C++ FE: Show both locations in string literal concatenation error
[gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "cp-tree.h"
26 #include "gimple-expr.h"
27 #include "cgraph.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tree-iterator.h"
31 #include "tree-inline.h"
32 #include "debug.h"
33 #include "convert.h"
34 #include "gimplify.h"
35 #include "attribs.h"
36
37 static tree bot_manip (tree *, int *, void *);
38 static tree bot_replace (tree *, int *, void *);
39 static hashval_t list_hash_pieces (tree, tree, tree);
40 static tree build_target_expr (tree, tree, tsubst_flags_t);
41 static tree count_trees_r (tree *, int *, void *);
42 static tree verify_stmt_tree_r (tree *, int *, void *);
43 static tree build_local_temp (tree);
44
45 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
46 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
47 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
48
49 /* If REF is an lvalue, returns the kind of lvalue that REF is.
50 Otherwise, returns clk_none. */
51
52 cp_lvalue_kind
53 lvalue_kind (const_tree ref)
54 {
55 cp_lvalue_kind op1_lvalue_kind = clk_none;
56 cp_lvalue_kind op2_lvalue_kind = clk_none;
57
58 /* Expressions of reference type are sometimes wrapped in
59 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
60 representation, not part of the language, so we have to look
61 through them. */
62 if (REFERENCE_REF_P (ref))
63 return lvalue_kind (TREE_OPERAND (ref, 0));
64
65 if (TREE_TYPE (ref)
66 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
67 {
68 /* unnamed rvalue references are rvalues */
69 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
70 && TREE_CODE (ref) != PARM_DECL
71 && !VAR_P (ref)
72 && TREE_CODE (ref) != COMPONENT_REF
73 /* Functions are always lvalues. */
74 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
75 return clk_rvalueref;
76
77 /* lvalue references and named rvalue references are lvalues. */
78 return clk_ordinary;
79 }
80
81 if (ref == current_class_ptr)
82 return clk_none;
83
84 switch (TREE_CODE (ref))
85 {
86 case SAVE_EXPR:
87 return clk_none;
88 /* preincrements and predecrements are valid lvals, provided
89 what they refer to are valid lvals. */
90 case PREINCREMENT_EXPR:
91 case PREDECREMENT_EXPR:
92 case TRY_CATCH_EXPR:
93 case WITH_CLEANUP_EXPR:
94 case REALPART_EXPR:
95 case IMAGPART_EXPR:
96 return lvalue_kind (TREE_OPERAND (ref, 0));
97
98 case MEMBER_REF:
99 case DOTSTAR_EXPR:
100 if (TREE_CODE (ref) == MEMBER_REF)
101 op1_lvalue_kind = clk_ordinary;
102 else
103 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
104 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (ref, 1))))
105 op1_lvalue_kind = clk_none;
106 return op1_lvalue_kind;
107
108 case COMPONENT_REF:
109 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
110 /* Look at the member designator. */
111 if (!op1_lvalue_kind)
112 ;
113 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
114 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
115 situations. If we're seeing a COMPONENT_REF, it's a non-static
116 member, so it isn't an lvalue. */
117 op1_lvalue_kind = clk_none;
118 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
119 /* This can be IDENTIFIER_NODE in a template. */;
120 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
121 {
122 /* Clear the ordinary bit. If this object was a class
123 rvalue we want to preserve that information. */
124 op1_lvalue_kind &= ~clk_ordinary;
125 /* The lvalue is for a bitfield. */
126 op1_lvalue_kind |= clk_bitfield;
127 }
128 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
129 op1_lvalue_kind |= clk_packed;
130
131 return op1_lvalue_kind;
132
133 case STRING_CST:
134 case COMPOUND_LITERAL_EXPR:
135 return clk_ordinary;
136
137 case CONST_DECL:
138 /* CONST_DECL without TREE_STATIC are enumeration values and
139 thus not lvalues. With TREE_STATIC they are used by ObjC++
140 in objc_build_string_object and need to be considered as
141 lvalues. */
142 if (! TREE_STATIC (ref))
143 return clk_none;
144 case VAR_DECL:
145 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
146 && DECL_LANG_SPECIFIC (ref)
147 && DECL_IN_AGGR_P (ref))
148 return clk_none;
149 case INDIRECT_REF:
150 case ARROW_EXPR:
151 case ARRAY_REF:
152 case ARRAY_NOTATION_REF:
153 case PARM_DECL:
154 case RESULT_DECL:
155 case PLACEHOLDER_EXPR:
156 return clk_ordinary;
157
158 /* A scope ref in a template, left as SCOPE_REF to support later
159 access checking. */
160 case SCOPE_REF:
161 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
162 {
163 tree op = TREE_OPERAND (ref, 1);
164 if (TREE_CODE (op) == FIELD_DECL)
165 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
166 else
167 return lvalue_kind (op);
168 }
169
170 case MAX_EXPR:
171 case MIN_EXPR:
172 /* Disallow <? and >? as lvalues if either argument side-effects. */
173 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
174 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
175 return clk_none;
176 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
177 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
178 break;
179
180 case COND_EXPR:
181 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
182 ? TREE_OPERAND (ref, 1)
183 : TREE_OPERAND (ref, 0));
184 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
185 break;
186
187 case MODOP_EXPR:
188 /* We expect to see unlowered MODOP_EXPRs only during
189 template processing. */
190 gcc_assert (processing_template_decl);
191 return clk_ordinary;
192
193 case MODIFY_EXPR:
194 case TYPEID_EXPR:
195 return clk_ordinary;
196
197 case COMPOUND_EXPR:
198 return lvalue_kind (TREE_OPERAND (ref, 1));
199
200 case TARGET_EXPR:
201 return clk_class;
202
203 case VA_ARG_EXPR:
204 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
205
206 case CALL_EXPR:
207 /* We can see calls outside of TARGET_EXPR in templates. */
208 if (CLASS_TYPE_P (TREE_TYPE (ref)))
209 return clk_class;
210 return clk_none;
211
212 case FUNCTION_DECL:
213 /* All functions (except non-static-member functions) are
214 lvalues. */
215 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
216 ? clk_none : clk_ordinary);
217
218 case BASELINK:
219 /* We now represent a reference to a single static member function
220 with a BASELINK. */
221 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
222 its argument unmodified and we assign it to a const_tree. */
223 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
224
225 case NON_DEPENDENT_EXPR:
226 return lvalue_kind (TREE_OPERAND (ref, 0));
227
228 default:
229 if (!TREE_TYPE (ref))
230 return clk_none;
231 if (CLASS_TYPE_P (TREE_TYPE (ref)))
232 return clk_class;
233 break;
234 }
235
236 /* If one operand is not an lvalue at all, then this expression is
237 not an lvalue. */
238 if (!op1_lvalue_kind || !op2_lvalue_kind)
239 return clk_none;
240
241 /* Otherwise, it's an lvalue, and it has all the odd properties
242 contributed by either operand. */
243 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
244 /* It's not an ordinary lvalue if it involves any other kind. */
245 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
246 op1_lvalue_kind &= ~clk_ordinary;
247 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
248 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
249 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
250 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
251 op1_lvalue_kind = clk_none;
252 return op1_lvalue_kind;
253 }
254
255 /* Returns the kind of lvalue that REF is, in the sense of
256 [basic.lval]. This function should really be named lvalue_p; it
257 computes the C++ definition of lvalue. */
258
259 cp_lvalue_kind
260 real_lvalue_p (const_tree ref)
261 {
262 cp_lvalue_kind kind = lvalue_kind (ref);
263 if (kind & (clk_rvalueref|clk_class))
264 return clk_none;
265 else
266 return kind;
267 }
268
269 /* This differs from real_lvalue_p in that class rvalues are considered
270 lvalues. */
271
272 bool
273 lvalue_p (const_tree ref)
274 {
275 return (lvalue_kind (ref) != clk_none);
276 }
277
278 /* This differs from real_lvalue_p in that rvalues formed by dereferencing
279 rvalue references are considered rvalues. */
280
281 bool
282 lvalue_or_rvalue_with_address_p (const_tree ref)
283 {
284 cp_lvalue_kind kind = lvalue_kind (ref);
285 if (kind & clk_class)
286 return false;
287 else
288 return (kind != clk_none);
289 }
290
291 /* Returns true if REF is an xvalue, false otherwise. */
292
293 bool
294 xvalue_p (const_tree ref)
295 {
296 return (lvalue_kind (ref) == clk_rvalueref);
297 }
298
299 /* C++-specific version of stabilize_reference. */
300
301 tree
302 cp_stabilize_reference (tree ref)
303 {
304 switch (TREE_CODE (ref))
305 {
306 /* We need to treat specially anything stabilize_reference doesn't
307 handle specifically. */
308 case VAR_DECL:
309 case PARM_DECL:
310 case RESULT_DECL:
311 CASE_CONVERT:
312 case FLOAT_EXPR:
313 case FIX_TRUNC_EXPR:
314 case INDIRECT_REF:
315 case COMPONENT_REF:
316 case BIT_FIELD_REF:
317 case ARRAY_REF:
318 case ARRAY_RANGE_REF:
319 case ERROR_MARK:
320 break;
321 default:
322 cp_lvalue_kind kind = lvalue_kind (ref);
323 if ((kind & ~clk_class) != clk_none)
324 {
325 tree type = unlowered_expr_type (ref);
326 bool rval = !!(kind & clk_rvalueref);
327 type = cp_build_reference_type (type, rval);
328 /* This inhibits warnings in, eg, cxx_mark_addressable
329 (c++/60955). */
330 warning_sentinel s (extra_warnings);
331 ref = build_static_cast (type, ref, tf_error);
332 }
333 }
334
335 return stabilize_reference (ref);
336 }
337
338 /* Test whether DECL is a builtin that may appear in a
339 constant-expression. */
340
341 bool
342 builtin_valid_in_constant_expr_p (const_tree decl)
343 {
344 if (!(TREE_CODE (decl) == FUNCTION_DECL
345 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL))
346 /* Not a built-in. */
347 return false;
348 switch (DECL_FUNCTION_CODE (decl))
349 {
350 /* These always have constant results like the corresponding
351 macros/symbol. */
352 case BUILT_IN_FILE:
353 case BUILT_IN_FUNCTION:
354 case BUILT_IN_LINE:
355
356 /* The following built-ins are valid in constant expressions
357 when their arguments are. */
358 case BUILT_IN_ADD_OVERFLOW_P:
359 case BUILT_IN_SUB_OVERFLOW_P:
360 case BUILT_IN_MUL_OVERFLOW_P:
361
362 /* These have constant results even if their operands are
363 non-constant. */
364 case BUILT_IN_CONSTANT_P:
365 case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE:
366 return true;
367 default:
368 return false;
369 }
370 }
371
372 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
373
374 static tree
375 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
376 {
377 tree t;
378 tree type = TREE_TYPE (decl);
379
380 gcc_checking_assert (VOID_TYPE_P (TREE_TYPE (value))
381 || TREE_TYPE (decl) == TREE_TYPE (value)
382 /* On ARM ctors return 'this'. */
383 || (TYPE_PTR_P (TREE_TYPE (value))
384 && TREE_CODE (value) == CALL_EXPR)
385 || useless_type_conversion_p (TREE_TYPE (decl),
386 TREE_TYPE (value)));
387
388 t = cxx_maybe_build_cleanup (decl, complain);
389 if (t == error_mark_node)
390 return error_mark_node;
391 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
392 if (EXPR_HAS_LOCATION (value))
393 SET_EXPR_LOCATION (t, EXPR_LOCATION (value));
394 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
395 ignore the TARGET_EXPR. If there really turn out to be no
396 side-effects, then the optimizer should be able to get rid of
397 whatever code is generated anyhow. */
398 TREE_SIDE_EFFECTS (t) = 1;
399
400 return t;
401 }
402
403 /* Return an undeclared local temporary of type TYPE for use in building a
404 TARGET_EXPR. */
405
406 static tree
407 build_local_temp (tree type)
408 {
409 tree slot = build_decl (input_location,
410 VAR_DECL, NULL_TREE, type);
411 DECL_ARTIFICIAL (slot) = 1;
412 DECL_IGNORED_P (slot) = 1;
413 DECL_CONTEXT (slot) = current_function_decl;
414 layout_decl (slot, 0);
415 return slot;
416 }
417
418 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
419
420 static void
421 process_aggr_init_operands (tree t)
422 {
423 bool side_effects;
424
425 side_effects = TREE_SIDE_EFFECTS (t);
426 if (!side_effects)
427 {
428 int i, n;
429 n = TREE_OPERAND_LENGTH (t);
430 for (i = 1; i < n; i++)
431 {
432 tree op = TREE_OPERAND (t, i);
433 if (op && TREE_SIDE_EFFECTS (op))
434 {
435 side_effects = 1;
436 break;
437 }
438 }
439 }
440 TREE_SIDE_EFFECTS (t) = side_effects;
441 }
442
443 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
444 FN, and SLOT. NARGS is the number of call arguments which are specified
445 as a tree array ARGS. */
446
447 static tree
448 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
449 tree *args)
450 {
451 tree t;
452 int i;
453
454 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
455 TREE_TYPE (t) = return_type;
456 AGGR_INIT_EXPR_FN (t) = fn;
457 AGGR_INIT_EXPR_SLOT (t) = slot;
458 for (i = 0; i < nargs; i++)
459 AGGR_INIT_EXPR_ARG (t, i) = args[i];
460 process_aggr_init_operands (t);
461 return t;
462 }
463
464 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
465 target. TYPE is the type to be initialized.
466
467 Build an AGGR_INIT_EXPR to represent the initialization. This function
468 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
469 to initialize another object, whereas a TARGET_EXPR can either
470 initialize another object or create its own temporary object, and as a
471 result building up a TARGET_EXPR requires that the type's destructor be
472 callable. */
473
474 tree
475 build_aggr_init_expr (tree type, tree init)
476 {
477 tree fn;
478 tree slot;
479 tree rval;
480 int is_ctor;
481
482 /* Don't build AGGR_INIT_EXPR in a template. */
483 if (processing_template_decl)
484 return init;
485
486 fn = cp_get_callee (init);
487 if (fn == NULL_TREE)
488 return convert (type, init);
489
490 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
491 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
492 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
493
494 /* We split the CALL_EXPR into its function and its arguments here.
495 Then, in expand_expr, we put them back together. The reason for
496 this is that this expression might be a default argument
497 expression. In that case, we need a new temporary every time the
498 expression is used. That's what break_out_target_exprs does; it
499 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
500 temporary slot. Then, expand_expr builds up a call-expression
501 using the new slot. */
502
503 /* If we don't need to use a constructor to create an object of this
504 type, don't mess with AGGR_INIT_EXPR. */
505 if (is_ctor || TREE_ADDRESSABLE (type))
506 {
507 slot = build_local_temp (type);
508
509 if (TREE_CODE (init) == CALL_EXPR)
510 {
511 rval = build_aggr_init_array (void_type_node, fn, slot,
512 call_expr_nargs (init),
513 CALL_EXPR_ARGP (init));
514 AGGR_INIT_FROM_THUNK_P (rval)
515 = CALL_FROM_THUNK_P (init);
516 }
517 else
518 {
519 rval = build_aggr_init_array (void_type_node, fn, slot,
520 aggr_init_expr_nargs (init),
521 AGGR_INIT_EXPR_ARGP (init));
522 AGGR_INIT_FROM_THUNK_P (rval)
523 = AGGR_INIT_FROM_THUNK_P (init);
524 }
525 TREE_SIDE_EFFECTS (rval) = 1;
526 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
527 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
528 CALL_EXPR_OPERATOR_SYNTAX (rval) = CALL_EXPR_OPERATOR_SYNTAX (init);
529 CALL_EXPR_ORDERED_ARGS (rval) = CALL_EXPR_ORDERED_ARGS (init);
530 CALL_EXPR_REVERSE_ARGS (rval) = CALL_EXPR_REVERSE_ARGS (init);
531 }
532 else
533 rval = init;
534
535 return rval;
536 }
537
538 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
539 target. TYPE is the type that this initialization should appear to
540 have.
541
542 Build an encapsulation of the initialization to perform
543 and return it so that it can be processed by language-independent
544 and language-specific expression expanders. */
545
546 tree
547 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
548 {
549 tree rval = build_aggr_init_expr (type, init);
550 tree slot;
551
552 if (!complete_type_or_maybe_complain (type, init, complain))
553 return error_mark_node;
554
555 /* Make sure that we're not trying to create an instance of an
556 abstract class. */
557 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
558 return error_mark_node;
559
560 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
561 slot = AGGR_INIT_EXPR_SLOT (rval);
562 else if (TREE_CODE (rval) == CALL_EXPR
563 || TREE_CODE (rval) == CONSTRUCTOR)
564 slot = build_local_temp (type);
565 else
566 return rval;
567
568 rval = build_target_expr (slot, rval, complain);
569
570 if (rval != error_mark_node)
571 TARGET_EXPR_IMPLICIT_P (rval) = 1;
572
573 return rval;
574 }
575
576 /* Subroutine of build_vec_init_expr: Build up a single element
577 intialization as a proxy for the full array initialization to get things
578 marked as used and any appropriate diagnostics.
