return good;
4416 }
4417
4418 if (TREE_CODE (t) == CALL_EXPR)
4419 {
4420 stabilize_call (t, initp);
4421 return true;
4422 }
4423
4424 if (TREE_CODE (t) == AGGR_INIT_EXPR)
4425 {
4426 stabilize_aggr_init (t, initp);
4427 return true;
4428 }
4429
4430 /* The initialization is being performed via a bitwise copy -- and
4431 the item copied may have side effects. */
4432 return !TREE_SIDE_EFFECTS (init);
4433 }
4434
4435 /* Returns true if a cast to TYPE may appear in an integral constant
4436 expression. */
4437
4438 bool
4439 cast_valid_in_integral_constant_expression_p (tree type)
4440 {
4441 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
4442 || cxx_dialect >= cxx11
4443 || dependent_type_p (type)
4444 || type == error_mark_node);
4445 }
4446
4447 /* Return true if we need to fix linkage information of DECL. */
4448
4449 static bool
4450 cp_fix_function_decl_p (tree decl)
4451 {
4452 /* Skip if DECL is not externally visible. */
4453 if (!TREE_PUBLIC (decl))
4454 return false;
4455
4456 /* We need to fix DECL if it a appears to be exported but with no
4457 function body. Thunks do not have CFGs and we may need to
4458 handle them specially later. */
4459 if (!gimple_has_body_p (decl)
4460 && !DECL_THUNK_P (decl)
4461 && !DECL_EXTERNAL (decl))
4462 {
4463 struct cgraph_node *node = cgraph_node::get (decl);
4464
4465 /* Don't fix same_body aliases. Although they don't have their own
4466 CFG, they share it with what they alias to. */
4467 if (!node || !node->alias
4468 || !vec_safe_length (node->ref_list.references))
4469 return true;
4470 }
4471
4472 return false;
4473 }
4474
4475 /* Clean the C++ specific parts of the tree T. */
4476
4477 void
4478 cp_free_lang_data (tree t)
4479 {
4480 if (TREE_CODE (t) == METHOD_TYPE
4481 || TREE_CODE (t) == FUNCTION_TYPE)
4482 {
4483 /* Default args are not interesting anymore. */
4484 tree argtypes = TYPE_ARG_TYPES (t);
4485 while (argtypes)
4486 {
4487 TREE_PURPOSE (argtypes) = 0;
4488 argtypes = TREE_CHAIN (argtypes);
4489 }
4490 }
4491 else if (TREE_CODE (t) == FUNCTION_DECL
4492 && cp_fix_function_decl_p (t))
4493 {
4494 /* If T is used in this translation unit at all, the definition
4495 must exist somewhere else since we have decided to not emit it
4496 in this TU. So make it an external reference. */
4497 DECL_EXTERNAL (t) = 1;
4498 TREE_STATIC (t) = 0;
4499 }
4500 if (TREE_CODE (t) == NAMESPACE_DECL)
4501 {
4502 /* The list of users of a namespace isn't useful for the middle-end
4503 or debug generators. */
4504 DECL_NAMESPACE_USERS (t) = NULL_TREE;
4505 /* Neither do we need the leftover chaining of namespaces
4506 from the binding level. */
4507 DECL_CHAIN (t) = NULL_TREE;
4508 }
4509 }
4510
4511 /* Stub for c-common. Please keep in sync with c-decl.c.
4512 FIXME: If address space support is target specific, then this
4513 should be a C target hook. But currently this is not possible,
4514 because this function is called via REGISTER_TARGET_PRAGMAS. */
4515 void
4516 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
4517 {
4518 }
4519
4520 /* Return the number of operands in T that we care about for things like
4521 mangling. */
4522
4523 int
4524 cp_tree_operand_length (const_tree t)
4525 {
4526 enum tree_code code = TREE_CODE (t);
4527
4528 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
4529 return VL_EXP_OPERAND_LENGTH (t);
4530
4531 return cp_tree_code_length (code);
4532 }
4533
4534 /* Like cp_tree_operand_length, but takes a tree_code CODE. */
4535
4536 int
4537 cp_tree_code_length (enum tree_code code)
4538 {
4539 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4540
4541 switch (code)
4542 {
4543 case PREINCREMENT_EXPR:
4544 case PREDECREMENT_EXPR:
4545 case POSTINCREMENT_EXPR:
4546 case POSTDECREMENT_EXPR:
4547 return 1;
4548
4549 case ARRAY_REF:
4550 return 2;
4551
4552 case EXPR_PACK_EXPANSION:
4553 return 1;
4554
4555 default:
4556 return TREE_CODE_LENGTH (code);
4557 }
4558 }
4559
4560 /* Implement -Wzero_as_null_pointer_constant. Return true if the
4561 conditions for the warning hold, false otherwise. */
4562 bool
4563 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
4564 {
4565 if (c_inhibit_evaluation_warnings == 0
4566 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
4567 {
4568 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
4569 "zero as null pointer constant");
4570 return true;
4571 }
4572 return false;
4573 }
4574 \f
4575 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4576 /* Complain that some language-specific thing hanging off a tree
4577 node has been accessed improperly. */
4578
4579 void
4580 lang_check_failed (const char* file, int line, const char* function)
4581 {
4582 internal_error ("lang_* check: failed in %s, at %s:%d",
4583 function, trim_filename (file), line);
4584 }
4585 #endif /* ENABLE_TREE_CHECKING */
4586
4587 #include "gt-cp-tree.h"