ce9568c505eb17694602ba3fa2225536745590cf
[gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "cp-tree.h"
27 #include "flags.h"
28 #include "tree-inline.h"
29 #include "debug.h"
30 #include "convert.h"
31 #include "cgraph.h"
32 #include "splay-tree.h"
33 #include "gimple.h" /* gimple_has_body_p */
34 #include "hash-table.h"
35
36 static tree bot_manip (tree *, int *, void *);
37 static tree bot_replace (tree *, int *, void *);
38 static int list_hash_eq (const void *, const void *);
39 static hashval_t list_hash_pieces (tree, tree, tree);
40 static hashval_t list_hash (const void *);
41 static tree build_target_expr (tree, tree, tsubst_flags_t);
42 static tree count_trees_r (tree *, int *, void *);
43 static tree verify_stmt_tree_r (tree *, int *, void *);
44 static tree build_local_temp (tree);
45
46 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
47 static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
48 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
49 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
50
51 /* If REF is an lvalue, returns the kind of lvalue that REF is.
52 Otherwise, returns clk_none. */
53
54 cp_lvalue_kind
55 lvalue_kind (const_tree ref)
56 {
57 cp_lvalue_kind op1_lvalue_kind = clk_none;
58 cp_lvalue_kind op2_lvalue_kind = clk_none;
59
60 /* Expressions of reference type are sometimes wrapped in
61 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
62 representation, not part of the language, so we have to look
63 through them. */
64 if (REFERENCE_REF_P (ref))
65 return lvalue_kind (TREE_OPERAND (ref, 0));
66
67 if (TREE_TYPE (ref)
68 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
69 {
70 /* unnamed rvalue references are rvalues */
71 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
72 && TREE_CODE (ref) != PARM_DECL
73 && !VAR_P (ref)
74 && TREE_CODE (ref) != COMPONENT_REF
75 /* Functions are always lvalues. */
76 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
77 return clk_rvalueref;
78
79 /* lvalue references and named rvalue references are lvalues. */
80 return clk_ordinary;
81 }
82
83 if (ref == current_class_ptr)
84 return clk_none;
85
86 switch (TREE_CODE (ref))
87 {
88 case SAVE_EXPR:
89 return clk_none;
90 /* preincrements and predecrements are valid lvals, provided
91 what they refer to are valid lvals. */
92 case PREINCREMENT_EXPR:
93 case PREDECREMENT_EXPR:
94 case TRY_CATCH_EXPR:
95 case WITH_CLEANUP_EXPR:
96 case REALPART_EXPR:
97 case IMAGPART_EXPR:
98 return lvalue_kind (TREE_OPERAND (ref, 0));
99
100 case COMPONENT_REF:
101 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
102 /* Look at the member designator. */
103 if (!op1_lvalue_kind)
104 ;
105 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
106 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
107 situations. If we're seeing a COMPONENT_REF, it's a non-static
108 member, so it isn't an lvalue. */
109 op1_lvalue_kind = clk_none;
110 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
111 /* This can be IDENTIFIER_NODE in a template. */;
112 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
113 {
114 /* Clear the ordinary bit. If this object was a class
115 rvalue we want to preserve that information. */
116 op1_lvalue_kind &= ~clk_ordinary;
117 /* The lvalue is for a bitfield. */
118 op1_lvalue_kind |= clk_bitfield;
119 }
120 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
121 op1_lvalue_kind |= clk_packed;
122
123 return op1_lvalue_kind;
124
125 case STRING_CST:
126 case COMPOUND_LITERAL_EXPR:
127 return clk_ordinary;
128
129 case CONST_DECL:
130 /* CONST_DECL without TREE_STATIC are enumeration values and
131 thus not lvalues. With TREE_STATIC they are used by ObjC++
132 in objc_build_string_object and need to be considered as
133 lvalues. */
134 if (! TREE_STATIC (ref))
135 return clk_none;
136 case VAR_DECL:
137 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
138 && DECL_LANG_SPECIFIC (ref)
139 && DECL_IN_AGGR_P (ref))
140 return clk_none;
141 case INDIRECT_REF:
142 case ARROW_EXPR:
143 case ARRAY_REF:
144 case PARM_DECL:
145 case RESULT_DECL:
146 return clk_ordinary;
147
148 /* A scope ref in a template, left as SCOPE_REF to support later
149 access checking. */
150 case SCOPE_REF:
151 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
152 {
153 tree op = TREE_OPERAND (ref, 1);
154 if (TREE_CODE (op) == FIELD_DECL)
155 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
156 else
157 return lvalue_kind (op);
158 }
159
160 case MAX_EXPR:
161 case MIN_EXPR:
162 /* Disallow <? and >? as lvalues if either argument side-effects. */
163 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
164 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
165 return clk_none;
166 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
167 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
168 break;
169
170 case COND_EXPR:
171 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
172 ? TREE_OPERAND (ref, 1)
173 : TREE_OPERAND (ref, 0));
174 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
175 break;
176
177 case MODIFY_EXPR:
178 case TYPEID_EXPR:
179 return clk_ordinary;
180
181 case COMPOUND_EXPR:
182 return lvalue_kind (TREE_OPERAND (ref, 1));
183
184 case TARGET_EXPR:
185 return clk_class;
186
187 case VA_ARG_EXPR:
188 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
189
190 case CALL_EXPR:
191 /* We can see calls outside of TARGET_EXPR in templates. */
192 if (CLASS_TYPE_P (TREE_TYPE (ref)))
193 return clk_class;
194 return clk_none;
195
196 case FUNCTION_DECL:
197 /* All functions (except non-static-member functions) are
198 lvalues. */
199 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
200 ? clk_none : clk_ordinary);
201
202 case BASELINK:
203 /* We now represent a reference to a single static member function
204 with a BASELINK. */
205 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
206 its argument unmodified and we assign it to a const_tree. */
207 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
208
209 case NON_DEPENDENT_EXPR:
210 /* We just return clk_ordinary for NON_DEPENDENT_EXPR in C++98, but
211 in C++11 lvalues don't bind to rvalue references, so we need to
212 work harder to avoid bogus errors (c++/44870). */
213 if (cxx_dialect < cxx0x)
214 return clk_ordinary;
215 else
216 return lvalue_kind (TREE_OPERAND (ref, 0));
217
218 default:
219 if (!TREE_TYPE (ref))
220 return clk_none;
221 if (CLASS_TYPE_P (TREE_TYPE (ref)))
222 return clk_class;
223 break;
224 }
225
226 /* If one operand is not an lvalue at all, then this expression is
227 not an lvalue. */
228 if (!op1_lvalue_kind || !op2_lvalue_kind)
229 return clk_none;
230
231 /* Otherwise, it's an lvalue, and it has all the odd properties
232 contributed by either operand. */
233 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
234 /* It's not an ordinary lvalue if it involves any other kind. */
235 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
236 op1_lvalue_kind &= ~clk_ordinary;
237 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
238 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
239 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
240 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
241 op1_lvalue_kind = clk_none;
242 return op1_lvalue_kind;
243 }
244
245 /* Returns the kind of lvalue that REF is, in the sense of
246 [basic.lval]. This function should really be named lvalue_p; it
247 computes the C++ definition of lvalue. */
248
249 cp_lvalue_kind
250 real_lvalue_p (const_tree ref)
251 {
252 cp_lvalue_kind kind = lvalue_kind (ref);
253 if (kind & (clk_rvalueref|clk_class))
254 return clk_none;
255 else
256 return kind;
257 }
258
259 /* This differs from real_lvalue_p in that class rvalues are considered
260 lvalues. */
261
262 bool
263 lvalue_p (const_tree ref)
264 {
265 return (lvalue_kind (ref) != clk_none);
266 }
267
268 /* This differs from real_lvalue_p in that rvalues formed by dereferencing
269 rvalue references are considered rvalues. */
270
271 bool
272 lvalue_or_rvalue_with_address_p (const_tree ref)
273 {
274 cp_lvalue_kind kind = lvalue_kind (ref);
275 if (kind & clk_class)
276 return false;
277 else
278 return (kind != clk_none);
279 }
280
281 /* Returns true if REF is an xvalue, false otherwise. */
282
283 bool
284 xvalue_p (const_tree ref)
285 {
286 return (lvalue_kind (ref) == clk_rvalueref);
287 }
288
289 /* Test whether DECL is a builtin that may appear in a
290 constant-expression. */
291
292 bool
293 builtin_valid_in_constant_expr_p (const_tree decl)
294 {
295 /* At present BUILT_IN_CONSTANT_P is the only builtin we're allowing
296 in constant-expressions. We may want to add other builtins later. */
297 return DECL_IS_BUILTIN_CONSTANT_P (decl);
298 }
299
300 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
301
302 static tree
303 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
304 {
305 tree t;
306 tree type = TREE_TYPE (decl);
307
308 #ifdef ENABLE_CHECKING
309 gcc_assert (VOID_TYPE_P (TREE_TYPE (value))
310 || TREE_TYPE (decl) == TREE_TYPE (value)
311 /* On ARM ctors return 'this'. */
312 || (TYPE_PTR_P (TREE_TYPE (value))
313 && TREE_CODE (value) == CALL_EXPR)
314 || useless_type_conversion_p (TREE_TYPE (decl),
315 TREE_TYPE (value)));
316 #endif
317
318 t = cxx_maybe_build_cleanup (decl, complain);
319 if (t == error_mark_node)
320 return error_mark_node;
321 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
322 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
323 ignore the TARGET_EXPR. If there really turn out to be no
324 side-effects, then the optimizer should be able to get rid of
325 whatever code is generated anyhow. */
326 TREE_SIDE_EFFECTS (t) = 1;
327
328 return t;
329 }
330
331 /* Return an undeclared local temporary of type TYPE for use in building a
332 TARGET_EXPR. */
333
334 static tree
335 build_local_temp (tree type)
336 {
337 tree slot = build_decl (input_location,
338 VAR_DECL, NULL_TREE, type);
339 DECL_ARTIFICIAL (slot) = 1;
340 DECL_IGNORED_P (slot) = 1;
341 DECL_CONTEXT (slot) = current_function_decl;
342 layout_decl (slot, 0);
343 return slot;
344 }
345
346 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
347
348 static void
349 process_aggr_init_operands (tree t)
350 {
351 bool side_effects;
352
353 side_effects = TREE_SIDE_EFFECTS (t);
354 if (!side_effects)
355 {
356 int i, n;
357 n = TREE_OPERAND_LENGTH (t);
358 for (i = 1; i < n; i++)
359 {
360 tree op = TREE_OPERAND (t, i);
361 if (op && TREE_SIDE_EFFECTS (op))
362 {
363 side_effects = 1;
364 break;
365 }
366 }
367 }
368 TREE_SIDE_EFFECTS (t) = side_effects;
369 }
370
371 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
372 FN, and SLOT. NARGS is the number of call arguments which are specified
373 as a tree array ARGS. */
374
375 static tree
376 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
377 tree *args)
378 {
379 tree t;
380 int i;
381
382 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
383 TREE_TYPE (t) = return_type;
384 AGGR_INIT_EXPR_FN (t) = fn;
385 AGGR_INIT_EXPR_SLOT (t) = slot;
386 for (i = 0; i < nargs; i++)
387 AGGR_INIT_EXPR_ARG (t, i) = args[i];
388 process_aggr_init_operands (t);
389 return t;
390 }
391
392 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
393 target. TYPE is the type to be initialized.
394
395 Build an AGGR_INIT_EXPR to represent the initialization. This function
396 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
397 to initialize another object, whereas a TARGET_EXPR can either
398 initialize another object or create its own temporary object, and as a
399 result building up a TARGET_EXPR requires that the type's destructor be
400 callable. */
401
402 tree
403 build_aggr_init_expr (tree type, tree init)
404 {
405 tree fn;
406 tree slot;
407 tree rval;
408 int is_ctor;
409
410 /* Don't build AGGR_INIT_EXPR in a template. */
411 if (processing_template_decl)
412 return init;
413
414 if (TREE_CODE (init) == CALL_EXPR)
415 fn = CALL_EXPR_FN (init);
416 else if (TREE_CODE (init) == AGGR_INIT_EXPR)
417 fn = AGGR_INIT_EXPR_FN (init);
418 else
419 return convert (type, init);
420
421 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
422 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
423 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
424
425 /* We split the CALL_EXPR into its function and its arguments here.
426 Then, in expand_expr, we put them back together. The reason for
427 this is that this expression might be a default argument
428 expression. In that case, we need a new temporary every time the
429 expression is used. That's what break_out_target_exprs does; it
430 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
431 temporary slot. Then, expand_expr builds up a call-expression
432 using the new slot. */
433
434 /* If we don't need to use a constructor to create an object of this
435 type, don't mess with AGGR_INIT_EXPR. */
436 if (is_ctor || TREE_ADDRESSABLE (type))
437 {
438 slot = build_local_temp (type);
439
440 if (TREE_CODE(init) == CALL_EXPR)
441 rval = build_aggr_init_array (void_type_node, fn, slot,
442 call_expr_nargs (init),
443 CALL_EXPR_ARGP (init));
444 else
445 rval = build_aggr_init_array (void_type_node, fn, slot,
446 aggr_init_expr_nargs (init),
447 AGGR_INIT_EXPR_ARGP (init));
448 TREE_SIDE_EFFECTS (rval) = 1;
449 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
450 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
451 }
452 else
453 rval = init;
454
455 return rval;
456 }
457
458 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
459 target. TYPE is the type that this initialization should appear to
460 have.
461
462 Build an encapsulation of the initialization to perform
463 and return it so that it can be processed by language-independent
464 and language-specific expression expanders. */
465
466 tree
467 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
468 {
469 tree rval = build_aggr_init_expr (type, init);
470 tree slot;
471
472 if (!complete_type_or_maybe_complain (type, init, complain))
473 return error_mark_node;
474
475 /* Make sure that we're not trying to create an instance of an
476 abstract class. */
477 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
478 return error_mark_node;
479
480 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
481 slot = AGGR_INIT_EXPR_SLOT (rval);
482 else if (TREE_CODE (rval) == CALL_EXPR
483 || TREE_CODE (rval) == CONSTRUCTOR)
484 slot = build_local_temp (type);
485 else
486 return rval;
487
488 rval = build_target_expr (slot, rval, complain);
489
490 if (rval != error_mark_node)
491 TARGET_EXPR_IMPLICIT_P (rval) = 1;
492
493 return rval;
494 }
495
496 /* Subroutine of build_vec_init_expr: Build up a single element
497 intialization as a proxy for the full array initialization to get things
498 marked as used and any appropriate diagnostics.