579
580 Since we're deferring building the actual constructor calls until
581 gimplification time, we need to build one now and throw it away so
582 that the relevant constructor gets mark_used before cgraph decides
583 what functions are needed. Here we assume that init is either
584 NULL_TREE, void_type_node (indicating value-initialization), or
585 another array to copy. */
586
587 static tree
588 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
589 {
590 tree inner_type = strip_array_types (type);
591 vec<tree, va_gc> *argvec;
592
593 if (integer_zerop (array_type_nelts_total (type))
594 || !CLASS_TYPE_P (inner_type))
595 /* No interesting initialization to do. */
596 return integer_zero_node;
597 else if (init == void_type_node)
598 return build_value_init (inner_type, complain);
599
600 gcc_assert (init == NULL_TREE
601 || (same_type_ignoring_top_level_qualifiers_p
602 (type, TREE_TYPE (init))));
603
604 argvec = make_tree_vector ();
605 if (init)
606 {
607 tree init_type = strip_array_types (TREE_TYPE (init));
608 tree dummy = build_dummy_object (init_type);
609 if (!real_lvalue_p (init))
610 dummy = move (dummy);
611 argvec->quick_push (dummy);
612 }
613 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
614 &argvec, inner_type, LOOKUP_NORMAL,
615 complain);
616 release_tree_vector (argvec);
617
618 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
619 we don't want one here because we aren't creating a temporary. */
620 if (TREE_CODE (init) == TARGET_EXPR)
621 init = TARGET_EXPR_INITIAL (init);
622
623 return init;
624 }
625
626 /* Return a TARGET_EXPR which expresses the initialization of an array to
627 be named later, either default-initialization or copy-initialization
628 from another array of the same type. */
629
630 tree
631 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
632 {
633 tree slot;
634 bool value_init = false;
635 tree elt_init = build_vec_init_elt (type, init, complain);
636
637 if (init == void_type_node)
638 {
639 value_init = true;
640 init = NULL_TREE;
641 }
642
643 slot = build_local_temp (type);
644 init = build2 (VEC_INIT_EXPR, type, slot, init);
645 TREE_SIDE_EFFECTS (init) = true;
646 SET_EXPR_LOCATION (init, input_location);
647
648 if (cxx_dialect >= cxx11
649 && potential_constant_expression (elt_init))
650 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
651 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
652
653 return init;
654 }
655
656 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
657 that requires a constant expression. */
658
659 void
660 diagnose_non_constexpr_vec_init (tree expr)
661 {
662 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
663 tree init, elt_init;
664 if (VEC_INIT_EXPR_VALUE_INIT (expr))
665 init = void_type_node;
666 else
667 init = VEC_INIT_EXPR_INIT (expr);
668
669 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
670 require_potential_constant_expression (elt_init);
671 }
672
673 tree
674 build_array_copy (tree init)
675 {
676 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
677 }
678
679 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
680 indicated TYPE. */
681
682 tree
683 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
684 {
685 gcc_assert (!VOID_TYPE_P (type));
686
687 if (TREE_CODE (init) == TARGET_EXPR
688 || init == error_mark_node)
689 return init;
690 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
691 && !VOID_TYPE_P (TREE_TYPE (init))
692 && TREE_CODE (init) != COND_EXPR
693 && TREE_CODE (init) != CONSTRUCTOR
694 && TREE_CODE (init) != VA_ARG_EXPR)
695 /* We need to build up a copy constructor call. A void initializer
696 means we're being called from bot_manip. COND_EXPR is a special
697 case because we already have copies on the arms and we don't want
698 another one here. A CONSTRUCTOR is aggregate initialization, which
699 is handled separately. A VA_ARG_EXPR is magic creation of an
700 aggregate; there's no additional work to be done. */
701 return force_rvalue (init, complain);
702
703 return force_target_expr (type, init, complain);
704 }
705
706 /* Like the above function, but without the checking. This function should
707 only be used by code which is deliberately trying to subvert the type
708 system, such as call_builtin_trap. Or build_over_call, to avoid
709 infinite recursion. */
710
711 tree
712 force_target_expr (tree type, tree init, tsubst_flags_t complain)
713 {
714 tree slot;
715
716 gcc_assert (!VOID_TYPE_P (type));
717
718 slot = build_local_temp (type);
719 return build_target_expr (slot, init, complain);
720 }
721
722 /* Like build_target_expr_with_type, but use the type of INIT. */
723
724 tree
725 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
726 {
727 if (TREE_CODE (init) == AGGR_INIT_EXPR)
728 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
729 else if (TREE_CODE (init) == VEC_INIT_EXPR)
730 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
731 else
732 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
733 }
734
735 tree
736 get_target_expr (tree init)
737 {
738 return get_target_expr_sfinae (init, tf_warning_or_error);
739 }
740
741 /* If EXPR is a bitfield reference, convert it to the declared type of
742 the bitfield, and return the resulting expression. Otherwise,
743 return EXPR itself. */
744
745 tree
746 convert_bitfield_to_declared_type (tree expr)
747 {
748 tree bitfield_type;
749
750 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
751 if (bitfield_type)
752 expr = convert_to_integer_nofold (TYPE_MAIN_VARIANT (bitfield_type),
753 expr);
754 return expr;
755 }
756
757 /* EXPR is being used in an rvalue context. Return a version of EXPR
758 that is marked as an rvalue. */
759
760 tree
761 rvalue (tree expr)
762 {
763 tree type;
764
765 if (error_operand_p (expr))
766 return expr;
767
768 expr = mark_rvalue_use (expr);
769
770 /* [basic.lval]
771
772 Non-class rvalues always have cv-unqualified types. */
773 type = TREE_TYPE (expr);
774 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
775 type = cv_unqualified (type);
776
777 /* We need to do this for rvalue refs as well to get the right answer
778 from decltype; see c++/36628. */
779 if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr))
780 expr = build1 (NON_LVALUE_EXPR, type, expr);
781 else if (type != TREE_TYPE (expr))
782 expr = build_nop (type, expr);
783
784 return expr;
785 }
786
787 \f
788 struct cplus_array_info
789 {
790 tree type;
791 tree domain;
792 };
793
794 struct cplus_array_hasher : ggc_ptr_hash<tree_node>
795 {
796 typedef cplus_array_info *compare_type;
797
798 static hashval_t hash (tree t);
799 static bool equal (tree, cplus_array_info *);
800 };
801
802 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
803
804 hashval_t
805 cplus_array_hasher::hash (tree t)
806 {
807 hashval_t hash;
808
809 hash = TYPE_UID (TREE_TYPE (t));
810 if (TYPE_DOMAIN (t))
811 hash ^= TYPE_UID (TYPE_DOMAIN (t));
812 return hash;
813 }
814
815 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
816 of type `cplus_array_info*'. */
817
818 bool
819 cplus_array_hasher::equal (tree t1, cplus_array_info *t2)
820 {
821 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
822 }
823
824 /* Hash table containing dependent array types, which are unsuitable for
825 the language-independent type hash table. */
826 static GTY (()) hash_table<cplus_array_hasher> *cplus_array_htab;
827
828 /* Build an ARRAY_TYPE without laying it out. */
829
830 static tree
831 build_min_array_type (tree elt_type, tree index_type)
832 {
833 tree t = cxx_make_type (ARRAY_TYPE);
834 TREE_TYPE (t) = elt_type;
835 TYPE_DOMAIN (t) = index_type;
836 return t;
837 }
838
839 /* Set TYPE_CANONICAL like build_array_type_1, but using
840 build_cplus_array_type. */
841
842 static void
843 set_array_type_canon (tree t, tree elt_type, tree index_type)
844 {
845 /* Set the canonical type for this new node. */
846 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
847 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
848 SET_TYPE_STRUCTURAL_EQUALITY (t);
849 else if (TYPE_CANONICAL (elt_type) != elt_type
850 || (index_type && TYPE_CANONICAL (index_type) != index_type))
851 TYPE_CANONICAL (t)
852 = build_cplus_array_type (TYPE_CANONICAL (elt_type),
853 index_type
854 ? TYPE_CANONICAL (index_type) : index_type);
855 else
856 TYPE_CANONICAL (t) = t;
857 }
858
859 /* Like build_array_type, but handle special C++ semantics: an array of a
860 variant element type is a variant of the array of the main variant of
861 the element type. */
862
863 tree
864 build_cplus_array_type (tree elt_type, tree index_type)
865 {
866 tree t;
867
868 if (elt_type == error_mark_node || index_type == error_mark_node)
869 return error_mark_node;
870
871 bool dependent = (uses_template_parms (elt_type)
872 || (index_type && uses_template_parms (index_type)));
873
874 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
875 /* Start with an array of the TYPE_MAIN_VARIANT. */
876 t = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
877 index_type);
878 else if (dependent)
879 {
880 /* Since type_hash_canon calls layout_type, we need to use our own
881 hash table. */
882 cplus_array_info cai;
883 hashval_t hash;
884
885 if (cplus_array_htab == NULL)
886 cplus_array_htab = hash_table<cplus_array_hasher>::create_ggc (61);
887
888 hash = TYPE_UID (elt_type);
889 if (index_type)
890 hash ^= TYPE_UID (index_type);
891 cai.type = elt_type;
892 cai.domain = index_type;
893
894 tree *e = cplus_array_htab->find_slot_with_hash (&cai, hash, INSERT);
895 if (*e)
896 /* We have found the type: we're done. */
897 return (tree) *e;
898 else
899 {
900 /* Build a new array type. */
901 t = build_min_array_type (elt_type, index_type);
902
903 /* Store it in the hash table. */
904 *e = t;
905
906 /* Set the canonical type for this new node. */
907 set_array_type_canon (t, elt_type, index_type);
908 }
909 }
910 else
911 {
912 t = build_array_type (elt_type, index_type);
913 }
914
915 /* Now check whether we already have this array variant. */
916 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
917 {
918 tree m = t;
919 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
920 if (TREE_TYPE (t) == elt_type
921 && TYPE_NAME (t) == NULL_TREE
922 && TYPE_ATTRIBUTES (t) == NULL_TREE)
923 break;
924 if (!t)
925 {
926 t = build_min_array_type (elt_type, index_type);
927 set_array_type_canon (t, elt_type, index_type);
928 if (!dependent)
929 {
930 layout_type (t);
931 /* Make sure sizes are shared with the main variant.
932 layout_type can't be called after setting TYPE_NEXT_VARIANT,
933 as it will overwrite alignment etc. of all variants. */
934 TYPE_SIZE (t) = TYPE_SIZE (m);
935 TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (m);
936 }
937
938 TYPE_MAIN_VARIANT (t) = m;
939 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
940 TYPE_NEXT_VARIANT (m) = t;
941 }
942 }
943
944 /* Avoid spurious warnings with VLAs (c++/54583). */
945 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
946 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
947
948 /* Push these needs up to the ARRAY_TYPE so that initialization takes
949 place more easily. */
950 bool needs_ctor = (TYPE_NEEDS_CONSTRUCTING (t)
951 = TYPE_NEEDS_CONSTRUCTING (elt_type));
952 bool needs_dtor = (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
953 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type));
954
955 if (!dependent && t == TYPE_MAIN_VARIANT (t)
956 && !COMPLETE_TYPE_P (t) && COMPLETE_TYPE_P (elt_type))
957 {
958 /* The element type has been completed since the last time we saw
959 this array type; update the layout and 'tor flags for any variants
960 that need it. */
961 layout_type (t);
962 for (tree v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
963 {
964 TYPE_NEEDS_CONSTRUCTING (v) = needs_ctor;
965 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (v) = needs_dtor;
966 }
967 }
968
969 return t;
970 }
971
972 /* Return an ARRAY_TYPE with element type ELT and length N. */
973
974 tree
975 build_array_of_n_type (tree elt, int n)
976 {
977 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
978 }
979
980 /* True iff T is an N3639 array of runtime bound (VLA). These were
981 approved for C++14 but then removed. */
982
983 bool
984 array_of_runtime_bound_p (tree t)
985 {
986 if (!t || TREE_CODE (t) != ARRAY_TYPE)
987 return false;
988 tree dom = TYPE_DOMAIN (t);
989 if (!dom)
990 return false;
991 tree max = TYPE_MAX_VALUE (dom);
992 return (!potential_rvalue_constant_expression (max)
993 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)));
994 }
995
996 /* Return a reference type node referring to TO_TYPE. If RVAL is
997 true, return an rvalue reference type, otherwise return an lvalue
998 reference type. If a type node exists, reuse it, otherwise create
999 a new one. */
1000 tree
1001 cp_build_reference_type (tree to_type, bool rval)
1002 {
1003 tree lvalue_ref, t;
1004 lvalue_ref = build_reference_type (to_type);
1005 if (!rval)
1006 return lvalue_ref;
1007
1008 /* This code to create rvalue reference types is based on and tied
1009 to the code creating lvalue reference types in the middle-end
1010 functions build_reference_type_for_mode and build_reference_type.
1011
1012 It works by putting the rvalue reference type nodes after the
1013 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
1014 they will effectively be ignored by the middle end. */
1015
1016 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
1017 if (TYPE_REF_IS_RVALUE (t))
1018 return t;
1019
1020 t = build_distinct_type_copy (lvalue_ref);
1021
1022 TYPE_REF_IS_RVALUE (t) = true;
1023 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
1024 TYPE_NEXT_REF_TO (lvalue_ref) = t;
1025
1026 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
1027 SET_TYPE_STRUCTURAL_EQUALITY (t);
1028 else if (TYPE_CANONICAL (to_type) != to_type)
1029 TYPE_CANONICAL (t)
1030 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
1031 else
1032 TYPE_CANONICAL (t) = t;
1033
1034 layout_type (t);
1035
1036 return t;
1037
1038 }
1039
1040 /* Returns EXPR cast to rvalue reference type, like std::move. */
1041
1042 tree
1043 move (tree expr)
1044 {
1045 tree type = TREE_TYPE (expr);
1046 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
1047 type = cp_build_reference_type (type, /*rval*/true);
1048 return build_static_cast (type, expr, tf_warning_or_error);
1049 }
1050
1051 /* Used by the C++ front end to build qualified array types. However,
1052 the C version of this function does not properly maintain canonical
1053 types (which are not used in C). */
1054 tree
1055 c_build_qualified_type (tree type, int type_quals, tree /* orig_qual_type */,
1056 size_t /* orig_qual_indirect */)
1057 {
1058 return cp_build_qualified_type (type, type_quals);
1059 }
1060
1061 \f
1062 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
1063 arrays correctly. In particular, if TYPE is an array of T's, and
1064 TYPE_QUALS is non-empty, returns an array of qualified T's.
1065
1066 FLAGS determines how to deal with ill-formed qualifications. If
1067 tf_ignore_bad_quals is set, then bad qualifications are dropped
1068 (this is permitted if TYPE was introduced via a typedef or template
1069 type parameter). If bad qualifications are dropped and tf_warning
1070 is set, then a warning is issued for non-const qualifications. If
1071 tf_ignore_bad_quals is not set and tf_error is not set, we
1072 return error_mark_node. Otherwise, we issue an error, and ignore
1073 the qualifications.
1074
1075 Qualification of a reference type is valid when the reference came
1076 via a typedef or template type argument. [dcl.ref] No such
1077 dispensation is provided for qualifying a function type. [dcl.fct]
1078 DR 295 queries this and the proposed resolution brings it into line
1079 with qualifying a reference. We implement the DR. We also behave
1080 in a similar manner for restricting non-pointer types. */
1081
1082 tree
1083 cp_build_qualified_type_real (tree type,
1084 int type_quals,
1085 tsubst_flags_t complain)
1086 {
1087 tree result;
1088 int bad_quals = TYPE_UNQUALIFIED;
1089
1090 if (type == error_mark_node)
1091 return type;
1092
1093 if (type_quals == cp_type_quals (type))
1094 return type;
1095
1096 if (TREE_CODE (type) == ARRAY_TYPE)
1097 {
1098 /* In C++, the qualification really applies to the array element
1099 type. Obtain the appropriately qualified element type. */
1100 tree t;
1101 tree element_type
1102 = cp_build_qualified_type_real (TREE_TYPE (type),
1103 type_quals,
1104 complain);
1105
1106 if (element_type == error_mark_node)
1107 return error_mark_node;
1108
1109 /* See if we already have an identically qualified type. Tests
1110 should be equivalent to those in check_qualified_type. */
1111 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1112 if (TREE_TYPE (t) == element_type
1113 && TYPE_NAME (t) == TYPE_NAME (type)
1114 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
1115 && attribute_list_equal (TYPE_ATTRIBUTES (t),
1116 TYPE_ATTRIBUTES (type)))
1117 break;
1118
1119 if (!t)
1120 {
1121 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
1122
1123 /* Keep the typedef name. */
1124 if (TYPE_NAME (t) != TYPE_NAME (type))
1125 {
1126 t = build_variant_type_copy (t);
1127 TYPE_NAME (t) = TYPE_NAME (type);
1128 SET_TYPE_ALIGN (t, TYPE_ALIGN (type));
1129 TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (type);
1130 }
1131 }
1132
1133 /* Even if we already had this variant, we update
1134 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1135 they changed since the variant was originally created.
1136
1137 This seems hokey; if there is some way to use a previous
1138 variant *without* coming through here,
1139 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1140 TYPE_NEEDS_CONSTRUCTING (t)
1141 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1142 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1143 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1144 return t;
1145 }
1146 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1147 {
1148 tree t = PACK_EXPANSION_PATTERN (type);
1149
1150 t = cp_build_qualified_type_real (t, type_quals, complain);
1151 return make_pack_expansion (t);
1152 }
1153
1154 /* A reference or method type shall not be cv-qualified.
