Remove the null check from placement new in all modes
[gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "cp-tree.h"
26 #include "gimple-expr.h"
27 #include "cgraph.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tree-iterator.h"
31 #include "tree-inline.h"
32 #include "debug.h"
33 #include "convert.h"
34 #include "gimplify.h"
35 #include "stringpool.h"
36 #include "attribs.h"
37 #include "flags.h"
38
39 static tree bot_manip (tree *, int *, void *);
40 static tree bot_replace (tree *, int *, void *);
41 static hashval_t list_hash_pieces (tree, tree, tree);
42 static tree build_target_expr (tree, tree, tsubst_flags_t);
43 static tree count_trees_r (tree *, int *, void *);
44 static tree verify_stmt_tree_r (tree *, int *, void *);
45 static tree build_local_temp (tree);
46
47 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
48 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
49
50 /* If REF is an lvalue, returns the kind of lvalue that REF is.
51 Otherwise, returns clk_none. */
52
53 cp_lvalue_kind
54 lvalue_kind (const_tree ref)
55 {
56 cp_lvalue_kind op1_lvalue_kind = clk_none;
57 cp_lvalue_kind op2_lvalue_kind = clk_none;
58
59 /* Expressions of reference type are sometimes wrapped in
60 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
61 representation, not part of the language, so we have to look
62 through them. */
63 if (REFERENCE_REF_P (ref))
64 return lvalue_kind (TREE_OPERAND (ref, 0));
65
66 if (TREE_TYPE (ref)
67 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
68 {
69 /* unnamed rvalue references are rvalues */
70 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
71 && TREE_CODE (ref) != PARM_DECL
72 && !VAR_P (ref)
73 && TREE_CODE (ref) != COMPONENT_REF
74 /* Functions are always lvalues. */
75 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
76 return clk_rvalueref;
77
78 /* lvalue references and named rvalue references are lvalues. */
79 return clk_ordinary;
80 }
81
82 if (ref == current_class_ptr)
83 return clk_none;
84
85 switch (TREE_CODE (ref))
86 {
87 case SAVE_EXPR:
88 return clk_none;
89 /* preincrements and predecrements are valid lvals, provided
90 what they refer to are valid lvals. */
91 case PREINCREMENT_EXPR:
92 case PREDECREMENT_EXPR:
93 case TRY_CATCH_EXPR:
94 case REALPART_EXPR:
95 case IMAGPART_EXPR:
96 return lvalue_kind (TREE_OPERAND (ref, 0));
97
98 case MEMBER_REF:
99 case DOTSTAR_EXPR:
100 if (TREE_CODE (ref) == MEMBER_REF)
101 op1_lvalue_kind = clk_ordinary;
102 else
103 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
104 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (ref, 1))))
105 op1_lvalue_kind = clk_none;
106 return op1_lvalue_kind;
107
108 case COMPONENT_REF:
109 if (BASELINK_P (TREE_OPERAND (ref, 1)))
110 {
111 tree fn = BASELINK_FUNCTIONS (TREE_OPERAND (ref, 1));
112
113 /* For static member function recurse on the BASELINK, we can get
114 here e.g. from reference_binding. If BASELINK_FUNCTIONS is
115 OVERLOAD, the overload is resolved first if possible through
116 resolve_address_of_overloaded_function. */
117 if (TREE_CODE (fn) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (fn))
118 return lvalue_kind (TREE_OPERAND (ref, 1));
119 }
120 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
121 /* Look at the member designator. */
122 if (!op1_lvalue_kind)
123 ;
124 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
125 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
126 situations. If we're seeing a COMPONENT_REF, it's a non-static
127 member, so it isn't an lvalue. */
128 op1_lvalue_kind = clk_none;
129 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
130 /* This can be IDENTIFIER_NODE in a template. */;
131 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
132 {
133 /* Clear the ordinary bit. If this object was a class
134 rvalue we want to preserve that information. */
135 op1_lvalue_kind &= ~clk_ordinary;
136 /* The lvalue is for a bitfield. */
137 op1_lvalue_kind |= clk_bitfield;
138 }
139 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
140 op1_lvalue_kind |= clk_packed;
141
142 return op1_lvalue_kind;
143
144 case STRING_CST:
145 case COMPOUND_LITERAL_EXPR:
146 return clk_ordinary;
147
148 case CONST_DECL:
149 /* CONST_DECL without TREE_STATIC are enumeration values and
150 thus not lvalues. With TREE_STATIC they are used by ObjC++
151 in objc_build_string_object and need to be considered as
152 lvalues. */
153 if (! TREE_STATIC (ref))
154 return clk_none;
155 /* FALLTHRU */
156 case VAR_DECL:
157 if (VAR_P (ref) && DECL_HAS_VALUE_EXPR_P (ref))
158 return lvalue_kind (DECL_VALUE_EXPR (CONST_CAST_TREE (ref)));
159
160 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
161 && DECL_LANG_SPECIFIC (ref)
162 && DECL_IN_AGGR_P (ref))
163 return clk_none;
164 /* FALLTHRU */
165 case INDIRECT_REF:
166 case ARROW_EXPR:
167 case ARRAY_REF:
168 case ARRAY_NOTATION_REF:
169 case PARM_DECL:
170 case RESULT_DECL:
171 case PLACEHOLDER_EXPR:
172 return clk_ordinary;
173
174 /* A scope ref in a template, left as SCOPE_REF to support later
175 access checking. */
176 case SCOPE_REF:
177 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
178 {
179 tree op = TREE_OPERAND (ref, 1);
180 if (TREE_CODE (op) == FIELD_DECL)
181 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
182 else
183 return lvalue_kind (op);
184 }
185
186 case MAX_EXPR:
187 case MIN_EXPR:
188 /* Disallow <? and >? as lvalues if either argument side-effects. */
189 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
190 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
191 return clk_none;
192 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
193 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
194 break;
195
196 case COND_EXPR:
197 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
198 ? TREE_OPERAND (ref, 1)
199 : TREE_OPERAND (ref, 0));
200 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
201 break;
202
203 case MODOP_EXPR:
204 /* We expect to see unlowered MODOP_EXPRs only during
205 template processing. */
206 gcc_assert (processing_template_decl);
207 return clk_ordinary;
208
209 case MODIFY_EXPR:
210 case TYPEID_EXPR:
211 return clk_ordinary;
212
213 case COMPOUND_EXPR:
214 return lvalue_kind (TREE_OPERAND (ref, 1));
215
216 case TARGET_EXPR:
217 return clk_class;
218
219 case VA_ARG_EXPR:
220 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
221
222 case CALL_EXPR:
223 /* We can see calls outside of TARGET_EXPR in templates. */
224 if (CLASS_TYPE_P (TREE_TYPE (ref)))
225 return clk_class;
226 return clk_none;
227
228 case FUNCTION_DECL:
229 /* All functions (except non-static-member functions) are
230 lvalues. */
231 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
232 ? clk_none : clk_ordinary);
233
234 case BASELINK:
235 /* We now represent a reference to a single static member function
236 with a BASELINK. */
237 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
238 its argument unmodified and we assign it to a const_tree. */
239 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
240
241 case NON_DEPENDENT_EXPR:
242 return lvalue_kind (TREE_OPERAND (ref, 0));
243
244 default:
245 if (!TREE_TYPE (ref))
246 return clk_none;
247 if (CLASS_TYPE_P (TREE_TYPE (ref))
248 || TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE)
249 return clk_class;
250 break;
251 }
252
253 /* If one operand is not an lvalue at all, then this expression is
254 not an lvalue. */
255 if (!op1_lvalue_kind || !op2_lvalue_kind)
256 return clk_none;
257
258 /* Otherwise, it's an lvalue, and it has all the odd properties
259 contributed by either operand. */
260 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
261 /* It's not an ordinary lvalue if it involves any other kind. */
262 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
263 op1_lvalue_kind &= ~clk_ordinary;
264 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
265 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
266 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
267 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
268 op1_lvalue_kind = clk_none;
269 return op1_lvalue_kind;
270 }
271
272 /* Returns the kind of lvalue that REF is, in the sense of [basic.lval]. */
273
274 cp_lvalue_kind
275 real_lvalue_p (const_tree ref)
276 {
277 cp_lvalue_kind kind = lvalue_kind (ref);
278 if (kind & (clk_rvalueref|clk_class))
279 return clk_none;
280 else
281 return kind;
282 }
283
284 /* c-common wants us to return bool. */
285
286 bool
287 lvalue_p (const_tree t)
288 {
289 return real_lvalue_p (t);
290 }
291
292 /* This differs from lvalue_p in that xvalues are included. */
293
294 bool
295 glvalue_p (const_tree ref)
296 {
297 cp_lvalue_kind kind = lvalue_kind (ref);
298 if (kind & clk_class)
299 return false;
300 else
301 return (kind != clk_none);
302 }
303
304 /* This differs from glvalue_p in that class prvalues are included. */
305
306 bool
307 obvalue_p (const_tree ref)
308 {
309 return (lvalue_kind (ref) != clk_none);
310 }
311
312 /* Returns true if REF is an xvalue (the result of dereferencing an rvalue
313 reference), false otherwise. */
314
315 bool
316 xvalue_p (const_tree ref)
317 {
318 return (lvalue_kind (ref) == clk_rvalueref);
319 }
320
321 /* True if REF is a bit-field. */
322
323 bool
324 bitfield_p (const_tree ref)
325 {
326 return (lvalue_kind (ref) & clk_bitfield);
327 }
328
329 /* C++-specific version of stabilize_reference. */
330
331 tree
332 cp_stabilize_reference (tree ref)
333 {
334 switch (TREE_CODE (ref))
335 {
336 case NON_DEPENDENT_EXPR:
337 /* We aren't actually evaluating this. */
338 return ref;
339
340 /* We need to treat specially anything stabilize_reference doesn't
341 handle specifically. */
342 case VAR_DECL:
343 case PARM_DECL:
344 case RESULT_DECL:
345 CASE_CONVERT:
346 case FLOAT_EXPR:
347 case FIX_TRUNC_EXPR:
348 case INDIRECT_REF:
349 case COMPONENT_REF:
350 case BIT_FIELD_REF:
351 case ARRAY_REF:
352 case ARRAY_RANGE_REF:
353 case ERROR_MARK:
354 break;
355 default:
356 cp_lvalue_kind kind = lvalue_kind (ref);
357 if ((kind & ~clk_class) != clk_none)
358 {
359 tree type = unlowered_expr_type (ref);
360 bool rval = !!(kind & clk_rvalueref);
361 type = cp_build_reference_type (type, rval);
362 /* This inhibits warnings in, eg, cxx_mark_addressable
363 (c++/60955). */
364 warning_sentinel s (extra_warnings);
365 ref = build_static_cast (type, ref, tf_error);
366 }
367 }
368
369 return stabilize_reference (ref);
370 }
371
372 /* Test whether DECL is a builtin that may appear in a
373 constant-expression. */
374
375 bool
376 builtin_valid_in_constant_expr_p (const_tree decl)
377 {
378 if (!(TREE_CODE (decl) == FUNCTION_DECL
379 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL))
380 /* Not a built-in. */
381 return false;
382 switch (DECL_FUNCTION_CODE (decl))
383 {
384 /* These always have constant results like the corresponding
385 macros/symbol. */
386 case BUILT_IN_FILE:
387 case BUILT_IN_FUNCTION:
388 case BUILT_IN_LINE:
389
390 /* The following built-ins are valid in constant expressions
391 when their arguments are. */
392 case BUILT_IN_ADD_OVERFLOW_P:
393 case BUILT_IN_SUB_OVERFLOW_P:
394 case BUILT_IN_MUL_OVERFLOW_P:
395
396 /* These have constant results even if their operands are
397 non-constant. */
398 case BUILT_IN_CONSTANT_P:
399 case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE:
400 return true;
401 default:
402 return false;
403 }
404 }
405
406 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
407
408 static tree
409 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
410 {
411 tree t;
412 tree type = TREE_TYPE (decl);
413
414 value = mark_rvalue_use (value);
415
416 gcc_checking_assert (VOID_TYPE_P (TREE_TYPE (value))
417 || TREE_TYPE (decl) == TREE_TYPE (value)
418 /* On ARM ctors return 'this'. */
419 || (TYPE_PTR_P (TREE_TYPE (value))
420 && TREE_CODE (value) == CALL_EXPR)
421 || useless_type_conversion_p (TREE_TYPE (decl),
422 TREE_TYPE (value)));
423
424 if (complain & tf_no_cleanup)
425 /* The caller is building a new-expr and does not need a cleanup. */
426 t = NULL_TREE;
427 else
428 {
429 t = cxx_maybe_build_cleanup (decl, complain);
430 if (t == error_mark_node)
431 return error_mark_node;
432 }
433 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
434 if (EXPR_HAS_LOCATION (value))
435 SET_EXPR_LOCATION (t, EXPR_LOCATION (value));
436 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
437 ignore the TARGET_EXPR. If there really turn out to be no
438 side-effects, then the optimizer should be able to get rid of
439 whatever code is generated anyhow. */
440 TREE_SIDE_EFFECTS (t) = 1;
441
442 return t;
443 }
444
445 /* Return an undeclared local temporary of type TYPE for use in building a
446 TARGET_EXPR. */
447
448 static tree
449 build_local_temp (tree type)
450 {
451 tree slot = build_decl (input_location,
452 VAR_DECL, NULL_TREE, type);
453 DECL_ARTIFICIAL (slot) = 1;
454 DECL_IGNORED_P (slot) = 1;
455 DECL_CONTEXT (slot) = current_function_decl;
456 layout_decl (slot, 0);
457 return slot;
458 }
459
460 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
461
462 static void
463 process_aggr_init_operands (tree t)
464 {
465 bool side_effects;
466
467 side_effects = TREE_SIDE_EFFECTS (t);
468 if (!side_effects)
469 {
470 int i, n;
471 n = TREE_OPERAND_LENGTH (t);
472 for (i = 1; i < n; i++)
473 {
474 tree op = TREE_OPERAND (t, i);
475 if (op && TREE_SIDE_EFFECTS (op))
476 {
477 side_effects = 1;
478 break;
479 }
480 }
481 }
482 TREE_SIDE_EFFECTS (t) = side_effects;
483 }
484
485 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
486 FN, and SLOT. NARGS is the number of call arguments which are specified
487 as a tree array ARGS. */
488
489 static tree
490 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
491 tree *args)
492 {
493 tree t;
494 int i;
495
496 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
497 TREE_TYPE (t) = return_type;
498 AGGR_INIT_EXPR_FN (t) = fn;
499 AGGR_INIT_EXPR_SLOT (t) = slot;
500 for (i = 0; i < nargs; i++)
501 AGGR_INIT_EXPR_ARG (t, i) = args[i];
502 process_aggr_init_operands (t);
503 return t;
504 }
505
506 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
507 target. TYPE is the type to be initialized.
508
509 Build an AGGR_INIT_EXPR to represent the initialization. This function
510 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
511 to initialize another object, whereas a TARGET_EXPR can either
512 initialize another object or create its own temporary object, and as a
513 result building up a TARGET_EXPR requires that the type's destructor be
514 callable. */
515
516 tree
517 build_aggr_init_expr (tree type, tree init)
518 {
519 tree fn;
520 tree slot;
521 tree rval;
522 int is_ctor;
523
524 /* Don't build AGGR_INIT_EXPR in a template. */
525 if (processing_template_decl)
526 return init;
527
528 fn = cp_get_callee (init);
529 if (fn == NULL_TREE)
530 return convert (type, init);
531
532 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
533 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
534 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
535
536 /* We split the CALL_EXPR into its function and its arguments here.
537 Then, in expand_expr, we put them back together. The reason for
538 this is that this expression might be a default argument
539 expression. In that case, we need a new temporary every time the
540 expression is used. That's what break_out_target_exprs does; it
541 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
542 temporary slot. Then, expand_expr builds up a call-expression
543 using the new slot. */
544
545 /* If we don't need to use a constructor to create an object of this
546 type, don't mess with AGGR_INIT_EXPR. */
547 if (is_ctor || TREE_ADDRESSABLE (type))
548 {
549 slot = build_local_temp (type);
550
551 if (TREE_CODE (init) == CALL_EXPR)
552 {
553 rval = build_aggr_init_array (void_type_node, fn, slot,
554 call_expr_nargs (init),
555 CALL_EXPR_ARGP (init));
556 AGGR_INIT_FROM_THUNK_P (rval)
557 = CALL_FROM_THUNK_P (init);
558 }
559 else
560 {
561 rval = build_aggr_init_array (void_type_node, fn, slot,
562 aggr_init_expr_nargs (init),
563 AGGR_INIT_EXPR_ARGP (init));
564 AGGR_INIT_FROM_THUNK_P (rval)
565 = AGGR_INIT_FROM_THUNK_P (init);
566 }
567 TREE_SIDE_EFFECTS (rval) = 1;
568 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
569 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
570 CALL_EXPR_OPERATOR_SYNTAX (rval) = CALL_EXPR_OPERATOR_SYNTAX (init);
571 CALL_EXPR_ORDERED_ARGS (rval) = CALL_EXPR_ORDERED_ARGS (init);
572 CALL_EXPR_REVERSE_ARGS (rval) = CALL_EXPR_REVERSE_ARGS (init);
573 }
574 else
575 rval = init;
576
577 return rval;
578 }
579
580 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
581 target. TYPE is the type that this initialization should appear to
582 have.
583
584 Build an encapsulation of the initialization to perform
585 and return it so that it can be processed by language-independent
586 and language-specific expression expanders. */
587
588 tree
589 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
590 {
591 tree rval = build_aggr_init_expr (type, init);
592 tree slot;
593
594 if (!complete_type_or_maybe_complain (type, init, complain))
595 return error_mark_node;
596
597 /* Make sure that we're not trying to create an instance of an
598 abstract class. */
599 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
600 return error_mark_node;
601
602 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
603 slot = AGGR_INIT_EXPR_SLOT (rval);
604 else if (TREE_CODE (rval) == CALL_EXPR
605 || TREE_CODE (rval) == CONSTRUCTOR)
606 slot = build_local_temp (type);
607 else
608 return rval;
609
610 rval = build_target_expr (slot, rval, complain);
611
612 if (rval != error_mark_node)
613 TARGET_EXPR_IMPLICIT_P (rval) = 1;
614
615 return rval;
616 }
617
618 /* Subroutine of build_vec_init_expr: Build up a single element
619 intialization as a proxy for the full array initialization to get things
620 marked as used and any appropriate diagnostics.