499
500 Since we're deferring building the actual constructor calls until
501 gimplification time, we need to build one now and throw it away so
502 that the relevant constructor gets mark_used before cgraph decides
503 what functions are needed. Here we assume that init is either
504 NULL_TREE, void_type_node (indicating value-initialization), or
505 another array to copy. */
506
507 static tree
508 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
509 {
510 tree inner_type = strip_array_types (type);
511 vec<tree, va_gc> *argvec;
512
513 if (integer_zerop (array_type_nelts_total (type))
514 || !CLASS_TYPE_P (inner_type))
515 /* No interesting initialization to do. */
516 return integer_zero_node;
517 else if (init == void_type_node)
518 return build_value_init (inner_type, complain);
519
520 gcc_assert (init == NULL_TREE
521 || (same_type_ignoring_top_level_qualifiers_p
522 (type, TREE_TYPE (init))));
523
524 argvec = make_tree_vector ();
525 if (init)
526 {
527 tree init_type = strip_array_types (TREE_TYPE (init));
528 tree dummy = build_dummy_object (init_type);
529 if (!real_lvalue_p (init))
530 dummy = move (dummy);
531 argvec->quick_push (dummy);
532 }
533 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
534 &argvec, inner_type, LOOKUP_NORMAL,
535 complain);
536 release_tree_vector (argvec);
537
538 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
539 we don't want one here because we aren't creating a temporary. */
540 if (TREE_CODE (init) == TARGET_EXPR)
541 init = TARGET_EXPR_INITIAL (init);
542
543 return init;
544 }
545
546 /* Return a TARGET_EXPR which expresses the initialization of an array to
547 be named later, either default-initialization or copy-initialization
548 from another array of the same type. */
549
550 tree
551 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
552 {
553 tree slot;
554 bool value_init = false;
555 tree elt_init = build_vec_init_elt (type, init, complain);
556
557 if (init == void_type_node)
558 {
559 value_init = true;
560 init = NULL_TREE;
561 }
562
563 slot = build_local_temp (type);
564 init = build2 (VEC_INIT_EXPR, type, slot, init);
565 TREE_SIDE_EFFECTS (init) = true;
566 SET_EXPR_LOCATION (init, input_location);
567
568 if (cxx_dialect >= cxx0x
569 && potential_constant_expression (elt_init))
570 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
571 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
572
573 return init;
574 }
575
576 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
577 that requires a constant expression. */
578
579 void
580 diagnose_non_constexpr_vec_init (tree expr)
581 {
582 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
583 tree init, elt_init;
584 if (VEC_INIT_EXPR_VALUE_INIT (expr))
585 init = void_type_node;
586 else
587 init = VEC_INIT_EXPR_INIT (expr);
588
589 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
590 require_potential_constant_expression (elt_init);
591 }
592
593 tree
594 build_array_copy (tree init)
595 {
596 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
597 }
598
599 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
600 indicated TYPE. */
601
602 tree
603 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
604 {
605 gcc_assert (!VOID_TYPE_P (type));
606
607 if (TREE_CODE (init) == TARGET_EXPR
608 || init == error_mark_node)
609 return init;
610 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
611 && !VOID_TYPE_P (TREE_TYPE (init))
612 && TREE_CODE (init) != COND_EXPR
613 && TREE_CODE (init) != CONSTRUCTOR
614 && TREE_CODE (init) != VA_ARG_EXPR)
615 /* We need to build up a copy constructor call. A void initializer
616 means we're being called from bot_manip. COND_EXPR is a special
617 case because we already have copies on the arms and we don't want
618 another one here. A CONSTRUCTOR is aggregate initialization, which
619 is handled separately. A VA_ARG_EXPR is magic creation of an
620 aggregate; there's no additional work to be done. */
621 return force_rvalue (init, complain);
622
623 return force_target_expr (type, init, complain);
624 }
625
626 /* Like the above function, but without the checking. This function should
627 only be used by code which is deliberately trying to subvert the type
628 system, such as call_builtin_trap. Or build_over_call, to avoid
629 infinite recursion. */
630
631 tree
632 force_target_expr (tree type, tree init, tsubst_flags_t complain)
633 {
634 tree slot;
635
636 gcc_assert (!VOID_TYPE_P (type));
637
638 slot = build_local_temp (type);
639 return build_target_expr (slot, init, complain);
640 }
641
642 /* Like build_target_expr_with_type, but use the type of INIT. */
643
644 tree
645 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
646 {
647 if (TREE_CODE (init) == AGGR_INIT_EXPR)
648 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
649 else if (TREE_CODE (init) == VEC_INIT_EXPR)
650 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
651 else
652 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
653 }
654
655 tree
656 get_target_expr (tree init)
657 {
658 return get_target_expr_sfinae (init, tf_warning_or_error);
659 }
660
661 /* If EXPR is a bitfield reference, convert it to the declared type of
662 the bitfield, and return the resulting expression. Otherwise,
663 return EXPR itself. */
664
665 tree
666 convert_bitfield_to_declared_type (tree expr)
667 {
668 tree bitfield_type;
669
670 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
671 if (bitfield_type)
672 expr = convert_to_integer (TYPE_MAIN_VARIANT (bitfield_type),
673 expr);
674 return expr;
675 }
676
677 /* EXPR is being used in an rvalue context. Return a version of EXPR
678 that is marked as an rvalue. */
679
680 tree
681 rvalue (tree expr)
682 {
683 tree type;
684
685 if (error_operand_p (expr))
686 return expr;
687
688 expr = mark_rvalue_use (expr);
689
690 /* [basic.lval]
691
692 Non-class rvalues always have cv-unqualified types. */
693 type = TREE_TYPE (expr);
694 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
695 type = cv_unqualified (type);
696
697 /* We need to do this for rvalue refs as well to get the right answer
698 from decltype; see c++/36628. */
699 if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr))
700 expr = build1 (NON_LVALUE_EXPR, type, expr);
701 else if (type != TREE_TYPE (expr))
702 expr = build_nop (type, expr);
703
704 return expr;
705 }
706
707 \f
708 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
709
710 static hashval_t
711 cplus_array_hash (const void* k)
712 {
713 hashval_t hash;
714 const_tree const t = (const_tree) k;
715
716 hash = TYPE_UID (TREE_TYPE (t));
717 if (TYPE_DOMAIN (t))
718 hash ^= TYPE_UID (TYPE_DOMAIN (t));
719 return hash;
720 }
721
722 typedef struct cplus_array_info {
723 tree type;
724 tree domain;
725 } cplus_array_info;
726
727 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
728 of type `cplus_array_info*'. */
729
730 static int
731 cplus_array_compare (const void * k1, const void * k2)
732 {
733 const_tree const t1 = (const_tree) k1;
734 const cplus_array_info *const t2 = (const cplus_array_info*) k2;
735
736 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
737 }
738
739 /* Hash table containing dependent array types, which are unsuitable for
740 the language-independent type hash table. */
741 static GTY ((param_is (union tree_node))) htab_t cplus_array_htab;
742
743 /* Like build_array_type, but handle special C++ semantics. */
744
745 tree
746 build_cplus_array_type (tree elt_type, tree index_type)
747 {
748 tree t;
749
750 if (elt_type == error_mark_node || index_type == error_mark_node)
751 return error_mark_node;
752
753 if (processing_template_decl
754 && (dependent_type_p (elt_type)
755 || (index_type && !TREE_CONSTANT (TYPE_MAX_VALUE (index_type)))))
756 {
757 void **e;
758 cplus_array_info cai;
759 hashval_t hash;
760
761 if (cplus_array_htab == NULL)
762 cplus_array_htab = htab_create_ggc (61, &cplus_array_hash,
763 &cplus_array_compare, NULL);
764
765 hash = TYPE_UID (elt_type);
766 if (index_type)
767 hash ^= TYPE_UID (index_type);
768 cai.type = elt_type;
769 cai.domain = index_type;
770
771 e = htab_find_slot_with_hash (cplus_array_htab, &cai, hash, INSERT);
772 if (*e)
773 /* We have found the type: we're done. */
774 return (tree) *e;
775 else
776 {
777 /* Build a new array type. */
778 t = cxx_make_type (ARRAY_TYPE);
779 TREE_TYPE (t) = elt_type;
780 TYPE_DOMAIN (t) = index_type;
781
782 /* Store it in the hash table. */
783 *e = t;
784
785 /* Set the canonical type for this new node. */
786 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
787 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
788 SET_TYPE_STRUCTURAL_EQUALITY (t);
789 else if (TYPE_CANONICAL (elt_type) != elt_type
790 || (index_type
791 && TYPE_CANONICAL (index_type) != index_type))
792 TYPE_CANONICAL (t)
793 = build_cplus_array_type
794 (TYPE_CANONICAL (elt_type),
795 index_type ? TYPE_CANONICAL (index_type) : index_type);
796 else
797 TYPE_CANONICAL (t) = t;
798 }
799 }
800 else
801 {
802 if (!TYPE_STRUCTURAL_EQUALITY_P (elt_type)
803 && !(index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
804 && (TYPE_CANONICAL (elt_type) != elt_type
805 || (index_type && TYPE_CANONICAL (index_type) != index_type)))
806 /* Make sure that the canonical type is on the appropriate
807 variants list. */
808 build_cplus_array_type
809 (TYPE_CANONICAL (elt_type),
810 index_type ? TYPE_CANONICAL (index_type) : index_type);
811 t = build_array_type (elt_type, index_type);
812 }
813
814 /* Push these needs up so that initialization takes place
815 more easily. */
816 bool needs_ctor
817 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
818 TYPE_NEEDS_CONSTRUCTING (t) = needs_ctor;
819 bool needs_dtor
820 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
821 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = needs_dtor;
822
823 /* We want TYPE_MAIN_VARIANT of an array to strip cv-quals from the
824 element type as well, so fix it up if needed. */
825 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
826 {
827 tree m = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
828 index_type);
829
830 if (TYPE_MAIN_VARIANT (t) != m)
831 {
832 if (COMPLETE_TYPE_P (t) && !COMPLETE_TYPE_P (m))
833 {
834 /* m was built before the element type was complete, so we
835 also need to copy the layout info from t. */
836 tree size = TYPE_SIZE (t);
837 tree size_unit = TYPE_SIZE_UNIT (t);
838 unsigned int align = TYPE_ALIGN (t);
839 unsigned int user_align = TYPE_USER_ALIGN (t);
840 enum machine_mode mode = TYPE_MODE (t);
841 for (tree var = m; var; var = TYPE_NEXT_VARIANT (var))
842 {
843 TYPE_SIZE (var) = size;
844 TYPE_SIZE_UNIT (var) = size_unit;
845 TYPE_ALIGN (var) = align;
846 TYPE_USER_ALIGN (var) = user_align;
847 SET_TYPE_MODE (var, mode);
848 TYPE_NEEDS_CONSTRUCTING (var) = needs_ctor;
849 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (var) = needs_dtor;
850 }
851 }
852
853 TYPE_MAIN_VARIANT (t) = m;
854 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
855 TYPE_NEXT_VARIANT (m) = t;
856 }
857 }
858
859 /* Avoid spurious warnings with VLAs (c++/54583). */
860 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
861 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
862
863 return t;
864 }
865
866 /* Return an ARRAY_TYPE with element type ELT and length N. */
867
868 tree
869 build_array_of_n_type (tree elt, int n)
870 {
871 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
872 }
873
874 /* Return a reference type node referring to TO_TYPE. If RVAL is
875 true, return an rvalue reference type, otherwise return an lvalue
876 reference type. If a type node exists, reuse it, otherwise create
877 a new one. */
878 tree
879 cp_build_reference_type (tree to_type, bool rval)
880 {
881 tree lvalue_ref, t;
882 lvalue_ref = build_reference_type (to_type);
883 if (!rval)
884 return lvalue_ref;
885
886 /* This code to create rvalue reference types is based on and tied
887 to the code creating lvalue reference types in the middle-end
888 functions build_reference_type_for_mode and build_reference_type.
889
890 It works by putting the rvalue reference type nodes after the
891 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
892 they will effectively be ignored by the middle end. */
893
894 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
895 if (TYPE_REF_IS_RVALUE (t))
896 return t;
897
898 t = build_distinct_type_copy (lvalue_ref);
899
900 TYPE_REF_IS_RVALUE (t) = true;
901 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
902 TYPE_NEXT_REF_TO (lvalue_ref) = t;
903
904 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
905 SET_TYPE_STRUCTURAL_EQUALITY (t);
906 else if (TYPE_CANONICAL (to_type) != to_type)
907 TYPE_CANONICAL (t)
908 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
909 else
910 TYPE_CANONICAL (t) = t;
911
912 layout_type (t);
913
914 return t;
915
916 }
917
918 /* Returns EXPR cast to rvalue reference type, like std::move. */
919
920 tree
921 move (tree expr)
922 {
923 tree type = TREE_TYPE (expr);
924 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
925 type = cp_build_reference_type (type, /*rval*/true);
926 return build_static_cast (type, expr, tf_warning_or_error);
927 }
928
929 /* Used by the C++ front end to build qualified array types. However,
930 the C version of this function does not properly maintain canonical
931 types (which are not used in C). */
932 tree
933 c_build_qualified_type (tree type, int type_quals)
934 {
935 return cp_build_qualified_type (type, type_quals);
936 }
937
938 \f
939 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
940 arrays correctly. In particular, if TYPE is an array of T's, and
941 TYPE_QUALS is non-empty, returns an array of qualified T's.
942
943 FLAGS determines how to deal with ill-formed qualifications. If
944 tf_ignore_bad_quals is set, then bad qualifications are dropped
945 (this is permitted if TYPE was introduced via a typedef or template
946 type parameter). If bad qualifications are dropped and tf_warning
947 is set, then a warning is issued for non-const qualifications. If
948 tf_ignore_bad_quals is not set and tf_error is not set, we
949 return error_mark_node. Otherwise, we issue an error, and ignore
950 the qualifications.
951
952 Qualification of a reference type is valid when the reference came
953 via a typedef or template type argument. [dcl.ref] No such
954 dispensation is provided for qualifying a function type. [dcl.fct]
955 DR 295 queries this and the proposed resolution brings it into line
956 with qualifying a reference. We implement the DR. We also behave
957 in a similar manner for restricting non-pointer types. */
958
959 tree
960 cp_build_qualified_type_real (tree type,
961 int type_quals,
962 tsubst_flags_t complain)
963 {
964 tree result;
965 int bad_quals = TYPE_UNQUALIFIED;
966
967 if (type == error_mark_node)
968 return type;
969
970 if (type_quals == cp_type_quals (type))
971 return type;
972
973 if (TREE_CODE (type) == ARRAY_TYPE)
974 {
975 /* In C++, the qualification really applies to the array element
976 type. Obtain the appropriately qualified element type. */
977 tree t;
978 tree element_type
979 = cp_build_qualified_type_real (TREE_TYPE (type),
980 type_quals,
981 complain);
982
983 if (element_type == error_mark_node)
984 return error_mark_node;
985
986 /* See if we already have an identically qualified type. Tests
987 should be equivalent to those in check_qualified_type. */
988 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
989 if (TREE_TYPE (t) == element_type
990 && TYPE_NAME (t) == TYPE_NAME (type)
991 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
992 && attribute_list_equal (TYPE_ATTRIBUTES (t),
993 TYPE_ATTRIBUTES (type)))
994 break;
995
996 if (!t)
997 {
998 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
999
1000 /* Keep the typedef name. */
1001 if (TYPE_NAME (t) != TYPE_NAME (type))
1002 {
1003 t = build_variant_type_copy (t);
1004 TYPE_NAME (t) = TYPE_NAME (type);
1005 }
1006 }
1007
1008 /* Even if we already had this variant, we update
1009 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1010 they changed since the variant was originally created.