1155 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1156 (in CD1) we always ignore extra cv-quals on functions. */
1157 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1158 && (TREE_CODE (type) == REFERENCE_TYPE
1159 || TREE_CODE (type) == FUNCTION_TYPE
1160 || TREE_CODE (type) == METHOD_TYPE))
1161 {
1162 if (TREE_CODE (type) == REFERENCE_TYPE)
1163 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1164 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1165 }
1166
1167 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1168 if (TREE_CODE (type) == FUNCTION_TYPE)
1169 type_quals |= type_memfn_quals (type);
1170
1171 /* A restrict-qualified type must be a pointer (or reference)
1172 to object or incomplete type. */
1173 if ((type_quals & TYPE_QUAL_RESTRICT)
1174 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1175 && TREE_CODE (type) != TYPENAME_TYPE
1176 && !POINTER_TYPE_P (type))
1177 {
1178 bad_quals |= TYPE_QUAL_RESTRICT;
1179 type_quals &= ~TYPE_QUAL_RESTRICT;
1180 }
1181
1182 if (bad_quals == TYPE_UNQUALIFIED
1183 || (complain & tf_ignore_bad_quals))
1184 /*OK*/;
1185 else if (!(complain & tf_error))
1186 return error_mark_node;
1187 else
1188 {
1189 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1190 error ("%qV qualifiers cannot be applied to %qT",
1191 bad_type, type);
1192 }
1193
1194 /* Retrieve (or create) the appropriately qualified variant. */
1195 result = build_qualified_type (type, type_quals);
1196
1197 /* Preserve exception specs and ref-qualifier since build_qualified_type
1198 doesn't know about them. */
1199 if (TREE_CODE (result) == FUNCTION_TYPE
1200 || TREE_CODE (result) == METHOD_TYPE)
1201 {
1202 result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (type));
1203 result = build_ref_qualified_type (result, type_memfn_rqual (type));
1204 }
1205
1206 return result;
1207 }
1208
1209 /* Return TYPE with const and volatile removed. */
1210
1211 tree
1212 cv_unqualified (tree type)
1213 {
1214 int quals;
1215
1216 if (type == error_mark_node)
1217 return type;
1218
1219 quals = cp_type_quals (type);
1220 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1221 return cp_build_qualified_type (type, quals);
1222 }
1223
1224 /* Subroutine of strip_typedefs. We want to apply to RESULT the attributes
1225 from ATTRIBS that affect type identity, and no others. If any are not
1226 applied, set *remove_attributes to true. */
1227
1228 static tree
1229 apply_identity_attributes (tree result, tree attribs, bool *remove_attributes)
1230 {
1231 tree first_ident = NULL_TREE;
1232 tree new_attribs = NULL_TREE;
1233 tree *p = &new_attribs;
1234
1235 if (OVERLOAD_TYPE_P (result))
1236 {
1237 /* On classes and enums all attributes are ingrained. */
1238 gcc_assert (attribs == TYPE_ATTRIBUTES (result));
1239 return result;
1240 }
1241
1242 for (tree a = attribs; a; a = TREE_CHAIN (a))
1243 {
1244 const attribute_spec *as
1245 = lookup_attribute_spec (get_attribute_name (a));
1246 if (as && as->affects_type_identity)
1247 {
1248 if (!first_ident)
1249 first_ident = a;
1250 else if (first_ident == error_mark_node)
1251 {
1252 *p = tree_cons (TREE_PURPOSE (a), TREE_VALUE (a), NULL_TREE);
1253 p = &TREE_CHAIN (*p);
1254 }
1255 }
1256 else if (first_ident)
1257 {
1258 for (tree a2 = first_ident; a2; a2 = TREE_CHAIN (a2))
1259 {
1260 *p = tree_cons (TREE_PURPOSE (a2), TREE_VALUE (a2), NULL_TREE);
1261 p = &TREE_CHAIN (*p);
1262 }
1263 first_ident = error_mark_node;
1264 }
1265 }
1266 if (first_ident != error_mark_node)
1267 new_attribs = first_ident;
1268
1269 if (first_ident == attribs)
1270 /* All attributes affected type identity. */;
1271 else
1272 *remove_attributes = true;
1273
1274 return cp_build_type_attribute_variant (result, new_attribs);
1275 }
1276
1277 /* Builds a qualified variant of T that is not a typedef variant.
1278 E.g. consider the following declarations:
1279 typedef const int ConstInt;
1280 typedef ConstInt* PtrConstInt;
1281 If T is PtrConstInt, this function returns a type representing
1282 const int*.
1283 In other words, if T is a typedef, the function returns the underlying type.
1284 The cv-qualification and attributes of the type returned match the
1285 input type.
1286 They will always be compatible types.
1287 The returned type is built so that all of its subtypes
1288 recursively have their typedefs stripped as well.
1289
1290 This is different from just returning TYPE_CANONICAL (T)
1291 Because of several reasons:
1292 * If T is a type that needs structural equality
1293 its TYPE_CANONICAL (T) will be NULL.
1294 * TYPE_CANONICAL (T) desn't carry type attributes
1295 and loses template parameter names.
1296
1297 If REMOVE_ATTRIBUTES is non-null, also strip attributes that don't
1298 affect type identity, and set the referent to true if any were
1299 stripped. */
1300
1301 tree
1302 strip_typedefs (tree t, bool *remove_attributes)
1303 {
1304 tree result = NULL, type = NULL, t0 = NULL;
1305
1306 if (!t || t == error_mark_node)
1307 return t;
1308
1309 if (TREE_CODE (t) == TREE_LIST)
1310 {
1311 bool changed = false;
1312 vec<tree,va_gc> *vec = make_tree_vector ();
1313 tree r = t;
1314 for (; t; t = TREE_CHAIN (t))
1315 {
1316 gcc_assert (!TREE_PURPOSE (t));
1317 tree elt = strip_typedefs (TREE_VALUE (t), remove_attributes);
1318 if (elt != TREE_VALUE (t))
1319 changed = true;
1320 vec_safe_push (vec, elt);
1321 }
1322 if (changed)
1323 r = build_tree_list_vec (vec);
1324 release_tree_vector (vec);
1325 return r;
1326 }
1327
1328 gcc_assert (TYPE_P (t));
1329
1330 if (t == TYPE_CANONICAL (t))
1331 return t;
1332
1333 if (dependent_alias_template_spec_p (t))
1334 /* DR 1558: However, if the template-id is dependent, subsequent
1335 template argument substitution still applies to the template-id. */
1336 return t;
1337
1338 switch (TREE_CODE (t))
1339 {
1340 case POINTER_TYPE:
1341 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1342 result = build_pointer_type (type);
1343 break;
1344 case REFERENCE_TYPE:
1345 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1346 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1347 break;
1348 case OFFSET_TYPE:
1349 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t), remove_attributes);
1350 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1351 result = build_offset_type (t0, type);
1352 break;
1353 case RECORD_TYPE:
1354 if (TYPE_PTRMEMFUNC_P (t))
1355 {
1356 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t), remove_attributes);
1357 result = build_ptrmemfunc_type (t0);
1358 }
1359 break;
1360 case ARRAY_TYPE:
1361 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1362 t0 = strip_typedefs (TYPE_DOMAIN (t), remove_attributes);
1363 result = build_cplus_array_type (type, t0);
1364 break;
1365 case FUNCTION_TYPE:
1366 case METHOD_TYPE:
1367 {
1368 tree arg_types = NULL, arg_node, arg_node2, arg_type;
1369 bool changed;
1370
1371 /* Because we stomp on TREE_PURPOSE of TYPE_ARG_TYPES in many places
1372 around the compiler (e.g. cp_parser_late_parsing_default_args), we
1373 can't expect that re-hashing a function type will find a previous
1374 equivalent type, so try to reuse the input type if nothing has
1375 changed. If the type is itself a variant, that will change. */
1376 bool is_variant = typedef_variant_p (t);
1377 if (remove_attributes
1378 && (TYPE_ATTRIBUTES (t) || TYPE_USER_ALIGN (t)))
1379 is_variant = true;
1380
1381 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1382 changed = type != TREE_TYPE (t) || is_variant;
1383
1384 for (arg_node = TYPE_ARG_TYPES (t);
1385 arg_node;
1386 arg_node = TREE_CHAIN (arg_node))
1387 {
1388 if (arg_node == void_list_node)
1389 break;
1390 arg_type = strip_typedefs (TREE_VALUE (arg_node),
1391 remove_attributes);
1392 gcc_assert (arg_type);
1393 if (arg_type == TREE_VALUE (arg_node) && !changed)
1394 continue;
1395
1396 if (!changed)
1397 {
1398 changed = true;
1399 for (arg_node2 = TYPE_ARG_TYPES (t);
1400 arg_node2 != arg_node;
1401 arg_node2 = TREE_CHAIN (arg_node2))
1402 arg_types
1403 = tree_cons (TREE_PURPOSE (arg_node2),
1404 TREE_VALUE (arg_node2), arg_types);
1405 }
1406
1407 arg_types
1408 = tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1409 }
1410
1411 if (!changed)
1412 return t;
1413
1414 if (arg_types)
1415 arg_types = nreverse (arg_types);
1416
1417 /* A list of parameters not ending with an ellipsis
1418 must end with void_list_node. */
1419 if (arg_node)
1420 arg_types = chainon (arg_types, void_list_node);
1421
1422 if (TREE_CODE (t) == METHOD_TYPE)
1423 {
1424 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1425 gcc_assert (class_type);
1426 result =
1427 build_method_type_directly (class_type, type,
1428 TREE_CHAIN (arg_types));
1429 result
1430 = build_ref_qualified_type (result, type_memfn_rqual (t));
1431 }
1432 else
1433 {
1434 result = build_function_type (type,
1435 arg_types);
1436 result = apply_memfn_quals (result,
1437 type_memfn_quals (t),
1438 type_memfn_rqual (t));
1439 }
1440
1441 if (TYPE_RAISES_EXCEPTIONS (t))
1442 result = build_exception_variant (result,
1443 TYPE_RAISES_EXCEPTIONS (t));
1444 if (TYPE_HAS_LATE_RETURN_TYPE (t))
1445 TYPE_HAS_LATE_RETURN_TYPE (result) = 1;
1446 }
1447 break;
1448 case TYPENAME_TYPE:
1449 {
1450 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1451 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1452 && TREE_OPERAND (fullname, 1))
1453 {
1454 tree args = TREE_OPERAND (fullname, 1);
1455 tree new_args = copy_node (args);
1456 bool changed = false;
1457 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1458 {
1459 tree arg = TREE_VEC_ELT (args, i);
1460 tree strip_arg;
1461 if (TYPE_P (arg))
1462 strip_arg = strip_typedefs (arg, remove_attributes);
1463 else
1464 strip_arg = strip_typedefs_expr (arg, remove_attributes);
1465 TREE_VEC_ELT (new_args, i) = strip_arg;
1466 if (strip_arg != arg)
1467 changed = true;
1468 }
1469 if (changed)
1470 {
1471 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args)
1472 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args);
1473 fullname
1474 = lookup_template_function (TREE_OPERAND (fullname, 0),
1475 new_args);
1476 }
1477 else
1478 ggc_free (new_args);
1479 }
1480 result = make_typename_type (strip_typedefs (TYPE_CONTEXT (t),
1481 remove_attributes),
1482 fullname, typename_type, tf_none);
1483 /* Handle 'typedef typename A::N N;' */
1484 if (typedef_variant_p (result))
1485 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (result)));
1486 }
1487 break;
1488 case DECLTYPE_TYPE:
1489 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t),
1490 remove_attributes);
1491 if (result == DECLTYPE_TYPE_EXPR (t))
1492 result = NULL_TREE;
1493 else
1494 result = (finish_decltype_type
1495 (result,
1496 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1497 tf_none));
1498 break;
1499 default:
1500 break;
1501 }
1502
1503 if (!result)
1504 {
1505 if (typedef_variant_p (t))
1506 {
1507 /* Explicitly get the underlying type, as TYPE_MAIN_VARIANT doesn't
1508 strip typedefs with attributes. */
1509 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (t)));
1510 result = strip_typedefs (result);
1511 }
1512 else
1513 result = TYPE_MAIN_VARIANT (t);
1514 }
1515 gcc_assert (!typedef_variant_p (result));
1516 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1517 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1518 {
1519 gcc_assert (TYPE_USER_ALIGN (t));
1520 if (remove_attributes)
1521 *remove_attributes = true;
1522 else
1523 {
1524 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1525 result = build_variant_type_copy (result);
1526 else
1527 result = build_aligned_type (result, TYPE_ALIGN (t));
1528 TYPE_USER_ALIGN (result) = true;
1529 }
1530 }
1531 if (TYPE_ATTRIBUTES (t))
1532 {
1533 if (remove_attributes)
1534 result = apply_identity_attributes (result, TYPE_ATTRIBUTES (t),
1535 remove_attributes);
1536 else
1537 result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t));
1538 }
1539 return cp_build_qualified_type (result, cp_type_quals (t));
1540 }
1541
1542 /* Like strip_typedefs above, but works on expressions, so that in
1543
1544 template<class T> struct A
1545 {
1546 typedef T TT;
1547 B<sizeof(TT)> b;
1548 };
1549
1550 sizeof(TT) is replaced by sizeof(T). */
1551
1552 tree
1553 strip_typedefs_expr (tree t, bool *remove_attributes)
1554 {
1555 unsigned i,n;
1556 tree r, type, *ops;
1557 enum tree_code code;
1558
1559 if (t == NULL_TREE || t == error_mark_node)
1560 return t;
1561
1562 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1563 return t;
1564
1565 /* Some expressions have type operands, so let's handle types here rather
1566 than check TYPE_P in multiple places below. */
1567 if (TYPE_P (t))
1568 return strip_typedefs (t, remove_attributes);
1569
1570 code = TREE_CODE (t);
1571 switch (code)
1572 {
1573 case IDENTIFIER_NODE:
1574 case TEMPLATE_PARM_INDEX:
1575 case OVERLOAD:
1576 case BASELINK:
1577 case ARGUMENT_PACK_SELECT:
1578 return t;
1579
1580 case TRAIT_EXPR:
1581 {
1582 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t), remove_attributes);
1583 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t), remove_attributes);
1584 if (type1 == TRAIT_EXPR_TYPE1 (t)
1585 && type2 == TRAIT_EXPR_TYPE2 (t))
1586 return t;
1587 r = copy_node (t);
1588 TRAIT_EXPR_TYPE1 (r) = type1;
1589 TRAIT_EXPR_TYPE2 (r) = type2;
1590 return r;
1591 }
1592
1593 case TREE_LIST:
1594 {
1595 vec<tree, va_gc> *vec = make_tree_vector ();
1596 bool changed = false;
1597 tree it;
1598 for (it = t; it; it = TREE_CHAIN (it))
1599 {
1600 tree val = strip_typedefs_expr (TREE_VALUE (t), remove_attributes);
1601 vec_safe_push (vec, val);
1602 if (val != TREE_VALUE (t))
1603 changed = true;
1604 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1605 }
1606 if (changed)
1607 {
1608 r = NULL_TREE;
1609 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1610 r = tree_cons (NULL_TREE, it, r);
1611 }
1612 else
1613 r = t;
1614 release_tree_vector (vec);
1615 return r;
1616 }
1617
1618 case TREE_VEC:
1619 {
1620 bool changed = false;
1621 vec<tree, va_gc> *vec = make_tree_vector ();
1622 n = TREE_VEC_LENGTH (t);
1623 vec_safe_reserve (vec, n);
1624 for (i = 0; i < n; ++i)
1625 {
1626 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i),
1627 remove_attributes);
1628 vec->quick_push (op);
1629 if (op != TREE_VEC_ELT (t, i))
1630 changed = true;
1631 }
1632 if (changed)
1633 {
1634 r = copy_node (t);
1635 for (i = 0; i < n; ++i)
1636 TREE_VEC_ELT (r, i) = (*vec)[i];
1637 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r)
1638 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t);
1639 }
1640 else
1641 r = t;
1642 release_tree_vector (vec);
1643 return r;
1644 }
1645
1646 case CONSTRUCTOR:
1647 {
1648 bool changed = false;
1649 vec<constructor_elt, va_gc> *vec
1650 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1651 n = CONSTRUCTOR_NELTS (t);
1652 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1653 for (i = 0; i < n; ++i)
1654 {
1655 constructor_elt *e = &(*vec)[i];
1656 tree op = strip_typedefs_expr (e->value, remove_attributes);
1657 if (op != e->value)
1658 {
1659 changed = true;
1660 e->value = op;
1661 }
1662 gcc_checking_assert
1663 (e->index == strip_typedefs_expr (e->index, remove_attributes));
1664 }
1665
1666 if (!changed && type == TREE_TYPE (t))
1667 {
1668 vec_free (vec);
1669 return t;
1670 }
1671 else
1672 {
1673 r = copy_node (t);
1674 TREE_TYPE (r) = type;
1675 CONSTRUCTOR_ELTS (r) = vec;
1676 return r;
1677 }
1678 }
1679
1680 case LAMBDA_EXPR:
1681 error ("lambda-expression in a constant expression");
1682 return error_mark_node;
1683
1684 default:
1685 break;
1686 }
1687
1688 gcc_assert (EXPR_P (t));
1689
1690 n = TREE_OPERAND_LENGTH (t);
1691 ops = XALLOCAVEC (tree, n);
1692 type = TREE_TYPE (t);
1693
1694 switch (code)
1695 {
1696 CASE_CONVERT:
1697 case IMPLICIT_CONV_EXPR:
1698 case DYNAMIC_CAST_EXPR:
1699 case STATIC_CAST_EXPR:
1700 case CONST_CAST_EXPR:
1701 case REINTERPRET_CAST_EXPR:
1702 case CAST_EXPR:
1703 case NEW_EXPR:
1704 type = strip_typedefs (type, remove_attributes);
1705 /* fallthrough */
1706
1707 default:
1708 for (i = 0; i < n; ++i)
1709 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i), remove_attributes);
1710 break;
1711 }
1712
1713 /* If nothing changed, return t. */
1714 for (i = 0; i < n; ++i)
1715 if (ops[i] != TREE_OPERAND (t, i))
1716 break;
1717 if (i == n && type == TREE_TYPE (t))
1718 return t;
1719
1720 r = copy_node (t);
1721 TREE_TYPE (r) = type;
1722 for (i = 0; i < n; ++i)
1723 TREE_OPERAND (r, i) = ops[i];
1724 return r;
1725 }
1726
1727 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1728 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1729 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1730 VIRT indicates whether TYPE is inherited virtually or not.
1731 IGO_PREV points at the previous binfo of the inheritance graph
1732 order chain. The newly copied binfo's TREE_CHAIN forms this
1733 ordering.
1734
1735 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1736 correct order. That is in the order the bases themselves should be
1737 constructed in.