621
622 Since we're deferring building the actual constructor calls until
623 gimplification time, we need to build one now and throw it away so
624 that the relevant constructor gets mark_used before cgraph decides
625 what functions are needed. Here we assume that init is either
626 NULL_TREE, void_type_node (indicating value-initialization), or
627 another array to copy. */
628
629 static tree
630 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
631 {
632 tree inner_type = strip_array_types (type);
633 vec<tree, va_gc> *argvec;
634
635 if (integer_zerop (array_type_nelts_total (type))
636 || !CLASS_TYPE_P (inner_type))
637 /* No interesting initialization to do. */
638 return integer_zero_node;
639 else if (init == void_type_node)
640 return build_value_init (inner_type, complain);
641
642 gcc_assert (init == NULL_TREE
643 || (same_type_ignoring_top_level_qualifiers_p
644 (type, TREE_TYPE (init))));
645
646 argvec = make_tree_vector ();
647 if (init)
648 {
649 tree init_type = strip_array_types (TREE_TYPE (init));
650 tree dummy = build_dummy_object (init_type);
651 if (!lvalue_p (init))
652 dummy = move (dummy);
653 argvec->quick_push (dummy);
654 }
655 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
656 &argvec, inner_type, LOOKUP_NORMAL,
657 complain);
658 release_tree_vector (argvec);
659
660 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
661 we don't want one here because we aren't creating a temporary. */
662 if (TREE_CODE (init) == TARGET_EXPR)
663 init = TARGET_EXPR_INITIAL (init);
664
665 return init;
666 }
667
668 /* Return a TARGET_EXPR which expresses the initialization of an array to
669 be named later, either default-initialization or copy-initialization
670 from another array of the same type. */
671
672 tree
673 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
674 {
675 tree slot;
676 bool value_init = false;
677 tree elt_init = build_vec_init_elt (type, init, complain);
678
679 if (init == void_type_node)
680 {
681 value_init = true;
682 init = NULL_TREE;
683 }
684
685 slot = build_local_temp (type);
686 init = build2 (VEC_INIT_EXPR, type, slot, init);
687 TREE_SIDE_EFFECTS (init) = true;
688 SET_EXPR_LOCATION (init, input_location);
689
690 if (cxx_dialect >= cxx11
691 && potential_constant_expression (elt_init))
692 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
693 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
694
695 return init;
696 }
697
698 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
699 that requires a constant expression. */
700
701 void
702 diagnose_non_constexpr_vec_init (tree expr)
703 {
704 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
705 tree init, elt_init;
706 if (VEC_INIT_EXPR_VALUE_INIT (expr))
707 init = void_type_node;
708 else
709 init = VEC_INIT_EXPR_INIT (expr);
710
711 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
712 require_potential_constant_expression (elt_init);
713 }
714
715 tree
716 build_array_copy (tree init)
717 {
718 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
719 }
720
721 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
722 indicated TYPE. */
723
724 tree
725 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
726 {
727 gcc_assert (!VOID_TYPE_P (type));
728
729 if (TREE_CODE (init) == TARGET_EXPR
730 || init == error_mark_node)
731 return init;
732 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
733 && !VOID_TYPE_P (TREE_TYPE (init))
734 && TREE_CODE (init) != COND_EXPR
735 && TREE_CODE (init) != CONSTRUCTOR
736 && TREE_CODE (init) != VA_ARG_EXPR)
737 /* We need to build up a copy constructor call. A void initializer
738 means we're being called from bot_manip. COND_EXPR is a special
739 case because we already have copies on the arms and we don't want
740 another one here. A CONSTRUCTOR is aggregate initialization, which
741 is handled separately. A VA_ARG_EXPR is magic creation of an
742 aggregate; there's no additional work to be done. */
743 return force_rvalue (init, complain);
744
745 return force_target_expr (type, init, complain);
746 }
747
748 /* Like the above function, but without the checking. This function should
749 only be used by code which is deliberately trying to subvert the type
750 system, such as call_builtin_trap. Or build_over_call, to avoid
751 infinite recursion. */
752
753 tree
754 force_target_expr (tree type, tree init, tsubst_flags_t complain)
755 {
756 tree slot;
757
758 gcc_assert (!VOID_TYPE_P (type));
759
760 slot = build_local_temp (type);
761 return build_target_expr (slot, init, complain);
762 }
763
764 /* Like build_target_expr_with_type, but use the type of INIT. */
765
766 tree
767 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
768 {
769 if (TREE_CODE (init) == AGGR_INIT_EXPR)
770 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
771 else if (TREE_CODE (init) == VEC_INIT_EXPR)
772 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
773 else
774 {
775 init = convert_bitfield_to_declared_type (init);
776 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
777 }
778 }
779
780 tree
781 get_target_expr (tree init)
782 {
783 return get_target_expr_sfinae (init, tf_warning_or_error);
784 }
785
786 /* If EXPR is a bitfield reference, convert it to the declared type of
787 the bitfield, and return the resulting expression. Otherwise,
788 return EXPR itself. */
789
790 tree
791 convert_bitfield_to_declared_type (tree expr)
792 {
793 tree bitfield_type;
794
795 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
796 if (bitfield_type)
797 expr = convert_to_integer_nofold (TYPE_MAIN_VARIANT (bitfield_type),
798 expr);
799 return expr;
800 }
801
802 /* EXPR is being used in an rvalue context. Return a version of EXPR
803 that is marked as an rvalue. */
804
805 tree
806 rvalue (tree expr)
807 {
808 tree type;
809
810 if (error_operand_p (expr))
811 return expr;
812
813 expr = mark_rvalue_use (expr);
814
815 /* [basic.lval]
816
817 Non-class rvalues always have cv-unqualified types. */
818 type = TREE_TYPE (expr);
819 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
820 type = cv_unqualified (type);
821
822 /* We need to do this for rvalue refs as well to get the right answer
823 from decltype; see c++/36628. */
824 if (!processing_template_decl && glvalue_p (expr))
825 expr = build1 (NON_LVALUE_EXPR, type, expr);
826 else if (type != TREE_TYPE (expr))
827 expr = build_nop (type, expr);
828
829 return expr;
830 }
831
832 \f
833 struct cplus_array_info
834 {
835 tree type;
836 tree domain;
837 };
838
839 struct cplus_array_hasher : ggc_ptr_hash<tree_node>
840 {
841 typedef cplus_array_info *compare_type;
842
843 static hashval_t hash (tree t);
844 static bool equal (tree, cplus_array_info *);
845 };
846
847 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
848
849 hashval_t
850 cplus_array_hasher::hash (tree t)
851 {
852 hashval_t hash;
853
854 hash = TYPE_UID (TREE_TYPE (t));
855 if (TYPE_DOMAIN (t))
856 hash ^= TYPE_UID (TYPE_DOMAIN (t));
857 return hash;
858 }
859
860 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
861 of type `cplus_array_info*'. */
862
863 bool
864 cplus_array_hasher::equal (tree t1, cplus_array_info *t2)
865 {
866 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
867 }
868
869 /* Hash table containing dependent array types, which are unsuitable for
870 the language-independent type hash table. */
871 static GTY (()) hash_table<cplus_array_hasher> *cplus_array_htab;
872
873 /* Build an ARRAY_TYPE without laying it out. */
874
875 static tree
876 build_min_array_type (tree elt_type, tree index_type)
877 {
878 tree t = cxx_make_type (ARRAY_TYPE);
879 TREE_TYPE (t) = elt_type;
880 TYPE_DOMAIN (t) = index_type;
881 return t;
882 }
883
884 /* Set TYPE_CANONICAL like build_array_type_1, but using
885 build_cplus_array_type. */
886
887 static void
888 set_array_type_canon (tree t, tree elt_type, tree index_type)
889 {
890 /* Set the canonical type for this new node. */
891 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
892 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
893 SET_TYPE_STRUCTURAL_EQUALITY (t);
894 else if (TYPE_CANONICAL (elt_type) != elt_type
895 || (index_type && TYPE_CANONICAL (index_type) != index_type))
896 TYPE_CANONICAL (t)
897 = build_cplus_array_type (TYPE_CANONICAL (elt_type),
898 index_type
899 ? TYPE_CANONICAL (index_type) : index_type);
900 else
901 TYPE_CANONICAL (t) = t;
902 }
903
904 /* Like build_array_type, but handle special C++ semantics: an array of a
905 variant element type is a variant of the array of the main variant of
906 the element type. */
907
908 tree
909 build_cplus_array_type (tree elt_type, tree index_type)
910 {
911 tree t;
912
913 if (elt_type == error_mark_node || index_type == error_mark_node)
914 return error_mark_node;
915
916 bool dependent = (uses_template_parms (elt_type)
917 || (index_type && uses_template_parms (index_type)));
918
919 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
920 /* Start with an array of the TYPE_MAIN_VARIANT. */
921 t = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
922 index_type);
923 else if (dependent)
924 {
925 /* Since type_hash_canon calls layout_type, we need to use our own
926 hash table. */
927 cplus_array_info cai;
928 hashval_t hash;
929
930 if (cplus_array_htab == NULL)
931 cplus_array_htab = hash_table<cplus_array_hasher>::create_ggc (61);
932
933 hash = TYPE_UID (elt_type);
934 if (index_type)
935 hash ^= TYPE_UID (index_type);
936 cai.type = elt_type;
937 cai.domain = index_type;
938
939 tree *e = cplus_array_htab->find_slot_with_hash (&cai, hash, INSERT);
940 if (*e)
941 /* We have found the type: we're done. */
942 return (tree) *e;
943 else
944 {
945 /* Build a new array type. */
946 t = build_min_array_type (elt_type, index_type);
947
948 /* Store it in the hash table. */
949 *e = t;
950
951 /* Set the canonical type for this new node. */
952 set_array_type_canon (t, elt_type, index_type);
953 }
954 }
955 else
956 {
957 bool typeless_storage
958 = (elt_type == unsigned_char_type_node
959 || elt_type == signed_char_type_node
960 || elt_type == char_type_node
961 || (TREE_CODE (elt_type) == ENUMERAL_TYPE
962 && TYPE_CONTEXT (elt_type) == std_node
963 && !strcmp ("byte", TYPE_NAME_STRING (elt_type))));
964 t = build_array_type (elt_type, index_type, typeless_storage);
965 }
966
967 /* Now check whether we already have this array variant. */
968 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
969 {
970 tree m = t;
971 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
972 if (TREE_TYPE (t) == elt_type
973 && TYPE_NAME (t) == NULL_TREE
974 && TYPE_ATTRIBUTES (t) == NULL_TREE)
975 break;
976 if (!t)
977 {
978 t = build_min_array_type (elt_type, index_type);
979 set_array_type_canon (t, elt_type, index_type);
980 if (!dependent)
981 {
982 layout_type (t);
983 /* Make sure sizes are shared with the main variant.
984 layout_type can't be called after setting TYPE_NEXT_VARIANT,
985 as it will overwrite alignment etc. of all variants. */
986 TYPE_SIZE (t) = TYPE_SIZE (m);
987 TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (m);
988 TYPE_TYPELESS_STORAGE (t) = TYPE_TYPELESS_STORAGE (m);
989 }
990
991 TYPE_MAIN_VARIANT (t) = m;
992 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
993 TYPE_NEXT_VARIANT (m) = t;
994 }
995 }
996
997 /* Avoid spurious warnings with VLAs (c++/54583). */
998 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
999 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
1000
1001 /* Push these needs up to the ARRAY_TYPE so that initialization takes
1002 place more easily. */
1003 bool needs_ctor = (TYPE_NEEDS_CONSTRUCTING (t)
1004 = TYPE_NEEDS_CONSTRUCTING (elt_type));
1005 bool needs_dtor = (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1006 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type));
1007
1008 if (!dependent && t == TYPE_MAIN_VARIANT (t)
1009 && !COMPLETE_TYPE_P (t) && COMPLETE_TYPE_P (elt_type))
1010 {
1011 /* The element type has been completed since the last time we saw
1012 this array type; update the layout and 'tor flags for any variants
1013 that need it. */
1014 layout_type (t);
1015 for (tree v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
1016 {
1017 TYPE_NEEDS_CONSTRUCTING (v) = needs_ctor;
1018 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (v) = needs_dtor;
1019 }
1020 }
1021
1022 return t;
1023 }
1024
1025 /* Return an ARRAY_TYPE with element type ELT and length N. */
1026
1027 tree
1028 build_array_of_n_type (tree elt, int n)
1029 {
1030 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
1031 }
1032
1033 /* True iff T is an N3639 array of runtime bound (VLA). These were
1034 approved for C++14 but then removed. */
1035
1036 bool
1037 array_of_runtime_bound_p (tree t)
1038 {
1039 if (!t || TREE_CODE (t) != ARRAY_TYPE)
1040 return false;
1041 tree dom = TYPE_DOMAIN (t);
1042 if (!dom)
1043 return false;
1044 tree max = TYPE_MAX_VALUE (dom);
1045 return (!potential_rvalue_constant_expression (max)
1046 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)));
1047 }
1048
1049 /* Return a reference type node referring to TO_TYPE. If RVAL is
1050 true, return an rvalue reference type, otherwise return an lvalue
1051 reference type. If a type node exists, reuse it, otherwise create
1052 a new one. */
1053 tree
1054 cp_build_reference_type (tree to_type, bool rval)
1055 {
1056 tree lvalue_ref, t;
1057
1058 if (TREE_CODE (to_type) == REFERENCE_TYPE)
1059 {
1060 rval = rval && TYPE_REF_IS_RVALUE (to_type);
1061 to_type = TREE_TYPE (to_type);
1062 }
1063
1064 lvalue_ref = build_reference_type (to_type);
1065 if (!rval)
1066 return lvalue_ref;
1067
1068 /* This code to create rvalue reference types is based on and tied
1069 to the code creating lvalue reference types in the middle-end
1070 functions build_reference_type_for_mode and build_reference_type.
1071
1072 It works by putting the rvalue reference type nodes after the
1073 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
1074 they will effectively be ignored by the middle end. */
1075
1076 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
1077 if (TYPE_REF_IS_RVALUE (t))
1078 return t;
1079
1080 t = build_distinct_type_copy (lvalue_ref);
1081
1082 TYPE_REF_IS_RVALUE (t) = true;
1083 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
1084 TYPE_NEXT_REF_TO (lvalue_ref) = t;
1085
1086 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
1087 SET_TYPE_STRUCTURAL_EQUALITY (t);
1088 else if (TYPE_CANONICAL (to_type) != to_type)
1089 TYPE_CANONICAL (t)
1090 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
1091 else
1092 TYPE_CANONICAL (t) = t;
1093
1094 layout_type (t);
1095
1096 return t;
1097
1098 }
1099
1100 /* Returns EXPR cast to rvalue reference type, like std::move. */
1101
1102 tree
1103 move (tree expr)
1104 {
1105 tree type = TREE_TYPE (expr);
1106 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
1107 type = cp_build_reference_type (type, /*rval*/true);
1108 return build_static_cast (type, expr, tf_warning_or_error);
1109 }
1110
1111 /* Used by the C++ front end to build qualified array types. However,
1112 the C version of this function does not properly maintain canonical
1113 types (which are not used in C). */
1114 tree
1115 c_build_qualified_type (tree type, int type_quals, tree /* orig_qual_type */,
1116 size_t /* orig_qual_indirect */)
1117 {
1118 return cp_build_qualified_type (type, type_quals);
1119 }
1120
1121 \f
1122 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
1123 arrays correctly. In particular, if TYPE is an array of T's, and
1124 TYPE_QUALS is non-empty, returns an array of qualified T's.
1125
1126 FLAGS determines how to deal with ill-formed qualifications. If
1127 tf_ignore_bad_quals is set, then bad qualifications are dropped
1128 (this is permitted if TYPE was introduced via a typedef or template
1129 type parameter). If bad qualifications are dropped and tf_warning
1130 is set, then a warning is issued for non-const qualifications. If
1131 tf_ignore_bad_quals is not set and tf_error is not set, we
1132 return error_mark_node. Otherwise, we issue an error, and ignore
1133 the qualifications.
1134
1135 Qualification of a reference type is valid when the reference came
1136 via a typedef or template type argument. [dcl.ref] No such
1137 dispensation is provided for qualifying a function type. [dcl.fct]
1138 DR 295 queries this and the proposed resolution brings it into line
1139 with qualifying a reference. We implement the DR. We also behave
1140 in a similar manner for restricting non-pointer types. */
1141
1142 tree
1143 cp_build_qualified_type_real (tree type,
1144 int type_quals,
1145 tsubst_flags_t complain)
1146 {
1147 tree result;
1148 int bad_quals = TYPE_UNQUALIFIED;
1149
1150 if (type == error_mark_node)
1151 return type;
1152
1153 if (type_quals == cp_type_quals (type))
1154 return type;
1155
1156 if (TREE_CODE (type) == ARRAY_TYPE)
1157 {
1158 /* In C++, the qualification really applies to the array element
1159 type. Obtain the appropriately qualified element type. */
1160 tree t;
1161 tree element_type
1162 = cp_build_qualified_type_real (TREE_TYPE (type),
1163 type_quals,
1164 complain);
1165
1166 if (element_type == error_mark_node)
1167 return error_mark_node;
1168
1169 /* See if we already have an identically qualified type. Tests
1170 should be equivalent to those in check_qualified_type. */
1171 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1172 if (TREE_TYPE (t) == element_type
1173 && TYPE_NAME (t) == TYPE_NAME (type)
1174 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
1175 && attribute_list_equal (TYPE_ATTRIBUTES (t),
1176 TYPE_ATTRIBUTES (type)))
1177 break;
1178
1179 if (!t)
1180 {
1181 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
1182
1183 /* Keep the typedef name. */
1184 if (TYPE_NAME (t) != TYPE_NAME (type))
1185 {
1186 t = build_variant_type_copy (t);
1187 TYPE_NAME (t) = TYPE_NAME (type);
1188 SET_TYPE_ALIGN (t, TYPE_ALIGN (type));
1189 TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (type);
1190 }
1191 }
1192
1193 /* Even if we already had this variant, we update
1194 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1195 they changed since the variant was originally created.
1196
1197 This seems hokey; if there is some way to use a previous
1198 variant *without* coming through here,
1199 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1200 TYPE_NEEDS_CONSTRUCTING (t)
1201 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1202 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1203 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1204 return t;
1205 }
1206 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1207 {
1208 tree t = PACK_EXPANSION_PATTERN (type);
1209
1210 t = cp_build_qualified_type_real (t, type_quals, complain);
1211 return make_pack_expansion (t, complain);
1212 }
1213
1214 /* A reference or method type shall not be cv-qualified.
1215 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1216 (in CD1) we always ignore extra cv-quals on functions. */
1217 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1218 && (TREE_CODE (type) == REFERENCE_TYPE
1219 || TREE_CODE (type) == FUNCTION_TYPE
1220 || TREE_CODE (type) == METHOD_TYPE))
1221 {
1222 if (TREE_CODE (type) == REFERENCE_TYPE)
1223 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1224 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1225 }
1226
1227 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1228 if (TREE_CODE (type) == FUNCTION_TYPE)
1229 type_quals |= type_memfn_quals (type);
1230
1231 /* A restrict-qualified type must be a pointer (or reference)
1232 to object or incomplete type. */
1233 if ((type_quals & TYPE_QUAL_RESTRICT)
1234 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1235 && TREE_CODE (type) != TYPENAME_TYPE
1236 && !POINTER_TYPE_P (type))
1237 {
1238 bad_quals |= TYPE_QUAL_RESTRICT;
1239 type_quals &= ~TYPE_QUAL_RESTRICT;
1240 }
1241
1242 if (bad_quals == TYPE_UNQUALIFIED
1243 || (complain & tf_ignore_bad_quals))
1244 /*OK*/;
1245 else if (!(complain & tf_error))
1246 return error_mark_node;
1247 else
1248 {
1249 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1250 error ("%qV qualifiers cannot be applied to %qT",
1251 bad_type, type);
1252 }
1253
1254 /* Retrieve (or create) the appropriately qualified variant. */
1255 result = build_qualified_type (type, type_quals);
1256
1257 /* Preserve exception specs and ref-qualifier since build_qualified_type
1258 doesn't know about them. */
1259 if (TREE_CODE (result) == FUNCTION_TYPE
1260 || TREE_CODE (result) == METHOD_TYPE)
1261 {
1262 result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (type));
1263 result = build_ref_qualified_type (result, type_memfn_rqual (type));
1264 }
1265
1266 return result;
1267 }
1268
1269 /* Return TYPE with const and volatile removed. */
1270
1271 tree
1272 cv_unqualified (tree type)
1273 {
1274 int quals;
1275
1276 if (type == error_mark_node)
1277 return type;
1278
1279 quals = cp_type_quals (type);
1280 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1281 return cp_build_qualified_type (type, quals);
1282 }
1283
1284 /* Subroutine of strip_typedefs. We want to apply to RESULT the attributes
1285 from ATTRIBS that affect type identity, and no others. If any are not
1286 applied, set *remove_attributes to true. */
1287
1288 static tree
1289 apply_identity_attributes (tree result, tree attribs, bool *remove_attributes)
1290 {
1291 tree first_ident = NULL_TREE;
1292 tree new_attribs = NULL_TREE;
1293 tree *p = &new_attribs;
1294
1295 if (OVERLOAD_TYPE_P (result))
1296 {
1297 /* On classes and enums all attributes are ingrained. */
1298 gcc_assert (attribs == TYPE_ATTRIBUTES (result));
1299 return result;
1300 }
1301
1302 for (tree a = attribs; a; a = TREE_CHAIN (a))
1303 {
1304 const attribute_spec *as
1305 = lookup_attribute_spec (get_attribute_name (a));
1306 if (as && as->affects_type_identity)
1307 {
1308 if (!first_ident)
1309 first_ident = a;
1310 else if (first_ident == error_mark_node)
1311 {
1312 *p = tree_cons (TREE_PURPOSE (a), TREE_VALUE (a), NULL_TREE);
1313 p = &TREE_CHAIN (*p);
1314 }
1315 }
1316 else if (first_ident)
1317 {
1318 for (tree a2 = first_ident; a2; a2 = TREE_CHAIN (a2))
1319 {
1320 *p = tree_cons (TREE_PURPOSE (a2), TREE_VALUE (a2), NULL_TREE);
1321 p = &TREE_CHAIN (*p);
1322 }
1323 first_ident = error_mark_node;
1324 }
1325 }
1326 if (first_ident != error_mark_node)
1327 new_attribs = first_ident;
1328
1329 if (first_ident == attribs)
1330 /* All attributes affected type identity. */;
1331 else
1332 *remove_attributes = true;
1333
1334 return cp_build_type_attribute_variant (result, new_attribs);
1335 }
1336
1337 /* Builds a qualified variant of T that is not a typedef variant.
1338 E.g. consider the following declarations:
1339 typedef const int ConstInt;
1340 typedef ConstInt* PtrConstInt;
1341 If T is PtrConstInt, this function returns a type representing
1342 const int*.
1343 In other words, if T is a typedef, the function returns the underlying type.
1344 The cv-qualification and attributes of the type returned match the
1345 input type.
1346 They will always be compatible types.
1347 The returned type is built so that all of its subtypes
1348 recursively have their typedefs stripped as well.
1349
1350 This is different from just returning TYPE_CANONICAL (T)
1351 Because of several reasons:
1352 * If T is a type that needs structural equality
1353 its TYPE_CANONICAL (T) will be NULL.
1354 * TYPE_CANONICAL (T) desn't carry type attributes
1355 and loses template parameter names.