1011
1012 This seems hokey; if there is some way to use a previous
1013 variant *without* coming through here,
1014 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1015 TYPE_NEEDS_CONSTRUCTING (t)
1016 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1017 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1018 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1019 return t;
1020 }
1021 else if (TYPE_PTRMEMFUNC_P (type))
1022 {
1023 /* For a pointer-to-member type, we can't just return a
1024 cv-qualified version of the RECORD_TYPE. If we do, we
1025 haven't changed the field that contains the actual pointer to
1026 a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
1027 tree t;
1028
1029 t = TYPE_PTRMEMFUNC_FN_TYPE (type);
1030 t = cp_build_qualified_type_real (t, type_quals, complain);
1031 return build_ptrmemfunc_type (t);
1032 }
1033 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1034 {
1035 tree t = PACK_EXPANSION_PATTERN (type);
1036
1037 t = cp_build_qualified_type_real (t, type_quals, complain);
1038 return make_pack_expansion (t);
1039 }
1040
1041 /* A reference or method type shall not be cv-qualified.
1042 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1043 (in CD1) we always ignore extra cv-quals on functions. */
1044 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1045 && (TREE_CODE (type) == REFERENCE_TYPE
1046 || TREE_CODE (type) == FUNCTION_TYPE
1047 || TREE_CODE (type) == METHOD_TYPE))
1048 {
1049 if (TREE_CODE (type) == REFERENCE_TYPE)
1050 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1051 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1052 }
1053
1054 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1055 if (TREE_CODE (type) == FUNCTION_TYPE)
1056 type_quals |= type_memfn_quals (type);
1057
1058 /* A restrict-qualified type must be a pointer (or reference)
1059 to object or incomplete type. */
1060 if ((type_quals & TYPE_QUAL_RESTRICT)
1061 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1062 && TREE_CODE (type) != TYPENAME_TYPE
1063 && !POINTER_TYPE_P (type))
1064 {
1065 bad_quals |= TYPE_QUAL_RESTRICT;
1066 type_quals &= ~TYPE_QUAL_RESTRICT;
1067 }
1068
1069 if (bad_quals == TYPE_UNQUALIFIED
1070 || (complain & tf_ignore_bad_quals))
1071 /*OK*/;
1072 else if (!(complain & tf_error))
1073 return error_mark_node;
1074 else
1075 {
1076 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1077 error ("%qV qualifiers cannot be applied to %qT",
1078 bad_type, type);
1079 }
1080
1081 /* Retrieve (or create) the appropriately qualified variant. */
1082 result = build_qualified_type (type, type_quals);
1083
1084 /* Preserve exception specs and ref-qualifier since build_qualified_type
1085 doesn't know about them. */
1086 if (TREE_CODE (result) == FUNCTION_TYPE
1087 || TREE_CODE (result) == METHOD_TYPE)
1088 {
1089 result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (type));
1090 result = build_ref_qualified_type (result, type_memfn_rqual (type));
1091 }
1092
1093 /* If this was a pointer-to-method type, and we just made a copy,
1094 then we need to unshare the record that holds the cached
1095 pointer-to-member-function type, because these will be distinct
1096 between the unqualified and qualified types. */
1097 if (result != type
1098 && TYPE_PTR_P (type)
1099 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
1100 && TYPE_LANG_SPECIFIC (result) == TYPE_LANG_SPECIFIC (type))
1101 TYPE_LANG_SPECIFIC (result) = NULL;
1102
1103 /* We may also have ended up building a new copy of the canonical
1104 type of a pointer-to-method type, which could have the same
1105 sharing problem described above. */
1106 if (TYPE_CANONICAL (result) != TYPE_CANONICAL (type)
1107 && TYPE_PTR_P (type)
1108 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
1109 && (TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result))
1110 == TYPE_LANG_SPECIFIC (TYPE_CANONICAL (type))))
1111 TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result)) = NULL;
1112
1113 return result;
1114 }
1115
1116 /* Return TYPE with const and volatile removed. */
1117
1118 tree
1119 cv_unqualified (tree type)
1120 {
1121 int quals;
1122
1123 if (type == error_mark_node)
1124 return type;
1125
1126 quals = cp_type_quals (type);
1127 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1128 return cp_build_qualified_type (type, quals);
1129 }
1130
1131 /* Builds a qualified variant of T that is not a typedef variant.
1132 E.g. consider the following declarations:
1133 typedef const int ConstInt;
1134 typedef ConstInt* PtrConstInt;
1135 If T is PtrConstInt, this function returns a type representing
1136 const int*.
1137 In other words, if T is a typedef, the function returns the underlying type.
1138 The cv-qualification and attributes of the type returned match the
1139 input type.
1140 They will always be compatible types.
1141 The returned type is built so that all of its subtypes
1142 recursively have their typedefs stripped as well.
1143
1144 This is different from just returning TYPE_CANONICAL (T)
1145 Because of several reasons:
1146 * If T is a type that needs structural equality
1147 its TYPE_CANONICAL (T) will be NULL.
1148 * TYPE_CANONICAL (T) desn't carry type attributes
1149 and loses template parameter names. */
1150
1151 tree
1152 strip_typedefs (tree t)
1153 {
1154 tree result = NULL, type = NULL, t0 = NULL;
1155
1156 if (!t || t == error_mark_node || t == TYPE_CANONICAL (t))
1157 return t;
1158
1159 gcc_assert (TYPE_P (t));
1160
1161 switch (TREE_CODE (t))
1162 {
1163 case POINTER_TYPE:
1164 type = strip_typedefs (TREE_TYPE (t));
1165 result = build_pointer_type (type);
1166 break;
1167 case REFERENCE_TYPE:
1168 type = strip_typedefs (TREE_TYPE (t));
1169 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1170 break;
1171 case OFFSET_TYPE:
1172 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t));
1173 type = strip_typedefs (TREE_TYPE (t));
1174 result = build_offset_type (t0, type);
1175 break;
1176 case RECORD_TYPE:
1177 if (TYPE_PTRMEMFUNC_P (t))
1178 {
1179 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t));
1180 result = build_ptrmemfunc_type (t0);
1181 }
1182 break;
1183 case ARRAY_TYPE:
1184 type = strip_typedefs (TREE_TYPE (t));
1185 t0 = strip_typedefs (TYPE_DOMAIN (t));;
1186 result = build_cplus_array_type (type, t0);
1187 break;
1188 case FUNCTION_TYPE:
1189 case METHOD_TYPE:
1190 {
1191 tree arg_types = NULL, arg_node, arg_type;
1192 for (arg_node = TYPE_ARG_TYPES (t);
1193 arg_node;
1194 arg_node = TREE_CHAIN (arg_node))
1195 {
1196 if (arg_node == void_list_node)
1197 break;
1198 arg_type = strip_typedefs (TREE_VALUE (arg_node));
1199 gcc_assert (arg_type);
1200
1201 arg_types =
1202 tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1203 }
1204
1205 if (arg_types)
1206 arg_types = nreverse (arg_types);
1207
1208 /* A list of parameters not ending with an ellipsis
1209 must end with void_list_node. */
1210 if (arg_node)
1211 arg_types = chainon (arg_types, void_list_node);
1212
1213 type = strip_typedefs (TREE_TYPE (t));
1214 if (TREE_CODE (t) == METHOD_TYPE)
1215 {
1216 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1217 gcc_assert (class_type);
1218 result =
1219 build_method_type_directly (class_type, type,
1220 TREE_CHAIN (arg_types));
1221 }
1222 else
1223 {
1224 result = build_function_type (type,
1225 arg_types);
1226 result = apply_memfn_quals (result,
1227 type_memfn_quals (t),
1228 type_memfn_rqual (t));
1229 }
1230
1231 if (TYPE_RAISES_EXCEPTIONS (t))
1232 result = build_exception_variant (result,
1233 TYPE_RAISES_EXCEPTIONS (t));
1234 }
1235 break;
1236 case TYPENAME_TYPE:
1237 {
1238 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1239 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1240 && TREE_OPERAND (fullname, 1))
1241 {
1242 tree args = TREE_OPERAND (fullname, 1);
1243 tree new_args = copy_node (args);
1244 bool changed = false;
1245 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1246 {
1247 tree arg = TREE_VEC_ELT (args, i);
1248 tree strip_arg;
1249 if (TYPE_P (arg))
1250 strip_arg = strip_typedefs (arg);
1251 else
1252 strip_arg = strip_typedefs_expr (arg);
1253 TREE_VEC_ELT (new_args, i) = strip_arg;
1254 if (strip_arg != arg)
1255 changed = true;
1256 }
1257 if (changed)
1258 fullname = lookup_template_function (TREE_OPERAND (fullname, 0),
1259 new_args);
1260 else
1261 ggc_free (new_args);
1262 }
1263 result = make_typename_type (strip_typedefs (TYPE_CONTEXT (t)),
1264 fullname, typename_type, tf_none);
1265 }
1266 break;
1267 case DECLTYPE_TYPE:
1268 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t));
1269 if (result == DECLTYPE_TYPE_EXPR (t))
1270 return t;
1271 else
1272 result = (finish_decltype_type
1273 (result,
1274 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1275 tf_none));
1276 break;
1277 default:
1278 break;
1279 }
1280
1281 if (!result)
1282 result = TYPE_MAIN_VARIANT (t);
1283 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1284 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1285 {
1286 gcc_assert (TYPE_USER_ALIGN (t));
1287 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1288 result = build_variant_type_copy (result);
1289 else
1290 result = build_aligned_type (result, TYPE_ALIGN (t));
1291 TYPE_USER_ALIGN (result) = true;
1292 }
1293 if (TYPE_ATTRIBUTES (t))
1294 result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t));
1295 return cp_build_qualified_type (result, cp_type_quals (t));
1296 }
1297
1298 /* Like strip_typedefs above, but works on expressions, so that in
1299
1300 template<class T> struct A
1301 {
1302 typedef T TT;
1303 B<sizeof(TT)> b;
1304 };
1305
1306 sizeof(TT) is replaced by sizeof(T). */
1307
1308 tree
1309 strip_typedefs_expr (tree t)
1310 {
1311 unsigned i,n;
1312 tree r, type, *ops;
1313 enum tree_code code;
1314
1315 if (t == NULL_TREE || t == error_mark_node)
1316 return t;
1317
1318 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1319 return t;
1320
1321 /* Some expressions have type operands, so let's handle types here rather
1322 than check TYPE_P in multiple places below. */
1323 if (TYPE_P (t))
1324 return strip_typedefs (t);
1325
1326 code = TREE_CODE (t);
1327 switch (code)
1328 {
1329 case IDENTIFIER_NODE:
1330 case TEMPLATE_PARM_INDEX:
1331 case OVERLOAD:
1332 case BASELINK:
1333 case ARGUMENT_PACK_SELECT:
1334 return t;
1335
1336 case TRAIT_EXPR:
1337 {
1338 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t));
1339 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t));
1340 if (type1 == TRAIT_EXPR_TYPE1 (t)
1341 && type2 == TRAIT_EXPR_TYPE2 (t))
1342 return t;
1343 r = copy_node (t);
1344 TRAIT_EXPR_TYPE1 (t) = type1;
1345 TRAIT_EXPR_TYPE2 (t) = type2;
1346 return r;
1347 }
1348
1349 case TREE_LIST:
1350 {
1351 vec<tree, va_gc> *vec = make_tree_vector ();
1352 bool changed = false;
1353 tree it;
1354 for (it = t; it; it = TREE_CHAIN (it))
1355 {
1356 tree val = strip_typedefs_expr (TREE_VALUE (t));
1357 vec_safe_push (vec, val);
1358 if (val != TREE_VALUE (t))
1359 changed = true;
1360 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1361 }
1362 if (changed)
1363 {
1364 r = NULL_TREE;
1365 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1366 r = tree_cons (NULL_TREE, it, r);
1367 }
1368 else
1369 r = t;
1370 release_tree_vector (vec);
1371 return r;
1372 }
1373
1374 case TREE_VEC:
1375 {
1376 bool changed = false;
1377 vec<tree, va_gc> *vec = make_tree_vector ();
1378 n = TREE_VEC_LENGTH (t);
1379 vec_safe_reserve (vec, n);
1380 for (i = 0; i < n; ++i)
1381 {
1382 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i));
1383 vec->quick_push (op);
1384 if (op != TREE_VEC_ELT (t, i))
1385 changed = true;
1386 }
1387 if (changed)
1388 {
1389 r = copy_node (t);
1390 for (i = 0; i < n; ++i)
1391 TREE_VEC_ELT (r, i) = (*vec)[i];
1392 SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT
1393 (r, GET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (t));
1394 }
1395 else
1396 r = t;
1397 release_tree_vector (vec);
1398 return r;
1399 }
1400
1401 case CONSTRUCTOR:
1402 {
1403 bool changed = false;
1404 vec<constructor_elt, va_gc> *vec
1405 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1406 n = CONSTRUCTOR_NELTS (t);
1407 type = strip_typedefs (TREE_TYPE (t));
1408 for (i = 0; i < n; ++i)
1409 {
1410 constructor_elt *e = &(*vec)[i];
1411 tree op = strip_typedefs_expr (e->value);
1412 if (op != e->value)
1413 {
1414 changed = true;
1415 e->value = op;
1416 }
1417 gcc_checking_assert (e->index == strip_typedefs_expr (e->index));
1418 }
1419
1420 if (!changed && type == TREE_TYPE (t))
1421 {
1422 vec_free (vec);
1423 return t;
1424 }
1425 else
1426 {
1427 r = copy_node (t);
1428 TREE_TYPE (r) = type;
1429 CONSTRUCTOR_ELTS (r) = vec;
1430 return r;
1431 }
1432 }
1433
1434 case LAMBDA_EXPR:
1435 error ("lambda-expression in a constant expression");
1436 return error_mark_node;
1437
1438 default:
1439 break;
1440 }
1441
1442 gcc_assert (EXPR_P (t));
1443
1444 n = TREE_OPERAND_LENGTH (t);
1445 ops = XALLOCAVEC (tree, n);
1446 type = TREE_TYPE (t);
1447
1448 switch (code)
1449 {
1450 CASE_CONVERT:
1451 case IMPLICIT_CONV_EXPR:
1452 case DYNAMIC_CAST_EXPR:
1453 case STATIC_CAST_EXPR:
1454 case CONST_CAST_EXPR:
1455 case REINTERPRET_CAST_EXPR:
1456 case CAST_EXPR:
1457 case NEW_EXPR:
1458 type = strip_typedefs (type);
1459 /* fallthrough */
1460
1461 default:
1462 for (i = 0; i < n; ++i)
1463 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i));
1464 break;
1465 }
1466
1467 /* If nothing changed, return t. */
1468 for (i = 0; i < n; ++i)
1469 if (ops[i] != TREE_OPERAND (t, i))
1470 break;
1471 if (i == n && type == TREE_TYPE (t))
1472 return t;
1473
1474 r = copy_node (t);
1475 TREE_TYPE (r) = type;
1476 for (i = 0; i < n; ++i)
1477 TREE_OPERAND (r, i) = ops[i];
1478 return r;
1479 }
1480
1481 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1482 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1483 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1484 VIRT indicates whether TYPE is inherited virtually or not.