1738
1739 The BINFO_INHERITANCE of a virtual base class points to the binfo
1740 of the most derived type. ??? We could probably change this so that
1741 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1742 remove a field. They currently can only differ for primary virtual
1743 virtual bases. */
1744
1745 tree
1746 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1747 {
1748 tree new_binfo;
1749
1750 if (virt)
1751 {
1752 /* See if we've already made this virtual base. */
1753 new_binfo = binfo_for_vbase (type, t);
1754 if (new_binfo)
1755 return new_binfo;
1756 }
1757
1758 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1759 BINFO_TYPE (new_binfo) = type;
1760
1761 /* Chain it into the inheritance graph. */
1762 TREE_CHAIN (*igo_prev) = new_binfo;
1763 *igo_prev = new_binfo;
1764
1765 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1766 {
1767 int ix;
1768 tree base_binfo;
1769
1770 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1771
1772 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1773 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1774
1775 /* We do not need to copy the accesses, as they are read only. */
1776 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1777
1778 /* Recursively copy base binfos of BINFO. */
1779 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1780 {
1781 tree new_base_binfo;
1782 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1783 t, igo_prev,
1784 BINFO_VIRTUAL_P (base_binfo));
1785
1786 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1787 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1788 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1789 }
1790 }
1791 else
1792 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1793
1794 if (virt)
1795 {
1796 /* Push it onto the list after any virtual bases it contains
1797 will have been pushed. */
1798 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1799 BINFO_VIRTUAL_P (new_binfo) = 1;
1800 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1801 }
1802
1803 return new_binfo;
1804 }
1805 \f
1806 /* Hashing of lists so that we don't make duplicates.
1807 The entry point is `list_hash_canon'. */
1808
1809 struct list_proxy
1810 {
1811 tree purpose;
1812 tree value;
1813 tree chain;
1814 };
1815
1816 struct list_hasher : ggc_ptr_hash<tree_node>
1817 {
1818 typedef list_proxy *compare_type;
1819
1820 static hashval_t hash (tree);
1821 static bool equal (tree, list_proxy *);
1822 };
1823
1824 /* Now here is the hash table. When recording a list, it is added
1825 to the slot whose index is the hash code mod the table size.
1826 Note that the hash table is used for several kinds of lists.
1827 While all these live in the same table, they are completely independent,
1828 and the hash code is computed differently for each of these. */
1829
1830 static GTY (()) hash_table<list_hasher> *list_hash_table;
1831
1832 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1833 for a node we are thinking about adding). */
1834
1835 bool
1836 list_hasher::equal (tree t, list_proxy *proxy)
1837 {
1838 return (TREE_VALUE (t) == proxy->value
1839 && TREE_PURPOSE (t) == proxy->purpose
1840 && TREE_CHAIN (t) == proxy->chain);
1841 }
1842
1843 /* Compute a hash code for a list (chain of TREE_LIST nodes
1844 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1845 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1846
1847 static hashval_t
1848 list_hash_pieces (tree purpose, tree value, tree chain)
1849 {
1850 hashval_t hashcode = 0;
1851
1852 if (chain)
1853 hashcode += TREE_HASH (chain);
1854
1855 if (value)
1856 hashcode += TREE_HASH (value);
1857 else
1858 hashcode += 1007;
1859 if (purpose)
1860 hashcode += TREE_HASH (purpose);
1861 else
1862 hashcode += 1009;
1863 return hashcode;
1864 }
1865
1866 /* Hash an already existing TREE_LIST. */
1867
1868 hashval_t
1869 list_hasher::hash (tree t)
1870 {
1871 return list_hash_pieces (TREE_PURPOSE (t),
1872 TREE_VALUE (t),
1873 TREE_CHAIN (t));
1874 }
1875
1876 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1877 object for an identical list if one already exists. Otherwise, build a
1878 new one, and record it as the canonical object. */
1879
1880 tree
1881 hash_tree_cons (tree purpose, tree value, tree chain)
1882 {
1883 int hashcode = 0;
1884 tree *slot;
1885 struct list_proxy proxy;
1886
1887 /* Hash the list node. */
1888 hashcode = list_hash_pieces (purpose, value, chain);
1889 /* Create a proxy for the TREE_LIST we would like to create. We
1890 don't actually create it so as to avoid creating garbage. */
1891 proxy.purpose = purpose;
1892 proxy.value = value;
1893 proxy.chain = chain;
1894 /* See if it is already in the table. */
1895 slot = list_hash_table->find_slot_with_hash (&proxy, hashcode, INSERT);
1896 /* If not, create a new node. */
1897 if (!*slot)
1898 *slot = tree_cons (purpose, value, chain);
1899 return (tree) *slot;
1900 }
1901
1902 /* Constructor for hashed lists. */
1903
1904 tree
1905 hash_tree_chain (tree value, tree chain)
1906 {
1907 return hash_tree_cons (NULL_TREE, value, chain);
1908 }
1909 \f
1910 void
1911 debug_binfo (tree elem)
1912 {
1913 HOST_WIDE_INT n;
1914 tree virtuals;
1915
1916 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1917 "\nvtable type:\n",
1918 TYPE_NAME_STRING (BINFO_TYPE (elem)),
1919 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
1920 debug_tree (BINFO_TYPE (elem));
1921 if (BINFO_VTABLE (elem))
1922 fprintf (stderr, "vtable decl \"%s\"\n",
1923 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
1924 else
1925 fprintf (stderr, "no vtable decl yet\n");
1926 fprintf (stderr, "virtuals:\n");
1927 virtuals = BINFO_VIRTUALS (elem);
1928 n = 0;
1929
1930 while (virtuals)
1931 {
1932 tree fndecl = TREE_VALUE (virtuals);
1933 fprintf (stderr, "%s [%ld =? %ld]\n",
1934 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
1935 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
1936 ++n;
1937 virtuals = TREE_CHAIN (virtuals);
1938 }
1939 }
1940
1941 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
1942 the type of the result expression, if known, or NULL_TREE if the
1943 resulting expression is type-dependent. If TEMPLATE_P is true,
1944 NAME is known to be a template because the user explicitly used the
1945 "template" keyword after the "::".
1946
1947 All SCOPE_REFs should be built by use of this function. */
1948
1949 tree
1950 build_qualified_name (tree type, tree scope, tree name, bool template_p)
1951 {
1952 tree t;
1953 if (type == error_mark_node
1954 || scope == error_mark_node
1955 || name == error_mark_node)
1956 return error_mark_node;
1957 t = build2 (SCOPE_REF, type, scope, name);
1958 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
1959 PTRMEM_OK_P (t) = true;
1960 if (type)
1961 t = convert_from_reference (t);
1962 return t;
1963 }
1964
1965 /* Like check_qualified_type, but also check ref-qualifier and exception
1966 specification. */
1967
1968 static bool
1969 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
1970 cp_ref_qualifier rqual, tree raises)
1971 {
1972 return (check_qualified_type (cand, base, type_quals)
1973 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
1974 ce_exact)
1975 && type_memfn_rqual (cand) == rqual);
1976 }
1977
1978 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
1979
1980 tree
1981 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
1982 {
1983 tree t;
1984
1985 if (rqual == type_memfn_rqual (type))
1986 return type;
1987
1988 int type_quals = TYPE_QUALS (type);
1989 tree raises = TYPE_RAISES_EXCEPTIONS (type);
1990 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1991 if (cp_check_qualified_type (t, type, type_quals, rqual, raises))
1992 return t;
1993
1994 t = build_variant_type_copy (type);
1995 switch (rqual)
1996 {
1997 case REF_QUAL_RVALUE:
1998 FUNCTION_RVALUE_QUALIFIED (t) = 1;
1999 FUNCTION_REF_QUALIFIED (t) = 1;
2000 break;
2001 case REF_QUAL_LVALUE:
2002 FUNCTION_RVALUE_QUALIFIED (t) = 0;
2003 FUNCTION_REF_QUALIFIED (t) = 1;
2004 break;
2005 default:
2006 FUNCTION_REF_QUALIFIED (t) = 0;
2007 break;
2008 }
2009
2010 if (TYPE_STRUCTURAL_EQUALITY_P (type))
2011 /* Propagate structural equality. */
2012 SET_TYPE_STRUCTURAL_EQUALITY (t);
2013 else if (TYPE_CANONICAL (type) != type)
2014 /* Build the underlying canonical type, since it is different
2015 from TYPE. */
2016 TYPE_CANONICAL (t) = build_ref_qualified_type (TYPE_CANONICAL (type),
2017 rqual);
2018 else
2019 /* T is its own canonical type. */
2020 TYPE_CANONICAL (t) = t;
2021
2022 return t;
2023 }
2024
2025 /* Returns nonzero if X is an expression for a (possibly overloaded)
2026 function. If "f" is a function or function template, "f", "c->f",
2027 "c.f", "C::f", and "f<int>" will all be considered possibly
2028 overloaded functions. Returns 2 if the function is actually
2029 overloaded, i.e., if it is impossible to know the type of the
2030 function without performing overload resolution. */
2031
2032 int
2033 is_overloaded_fn (tree x)
2034 {
2035 /* A baselink is also considered an overloaded function. */
2036 if (TREE_CODE (x) == OFFSET_REF
2037 || TREE_CODE (x) == COMPONENT_REF)
2038 x = TREE_OPERAND (x, 1);
2039 if (BASELINK_P (x))
2040 x = BASELINK_FUNCTIONS (x);
2041 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
2042 x = TREE_OPERAND (x, 0);
2043 if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
2044 || (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
2045 return 2;
2046 return (TREE_CODE (x) == FUNCTION_DECL
2047 || TREE_CODE (x) == OVERLOAD);
2048 }
2049
2050 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
2051 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
2052 NULL_TREE. */
2053
2054 tree
2055 dependent_name (tree x)
2056 {
2057 if (identifier_p (x))
2058 return x;
2059 if (TREE_CODE (x) != COMPONENT_REF
2060 && TREE_CODE (x) != OFFSET_REF
2061 && TREE_CODE (x) != BASELINK
2062 && is_overloaded_fn (x))
2063 return DECL_NAME (get_first_fn (x));
2064 return NULL_TREE;
2065 }
2066
2067 /* Returns true iff X is an expression for an overloaded function
2068 whose type cannot be known without performing overload
2069 resolution. */
2070
2071 bool
2072 really_overloaded_fn (tree x)
2073 {
2074 return is_overloaded_fn (x) == 2;
2075 }
2076
2077 tree
2078 get_fns (tree from)
2079 {
2080 gcc_assert (is_overloaded_fn (from));
2081 /* A baselink is also considered an overloaded function. */
2082 if (TREE_CODE (from) == OFFSET_REF
2083 || TREE_CODE (from) == COMPONENT_REF)
2084 from = TREE_OPERAND (from, 1);
2085 if (BASELINK_P (from))
2086 from = BASELINK_FUNCTIONS (from);
2087 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
2088 from = TREE_OPERAND (from, 0);
2089 return from;
2090 }
2091
2092 tree
2093 get_first_fn (tree from)
2094 {
2095 return OVL_CURRENT (get_fns (from));
2096 }
2097
2098 /* Return a new OVL node, concatenating it with the old one. */
2099
2100 tree
2101 ovl_cons (tree decl, tree chain)
2102 {
2103 tree result = make_node (OVERLOAD);
2104 TREE_TYPE (result) = unknown_type_node;
2105 OVL_FUNCTION (result) = decl;
2106 TREE_CHAIN (result) = chain;
2107
2108 return result;
2109 }
2110
2111 /* Build a new overloaded function. If this is the first one,
2112 just return it; otherwise, ovl_cons the _DECLs */
2113
2114 tree
2115 build_overload (tree decl, tree chain)
2116 {
2117 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
2118 return decl;
2119 return ovl_cons (decl, chain);
2120 }
2121
2122 /* Return the scope where the overloaded functions OVL were found. */
2123
2124 tree
2125 ovl_scope (tree ovl)
2126 {
2127 if (TREE_CODE (ovl) == OFFSET_REF
2128 || TREE_CODE (ovl) == COMPONENT_REF)
2129 ovl = TREE_OPERAND (ovl, 1);
2130 if (TREE_CODE (ovl) == BASELINK)
2131 return BINFO_TYPE (BASELINK_BINFO (ovl));
2132 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
2133 ovl = TREE_OPERAND (ovl, 0);
2134 /* Skip using-declarations. */
2135 while (TREE_CODE (ovl) == OVERLOAD && OVL_USED (ovl) && OVL_CHAIN (ovl))
2136 ovl = OVL_CHAIN (ovl);
2137 return CP_DECL_CONTEXT (OVL_CURRENT (ovl));
2138 }
2139 \f
2140 #define PRINT_RING_SIZE 4
2141
2142 static const char *
2143 cxx_printable_name_internal (tree decl, int v, bool translate)
2144 {
2145 static unsigned int uid_ring[PRINT_RING_SIZE];
2146 static char *print_ring[PRINT_RING_SIZE];
2147 static bool trans_ring[PRINT_RING_SIZE];
2148 static int ring_counter;
2149 int i;
2150
2151 /* Only cache functions. */
2152 if (v < 2
2153 || TREE_CODE (decl) != FUNCTION_DECL
2154 || DECL_LANG_SPECIFIC (decl) == 0)
2155 return lang_decl_name (decl, v, translate);
2156
2157 /* See if this print name is lying around. */
2158 for (i = 0; i < PRINT_RING_SIZE; i++)
2159 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
2160 /* yes, so return it. */
2161 return print_ring[i];
2162
2163 if (++ring_counter == PRINT_RING_SIZE)
2164 ring_counter = 0;
2165
2166 if (current_function_decl != NULL_TREE)
2167 {
2168 /* There may be both translated and untranslated versions of the
2169 name cached. */
2170 for (i = 0; i < 2; i++)
2171 {
2172 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
2173 ring_counter += 1;
2174 if (ring_counter == PRINT_RING_SIZE)
2175 ring_counter = 0;
2176 }
2177 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
2178 }
2179
2180 free (print_ring[ring_counter]);
2181
2182 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
2183 uid_ring[ring_counter] = DECL_UID (decl);
2184 trans_ring[ring_counter] = translate;
2185 return print_ring[ring_counter];
2186 }
2187
2188 const char *
2189 cxx_printable_name (tree decl, int v)
2190 {
2191 return cxx_printable_name_internal (decl, v, false);
2192 }
2193
2194 const char *
2195 cxx_printable_name_translate (tree decl, int v)
2196 {
2197 return cxx_printable_name_internal (decl, v, true);
2198 }
2199 \f
2200 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
2201 listed in RAISES. */
2202
2203 tree
2204 build_exception_variant (tree type, tree raises)
2205 {
2206 tree v;
2207 int type_quals;
2208
2209 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
2210 return type;
2211
2212 type_quals = TYPE_QUALS (type);
2213 cp_ref_qualifier rqual = type_memfn_rqual (type);
2214 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
2215 if (cp_check_qualified_type (v, type, type_quals, rqual, raises))
2216 return v;
2217
2218 /* Need to build a new variant. */
2219 v = build_variant_type_copy (type);
2220 TYPE_RAISES_EXCEPTIONS (v) = raises;
2221 return v;
2222 }
2223
2224 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
2225 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
2226 arguments. */
2227
2228 tree
2229 bind_template_template_parm (tree t, tree newargs)
2230 {
2231 tree decl = TYPE_NAME (t);
2232 tree t2;
2233
2234 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2235 decl = build_decl (input_location,
2236 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2237
2238 /* These nodes have to be created to reflect new TYPE_DECL and template
2239 arguments. */
2240 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2241 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2242 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2243 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2244
2245 TREE_TYPE (decl) = t2;
2246 TYPE_NAME (t2) = decl;
2247 TYPE_STUB_DECL (t2) = decl;
2248 TYPE_SIZE (t2) = 0;
2249 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2250
2251 return t2;
2252 }
2253
2254 /* Called from count_trees via walk_tree. */
2255
2256 static tree
2257 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2258 {
2259 ++*((int *) data);
2260
2261 if (TYPE_P (*tp))
2262 *walk_subtrees = 0;
2263
2264 return NULL_TREE;
2265 }
2266
2267 /* Debugging function for measuring the rough complexity of a tree
2268 representation. */
2269
2270 int
2271 count_trees (tree t)
2272 {
2273 int n_trees = 0;
2274 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2275 return n_trees;
2276 }
2277
2278 /* Called from verify_stmt_tree via walk_tree. */
2279
2280 static tree
2281 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2282 {
2283 tree t = *tp;
2284 hash_table<nofree_ptr_hash <tree_node> > *statements
2285 = static_cast <hash_table<nofree_ptr_hash <tree_node> > *> (data);
2286 tree_node **slot;
2287
2288 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2289 return NULL_TREE;
2290
2291 /* If this statement is already present in the hash table, then
2292 there is a circularity in the statement tree. */
2293 gcc_assert (!statements->find (t));
2294
2295 slot = statements->find_slot (t, INSERT);
2296 *slot = t;
2297
2298 return NULL_TREE;
2299 }
2300
2301 /* Debugging function to check that the statement T has not been
2302 corrupted. For now, this function simply checks that T contains no
2303 circularities. */
2304
2305 void
2306 verify_stmt_tree (tree t)
2307 {
2308 hash_table<nofree_ptr_hash <tree_node> > statements (37);
2309 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2310 }
2311
2312 /* Check if the type T depends on a type with no linkage and if so, return
2313 it. If RELAXED_P then do not consider a class type declared within
2314 a vague-linkage function to have no linkage. */
2315
2316 tree
2317 no_linkage_check (tree t, bool relaxed_p)
2318 {
2319 tree r;
2320
2321 /* There's no point in checking linkage on template functions; we
2322 can't know their complete types. */
2323 if (processing_template_decl)
2324 return NULL_TREE;
2325
2326 switch (TREE_CODE (t))
2327 {
2328 case RECORD_TYPE:
2329 if (TYPE_PTRMEMFUNC_P (t))
2330 goto ptrmem;
2331 /* Lambda types that don't have mangling scope have no linkage. We
2332 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2333 when we get here from pushtag none of the lambda information is
2334 set up yet, so we want to assume that the lambda has linkage and
2335 fix it up later if not. */
2336 if (CLASSTYPE_LAMBDA_EXPR (t)
2337 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2338 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2339 return t;
2340 /* Fall through. */
2341 case UNION_TYPE:
2342 if (!CLASS_TYPE_P (t))
2343 return NULL_TREE;
2344 /* Fall through. */
2345 case ENUMERAL_TYPE:
2346 /* Only treat anonymous types as having no linkage if they're at
2347 namespace scope. This is core issue 966. */
2348 if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2349 return t;
2350
2351 for (r = CP_TYPE_CONTEXT (t); ; )
2352 {
2353 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2354 have linkage, or we might just be in an anonymous namespace.