1356
1357 If REMOVE_ATTRIBUTES is non-null, also strip attributes that don't
1358 affect type identity, and set the referent to true if any were
1359 stripped. */
1360
1361 tree
1362 strip_typedefs (tree t, bool *remove_attributes)
1363 {
1364 tree result = NULL, type = NULL, t0 = NULL;
1365
1366 if (!t || t == error_mark_node)
1367 return t;
1368
1369 if (TREE_CODE (t) == TREE_LIST)
1370 {
1371 bool changed = false;
1372 vec<tree,va_gc> *vec = make_tree_vector ();
1373 tree r = t;
1374 for (; t; t = TREE_CHAIN (t))
1375 {
1376 gcc_assert (!TREE_PURPOSE (t));
1377 tree elt = strip_typedefs (TREE_VALUE (t), remove_attributes);
1378 if (elt != TREE_VALUE (t))
1379 changed = true;
1380 vec_safe_push (vec, elt);
1381 }
1382 if (changed)
1383 r = build_tree_list_vec (vec);
1384 release_tree_vector (vec);
1385 return r;
1386 }
1387
1388 gcc_assert (TYPE_P (t));
1389
1390 if (t == TYPE_CANONICAL (t))
1391 return t;
1392
1393 if (dependent_alias_template_spec_p (t))
1394 /* DR 1558: However, if the template-id is dependent, subsequent
1395 template argument substitution still applies to the template-id. */
1396 return t;
1397
1398 switch (TREE_CODE (t))
1399 {
1400 case POINTER_TYPE:
1401 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1402 result = build_pointer_type (type);
1403 break;
1404 case REFERENCE_TYPE:
1405 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1406 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1407 break;
1408 case OFFSET_TYPE:
1409 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t), remove_attributes);
1410 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1411 result = build_offset_type (t0, type);
1412 break;
1413 case RECORD_TYPE:
1414 if (TYPE_PTRMEMFUNC_P (t))
1415 {
1416 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t), remove_attributes);
1417 result = build_ptrmemfunc_type (t0);
1418 }
1419 break;
1420 case ARRAY_TYPE:
1421 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1422 t0 = strip_typedefs (TYPE_DOMAIN (t), remove_attributes);
1423 result = build_cplus_array_type (type, t0);
1424 break;
1425 case FUNCTION_TYPE:
1426 case METHOD_TYPE:
1427 {
1428 tree arg_types = NULL, arg_node, arg_node2, arg_type;
1429 bool changed;
1430
1431 /* Because we stomp on TREE_PURPOSE of TYPE_ARG_TYPES in many places
1432 around the compiler (e.g. cp_parser_late_parsing_default_args), we
1433 can't expect that re-hashing a function type will find a previous
1434 equivalent type, so try to reuse the input type if nothing has
1435 changed. If the type is itself a variant, that will change. */
1436 bool is_variant = typedef_variant_p (t);
1437 if (remove_attributes
1438 && (TYPE_ATTRIBUTES (t) || TYPE_USER_ALIGN (t)))
1439 is_variant = true;
1440
1441 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1442 tree canon_spec = (flag_noexcept_type
1443 ? canonical_eh_spec (TYPE_RAISES_EXCEPTIONS (t))
1444 : NULL_TREE);
1445 changed = (type != TREE_TYPE (t) || is_variant
1446 || TYPE_RAISES_EXCEPTIONS (t) != canon_spec);
1447
1448 for (arg_node = TYPE_ARG_TYPES (t);
1449 arg_node;
1450 arg_node = TREE_CHAIN (arg_node))
1451 {
1452 if (arg_node == void_list_node)
1453 break;
1454 arg_type = strip_typedefs (TREE_VALUE (arg_node),
1455 remove_attributes);
1456 gcc_assert (arg_type);
1457 if (arg_type == TREE_VALUE (arg_node) && !changed)
1458 continue;
1459
1460 if (!changed)
1461 {
1462 changed = true;
1463 for (arg_node2 = TYPE_ARG_TYPES (t);
1464 arg_node2 != arg_node;
1465 arg_node2 = TREE_CHAIN (arg_node2))
1466 arg_types
1467 = tree_cons (TREE_PURPOSE (arg_node2),
1468 TREE_VALUE (arg_node2), arg_types);
1469 }
1470
1471 arg_types
1472 = tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1473 }
1474
1475 if (!changed)
1476 return t;
1477
1478 if (arg_types)
1479 arg_types = nreverse (arg_types);
1480
1481 /* A list of parameters not ending with an ellipsis
1482 must end with void_list_node. */
1483 if (arg_node)
1484 arg_types = chainon (arg_types, void_list_node);
1485
1486 if (TREE_CODE (t) == METHOD_TYPE)
1487 {
1488 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1489 gcc_assert (class_type);
1490 result =
1491 build_method_type_directly (class_type, type,
1492 TREE_CHAIN (arg_types));
1493 result
1494 = build_ref_qualified_type (result, type_memfn_rqual (t));
1495 }
1496 else
1497 {
1498 result = build_function_type (type,
1499 arg_types);
1500 result = apply_memfn_quals (result,
1501 type_memfn_quals (t),
1502 type_memfn_rqual (t));
1503 }
1504
1505 if (canon_spec)
1506 result = build_exception_variant (result, canon_spec);
1507 if (TYPE_HAS_LATE_RETURN_TYPE (t))
1508 TYPE_HAS_LATE_RETURN_TYPE (result) = 1;
1509 }
1510 break;
1511 case TYPENAME_TYPE:
1512 {
1513 bool changed = false;
1514 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1515 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1516 && TREE_OPERAND (fullname, 1))
1517 {
1518 tree args = TREE_OPERAND (fullname, 1);
1519 tree new_args = copy_node (args);
1520 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1521 {
1522 tree arg = TREE_VEC_ELT (args, i);
1523 tree strip_arg;
1524 if (TYPE_P (arg))
1525 strip_arg = strip_typedefs (arg, remove_attributes);
1526 else
1527 strip_arg = strip_typedefs_expr (arg, remove_attributes);
1528 TREE_VEC_ELT (new_args, i) = strip_arg;
1529 if (strip_arg != arg)
1530 changed = true;
1531 }
1532 if (changed)
1533 {
1534 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args)
1535 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args);
1536 fullname
1537 = lookup_template_function (TREE_OPERAND (fullname, 0),
1538 new_args);
1539 }
1540 else
1541 ggc_free (new_args);
1542 }
1543 tree ctx = strip_typedefs (TYPE_CONTEXT (t), remove_attributes);
1544 if (!changed && ctx == TYPE_CONTEXT (t) && !typedef_variant_p (t))
1545 return t;
1546 tree name = fullname;
1547 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR)
1548 name = TREE_OPERAND (fullname, 0);
1549 /* Use build_typename_type rather than make_typename_type because we
1550 don't want to resolve it here, just strip typedefs. */
1551 result = build_typename_type (ctx, name, fullname, typename_type);
1552 }
1553 break;
1554 case DECLTYPE_TYPE:
1555 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t),
1556 remove_attributes);
1557 if (result == DECLTYPE_TYPE_EXPR (t))
1558 result = NULL_TREE;
1559 else
1560 result = (finish_decltype_type
1561 (result,
1562 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1563 tf_none));
1564 break;
1565 case UNDERLYING_TYPE:
1566 type = strip_typedefs (UNDERLYING_TYPE_TYPE (t), remove_attributes);
1567 result = finish_underlying_type (type);
1568 break;
1569 default:
1570 break;
1571 }
1572
1573 if (!result)
1574 {
1575 if (typedef_variant_p (t))
1576 {
1577 /* Explicitly get the underlying type, as TYPE_MAIN_VARIANT doesn't
1578 strip typedefs with attributes. */
1579 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (t)));
1580 result = strip_typedefs (result);
1581 }
1582 else
1583 result = TYPE_MAIN_VARIANT (t);
1584 }
1585 gcc_assert (!typedef_variant_p (result));
1586
1587 if (COMPLETE_TYPE_P (result) && !COMPLETE_TYPE_P (t))
1588 /* If RESULT is complete and T isn't, it's likely the case that T
1589 is a variant of RESULT which hasn't been updated yet. Skip the
1590 attribute handling. */;
1591 else
1592 {
1593 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1594 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1595 {
1596 gcc_assert (TYPE_USER_ALIGN (t));
1597 if (remove_attributes)
1598 *remove_attributes = true;
1599 else
1600 {
1601 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1602 result = build_variant_type_copy (result);
1603 else
1604 result = build_aligned_type (result, TYPE_ALIGN (t));
1605 TYPE_USER_ALIGN (result) = true;
1606 }
1607 }
1608
1609 if (TYPE_ATTRIBUTES (t))
1610 {
1611 if (remove_attributes)
1612 result = apply_identity_attributes (result, TYPE_ATTRIBUTES (t),
1613 remove_attributes);
1614 else
1615 result = cp_build_type_attribute_variant (result,
1616 TYPE_ATTRIBUTES (t));
1617 }
1618 }
1619
1620 return cp_build_qualified_type (result, cp_type_quals (t));
1621 }
1622
1623 /* Like strip_typedefs above, but works on expressions, so that in
1624
1625 template<class T> struct A
1626 {
1627 typedef T TT;
1628 B<sizeof(TT)> b;
1629 };
1630
1631 sizeof(TT) is replaced by sizeof(T). */
1632
1633 tree
1634 strip_typedefs_expr (tree t, bool *remove_attributes)
1635 {
1636 unsigned i,n;
1637 tree r, type, *ops;
1638 enum tree_code code;
1639
1640 if (t == NULL_TREE || t == error_mark_node)
1641 return t;
1642
1643 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1644 return t;
1645
1646 /* Some expressions have type operands, so let's handle types here rather
1647 than check TYPE_P in multiple places below. */
1648 if (TYPE_P (t))
1649 return strip_typedefs (t, remove_attributes);
1650
1651 code = TREE_CODE (t);
1652 switch (code)
1653 {
1654 case IDENTIFIER_NODE:
1655 case TEMPLATE_PARM_INDEX:
1656 case OVERLOAD:
1657 case BASELINK:
1658 case ARGUMENT_PACK_SELECT:
1659 return t;
1660
1661 case TRAIT_EXPR:
1662 {
1663 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t), remove_attributes);
1664 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t), remove_attributes);
1665 if (type1 == TRAIT_EXPR_TYPE1 (t)
1666 && type2 == TRAIT_EXPR_TYPE2 (t))
1667 return t;
1668 r = copy_node (t);
1669 TRAIT_EXPR_TYPE1 (r) = type1;
1670 TRAIT_EXPR_TYPE2 (r) = type2;
1671 return r;
1672 }
1673
1674 case TREE_LIST:
1675 {
1676 vec<tree, va_gc> *vec = make_tree_vector ();
1677 bool changed = false;
1678 tree it;
1679 for (it = t; it; it = TREE_CHAIN (it))
1680 {
1681 tree val = strip_typedefs_expr (TREE_VALUE (t), remove_attributes);
1682 vec_safe_push (vec, val);
1683 if (val != TREE_VALUE (t))
1684 changed = true;
1685 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1686 }
1687 if (changed)
1688 {
1689 r = NULL_TREE;
1690 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1691 r = tree_cons (NULL_TREE, it, r);
1692 }
1693 else
1694 r = t;
1695 release_tree_vector (vec);
1696 return r;
1697 }
1698
1699 case TREE_VEC:
1700 {
1701 bool changed = false;
1702 vec<tree, va_gc> *vec = make_tree_vector ();
1703 n = TREE_VEC_LENGTH (t);
1704 vec_safe_reserve (vec, n);
1705 for (i = 0; i < n; ++i)
1706 {
1707 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i),
1708 remove_attributes);
1709 vec->quick_push (op);
1710 if (op != TREE_VEC_ELT (t, i))
1711 changed = true;
1712 }
1713 if (changed)
1714 {
1715 r = copy_node (t);
1716 for (i = 0; i < n; ++i)
1717 TREE_VEC_ELT (r, i) = (*vec)[i];
1718 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r)
1719 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t);
1720 }
1721 else
1722 r = t;
1723 release_tree_vector (vec);
1724 return r;
1725 }
1726
1727 case CONSTRUCTOR:
1728 {
1729 bool changed = false;
1730 vec<constructor_elt, va_gc> *vec
1731 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1732 n = CONSTRUCTOR_NELTS (t);
1733 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1734 for (i = 0; i < n; ++i)
1735 {
1736 constructor_elt *e = &(*vec)[i];
1737 tree op = strip_typedefs_expr (e->value, remove_attributes);
1738 if (op != e->value)
1739 {
1740 changed = true;
1741 e->value = op;
1742 }
1743 gcc_checking_assert
1744 (e->index == strip_typedefs_expr (e->index, remove_attributes));
1745 }
1746
1747 if (!changed && type == TREE_TYPE (t))
1748 {
1749 vec_free (vec);
1750 return t;
1751 }
1752 else
1753 {
1754 r = copy_node (t);
1755 TREE_TYPE (r) = type;
1756 CONSTRUCTOR_ELTS (r) = vec;
1757 return r;
1758 }
1759 }
1760
1761 case LAMBDA_EXPR:
1762 error ("lambda-expression in a constant expression");
1763 return error_mark_node;
1764
1765 default:
1766 break;
1767 }
1768
1769 gcc_assert (EXPR_P (t));
1770
1771 n = TREE_OPERAND_LENGTH (t);
1772 ops = XALLOCAVEC (tree, n);
1773 type = TREE_TYPE (t);
1774
1775 switch (code)
1776 {
1777 CASE_CONVERT:
1778 case IMPLICIT_CONV_EXPR:
1779 case DYNAMIC_CAST_EXPR:
1780 case STATIC_CAST_EXPR:
1781 case CONST_CAST_EXPR:
1782 case REINTERPRET_CAST_EXPR:
1783 case CAST_EXPR:
1784 case NEW_EXPR:
1785 type = strip_typedefs (type, remove_attributes);
1786 /* fallthrough */
1787
1788 default:
1789 for (i = 0; i < n; ++i)
1790 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i), remove_attributes);
1791 break;
1792 }
1793
1794 /* If nothing changed, return t. */
1795 for (i = 0; i < n; ++i)
1796 if (ops[i] != TREE_OPERAND (t, i))
1797 break;
1798 if (i == n && type == TREE_TYPE (t))
1799 return t;
1800
1801 r = copy_node (t);
1802 TREE_TYPE (r) = type;
1803 for (i = 0; i < n; ++i)
1804 TREE_OPERAND (r, i) = ops[i];
1805 return r;
1806 }
1807
1808 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1809 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1810 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1811 VIRT indicates whether TYPE is inherited virtually or not.
1812 IGO_PREV points at the previous binfo of the inheritance graph
1813 order chain. The newly copied binfo's TREE_CHAIN forms this
1814 ordering.
1815
1816 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1817 correct order. That is in the order the bases themselves should be
1818 constructed in.
1819
1820 The BINFO_INHERITANCE of a virtual base class points to the binfo
1821 of the most derived type. ??? We could probably change this so that
1822 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1823 remove a field. They currently can only differ for primary virtual
1824 virtual bases. */
1825
1826 tree
1827 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1828 {
1829 tree new_binfo;
1830
1831 if (virt)
1832 {
1833 /* See if we've already made this virtual base. */
1834 new_binfo = binfo_for_vbase (type, t);
1835 if (new_binfo)
1836 return new_binfo;
1837 }
1838
1839 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1840 BINFO_TYPE (new_binfo) = type;
1841
1842 /* Chain it into the inheritance graph. */
1843 TREE_CHAIN (*igo_prev) = new_binfo;
1844 *igo_prev = new_binfo;
1845
1846 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1847 {
1848 int ix;
1849 tree base_binfo;
1850
1851 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1852
1853 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1854 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1855
1856 /* We do not need to copy the accesses, as they are read only. */
1857 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1858
1859 /* Recursively copy base binfos of BINFO. */
1860 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1861 {
1862 tree new_base_binfo;
1863 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1864 t, igo_prev,
1865 BINFO_VIRTUAL_P (base_binfo));
1866
1867 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1868 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1869 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1870 }
1871 }
1872 else
1873 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1874
1875 if (virt)
1876 {
1877 /* Push it onto the list after any virtual bases it contains
1878 will have been pushed. */
1879 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1880 BINFO_VIRTUAL_P (new_binfo) = 1;
1881 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1882 }
1883
1884 return new_binfo;
1885 }
1886 \f
1887 /* Hashing of lists so that we don't make duplicates.
1888 The entry point is `list_hash_canon'. */
1889
1890 struct list_proxy
1891 {
1892 tree purpose;
1893 tree value;
1894 tree chain;
1895 };
1896
1897 struct list_hasher : ggc_ptr_hash<tree_node>
1898 {
1899 typedef list_proxy *compare_type;
1900
1901 static hashval_t hash (tree);
1902 static bool equal (tree, list_proxy *);
1903 };
1904
1905 /* Now here is the hash table. When recording a list, it is added
1906 to the slot whose index is the hash code mod the table size.
1907 Note that the hash table is used for several kinds of lists.
1908 While all these live in the same table, they are completely independent,
1909 and the hash code is computed differently for each of these. */
1910
1911 static GTY (()) hash_table<list_hasher> *list_hash_table;
1912
1913 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1914 for a node we are thinking about adding). */
1915
1916 bool
1917 list_hasher::equal (tree t, list_proxy *proxy)
1918 {
1919 return (TREE_VALUE (t) == proxy->value
1920 && TREE_PURPOSE (t) == proxy->purpose
1921 && TREE_CHAIN (t) == proxy->chain);
1922 }
1923
1924 /* Compute a hash code for a list (chain of TREE_LIST nodes
1925 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1926 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1927
1928 static hashval_t
1929 list_hash_pieces (tree purpose, tree value, tree chain)
1930 {
1931 hashval_t hashcode = 0;
1932
1933 if (chain)
1934 hashcode += TREE_HASH (chain);
1935
1936 if (value)
1937 hashcode += TREE_HASH (value);
1938 else
1939 hashcode += 1007;
1940 if (purpose)
1941 hashcode += TREE_HASH (purpose);
1942 else
1943 hashcode += 1009;
1944 return hashcode;
1945 }
1946
1947 /* Hash an already existing TREE_LIST. */
1948
1949 hashval_t
1950 list_hasher::hash (tree t)
1951 {
1952 return list_hash_pieces (TREE_PURPOSE (t),
1953 TREE_VALUE (t),
1954 TREE_CHAIN (t));
1955 }
1956
1957 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1958 object for an identical list if one already exists. Otherwise, build a
1959 new one, and record it as the canonical object. */
1960
1961 tree
1962 hash_tree_cons (tree purpose, tree value, tree chain)
1963 {
1964 int hashcode = 0;
1965 tree *slot;
1966 struct list_proxy proxy;
1967
1968 /* Hash the list node. */
1969 hashcode = list_hash_pieces (purpose, value, chain);
1970 /* Create a proxy for the TREE_LIST we would like to create. We
1971 don't actually create it so as to avoid creating garbage. */
1972 proxy.purpose = purpose;
1973 proxy.value = value;
1974 proxy.chain = chain;
1975 /* See if it is already in the table. */
1976 slot = list_hash_table->find_slot_with_hash (&proxy, hashcode, INSERT);
1977 /* If not, create a new node. */
1978 if (!*slot)
1979 *slot = tree_cons (purpose, value, chain);
1980 return (tree) *slot;
1981 }
1982
1983 /* Constructor for hashed lists. */
1984
1985 tree
1986 hash_tree_chain (tree value, tree chain)
1987 {
1988 return hash_tree_cons (NULL_TREE, value, chain);
1989 }
1990 \f
1991 void
1992 debug_binfo (tree elem)
1993 {
1994 HOST_WIDE_INT n;
1995 tree virtuals;
1996
1997 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1998 "\nvtable type:\n",
1999 TYPE_NAME_STRING (BINFO_TYPE (elem)),
2000 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
2001 debug_tree (BINFO_TYPE (elem));
2002 if (BINFO_VTABLE (elem))
2003 fprintf (stderr, "vtable decl \"%s\"\n",
2004 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
2005 else
2006 fprintf (stderr, "no vtable decl yet\n");
2007 fprintf (stderr, "virtuals:\n");
2008 virtuals = BINFO_VIRTUALS (elem);
2009 n = 0;
2010
2011 while (virtuals)
2012 {
2013 tree fndecl = TREE_VALUE (virtuals);
2014 fprintf (stderr, "%s [%ld =? %ld]\n",
2015 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
2016 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
2017 ++n;
2018 virtuals = TREE_CHAIN (virtuals);
2019 }
2020 }
2021
2022 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
2023 the type of the result expression, if known, or NULL_TREE if the
2024 resulting expression is type-dependent. If TEMPLATE_P is true,
2025 NAME is known to be a template because the user explicitly used the
2026 "template" keyword after the "::".