1485 IGO_PREV points at the previous binfo of the inheritance graph
1486 order chain. The newly copied binfo's TREE_CHAIN forms this
1487 ordering.
1488
1489 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1490 correct order. That is in the order the bases themselves should be
1491 constructed in.
1492
1493 The BINFO_INHERITANCE of a virtual base class points to the binfo
1494 of the most derived type. ??? We could probably change this so that
1495 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1496 remove a field. They currently can only differ for primary virtual
1497 virtual bases. */
1498
1499 tree
1500 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1501 {
1502 tree new_binfo;
1503
1504 if (virt)
1505 {
1506 /* See if we've already made this virtual base. */
1507 new_binfo = binfo_for_vbase (type, t);
1508 if (new_binfo)
1509 return new_binfo;
1510 }
1511
1512 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1513 BINFO_TYPE (new_binfo) = type;
1514
1515 /* Chain it into the inheritance graph. */
1516 TREE_CHAIN (*igo_prev) = new_binfo;
1517 *igo_prev = new_binfo;
1518
1519 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1520 {
1521 int ix;
1522 tree base_binfo;
1523
1524 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1525
1526 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1527 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1528
1529 /* We do not need to copy the accesses, as they are read only. */
1530 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1531
1532 /* Recursively copy base binfos of BINFO. */
1533 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1534 {
1535 tree new_base_binfo;
1536 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1537 t, igo_prev,
1538 BINFO_VIRTUAL_P (base_binfo));
1539
1540 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1541 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1542 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1543 }
1544 }
1545 else
1546 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1547
1548 if (virt)
1549 {
1550 /* Push it onto the list after any virtual bases it contains
1551 will have been pushed. */
1552 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1553 BINFO_VIRTUAL_P (new_binfo) = 1;
1554 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1555 }
1556
1557 return new_binfo;
1558 }
1559 \f
1560 /* Hashing of lists so that we don't make duplicates.
1561 The entry point is `list_hash_canon'. */
1562
1563 /* Now here is the hash table. When recording a list, it is added
1564 to the slot whose index is the hash code mod the table size.
1565 Note that the hash table is used for several kinds of lists.
1566 While all these live in the same table, they are completely independent,
1567 and the hash code is computed differently for each of these. */
1568
1569 static GTY ((param_is (union tree_node))) htab_t list_hash_table;
1570
1571 struct list_proxy
1572 {
1573 tree purpose;
1574 tree value;
1575 tree chain;
1576 };
1577
1578 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1579 for a node we are thinking about adding). */
1580
1581 static int
1582 list_hash_eq (const void* entry, const void* data)
1583 {
1584 const_tree const t = (const_tree) entry;
1585 const struct list_proxy *const proxy = (const struct list_proxy *) data;
1586
1587 return (TREE_VALUE (t) == proxy->value
1588 && TREE_PURPOSE (t) == proxy->purpose
1589 && TREE_CHAIN (t) == proxy->chain);
1590 }
1591
1592 /* Compute a hash code for a list (chain of TREE_LIST nodes
1593 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1594 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1595
1596 static hashval_t
1597 list_hash_pieces (tree purpose, tree value, tree chain)
1598 {
1599 hashval_t hashcode = 0;
1600
1601 if (chain)
1602 hashcode += TREE_HASH (chain);
1603
1604 if (value)
1605 hashcode += TREE_HASH (value);
1606 else
1607 hashcode += 1007;
1608 if (purpose)
1609 hashcode += TREE_HASH (purpose);
1610 else
1611 hashcode += 1009;
1612 return hashcode;
1613 }
1614
1615 /* Hash an already existing TREE_LIST. */
1616
1617 static hashval_t
1618 list_hash (const void* p)
1619 {
1620 const_tree const t = (const_tree) p;
1621 return list_hash_pieces (TREE_PURPOSE (t),
1622 TREE_VALUE (t),
1623 TREE_CHAIN (t));
1624 }
1625
1626 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1627 object for an identical list if one already exists. Otherwise, build a
1628 new one, and record it as the canonical object. */
1629
1630 tree
1631 hash_tree_cons (tree purpose, tree value, tree chain)
1632 {
1633 int hashcode = 0;
1634 void **slot;
1635 struct list_proxy proxy;
1636
1637 /* Hash the list node. */
1638 hashcode = list_hash_pieces (purpose, value, chain);
1639 /* Create a proxy for the TREE_LIST we would like to create. We
1640 don't actually create it so as to avoid creating garbage. */
1641 proxy.purpose = purpose;
1642 proxy.value = value;
1643 proxy.chain = chain;
1644 /* See if it is already in the table. */
1645 slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
1646 INSERT);
1647 /* If not, create a new node. */
1648 if (!*slot)
1649 *slot = tree_cons (purpose, value, chain);
1650 return (tree) *slot;
1651 }
1652
1653 /* Constructor for hashed lists. */
1654
1655 tree
1656 hash_tree_chain (tree value, tree chain)
1657 {
1658 return hash_tree_cons (NULL_TREE, value, chain);
1659 }
1660 \f
1661 void
1662 debug_binfo (tree elem)
1663 {
1664 HOST_WIDE_INT n;
1665 tree virtuals;
1666
1667 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1668 "\nvtable type:\n",
1669 TYPE_NAME_STRING (BINFO_TYPE (elem)),
1670 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
1671 debug_tree (BINFO_TYPE (elem));
1672 if (BINFO_VTABLE (elem))
1673 fprintf (stderr, "vtable decl \"%s\"\n",
1674 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
1675 else
1676 fprintf (stderr, "no vtable decl yet\n");
1677 fprintf (stderr, "virtuals:\n");
1678 virtuals = BINFO_VIRTUALS (elem);
1679 n = 0;
1680
1681 while (virtuals)
1682 {
1683 tree fndecl = TREE_VALUE (virtuals);
1684 fprintf (stderr, "%s [%ld =? %ld]\n",
1685 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
1686 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
1687 ++n;
1688 virtuals = TREE_CHAIN (virtuals);
1689 }
1690 }
1691
1692 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
1693 the type of the result expression, if known, or NULL_TREE if the
1694 resulting expression is type-dependent. If TEMPLATE_P is true,
1695 NAME is known to be a template because the user explicitly used the
1696 "template" keyword after the "::".
1697
1698 All SCOPE_REFs should be built by use of this function. */
1699
1700 tree
1701 build_qualified_name (tree type, tree scope, tree name, bool template_p)
1702 {
1703 tree t;
1704 if (type == error_mark_node
1705 || scope == error_mark_node
1706 || name == error_mark_node)
1707 return error_mark_node;
1708 t = build2 (SCOPE_REF, type, scope, name);
1709 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
1710 PTRMEM_OK_P (t) = true;
1711 if (type)
1712 t = convert_from_reference (t);
1713 return t;
1714 }
1715
1716 /* Like check_qualified_type, but also check ref-qualifier and exception
1717 specification. */
1718
1719 static bool
1720 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
1721 cp_ref_qualifier rqual, tree raises)
1722 {
1723 return (check_qualified_type (cand, base, type_quals)
1724 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
1725 ce_exact)
1726 && type_memfn_rqual (cand) == rqual);
1727 }
1728
1729 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
1730
1731 tree
1732 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
1733 {
1734 tree t;
1735
1736 if (rqual == type_memfn_rqual (type))
1737 return type;
1738
1739 int type_quals = TYPE_QUALS (type);
1740 tree raises = TYPE_RAISES_EXCEPTIONS (type);
1741 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1742 if (cp_check_qualified_type (t, type, type_quals, rqual, raises))
1743 return t;
1744
1745 t = build_variant_type_copy (type);
1746 switch (rqual)
1747 {
1748 case REF_QUAL_RVALUE:
1749 FUNCTION_RVALUE_QUALIFIED (t) = 1;
1750 /* Intentional fall through */
1751 case REF_QUAL_LVALUE:
1752 FUNCTION_REF_QUALIFIED (t) = 1;
1753 break;
1754 default:
1755 FUNCTION_REF_QUALIFIED (t) = 0;
1756 break;
1757 }
1758
1759 if (TYPE_STRUCTURAL_EQUALITY_P (type))
1760 /* Propagate structural equality. */
1761 SET_TYPE_STRUCTURAL_EQUALITY (t);
1762 else if (TYPE_CANONICAL (type) != type)
1763 /* Build the underlying canonical type, since it is different
1764 from TYPE. */
1765 TYPE_CANONICAL (t) = build_ref_qualified_type (TYPE_CANONICAL (type),
1766 rqual);
1767 else
1768 /* T is its own canonical type. */
1769 TYPE_CANONICAL (t) = t;
1770
1771 return t;
1772 }
1773
1774 /* Returns nonzero if X is an expression for a (possibly overloaded)
1775 function. If "f" is a function or function template, "f", "c->f",
1776 "c.f", "C::f", and "f<int>" will all be considered possibly
1777 overloaded functions. Returns 2 if the function is actually
1778 overloaded, i.e., if it is impossible to know the type of the
1779 function without performing overload resolution. */
1780
1781 int
1782 is_overloaded_fn (tree x)
1783 {
1784 /* A baselink is also considered an overloaded function. */
1785 if (TREE_CODE (x) == OFFSET_REF
1786 || TREE_CODE (x) == COMPONENT_REF)
1787 x = TREE_OPERAND (x, 1);
1788 if (BASELINK_P (x))
1789 x = BASELINK_FUNCTIONS (x);
1790 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
1791 x = TREE_OPERAND (x, 0);
1792 if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
1793 || (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
1794 return 2;
1795 return (TREE_CODE (x) == FUNCTION_DECL
1796 || TREE_CODE (x) == OVERLOAD);
1797 }
1798
1799 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
1800 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
1801 NULL_TREE. */
1802
1803 tree
1804 dependent_name (tree x)
1805 {
1806 if (identifier_p (x))
1807 return x;
1808 if (TREE_CODE (x) != COMPONENT_REF
1809 && TREE_CODE (x) != OFFSET_REF
1810 && TREE_CODE (x) != BASELINK
1811 && is_overloaded_fn (x))
1812 return DECL_NAME (get_first_fn (x));
1813 return NULL_TREE;
1814 }
1815
1816 /* Returns true iff X is an expression for an overloaded function
1817 whose type cannot be known without performing overload
1818 resolution. */
1819
1820 bool
1821 really_overloaded_fn (tree x)
1822 {
1823 return is_overloaded_fn (x) == 2;
1824 }
1825
1826 tree
1827 get_fns (tree from)
1828 {
1829 gcc_assert (is_overloaded_fn (from));
1830 /* A baselink is also considered an overloaded function. */
1831 if (TREE_CODE (from) == OFFSET_REF
1832 || TREE_CODE (from) == COMPONENT_REF)
1833 from = TREE_OPERAND (from, 1);
1834 if (BASELINK_P (from))
1835 from = BASELINK_FUNCTIONS (from);
1836 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
1837 from = TREE_OPERAND (from, 0);
1838 return from;
1839 }
1840
1841 tree
1842 get_first_fn (tree from)
1843 {
1844 return OVL_CURRENT (get_fns (from));
1845 }
1846
1847 /* Return a new OVL node, concatenating it with the old one. */
1848
1849 tree
1850 ovl_cons (tree decl, tree chain)
1851 {
1852 tree result = make_node (OVERLOAD);
1853 TREE_TYPE (result) = unknown_type_node;
1854 OVL_FUNCTION (result) = decl;
1855 TREE_CHAIN (result) = chain;
1856
1857 return result;
1858 }
1859
1860 /* Build a new overloaded function. If this is the first one,
1861 just return it; otherwise, ovl_cons the _DECLs */
1862
1863 tree
1864 build_overload (tree decl, tree chain)
1865 {
1866 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
1867 return decl;
1868 return ovl_cons (decl, chain);
1869 }
1870
1871 /* Return the scope where the overloaded functions OVL were found. */
1872
1873 tree
1874 ovl_scope (tree ovl)
1875 {
1876 if (TREE_CODE (ovl) == OFFSET_REF
1877 || TREE_CODE (ovl) == COMPONENT_REF)
1878 ovl = TREE_OPERAND (ovl, 1);
1879 if (TREE_CODE (ovl) == BASELINK)
1880 return BINFO_TYPE (BASELINK_BINFO (ovl));
1881 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
1882 ovl = TREE_OPERAND (ovl, 0);
1883 /* Skip using-declarations. */
1884 while (TREE_CODE (ovl) == OVERLOAD && OVL_USED (ovl) && OVL_CHAIN (ovl))
1885 ovl = OVL_CHAIN (ovl);
1886 return CP_DECL_CONTEXT (OVL_CURRENT (ovl));
1887 }
1888
1889 /* Return TRUE if FN is a non-static member function, FALSE otherwise.