2355 If we're in a TREE_PUBLIC class, we have linkage. */
2356 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2357 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2358 else if (TREE_CODE (r) == FUNCTION_DECL)
2359 {
2360 if (!relaxed_p || !vague_linkage_p (r))
2361 return t;
2362 else
2363 r = CP_DECL_CONTEXT (r);
2364 }
2365 else
2366 break;
2367 }
2368
2369 return NULL_TREE;
2370
2371 case ARRAY_TYPE:
2372 case POINTER_TYPE:
2373 case REFERENCE_TYPE:
2374 case VECTOR_TYPE:
2375 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2376
2377 case OFFSET_TYPE:
2378 ptrmem:
2379 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2380 relaxed_p);
2381 if (r)
2382 return r;
2383 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2384
2385 case METHOD_TYPE:
2386 case FUNCTION_TYPE:
2387 {
2388 tree parm = TYPE_ARG_TYPES (t);
2389 if (TREE_CODE (t) == METHOD_TYPE)
2390 /* The 'this' pointer isn't interesting; a method has the same
2391 linkage (or lack thereof) as its enclosing class. */
2392 parm = TREE_CHAIN (parm);
2393 for (;
2394 parm && parm != void_list_node;
2395 parm = TREE_CHAIN (parm))
2396 {
2397 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2398 if (r)
2399 return r;
2400 }
2401 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2402 }
2403
2404 default:
2405 return NULL_TREE;
2406 }
2407 }
2408
2409 extern int depth_reached;
2410
2411 void
2412 cxx_print_statistics (void)
2413 {
2414 print_search_statistics ();
2415 print_class_statistics ();
2416 print_template_statistics ();
2417 if (GATHER_STATISTICS)
2418 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2419 depth_reached);
2420 }
2421
2422 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2423 (which is an ARRAY_TYPE). This counts only elements of the top
2424 array. */
2425
2426 tree
2427 array_type_nelts_top (tree type)
2428 {
2429 return fold_build2_loc (input_location,
2430 PLUS_EXPR, sizetype,
2431 array_type_nelts (type),
2432 size_one_node);
2433 }
2434
2435 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2436 (which is an ARRAY_TYPE). This one is a recursive count of all
2437 ARRAY_TYPEs that are clumped together. */
2438
2439 tree
2440 array_type_nelts_total (tree type)
2441 {
2442 tree sz = array_type_nelts_top (type);
2443 type = TREE_TYPE (type);
2444 while (TREE_CODE (type) == ARRAY_TYPE)
2445 {
2446 tree n = array_type_nelts_top (type);
2447 sz = fold_build2_loc (input_location,
2448 MULT_EXPR, sizetype, sz, n);
2449 type = TREE_TYPE (type);
2450 }
2451 return sz;
2452 }
2453
2454 /* Called from break_out_target_exprs via mapcar. */
2455
2456 static tree
2457 bot_manip (tree* tp, int* walk_subtrees, void* data)
2458 {
2459 splay_tree target_remap = ((splay_tree) data);
2460 tree t = *tp;
2461
2462 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2463 {
2464 /* There can't be any TARGET_EXPRs or their slot variables below this
2465 point. But we must make a copy, in case subsequent processing
2466 alters any part of it. For example, during gimplification a cast
2467 of the form (T) &X::f (where "f" is a member function) will lead
2468 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2469 *walk_subtrees = 0;
2470 *tp = unshare_expr (t);
2471 return NULL_TREE;
2472 }
2473 if (TREE_CODE (t) == TARGET_EXPR)
2474 {
2475 tree u;
2476
2477 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2478 {
2479 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2480 tf_warning_or_error);
2481 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2482 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2483 }
2484 else
2485 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2486 tf_warning_or_error);
2487
2488 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2489 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2490 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2491
2492 /* Map the old variable to the new one. */
2493 splay_tree_insert (target_remap,
2494 (splay_tree_key) TREE_OPERAND (t, 0),
2495 (splay_tree_value) TREE_OPERAND (u, 0));
2496
2497 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2498
2499 /* Replace the old expression with the new version. */
2500 *tp = u;
2501 /* We don't have to go below this point; the recursive call to
2502 break_out_target_exprs will have handled anything below this
2503 point. */
2504 *walk_subtrees = 0;
2505 return NULL_TREE;
2506 }
2507 if (TREE_CODE (*tp) == SAVE_EXPR)
2508 {
2509 t = *tp;
2510 splay_tree_node n = splay_tree_lookup (target_remap,
2511 (splay_tree_key) t);
2512 if (n)
2513 {
2514 *tp = (tree)n->value;
2515 *walk_subtrees = 0;
2516 }
2517 else
2518 {
2519 copy_tree_r (tp, walk_subtrees, NULL);
2520 splay_tree_insert (target_remap,
2521 (splay_tree_key)t,
2522 (splay_tree_value)*tp);
2523 /* Make sure we don't remap an already-remapped SAVE_EXPR. */
2524 splay_tree_insert (target_remap,
2525 (splay_tree_key)*tp,
2526 (splay_tree_value)*tp);
2527 }
2528 return NULL_TREE;
2529 }
2530
2531 /* Make a copy of this node. */
2532 t = copy_tree_r (tp, walk_subtrees, NULL);
2533 if (TREE_CODE (*tp) == CALL_EXPR)
2534 {
2535 set_flags_from_callee (*tp);
2536
2537 /* builtin_LINE and builtin_FILE get the location where the default
2538 argument is expanded, not where the call was written. */
2539 tree callee = get_callee_fndecl (*tp);
2540 if (callee && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
2541 switch (DECL_FUNCTION_CODE (callee))
2542 {
2543 case BUILT_IN_FILE:
2544 case BUILT_IN_LINE:
2545 SET_EXPR_LOCATION (*tp, input_location);
2546 default:
2547 break;
2548 }
2549 }
2550 return t;
2551 }
2552
2553 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2554 DATA is really a splay-tree mapping old variables to new
2555 variables. */
2556
2557 static tree
2558 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2559 {
2560 splay_tree target_remap = ((splay_tree) data);
2561
2562 if (VAR_P (*t))
2563 {
2564 splay_tree_node n = splay_tree_lookup (target_remap,
2565 (splay_tree_key) *t);
2566 if (n)
2567 *t = (tree) n->value;
2568 }
2569 else if (TREE_CODE (*t) == PARM_DECL
2570 && DECL_NAME (*t) == this_identifier
2571 && !DECL_CONTEXT (*t))
2572 {
2573 /* In an NSDMI we need to replace the 'this' parameter we used for
2574 parsing with the real one for this function. */
2575 *t = current_class_ptr;
2576 }
2577 else if (TREE_CODE (*t) == CONVERT_EXPR
2578 && CONVERT_EXPR_VBASE_PATH (*t))
2579 {
2580 /* In an NSDMI build_base_path defers building conversions to virtual
2581 bases, and we handle it here. */
2582 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2583 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2584 int i; tree binfo;
2585 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2586 if (BINFO_TYPE (binfo) == basetype)
2587 break;
2588 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
2589 tf_warning_or_error);
2590 }
2591
2592 return NULL_TREE;
2593 }
2594
2595 /* When we parse a default argument expression, we may create
2596 temporary variables via TARGET_EXPRs. When we actually use the
2597 default-argument expression, we make a copy of the expression
2598 and replace the temporaries with appropriate local versions. */
2599
2600 tree
2601 break_out_target_exprs (tree t)
2602 {
2603 static int target_remap_count;
2604 static splay_tree target_remap;
2605
2606 if (!target_remap_count++)
2607 target_remap = splay_tree_new (splay_tree_compare_pointers,
2608 /*splay_tree_delete_key_fn=*/NULL,
2609 /*splay_tree_delete_value_fn=*/NULL);
2610 cp_walk_tree (&t, bot_manip, target_remap, NULL);
2611 cp_walk_tree (&t, bot_replace, target_remap, NULL);
2612
2613 if (!--target_remap_count)
2614 {
2615 splay_tree_delete (target_remap);
2616 target_remap = NULL;
2617 }
2618
2619 return t;
2620 }
2621
2622 /* Build an expression for the subobject of OBJ at CONSTRUCTOR index INDEX,
2623 which we expect to have type TYPE. */
2624
2625 tree
2626 build_ctor_subob_ref (tree index, tree type, tree obj)
2627 {
2628 if (index == NULL_TREE)
2629 /* Can't refer to a particular member of a vector. */
2630 obj = NULL_TREE;
2631 else if (TREE_CODE (index) == INTEGER_CST)
2632 obj = cp_build_array_ref (input_location, obj, index, tf_none);
2633 else
2634 obj = build_class_member_access_expr (obj, index, NULL_TREE,
2635 /*reference*/false, tf_none);
2636 if (obj)
2637 {
2638 tree objtype = TREE_TYPE (obj);
2639 if (TREE_CODE (objtype) == ARRAY_TYPE && !TYPE_DOMAIN (objtype))
2640 {
2641 /* When the destination object refers to a flexible array member
2642 verify that it matches the type of the source object except
2643 for its domain and qualifiers. */
2644 gcc_assert (comptypes (TYPE_MAIN_VARIANT (type),
2645 TYPE_MAIN_VARIANT (objtype),
2646 COMPARE_REDECLARATION));
2647 }
2648 else
2649 gcc_assert (same_type_ignoring_top_level_qualifiers_p (type, objtype));
2650 }
2651
2652 return obj;
2653 }
2654
2655 /* Like substitute_placeholder_in_expr, but handle C++ tree codes and
2656 build up subexpressions as we go deeper. */
2657
2658 static tree
2659 replace_placeholders_r (tree* t, int* walk_subtrees, void* data_)
2660 {
2661 tree obj = static_cast<tree>(data_);
2662
2663 if (TREE_CONSTANT (*t))
2664 {
2665 *walk_subtrees = false;
2666 return NULL_TREE;
2667 }
2668
2669 switch (TREE_CODE (*t))
2670 {
2671 case PLACEHOLDER_EXPR:
2672 {
2673 tree x = obj;
2674 for (; !(same_type_ignoring_top_level_qualifiers_p
2675 (TREE_TYPE (*t), TREE_TYPE (x)));
2676 x = TREE_OPERAND (x, 0))
2677 gcc_assert (TREE_CODE (x) == COMPONENT_REF);
2678 *t = x;
2679 *walk_subtrees = false;
2680 }
2681 break;
2682
2683 case CONSTRUCTOR:
2684 {
2685 constructor_elt *ce;
2686 vec<constructor_elt,va_gc> *v = CONSTRUCTOR_ELTS (*t);
2687 for (unsigned i = 0; vec_safe_iterate (v, i, &ce); ++i)
2688 {
2689 tree *valp = &ce->value;
2690 tree type = TREE_TYPE (*valp);
2691 tree subob = obj;
2692
2693 if (TREE_CODE (*valp) == CONSTRUCTOR
2694 && AGGREGATE_TYPE_P (type))
2695 {
2696 /* If we're looking at the initializer for OBJ, then build
2697 a sub-object reference. If we're looking at an
2698 initializer for another object, just pass OBJ down. */
2699 if (same_type_ignoring_top_level_qualifiers_p
2700 (TREE_TYPE (*t), TREE_TYPE (obj)))
2701 subob = build_ctor_subob_ref (ce->index, type, obj);
2702 if (TREE_CODE (*valp) == TARGET_EXPR)
2703 valp = &TARGET_EXPR_INITIAL (*valp);
2704 }
2705
2706 cp_walk_tree (valp, replace_placeholders_r,
2707 subob, NULL);
2708 }
2709 *walk_subtrees = false;
2710 break;
2711 }
2712
2713 default:
2714 break;
2715 }
2716
2717 return NULL_TREE;
2718 }
2719
2720 tree
2721 replace_placeholders (tree exp, tree obj)
2722 {
2723 tree *tp = &exp;
2724 if (TREE_CODE (exp) == TARGET_EXPR)
2725 tp = &TARGET_EXPR_INITIAL (exp);
2726 cp_walk_tree (tp, replace_placeholders_r, obj, NULL);
2727 return exp;
2728 }
2729
2730 /* Similar to `build_nt', but for template definitions of dependent
2731 expressions */
2732
2733 tree
2734 build_min_nt_loc (location_t loc, enum tree_code code, ...)
2735 {
2736 tree t;
2737 int length;
2738 int i;
2739 va_list p;
2740
2741 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2742
2743 va_start (p, code);
2744
2745 t = make_node (code);
2746 SET_EXPR_LOCATION (t, loc);
2747 length = TREE_CODE_LENGTH (code);
2748
2749 for (i = 0; i < length; i++)
2750 {
2751 tree x = va_arg (p, tree);
2752 TREE_OPERAND (t, i) = x;
2753 }
2754
2755 va_end (p);
2756 return t;
2757 }
2758
2759
2760 /* Similar to `build', but for template definitions. */
2761
2762 tree
2763 build_min (enum tree_code code, tree tt, ...)
2764 {
2765 tree t;
2766 int length;
2767 int i;
2768 va_list p;
2769
2770 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2771
2772 va_start (p, tt);
2773
2774 t = make_node (code);
2775 length = TREE_CODE_LENGTH (code);
2776 TREE_TYPE (t) = tt;
2777
2778 for (i = 0; i < length; i++)
2779 {
2780 tree x = va_arg (p, tree);
2781 TREE_OPERAND (t, i) = x;
2782 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
2783 TREE_SIDE_EFFECTS (t) = 1;
2784 }
2785
2786 va_end (p);
2787 return t;
2788 }
2789
2790 /* Similar to `build', but for template definitions of non-dependent
2791 expressions. NON_DEP is the non-dependent expression that has been
2792 built. */
2793
2794 tree
2795 build_min_non_dep (enum tree_code code, tree non_dep, ...)
2796 {
2797 tree t;
2798 int length;
2799 int i;
2800 va_list p;
2801
2802 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2803
2804 va_start (p, non_dep);
2805
2806 if (REFERENCE_REF_P (non_dep))
2807 non_dep = TREE_OPERAND (non_dep, 0);
2808
2809 t = make_node (code);
2810 length = TREE_CODE_LENGTH (code);
2811 TREE_TYPE (t) = TREE_TYPE (non_dep);
2812 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2813
2814 for (i = 0; i < length; i++)
2815 {
2816 tree x = va_arg (p, tree);
2817 TREE_OPERAND (t, i) = x;
2818 }
2819
2820 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
2821 /* This should not be considered a COMPOUND_EXPR, because it
2822 resolves to an overload. */
2823 COMPOUND_EXPR_OVERLOADED (t) = 1;
2824
2825 va_end (p);
2826 return convert_from_reference (t);
2827 }
2828
2829 /* Similar to `build_nt_call_vec', but for template definitions of
2830 non-dependent expressions. NON_DEP is the non-dependent expression
2831 that has been built. */
2832
2833 tree
2834 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
2835 {
2836 tree t = build_nt_call_vec (fn, argvec);
2837 if (REFERENCE_REF_P (non_dep))
2838 non_dep = TREE_OPERAND (non_dep, 0);
2839 TREE_TYPE (t) = TREE_TYPE (non_dep);
2840 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2841 return convert_from_reference (t);
2842 }
2843
2844 /* Similar to build_min_non_dep, but for expressions that have been resolved to
2845 a call to an operator overload. OP is the operator that has been
2846 overloaded. NON_DEP is the non-dependent expression that's been built,
2847 which should be a CALL_EXPR or an INDIRECT_REF to a CALL_EXPR. OVERLOAD is
2848 the overload that NON_DEP is calling. */
2849
2850 tree
2851 build_min_non_dep_op_overload (enum tree_code op,
2852 tree non_dep,
2853 tree overload, ...)