2027
2028 All SCOPE_REFs should be built by use of this function. */
2029
2030 tree
2031 build_qualified_name (tree type, tree scope, tree name, bool template_p)
2032 {
2033 tree t;
2034 if (type == error_mark_node
2035 || scope == error_mark_node
2036 || name == error_mark_node)
2037 return error_mark_node;
2038 gcc_assert (TREE_CODE (name) != SCOPE_REF);
2039 t = build2 (SCOPE_REF, type, scope, name);
2040 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
2041 PTRMEM_OK_P (t) = true;
2042 if (type)
2043 t = convert_from_reference (t);
2044 return t;
2045 }
2046
2047 /* Like check_qualified_type, but also check ref-qualifier and exception
2048 specification. */
2049
2050 static bool
2051 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
2052 cp_ref_qualifier rqual, tree raises)
2053 {
2054 return (TYPE_QUALS (cand) == type_quals
2055 && check_base_type (cand, base)
2056 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
2057 ce_exact)
2058 && type_memfn_rqual (cand) == rqual);
2059 }
2060
2061 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
2062
2063 tree
2064 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
2065 {
2066 tree t;
2067
2068 if (rqual == type_memfn_rqual (type))
2069 return type;
2070
2071 int type_quals = TYPE_QUALS (type);
2072 tree raises = TYPE_RAISES_EXCEPTIONS (type);
2073 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2074 if (cp_check_qualified_type (t, type, type_quals, rqual, raises))
2075 return t;
2076
2077 t = build_variant_type_copy (type);
2078 switch (rqual)
2079 {
2080 case REF_QUAL_RVALUE:
2081 FUNCTION_RVALUE_QUALIFIED (t) = 1;
2082 FUNCTION_REF_QUALIFIED (t) = 1;
2083 break;
2084 case REF_QUAL_LVALUE:
2085 FUNCTION_RVALUE_QUALIFIED (t) = 0;
2086 FUNCTION_REF_QUALIFIED (t) = 1;
2087 break;
2088 default:
2089 FUNCTION_REF_QUALIFIED (t) = 0;
2090 break;
2091 }
2092
2093 if (TYPE_STRUCTURAL_EQUALITY_P (type))
2094 /* Propagate structural equality. */
2095 SET_TYPE_STRUCTURAL_EQUALITY (t);
2096 else if (TYPE_CANONICAL (type) != type)
2097 /* Build the underlying canonical type, since it is different
2098 from TYPE. */
2099 TYPE_CANONICAL (t) = build_ref_qualified_type (TYPE_CANONICAL (type),
2100 rqual);
2101 else
2102 /* T is its own canonical type. */
2103 TYPE_CANONICAL (t) = t;
2104
2105 return t;
2106 }
2107
2108 /* Cache of free ovl nodes. Uses OVL_FUNCTION for chaining. */
2109 static GTY((deletable)) tree ovl_cache;
2110
2111 /* Make a raw overload node containing FN. */
2112
2113 tree
2114 ovl_make (tree fn, tree next)
2115 {
2116 tree result = ovl_cache;
2117
2118 if (result)
2119 {
2120 ovl_cache = OVL_FUNCTION (result);
2121 /* Zap the flags. */
2122 memset (result, 0, sizeof (tree_base));
2123 TREE_SET_CODE (result, OVERLOAD);
2124 }
2125 else
2126 result = make_node (OVERLOAD);
2127
2128 if (TREE_CODE (fn) == OVERLOAD)
2129 OVL_NESTED_P (result) = true;
2130
2131 TREE_TYPE (result) = (next || TREE_CODE (fn) == TEMPLATE_DECL
2132 ? unknown_type_node : TREE_TYPE (fn));
2133 OVL_FUNCTION (result) = fn;
2134 OVL_CHAIN (result) = next;
2135 return result;
2136 }
2137
2138 static tree
2139 ovl_copy (tree ovl)
2140 {
2141 tree result = ovl_cache;
2142
2143 if (result)
2144 {
2145 ovl_cache = OVL_FUNCTION (result);
2146 /* Zap the flags. */
2147 memset (result, 0, sizeof (tree_base));
2148 TREE_SET_CODE (result, OVERLOAD);
2149 }
2150 else
2151 result = make_node (OVERLOAD);
2152
2153 gcc_checking_assert (!OVL_NESTED_P (ovl) && OVL_USED_P (ovl));
2154 TREE_TYPE (result) = TREE_TYPE (ovl);
2155 OVL_FUNCTION (result) = OVL_FUNCTION (ovl);
2156 OVL_CHAIN (result) = OVL_CHAIN (ovl);
2157 OVL_HIDDEN_P (result) = OVL_HIDDEN_P (ovl);
2158 OVL_USING_P (result) = OVL_USING_P (ovl);
2159 OVL_LOOKUP_P (result) = OVL_LOOKUP_P (ovl);
2160
2161 return result;
2162 }
2163
2164 /* Add FN to the (potentially NULL) overload set OVL. USING_P is
2165 true, if FN is via a using declaration. We also pay attention to
2166 DECL_HIDDEN. Overloads are ordered as hidden, using, regular. */
2167
2168 tree
2169 ovl_insert (tree fn, tree maybe_ovl, bool using_p)
2170 {
2171 bool copying = false; /* Checking use only. */
2172 bool hidden_p = DECL_HIDDEN_P (fn);
2173 int weight = (hidden_p << 1) | (using_p << 0);
2174
2175 tree result = NULL_TREE;
2176 tree insert_after = NULL_TREE;
2177
2178 /* Find insertion point. */
2179 while (maybe_ovl && TREE_CODE (maybe_ovl) == OVERLOAD
2180 && (weight < ((OVL_HIDDEN_P (maybe_ovl) << 1)
2181 | (OVL_USING_P (maybe_ovl) << 0))))
2182 {
2183 gcc_checking_assert (!OVL_LOOKUP_P (maybe_ovl)
2184 && (!copying || OVL_USED_P (maybe_ovl)));
2185 if (OVL_USED_P (maybe_ovl))
2186 {
2187 copying = true;
2188 maybe_ovl = ovl_copy (maybe_ovl);
2189 if (insert_after)
2190 OVL_CHAIN (insert_after) = maybe_ovl;
2191 }
2192 if (!result)
2193 result = maybe_ovl;
2194 insert_after = maybe_ovl;
2195 maybe_ovl = OVL_CHAIN (maybe_ovl);
2196 }
2197
2198 tree trail = fn;
2199 if (maybe_ovl || using_p || hidden_p || TREE_CODE (fn) == TEMPLATE_DECL)
2200 {
2201 trail = ovl_make (fn, maybe_ovl);
2202 if (hidden_p)
2203 OVL_HIDDEN_P (trail) = true;
2204 if (using_p)
2205 OVL_USING_P (trail) = true;
2206 }
2207
2208 if (insert_after)
2209 {
2210 OVL_CHAIN (insert_after) = trail;
2211 TREE_TYPE (insert_after) = unknown_type_node;
2212 }
2213 else
2214 result = trail;
2215
2216 return result;
2217 }
2218
2219 /* Skip any hidden names at the beginning of OVL. */
2220
2221 tree
2222 ovl_skip_hidden (tree ovl)
2223 {
2224 for (;
2225 ovl && TREE_CODE (ovl) == OVERLOAD && OVL_HIDDEN_P (ovl);
2226 ovl = OVL_CHAIN (ovl))
2227 gcc_checking_assert (DECL_HIDDEN_P (OVL_FUNCTION (ovl)));
2228
2229 if (ovl && TREE_CODE (ovl) != OVERLOAD && DECL_HIDDEN_P (ovl))
2230 {
2231 /* Any hidden functions should have been wrapped in an
2232 overload, but injected friend classes will not. */
2233 gcc_checking_assert (!DECL_DECLARES_FUNCTION_P (ovl));
2234 ovl = NULL_TREE;
2235 }
2236
2237 return ovl;
2238 }
2239
2240 /* NODE is an OVL_HIDDEN_P node which is now revealed. */
2241
2242 tree
2243 ovl_iterator::reveal_node (tree overload, tree node)
2244 {
2245 /* We cannot have returned NODE as part of a lookup overload, so it
2246 cannot be USED. */
2247 gcc_checking_assert (!OVL_USED_P (node));
2248
2249 OVL_HIDDEN_P (node) = false;
2250 if (tree chain = OVL_CHAIN (node))
2251 if (TREE_CODE (chain) == OVERLOAD
2252 && (OVL_USING_P (chain) || OVL_HIDDEN_P (chain)))
2253 {
2254 /* The node needs moving, and the simplest way is to remove it
2255 and reinsert. */
2256 overload = remove_node (overload, node);
2257 overload = ovl_insert (OVL_FUNCTION (node), overload);
2258 }
2259 return overload;
2260 }
2261
2262 /* NODE is on the overloads of OVL. Remove it. If a predecessor is
2263 OVL_USED_P we must copy OVL nodes, because those are immutable.
2264 The removed node is unaltered and may continue to be iterated
2265 from (i.e. it is safe to remove a node from an overload one is
2266 currently iterating over). */
2267
2268 tree
2269 ovl_iterator::remove_node (tree overload, tree node)
2270 {
2271 bool copying = false; /* Checking use only. */
2272
2273 tree *slot = &overload;
2274 while (*slot != node)
2275 {
2276 tree probe = *slot;
2277 gcc_checking_assert (!OVL_LOOKUP_P (probe)
2278 && (!copying || OVL_USED_P (probe)));
2279 if (OVL_USED_P (probe))
2280 {
2281 copying = true;
2282 probe = ovl_copy (probe);
2283 *slot = probe;
2284 }
2285
2286 slot = &OVL_CHAIN (probe);
2287 }
2288
2289 /* Stitch out NODE. We don't have to worry about now making a
2290 singleton overload (and consequently maybe setting its type),
2291 because all uses of this function will be followed by inserting a
2292 new node that must follow the place we've cut this out from. */
2293 if (TREE_CODE (node) != OVERLOAD)
2294 /* Cloned inherited ctors don't mark themselves as via_using. */
2295 *slot = NULL_TREE;
2296 else
2297 *slot = OVL_CHAIN (node);
2298
2299 return overload;
2300 }
2301
2302 /* Mark or unmark a lookup set. */
2303
2304 void
2305 lookup_mark (tree ovl, bool val)
2306 {
2307 for (lkp_iterator iter (ovl); iter; ++iter)
2308 {
2309 gcc_checking_assert (LOOKUP_SEEN_P (*iter) != val);
2310 LOOKUP_SEEN_P (*iter) = val;
2311 }
2312 }
2313
2314 /* Add a set of new FNS into a lookup. */
2315
2316 tree
2317 lookup_add (tree fns, tree lookup)
2318 {
2319 if (lookup || TREE_CODE (fns) == TEMPLATE_DECL)
2320 {
2321 lookup = ovl_make (fns, lookup);
2322 OVL_LOOKUP_P (lookup) = true;
2323 }
2324 else
2325 lookup = fns;
2326
2327 return lookup;
2328 }
2329
2330 /* FNS is a new overload set, add them to LOOKUP, if they are not
2331 already present there. */
2332
2333 tree
2334 lookup_maybe_add (tree fns, tree lookup, bool deduping)
2335 {
2336 if (deduping)
2337 for (tree next, probe = fns; probe; probe = next)
2338 {
2339 tree fn = probe;
2340 next = NULL_TREE;
2341
2342 if (TREE_CODE (probe) == OVERLOAD)
2343 {
2344 fn = OVL_FUNCTION (probe);
2345 next = OVL_CHAIN (probe);
2346 }
2347
2348 if (!LOOKUP_SEEN_P (fn))
2349 LOOKUP_SEEN_P (fn) = true;
2350 else
2351 {
2352 /* This function was already seen. Insert all the
2353 predecessors onto the lookup. */
2354 for (; fns != probe; fns = OVL_CHAIN (fns))
2355 {
2356 lookup = lookup_add (OVL_FUNCTION (fns), lookup);
2357 /* Propagate OVL_USING, but OVL_HIDDEN doesn't matter. */
2358 if (OVL_USING_P (fns))
2359 OVL_USING_P (lookup) = true;
2360 }
2361
2362 /* And now skip this function. */
2363 fns = next;
2364 }
2365 }
2366
2367 if (fns)
2368 /* We ended in a set of new functions. Add them all in one go. */
2369 lookup = lookup_add (fns, lookup);
2370
2371 return lookup;
2372 }
2373
2374 /* Regular overload OVL is part of a kept lookup. Mark the nodes on
2375 it as immutable. */
2376
2377 static void
2378 ovl_used (tree ovl)
2379 {
2380 for (;
2381 ovl && TREE_CODE (ovl) == OVERLOAD
2382 && !OVL_USED_P (ovl);
2383 ovl = OVL_CHAIN (ovl))
2384 {
2385 gcc_checking_assert (!OVL_LOOKUP_P (ovl));
2386 OVL_USED_P (ovl) = true;
2387 }
2388 }
2389
2390 /* If KEEP is true, preserve the contents of a lookup so that it is
2391 available for a later instantiation. Otherwise release the LOOKUP
2392 nodes for reuse. */
2393
2394 void
2395 lookup_keep (tree lookup, bool keep)
2396 {
2397 for (;
2398 lookup && TREE_CODE (lookup) == OVERLOAD
2399 && OVL_LOOKUP_P (lookup) && !OVL_USED_P (lookup);
2400 lookup = OVL_CHAIN (lookup))
2401 if (keep)
2402 {
2403 OVL_USED_P (lookup) = true;
2404 ovl_used (OVL_FUNCTION (lookup));
2405 }
2406 else
2407 {
2408 OVL_FUNCTION (lookup) = ovl_cache;
2409 ovl_cache = lookup;
2410 }
2411
2412 if (keep)
2413 ovl_used (lookup);
2414 }
2415
2416 /* Returns nonzero if X is an expression for a (possibly overloaded)
2417 function. If "f" is a function or function template, "f", "c->f",
2418 "c.f", "C::f", and "f<int>" will all be considered possibly
2419 overloaded functions. Returns 2 if the function is actually
2420 overloaded, i.e., if it is impossible to know the type of the
2421 function without performing overload resolution. */
2422
2423 int
2424 is_overloaded_fn (tree x)
2425 {
2426 /* A baselink is also considered an overloaded function. */
2427 if (TREE_CODE (x) == OFFSET_REF
2428 || TREE_CODE (x) == COMPONENT_REF)
2429 x = TREE_OPERAND (x, 1);
2430 x = MAYBE_BASELINK_FUNCTIONS (x);
2431 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
2432 x = TREE_OPERAND (x, 0);
2433
2434 if (DECL_FUNCTION_TEMPLATE_P (OVL_FIRST (x))
2435 || (TREE_CODE (x) == OVERLOAD && !OVL_SINGLE_P (x)))
2436 return 2;
2437
2438 return (TREE_CODE (x) == FUNCTION_DECL
2439 || TREE_CODE (x) == OVERLOAD);
2440 }
2441
2442 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
2443 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
2444 NULL_TREE. */
2445
2446 tree
2447 dependent_name (tree x)
2448 {
2449 if (identifier_p (x))
2450 return x;
2451 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
2452 x = TREE_OPERAND (x, 0);
2453 if (TREE_CODE (x) == OVERLOAD || TREE_CODE (x) == FUNCTION_DECL)
2454 return OVL_NAME (x);
2455 return NULL_TREE;
2456 }
2457
2458 /* Returns true iff X is an expression for an overloaded function
2459 whose type cannot be known without performing overload
2460 resolution. */
2461
2462 bool
2463 really_overloaded_fn (tree x)
2464 {
2465 return is_overloaded_fn (x) == 2;
2466 }
2467
2468 /* Get the overload set FROM refers to. */
2469
2470 tree
2471 get_fns (tree from)
2472 {
2473 /* A baselink is also considered an overloaded function. */
2474 if (TREE_CODE (from) == OFFSET_REF
2475 || TREE_CODE (from) == COMPONENT_REF)
2476 from = TREE_OPERAND (from, 1);
2477 if (BASELINK_P (from))
2478 from = BASELINK_FUNCTIONS (from);
2479 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
2480 from = TREE_OPERAND (from, 0);
2481 gcc_assert (TREE_CODE (from) == OVERLOAD
2482 || TREE_CODE (from) == FUNCTION_DECL);
2483 return from;
2484 }
2485
2486 /* Return the first function of the overload set FROM refers to. */
2487
2488 tree
2489 get_first_fn (tree from)
2490 {
2491 return OVL_FIRST (get_fns (from));
2492 }
2493
2494 /* Return the scope where the overloaded functions OVL were found. */
2495
2496 tree
2497 ovl_scope (tree ovl)
2498 {
2499 if (TREE_CODE (ovl) == OFFSET_REF
2500 || TREE_CODE (ovl) == COMPONENT_REF)
2501 ovl = TREE_OPERAND (ovl, 1);
2502 if (TREE_CODE (ovl) == BASELINK)
2503 return BINFO_TYPE (BASELINK_BINFO (ovl));
2504 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
2505 ovl = TREE_OPERAND (ovl, 0);
2506 /* Skip using-declarations. */
2507 lkp_iterator iter (ovl);
2508 do
2509 ovl = *iter;
2510 while (iter.using_p () && ++iter);
2511
2512 return CP_DECL_CONTEXT (ovl);
2513 }
2514 \f
2515 #define PRINT_RING_SIZE 4
2516
2517 static const char *
2518 cxx_printable_name_internal (tree decl, int v, bool translate)
2519 {
2520 static unsigned int uid_ring[PRINT_RING_SIZE];
2521 static char *print_ring[PRINT_RING_SIZE];
2522 static bool trans_ring[PRINT_RING_SIZE];
2523 static int ring_counter;
2524 int i;
2525
2526 /* Only cache functions. */
2527 if (v < 2
2528 || TREE_CODE (decl) != FUNCTION_DECL
2529 || DECL_LANG_SPECIFIC (decl) == 0)
2530 return lang_decl_name (decl, v, translate);
2531
2532 /* See if this print name is lying around. */
2533 for (i = 0; i < PRINT_RING_SIZE; i++)
2534 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
2535 /* yes, so return it. */
2536 return print_ring[i];
2537
2538 if (++ring_counter == PRINT_RING_SIZE)
2539 ring_counter = 0;
2540
2541 if (current_function_decl != NULL_TREE)
2542 {
2543 /* There may be both translated and untranslated versions of the
2544 name cached. */
2545 for (i = 0; i < 2; i++)
2546 {
2547 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
2548 ring_counter += 1;
2549 if (ring_counter == PRINT_RING_SIZE)
2550 ring_counter = 0;
2551 }
2552 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
2553 }
2554
2555 free (print_ring[ring_counter]);
2556
2557 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
2558 uid_ring[ring_counter] = DECL_UID (decl);
2559 trans_ring[ring_counter] = translate;
2560 return print_ring[ring_counter];
2561 }
2562
2563 const char *
2564 cxx_printable_name (tree decl, int v)
2565 {
2566 return cxx_printable_name_internal (decl, v, false);
2567 }
2568
2569 const char *
2570 cxx_printable_name_translate (tree decl, int v)
2571 {
2572 return cxx_printable_name_internal (decl, v, true);
2573 }
2574 \f
2575 /* Return the canonical version of exception-specification RAISES for a C++17
2576 function type, for use in type comparison and building TYPE_CANONICAL. */
2577
2578 tree
2579 canonical_eh_spec (tree raises)
2580 {
2581 if (raises == NULL_TREE)
2582 return raises;
2583 else if (DEFERRED_NOEXCEPT_SPEC_P (raises)
2584 || uses_template_parms (raises)
2585 || uses_template_parms (TREE_PURPOSE (raises)))
2586 /* Keep a dependent or deferred exception specification. */
2587 return raises;
2588 else if (nothrow_spec_p (raises))
2589 /* throw() -> noexcept. */
2590 return noexcept_true_spec;
2591 else
2592 /* For C++17 type matching, anything else -> nothing. */
2593 return NULL_TREE;
2594 }
2595
2596 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
2597 listed in RAISES. */
2598
2599 tree
2600 build_exception_variant (tree type, tree raises)
2601 {
2602 tree v;
2603 int type_quals;
2604
2605 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
2606 return type;
2607
2608 type_quals = TYPE_QUALS (type);
2609 cp_ref_qualifier rqual = type_memfn_rqual (type);
2610 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
2611 if (cp_check_qualified_type (v, type, type_quals, rqual, raises))
2612 return v;
2613
2614 /* Need to build a new variant. */
2615 v = build_variant_type_copy (type);
2616 TYPE_RAISES_EXCEPTIONS (v) = raises;
2617
2618 if (!flag_noexcept_type)
2619 /* The exception-specification is not part of the canonical type. */
2620 return v;
2621
2622 /* Canonicalize the exception specification. */
2623 tree cr = canonical_eh_spec (raises);
2624
2625 if (TYPE_STRUCTURAL_EQUALITY_P (type))
2626 /* Propagate structural equality. */
2627 SET_TYPE_STRUCTURAL_EQUALITY (v);
2628 else if (TYPE_CANONICAL (type) != type || cr != raises)
2629 /* Build the underlying canonical type, since it is different
2630 from TYPE. */
2631 TYPE_CANONICAL (v) = build_exception_variant (TYPE_CANONICAL (type), cr);
2632 else
2633 /* T is its own canonical type. */
2634 TYPE_CANONICAL (v) = v;
2635
2636 return v;
2637 }
2638
2639 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
2640 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
2641 arguments. */
2642
2643 tree
2644 bind_template_template_parm (tree t, tree newargs)
2645 {
2646 tree decl = TYPE_NAME (t);
2647 tree t2;
2648
2649 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2650 decl = build_decl (input_location,
2651 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2652
2653 /* These nodes have to be created to reflect new TYPE_DECL and template
2654 arguments. */
2655 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2656 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2657 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2658 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2659
2660 TREE_TYPE (decl) = t2;
2661 TYPE_NAME (t2) = decl;
2662 TYPE_STUB_DECL (t2) = decl;
2663 TYPE_SIZE (t2) = 0;
2664 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2665
2666 return t2;
2667 }
2668
2669 /* Called from count_trees via walk_tree. */
2670
2671 static tree
2672 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2673 {
2674 ++*((int *) data);
2675
2676 if (TYPE_P (*tp))
2677 *walk_subtrees = 0;
2678
2679 return NULL_TREE;
2680 }
2681
2682 /* Debugging function for measuring the rough complexity of a tree
2683 representation. */
2684
2685 int
2686 count_trees (tree t)
2687 {
2688 int n_trees = 0;
2689 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2690 return n_trees;
2691 }
2692
2693 /* Called from verify_stmt_tree via walk_tree. */
2694
2695 static tree
2696 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2697 {
2698 tree t = *tp;
2699 hash_table<nofree_ptr_hash <tree_node> > *statements
2700 = static_cast <hash_table<nofree_ptr_hash <tree_node> > *> (data);
2701 tree_node **slot;
2702
2703 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2704 return NULL_TREE;
2705
2706 /* If this statement is already present in the hash table, then
2707 there is a circularity in the statement tree. */
2708 gcc_assert (!statements->find (t));
2709
2710 slot = statements->find_slot (t, INSERT);
2711 *slot = t;
2712
2713 return NULL_TREE;
2714 }
2715
2716 /* Debugging function to check that the statement T has not been
2717 corrupted. For now, this function simply checks that T contains no
2718 circularities. */
2719
2720 void
2721 verify_stmt_tree (tree t)
2722 {
2723 hash_table<nofree_ptr_hash <tree_node> > statements (37);
2724 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2725 }
2726
2727 /* Check if the type T depends on a type with no linkage and if so, return
2728 it. If RELAXED_P then do not consider a class type declared within
2729 a vague-linkage function to have no linkage. */
2730
2731 tree
2732 no_linkage_check (tree t, bool relaxed_p)
2733 {
2734 tree r;
2735
2736 /* There's no point in checking linkage on template functions; we
2737 can't know their complete types. */
2738 if (processing_template_decl)
2739 return NULL_TREE;
2740
2741 switch (TREE_CODE (t))
2742 {
2743 case RECORD_TYPE:
2744 if (TYPE_PTRMEMFUNC_P (t))
2745 goto ptrmem;
2746 /* Lambda types that don't have mangling scope have no linkage. We
2747 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2748 when we get here from pushtag none of the lambda information is
2749 set up yet, so we want to assume that the lambda has linkage and
2750 fix it up later if not. */
2751 if (CLASSTYPE_LAMBDA_EXPR (t)
2752 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2753 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2754 return t;
2755 /* Fall through. */
2756 case UNION_TYPE:
2757 if (!CLASS_TYPE_P (t))
2758 return NULL_TREE;
2759 /* Fall through. */
2760 case ENUMERAL_TYPE:
2761 /* Only treat unnamed types as having no linkage if they're at
2762 namespace scope. This is core issue 966. */
2763 if (TYPE_UNNAMED_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2764 return t;
2765
2766 for (r = CP_TYPE_CONTEXT (t); ; )
2767 {
2768 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2769 have linkage, or we might just be in an anonymous namespace.