1890 This function looks into BASELINK and OVERLOAD nodes. */
1891
1892 bool
1893 non_static_member_function_p (tree fn)
1894 {
1895 if (fn == NULL_TREE)
1896 return false;
1897
1898 if (is_overloaded_fn (fn))
1899 fn = get_first_fn (fn);
1900
1901 return (DECL_P (fn)
1902 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn));
1903 }
1904
1905 \f
1906 #define PRINT_RING_SIZE 4
1907
1908 static const char *
1909 cxx_printable_name_internal (tree decl, int v, bool translate)
1910 {
1911 static unsigned int uid_ring[PRINT_RING_SIZE];
1912 static char *print_ring[PRINT_RING_SIZE];
1913 static bool trans_ring[PRINT_RING_SIZE];
1914 static int ring_counter;
1915 int i;
1916
1917 /* Only cache functions. */
1918 if (v < 2
1919 || TREE_CODE (decl) != FUNCTION_DECL
1920 || DECL_LANG_SPECIFIC (decl) == 0)
1921 return lang_decl_name (decl, v, translate);
1922
1923 /* See if this print name is lying around. */
1924 for (i = 0; i < PRINT_RING_SIZE; i++)
1925 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
1926 /* yes, so return it. */
1927 return print_ring[i];
1928
1929 if (++ring_counter == PRINT_RING_SIZE)
1930 ring_counter = 0;
1931
1932 if (current_function_decl != NULL_TREE)
1933 {
1934 /* There may be both translated and untranslated versions of the
1935 name cached. */
1936 for (i = 0; i < 2; i++)
1937 {
1938 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
1939 ring_counter += 1;
1940 if (ring_counter == PRINT_RING_SIZE)
1941 ring_counter = 0;
1942 }
1943 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
1944 }
1945
1946 free (print_ring[ring_counter]);
1947
1948 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
1949 uid_ring[ring_counter] = DECL_UID (decl);
1950 trans_ring[ring_counter] = translate;
1951 return print_ring[ring_counter];
1952 }
1953
1954 const char *
1955 cxx_printable_name (tree decl, int v)
1956 {
1957 return cxx_printable_name_internal (decl, v, false);
1958 }
1959
1960 const char *
1961 cxx_printable_name_translate (tree decl, int v)
1962 {
1963 return cxx_printable_name_internal (decl, v, true);
1964 }
1965 \f
1966 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
1967 listed in RAISES. */
1968
1969 tree
1970 build_exception_variant (tree type, tree raises)
1971 {
1972 tree v;
1973 int type_quals;
1974
1975 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
1976 return type;
1977
1978 type_quals = TYPE_QUALS (type);
1979 cp_ref_qualifier rqual = type_memfn_rqual (type);
1980 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
1981 if (cp_check_qualified_type (v, type, type_quals, rqual, raises))
1982 return v;
1983
1984 /* Need to build a new variant. */
1985 v = build_variant_type_copy (type);
1986 TYPE_RAISES_EXCEPTIONS (v) = raises;
1987 return v;
1988 }
1989
1990 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
1991 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
1992 arguments. */
1993
1994 tree
1995 bind_template_template_parm (tree t, tree newargs)
1996 {
1997 tree decl = TYPE_NAME (t);
1998 tree t2;
1999
2000 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2001 decl = build_decl (input_location,
2002 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2003
2004 /* These nodes have to be created to reflect new TYPE_DECL and template
2005 arguments. */
2006 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2007 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2008 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2009 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2010
2011 TREE_TYPE (decl) = t2;
2012 TYPE_NAME (t2) = decl;
2013 TYPE_STUB_DECL (t2) = decl;
2014 TYPE_SIZE (t2) = 0;
2015 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2016
2017 return t2;
2018 }
2019
2020 /* Called from count_trees via walk_tree. */
2021
2022 static tree
2023 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2024 {
2025 ++*((int *) data);
2026
2027 if (TYPE_P (*tp))
2028 *walk_subtrees = 0;
2029
2030 return NULL_TREE;
2031 }
2032
2033 /* Debugging function for measuring the rough complexity of a tree
2034 representation. */
2035
2036 int
2037 count_trees (tree t)
2038 {
2039 int n_trees = 0;
2040 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2041 return n_trees;
2042 }
2043
2044 /* Called from verify_stmt_tree via walk_tree. */
2045
2046 static tree
2047 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2048 {
2049 tree t = *tp;
2050 hash_table <pointer_hash <tree_node> > *statements
2051 = static_cast <hash_table <pointer_hash <tree_node> > *> (data);
2052 tree_node **slot;
2053
2054 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2055 return NULL_TREE;
2056
2057 /* If this statement is already present in the hash table, then
2058 there is a circularity in the statement tree. */
2059 gcc_assert (!statements->find (t));
2060
2061 slot = statements->find_slot (t, INSERT);
2062 *slot = t;
2063
2064 return NULL_TREE;
2065 }
2066
2067 /* Debugging function to check that the statement T has not been
2068 corrupted. For now, this function simply checks that T contains no
2069 circularities. */
2070
2071 void
2072 verify_stmt_tree (tree t)
2073 {
2074 hash_table <pointer_hash <tree_node> > statements;
2075 statements.create (37);
2076 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2077 statements.dispose ();
2078 }
2079
2080 /* Check if the type T depends on a type with no linkage and if so, return
2081 it. If RELAXED_P then do not consider a class type declared within
2082 a vague-linkage function to have no linkage. */
2083
2084 tree
2085 no_linkage_check (tree t, bool relaxed_p)
2086 {
2087 tree r;
2088
2089 /* There's no point in checking linkage on template functions; we
2090 can't know their complete types. */
2091 if (processing_template_decl)
2092 return NULL_TREE;
2093
2094 switch (TREE_CODE (t))
2095 {
2096 case RECORD_TYPE:
2097 if (TYPE_PTRMEMFUNC_P (t))
2098 goto ptrmem;
2099 /* Lambda types that don't have mangling scope have no linkage. We
2100 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2101 when we get here from pushtag none of the lambda information is
2102 set up yet, so we want to assume that the lambda has linkage and
2103 fix it up later if not. */
2104 if (CLASSTYPE_LAMBDA_EXPR (t)
2105 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2106 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2107 return t;
2108 /* Fall through. */
2109 case UNION_TYPE:
2110 if (!CLASS_TYPE_P (t))
2111 return NULL_TREE;
2112 /* Fall through. */
2113 case ENUMERAL_TYPE:
2114 /* Only treat anonymous types as having no linkage if they're at
2115 namespace scope. This is core issue 966. */
2116 if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2117 return t;
2118
2119 for (r = CP_TYPE_CONTEXT (t); ; )
2120 {
2121 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2122 have linkage, or we might just be in an anonymous namespace.
2123 If we're in a TREE_PUBLIC class, we have linkage. */
2124 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2125 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2126 else if (TREE_CODE (r) == FUNCTION_DECL)
2127 {
2128 if (!relaxed_p || !vague_linkage_p (r))
2129 return t;
2130 else
2131 r = CP_DECL_CONTEXT (r);
2132 }
2133 else
2134 break;
2135 }
2136
2137 return NULL_TREE;
2138
2139 case ARRAY_TYPE:
2140 case POINTER_TYPE:
2141 case REFERENCE_TYPE:
2142 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2143
2144 case OFFSET_TYPE:
2145 ptrmem:
2146 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2147 relaxed_p);
2148 if (r)
2149 return r;
2150 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2151
2152 case METHOD_TYPE:
2153 r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p);
2154 if (r)
2155 return r;
2156 /* Fall through. */
2157 case FUNCTION_TYPE:
2158 {
2159 tree parm;
2160 for (parm = TYPE_ARG_TYPES (t);
2161 parm && parm != void_list_node;
2162 parm = TREE_CHAIN (parm))
2163 {
2164 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2165 if (r)
2166 return r;
2167 }
2168 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2169 }
2170
2171 default:
2172 return NULL_TREE;
2173 }
2174 }
2175
2176 extern int depth_reached;
2177
2178 void
2179 cxx_print_statistics (void)
2180 {
2181 print_search_statistics ();
2182 print_class_statistics ();
2183 print_template_statistics ();
2184 if (GATHER_STATISTICS)
2185 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2186 depth_reached);
2187 }
2188
2189 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2190 (which is an ARRAY_TYPE). This counts only elements of the top
2191 array. */
2192
2193 tree
2194 array_type_nelts_top (tree type)
2195 {
2196 return fold_build2_loc (input_location,
2197 PLUS_EXPR, sizetype,
2198 array_type_nelts (type),
2199 size_one_node);
2200 }
2201
2202 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2203 (which is an ARRAY_TYPE). This one is a recursive count of all
2204 ARRAY_TYPEs that are clumped together. */
2205
2206 tree
2207 array_type_nelts_total (tree type)
2208 {
2209 tree sz = array_type_nelts_top (type);
2210 type = TREE_TYPE (type);
2211 while (TREE_CODE (type) == ARRAY_TYPE)
2212 {
2213 tree n = array_type_nelts_top (type);
2214 sz = fold_build2_loc (input_location,
2215 MULT_EXPR, sizetype, sz, n);
2216 type = TREE_TYPE (type);
2217 }
2218 return sz;
2219 }
2220
2221 /* Called from break_out_target_exprs via mapcar. */
2222
2223 static tree
2224 bot_manip (tree* tp, int* walk_subtrees, void* data)
2225 {
2226 splay_tree target_remap = ((splay_tree) data);
2227 tree t = *tp;
2228
2229 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2230 {
2231 /* There can't be any TARGET_EXPRs or their slot variables below this
2232 point. But we must make a copy, in case subsequent processing
2233 alters any part of it. For example, during gimplification a cast
2234 of the form (T) &X::f (where "f" is a member function) will lead
2235 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2236 *walk_subtrees = 0;
2237 *tp = unshare_expr (t);
2238 return NULL_TREE;
2239 }
2240 if (TREE_CODE (t) == TARGET_EXPR)
2241 {
2242 tree u;
2243
2244 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2245 {
2246 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2247 tf_warning_or_error);
2248 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2249 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2250 }
2251 else
2252 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2253 tf_warning_or_error);
2254
2255 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2256 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2257 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2258
2259 /* Map the old variable to the new one. */
2260 splay_tree_insert (target_remap,
2261 (splay_tree_key) TREE_OPERAND (t, 0),
2262 (splay_tree_value) TREE_OPERAND (u, 0));
2263
2264 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2265
2266 /* Replace the old expression with the new version. */
2267 *tp = u;
2268 /* We don't have to go below this point; the recursive call to
2269 break_out_target_exprs will have handled anything below this
2270 point. */
2271 *walk_subtrees = 0;
2272 return NULL_TREE;
2273 }
2274
2275 /* Make a copy of this node. */
2276 t = copy_tree_r (tp, walk_subtrees, NULL);
2277 if (TREE_CODE (*tp) == CALL_EXPR)
2278 set_flags_from_callee (*tp);
2279 return t;
2280 }
2281
2282 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2283 DATA is really a splay-tree mapping old variables to new
2284 variables. */
2285
2286 static tree
2287 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2288 {
2289 splay_tree target_remap = ((splay_tree) data);
2290
2291 if (VAR_P (*t))
2292 {
2293 splay_tree_node n = splay_tree_lookup (target_remap,
2294 (splay_tree_key) *t);
2295 if (n)
2296 *t = (tree) n->value;
2297 }
2298 else if (TREE_CODE (*t) == PARM_DECL
2299 && DECL_NAME (*t) == this_identifier)
2300 {
2301 /* In an NSDMI we need to replace the 'this' parameter we used for
2302 parsing with the real one for this function. */
2303 *t = current_class_ptr;
2304 }
2305 else if (TREE_CODE (*t) == CONVERT_EXPR
2306 && CONVERT_EXPR_VBASE_PATH (*t))
2307 {
2308 /* In an NSDMI build_base_path defers building conversions to virtual
2309 bases, and we handle it here. */
2310 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2311 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2312 int i; tree binfo;
2313 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2314 if (BINFO_TYPE (binfo) == basetype)
2315 break;
2316 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
2317 tf_warning_or_error);
2318 }
2319
2320 return NULL_TREE;
2321 }
2322
2323 /* When we parse a default argument expression, we may create
2324 temporary variables via TARGET_EXPRs. When we actually use the
2325 default-argument expression, we make a copy of the expression
2326 and replace the temporaries with appropriate local versions. */
2327
2328 tree
2329 break_out_target_exprs (tree t)
2330 {
2331 static int target_remap_count;
2332 static splay_tree target_remap;
2333
2334 if (!target_remap_count++)
2335 target_remap = splay_tree_new (splay_tree_compare_pointers,
2336 /*splay_tree_delete_key_fn=*/NULL,
2337 /*splay_tree_delete_value_fn=*/NULL);
2338 cp_walk_tree (&t, bot_manip, target_remap, NULL);
2339 cp_walk_tree (&t, bot_replace, target_remap, NULL);
2340
2341 if (!--target_remap_count)
2342 {
2343 splay_tree_delete (target_remap);
2344 target_remap = NULL;
2345 }
2346
2347 return t;
2348 }
2349
2350 /* Similar to `build_nt', but for template definitions of dependent
2351 expressions */
2352
2353 tree
2354 build_min_nt_loc (location_t loc, enum tree_code code, ...)
2355 {
2356 tree t;
2357 int length;
2358 int i;
2359 va_list p;
2360
2361 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2362
2363 va_start (p, code);
2364
2365 t = make_node (code);
2366 SET_EXPR_LOCATION (t, loc);
2367 length = TREE_CODE_LENGTH (code);
2368
2369 for (i = 0; i < length; i++)
2370 {
2371 tree x = va_arg (p, tree);
2372 TREE_OPERAND (t, i) = x;
2373 }
2374
2375 va_end (p);
2376 return t;
2377 }
2378
2379
2380 /* Similar to `build', but for template definitions. */
2381
2382 tree
2383 build_min (enum tree_code code, tree tt, ...)
2384 {
2385 tree t;
2386 int length;
2387 int i;
2388 va_list p;
2389
2390 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2391
2392 va_start (p, tt);
2393
2394 t = make_node (code);
2395 length = TREE_CODE_LENGTH (code);
2396 TREE_TYPE (t) = tt;
2397
2398 for (i = 0; i < length; i++)
2399 {
2400 tree x = va_arg (p, tree);
2401 TREE_OPERAND (t, i) = x;
2402 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
2403 TREE_SIDE_EFFECTS (t) = 1;
2404 }
2405
2406 va_end (p);
2407 return t;
2408 }
2409
2410 /* Similar to `build', but for template definitions of non-dependent
2411 expressions. NON_DEP is the non-dependent expression that has been
2412 built. */
2413
2414 tree
2415 build_min_non_dep (enum tree_code code, tree non_dep, ...)