2854 {
2855 va_list p;
2856 int nargs, expected_nargs;
2857 tree fn, call;
2858 vec<tree, va_gc> *args;
2859
2860 non_dep = extract_call_expr (non_dep);
2861
2862 nargs = call_expr_nargs (non_dep);
2863
2864 expected_nargs = cp_tree_code_length (op);
2865 if (op == POSTINCREMENT_EXPR
2866 || op == POSTDECREMENT_EXPR)
2867 expected_nargs += 1;
2868 gcc_assert (nargs == expected_nargs);
2869
2870 args = make_tree_vector ();
2871 va_start (p, overload);
2872
2873 if (TREE_CODE (TREE_TYPE (overload)) == FUNCTION_TYPE)
2874 {
2875 fn = overload;
2876 for (int i = 0; i < nargs; i++)
2877 {
2878 tree arg = va_arg (p, tree);
2879 vec_safe_push (args, arg);
2880 }
2881 }
2882 else if (TREE_CODE (TREE_TYPE (overload)) == METHOD_TYPE)
2883 {
2884 tree object = va_arg (p, tree);
2885 tree binfo = TYPE_BINFO (TREE_TYPE (object));
2886 tree method = build_baselink (binfo, binfo, overload, NULL_TREE);
2887 fn = build_min (COMPONENT_REF, TREE_TYPE (overload),
2888 object, method, NULL_TREE);
2889 for (int i = 1; i < nargs; i++)
2890 {
2891 tree arg = va_arg (p, tree);
2892 vec_safe_push (args, arg);
2893 }
2894 }
2895 else
2896 gcc_unreachable ();
2897
2898 va_end (p);
2899 call = build_min_non_dep_call_vec (non_dep, fn, args);
2900 release_tree_vector (args);
2901
2902 tree call_expr = extract_call_expr (call);
2903 KOENIG_LOOKUP_P (call_expr) = KOENIG_LOOKUP_P (non_dep);
2904 CALL_EXPR_OPERATOR_SYNTAX (call_expr) = true;
2905 CALL_EXPR_ORDERED_ARGS (call_expr) = CALL_EXPR_ORDERED_ARGS (non_dep);
2906 CALL_EXPR_REVERSE_ARGS (call_expr) = CALL_EXPR_REVERSE_ARGS (non_dep);
2907
2908 return call;
2909 }
2910
2911 tree
2912 get_type_decl (tree t)
2913 {
2914 if (TREE_CODE (t) == TYPE_DECL)
2915 return t;
2916 if (TYPE_P (t))
2917 return TYPE_STUB_DECL (t);
2918 gcc_assert (t == error_mark_node);
2919 return t;
2920 }
2921
2922 /* Returns the namespace that contains DECL, whether directly or
2923 indirectly. */
2924
2925 tree
2926 decl_namespace_context (tree decl)
2927 {
2928 while (1)
2929 {
2930 if (TREE_CODE (decl) == NAMESPACE_DECL)
2931 return decl;
2932 else if (TYPE_P (decl))
2933 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
2934 else
2935 decl = CP_DECL_CONTEXT (decl);
2936 }
2937 }
2938
2939 /* Returns true if decl is within an anonymous namespace, however deeply
2940 nested, or false otherwise. */
2941
2942 bool
2943 decl_anon_ns_mem_p (const_tree decl)
2944 {
2945 while (1)
2946 {
2947 if (decl == NULL_TREE || decl == error_mark_node)
2948 return false;
2949 if (TREE_CODE (decl) == NAMESPACE_DECL
2950 && DECL_NAME (decl) == NULL_TREE)
2951 return true;
2952 /* Classes and namespaces inside anonymous namespaces have
2953 TREE_PUBLIC == 0, so we can shortcut the search. */
2954 else if (TYPE_P (decl))
2955 return (TREE_PUBLIC (TYPE_MAIN_DECL (decl)) == 0);
2956 else if (TREE_CODE (decl) == NAMESPACE_DECL)
2957 return (TREE_PUBLIC (decl) == 0);
2958 else
2959 decl = DECL_CONTEXT (decl);
2960 }
2961 }
2962
2963 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
2964 CALL_EXPRS. Return whether they are equivalent. */
2965
2966 static bool
2967 called_fns_equal (tree t1, tree t2)
2968 {
2969 /* Core 1321: dependent names are equivalent even if the overload sets
2970 are different. But do compare explicit template arguments. */
2971 tree name1 = dependent_name (t1);
2972 tree name2 = dependent_name (t2);
2973 if (name1 || name2)
2974 {
2975 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
2976
2977 if (name1 != name2)
2978 return false;
2979
2980 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
2981 targs1 = TREE_OPERAND (t1, 1);
2982 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
2983 targs2 = TREE_OPERAND (t2, 1);
2984 return cp_tree_equal (targs1, targs2);
2985 }
2986 else
2987 return cp_tree_equal (t1, t2);
2988 }
2989
2990 /* Return truthvalue of whether T1 is the same tree structure as T2.
2991 Return 1 if they are the same. Return 0 if they are different. */
2992
2993 bool
2994 cp_tree_equal (tree t1, tree t2)
2995 {
2996 enum tree_code code1, code2;
2997
2998 if (t1 == t2)
2999 return true;
3000 if (!t1 || !t2)
3001 return false;
3002
3003 code1 = TREE_CODE (t1);
3004 code2 = TREE_CODE (t2);
3005
3006 if (code1 != code2)
3007 return false;
3008
3009 switch (code1)
3010 {
3011 case VOID_CST:
3012 /* There's only a single VOID_CST node, so we should never reach
3013 here. */
3014 gcc_unreachable ();
3015
3016 case INTEGER_CST:
3017 return tree_int_cst_equal (t1, t2);
3018
3019 case REAL_CST:
3020 return real_equal (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
3021
3022 case STRING_CST:
3023 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3024 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3025 TREE_STRING_LENGTH (t1));
3026
3027 case FIXED_CST:
3028 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
3029 TREE_FIXED_CST (t2));
3030
3031 case COMPLEX_CST:
3032 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
3033 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
3034
3035 case VECTOR_CST:
3036 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
3037
3038 case CONSTRUCTOR:
3039 /* We need to do this when determining whether or not two
3040 non-type pointer to member function template arguments
3041 are the same. */
3042 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
3043 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
3044 return false;
3045 {
3046 tree field, value;
3047 unsigned int i;
3048 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
3049 {
3050 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
3051 if (!cp_tree_equal (field, elt2->index)
3052 || !cp_tree_equal (value, elt2->value))
3053 return false;
3054 }
3055 }
3056 return true;
3057
3058 case TREE_LIST:
3059 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
3060 return false;
3061 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
3062 return false;
3063 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
3064
3065 case SAVE_EXPR:
3066 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3067
3068 case CALL_EXPR:
3069 {
3070 tree arg1, arg2;
3071 call_expr_arg_iterator iter1, iter2;
3072 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
3073 return false;
3074 for (arg1 = first_call_expr_arg (t1, &iter1),
3075 arg2 = first_call_expr_arg (t2, &iter2);
3076 arg1 && arg2;
3077 arg1 = next_call_expr_arg (&iter1),
3078 arg2 = next_call_expr_arg (&iter2))
3079 if (!cp_tree_equal (arg1, arg2))
3080 return false;
3081 if (arg1 || arg2)
3082 return false;
3083 return true;
3084 }
3085
3086 case TARGET_EXPR:
3087 {
3088 tree o1 = TREE_OPERAND (t1, 0);
3089 tree o2 = TREE_OPERAND (t2, 0);
3090
3091 /* Special case: if either target is an unallocated VAR_DECL,
3092 it means that it's going to be unified with whatever the
3093 TARGET_EXPR is really supposed to initialize, so treat it
3094 as being equivalent to anything. */
3095 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
3096 && !DECL_RTL_SET_P (o1))
3097 /*Nop*/;
3098 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
3099 && !DECL_RTL_SET_P (o2))
3100 /*Nop*/;
3101 else if (!cp_tree_equal (o1, o2))
3102 return false;
3103
3104 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3105 }
3106
3107 case WITH_CLEANUP_EXPR:
3108 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3109 return false;
3110 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3111
3112 case COMPONENT_REF:
3113 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
3114 return false;
3115 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3116
3117 case PARM_DECL:
3118 /* For comparing uses of parameters in late-specified return types
3119 with an out-of-class definition of the function, but can also come
3120 up for expressions that involve 'this' in a member function
3121 template. */
3122
3123 if (comparing_specializations && !CONSTRAINT_VAR_P (t1))
3124 /* When comparing hash table entries, only an exact match is
3125 good enough; we don't want to replace 'this' with the
3126 version from another function. But be more flexible
3127 with local parameters in a requires-expression. */
3128 return false;
3129
3130 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3131 {
3132 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
3133 return false;
3134 if (CONSTRAINT_VAR_P (t1) ^ CONSTRAINT_VAR_P (t2))
3135 return false;
3136 if (DECL_ARTIFICIAL (t1)
3137 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
3138 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
3139 return true;
3140 }
3141 return false;
3142
3143 case VAR_DECL:
3144 case CONST_DECL:
3145 case FIELD_DECL:
3146 case FUNCTION_DECL:
3147 case TEMPLATE_DECL:
3148 case IDENTIFIER_NODE:
3149 case SSA_NAME:
3150 return false;
3151
3152 case BASELINK:
3153 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
3154 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
3155 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
3156 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
3157 BASELINK_FUNCTIONS (t2)));
3158
3159 case TEMPLATE_PARM_INDEX:
3160 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
3161 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
3162 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
3163 == TEMPLATE_PARM_PARAMETER_PACK (t2))
3164 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
3165 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
3166
3167 case TEMPLATE_ID_EXPR:
3168 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
3169 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
3170
3171 case CONSTRAINT_INFO:
3172 return cp_tree_equal (CI_ASSOCIATED_CONSTRAINTS (t1),
3173 CI_ASSOCIATED_CONSTRAINTS (t2));
3174
3175 case TREE_VEC:
3176 {
3177 unsigned ix;
3178 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
3179 return false;
3180 for (ix = TREE_VEC_LENGTH (t1); ix--;)
3181 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
3182 TREE_VEC_ELT (t2, ix)))
3183 return false;
3184 return true;
3185 }
3186
3187 case SIZEOF_EXPR:
3188 case ALIGNOF_EXPR:
3189 {
3190 tree o1 = TREE_OPERAND (t1, 0);
3191 tree o2 = TREE_OPERAND (t2, 0);
3192
3193 if (code1 == SIZEOF_EXPR)
3194 {
3195 if (SIZEOF_EXPR_TYPE_P (t1))
3196 o1 = TREE_TYPE (o1);
3197 if (SIZEOF_EXPR_TYPE_P (t2))
3198 o2 = TREE_TYPE (o2);
3199 }
3200 if (TREE_CODE (o1) != TREE_CODE (o2))
3201 return false;
3202 if (TYPE_P (o1))
3203 return same_type_p (o1, o2);
3204 else
3205 return cp_tree_equal (o1, o2);
3206 }
3207
3208 case MODOP_EXPR:
3209 {
3210 tree t1_op1, t2_op1;
3211
3212 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3213 return false;
3214
3215 t1_op1 = TREE_OPERAND (t1, 1);
3216 t2_op1 = TREE_OPERAND (t2, 1);
3217 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
3218 return false;
3219
3220 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
3221 }
3222
3223 case PTRMEM_CST:
3224 /* Two pointer-to-members are the same if they point to the same
3225 field or function in the same class. */
3226 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
3227 return false;
3228
3229 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
3230
3231 case OVERLOAD:
3232 if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
3233 return false;
3234 return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
3235
3236 case TRAIT_EXPR:
3237 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
3238 return false;
3239 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
3240 && cp_tree_equal (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
3241
3242 case CAST_EXPR:
3243 case STATIC_CAST_EXPR:
3244 case REINTERPRET_CAST_EXPR:
3245 case CONST_CAST_EXPR:
3246 case DYNAMIC_CAST_EXPR:
3247 case IMPLICIT_CONV_EXPR:
3248 case NEW_EXPR:
3249 CASE_CONVERT:
3250 case NON_LVALUE_EXPR:
3251 case VIEW_CONVERT_EXPR:
3252 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3253 return false;
3254 /* Now compare operands as usual. */
3255 break;
3256
3257 case DEFERRED_NOEXCEPT:
3258 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
3259 DEFERRED_NOEXCEPT_PATTERN (t2))
3260 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
3261 DEFERRED_NOEXCEPT_ARGS (t2)));
3262 break;
3263
3264 default:
3265 break;
3266 }
3267
3268 switch (TREE_CODE_CLASS (code1))
3269 {
3270 case tcc_unary:
3271 case tcc_binary:
3272 case tcc_comparison:
3273 case tcc_expression:
3274 case tcc_vl_exp:
3275 case tcc_reference:
3276 case tcc_statement:
3277 {
3278 int i, n;
3279
3280 n = cp_tree_operand_length (t1);
3281 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
3282 && n != TREE_OPERAND_LENGTH (t2))
3283 return false;
3284
3285 for (i = 0; i < n; ++i)
3286 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
3287 return false;
3288
3289 return true;
3290 }
3291
3292 case tcc_type:
3293 return same_type_p (t1, t2);
3294 default:
3295 gcc_unreachable ();
3296 }
3297 /* We can get here with --disable-checking. */
3298 return false;
3299 }
3300
3301 /* The type of ARG when used as an lvalue. */
3302
3303 tree
3304 lvalue_type (tree arg)
3305 {
3306 tree type = TREE_TYPE (arg);
3307 return type;
3308 }
3309
3310 /* The type of ARG for printing error messages; denote lvalues with
3311 reference types. */
3312
3313 tree
3314 error_type (tree arg)
3315 {
3316 tree type = TREE_TYPE (arg);
3317
3318 if (TREE_CODE (type) == ARRAY_TYPE)
3319 ;
3320 else if (TREE_CODE (type) == ERROR_MARK)
3321 ;
3322 else if (real_lvalue_p (arg))
3323 type = build_reference_type (lvalue_type (arg));
3324 else if (MAYBE_CLASS_TYPE_P (type))
3325 type = lvalue_type (arg);
3326
3327 return type;
3328 }
3329
3330 /* Does FUNCTION use a variable-length argument list? */
3331
3332 int
3333 varargs_function_p (const_tree function)
3334 {
3335 return stdarg_p (TREE_TYPE (function));
3336 }
3337
3338 /* Returns 1 if decl is a member of a class. */
3339
3340 int
3341 member_p (const_tree decl)
3342 {
3343 const_tree const ctx = DECL_CONTEXT (decl);
3344 return (ctx && TYPE_P (ctx));
3345 }
3346
3347 /* Create a placeholder for member access where we don't actually have an
3348 object that the access is against. */
3349
3350 tree
3351 build_dummy_object (tree type)
3352 {
3353 tree decl = build1 (CONVERT_EXPR, build_pointer_type (type), void_node);
3354 return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
3355 }
3356
3357 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
3358 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
3359 binfo path from current_class_type to TYPE, or 0. */
3360
3361 tree
3362 maybe_dummy_object (tree type, tree* binfop)
3363 {
3364 tree decl, context;
3365 tree binfo;
3366 tree current = current_nonlambda_class_type ();
3367
3368 if (current
3369 && (binfo = lookup_base (current, type, ba_any, NULL,
3370 tf_warning_or_error)))
3371 context = current;
3372 else
3373 {
3374 /* Reference from a nested class member function. */
3375 context = type;
3376 binfo = TYPE_BINFO (type);
3377 }
3378
3379 if (binfop)
3380 *binfop = binfo;
3381
3382 if (current_class_ref
3383 /* current_class_ref might not correspond to current_class_type if
3384 we're in tsubst_default_argument or a lambda-declarator; in either
3385 case, we want to use current_class_ref if it matches CONTEXT. */
3386 && (same_type_ignoring_top_level_qualifiers_p
3387 (TREE_TYPE (current_class_ref), context)))
3388 decl = current_class_ref;
3389 else
3390 decl = build_dummy_object (context);
3391
3392 return decl;
3393 }
3394
3395 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
3396
3397 int
3398 is_dummy_object (const_tree ob)
3399 {
3400 if (INDIRECT_REF_P (ob))
3401 ob = TREE_OPERAND (ob, 0);
3402 return (TREE_CODE (ob) == CONVERT_EXPR
3403 && TREE_OPERAND (ob, 0) == void_node);
3404 }
3405
3406 /* Returns 1 iff type T is something we want to treat as a scalar type for
3407 the purpose of deciding whether it is trivial/POD/standard-layout. */
3408
3409 bool
3410 scalarish_type_p (const_tree t)
3411 {
3412 if (t == error_mark_node)
3413 return 1;
3414
3415 return (SCALAR_TYPE_P (t) || VECTOR_TYPE_P (t));
3416 }
3417
3418 /* Returns true iff T requires non-trivial default initialization. */
3419
3420 bool
3421 type_has_nontrivial_default_init (const_tree t)
3422 {
3423 t = strip_array_types (CONST_CAST_TREE (t));
3424
3425 if (CLASS_TYPE_P (t))
3426 return TYPE_HAS_COMPLEX_DFLT (t);
3427 else
3428 return 0;
3429 }
3430
3431 /* Returns true iff copying an object of type T (including via move
3432 constructor) is non-trivial. That is, T has no non-trivial copy
3433 constructors and no non-trivial move constructors. */
3434
3435 bool
3436 type_has_nontrivial_copy_init (const_tree t)
3437 {
3438 t = strip_array_types (CONST_CAST_TREE (t));
3439
3440 if (CLASS_TYPE_P (t))
3441 {
3442 gcc_assert (COMPLETE_TYPE_P (t));
3443 return ((TYPE_HAS_COPY_CTOR (t)
3444 && TYPE_HAS_COMPLEX_COPY_CTOR (t))
3445 || TYPE_HAS_COMPLEX_MOVE_CTOR (t));
3446 }
3447 else
3448 return 0;
3449 }
3450
3451 /* Returns 1 iff type T is a trivially copyable type, as defined in
3452 [basic.types] and [class]. */
3453
3454 bool
3455 trivially_copyable_p (const_tree t)
3456 {
3457 t = strip_array_types (CONST_CAST_TREE (t));
3458
3459 if (CLASS_TYPE_P (t))
3460 return ((!TYPE_HAS_COPY_CTOR (t)
3461 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
3462 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
3463 && (!TYPE_HAS_COPY_ASSIGN (t)
3464 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
3465 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
3466 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
3467 else
3468 return !CP_TYPE_VOLATILE_P (t) && scalarish_type_p (t);
3469 }
3470
3471 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
3472 [class]. */
3473
3474 bool
3475 trivial_type_p (const_tree t)
3476 {
3477 t = strip_array_types (CONST_CAST_TREE (t));
3478
3479 if (CLASS_TYPE_P (t))
3480 return (TYPE_HAS_TRIVIAL_DFLT (t)
3481 && trivially_copyable_p (t));
3482 else
3483 return scalarish_type_p (t);
3484 }
3485
3486 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
3487
3488 bool
3489 pod_type_p (const_tree t)
3490 {
3491 /* This CONST_CAST is okay because strip_array_types returns its
3492 argument unmodified and we assign it to a const_tree. */
3493 t = strip_array_types (CONST_CAST_TREE(t));
3494
3495 if (!CLASS_TYPE_P (t))
3496 return scalarish_type_p (t);
3497 else if (cxx_dialect > cxx98)
3498 /* [class]/10: A POD struct is a class that is both a trivial class and a
3499 standard-layout class, and has no non-static data members of type
3500 non-POD struct, non-POD union (or array of such types).