2770 If we're in a TREE_PUBLIC class, we have linkage. */
2771 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2772 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2773 else if (TREE_CODE (r) == FUNCTION_DECL)
2774 {
2775 if (!relaxed_p || !vague_linkage_p (r))
2776 return t;
2777 else
2778 r = CP_DECL_CONTEXT (r);
2779 }
2780 else
2781 break;
2782 }
2783
2784 return NULL_TREE;
2785
2786 case ARRAY_TYPE:
2787 case POINTER_TYPE:
2788 case REFERENCE_TYPE:
2789 case VECTOR_TYPE:
2790 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2791
2792 case OFFSET_TYPE:
2793 ptrmem:
2794 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2795 relaxed_p);
2796 if (r)
2797 return r;
2798 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2799
2800 case METHOD_TYPE:
2801 case FUNCTION_TYPE:
2802 {
2803 tree parm = TYPE_ARG_TYPES (t);
2804 if (TREE_CODE (t) == METHOD_TYPE)
2805 /* The 'this' pointer isn't interesting; a method has the same
2806 linkage (or lack thereof) as its enclosing class. */
2807 parm = TREE_CHAIN (parm);
2808 for (;
2809 parm && parm != void_list_node;
2810 parm = TREE_CHAIN (parm))
2811 {
2812 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2813 if (r)
2814 return r;
2815 }
2816 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2817 }
2818
2819 default:
2820 return NULL_TREE;
2821 }
2822 }
2823
2824 extern int depth_reached;
2825
2826 void
2827 cxx_print_statistics (void)
2828 {
2829 print_class_statistics ();
2830 print_template_statistics ();
2831 if (GATHER_STATISTICS)
2832 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2833 depth_reached);
2834 }
2835
2836 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2837 (which is an ARRAY_TYPE). This counts only elements of the top
2838 array. */
2839
2840 tree
2841 array_type_nelts_top (tree type)
2842 {
2843 return fold_build2_loc (input_location,
2844 PLUS_EXPR, sizetype,
2845 array_type_nelts (type),
2846 size_one_node);
2847 }
2848
2849 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2850 (which is an ARRAY_TYPE). This one is a recursive count of all
2851 ARRAY_TYPEs that are clumped together. */
2852
2853 tree
2854 array_type_nelts_total (tree type)
2855 {
2856 tree sz = array_type_nelts_top (type);
2857 type = TREE_TYPE (type);
2858 while (TREE_CODE (type) == ARRAY_TYPE)
2859 {
2860 tree n = array_type_nelts_top (type);
2861 sz = fold_build2_loc (input_location,
2862 MULT_EXPR, sizetype, sz, n);
2863 type = TREE_TYPE (type);
2864 }
2865 return sz;
2866 }
2867
2868 /* Called from break_out_target_exprs via mapcar. */
2869
2870 static tree
2871 bot_manip (tree* tp, int* walk_subtrees, void* data)
2872 {
2873 splay_tree target_remap = ((splay_tree) data);
2874 tree t = *tp;
2875
2876 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2877 {
2878 /* There can't be any TARGET_EXPRs or their slot variables below this
2879 point. But we must make a copy, in case subsequent processing
2880 alters any part of it. For example, during gimplification a cast
2881 of the form (T) &X::f (where "f" is a member function) will lead
2882 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2883 *walk_subtrees = 0;
2884 *tp = unshare_expr (t);
2885 return NULL_TREE;
2886 }
2887 if (TREE_CODE (t) == TARGET_EXPR)
2888 {
2889 tree u;
2890
2891 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2892 {
2893 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2894 tf_warning_or_error);
2895 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2896 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2897 }
2898 else
2899 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2900 tf_warning_or_error);
2901
2902 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2903 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2904 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2905
2906 /* Map the old variable to the new one. */
2907 splay_tree_insert (target_remap,
2908 (splay_tree_key) TREE_OPERAND (t, 0),
2909 (splay_tree_value) TREE_OPERAND (u, 0));
2910
2911 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2912
2913 /* Replace the old expression with the new version. */
2914 *tp = u;
2915 /* We don't have to go below this point; the recursive call to
2916 break_out_target_exprs will have handled anything below this
2917 point. */
2918 *walk_subtrees = 0;
2919 return NULL_TREE;
2920 }
2921 if (TREE_CODE (*tp) == SAVE_EXPR)
2922 {
2923 t = *tp;
2924 splay_tree_node n = splay_tree_lookup (target_remap,
2925 (splay_tree_key) t);
2926 if (n)
2927 {
2928 *tp = (tree)n->value;
2929 *walk_subtrees = 0;
2930 }
2931 else
2932 {
2933 copy_tree_r (tp, walk_subtrees, NULL);
2934 splay_tree_insert (target_remap,
2935 (splay_tree_key)t,
2936 (splay_tree_value)*tp);
2937 /* Make sure we don't remap an already-remapped SAVE_EXPR. */
2938 splay_tree_insert (target_remap,
2939 (splay_tree_key)*tp,
2940 (splay_tree_value)*tp);
2941 }
2942 return NULL_TREE;
2943 }
2944
2945 /* Make a copy of this node. */
2946 t = copy_tree_r (tp, walk_subtrees, NULL);
2947 if (TREE_CODE (*tp) == CALL_EXPR)
2948 {
2949 set_flags_from_callee (*tp);
2950
2951 /* builtin_LINE and builtin_FILE get the location where the default
2952 argument is expanded, not where the call was written. */
2953 tree callee = get_callee_fndecl (*tp);
2954 if (callee && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
2955 switch (DECL_FUNCTION_CODE (callee))
2956 {
2957 case BUILT_IN_FILE:
2958 case BUILT_IN_LINE:
2959 SET_EXPR_LOCATION (*tp, input_location);
2960 default:
2961 break;
2962 }
2963 }
2964 return t;
2965 }
2966
2967 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2968 DATA is really a splay-tree mapping old variables to new
2969 variables. */
2970
2971 static tree
2972 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2973 {
2974 splay_tree target_remap = ((splay_tree) data);
2975
2976 if (VAR_P (*t))
2977 {
2978 splay_tree_node n = splay_tree_lookup (target_remap,
2979 (splay_tree_key) *t);
2980 if (n)
2981 *t = (tree) n->value;
2982 }
2983 else if (TREE_CODE (*t) == PARM_DECL
2984 && DECL_NAME (*t) == this_identifier
2985 && !DECL_CONTEXT (*t))
2986 {
2987 /* In an NSDMI we need to replace the 'this' parameter we used for
2988 parsing with the real one for this function. */
2989 *t = current_class_ptr;
2990 }
2991 else if (TREE_CODE (*t) == CONVERT_EXPR
2992 && CONVERT_EXPR_VBASE_PATH (*t))
2993 {
2994 /* In an NSDMI build_base_path defers building conversions to virtual
2995 bases, and we handle it here. */
2996 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2997 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2998 int i; tree binfo;
2999 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
3000 if (BINFO_TYPE (binfo) == basetype)
3001 break;
3002 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
3003 tf_warning_or_error);
3004 }
3005
3006 return NULL_TREE;
3007 }
3008
3009 /* When we parse a default argument expression, we may create
3010 temporary variables via TARGET_EXPRs. When we actually use the
3011 default-argument expression, we make a copy of the expression
3012 and replace the temporaries with appropriate local versions. */
3013
3014 tree
3015 break_out_target_exprs (tree t)
3016 {
3017 static int target_remap_count;
3018 static splay_tree target_remap;
3019
3020 if (!target_remap_count++)
3021 target_remap = splay_tree_new (splay_tree_compare_pointers,
3022 /*splay_tree_delete_key_fn=*/NULL,
3023 /*splay_tree_delete_value_fn=*/NULL);
3024 cp_walk_tree (&t, bot_manip, target_remap, NULL);
3025 cp_walk_tree (&t, bot_replace, target_remap, NULL);
3026
3027 if (!--target_remap_count)
3028 {
3029 splay_tree_delete (target_remap);
3030 target_remap = NULL;
3031 }
3032
3033 return t;
3034 }
3035
3036 /* Build an expression for the subobject of OBJ at CONSTRUCTOR index INDEX,
3037 which we expect to have type TYPE. */
3038
3039 tree
3040 build_ctor_subob_ref (tree index, tree type, tree obj)
3041 {
3042 if (index == NULL_TREE)
3043 /* Can't refer to a particular member of a vector. */
3044 obj = NULL_TREE;
3045 else if (TREE_CODE (index) == INTEGER_CST)
3046 obj = cp_build_array_ref (input_location, obj, index, tf_none);
3047 else
3048 obj = build_class_member_access_expr (obj, index, NULL_TREE,
3049 /*reference*/false, tf_none);
3050 if (obj)
3051 {
3052 tree objtype = TREE_TYPE (obj);
3053 if (TREE_CODE (objtype) == ARRAY_TYPE && !TYPE_DOMAIN (objtype))
3054 {
3055 /* When the destination object refers to a flexible array member
3056 verify that it matches the type of the source object except
3057 for its domain and qualifiers. */
3058 gcc_assert (comptypes (TYPE_MAIN_VARIANT (type),
3059 TYPE_MAIN_VARIANT (objtype),
3060 COMPARE_REDECLARATION));
3061 }
3062 else
3063 gcc_assert (same_type_ignoring_top_level_qualifiers_p (type, objtype));
3064 }
3065
3066 return obj;
3067 }
3068
3069 struct replace_placeholders_t
3070 {
3071 tree obj; /* The object to be substituted for a PLACEHOLDER_EXPR. */
3072 bool seen; /* Whether we've encountered a PLACEHOLDER_EXPR. */
3073 hash_set<tree> *pset; /* To avoid walking same trees multiple times. */
3074 };
3075
3076 /* Like substitute_placeholder_in_expr, but handle C++ tree codes and
3077 build up subexpressions as we go deeper. */
3078
3079 static tree
3080 replace_placeholders_r (tree* t, int* walk_subtrees, void* data_)
3081 {
3082 replace_placeholders_t *d = static_cast<replace_placeholders_t*>(data_);
3083 tree obj = d->obj;
3084
3085 if (TREE_CONSTANT (*t))
3086 {
3087 *walk_subtrees = false;
3088 return NULL_TREE;
3089 }
3090
3091 switch (TREE_CODE (*t))
3092 {
3093 case PLACEHOLDER_EXPR:
3094 {
3095 tree x = obj;
3096 for (; !same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (*t),
3097 TREE_TYPE (x));
3098 x = TREE_OPERAND (x, 0))
3099 gcc_assert (TREE_CODE (x) == COMPONENT_REF);
3100 *t = x;
3101 *walk_subtrees = false;
3102 d->seen = true;
3103 }
3104 break;
3105
3106 case CONSTRUCTOR:
3107 {
3108 constructor_elt *ce;
3109 vec<constructor_elt,va_gc> *v = CONSTRUCTOR_ELTS (*t);
3110 for (unsigned i = 0; vec_safe_iterate (v, i, &ce); ++i)
3111 {
3112 tree *valp = &ce->value;
3113 tree type = TREE_TYPE (*valp);
3114 tree subob = obj;
3115
3116 if (TREE_CODE (*valp) == CONSTRUCTOR
3117 && AGGREGATE_TYPE_P (type))
3118 {
3119 /* If we're looking at the initializer for OBJ, then build
3120 a sub-object reference. If we're looking at an
3121 initializer for another object, just pass OBJ down. */
3122 if (same_type_ignoring_top_level_qualifiers_p
3123 (TREE_TYPE (*t), TREE_TYPE (obj)))
3124 subob = build_ctor_subob_ref (ce->index, type, obj);
3125 if (TREE_CODE (*valp) == TARGET_EXPR)
3126 valp = &TARGET_EXPR_INITIAL (*valp);
3127 }
3128 d->obj = subob;
3129 cp_walk_tree (valp, replace_placeholders_r, data_, d->pset);
3130 d->obj = obj;
3131 }
3132 *walk_subtrees = false;
3133 break;
3134 }
3135
3136 default:
3137 break;
3138 }
3139
3140 return NULL_TREE;
3141 }
3142
3143 /* Replace PLACEHOLDER_EXPRs in EXP with object OBJ. SEEN_P is set if
3144 a PLACEHOLDER_EXPR has been encountered. */
3145
3146 tree
3147 replace_placeholders (tree exp, tree obj, bool *seen_p)
3148 {
3149 /* This is only relevant for C++14. */
3150 if (cxx_dialect < cxx14)
3151 return exp;
3152
3153 /* If the object isn't a (member of a) class, do nothing. */
3154 tree op0 = obj;
3155 while (TREE_CODE (op0) == COMPONENT_REF)
3156 op0 = TREE_OPERAND (op0, 0);
3157 if (!CLASS_TYPE_P (strip_array_types (TREE_TYPE (op0))))
3158 return exp;
3159
3160 tree *tp = &exp;
3161 hash_set<tree> pset;
3162 replace_placeholders_t data = { obj, false, &pset };
3163 if (TREE_CODE (exp) == TARGET_EXPR)
3164 tp = &TARGET_EXPR_INITIAL (exp);
3165 cp_walk_tree (tp, replace_placeholders_r, &data, &pset);
3166 if (seen_p)
3167 *seen_p = data.seen;
3168 return exp;
3169 }
3170
3171 /* Similar to `build_nt', but for template definitions of dependent
3172 expressions */
3173
3174 tree
3175 build_min_nt_loc (location_t loc, enum tree_code code, ...)
3176 {
3177 tree t;
3178 int length;
3179 int i;
3180 va_list p;
3181
3182 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3183
3184 va_start (p, code);
3185
3186 t = make_node (code);
3187 SET_EXPR_LOCATION (t, loc);
3188 length = TREE_CODE_LENGTH (code);
3189
3190 for (i = 0; i < length; i++)
3191 {
3192 tree x = va_arg (p, tree);
3193 TREE_OPERAND (t, i) = x;
3194 if (x && TREE_CODE (x) == OVERLOAD)
3195 lookup_keep (x, true);
3196 }
3197
3198 va_end (p);
3199 return t;
3200 }
3201
3202 /* Similar to `build', but for template definitions. */
3203
3204 tree
3205 build_min (enum tree_code code, tree tt, ...)
3206 {
3207 tree t;
3208 int length;
3209 int i;
3210 va_list p;
3211
3212 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3213
3214 va_start (p, tt);
3215
3216 t = make_node (code);
3217 length = TREE_CODE_LENGTH (code);
3218 TREE_TYPE (t) = tt;
3219
3220 for (i = 0; i < length; i++)
3221 {
3222 tree x = va_arg (p, tree);
3223 TREE_OPERAND (t, i) = x;
3224 if (x)
3225 {
3226 if (!TYPE_P (x) && TREE_SIDE_EFFECTS (x))
3227 TREE_SIDE_EFFECTS (t) = 1;
3228 if (TREE_CODE (x) == OVERLOAD)
3229 lookup_keep (x, true);
3230 }
3231 }
3232
3233 va_end (p);
3234 return t;
3235 }
3236
3237 /* Similar to `build', but for template definitions of non-dependent
3238 expressions. NON_DEP is the non-dependent expression that has been
3239 built. */
3240
3241 tree
3242 build_min_non_dep (enum tree_code code, tree non_dep, ...)
3243 {
3244 tree t;
3245 int length;
3246 int i;
3247 va_list p;
3248
3249 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3250
3251 va_start (p, non_dep);
3252
3253 if (REFERENCE_REF_P (non_dep))
3254 non_dep = TREE_OPERAND (non_dep, 0);
3255
3256 t = make_node (code);
3257 length = TREE_CODE_LENGTH (code);
3258 TREE_TYPE (t) = unlowered_expr_type (non_dep);
3259 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
3260
3261 for (i = 0; i < length; i++)
3262 {
3263 tree x = va_arg (p, tree);
3264 TREE_OPERAND (t, i) = x;
3265 if (x && TREE_CODE (x) == OVERLOAD)
3266 lookup_keep (x, true);
3267 }
3268
3269 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
3270 /* This should not be considered a COMPOUND_EXPR, because it
3271 resolves to an overload. */
3272 COMPOUND_EXPR_OVERLOADED (t) = 1;
3273
3274 va_end (p);
3275 return convert_from_reference (t);
3276 }
3277
3278 /* Similar to build_min_nt, but call expressions */
3279
3280 tree
3281 build_min_nt_call_vec (tree fn, vec<tree, va_gc> *args)
3282 {
3283 tree ret, t;
3284 unsigned int ix;
3285
3286 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
3287 CALL_EXPR_FN (ret) = fn;
3288 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3289 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
3290 {
3291 CALL_EXPR_ARG (ret, ix) = t;
3292 if (TREE_CODE (t) == OVERLOAD)
3293 lookup_keep (t, true);
3294 }
3295 return ret;
3296 }
3297
3298 /* Similar to `build_min_nt_call_vec', but for template definitions of
3299 non-dependent expressions. NON_DEP is the non-dependent expression
3300 that has been built. */
3301
3302 tree
3303 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
3304 {
3305 tree t = build_min_nt_call_vec (fn, argvec);
3306 if (REFERENCE_REF_P (non_dep))
3307 non_dep = TREE_OPERAND (non_dep, 0);
3308 TREE_TYPE (t) = TREE_TYPE (non_dep);
3309 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
3310 return convert_from_reference (t);
3311 }
3312
3313 /* Similar to build_min_non_dep, but for expressions that have been resolved to
3314 a call to an operator overload. OP is the operator that has been
3315 overloaded. NON_DEP is the non-dependent expression that's been built,
3316 which should be a CALL_EXPR or an INDIRECT_REF to a CALL_EXPR. OVERLOAD is
3317 the overload that NON_DEP is calling. */
3318
3319 tree
3320 build_min_non_dep_op_overload (enum tree_code op,
3321 tree non_dep,
3322 tree overload, ...)