2416 {
2417 tree t;
2418 int length;
2419 int i;
2420 va_list p;
2421
2422 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2423
2424 va_start (p, non_dep);
2425
2426 if (REFERENCE_REF_P (non_dep))
2427 non_dep = TREE_OPERAND (non_dep, 0);
2428
2429 t = make_node (code);
2430 length = TREE_CODE_LENGTH (code);
2431 TREE_TYPE (t) = TREE_TYPE (non_dep);
2432 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2433
2434 for (i = 0; i < length; i++)
2435 {
2436 tree x = va_arg (p, tree);
2437 TREE_OPERAND (t, i) = x;
2438 }
2439
2440 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
2441 /* This should not be considered a COMPOUND_EXPR, because it
2442 resolves to an overload. */
2443 COMPOUND_EXPR_OVERLOADED (t) = 1;
2444
2445 va_end (p);
2446 return convert_from_reference (t);
2447 }
2448
2449 /* Similar to `build_nt_call_vec', but for template definitions of
2450 non-dependent expressions. NON_DEP is the non-dependent expression
2451 that has been built. */
2452
2453 tree
2454 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
2455 {
2456 tree t = build_nt_call_vec (fn, argvec);
2457 if (REFERENCE_REF_P (non_dep))
2458 non_dep = TREE_OPERAND (non_dep, 0);
2459 TREE_TYPE (t) = TREE_TYPE (non_dep);
2460 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2461 return convert_from_reference (t);
2462 }
2463
2464 tree
2465 get_type_decl (tree t)
2466 {
2467 if (TREE_CODE (t) == TYPE_DECL)
2468 return t;
2469 if (TYPE_P (t))
2470 return TYPE_STUB_DECL (t);
2471 gcc_assert (t == error_mark_node);
2472 return t;
2473 }
2474
2475 /* Returns the namespace that contains DECL, whether directly or
2476 indirectly. */
2477
2478 tree
2479 decl_namespace_context (tree decl)
2480 {
2481 while (1)
2482 {
2483 if (TREE_CODE (decl) == NAMESPACE_DECL)
2484 return decl;
2485 else if (TYPE_P (decl))
2486 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
2487 else
2488 decl = CP_DECL_CONTEXT (decl);
2489 }
2490 }
2491
2492 /* Returns true if decl is within an anonymous namespace, however deeply
2493 nested, or false otherwise. */
2494
2495 bool
2496 decl_anon_ns_mem_p (const_tree decl)
2497 {
2498 while (1)
2499 {
2500 if (decl == NULL_TREE || decl == error_mark_node)
2501 return false;
2502 if (TREE_CODE (decl) == NAMESPACE_DECL
2503 && DECL_NAME (decl) == NULL_TREE)
2504 return true;
2505 /* Classes and namespaces inside anonymous namespaces have
2506 TREE_PUBLIC == 0, so we can shortcut the search. */
2507 else if (TYPE_P (decl))
2508 return (TREE_PUBLIC (TYPE_MAIN_DECL (decl)) == 0);
2509 else if (TREE_CODE (decl) == NAMESPACE_DECL)
2510 return (TREE_PUBLIC (decl) == 0);
2511 else
2512 decl = DECL_CONTEXT (decl);
2513 }
2514 }
2515
2516 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
2517 CALL_EXPRS. Return whether they are equivalent. */
2518
2519 static bool
2520 called_fns_equal (tree t1, tree t2)
2521 {
2522 /* Core 1321: dependent names are equivalent even if the overload sets
2523 are different. But do compare explicit template arguments. */
2524 tree name1 = dependent_name (t1);
2525 tree name2 = dependent_name (t2);
2526 if (name1 || name2)
2527 {
2528 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
2529
2530 if (name1 != name2)
2531 return false;
2532
2533 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
2534 targs1 = TREE_OPERAND (t1, 1);
2535 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
2536 targs2 = TREE_OPERAND (t2, 1);
2537 return cp_tree_equal (targs1, targs2);
2538 }
2539 else
2540 return cp_tree_equal (t1, t2);
2541 }
2542
2543 /* Return truthvalue of whether T1 is the same tree structure as T2.
2544 Return 1 if they are the same. Return 0 if they are different. */
2545
2546 bool
2547 cp_tree_equal (tree t1, tree t2)
2548 {
2549 enum tree_code code1, code2;
2550
2551 if (t1 == t2)
2552 return true;
2553 if (!t1 || !t2)
2554 return false;
2555
2556 for (code1 = TREE_CODE (t1);
2557 CONVERT_EXPR_CODE_P (code1)
2558 || code1 == NON_LVALUE_EXPR;
2559 code1 = TREE_CODE (t1))
2560 t1 = TREE_OPERAND (t1, 0);
2561 for (code2 = TREE_CODE (t2);
2562 CONVERT_EXPR_CODE_P (code2)
2563 || code2 == NON_LVALUE_EXPR;
2564 code2 = TREE_CODE (t2))
2565 t2 = TREE_OPERAND (t2, 0);
2566
2567 /* They might have become equal now. */
2568 if (t1 == t2)
2569 return true;
2570
2571 if (code1 != code2)
2572 return false;
2573
2574 switch (code1)
2575 {
2576 case INTEGER_CST:
2577 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2578 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
2579
2580 case REAL_CST:
2581 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
2582
2583 case STRING_CST:
2584 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
2585 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2586 TREE_STRING_LENGTH (t1));
2587
2588 case FIXED_CST:
2589 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
2590 TREE_FIXED_CST (t2));
2591
2592 case COMPLEX_CST:
2593 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
2594 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
2595
2596 case VECTOR_CST:
2597 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
2598
2599 case CONSTRUCTOR:
2600 /* We need to do this when determining whether or not two
2601 non-type pointer to member function template arguments
2602 are the same. */
2603 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
2604 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
2605 return false;
2606 {
2607 tree field, value;
2608 unsigned int i;
2609 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
2610 {
2611 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
2612 if (!cp_tree_equal (field, elt2->index)
2613 || !cp_tree_equal (value, elt2->value))
2614 return false;
2615 }
2616 }
2617 return true;
2618
2619 case TREE_LIST:
2620 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
2621 return false;
2622 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
2623 return false;
2624 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
2625
2626 case SAVE_EXPR:
2627 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2628
2629 case CALL_EXPR:
2630 {
2631 tree arg1, arg2;
2632 call_expr_arg_iterator iter1, iter2;
2633 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
2634 return false;
2635 for (arg1 = first_call_expr_arg (t1, &iter1),
2636 arg2 = first_call_expr_arg (t2, &iter2);
2637 arg1 && arg2;
2638 arg1 = next_call_expr_arg (&iter1),
2639 arg2 = next_call_expr_arg (&iter2))
2640 if (!cp_tree_equal (arg1, arg2))
2641 return false;
2642 if (arg1 || arg2)
2643 return false;
2644 return true;
2645 }
2646
2647 case TARGET_EXPR:
2648 {
2649 tree o1 = TREE_OPERAND (t1, 0);
2650 tree o2 = TREE_OPERAND (t2, 0);
2651
2652 /* Special case: if either target is an unallocated VAR_DECL,
2653 it means that it's going to be unified with whatever the
2654 TARGET_EXPR is really supposed to initialize, so treat it
2655 as being equivalent to anything. */
2656 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
2657 && !DECL_RTL_SET_P (o1))
2658 /*Nop*/;
2659 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
2660 && !DECL_RTL_SET_P (o2))
2661 /*Nop*/;
2662 else if (!cp_tree_equal (o1, o2))
2663 return false;
2664
2665 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2666 }
2667
2668 case WITH_CLEANUP_EXPR:
2669 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
2670 return false;
2671 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
2672
2673 case COMPONENT_REF:
2674 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
2675 return false;
2676 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2677
2678 case PARM_DECL:
2679 /* For comparing uses of parameters in late-specified return types
2680 with an out-of-class definition of the function, but can also come
2681 up for expressions that involve 'this' in a member function
2682 template. */
2683
2684 if (comparing_specializations)
2685 /* When comparing hash table entries, only an exact match is
2686 good enough; we don't want to replace 'this' with the
2687 version from another function. */
2688 return false;
2689
2690 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2691 {
2692 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
2693 return false;
2694 if (DECL_ARTIFICIAL (t1)
2695 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
2696 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
2697 return true;
2698 }
2699 return false;
2700
2701 case VAR_DECL:
2702 case CONST_DECL:
2703 case FIELD_DECL:
2704 case FUNCTION_DECL:
2705 case TEMPLATE_DECL:
2706 case IDENTIFIER_NODE:
2707 case SSA_NAME:
2708 return false;
2709
2710 case BASELINK:
2711 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
2712 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
2713 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
2714 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
2715 BASELINK_FUNCTIONS (t2)));
2716
2717 case TEMPLATE_PARM_INDEX:
2718 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
2719 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
2720 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
2721 == TEMPLATE_PARM_PARAMETER_PACK (t2))
2722 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
2723 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
2724
2725 case TEMPLATE_ID_EXPR:
2726 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
2727 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
2728
2729 case TREE_VEC:
2730 {
2731 unsigned ix;
2732 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
2733 return false;
2734 for (ix = TREE_VEC_LENGTH (t1); ix--;)
2735 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
2736 TREE_VEC_ELT (t2, ix)))
2737 return false;
2738 return true;
2739 }
2740
2741 case SIZEOF_EXPR:
2742 case ALIGNOF_EXPR:
2743 {
2744 tree o1 = TREE_OPERAND (t1, 0);
2745 tree o2 = TREE_OPERAND (t2, 0);
2746
2747 if (code1 == SIZEOF_EXPR)
2748 {
2749 if (SIZEOF_EXPR_TYPE_P (t1))
2750 o1 = TREE_TYPE (o1);
2751 if (SIZEOF_EXPR_TYPE_P (t2))
2752 o2 = TREE_TYPE (o2);
2753 }
2754 if (TREE_CODE (o1) != TREE_CODE (o2))
2755 return false;
2756 if (TYPE_P (o1))
2757 return same_type_p (o1, o2);
2758 else
2759 return cp_tree_equal (o1, o2);
2760 }
2761
2762 case MODOP_EXPR:
2763 {
2764 tree t1_op1, t2_op1;
2765
2766 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
2767 return false;
2768
2769 t1_op1 = TREE_OPERAND (t1, 1);
2770 t2_op1 = TREE_OPERAND (t2, 1);
2771 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
2772 return false;
2773
2774 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
2775 }
2776
2777 case PTRMEM_CST:
2778 /* Two pointer-to-members are the same if they point to the same
2779 field or function in the same class. */
2780 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
2781 return false;
2782
2783 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
2784
2785 case OVERLOAD:
2786 if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
2787 return false;
2788 return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
2789
2790 case TRAIT_EXPR:
2791 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
2792 return false;
2793 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
2794 && same_type_p (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
2795
2796 case CAST_EXPR:
2797 case STATIC_CAST_EXPR:
2798 case REINTERPRET_CAST_EXPR:
2799 case CONST_CAST_EXPR:
2800 case DYNAMIC_CAST_EXPR:
2801 case IMPLICIT_CONV_EXPR:
2802 case NEW_EXPR:
2803 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2804 return false;
2805 /* Now compare operands as usual. */
2806 break;
2807
2808 case DEFERRED_NOEXCEPT:
2809 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
2810 DEFERRED_NOEXCEPT_PATTERN (t2))
2811 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
2812 DEFERRED_NOEXCEPT_ARGS (t2)));
2813 break;
2814
2815 default:
2816 break;
2817 }
2818
2819 switch (TREE_CODE_CLASS (code1))
2820 {
2821 case tcc_unary:
2822 case tcc_binary:
2823 case tcc_comparison:
2824 case tcc_expression:
2825 case tcc_vl_exp:
2826 case tcc_reference:
2827 case tcc_statement:
2828 {
2829 int i, n;
2830
2831 n = cp_tree_operand_length (t1);
2832 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
2833 && n != TREE_OPERAND_LENGTH (t2))
2834 return false;
2835
2836 for (i = 0; i < n; ++i)
2837 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
2838 return false;
2839
2840 return true;
2841 }
2842
2843 case tcc_type:
2844 return same_type_p (t1, t2);
2845 default:
2846 gcc_unreachable ();
2847 }
2848 /* We can get here with --disable-checking. */
2849 return false;
2850 }
2851
2852 /* The type of ARG when used as an lvalue. */
2853
2854 tree
2855 lvalue_type (tree arg)
2856 {
2857 tree type = TREE_TYPE (arg);
2858 return type;
2859 }
2860
2861 /* The type of ARG for printing error messages; denote lvalues with
2862 reference types. */
2863
2864 tree
2865 error_type (tree arg)
2866 {
2867 tree type = TREE_TYPE (arg);
2868
2869 if (TREE_CODE (type) == ARRAY_TYPE)
2870 ;
2871 else if (TREE_CODE (type) == ERROR_MARK)
2872 ;
2873 else if (real_lvalue_p (arg))
2874 type = build_reference_type (lvalue_type (arg));
2875 else if (MAYBE_CLASS_TYPE_P (type))
2876 type = lvalue_type (arg);
2877
2878 return type;
2879 }
2880
2881 /* Does FUNCTION use a variable-length argument list? */
2882
2883 int
2884 varargs_function_p (const_tree function)
2885 {
2886 return stdarg_p (TREE_TYPE (function));
2887 }
2888
2889 /* Returns 1 if decl is a member of a class. */
2890
2891 int
2892 member_p (const_tree decl)
2893 {
2894 const_tree const ctx = DECL_CONTEXT (decl);
2895 return (ctx && TYPE_P (ctx));
2896 }
2897
2898 /* Create a placeholder for member access where we don't actually have an
2899 object that the access is against. */
2900
2901 tree
2902 build_dummy_object (tree type)
2903 {
2904 tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
2905 return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
2906 }
2907
2908 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
2909 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
2910 binfo path from current_class_type to TYPE, or 0. */
2911
2912 tree
2913 maybe_dummy_object (tree type, tree* binfop)
2914 {
2915 tree decl, context;
2916 tree binfo;
2917 tree current = current_nonlambda_class_type ();
2918
2919 if (current
2920 && (binfo = lookup_base (current, type, ba_any, NULL,
2921 tf_warning_or_error)))
2922 context = current;
2923 else
2924 {
2925 /* Reference from a nested class member function. */
2926 context = type;
2927 binfo = TYPE_BINFO (type);
2928 }
2929
2930 if (binfop)
2931 *binfop = binfo;
2932
2933 if (current_class_ref
2934 /* current_class_ref might not correspond to current_class_type if
2935 we're in tsubst_default_argument or a lambda-declarator; in either
2936 case, we want to use current_class_ref if it matches CONTEXT. */
2937 && (same_type_ignoring_top_level_qualifiers_p
2938 (TREE_TYPE (current_class_ref), context)))
2939 decl = current_class_ref;
2940 else
2941 decl = build_dummy_object (context);
2942
2943 return decl;
2944 }
2945
2946 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
2947
2948 int
2949 is_dummy_object (const_tree ob)
2950 {
2951 if (INDIRECT_REF_P (ob))
2952 ob = TREE_OPERAND (ob, 0);
2953 return (TREE_CODE (ob) == NOP_EXPR
2954 && TREE_OPERAND (ob, 0) == void_zero_node);
2955 }
2956
2957 /* Returns 1 iff type T is something we want to treat as a scalar type for
2958 the purpose of deciding whether it is trivial/POD/standard-layout. */
2959
2960 bool
2961 scalarish_type_p (const_tree t)
2962 {
2963 if (t == error_mark_node)
2964 return 1;
2965
2966 return (SCALAR_TYPE_P (t)
2967 || TREE_CODE (t) == VECTOR_TYPE);
2968 }
2969
2970 /* Returns true iff T requires non-trivial default initialization. */
2971
2972 bool
2973 type_has_nontrivial_default_init (const_tree t)
2974 {
2975 t = strip_array_types (CONST_CAST_TREE (t));
2976
2977 if (CLASS_TYPE_P (t))
2978 return TYPE_HAS_COMPLEX_DFLT (t);
2979 else
2980 return 0;
2981 }
2982
2983 /* Returns true iff copying an object of type T (including via move
2984 constructor) is non-trivial. That is, T has no non-trivial copy
2985 constructors and no non-trivial move constructors. */
2986
2987 bool
2988 type_has_nontrivial_copy_init (const_tree t)
2989 {
2990 t = strip_array_types (CONST_CAST_TREE (t));
2991
2992 if (CLASS_TYPE_P (t))
2993 {
2994 gcc_assert (COMPLETE_TYPE_P (t));
2995 return ((TYPE_HAS_COPY_CTOR (t)
2996 && TYPE_HAS_COMPLEX_COPY_CTOR (t))
2997 || TYPE_HAS_COMPLEX_MOVE_CTOR (t));
2998 }
2999 else
3000 return 0;
3001 }
3002
3003 /* Returns 1 iff type T is a trivially copyable type, as defined in
3004 [basic.types] and [class]. */
3005
3006 bool
3007 trivially_copyable_p (const_tree t)
3008 {
3009 t = strip_array_types (CONST_CAST_TREE (t));
3010
3011 if (CLASS_TYPE_P (t))
3012 return ((!TYPE_HAS_COPY_CTOR (t)
3013 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
3014 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
3015 && (!TYPE_HAS_COPY_ASSIGN (t)
3016 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
3017 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
3018 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
3019 else
3020 return scalarish_type_p (t);
3021 }
3022
3023 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
3024 [class]. */
3025
3026 bool
3027 trivial_type_p (const_tree t)
3028 {
3029 t = strip_array_types (CONST_CAST_TREE (t));
3030
3031 if (CLASS_TYPE_P (t))
3032 return (TYPE_HAS_TRIVIAL_DFLT (t)
3033 && trivially_copyable_p (t));
3034 else
3035 return scalarish_type_p (t);
3036 }
3037
3038 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
3039
3040 bool
3041 pod_type_p (const_tree t)
3042 {
3043 /* This CONST_CAST is okay because strip_array_types returns its
3044 argument unmodified and we assign it to a const_tree. */
3045 t = strip_array_types (CONST_CAST_TREE(t));
3046
3047 if (!CLASS_TYPE_P (t))
3048 return scalarish_type_p (t);
3049 else if (cxx_dialect > cxx98)
3050 /* [class]/10: A POD struct is a class that is both a trivial class and a
3051 standard-layout class, and has no non-static data members of type
3052 non-POD struct, non-POD union (or array of such types).