3501
3502 We don't need to check individual members because if a member is
3503 non-std-layout or non-trivial, the class will be too. */
3504 return (std_layout_type_p (t) && trivial_type_p (t));
3505 else
3506 /* The C++98 definition of POD is different. */
3507 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3508 }
3509
3510 /* Returns true iff T is POD for the purpose of layout, as defined in the
3511 C++ ABI. */
3512
3513 bool
3514 layout_pod_type_p (const_tree t)
3515 {
3516 t = strip_array_types (CONST_CAST_TREE (t));
3517
3518 if (CLASS_TYPE_P (t))
3519 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3520 else
3521 return scalarish_type_p (t);
3522 }
3523
3524 /* Returns true iff T is a standard-layout type, as defined in
3525 [basic.types]. */
3526
3527 bool
3528 std_layout_type_p (const_tree t)
3529 {
3530 t = strip_array_types (CONST_CAST_TREE (t));
3531
3532 if (CLASS_TYPE_P (t))
3533 return !CLASSTYPE_NON_STD_LAYOUT (t);
3534 else
3535 return scalarish_type_p (t);
3536 }
3537
3538 /* Nonzero iff type T is a class template implicit specialization. */
3539
3540 bool
3541 class_tmpl_impl_spec_p (const_tree t)
3542 {
3543 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
3544 }
3545
3546 /* Returns 1 iff zero initialization of type T means actually storing
3547 zeros in it. */
3548
3549 int
3550 zero_init_p (const_tree t)
3551 {
3552 /* This CONST_CAST is okay because strip_array_types returns its
3553 argument unmodified and we assign it to a const_tree. */
3554 t = strip_array_types (CONST_CAST_TREE(t));
3555
3556 if (t == error_mark_node)
3557 return 1;
3558
3559 /* NULL pointers to data members are initialized with -1. */
3560 if (TYPE_PTRDATAMEM_P (t))
3561 return 0;
3562
3563 /* Classes that contain types that can't be zero-initialized, cannot
3564 be zero-initialized themselves. */
3565 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
3566 return 0;
3567
3568 return 1;
3569 }
3570
3571 /* Handle the C++17 [[nodiscard]] attribute, which is similar to the GNU
3572 warn_unused_result attribute. */
3573
3574 static tree
3575 handle_nodiscard_attribute (tree *node, tree name, tree /*args*/,
3576 int /*flags*/, bool *no_add_attrs)
3577 {
3578 if (TREE_CODE (*node) == FUNCTION_DECL)
3579 {
3580 if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
3581 warning (OPT_Wattributes, "%qE attribute applied to %qD with void "
3582 "return type", name, *node);
3583 }
3584 else if (OVERLOAD_TYPE_P (*node))
3585 /* OK */;
3586 else
3587 {
3588 warning (OPT_Wattributes, "%qE attribute can only be applied to "
3589 "functions or to class or enumeration types", name);
3590 *no_add_attrs = true;
3591 }
3592 return NULL_TREE;
3593 }
3594
3595 /* Table of valid C++ attributes. */
3596 const struct attribute_spec cxx_attribute_table[] =
3597 {
3598 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3599 affects_type_identity } */
3600 { "java_interface", 0, 0, false, false, false,
3601 handle_java_interface_attribute, false },
3602 { "init_priority", 1, 1, true, false, false,
3603 handle_init_priority_attribute, false },
3604 { "abi_tag", 1, -1, false, false, false,
3605 handle_abi_tag_attribute, true },
3606 { NULL, 0, 0, false, false, false, NULL, false }
3607 };
3608
3609 /* Table of C++ standard attributes. */
3610 const struct attribute_spec std_attribute_table[] =
3611 {
3612 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3613 affects_type_identity } */
3614 { "maybe_unused", 0, 0, false, false, false,
3615 handle_unused_attribute, false },
3616 { "nodiscard", 0, 0, false, false, false,
3617 handle_nodiscard_attribute, false },
3618 { NULL, 0, 0, false, false, false, NULL, false }
3619 };
3620
3621 /* Handle a "java_interface" attribute; arguments as in
3622 struct attribute_spec.handler. */
3623 static tree
3624 handle_java_interface_attribute (tree* node,
3625 tree name,
3626 tree /*args*/,
3627 int flags,
3628 bool* no_add_attrs)
3629 {
3630 if (DECL_P (*node)
3631 || !CLASS_TYPE_P (*node)
3632 || !TYPE_FOR_JAVA (*node))
3633 {
3634 error ("%qE attribute can only be applied to Java class definitions",
3635 name);
3636 *no_add_attrs = true;
3637 return NULL_TREE;
3638 }
3639 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
3640 *node = build_variant_type_copy (*node);
3641 TYPE_JAVA_INTERFACE (*node) = 1;
3642
3643 return NULL_TREE;
3644 }
3645
3646 /* Handle an "init_priority" attribute; arguments as in
3647 struct attribute_spec.handler. */
3648 static tree
3649 handle_init_priority_attribute (tree* node,
3650 tree name,
3651 tree args,
3652 int /*flags*/,
3653 bool* no_add_attrs)
3654 {
3655 tree initp_expr = TREE_VALUE (args);
3656 tree decl = *node;
3657 tree type = TREE_TYPE (decl);
3658 int pri;
3659
3660 STRIP_NOPS (initp_expr);
3661 initp_expr = default_conversion (initp_expr);
3662 if (initp_expr)
3663 initp_expr = maybe_constant_value (initp_expr);
3664
3665 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
3666 {
3667 error ("requested init_priority is not an integer constant");
3668 cxx_constant_value (initp_expr);
3669 *no_add_attrs = true;
3670 return NULL_TREE;
3671 }
3672
3673 pri = TREE_INT_CST_LOW (initp_expr);
3674
3675 type = strip_array_types (type);
3676
3677 if (decl == NULL_TREE
3678 || !VAR_P (decl)
3679 || !TREE_STATIC (decl)
3680 || DECL_EXTERNAL (decl)
3681 || (TREE_CODE (type) != RECORD_TYPE
3682 && TREE_CODE (type) != UNION_TYPE)
3683 /* Static objects in functions are initialized the
3684 first time control passes through that
3685 function. This is not precise enough to pin down an
3686 init_priority value, so don't allow it. */
3687 || current_function_decl)
3688 {
3689 error ("can only use %qE attribute on file-scope definitions "
3690 "of objects of class type", name);
3691 *no_add_attrs = true;
3692 return NULL_TREE;
3693 }
3694
3695 if (pri > MAX_INIT_PRIORITY || pri <= 0)
3696 {
3697 error ("requested init_priority is out of range");
3698 *no_add_attrs = true;
3699 return NULL_TREE;
3700 }
3701
3702 /* Check for init_priorities that are reserved for
3703 language and runtime support implementations.*/
3704 if (pri <= MAX_RESERVED_INIT_PRIORITY)
3705 {
3706 warning
3707 (0, "requested init_priority is reserved for internal use");
3708 }
3709
3710 if (SUPPORTS_INIT_PRIORITY)
3711 {
3712 SET_DECL_INIT_PRIORITY (decl, pri);
3713 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
3714 return NULL_TREE;
3715 }
3716 else
3717 {
3718 error ("%qE attribute is not supported on this platform", name);
3719 *no_add_attrs = true;
3720 return NULL_TREE;
3721 }
3722 }
3723
3724 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
3725 and the new one has the tags in NEW_. Give an error if there are tags
3726 in NEW_ that weren't in OLD. */
3727
3728 bool
3729 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
3730 {
3731 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
3732 old = TREE_VALUE (old);
3733 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
3734 new_ = TREE_VALUE (new_);
3735 bool err = false;
3736 for (const_tree t = new_; t; t = TREE_CHAIN (t))
3737 {
3738 tree str = TREE_VALUE (t);
3739 for (const_tree in = old; in; in = TREE_CHAIN (in))
3740 {
3741 tree ostr = TREE_VALUE (in);
3742 if (cp_tree_equal (str, ostr))
3743 goto found;
3744 }
3745 error ("redeclaration of %qD adds abi tag %E", decl, str);
3746 err = true;
3747 found:;
3748 }
3749 if (err)
3750 {
3751 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
3752 return false;
3753 }
3754 return true;
3755 }
3756
3757 /* The abi_tag attribute with the name NAME was given ARGS. If they are
3758 ill-formed, give an error and return false; otherwise, return true. */
3759
3760 bool
3761 check_abi_tag_args (tree args, tree name)
3762 {
3763 if (!args)
3764 {
3765 error ("the %qE attribute requires arguments", name);
3766 return false;
3767 }
3768 for (tree arg = args; arg; arg = TREE_CHAIN (arg))
3769 {
3770 tree elt = TREE_VALUE (arg);
3771 if (TREE_CODE (elt) != STRING_CST
3772 || (!same_type_ignoring_top_level_qualifiers_p
3773 (strip_array_types (TREE_TYPE (elt)),
3774 char_type_node)))
3775 {
3776 error ("arguments to the %qE attribute must be narrow string "
3777 "literals", name);
3778 return false;
3779 }
3780 const char *begin = TREE_STRING_POINTER (elt);
3781 const char *end = begin + TREE_STRING_LENGTH (elt);
3782 for (const char *p = begin; p != end; ++p)
3783 {
3784 char c = *p;
3785 if (p == begin)
3786 {
3787 if (!ISALPHA (c) && c != '_')
3788 {
3789 error ("arguments to the %qE attribute must contain valid "
3790 "identifiers", name);
3791 inform (input_location, "%<%c%> is not a valid first "
3792 "character for an identifier", c);
3793 return false;
3794 }
3795 }
3796 else if (p == end - 1)
3797 gcc_assert (c == 0);
3798 else
3799 {
3800 if (!ISALNUM (c) && c != '_')
3801 {
3802 error ("arguments to the %qE attribute must contain valid "
3803 "identifiers", name);
3804 inform (input_location, "%<%c%> is not a valid character "
3805 "in an identifier", c);
3806 return false;
3807 }
3808 }
3809 }
3810 }
3811 return true;
3812 }
3813
3814 /* Handle an "abi_tag" attribute; arguments as in
3815 struct attribute_spec.handler. */
3816
3817 static tree
3818 handle_abi_tag_attribute (tree* node, tree name, tree args,
3819 int flags, bool* no_add_attrs)
3820 {
3821 if (!check_abi_tag_args (args, name))
3822 goto fail;
3823
3824 if (TYPE_P (*node))
3825 {
3826 if (!OVERLOAD_TYPE_P (*node))
3827 {
3828 error ("%qE attribute applied to non-class, non-enum type %qT",
3829 name, *node);
3830 goto fail;
3831 }
3832 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
3833 {
3834 error ("%qE attribute applied to %qT after its definition",
3835 name, *node);
3836 goto fail;
3837 }
3838 else if (CLASS_TYPE_P (*node)
3839 && CLASSTYPE_TEMPLATE_INSTANTIATION (*node))
3840 {
3841 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
3842 "template instantiation %qT", name, *node);
3843 goto fail;
3844 }
3845 else if (CLASS_TYPE_P (*node)
3846 && CLASSTYPE_TEMPLATE_SPECIALIZATION (*node))
3847 {
3848 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
3849 "template specialization %qT", name, *node);
3850 goto fail;
3851 }
3852
3853 tree attributes = TYPE_ATTRIBUTES (*node);
3854 tree decl = TYPE_NAME (*node);
3855
3856 /* Make sure all declarations have the same abi tags. */
3857 if (DECL_SOURCE_LOCATION (decl) != input_location)
3858 {
3859 if (!check_abi_tag_redeclaration (decl,
3860 lookup_attribute ("abi_tag",
3861 attributes),
3862 args))
3863 goto fail;
3864 }
3865 }
3866 else
3867 {
3868 if (!VAR_OR_FUNCTION_DECL_P (*node))
3869 {
3870 error ("%qE attribute applied to non-function, non-variable %qD",
3871 name, *node);
3872 goto fail;
3873 }
3874 else if (DECL_LANGUAGE (*node) == lang_c)
3875 {
3876 error ("%qE attribute applied to extern \"C\" declaration %qD",
3877 name, *node);
3878 goto fail;
3879 }
3880 }
3881
3882 return NULL_TREE;
3883
3884 fail:
3885 *no_add_attrs = true;
3886 return NULL_TREE;
3887 }
3888
3889 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
3890 thing pointed to by the constant. */
3891
3892 tree
3893 make_ptrmem_cst (tree type, tree member)
3894 {
3895 tree ptrmem_cst = make_node (PTRMEM_CST);
3896 TREE_TYPE (ptrmem_cst) = type;
3897 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
3898 return ptrmem_cst;
3899 }
3900
3901 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
3902 return an existing type if an appropriate type already exists. */
3903
3904 tree
3905 cp_build_type_attribute_variant (tree type, tree attributes)
3906 {
3907 tree new_type;
3908
3909 new_type = build_type_attribute_variant (type, attributes);
3910 if (TREE_CODE (new_type) == FUNCTION_TYPE
3911 || TREE_CODE (new_type) == METHOD_TYPE)
3912 {
3913 new_type = build_exception_variant (new_type,
3914 TYPE_RAISES_EXCEPTIONS (type));
3915 new_type = build_ref_qualified_type (new_type,
3916 type_memfn_rqual (type));
3917 }
3918
3919 /* Making a new main variant of a class type is broken. */
3920 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
3921
3922 return new_type;
3923 }
3924
3925 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
3926 Called only after doing all language independent checks. Only
3927 to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already
3928 compared in type_hash_eq. */
3929
3930 bool
3931 cxx_type_hash_eq (const_tree typea, const_tree typeb)
3932 {
3933 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
3934 || TREE_CODE (typea) == METHOD_TYPE);
3935
3936 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
3937 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
3938 }
3939
3940 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
3941 traversal. Called from walk_tree. */
3942
3943 tree
3944 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
3945 void *data, hash_set<tree> *pset)
3946 {
3947 enum tree_code code = TREE_CODE (*tp);
3948 tree result;
3949
3950 #define WALK_SUBTREE(NODE) \
3951 do \
3952 { \
3953 result = cp_walk_tree (&(NODE), func, data, pset); \
3954 if (result) goto out; \
3955 } \
3956 while (0)
3957
3958 /* Not one of the easy cases. We must explicitly go through the
3959 children. */
3960 result = NULL_TREE;
3961 switch (code)
3962 {
3963 case DEFAULT_ARG:
3964 case TEMPLATE_TEMPLATE_PARM:
3965 case BOUND_TEMPLATE_TEMPLATE_PARM:
3966 case UNBOUND_CLASS_TEMPLATE:
3967 case TEMPLATE_PARM_INDEX:
3968 case TEMPLATE_TYPE_PARM:
3969 case TYPENAME_TYPE:
3970 case TYPEOF_TYPE:
3971 case UNDERLYING_TYPE:
3972 /* None of these have subtrees other than those already walked
3973 above. */
3974 *walk_subtrees_p = 0;
3975 break;
3976
3977 case BASELINK:
3978 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
3979 *walk_subtrees_p = 0;
3980 break;
3981
3982 case PTRMEM_CST:
3983 WALK_SUBTREE (TREE_TYPE (*tp));
3984 *walk_subtrees_p = 0;
3985 break;
3986
3987 case TREE_LIST:
3988 WALK_SUBTREE (TREE_PURPOSE (*tp));
3989 break;
3990
3991 case OVERLOAD:
3992 WALK_SUBTREE (OVL_FUNCTION (*tp));
3993 WALK_SUBTREE (OVL_CHAIN (*tp));
3994 *walk_subtrees_p = 0;
3995 break;
3996
3997 case USING_DECL:
3998 WALK_SUBTREE (DECL_NAME (*tp));
3999 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
4000 WALK_SUBTREE (USING_DECL_DECLS (*tp));
4001 *walk_subtrees_p = 0;
4002 break;
4003
4004 case RECORD_TYPE:
4005 if (TYPE_PTRMEMFUNC_P (*tp))
4006 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE_RAW (*tp));
4007 break;
4008
4009 case TYPE_ARGUMENT_PACK:
4010 case NONTYPE_ARGUMENT_PACK:
4011 {
4012 tree args = ARGUMENT_PACK_ARGS (*tp);
4013 int i, len = TREE_VEC_LENGTH (args);
4014 for (i = 0; i < len; i++)
4015 WALK_SUBTREE (TREE_VEC_ELT (args, i));
4016 }
4017 break;
4018
4019 case TYPE_PACK_EXPANSION:
4020 WALK_SUBTREE (TREE_TYPE (*tp));
4021 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4022 *walk_subtrees_p = 0;
4023 break;
4024
4025 case EXPR_PACK_EXPANSION:
4026 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
4027 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4028 *walk_subtrees_p = 0;
4029 break;
4030
4031 case CAST_EXPR:
4032 case REINTERPRET_CAST_EXPR:
4033 case STATIC_CAST_EXPR:
4034 case CONST_CAST_EXPR:
4035 case DYNAMIC_CAST_EXPR:
4036 case IMPLICIT_CONV_EXPR:
4037 if (TREE_TYPE (*tp))
4038 WALK_SUBTREE (TREE_TYPE (*tp));
4039
4040 {
4041 int i;
4042 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
4043 WALK_SUBTREE (TREE_OPERAND (*tp, i));
4044 }
4045 *walk_subtrees_p = 0;
4046 break;
4047
4048 case TRAIT_EXPR:
4049 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
4050 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
4051 *walk_subtrees_p = 0;
4052 break;
4053
4054 case DECLTYPE_TYPE:
4055 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
4056 *walk_subtrees_p = 0;
4057 break;
4058
4059 case REQUIRES_EXPR:
4060 // Only recurse through the nested expression. Do not
4061 // walk the parameter list. Doing so causes false
4062 // positives in the pack expansion checker since the
4063 // requires parameters are introduced as pack expansions.