3323 {
3324 va_list p;
3325 int nargs, expected_nargs;
3326 tree fn, call;
3327 vec<tree, va_gc> *args;
3328
3329 non_dep = extract_call_expr (non_dep);
3330
3331 nargs = call_expr_nargs (non_dep);
3332
3333 expected_nargs = cp_tree_code_length (op);
3334 if ((op == POSTINCREMENT_EXPR
3335 || op == POSTDECREMENT_EXPR)
3336 /* With -fpermissive non_dep could be operator++(). */
3337 && (!flag_permissive || nargs != expected_nargs))
3338 expected_nargs += 1;
3339 gcc_assert (nargs == expected_nargs);
3340
3341 args = make_tree_vector ();
3342 va_start (p, overload);
3343
3344 if (TREE_CODE (TREE_TYPE (overload)) == FUNCTION_TYPE)
3345 {
3346 fn = overload;
3347 for (int i = 0; i < nargs; i++)
3348 {
3349 tree arg = va_arg (p, tree);
3350 vec_safe_push (args, arg);
3351 }
3352 }
3353 else if (TREE_CODE (TREE_TYPE (overload)) == METHOD_TYPE)
3354 {
3355 tree object = va_arg (p, tree);
3356 tree binfo = TYPE_BINFO (TREE_TYPE (object));
3357 tree method = build_baselink (binfo, binfo, overload, NULL_TREE);
3358 fn = build_min (COMPONENT_REF, TREE_TYPE (overload),
3359 object, method, NULL_TREE);
3360 for (int i = 1; i < nargs; i++)
3361 {
3362 tree arg = va_arg (p, tree);
3363 vec_safe_push (args, arg);
3364 }
3365 }
3366 else
3367 gcc_unreachable ();
3368
3369 va_end (p);
3370 call = build_min_non_dep_call_vec (non_dep, fn, args);
3371 release_tree_vector (args);
3372
3373 tree call_expr = extract_call_expr (call);
3374 KOENIG_LOOKUP_P (call_expr) = KOENIG_LOOKUP_P (non_dep);
3375 CALL_EXPR_OPERATOR_SYNTAX (call_expr) = true;
3376 CALL_EXPR_ORDERED_ARGS (call_expr) = CALL_EXPR_ORDERED_ARGS (non_dep);
3377 CALL_EXPR_REVERSE_ARGS (call_expr) = CALL_EXPR_REVERSE_ARGS (non_dep);
3378
3379 return call;
3380 }
3381
3382 /* Return a new tree vec copied from VEC, with ELT inserted at index IDX. */
3383
3384 vec<tree, va_gc> *
3385 vec_copy_and_insert (vec<tree, va_gc> *old_vec, tree elt, unsigned idx)
3386 {
3387 unsigned len = vec_safe_length (old_vec);
3388 gcc_assert (idx <= len);
3389
3390 vec<tree, va_gc> *new_vec = NULL;
3391 vec_alloc (new_vec, len + 1);
3392
3393 unsigned i;
3394 for (i = 0; i < len; ++i)
3395 {
3396 if (i == idx)
3397 new_vec->quick_push (elt);
3398 new_vec->quick_push ((*old_vec)[i]);
3399 }
3400 if (i == idx)
3401 new_vec->quick_push (elt);
3402
3403 return new_vec;
3404 }
3405
3406 tree
3407 get_type_decl (tree t)
3408 {
3409 if (TREE_CODE (t) == TYPE_DECL)
3410 return t;
3411 if (TYPE_P (t))
3412 return TYPE_STUB_DECL (t);
3413 gcc_assert (t == error_mark_node);
3414 return t;
3415 }
3416
3417 /* Returns the namespace that contains DECL, whether directly or
3418 indirectly. */
3419
3420 tree
3421 decl_namespace_context (tree decl)
3422 {
3423 while (1)
3424 {
3425 if (TREE_CODE (decl) == NAMESPACE_DECL)
3426 return decl;
3427 else if (TYPE_P (decl))
3428 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
3429 else
3430 decl = CP_DECL_CONTEXT (decl);
3431 }
3432 }
3433
3434 /* Returns true if decl is within an anonymous namespace, however deeply
3435 nested, or false otherwise. */
3436
3437 bool
3438 decl_anon_ns_mem_p (const_tree decl)
3439 {
3440 while (TREE_CODE (decl) != NAMESPACE_DECL)
3441 {
3442 /* Classes inside anonymous namespaces have TREE_PUBLIC == 0. */
3443 if (TYPE_P (decl))
3444 return !TREE_PUBLIC (TYPE_MAIN_DECL (decl));
3445
3446 decl = CP_DECL_CONTEXT (decl);
3447 }
3448 return !TREE_PUBLIC (decl);
3449 }
3450
3451 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
3452 CALL_EXPRS. Return whether they are equivalent. */
3453
3454 static bool
3455 called_fns_equal (tree t1, tree t2)
3456 {
3457 /* Core 1321: dependent names are equivalent even if the overload sets
3458 are different. But do compare explicit template arguments. */
3459 tree name1 = dependent_name (t1);
3460 tree name2 = dependent_name (t2);
3461 if (name1 || name2)
3462 {
3463 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
3464
3465 if (name1 != name2)
3466 return false;
3467
3468 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
3469 targs1 = TREE_OPERAND (t1, 1);
3470 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
3471 targs2 = TREE_OPERAND (t2, 1);
3472 return cp_tree_equal (targs1, targs2);
3473 }
3474 else
3475 return cp_tree_equal (t1, t2);
3476 }
3477
3478 /* Return truthvalue of whether T1 is the same tree structure as T2.
3479 Return 1 if they are the same. Return 0 if they are different. */
3480
3481 bool
3482 cp_tree_equal (tree t1, tree t2)
3483 {
3484 enum tree_code code1, code2;
3485
3486 if (t1 == t2)
3487 return true;
3488 if (!t1 || !t2)
3489 return false;
3490
3491 code1 = TREE_CODE (t1);
3492 code2 = TREE_CODE (t2);
3493
3494 if (code1 != code2)
3495 return false;
3496
3497 switch (code1)
3498 {
3499 case VOID_CST:
3500 /* There's only a single VOID_CST node, so we should never reach
3501 here. */
3502 gcc_unreachable ();
3503
3504 case INTEGER_CST:
3505 return tree_int_cst_equal (t1, t2);
3506
3507 case REAL_CST:
3508 return real_equal (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
3509
3510 case STRING_CST:
3511 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3512 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3513 TREE_STRING_LENGTH (t1));
3514
3515 case FIXED_CST:
3516 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
3517 TREE_FIXED_CST (t2));
3518
3519 case COMPLEX_CST:
3520 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
3521 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
3522
3523 case VECTOR_CST:
3524 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
3525
3526 case CONSTRUCTOR:
3527 /* We need to do this when determining whether or not two
3528 non-type pointer to member function template arguments
3529 are the same. */
3530 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
3531 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
3532 return false;
3533 {
3534 tree field, value;
3535 unsigned int i;
3536 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
3537 {
3538 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
3539 if (!cp_tree_equal (field, elt2->index)
3540 || !cp_tree_equal (value, elt2->value))
3541 return false;
3542 }
3543 }
3544 return true;
3545
3546 case TREE_LIST:
3547 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
3548 return false;
3549 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
3550 return false;
3551 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
3552
3553 case SAVE_EXPR:
3554 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3555
3556 case CALL_EXPR:
3557 {
3558 tree arg1, arg2;
3559 call_expr_arg_iterator iter1, iter2;
3560 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
3561 return false;
3562 for (arg1 = first_call_expr_arg (t1, &iter1),
3563 arg2 = first_call_expr_arg (t2, &iter2);
3564 arg1 && arg2;
3565 arg1 = next_call_expr_arg (&iter1),
3566 arg2 = next_call_expr_arg (&iter2))
3567 if (!cp_tree_equal (arg1, arg2))
3568 return false;
3569 if (arg1 || arg2)
3570 return false;
3571 return true;
3572 }
3573
3574 case TARGET_EXPR:
3575 {
3576 tree o1 = TREE_OPERAND (t1, 0);
3577 tree o2 = TREE_OPERAND (t2, 0);
3578
3579 /* Special case: if either target is an unallocated VAR_DECL,
3580 it means that it's going to be unified with whatever the
3581 TARGET_EXPR is really supposed to initialize, so treat it
3582 as being equivalent to anything. */
3583 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
3584 && !DECL_RTL_SET_P (o1))
3585 /*Nop*/;
3586 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
3587 && !DECL_RTL_SET_P (o2))
3588 /*Nop*/;
3589 else if (!cp_tree_equal (o1, o2))
3590 return false;
3591
3592 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3593 }
3594
3595 case PARM_DECL:
3596 /* For comparing uses of parameters in late-specified return types
3597 with an out-of-class definition of the function, but can also come
3598 up for expressions that involve 'this' in a member function
3599 template. */
3600
3601 if (comparing_specializations && !CONSTRAINT_VAR_P (t1))
3602 /* When comparing hash table entries, only an exact match is
3603 good enough; we don't want to replace 'this' with the
3604 version from another function. But be more flexible
3605 with local parameters in a requires-expression. */
3606 return false;
3607
3608 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3609 {
3610 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
3611 return false;
3612 if (CONSTRAINT_VAR_P (t1) ^ CONSTRAINT_VAR_P (t2))
3613 return false;
3614 if (DECL_ARTIFICIAL (t1)
3615 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
3616 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
3617 return true;
3618 }
3619 return false;
3620
3621 case VAR_DECL:
3622 case CONST_DECL:
3623 case FIELD_DECL:
3624 case FUNCTION_DECL:
3625 case TEMPLATE_DECL:
3626 case IDENTIFIER_NODE:
3627 case SSA_NAME:
3628 return false;
3629
3630 case BASELINK:
3631 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
3632 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
3633 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
3634 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
3635 BASELINK_FUNCTIONS (t2)));
3636
3637 case TEMPLATE_PARM_INDEX:
3638 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
3639 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
3640 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
3641 == TEMPLATE_PARM_PARAMETER_PACK (t2))
3642 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
3643 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
3644
3645 case TEMPLATE_ID_EXPR:
3646 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
3647 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
3648
3649 case CONSTRAINT_INFO:
3650 return cp_tree_equal (CI_ASSOCIATED_CONSTRAINTS (t1),
3651 CI_ASSOCIATED_CONSTRAINTS (t2));
3652
3653 case CHECK_CONSTR:
3654 return (CHECK_CONSTR_CONCEPT (t1) == CHECK_CONSTR_CONCEPT (t2)
3655 && comp_template_args (CHECK_CONSTR_ARGS (t1),
3656 CHECK_CONSTR_ARGS (t2)));
3657
3658 case TREE_VEC:
3659 {
3660 unsigned ix;
3661 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
3662 return false;
3663 for (ix = TREE_VEC_LENGTH (t1); ix--;)
3664 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
3665 TREE_VEC_ELT (t2, ix)))
3666 return false;
3667 return true;
3668 }
3669
3670 case SIZEOF_EXPR:
3671 case ALIGNOF_EXPR:
3672 {
3673 tree o1 = TREE_OPERAND (t1, 0);
3674 tree o2 = TREE_OPERAND (t2, 0);
3675
3676 if (code1 == SIZEOF_EXPR)
3677 {
3678 if (SIZEOF_EXPR_TYPE_P (t1))
3679 o1 = TREE_TYPE (o1);
3680 if (SIZEOF_EXPR_TYPE_P (t2))
3681 o2 = TREE_TYPE (o2);
3682 }
3683 if (TREE_CODE (o1) != TREE_CODE (o2))
3684 return false;
3685 if (TYPE_P (o1))
3686 return same_type_p (o1, o2);
3687 else
3688 return cp_tree_equal (o1, o2);
3689 }
3690
3691 case MODOP_EXPR:
3692 {
3693 tree t1_op1, t2_op1;
3694
3695 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3696 return false;
3697
3698 t1_op1 = TREE_OPERAND (t1, 1);
3699 t2_op1 = TREE_OPERAND (t2, 1);
3700 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
3701 return false;
3702
3703 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
3704 }
3705
3706 case PTRMEM_CST:
3707 /* Two pointer-to-members are the same if they point to the same
3708 field or function in the same class. */
3709 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
3710 return false;
3711
3712 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
3713
3714 case OVERLOAD:
3715 {
3716 /* Two overloads. Must be exactly the same set of decls. */
3717 lkp_iterator first (t1);
3718 lkp_iterator second (t2);
3719
3720 for (; first && second; ++first, ++second)
3721 if (*first != *second)
3722 return false;
3723 return !(first || second);
3724 }
3725
3726 case TRAIT_EXPR:
3727 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
3728 return false;
3729 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
3730 && cp_tree_equal (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
3731
3732 case CAST_EXPR:
3733 case STATIC_CAST_EXPR:
3734 case REINTERPRET_CAST_EXPR:
3735 case CONST_CAST_EXPR:
3736 case DYNAMIC_CAST_EXPR:
3737 case IMPLICIT_CONV_EXPR:
3738 case NEW_EXPR:
3739 CASE_CONVERT:
3740 case NON_LVALUE_EXPR:
3741 case VIEW_CONVERT_EXPR:
3742 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3743 return false;
3744 /* Now compare operands as usual. */
3745 break;
3746
3747 case DEFERRED_NOEXCEPT:
3748 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
3749 DEFERRED_NOEXCEPT_PATTERN (t2))
3750 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
3751 DEFERRED_NOEXCEPT_ARGS (t2)));
3752 break;
3753
3754 default:
3755 break;
3756 }
3757
3758 switch (TREE_CODE_CLASS (code1))
3759 {
3760 case tcc_unary:
3761 case tcc_binary:
3762 case tcc_comparison:
3763 case tcc_expression:
3764 case tcc_vl_exp:
3765 case tcc_reference:
3766 case tcc_statement:
3767 {
3768 int i, n;
3769
3770 n = cp_tree_operand_length (t1);
3771 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
3772 && n != TREE_OPERAND_LENGTH (t2))
3773 return false;
3774
3775 for (i = 0; i < n; ++i)
3776 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
3777 return false;
3778
3779 return true;
3780 }
3781
3782 case tcc_type:
3783 return same_type_p (t1, t2);
3784 default:
3785 gcc_unreachable ();
3786 }
3787 /* We can get here with --disable-checking. */
3788 return false;
3789 }
3790
3791 /* The type of ARG when used as an lvalue. */
3792
3793 tree
3794 lvalue_type (tree arg)
3795 {
3796 tree type = TREE_TYPE (arg);
3797 return type;
3798 }
3799
3800 /* The type of ARG for printing error messages; denote lvalues with
3801 reference types. */
3802
3803 tree
3804 error_type (tree arg)
3805 {
3806 tree type = TREE_TYPE (arg);
3807
3808 if (TREE_CODE (type) == ARRAY_TYPE)
3809 ;
3810 else if (TREE_CODE (type) == ERROR_MARK)
3811 ;
3812 else if (lvalue_p (arg))
3813 type = build_reference_type (lvalue_type (arg));
3814 else if (MAYBE_CLASS_TYPE_P (type))
3815 type = lvalue_type (arg);
3816
3817 return type;
3818 }
3819
3820 /* Does FUNCTION use a variable-length argument list? */
3821
3822 int
3823 varargs_function_p (const_tree function)
3824 {
3825 return stdarg_p (TREE_TYPE (function));
3826 }
3827
3828 /* Returns 1 if decl is a member of a class. */
3829
3830 int
3831 member_p (const_tree decl)
3832 {
3833 const_tree const ctx = DECL_CONTEXT (decl);
3834 return (ctx && TYPE_P (ctx));
3835 }
3836
3837 /* Create a placeholder for member access where we don't actually have an
3838 object that the access is against. */
3839
3840 tree
3841 build_dummy_object (tree type)
3842 {
3843 tree decl = build1 (CONVERT_EXPR, build_pointer_type (type), void_node);
3844 return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
3845 }
3846
3847 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
3848 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
3849 binfo path from current_class_type to TYPE, or 0. */
3850
3851 tree
3852 maybe_dummy_object (tree type, tree* binfop)
3853 {
3854 tree decl, context;
3855 tree binfo;
3856 tree current = current_nonlambda_class_type ();
3857
3858 if (current
3859 && (binfo = lookup_base (current, type, ba_any, NULL,
3860 tf_warning_or_error)))
3861 context = current;
3862 else
3863 {
3864 /* Reference from a nested class member function. */
3865 context = type;
3866 binfo = TYPE_BINFO (type);
3867 }
3868
3869 if (binfop)
3870 *binfop = binfo;
3871
3872 if (current_class_ref
3873 /* current_class_ref might not correspond to current_class_type if
3874 we're in tsubst_default_argument or a lambda-declarator; in either
3875 case, we want to use current_class_ref if it matches CONTEXT. */
3876 && (same_type_ignoring_top_level_qualifiers_p
3877 (TREE_TYPE (current_class_ref), context)))
3878 decl = current_class_ref;
3879 else
3880 decl = build_dummy_object (context);
3881
3882 return decl;
3883 }
3884
3885 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
3886
3887 int
3888 is_dummy_object (const_tree ob)
3889 {
3890 if (INDIRECT_REF_P (ob))
3891 ob = TREE_OPERAND (ob, 0);
3892 return (TREE_CODE (ob) == CONVERT_EXPR
3893 && TREE_OPERAND (ob, 0) == void_node);
3894 }
3895
3896 /* Returns 1 iff type T is something we want to treat as a scalar type for
3897 the purpose of deciding whether it is trivial/POD/standard-layout. */
3898
3899 bool
3900 scalarish_type_p (const_tree t)
3901 {
3902 if (t == error_mark_node)
3903 return 1;
3904
3905 return (SCALAR_TYPE_P (t) || VECTOR_TYPE_P (t));
3906 }
3907
3908 /* Returns true iff T requires non-trivial default initialization. */
3909
3910 bool
3911 type_has_nontrivial_default_init (const_tree t)
3912 {
3913 t = strip_array_types (CONST_CAST_TREE (t));
3914
3915 if (CLASS_TYPE_P (t))
3916 return TYPE_HAS_COMPLEX_DFLT (t);
3917 else
3918 return 0;
3919 }
3920
3921 /* Track classes with only deleted copy/move constructors so that we can warn
3922 if they are used in call/return by value. */
3923
3924 static GTY(()) hash_set<tree>* deleted_copy_types;
3925 static void
3926 remember_deleted_copy (const_tree t)
3927 {
3928 if (!deleted_copy_types)
3929 deleted_copy_types = hash_set<tree>::create_ggc(37);
3930 deleted_copy_types->add (CONST_CAST_TREE (t));
3931 }
3932 void
3933 maybe_warn_parm_abi (tree t, location_t loc)
3934 {
3935 if (!deleted_copy_types
3936 || !deleted_copy_types->contains (t))
3937 return;
3938
3939 warning_at (loc, OPT_Wabi, "the calling convention for %qT changes in "
3940 "-fabi-version=12 (GCC 8)", t);
3941 static bool explained = false;
3942 if (!explained)
3943 {
3944 inform (loc, " because all of its copy and move constructors "
3945 "are deleted");
3946 explained = true;
3947 }
3948 }
3949
3950 /* Returns true iff copying an object of type T (including via move
3951 constructor) is non-trivial. That is, T has no non-trivial copy
3952 constructors and no non-trivial move constructors, and not all copy/move
3953 constructors are deleted. This function implements the ABI notion of
3954 non-trivial copy, which has diverged from the one in the standard. */
3955
3956 bool
3957 type_has_nontrivial_copy_init (const_tree type)
3958 {
3959 tree t = strip_array_types (CONST_CAST_TREE (type));
3960
3961 if (CLASS_TYPE_P (t))
3962 {
3963 gcc_assert (COMPLETE_TYPE_P (t));
3964
3965 if (TYPE_HAS_COMPLEX_COPY_CTOR (t)
3966 || TYPE_HAS_COMPLEX_MOVE_CTOR (t))
3967 /* Nontrivial. */
3968 return true;
3969
3970 if (cxx_dialect < cxx11)
3971 /* No deleted functions before C++11. */
3972 return false;
3973
3974 /* Before ABI v12 we did a bitwise copy of types with only deleted
3975 copy/move constructors. */
3976 if (!abi_version_at_least (12)
3977 && !(warn_abi && abi_version_crosses (12)))
3978 return false;
3979
3980 bool saw_copy = false;
3981 bool saw_non_deleted = false;
3982
3983 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
3984 saw_copy = saw_non_deleted = true;
3985 else if (CLASSTYPE_LAZY_COPY_CTOR (t))
3986 {
3987 saw_copy = true;
3988 if (classtype_has_move_assign_or_move_ctor_p (t, true))
3989 /* [class.copy]/8 If the class definition declares a move
3990 constructor or move assignment operator, the implicitly declared
3991 copy constructor is defined as deleted.... */;
3992 else
3993 /* Any other reason the implicitly-declared function would be
3994 deleted would also cause TYPE_HAS_COMPLEX_COPY_CTOR to be
3995 set. */
3996 saw_non_deleted = true;
3997 }
3998
3999 if (!saw_non_deleted)
4000 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
4001 {
4002 tree fn = *iter;
4003 if (copy_fn_p (fn))
4004 {
4005 saw_copy = true;
4006 if (!DECL_DELETED_FN (fn))
4007 {
4008 /* Not deleted, therefore trivial. */
4009 saw_non_deleted = true;
4010 break;
4011 }
4012 }
4013 }
4014
4015 gcc_assert (saw_copy);
4016
4017 if (saw_copy && !saw_non_deleted)
4018 {
4019 if (warn_abi && abi_version_crosses (12))
4020 remember_deleted_copy (t);
4021 if (abi_version_at_least (12))
4022 return true;
4023 }
4024
4025 return false;
4026 }
4027 else
4028 return 0;
4029 }
4030
4031 /* Returns 1 iff type T is a trivially copyable type, as defined in
4032 [basic.types] and [class]. */
4033
4034 bool
4035 trivially_copyable_p (const_tree t)
4036 {
4037 t = strip_array_types (CONST_CAST_TREE (t));
4038
4039 if (CLASS_TYPE_P (t))
4040 return ((!TYPE_HAS_COPY_CTOR (t)
4041 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
4042 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
4043 && (!TYPE_HAS_COPY_ASSIGN (t)
4044 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
4045 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
4046 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
4047 else
4048 return !CP_TYPE_VOLATILE_P (t) && scalarish_type_p (t);
4049 }
4050
4051 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
4052 [class]. */
4053
4054 bool
4055 trivial_type_p (const_tree t)
4056 {
4057 t = strip_array_types (CONST_CAST_TREE (t));
4058
4059 if (CLASS_TYPE_P (t))
4060 return (TYPE_HAS_TRIVIAL_DFLT (t)
4061 && trivially_copyable_p (t));
4062 else
4063 return scalarish_type_p (t);
4064 }
4065
4066 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
4067
4068 bool
4069 pod_type_p (const_tree t)
4070 {
4071 /* This CONST_CAST is okay because strip_array_types returns its
4072 argument unmodified and we assign it to a const_tree. */
4073 t = strip_array_types (CONST_CAST_TREE(t));
4074
4075 if (!CLASS_TYPE_P (t))
4076 return scalarish_type_p (t);
4077 else if (cxx_dialect > cxx98)
4078 /* [class]/10: A POD struct is a class that is both a trivial class and a
4079 standard-layout class, and has no non-static data members of type
4080 non-POD struct, non-POD union (or array of such types).
4081
4082 We don't need to check individual members because if a member is
4083 non-std-layout or non-trivial, the class will be too. */
4084 return (std_layout_type_p (t) && trivial_type_p (t));
4085 else
4086 /* The C++98 definition of POD is different. */
4087 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
4088 }
4089
4090 /* Returns true iff T is POD for the purpose of layout, as defined in the
4091 C++ ABI. */
4092
4093 bool
4094 layout_pod_type_p (const_tree t)
4095 {
4096 t = strip_array_types (CONST_CAST_TREE (t));
4097
4098 if (CLASS_TYPE_P (t))
4099 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
4100 else
4101 return scalarish_type_p (t);
4102 }
4103
4104 /* Returns true iff T is a standard-layout type, as defined in
4105 [basic.types]. */
4106
4107 bool
4108 std_layout_type_p (const_tree t)
4109 {
4110 t = strip_array_types (CONST_CAST_TREE (t));
4111
4112 if (CLASS_TYPE_P (t))
4113 return !CLASSTYPE_NON_STD_LAYOUT (t);
4114 else
4115 return scalarish_type_p (t);
4116 }
4117
4118 static bool record_has_unique_obj_representations (const_tree, const_tree);
4119
4120 /* Returns true iff T satisfies std::has_unique_object_representations<T>,
4121 as defined in [meta.unary.prop]. */
4122
4123 bool
4124 type_has_unique_obj_representations (const_tree t)
4125 {
4126 bool ret;
4127
4128 t = strip_array_types (CONST_CAST_TREE (t));
4129
4130 if (!trivially_copyable_p (t))
4131 return false;
4132
4133 if (CLASS_TYPE_P (t) && CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t))
4134 return CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t);
4135
4136 switch (TREE_CODE (t))
4137 {
4138 case INTEGER_TYPE:
4139 case POINTER_TYPE:
4140 case REFERENCE_TYPE:
4141 /* If some backend has any paddings in these types, we should add
4142 a target hook for this and handle it there. */
4143 return true;
4144
4145 case BOOLEAN_TYPE:
4146 /* For bool values other than 0 and 1 should only appear with
4147 undefined behavior. */
4148 return true;
4149
4150 case ENUMERAL_TYPE:
4151 return type_has_unique_obj_representations (ENUM_UNDERLYING_TYPE (t));
4152
4153 case REAL_TYPE:
4154 /* XFmode certainly contains padding on x86, which the CPU doesn't store
4155 when storing long double values, so for that we have to return false.
4156 Other kinds of floating point values are questionable due to +.0/-.0
4157 and NaNs, let's play safe for now. */
4158 return false;
4159
4160 case FIXED_POINT_TYPE:
4161 return false;
4162
4163 case OFFSET_TYPE:
4164 return true;
4165
4166 case COMPLEX_TYPE:
4167 case VECTOR_TYPE:
4168 return type_has_unique_obj_representations (TREE_TYPE (t));
4169
4170 case RECORD_TYPE:
4171 ret = record_has_unique_obj_representations (t, TYPE_SIZE (t));
4172 if (CLASS_TYPE_P (t))
4173 {
4174 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t) = 1;
4175 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t) = ret;
4176 }
4177 return ret;
4178
4179 case UNION_TYPE:
4180 ret = true;
4181 bool any_fields;
4182 any_fields = false;
4183 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4184 if (TREE_CODE (field) == FIELD_DECL)
4185 {
4186 any_fields = true;
4187 if (!type_has_unique_obj_representations (TREE_TYPE (field))
4188 || simple_cst_equal (DECL_SIZE (field), TYPE_SIZE (t)) != 1)
4189 {
4190 ret = false;
4191 break;
4192 }
4193 }
4194 if (!any_fields && !integer_zerop (TYPE_SIZE (t)))
4195 ret = false;
4196 if (CLASS_TYPE_P (t))
4197 {
4198 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t) = 1;
4199 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t) = ret;
4200 }
4201 return ret;
4202
4203 case NULLPTR_TYPE:
4204 return false;
4205
4206 case ERROR_MARK:
4207 return false;
4208
4209 default:
4210 gcc_unreachable ();
4211 }
4212 }
4213
4214 /* Helper function for type_has_unique_obj_representations. */
4215
4216 static bool
4217 record_has_unique_obj_representations (const_tree t, const_tree sz)
4218 {
4219 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4220 if (TREE_CODE (field) != FIELD_DECL)
4221 ;
4222 /* For bases, can't use type_has_unique_obj_representations here, as in
4223 struct S { int i : 24; S (); };
4224 struct T : public S { int j : 8; T (); };
4225 S doesn't have unique obj representations, but T does. */
4226 else if (DECL_FIELD_IS_BASE (field))
4227 {
4228 if (!record_has_unique_obj_representations (TREE_TYPE (field),
4229 DECL_SIZE (field)))
4230 return false;
4231 }
4232 else if (DECL_C_BIT_FIELD (field))
4233 {
4234 tree btype = DECL_BIT_FIELD_TYPE (field);
4235 if (!type_has_unique_obj_representations (btype))
4236 return false;
4237 }
4238 else if (!type_has_unique_obj_representations (TREE_TYPE (field)))
4239 return false;
4240
4241 offset_int cur = 0;
4242 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4243 if (TREE_CODE (field) == FIELD_DECL)
4244 {
4245 offset_int fld = wi::to_offset (DECL_FIELD_OFFSET (field));
4246 offset_int bitpos = wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
4247 fld = fld * BITS_PER_UNIT + bitpos;
4248 if (cur != fld)
4249 return false;
4250 if (DECL_SIZE (field))
4251 {
4252 offset_int size = wi::to_offset (DECL_SIZE (field));
4253 cur += size;
4254 }
4255 }
4256 if (cur != wi::to_offset (sz))
4257 return false;
4258
4259 return true;
4260 }
4261
4262 /* Nonzero iff type T is a class template implicit specialization. */
4263
4264 bool
4265 class_tmpl_impl_spec_p (const_tree t)
4266 {
4267 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
4268 }
4269
4270 /* Returns 1 iff zero initialization of type T means actually storing
4271 zeros in it. */
4272
4273 int
4274 zero_init_p (const_tree t)
4275 {
4276 /* This CONST_CAST is okay because strip_array_types returns its
4277 argument unmodified and we assign it to a const_tree. */
4278 t = strip_array_types (CONST_CAST_TREE(t));
4279
4280 if (t == error_mark_node)
4281 return 1;
4282
4283 /* NULL pointers to data members are initialized with -1. */
4284 if (TYPE_PTRDATAMEM_P (t))
4285 return 0;
4286
4287 /* Classes that contain types that can't be zero-initialized, cannot
4288 be zero-initialized themselves. */
4289 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
4290 return 0;
4291
4292 return 1;
4293 }
4294
4295 /* Handle the C++17 [[nodiscard]] attribute, which is similar to the GNU
4296 warn_unused_result attribute. */
4297
4298 static tree
4299 handle_nodiscard_attribute (tree *node, tree name, tree /*args*/,
4300 int /*flags*/, bool *no_add_attrs)
4301 {
4302 if (TREE_CODE (*node) == FUNCTION_DECL)
4303 {
4304 if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
4305 warning (OPT_Wattributes, "%qE attribute applied to %qD with void "
4306 "return type", name, *node);
4307 }
4308 else if (OVERLOAD_TYPE_P (*node))
4309 /* OK */;
4310 else
4311 {
4312 warning (OPT_Wattributes, "%qE attribute can only be applied to "
4313 "functions or to class or enumeration types", name);
4314 *no_add_attrs = true;
4315 }
4316 return NULL_TREE;
4317 }
4318
4319 /* Table of valid C++ attributes. */
4320 const struct attribute_spec cxx_attribute_table[] =
4321 {
4322 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
4323 affects_type_identity } */
4324 { "init_priority", 1, 1, true, false, false,
4325 handle_init_priority_attribute, false },
4326 { "abi_tag", 1, -1, false, false, false,
4327 handle_abi_tag_attribute, true },
4328 { NULL, 0, 0, false, false, false, NULL, false }
4329 };
4330
4331 /* Table of C++ standard attributes. */
4332 const struct attribute_spec std_attribute_table[] =
4333 {
4334 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
4335 affects_type_identity } */
4336 { "maybe_unused", 0, 0, false, false, false,
4337 handle_unused_attribute, false },
4338 { "nodiscard", 0, 0, false, false, false,
4339 handle_nodiscard_attribute, false },
4340 { NULL, 0, 0, false, false, false, NULL, false }
4341 };
4342
4343 /* Handle an "init_priority" attribute; arguments as in
4344 struct attribute_spec.handler. */
4345 static tree
4346 handle_init_priority_attribute (tree* node,
4347 tree name,
4348 tree args,
4349 int /*flags*/,
4350 bool* no_add_attrs)
4351 {
4352 tree initp_expr = TREE_VALUE (args);
4353 tree decl = *node;
4354 tree type = TREE_TYPE (decl);
4355 int pri;
4356
4357 STRIP_NOPS (initp_expr);
4358 initp_expr = default_conversion (initp_expr);
4359 if (initp_expr)
4360 initp_expr = maybe_constant_value (initp_expr);
4361
4362 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
4363 {
4364 error ("requested init_priority is not an integer constant");
4365 cxx_constant_value (initp_expr);
4366 *no_add_attrs = true;
4367 return NULL_TREE;
4368 }
4369
4370 pri = TREE_INT_CST_LOW (initp_expr);
4371
4372 type = strip_array_types (type);
4373
4374 if (decl == NULL_TREE
4375 || !VAR_P (decl)
4376 || !TREE_STATIC (decl)
4377 || DECL_EXTERNAL (decl)
4378 || (TREE_CODE (type) != RECORD_TYPE
4379 && TREE_CODE (type) != UNION_TYPE)
4380 /* Static objects in functions are initialized the
4381 first time control passes through that
4382 function. This is not precise enough to pin down an
4383 init_priority value, so don't allow it. */
4384 || current_function_decl)
4385 {
4386 error ("can only use %qE attribute on file-scope definitions "
4387 "of objects of class type", name);
4388 *no_add_attrs = true;
4389 return NULL_TREE;
4390 }
4391
4392 if (pri > MAX_INIT_PRIORITY || pri <= 0)
4393 {
4394 error ("requested init_priority is out of range");
4395 *no_add_attrs = true;
4396 return NULL_TREE;
4397 }
4398
4399 /* Check for init_priorities that are reserved for
4400 language and runtime support implementations.*/
4401 if (pri <= MAX_RESERVED_INIT_PRIORITY)
4402 {
4403 warning
4404 (0, "requested init_priority is reserved for internal use");
4405 }
4406
4407 if (SUPPORTS_INIT_PRIORITY)
4408 {
4409 SET_DECL_INIT_PRIORITY (decl, pri);
4410 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
4411 return NULL_TREE;
4412 }
4413 else
4414 {
4415 error ("%qE attribute is not supported on this platform", name);
4416 *no_add_attrs = true;
4417 return NULL_TREE;
4418 }
4419 }
4420
4421 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
4422 and the new one has the tags in NEW_. Give an error if there are tags
4423 in NEW_ that weren't in OLD. */
4424
4425 bool
4426 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
4427 {
4428 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
4429 old = TREE_VALUE (old);
4430 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
4431 new_ = TREE_VALUE (new_);
4432 bool err = false;
4433 for (const_tree t = new_; t; t = TREE_CHAIN (t))
4434 {
4435 tree str = TREE_VALUE (t);
4436 for (const_tree in = old; in; in = TREE_CHAIN (in))
4437 {
4438 tree ostr = TREE_VALUE (in);
4439 if (cp_tree_equal (str, ostr))
4440 goto found;
4441 }
4442 error ("redeclaration of %qD adds abi tag %qE", decl, str);
4443 err = true;
4444 found:;
4445 }
4446 if (err)
4447 {
4448 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
4449 return false;
4450 }
4451 return true;
4452 }
4453
4454 /* The abi_tag attribute with the name NAME was given ARGS. If they are
4455 ill-formed, give an error and return false; otherwise, return true. */
4456
4457 bool
4458 check_abi_tag_args (tree args, tree name)
4459 {
4460 if (!args)
4461 {
4462 error ("the %qE attribute requires arguments", name);
4463 return false;
4464 }
4465 for (tree arg = args; arg; arg = TREE_CHAIN (arg))
4466 {
4467 tree elt = TREE_VALUE (arg);
4468 if (TREE_CODE (elt) != STRING_CST
4469 || (!same_type_ignoring_top_level_qualifiers_p
4470 (strip_array_types (TREE_TYPE (elt)),
4471 char_type_node)))
4472 {
4473 error ("arguments to the %qE attribute must be narrow string "
4474 "literals", name);
4475 return false;
4476 }
4477 const char *begin = TREE_STRING_POINTER (elt);
4478 const char *end = begin + TREE_STRING_LENGTH (elt);
4479 for (const char *p = begin; p != end; ++p)
4480 {
4481 char c = *p;
4482 if (p == begin)
4483 {
4484 if (!ISALPHA (c) && c != '_')
4485 {
4486 error ("arguments to the %qE attribute must contain valid "
4487 "identifiers", name);
4488 inform (input_location, "%<%c%> is not a valid first "
4489 "character for an identifier", c);
4490 return false;
4491 }
4492 }
4493 else if (p == end - 1)
4494 gcc_assert (c == 0);
4495 else
4496 {
4497 if (!ISALNUM (c) && c != '_')
4498 {
4499 error ("arguments to the %qE attribute must contain valid "
4500 "identifiers", name);
4501 inform (input_location, "%<%c%> is not a valid character "
4502 "in an identifier", c);
4503 return false;
4504 }
4505 }
4506 }
4507 }
4508 return true;
4509 }
4510
4511 /* Handle an "abi_tag" attribute; arguments as in
4512 struct attribute_spec.handler. */
4513
4514 static tree
4515 handle_abi_tag_attribute (tree* node, tree name, tree args,
4516 int flags, bool* no_add_attrs)
4517 {
4518 if (!check_abi_tag_args (args, name))
4519 goto fail;
4520
4521 if (TYPE_P (*node))
4522 {
4523 if (!OVERLOAD_TYPE_P (*node))
4524 {
4525 error ("%qE attribute applied to non-class, non-enum type %qT",
4526 name, *node);
4527 goto fail;
4528 }
4529 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
4530 {
4531 error ("%qE attribute applied to %qT after its definition",
4532 name, *node);
4533 goto fail;
4534 }
4535 else if (CLASS_TYPE_P (*node)
4536 && CLASSTYPE_TEMPLATE_INSTANTIATION (*node))
4537 {
4538 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
4539 "template instantiation %qT", name, *node);
4540 goto fail;
4541 }
4542 else if (CLASS_TYPE_P (*node)
4543 && CLASSTYPE_TEMPLATE_SPECIALIZATION (*node))
4544 {
4545 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
4546 "template specialization %qT", name, *node);
4547 goto fail;
4548 }
4549
4550 tree attributes = TYPE_ATTRIBUTES (*node);
4551 tree decl = TYPE_NAME (*node);
4552
4553 /* Make sure all declarations have the same abi tags. */
4554 if (DECL_SOURCE_LOCATION (decl) != input_location)
4555 {
4556 if (!check_abi_tag_redeclaration (decl,
4557 lookup_attribute ("abi_tag",
4558 attributes),
4559 args))
4560 goto fail;
4561 }
4562 }
4563 else
4564 {
4565 if (!VAR_OR_FUNCTION_DECL_P (*node))
4566 {
4567 error ("%qE attribute applied to non-function, non-variable %qD",
4568 name, *node);
4569 goto fail;
4570 }
4571 else if (DECL_LANGUAGE (*node) == lang_c)
4572 {
4573 error ("%qE attribute applied to extern \"C\" declaration %qD",
4574 name, *node);
4575 goto fail;
4576 }
4577 }
4578
4579 return NULL_TREE;
4580
4581 fail:
4582 *no_add_attrs = true;
4583 return NULL_TREE;
4584 }
4585
4586 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
4587 thing pointed to by the constant. */
4588
4589 tree
4590 make_ptrmem_cst (tree type, tree member)
4591 {
4592 tree ptrmem_cst = make_node (PTRMEM_CST);
4593 TREE_TYPE (ptrmem_cst) = type;
4594 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
4595 return ptrmem_cst;
4596 }
4597
4598 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
4599 return an existing type if an appropriate type already exists. */
4600
4601 tree
4602 cp_build_type_attribute_variant (tree type, tree attributes)
4603 {
4604 tree new_type;
4605
4606 new_type = build_type_attribute_variant (type, attributes);
4607 if (TREE_CODE (new_type) == FUNCTION_TYPE
4608 || TREE_CODE (new_type) == METHOD_TYPE)
4609 {
4610 new_type = build_exception_variant (new_type,
4611 TYPE_RAISES_EXCEPTIONS (type));
4612 new_type = build_ref_qualified_type (new_type,
4613 type_memfn_rqual (type));
4614 }
4615
4616 /* Making a new main variant of a class type is broken. */
4617 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
4618
4619 return new_type;
4620 }
4621
4622 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
4623 Called only after doing all language independent checks. */
4624
4625 bool
4626 cxx_type_hash_eq (const_tree typea, const_tree typeb)
4627 {
4628 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
4629 || TREE_CODE (typea) == METHOD_TYPE);
4630
4631 if (type_memfn_rqual (typea) != type_memfn_rqual (typeb))
4632 return false;
4633 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
4634 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
4635 }
4636
4637 /* Copy the language-specific type variant modifiers from TYPEB to TYPEA. For
4638 C++, these are the exception-specifier and ref-qualifier. */
4639
4640 tree
4641 cxx_copy_lang_qualifiers (const_tree typea, const_tree typeb)
4642 {
4643 tree type = CONST_CAST_TREE (typea);
4644 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4645 {
4646 type = build_exception_variant (type, TYPE_RAISES_EXCEPTIONS (typeb));
4647 type = build_ref_qualified_type (type, type_memfn_rqual (typeb));
4648 }
4649 return type;
4650 }
4651
4652 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
4653 traversal. Called from walk_tree. */
4654
4655 tree
4656 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
4657 void *data, hash_set<tree> *pset)
4658 {
4659 enum tree_code code = TREE_CODE (*tp);
4660 tree result;
4661
4662 #define WALK_SUBTREE(NODE) \
4663 do \
4664 { \
4665 result = cp_walk_tree (&(NODE), func, data, pset); \
4666 if (result) goto out; \
4667 } \
4668 while (0)
4669
4670 /* Not one of the easy cases. We must explicitly go through the
4671 children. */
4672 result = NULL_TREE;
4673 switch (code)
4674 {
4675 case DEFAULT_ARG:
4676 case TEMPLATE_TEMPLATE_PARM:
4677 case BOUND_TEMPLATE_TEMPLATE_PARM:
4678 case UNBOUND_CLASS_TEMPLATE:
4679 case TEMPLATE_PARM_INDEX:
4680 case TEMPLATE_TYPE_PARM:
4681 case TYPENAME_TYPE:
4682 case TYPEOF_TYPE:
4683 case UNDERLYING_TYPE:
4684 /* None of these have subtrees other than those already walked
4685 above. */
4686 *walk_subtrees_p = 0;
4687 break;
4688
4689 case BASELINK:
4690 if (BASELINK_QUALIFIED_P (*tp))
4691 WALK_SUBTREE (BINFO_TYPE (BASELINK_ACCESS_BINFO (*tp)));
4692 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
4693 *walk_subtrees_p = 0;
4694 break;
4695
4696 case PTRMEM_CST:
4697 WALK_SUBTREE (TREE_TYPE (*tp));
4698 *walk_subtrees_p = 0;
4699 break;
4700
4701 case TREE_LIST:
4702 WALK_SUBTREE (TREE_PURPOSE (*tp));
4703 break;
4704
4705 case OVERLOAD:
4706 WALK_SUBTREE (OVL_FUNCTION (*tp));
4707 WALK_SUBTREE (OVL_CHAIN (*tp));
4708 *walk_subtrees_p = 0;
4709 break;
4710
4711 case USING_DECL:
4712 WALK_SUBTREE (DECL_NAME (*tp));
4713 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
4714 WALK_SUBTREE (USING_DECL_DECLS (*tp));
4715 *walk_subtrees_p = 0;
4716 break;
4717
4718 case RECORD_TYPE:
4719 if (TYPE_PTRMEMFUNC_P (*tp))
4720 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE_RAW (*tp));
4721 break;
4722
4723 case TYPE_ARGUMENT_PACK:
4724 case NONTYPE_ARGUMENT_PACK:
4725 {
4726 tree args = ARGUMENT_PACK_ARGS (*tp);
4727 int i, len = TREE_VEC_LENGTH (args);
4728 for (i = 0; i < len; i++)
4729 WALK_SUBTREE (TREE_VEC_ELT (args, i));
4730 }
4731 break;
4732
4733 case TYPE_PACK_EXPANSION:
4734 WALK_SUBTREE (TREE_TYPE (*tp));
4735 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4736 *walk_subtrees_p = 0;
4737 break;
4738
4739 case EXPR_PACK_EXPANSION:
4740 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
4741 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4742 *walk_subtrees_p = 0;
4743 break;
4744
4745 case CAST_EXPR:
4746 case REINTERPRET_CAST_EXPR:
4747 case STATIC_CAST_EXPR:
4748 case CONST_CAST_EXPR:
4749 case DYNAMIC_CAST_EXPR:
4750 case IMPLICIT_CONV_EXPR:
4751 if (TREE_TYPE (*tp))
4752 WALK_SUBTREE (TREE_TYPE (*tp));
4753
4754 {
4755 int i;
4756 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
4757 WALK_SUBTREE (TREE_OPERAND (*tp, i));
4758 }
4759 *walk_subtrees_p = 0;
4760 break;
4761
4762 case TRAIT_EXPR:
4763 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
4764 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
4765 *walk_subtrees_p = 0;
4766 break;
4767
4768 case DECLTYPE_TYPE:
4769 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
4770 *walk_subtrees_p = 0;
4771 break;
4772
4773 case REQUIRES_EXPR:
4774 // Only recurse through the nested expression. Do not
4775 // walk the parameter list. Doing so causes false
4776 // positives in the pack expansion checker since the
4777 // requires parameters are introduced as pack expansions.