4064 WALK_SUBTREE (TREE_OPERAND (*tp, 1));
4065 *walk_subtrees_p = 0;
4066 break;
4067
4068 default:
4069 return NULL_TREE;
4070 }
4071
4072 /* We didn't find what we were looking for. */
4073 out:
4074 return result;
4075
4076 #undef WALK_SUBTREE
4077 }
4078
4079 /* Like save_expr, but for C++. */
4080
4081 tree
4082 cp_save_expr (tree expr)
4083 {
4084 /* There is no reason to create a SAVE_EXPR within a template; if
4085 needed, we can create the SAVE_EXPR when instantiating the
4086 template. Furthermore, the middle-end cannot handle C++-specific
4087 tree codes. */
4088 if (processing_template_decl)
4089 return expr;
4090 return save_expr (expr);
4091 }
4092
4093 /* Initialize tree.c. */
4094
4095 void
4096 init_tree (void)
4097 {
4098 list_hash_table = hash_table<list_hasher>::create_ggc (61);
4099 register_scoped_attributes (std_attribute_table, NULL);
4100 }
4101
4102 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
4103 is. Note that sfk_none is zero, so this function can be used as a
4104 predicate to test whether or not DECL is a special function. */
4105
4106 special_function_kind
4107 special_function_p (const_tree decl)
4108 {
4109 /* Rather than doing all this stuff with magic names, we should
4110 probably have a field of type `special_function_kind' in
4111 DECL_LANG_SPECIFIC. */
4112 if (DECL_INHERITED_CTOR_BASE (decl))
4113 return sfk_inheriting_constructor;
4114 if (DECL_COPY_CONSTRUCTOR_P (decl))
4115 return sfk_copy_constructor;
4116 if (DECL_MOVE_CONSTRUCTOR_P (decl))
4117 return sfk_move_constructor;
4118 if (DECL_CONSTRUCTOR_P (decl))
4119 return sfk_constructor;
4120 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
4121 {
4122 if (copy_fn_p (decl))
4123 return sfk_copy_assignment;
4124 if (move_fn_p (decl))
4125 return sfk_move_assignment;
4126 }
4127 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
4128 return sfk_destructor;
4129 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
4130 return sfk_complete_destructor;
4131 if (DECL_BASE_DESTRUCTOR_P (decl))
4132 return sfk_base_destructor;
4133 if (DECL_DELETING_DESTRUCTOR_P (decl))
4134 return sfk_deleting_destructor;
4135 if (DECL_CONV_FN_P (decl))
4136 return sfk_conversion;
4137
4138 return sfk_none;
4139 }
4140
4141 /* Returns nonzero if TYPE is a character type, including wchar_t. */
4142
4143 int
4144 char_type_p (tree type)
4145 {
4146 return (same_type_p (type, char_type_node)
4147 || same_type_p (type, unsigned_char_type_node)
4148 || same_type_p (type, signed_char_type_node)
4149 || same_type_p (type, char16_type_node)
4150 || same_type_p (type, char32_type_node)
4151 || same_type_p (type, wchar_type_node));
4152 }
4153
4154 /* Returns the kind of linkage associated with the indicated DECL. Th
4155 value returned is as specified by the language standard; it is
4156 independent of implementation details regarding template
4157 instantiation, etc. For example, it is possible that a declaration
4158 to which this function assigns external linkage would not show up
4159 as a global symbol when you run `nm' on the resulting object file. */
4160
4161 linkage_kind
4162 decl_linkage (tree decl)
4163 {
4164 /* This function doesn't attempt to calculate the linkage from first
4165 principles as given in [basic.link]. Instead, it makes use of
4166 the fact that we have already set TREE_PUBLIC appropriately, and
4167 then handles a few special cases. Ideally, we would calculate
4168 linkage first, and then transform that into a concrete
4169 implementation. */
4170
4171 /* Things that don't have names have no linkage. */
4172 if (!DECL_NAME (decl))
4173 return lk_none;
4174
4175 /* Fields have no linkage. */
4176 if (TREE_CODE (decl) == FIELD_DECL)
4177 return lk_none;
4178
4179 /* Things that are TREE_PUBLIC have external linkage. */
4180 if (TREE_PUBLIC (decl))
4181 return lk_external;
4182
4183 if (TREE_CODE (decl) == NAMESPACE_DECL)
4184 return lk_external;
4185
4186 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
4187 type. */
4188 if (TREE_CODE (decl) == CONST_DECL)
4189 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
4190
4191 /* Things in local scope do not have linkage, if they don't have
4192 TREE_PUBLIC set. */
4193 if (decl_function_context (decl))
4194 return lk_none;
4195
4196 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
4197 are considered to have external linkage for language purposes, as do
4198 template instantiations on targets without weak symbols. DECLs really
4199 meant to have internal linkage have DECL_THIS_STATIC set. */
4200 if (TREE_CODE (decl) == TYPE_DECL)
4201 return lk_external;
4202 if (VAR_OR_FUNCTION_DECL_P (decl))
4203 {
4204 if (!DECL_THIS_STATIC (decl))
4205 return lk_external;
4206
4207 /* Static data members and static member functions from classes
4208 in anonymous namespace also don't have TREE_PUBLIC set. */
4209 if (DECL_CLASS_CONTEXT (decl))
4210 return lk_external;
4211 }
4212
4213 /* Everything else has internal linkage. */
4214 return lk_internal;
4215 }
4216
4217 /* Returns the storage duration of the object or reference associated with
4218 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
4219
4220 duration_kind
4221 decl_storage_duration (tree decl)
4222 {
4223 if (TREE_CODE (decl) == PARM_DECL)
4224 return dk_auto;
4225 if (TREE_CODE (decl) == FUNCTION_DECL)
4226 return dk_static;
4227 gcc_assert (VAR_P (decl));
4228 if (!TREE_STATIC (decl)
4229 && !DECL_EXTERNAL (decl))
4230 return dk_auto;
4231 if (CP_DECL_THREAD_LOCAL_P (decl))
4232 return dk_thread;
4233 return dk_static;
4234 }
4235 \f
4236 /* EXP is an expression that we want to pre-evaluate. Returns (in
4237 *INITP) an expression that will perform the pre-evaluation. The
4238 value returned by this function is a side-effect free expression
4239 equivalent to the pre-evaluated expression. Callers must ensure
4240 that *INITP is evaluated before EXP. */
4241
4242 tree
4243 stabilize_expr (tree exp, tree* initp)
4244 {
4245 tree init_expr;
4246
4247 if (!TREE_SIDE_EFFECTS (exp))
4248 init_expr = NULL_TREE;
4249 else if (VOID_TYPE_P (TREE_TYPE (exp)))
4250 {
4251 init_expr = exp;
4252 exp = void_node;
4253 }
4254 /* There are no expressions with REFERENCE_TYPE, but there can be call
4255 arguments with such a type; just treat it as a pointer. */
4256 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
4257 || SCALAR_TYPE_P (TREE_TYPE (exp))
4258 || !lvalue_or_rvalue_with_address_p (exp))
4259 {
4260 init_expr = get_target_expr (exp);
4261 exp = TARGET_EXPR_SLOT (init_expr);
4262 if (CLASS_TYPE_P (TREE_TYPE (exp)))
4263 exp = move (exp);
4264 else
4265 exp = rvalue (exp);
4266 }
4267 else
4268 {
4269 bool xval = !real_lvalue_p (exp);
4270 exp = cp_build_addr_expr (exp, tf_warning_or_error);
4271 init_expr = get_target_expr (exp);
4272 exp = TARGET_EXPR_SLOT (init_expr);
4273 exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
4274 if (xval)
4275 exp = move (exp);
4276 }
4277 *initp = init_expr;
4278
4279 gcc_assert (!TREE_SIDE_EFFECTS (exp));
4280 return exp;
4281 }
4282
4283 /* Add NEW_EXPR, an expression whose value we don't care about, after the
4284 similar expression ORIG. */
4285
4286 tree
4287 add_stmt_to_compound (tree orig, tree new_expr)
4288 {
4289 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
4290 return orig;
4291 if (!orig || !TREE_SIDE_EFFECTS (orig))
4292 return new_expr;
4293 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
4294 }
4295
4296 /* Like stabilize_expr, but for a call whose arguments we want to
4297 pre-evaluate. CALL is modified in place to use the pre-evaluated
4298 arguments, while, upon return, *INITP contains an expression to
4299 compute the arguments. */
4300
4301 void
4302 stabilize_call (tree call, tree *initp)
4303 {
4304 tree inits = NULL_TREE;
4305 int i;
4306 int nargs = call_expr_nargs (call);
4307
4308 if (call == error_mark_node || processing_template_decl)
4309 {
4310 *initp = NULL_TREE;
4311 return;
4312 }
4313
4314 gcc_assert (TREE_CODE (call) == CALL_EXPR);
4315
4316 for (i = 0; i < nargs; i++)
4317 {
4318 tree init;
4319 CALL_EXPR_ARG (call, i) =
4320 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
4321 inits = add_stmt_to_compound (inits, init);
4322 }
4323
4324 *initp = inits;
4325 }
4326
4327 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
4328 to pre-evaluate. CALL is modified in place to use the pre-evaluated
4329 arguments, while, upon return, *INITP contains an expression to
4330 compute the arguments. */
4331
4332 static void
4333 stabilize_aggr_init (tree call, tree *initp)
4334 {
4335 tree inits = NULL_TREE;
4336 int i;
4337 int nargs = aggr_init_expr_nargs (call);
4338
4339 if (call == error_mark_node)
4340 return;
4341
4342 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
4343
4344 for (i = 0; i < nargs; i++)
4345 {
4346 tree init;
4347 AGGR_INIT_EXPR_ARG (call, i) =
4348 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
4349 inits = add_stmt_to_compound (inits, init);
4350 }
4351
4352 *initp = inits;
4353 }
4354
4355 /* Like stabilize_expr, but for an initialization.
4356
4357 If the initialization is for an object of class type, this function
4358 takes care not to introduce additional temporaries.
4359
4360 Returns TRUE iff the expression was successfully pre-evaluated,
4361 i.e., if INIT is now side-effect free, except for, possibly, a
4362 single call to a constructor. */
4363
4364 bool
4365 stabilize_init (tree init, tree *initp)
4366 {
4367 tree t = init;
4368
4369 *initp = NULL_TREE;
4370
4371 if (t == error_mark_node || processing_template_decl)
4372 return true;
4373
4374 if (TREE_CODE (t) == INIT_EXPR)
4375 t = TREE_OPERAND (t, 1);
4376 if (TREE_CODE (t) == TARGET_EXPR)
4377 t = TARGET_EXPR_INITIAL (t);
4378
4379 /* If the RHS can be stabilized without breaking copy elision, stabilize
4380 it. We specifically don't stabilize class prvalues here because that
4381 would mean an extra copy, but they might be stabilized below. */
4382 if (TREE_CODE (init) == INIT_EXPR
4383 && TREE_CODE (t) != CONSTRUCTOR
4384 && TREE_CODE (t) != AGGR_INIT_EXPR
4385 && (SCALAR_TYPE_P (TREE_TYPE (t))
4386 || lvalue_or_rvalue_with_address_p (t)))
4387 {
4388 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
4389 return true;
4390 }
4391
4392 if (TREE_CODE (t) == COMPOUND_EXPR
4393 && TREE_CODE (init) == INIT_EXPR)
4394 {
4395 tree last = expr_last (t);
4396 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
4397 if (!TREE_SIDE_EFFECTS (last))
4398 {
4399 *initp = t;
4400 TREE_OPERAND (init, 1) = last;
4401 return true;
4402 }
4403 }
4404
4405 if (TREE_CODE (t) == CONSTRUCTOR)
4406 {
4407 /* Aggregate initialization: stabilize each of the field
4408 initializers. */
4409 unsigned i;
4410 constructor_elt *ce;
4411 bool good = true;
4412 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
4413 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
4414 {
4415 tree type = TREE_TYPE (ce->value);
4416 tree subinit;
4417 if (TREE_CODE (type) == REFERENCE_TYPE
4418 || SCALAR_TYPE_P (type))
4419 ce->value = stabilize_expr (ce->value, &subinit);
4420 else if (!stabilize_init (ce->value, &subinit))
4421 good = false;
4422 *initp = add_stmt_to_compound (*initp, subinit);
4423 }
4424 return good;
4425 }
4426
4427 if (TREE_CODE (t) == CALL_EXPR)
4428 {
4429 stabilize_call (t, initp);
4430 return true;
4431 }
4432
4433 if (TREE_CODE (t) == AGGR_INIT_EXPR)
4434 {
4435 stabilize_aggr_init (t, initp);
4436 return true;
4437 }
4438
4439 /* The initialization is being performed via a bitwise copy -- and
4440 the item copied may have side effects. */
4441 return !TREE_SIDE_EFFECTS (init);
4442 }
4443
4444 /* Returns true if a cast to TYPE may appear in an integral constant
4445 expression. */
4446
4447 bool
4448 cast_valid_in_integral_constant_expression_p (tree type)
4449 {
4450 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
4451 || cxx_dialect >= cxx11
4452 || dependent_type_p (type)
4453 || type == error_mark_node);
4454 }
4455
4456 /* Return true if we need to fix linkage information of DECL. */
4457
4458 static bool
4459 cp_fix_function_decl_p (tree decl)
4460 {
4461 /* Skip if DECL is not externally visible. */
4462 if (!TREE_PUBLIC (decl))
4463 return false;
4464
4465 /* We need to fix DECL if it a appears to be exported but with no
4466 function body. Thunks do not have CFGs and we may need to
4467 handle them specially later. */
4468 if (!gimple_has_body_p (decl)
4469 && !DECL_THUNK_P (decl)
4470 && !DECL_EXTERNAL (decl))
4471 {
4472 struct cgraph_node *node = cgraph_node::get (decl);
4473
4474 /* Don't fix same_body aliases. Although they don't have their own
4475 CFG, they share it with what they alias to. */
4476 if (!node || !node->alias
4477 || !vec_safe_length (node->ref_list.references))
4478 return true;
4479 }
4480
4481 return false;
4482 }
4483
4484 /* Clean the C++ specific parts of the tree T. */
4485
4486 void
4487 cp_free_lang_data (tree t)
4488 {
4489 if (TREE_CODE (t) == METHOD_TYPE
4490 || TREE_CODE (t) == FUNCTION_TYPE)
4491 {
4492 /* Default args are not interesting anymore. */
4493 tree argtypes = TYPE_ARG_TYPES (t);
4494 while (argtypes)
4495 {
4496 TREE_PURPOSE (argtypes) = 0;
4497 argtypes = TREE_CHAIN (argtypes);
4498 }
4499 }
4500 else if (TREE_CODE (t) == FUNCTION_DECL
4501 && cp_fix_function_decl_p (t))
4502 {
4503 /* If T is used in this translation unit at all, the definition
4504 must exist somewhere else since we have decided to not emit it
4505 in this TU. So make it an external reference. */
4506 DECL_EXTERNAL (t) = 1;
4507 TREE_STATIC (t) = 0;
4508 }
4509 if (TREE_CODE (t) == NAMESPACE_DECL)
4510 {
4511 /* The list of users of a namespace isn't useful for the middle-end
4512 or debug generators. */
4513 DECL_NAMESPACE_USERS (t) = NULL_TREE;
4514 /* Neither do we need the leftover chaining of namespaces
4515 from the binding level. */
4516 DECL_CHAIN (t) = NULL_TREE;
4517 }
4518 }
4519
4520 /* Stub for c-common. Please keep in sync with c-decl.c.
4521 FIXME: If address space support is target specific, then this
4522 should be a C target hook. But currently this is not possible,
4523 because this function is called via REGISTER_TARGET_PRAGMAS. */
4524 void
4525 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
4526 {
4527 }
4528
4529 /* Return the number of operands in T that we care about for things like
4530 mangling. */
4531
4532 int
4533 cp_tree_operand_length (const_tree t)
4534 {
4535 enum tree_code code = TREE_CODE (t);
4536
4537 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
4538 return VL_EXP_OPERAND_LENGTH (t);
4539
4540 return cp_tree_code_length (code);
4541 }
4542
4543 /* Like cp_tree_operand_length, but takes a tree_code CODE. */
4544
4545 int
4546 cp_tree_code_length (enum tree_code code)
4547 {
4548 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4549
4550 switch (code)
4551 {
4552 case PREINCREMENT_EXPR:
4553 case PREDECREMENT_EXPR:
4554 case POSTINCREMENT_EXPR:
4555 case POSTDECREMENT_EXPR:
4556 return 1;
4557
4558 case ARRAY_REF:
4559 return 2;
4560
4561 case EXPR_PACK_EXPANSION:
4562 return 1;
4563
4564 default:
4565 return TREE_CODE_LENGTH (code);
4566 }
4567 }
4568
4569 /* Implement -Wzero_as_null_pointer_constant. Return true if the
4570 conditions for the warning hold, false otherwise. */
4571 bool
4572 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
4573 {
4574 if (c_inhibit_evaluation_warnings == 0
4575 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
4576 {
4577 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
4578 "zero as null pointer constant");
4579 return true;
4580 }
4581 return false;
4582 }
4583 \f
4584 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4585 /* Complain that some language-specific thing hanging off a tree
4586 node has been accessed improperly. */
4587
4588 void
4589 lang_check_failed (const char* file, int line, const char* function)
4590 {
4591 internal_error ("lang_* check: failed in %s, at %s:%d",
4592 function, trim_filename (file), line);
4593 }
4594 #endif /* ENABLE_TREE_CHECKING */
4595
4596 #include "gt-cp-tree.h"