4778 WALK_SUBTREE (TREE_OPERAND (*tp, 1));
4779 *walk_subtrees_p = 0;
4780 break;
4781
4782 case DECL_EXPR:
4783 /* User variables should be mentioned in BIND_EXPR_VARS
4784 and their initializers and sizes walked when walking
4785 the containing BIND_EXPR. Compiler temporaries are
4786 handled here. */
4787 if (VAR_P (TREE_OPERAND (*tp, 0))
4788 && DECL_ARTIFICIAL (TREE_OPERAND (*tp, 0))
4789 && !TREE_STATIC (TREE_OPERAND (*tp, 0)))
4790 {
4791 tree decl = TREE_OPERAND (*tp, 0);
4792 WALK_SUBTREE (DECL_INITIAL (decl));
4793 WALK_SUBTREE (DECL_SIZE (decl));
4794 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
4795 }
4796 break;
4797
4798 default:
4799 return NULL_TREE;
4800 }
4801
4802 /* We didn't find what we were looking for. */
4803 out:
4804 return result;
4805
4806 #undef WALK_SUBTREE
4807 }
4808
4809 /* Like save_expr, but for C++. */
4810
4811 tree
4812 cp_save_expr (tree expr)
4813 {
4814 /* There is no reason to create a SAVE_EXPR within a template; if
4815 needed, we can create the SAVE_EXPR when instantiating the
4816 template. Furthermore, the middle-end cannot handle C++-specific
4817 tree codes. */
4818 if (processing_template_decl)
4819 return expr;
4820 return save_expr (expr);
4821 }
4822
4823 /* Initialize tree.c. */
4824
4825 void
4826 init_tree (void)
4827 {
4828 list_hash_table = hash_table<list_hasher>::create_ggc (61);
4829 register_scoped_attributes (std_attribute_table, NULL);
4830 }
4831
4832 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
4833 is. Note that sfk_none is zero, so this function can be used as a
4834 predicate to test whether or not DECL is a special function. */
4835
4836 special_function_kind
4837 special_function_p (const_tree decl)
4838 {
4839 /* Rather than doing all this stuff with magic names, we should
4840 probably have a field of type `special_function_kind' in
4841 DECL_LANG_SPECIFIC. */
4842 if (DECL_INHERITED_CTOR (decl))
4843 return sfk_inheriting_constructor;
4844 if (DECL_COPY_CONSTRUCTOR_P (decl))
4845 return sfk_copy_constructor;
4846 if (DECL_MOVE_CONSTRUCTOR_P (decl))
4847 return sfk_move_constructor;
4848 if (DECL_CONSTRUCTOR_P (decl))
4849 return sfk_constructor;
4850 if (DECL_ASSIGNMENT_OPERATOR_P (decl)
4851 && DECL_OVERLOADED_OPERATOR_IS (decl, NOP_EXPR))
4852 {
4853 if (copy_fn_p (decl))
4854 return sfk_copy_assignment;
4855 if (move_fn_p (decl))
4856 return sfk_move_assignment;
4857 }
4858 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
4859 return sfk_destructor;
4860 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
4861 return sfk_complete_destructor;
4862 if (DECL_BASE_DESTRUCTOR_P (decl))
4863 return sfk_base_destructor;
4864 if (DECL_DELETING_DESTRUCTOR_P (decl))
4865 return sfk_deleting_destructor;
4866 if (DECL_CONV_FN_P (decl))
4867 return sfk_conversion;
4868 if (deduction_guide_p (decl))
4869 return sfk_deduction_guide;
4870
4871 return sfk_none;
4872 }
4873
4874 /* Returns nonzero if TYPE is a character type, including wchar_t. */
4875
4876 int
4877 char_type_p (tree type)
4878 {
4879 return (same_type_p (type, char_type_node)
4880 || same_type_p (type, unsigned_char_type_node)
4881 || same_type_p (type, signed_char_type_node)
4882 || same_type_p (type, char16_type_node)
4883 || same_type_p (type, char32_type_node)
4884 || same_type_p (type, wchar_type_node));
4885 }
4886
4887 /* Returns the kind of linkage associated with the indicated DECL. Th
4888 value returned is as specified by the language standard; it is
4889 independent of implementation details regarding template
4890 instantiation, etc. For example, it is possible that a declaration
4891 to which this function assigns external linkage would not show up
4892 as a global symbol when you run `nm' on the resulting object file. */
4893
4894 linkage_kind
4895 decl_linkage (tree decl)
4896 {
4897 /* This function doesn't attempt to calculate the linkage from first
4898 principles as given in [basic.link]. Instead, it makes use of
4899 the fact that we have already set TREE_PUBLIC appropriately, and
4900 then handles a few special cases. Ideally, we would calculate
4901 linkage first, and then transform that into a concrete
4902 implementation. */
4903
4904 /* Things that don't have names have no linkage. */
4905 if (!DECL_NAME (decl))
4906 return lk_none;
4907
4908 /* Fields have no linkage. */
4909 if (TREE_CODE (decl) == FIELD_DECL)
4910 return lk_none;
4911
4912 /* Things that are TREE_PUBLIC have external linkage. */
4913 if (TREE_PUBLIC (decl))
4914 return lk_external;
4915
4916 /* maybe_thunk_body clears TREE_PUBLIC on the maybe-in-charge 'tor variants,
4917 check one of the "clones" for the real linkage. */
4918 if ((DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl)
4919 || DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl))
4920 && DECL_CHAIN (decl)
4921 && DECL_CLONED_FUNCTION (DECL_CHAIN (decl)))
4922 return decl_linkage (DECL_CHAIN (decl));
4923
4924 if (TREE_CODE (decl) == NAMESPACE_DECL)
4925 return lk_external;
4926
4927 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
4928 type. */
4929 if (TREE_CODE (decl) == CONST_DECL)
4930 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
4931
4932 /* Things in local scope do not have linkage, if they don't have
4933 TREE_PUBLIC set. */
4934 if (decl_function_context (decl))
4935 return lk_none;
4936
4937 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
4938 are considered to have external linkage for language purposes, as do
4939 template instantiations on targets without weak symbols. DECLs really
4940 meant to have internal linkage have DECL_THIS_STATIC set. */
4941 if (TREE_CODE (decl) == TYPE_DECL)
4942 return lk_external;
4943 if (VAR_OR_FUNCTION_DECL_P (decl))
4944 {
4945 if (!DECL_THIS_STATIC (decl))
4946 return lk_external;
4947
4948 /* Static data members and static member functions from classes
4949 in anonymous namespace also don't have TREE_PUBLIC set. */
4950 if (DECL_CLASS_CONTEXT (decl))
4951 return lk_external;
4952 }
4953
4954 /* Everything else has internal linkage. */
4955 return lk_internal;
4956 }
4957
4958 /* Returns the storage duration of the object or reference associated with
4959 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
4960
4961 duration_kind
4962 decl_storage_duration (tree decl)
4963 {
4964 if (TREE_CODE (decl) == PARM_DECL)
4965 return dk_auto;
4966 if (TREE_CODE (decl) == FUNCTION_DECL)
4967 return dk_static;
4968 gcc_assert (VAR_P (decl));
4969 if (!TREE_STATIC (decl)
4970 && !DECL_EXTERNAL (decl))
4971 return dk_auto;
4972 if (CP_DECL_THREAD_LOCAL_P (decl))
4973 return dk_thread;
4974 return dk_static;
4975 }
4976 \f
4977 /* EXP is an expression that we want to pre-evaluate. Returns (in
4978 *INITP) an expression that will perform the pre-evaluation. The
4979 value returned by this function is a side-effect free expression
4980 equivalent to the pre-evaluated expression. Callers must ensure
4981 that *INITP is evaluated before EXP. */
4982
4983 tree
4984 stabilize_expr (tree exp, tree* initp)
4985 {
4986 tree init_expr;
4987
4988 if (!TREE_SIDE_EFFECTS (exp))
4989 init_expr = NULL_TREE;
4990 else if (VOID_TYPE_P (TREE_TYPE (exp)))
4991 {
4992 init_expr = exp;
4993 exp = void_node;
4994 }
4995 /* There are no expressions with REFERENCE_TYPE, but there can be call
4996 arguments with such a type; just treat it as a pointer. */
4997 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
4998 || SCALAR_TYPE_P (TREE_TYPE (exp))
4999 || !glvalue_p (exp))
5000 {
5001 init_expr = get_target_expr (exp);
5002 exp = TARGET_EXPR_SLOT (init_expr);
5003 if (CLASS_TYPE_P (TREE_TYPE (exp)))
5004 exp = move (exp);
5005 else
5006 exp = rvalue (exp);
5007 }
5008 else
5009 {
5010 bool xval = !lvalue_p (exp);
5011 exp = cp_build_addr_expr (exp, tf_warning_or_error);
5012 init_expr = get_target_expr (exp);
5013 exp = TARGET_EXPR_SLOT (init_expr);
5014 exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
5015 if (xval)
5016 exp = move (exp);
5017 }
5018 *initp = init_expr;
5019
5020 gcc_assert (!TREE_SIDE_EFFECTS (exp));
5021 return exp;
5022 }
5023
5024 /* Add NEW_EXPR, an expression whose value we don't care about, after the
5025 similar expression ORIG. */
5026
5027 tree
5028 add_stmt_to_compound (tree orig, tree new_expr)
5029 {
5030 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
5031 return orig;
5032 if (!orig || !TREE_SIDE_EFFECTS (orig))
5033 return new_expr;
5034 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
5035 }
5036
5037 /* Like stabilize_expr, but for a call whose arguments we want to
5038 pre-evaluate. CALL is modified in place to use the pre-evaluated
5039 arguments, while, upon return, *INITP contains an expression to
5040 compute the arguments. */
5041
5042 void
5043 stabilize_call (tree call, tree *initp)
5044 {
5045 tree inits = NULL_TREE;
5046 int i;
5047 int nargs = call_expr_nargs (call);
5048
5049 if (call == error_mark_node || processing_template_decl)
5050 {
5051 *initp = NULL_TREE;
5052 return;
5053 }
5054
5055 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5056
5057 for (i = 0; i < nargs; i++)
5058 {
5059 tree init;
5060 CALL_EXPR_ARG (call, i) =
5061 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
5062 inits = add_stmt_to_compound (inits, init);
5063 }
5064
5065 *initp = inits;
5066 }
5067
5068 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
5069 to pre-evaluate. CALL is modified in place to use the pre-evaluated
5070 arguments, while, upon return, *INITP contains an expression to
5071 compute the arguments. */
5072
5073 static void
5074 stabilize_aggr_init (tree call, tree *initp)
5075 {
5076 tree inits = NULL_TREE;
5077 int i;
5078 int nargs = aggr_init_expr_nargs (call);
5079
5080 if (call == error_mark_node)
5081 return;
5082
5083 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
5084
5085 for (i = 0; i < nargs; i++)
5086 {
5087 tree init;
5088 AGGR_INIT_EXPR_ARG (call, i) =
5089 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
5090 inits = add_stmt_to_compound (inits, init);
5091 }
5092
5093 *initp = inits;
5094 }
5095
5096 /* Like stabilize_expr, but for an initialization.
5097
5098 If the initialization is for an object of class type, this function
5099 takes care not to introduce additional temporaries.
5100
5101 Returns TRUE iff the expression was successfully pre-evaluated,
5102 i.e., if INIT is now side-effect free, except for, possibly, a
5103 single call to a constructor. */
5104
5105 bool
5106 stabilize_init (tree init, tree *initp)
5107 {
5108 tree t = init;
5109
5110 *initp = NULL_TREE;
5111
5112 if (t == error_mark_node || processing_template_decl)
5113 return true;
5114
5115 if (TREE_CODE (t) == INIT_EXPR)
5116 t = TREE_OPERAND (t, 1);
5117 if (TREE_CODE (t) == TARGET_EXPR)
5118 t = TARGET_EXPR_INITIAL (t);
5119
5120 /* If the RHS can be stabilized without breaking copy elision, stabilize
5121 it. We specifically don't stabilize class prvalues here because that
5122 would mean an extra copy, but they might be stabilized below. */
5123 if (TREE_CODE (init) == INIT_EXPR
5124 && TREE_CODE (t) != CONSTRUCTOR
5125 && TREE_CODE (t) != AGGR_INIT_EXPR
5126 && (SCALAR_TYPE_P (TREE_TYPE (t))
5127 || glvalue_p (t)))
5128 {
5129 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
5130 return true;
5131 }
5132
5133 if (TREE_CODE (t) == COMPOUND_EXPR
5134 && TREE_CODE (init) == INIT_EXPR)
5135 {
5136 tree last = expr_last (t);
5137 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
5138 if (!TREE_SIDE_EFFECTS (last))
5139 {
5140 *initp = t;
5141 TREE_OPERAND (init, 1) = last;
5142 return true;
5143 }
5144 }
5145
5146 if (TREE_CODE (t) == CONSTRUCTOR)
5147 {
5148 /* Aggregate initialization: stabilize each of the field
5149 initializers. */
5150 unsigned i;
5151 constructor_elt *ce;
5152 bool good = true;
5153 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
5154 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
5155 {
5156 tree type = TREE_TYPE (ce->value);
5157 tree subinit;
5158 if (TREE_CODE (type) == REFERENCE_TYPE
5159 || SCALAR_TYPE_P (type))
5160 ce->value = stabilize_expr (ce->value, &subinit);
5161 else if (!stabilize_init (ce->value, &subinit))
5162 good = false;
5163 *initp = add_stmt_to_compound (*initp, subinit);
5164 }
5165 return good;
5166 }
5167
5168 if (TREE_CODE (t) == CALL_EXPR)
5169 {
5170 stabilize_call (t, initp);
5171 return true;
5172 }
5173
5174 if (TREE_CODE (t) == AGGR_INIT_EXPR)
5175 {
5176 stabilize_aggr_init (t, initp);
5177 return true;
5178 }
5179
5180 /* The initialization is being performed via a bitwise copy -- and
5181 the item copied may have side effects. */
5182 return !TREE_SIDE_EFFECTS (init);
5183 }
5184
5185 /* Returns true if a cast to TYPE may appear in an integral constant
5186 expression. */
5187
5188 bool
5189 cast_valid_in_integral_constant_expression_p (tree type)
5190 {
5191 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5192 || cxx_dialect >= cxx11
5193 || dependent_type_p (type)
5194 || type == error_mark_node);
5195 }
5196
5197 /* Return true if we need to fix linkage information of DECL. */
5198
5199 static bool
5200 cp_fix_function_decl_p (tree decl)
5201 {
5202 /* Skip if DECL is not externally visible. */
5203 if (!TREE_PUBLIC (decl))
5204 return false;
5205
5206 /* We need to fix DECL if it a appears to be exported but with no
5207 function body. Thunks do not have CFGs and we may need to
5208 handle them specially later. */
5209 if (!gimple_has_body_p (decl)
5210 && !DECL_THUNK_P (decl)
5211 && !DECL_EXTERNAL (decl))
5212 {
5213 struct cgraph_node *node = cgraph_node::get (decl);
5214
5215 /* Don't fix same_body aliases. Although they don't have their own
5216 CFG, they share it with what they alias to. */
5217 if (!node || !node->alias
5218 || !vec_safe_length (node->ref_list.references))
5219 return true;
5220 }
5221
5222 return false;
5223 }
5224
5225 /* Clean the C++ specific parts of the tree T. */
5226
5227 void
5228 cp_free_lang_data (tree t)
5229 {
5230 if (TREE_CODE (t) == METHOD_TYPE
5231 || TREE_CODE (t) == FUNCTION_TYPE)
5232 {
5233 /* Default args are not interesting anymore. */
5234 tree argtypes = TYPE_ARG_TYPES (t);
5235 while (argtypes)
5236 {
5237 TREE_PURPOSE (argtypes) = 0;
5238 argtypes = TREE_CHAIN (argtypes);
5239 }
5240 }
5241 else if (TREE_CODE (t) == FUNCTION_DECL
5242 && cp_fix_function_decl_p (t))
5243 {
5244 /* If T is used in this translation unit at all, the definition
5245 must exist somewhere else since we have decided to not emit it
5246 in this TU. So make it an external reference. */
5247 DECL_EXTERNAL (t) = 1;
5248 TREE_STATIC (t) = 0;
5249 }
5250 if (TREE_CODE (t) == NAMESPACE_DECL)
5251 /* We do not need the leftover chaining of namespaces from the
5252 binding level. */
5253 DECL_CHAIN (t) = NULL_TREE;
5254 }
5255
5256 /* Stub for c-common. Please keep in sync with c-decl.c.
5257 FIXME: If address space support is target specific, then this
5258 should be a C target hook. But currently this is not possible,
5259 because this function is called via REGISTER_TARGET_PRAGMAS. */
5260 void
5261 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
5262 {
5263 }
5264
5265 /* Return the number of operands in T that we care about for things like
5266 mangling. */
5267
5268 int
5269 cp_tree_operand_length (const_tree t)
5270 {
5271 enum tree_code code = TREE_CODE (t);
5272
5273 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
5274 return VL_EXP_OPERAND_LENGTH (t);
5275
5276 return cp_tree_code_length (code);
5277 }
5278
5279 /* Like cp_tree_operand_length, but takes a tree_code CODE. */
5280
5281 int
5282 cp_tree_code_length (enum tree_code code)
5283 {
5284 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
5285
5286 switch (code)
5287 {
5288 case PREINCREMENT_EXPR:
5289 case PREDECREMENT_EXPR:
5290 case POSTINCREMENT_EXPR:
5291 case POSTDECREMENT_EXPR:
5292 return 1;
5293
5294 case ARRAY_REF:
5295 return 2;
5296
5297 case EXPR_PACK_EXPANSION:
5298 return 1;
5299
5300 default:
5301 return TREE_CODE_LENGTH (code);
5302 }
5303 }
5304
5305 /* Implement -Wzero_as_null_pointer_constant. Return true if the
5306 conditions for the warning hold, false otherwise. */
5307 bool
5308 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
5309 {
5310 if (c_inhibit_evaluation_warnings == 0
5311 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
5312 {
5313 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
5314 "zero as null pointer constant");
5315 return true;
5316 }
5317 return false;
5318 }
5319 \f
5320 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5321 /* Complain that some language-specific thing hanging off a tree
5322 node has been accessed improperly. */
5323
5324 void
5325 lang_check_failed (const char* file, int line, const char* function)
5326 {
5327 internal_error ("lang_* check: failed in %s, at %s:%d",
5328 function, trim_filename (file), line);
5329 }
5330 #endif /* ENABLE_TREE_CHECKING */
5331
5332 #include "gt-cp-tree.h"