3053
3054 We don't need to check individual members because if a member is
3055 non-std-layout or non-trivial, the class will be too. */
3056 return (std_layout_type_p (t) && trivial_type_p (t));
3057 else
3058 /* The C++98 definition of POD is different. */
3059 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3060 }
3061
3062 /* Returns true iff T is POD for the purpose of layout, as defined in the
3063 C++ ABI. */
3064
3065 bool
3066 layout_pod_type_p (const_tree t)
3067 {
3068 t = strip_array_types (CONST_CAST_TREE (t));
3069
3070 if (CLASS_TYPE_P (t))
3071 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3072 else
3073 return scalarish_type_p (t);
3074 }
3075
3076 /* Returns true iff T is a standard-layout type, as defined in
3077 [basic.types]. */
3078
3079 bool
3080 std_layout_type_p (const_tree t)
3081 {
3082 t = strip_array_types (CONST_CAST_TREE (t));
3083
3084 if (CLASS_TYPE_P (t))
3085 return !CLASSTYPE_NON_STD_LAYOUT (t);
3086 else
3087 return scalarish_type_p (t);
3088 }
3089
3090 /* Nonzero iff type T is a class template implicit specialization. */
3091
3092 bool
3093 class_tmpl_impl_spec_p (const_tree t)
3094 {
3095 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
3096 }
3097
3098 /* Returns 1 iff zero initialization of type T means actually storing
3099 zeros in it. */
3100
3101 int
3102 zero_init_p (const_tree t)
3103 {
3104 /* This CONST_CAST is okay because strip_array_types returns its
3105 argument unmodified and we assign it to a const_tree. */
3106 t = strip_array_types (CONST_CAST_TREE(t));
3107
3108 if (t == error_mark_node)
3109 return 1;
3110
3111 /* NULL pointers to data members are initialized with -1. */
3112 if (TYPE_PTRDATAMEM_P (t))
3113 return 0;
3114
3115 /* Classes that contain types that can't be zero-initialized, cannot
3116 be zero-initialized themselves. */
3117 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
3118 return 0;
3119
3120 return 1;
3121 }
3122
3123 /* Table of valid C++ attributes. */
3124 const struct attribute_spec cxx_attribute_table[] =
3125 {
3126 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3127 affects_type_identity } */
3128 { "java_interface", 0, 0, false, false, false,
3129 handle_java_interface_attribute, false },
3130 { "com_interface", 0, 0, false, false, false,
3131 handle_com_interface_attribute, false },
3132 { "init_priority", 1, 1, true, false, false,
3133 handle_init_priority_attribute, false },
3134 { "abi_tag", 1, -1, false, false, false,
3135 handle_abi_tag_attribute, true },
3136 { NULL, 0, 0, false, false, false, NULL, false }
3137 };
3138
3139 /* Handle a "java_interface" attribute; arguments as in
3140 struct attribute_spec.handler. */
3141 static tree
3142 handle_java_interface_attribute (tree* node,
3143 tree name,
3144 tree /*args*/,
3145 int flags,
3146 bool* no_add_attrs)
3147 {
3148 if (DECL_P (*node)
3149 || !CLASS_TYPE_P (*node)
3150 || !TYPE_FOR_JAVA (*node))
3151 {
3152 error ("%qE attribute can only be applied to Java class definitions",
3153 name);
3154 *no_add_attrs = true;
3155 return NULL_TREE;
3156 }
3157 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
3158 *node = build_variant_type_copy (*node);
3159 TYPE_JAVA_INTERFACE (*node) = 1;
3160
3161 return NULL_TREE;
3162 }
3163
3164 /* Handle a "com_interface" attribute; arguments as in
3165 struct attribute_spec.handler. */
3166 static tree
3167 handle_com_interface_attribute (tree* node,
3168 tree name,
3169 tree /*args*/,
3170 int /*flags*/,
3171 bool* no_add_attrs)
3172 {
3173 static int warned;
3174
3175 *no_add_attrs = true;
3176
3177 if (DECL_P (*node)
3178 || !CLASS_TYPE_P (*node)
3179 || *node != TYPE_MAIN_VARIANT (*node))
3180 {
3181 warning (OPT_Wattributes, "%qE attribute can only be applied "
3182 "to class definitions", name);
3183 return NULL_TREE;
3184 }
3185
3186 if (!warned++)
3187 warning (0, "%qE is obsolete; g++ vtables are now COM-compatible by default",
3188 name);
3189
3190 return NULL_TREE;
3191 }
3192
3193 /* Handle an "init_priority" attribute; arguments as in
3194 struct attribute_spec.handler. */
3195 static tree
3196 handle_init_priority_attribute (tree* node,
3197 tree name,
3198 tree args,
3199 int /*flags*/,
3200 bool* no_add_attrs)
3201 {
3202 tree initp_expr = TREE_VALUE (args);
3203 tree decl = *node;
3204 tree type = TREE_TYPE (decl);
3205 int pri;
3206
3207 STRIP_NOPS (initp_expr);
3208
3209 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
3210 {
3211 error ("requested init_priority is not an integer constant");
3212 *no_add_attrs = true;
3213 return NULL_TREE;
3214 }
3215
3216 pri = TREE_INT_CST_LOW (initp_expr);
3217
3218 type = strip_array_types (type);
3219
3220 if (decl == NULL_TREE
3221 || !VAR_P (decl)
3222 || !TREE_STATIC (decl)
3223 || DECL_EXTERNAL (decl)
3224 || (TREE_CODE (type) != RECORD_TYPE
3225 && TREE_CODE (type) != UNION_TYPE)
3226 /* Static objects in functions are initialized the
3227 first time control passes through that
3228 function. This is not precise enough to pin down an
3229 init_priority value, so don't allow it. */
3230 || current_function_decl)
3231 {
3232 error ("can only use %qE attribute on file-scope definitions "
3233 "of objects of class type", name);
3234 *no_add_attrs = true;
3235 return NULL_TREE;
3236 }
3237
3238 if (pri > MAX_INIT_PRIORITY || pri <= 0)
3239 {
3240 error ("requested init_priority is out of range");
3241 *no_add_attrs = true;
3242 return NULL_TREE;
3243 }
3244
3245 /* Check for init_priorities that are reserved for
3246 language and runtime support implementations.*/
3247 if (pri <= MAX_RESERVED_INIT_PRIORITY)
3248 {
3249 warning
3250 (0, "requested init_priority is reserved for internal use");
3251 }
3252
3253 if (SUPPORTS_INIT_PRIORITY)
3254 {
3255 SET_DECL_INIT_PRIORITY (decl, pri);
3256 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
3257 return NULL_TREE;
3258 }
3259 else
3260 {
3261 error ("%qE attribute is not supported on this platform", name);
3262 *no_add_attrs = true;
3263 return NULL_TREE;
3264 }
3265 }
3266
3267 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
3268 and the new one has the tags in NEW_. Give an error if there are tags
3269 in NEW_ that weren't in OLD. */
3270
3271 bool
3272 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
3273 {
3274 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
3275 old = TREE_VALUE (old);
3276 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
3277 new_ = TREE_VALUE (new_);
3278 bool err = false;
3279 for (const_tree t = new_; t; t = TREE_CHAIN (t))
3280 {
3281 tree str = TREE_VALUE (t);
3282 for (const_tree in = old; in; in = TREE_CHAIN (in))
3283 {
3284 tree ostr = TREE_VALUE (in);
3285 if (cp_tree_equal (str, ostr))
3286 goto found;
3287 }
3288 error ("redeclaration of %qD adds abi tag %E", decl, str);
3289 err = true;
3290 found:;
3291 }
3292 if (err)
3293 {
3294 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
3295 return false;
3296 }
3297 return true;
3298 }
3299
3300 /* Handle an "abi_tag" attribute; arguments as in
3301 struct attribute_spec.handler. */
3302
3303 static tree
3304 handle_abi_tag_attribute (tree* node, tree name, tree args,
3305 int flags, bool* no_add_attrs)
3306 {
3307 if (TYPE_P (*node))
3308 {
3309 if (!TAGGED_TYPE_P (*node))
3310 {
3311 error ("%qE attribute applied to non-class, non-enum type %qT",
3312 name, *node);
3313 goto fail;
3314 }
3315 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
3316 {
3317 error ("%qE attribute applied to %qT after its definition",
3318 name, *node);
3319 goto fail;
3320 }
3321
3322 tree attributes = TYPE_ATTRIBUTES (*node);
3323 tree decl = TYPE_NAME (*node);
3324
3325 /* Make sure all declarations have the same abi tags. */
3326 if (DECL_SOURCE_LOCATION (decl) != input_location)
3327 {
3328 if (!check_abi_tag_redeclaration (decl,
3329 lookup_attribute ("abi_tag",
3330 attributes),
3331 args))
3332 goto fail;
3333 }
3334 }
3335 else
3336 {
3337 if (TREE_CODE (*node) != FUNCTION_DECL)
3338 {
3339 error ("%qE attribute applied to non-function %qD", name, *node);
3340 goto fail;
3341 }
3342 else if (DECL_LANGUAGE (*node) == lang_c)
3343 {
3344 error ("%qE attribute applied to extern \"C\" function %qD",
3345 name, *node);
3346 goto fail;
3347 }
3348 }
3349
3350 return NULL_TREE;
3351
3352 fail:
3353 *no_add_attrs = true;
3354 return NULL_TREE;
3355 }
3356
3357 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
3358 thing pointed to by the constant. */
3359
3360 tree
3361 make_ptrmem_cst (tree type, tree member)
3362 {
3363 tree ptrmem_cst = make_node (PTRMEM_CST);
3364 TREE_TYPE (ptrmem_cst) = type;
3365 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
3366 return ptrmem_cst;
3367 }
3368
3369 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
3370 return an existing type if an appropriate type already exists. */
3371
3372 tree
3373 cp_build_type_attribute_variant (tree type, tree attributes)
3374 {
3375 tree new_type;
3376
3377 new_type = build_type_attribute_variant (type, attributes);
3378 if (TREE_CODE (new_type) == FUNCTION_TYPE
3379 || TREE_CODE (new_type) == METHOD_TYPE)
3380 {
3381 new_type = build_exception_variant (new_type,
3382 TYPE_RAISES_EXCEPTIONS (type));
3383 new_type = build_ref_qualified_type (new_type,
3384 type_memfn_rqual (type));
3385 }
3386
3387 /* Making a new main variant of a class type is broken. */
3388 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
3389
3390 return new_type;
3391 }
3392
3393 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
3394 Called only after doing all language independent checks. Only
3395 to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already
3396 compared in type_hash_eq. */
3397
3398 bool
3399 cxx_type_hash_eq (const_tree typea, const_tree typeb)
3400 {
3401 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
3402 || TREE_CODE (typea) == METHOD_TYPE);
3403
3404 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
3405 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
3406 }
3407
3408 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
3409 traversal. Called from walk_tree. */
3410
3411 tree
3412 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
3413 void *data, struct pointer_set_t *pset)
3414 {
3415 enum tree_code code = TREE_CODE (*tp);
3416 tree result;
3417
3418 #define WALK_SUBTREE(NODE) \
3419 do \
3420 { \
3421 result = cp_walk_tree (&(NODE), func, data, pset); \
3422 if (result) goto out; \
3423 } \
3424 while (0)
3425
3426 /* Not one of the easy cases. We must explicitly go through the
3427 children. */
3428 result = NULL_TREE;
3429 switch (code)
3430 {
3431 case DEFAULT_ARG:
3432 case TEMPLATE_TEMPLATE_PARM:
3433 case BOUND_TEMPLATE_TEMPLATE_PARM:
3434 case UNBOUND_CLASS_TEMPLATE:
3435 case TEMPLATE_PARM_INDEX:
3436 case TEMPLATE_TYPE_PARM:
3437 case TYPENAME_TYPE:
3438 case TYPEOF_TYPE:
3439 case UNDERLYING_TYPE:
3440 /* None of these have subtrees other than those already walked
3441 above. */
3442 *walk_subtrees_p = 0;
3443 break;
3444
3445 case BASELINK:
3446 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
3447 *walk_subtrees_p = 0;
3448 break;
3449
3450 case PTRMEM_CST:
3451 WALK_SUBTREE (TREE_TYPE (*tp));
3452 *walk_subtrees_p = 0;
3453 break;
3454
3455 case TREE_LIST:
3456 WALK_SUBTREE (TREE_PURPOSE (*tp));
3457 break;
3458
3459 case OVERLOAD:
3460 WALK_SUBTREE (OVL_FUNCTION (*tp));
3461 WALK_SUBTREE (OVL_CHAIN (*tp));
3462 *walk_subtrees_p = 0;
3463 break;
3464
3465 case USING_DECL:
3466 WALK_SUBTREE (DECL_NAME (*tp));
3467 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
3468 WALK_SUBTREE (USING_DECL_DECLS (*tp));
3469 *walk_subtrees_p = 0;
3470 break;
3471
3472 case RECORD_TYPE:
3473 if (TYPE_PTRMEMFUNC_P (*tp))
3474 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
3475 break;
3476
3477 case TYPE_ARGUMENT_PACK:
3478 case NONTYPE_ARGUMENT_PACK:
3479 {
3480 tree args = ARGUMENT_PACK_ARGS (*tp);
3481 int i, len = TREE_VEC_LENGTH (args);
3482 for (i = 0; i < len; i++)
3483 WALK_SUBTREE (TREE_VEC_ELT (args, i));
3484 }
3485 break;
3486
3487 case TYPE_PACK_EXPANSION:
3488 WALK_SUBTREE (TREE_TYPE (*tp));
3489 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3490 *walk_subtrees_p = 0;
3491 break;
3492
3493 case EXPR_PACK_EXPANSION:
3494 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
3495 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3496 *walk_subtrees_p = 0;
3497 break;
3498
3499 case CAST_EXPR:
3500 case REINTERPRET_CAST_EXPR:
3501 case STATIC_CAST_EXPR:
3502 case CONST_CAST_EXPR:
3503 case DYNAMIC_CAST_EXPR:
3504 case IMPLICIT_CONV_EXPR:
3505 if (TREE_TYPE (*tp))
3506 WALK_SUBTREE (TREE_TYPE (*tp));
3507
3508 {
3509 int i;
3510 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
3511 WALK_SUBTREE (TREE_OPERAND (*tp, i));
3512 }
3513 *walk_subtrees_p = 0;
3514 break;
3515
3516 case TRAIT_EXPR:
3517 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
3518 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
3519 *walk_subtrees_p = 0;
3520 break;
3521
3522 case DECLTYPE_TYPE:
3523 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
3524 *walk_subtrees_p = 0;
3525 break;
3526
3527
3528 default:
3529 return NULL_TREE;
3530 }
3531
3532 /* We didn't find what we were looking for. */
3533 out:
3534 return result;
3535
3536 #undef WALK_SUBTREE
3537 }
3538
3539 /* Like save_expr, but for C++. */
3540
3541 tree
3542 cp_save_expr (tree expr)
3543 {
3544 /* There is no reason to create a SAVE_EXPR within a template; if
3545 needed, we can create the SAVE_EXPR when instantiating the
3546 template. Furthermore, the middle-end cannot handle C++-specific
3547 tree codes. */
3548 if (processing_template_decl)
3549 return expr;
3550 return save_expr (expr);
3551 }
3552
3553 /* Initialize tree.c. */
3554
3555 void
3556 init_tree (void)
3557 {
3558 list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
3559 }
3560
3561 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
3562 is. Note that sfk_none is zero, so this function can be used as a
3563 predicate to test whether or not DECL is a special function. */
3564
3565 special_function_kind
3566 special_function_p (const_tree decl)
3567 {
3568 /* Rather than doing all this stuff with magic names, we should
3569 probably have a field of type `special_function_kind' in
3570 DECL_LANG_SPECIFIC. */
3571 if (DECL_INHERITED_CTOR_BASE (decl))
3572 return sfk_inheriting_constructor;
3573 if (DECL_COPY_CONSTRUCTOR_P (decl))
3574 return sfk_copy_constructor;
3575 if (DECL_MOVE_CONSTRUCTOR_P (decl))
3576 return sfk_move_constructor;
3577 if (DECL_CONSTRUCTOR_P (decl))
3578 return sfk_constructor;
3579 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
3580 {
3581 if (copy_fn_p (decl))
3582 return sfk_copy_assignment;
3583 if (move_fn_p (decl))
3584 return sfk_move_assignment;
3585 }
3586 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
3587 return sfk_destructor;
3588 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
3589 return sfk_complete_destructor;
3590 if (DECL_BASE_DESTRUCTOR_P (decl))
3591 return sfk_base_destructor;
3592 if (DECL_DELETING_DESTRUCTOR_P (decl))
3593 return sfk_deleting_destructor;
3594 if (DECL_CONV_FN_P (decl))
3595 return sfk_conversion;
3596
3597 return sfk_none;
3598 }
3599
3600 /* Returns nonzero if TYPE is a character type, including wchar_t. */
3601
3602 int
3603 char_type_p (tree type)
3604 {
3605 return (same_type_p (type, char_type_node)
3606 || same_type_p (type, unsigned_char_type_node)
3607 || same_type_p (type, signed_char_type_node)
3608 || same_type_p (type, char16_type_node)
3609 || same_type_p (type, char32_type_node)
3610 || same_type_p (type, wchar_type_node));
3611 }
3612
3613 /* Returns the kind of linkage associated with the indicated DECL. Th
3614 value returned is as specified by the language standard; it is
3615 independent of implementation details regarding template
3616 instantiation, etc. For example, it is possible that a declaration
3617 to which this function assigns external linkage would not show up
3618 as a global symbol when you run `nm' on the resulting object file. */
3619
3620 linkage_kind
3621 decl_linkage (tree decl)
3622 {
3623 /* This function doesn't attempt to calculate the linkage from first
3624 principles as given in [basic.link]. Instead, it makes use of
3625 the fact that we have already set TREE_PUBLIC appropriately, and
3626 then handles a few special cases. Ideally, we would calculate
3627 linkage first, and then transform that into a concrete
3628 implementation. */
3629
3630 /* Things that don't have names have no linkage. */
3631 if (!DECL_NAME (decl))
3632 return lk_none;
3633
3634 /* Fields have no linkage. */
3635 if (TREE_CODE (decl) == FIELD_DECL)
3636 return lk_none;
3637
3638 /* Things that are TREE_PUBLIC have external linkage. */
3639 if (TREE_PUBLIC (decl))
3640 return lk_external;
3641
3642 if (TREE_CODE (decl) == NAMESPACE_DECL)
3643 return lk_external;
3644
3645 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
3646 type. */
3647 if (TREE_CODE (decl) == CONST_DECL)
3648 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
3649
3650 /* Some things that are not TREE_PUBLIC have external linkage, too.
3651 For example, on targets that don't have weak symbols, we make all
3652 template instantiations have internal linkage (in the object
3653 file), but the symbols should still be treated as having external
3654 linkage from the point of view of the language. */
3655 if (VAR_OR_FUNCTION_DECL_P (decl)
3656 && DECL_COMDAT (decl))
3657 return lk_external;
3658
3659 /* Things in local scope do not have linkage, if they don't have
3660 TREE_PUBLIC set. */
3661 if (decl_function_context (decl))
3662 return lk_none;
3663
3664 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
3665 are considered to have external linkage for language purposes. DECLs
3666 really meant to have internal linkage have DECL_THIS_STATIC set. */
3667 if (TREE_CODE (decl) == TYPE_DECL)
3668 return lk_external;
3669 if (VAR_OR_FUNCTION_DECL_P (decl))
3670 {
3671 if (!DECL_THIS_STATIC (decl))
3672 return lk_external;
3673
3674 /* Static data members and static member functions from classes
3675 in anonymous namespace also don't have TREE_PUBLIC set. */
3676 if (DECL_CLASS_CONTEXT (decl))
3677 return lk_external;
3678 }
3679
3680 /* Everything else has internal linkage. */
3681 return lk_internal;
3682 }
3683
3684 /* Returns the storage duration of the object or reference associated with
3685 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
3686
3687 duration_kind
3688 decl_storage_duration (tree decl)
3689 {
3690 if (TREE_CODE (decl) == PARM_DECL)
3691 return dk_auto;
3692 if (TREE_CODE (decl) == FUNCTION_DECL)
3693 return dk_static;
3694 gcc_assert (VAR_P (decl));
3695 if (!TREE_STATIC (decl)
3696 && !DECL_EXTERNAL (decl))
3697 return dk_auto;
3698 if (DECL_THREAD_LOCAL_P (decl))
3699 return dk_thread;
3700 return dk_static;
3701 }
3702 \f
3703 /* EXP is an expression that we want to pre-evaluate. Returns (in
3704 *INITP) an expression that will perform the pre-evaluation. The
3705 value returned by this function is a side-effect free expression
3706 equivalent to the pre-evaluated expression. Callers must ensure
3707 that *INITP is evaluated before EXP. */
3708
3709 tree
3710 stabilize_expr (tree exp, tree* initp)
3711 {
3712 tree init_expr;
3713
3714 if (!TREE_SIDE_EFFECTS (exp))
3715 init_expr = NULL_TREE;
3716 else if (VOID_TYPE_P (TREE_TYPE (exp)))
3717 {
3718 init_expr = exp;
3719 exp = void_zero_node;
3720 }
3721 /* There are no expressions with REFERENCE_TYPE, but there can be call
3722 arguments with such a type; just treat it as a pointer. */
3723 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
3724 || SCALAR_TYPE_P (TREE_TYPE (exp))
3725 || !lvalue_or_rvalue_with_address_p (exp))
3726 {
3727 init_expr = get_target_expr (exp);
3728 exp = TARGET_EXPR_SLOT (init_expr);
3729 }
3730 else
3731 {
3732 bool xval = !real_lvalue_p (exp);
3733 exp = cp_build_addr_expr (exp, tf_warning_or_error);
3734 init_expr = get_target_expr (exp);
3735 exp = TARGET_EXPR_SLOT (init_expr);
3736 exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
3737 if (xval)
3738 exp = move (exp);
3739 }
3740 *initp = init_expr;
3741
3742 gcc_assert (!TREE_SIDE_EFFECTS (exp));
3743 return exp;
3744 }
3745
3746 /* Add NEW_EXPR, an expression whose value we don't care about, after the
3747 similar expression ORIG. */
3748
3749 tree
3750 add_stmt_to_compound (tree orig, tree new_expr)
3751 {
3752 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
3753 return orig;
3754 if (!orig || !TREE_SIDE_EFFECTS (orig))
3755 return new_expr;
3756 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
3757 }
3758
3759 /* Like stabilize_expr, but for a call whose arguments we want to
3760 pre-evaluate. CALL is modified in place to use the pre-evaluated
3761 arguments, while, upon return, *INITP contains an expression to
3762 compute the arguments. */
3763
3764 void
3765 stabilize_call (tree call, tree *initp)
3766 {
3767 tree inits = NULL_TREE;
3768 int i;
3769 int nargs = call_expr_nargs (call);
3770
3771 if (call == error_mark_node || processing_template_decl)
3772 {
3773 *initp = NULL_TREE;
3774 return;
3775 }
3776
3777 gcc_assert (TREE_CODE (call) == CALL_EXPR);
3778
3779 for (i = 0; i < nargs; i++)
3780 {
3781 tree init;
3782 CALL_EXPR_ARG (call, i) =
3783 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
3784 inits = add_stmt_to_compound (inits, init);
3785 }
3786
3787 *initp = inits;
3788 }
3789
3790 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
3791 to pre-evaluate. CALL is modified in place to use the pre-evaluated
3792 arguments, while, upon return, *INITP contains an expression to
3793 compute the arguments. */
3794
3795 static void
3796 stabilize_aggr_init (tree call, tree *initp)
3797 {
3798 tree inits = NULL_TREE;
3799 int i;
3800 int nargs = aggr_init_expr_nargs (call);
3801
3802 if (call == error_mark_node)
3803 return;
3804
3805 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
3806
3807 for (i = 0; i < nargs; i++)
3808 {
3809 tree init;
3810 AGGR_INIT_EXPR_ARG (call, i) =
3811 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
3812 inits = add_stmt_to_compound (inits, init);
3813 }
3814
3815 *initp = inits;
3816 }
3817
3818 /* Like stabilize_expr, but for an initialization.
3819
3820 If the initialization is for an object of class type, this function
3821 takes care not to introduce additional temporaries.
3822
3823 Returns TRUE iff the expression was successfully pre-evaluated,
3824 i.e., if INIT is now side-effect free, except for, possibly, a
3825 single call to a constructor. */
3826
3827 bool
3828 stabilize_init (tree init, tree *initp)
3829 {
3830 tree t = init;
3831
3832 *initp = NULL_TREE;
3833
3834 if (t == error_mark_node || processing_template_decl)
3835 return true;
3836
3837 if (TREE_CODE (t) == INIT_EXPR)
3838 t = TREE_OPERAND (t, 1);
3839 if (TREE_CODE (t) == TARGET_EXPR)
3840 t = TARGET_EXPR_INITIAL (t);
3841
3842 /* If the RHS can be stabilized without breaking copy elision, stabilize
3843 it. We specifically don't stabilize class prvalues here because that
3844 would mean an extra copy, but they might be stabilized below. */
3845 if (TREE_CODE (init) == INIT_EXPR
3846 && TREE_CODE (t) != CONSTRUCTOR
3847 && TREE_CODE (t) != AGGR_INIT_EXPR
3848 && (SCALAR_TYPE_P (TREE_TYPE (t))
3849 || lvalue_or_rvalue_with_address_p (t)))
3850 {
3851 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
3852 return true;
3853 }
3854
3855 if (TREE_CODE (t) == COMPOUND_EXPR
3856 && TREE_CODE (init) == INIT_EXPR)
3857 {
3858 tree last = expr_last (t);
3859 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
3860 if (!TREE_SIDE_EFFECTS (last))
3861 {
3862 *initp = t;
3863 TREE_OPERAND (init, 1) = last;
3864 return true;
3865 }
3866 }
3867
3868 if (TREE_CODE (t) == CONSTRUCTOR)
3869 {
3870 /* Aggregate initialization: stabilize each of the field
3871 initializers. */
3872 unsigned i;
3873 constructor_elt *ce;
3874 bool good = true;
3875 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
3876 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
3877 {
3878 tree type = TREE_TYPE (ce->value);
3879 tree subinit;
3880 if (TREE_CODE (type) == REFERENCE_TYPE
3881 || SCALAR_TYPE_P (type))
3882 ce->value = stabilize_expr (ce->value, &subinit);
3883 else if (!stabilize_init (ce->value, &subinit))
3884 good = false;
3885 *initp = add_stmt_to_compound (*initp, subinit);
3886 }
3887 return good;
3888 }
3889
3890 if (TREE_CODE (t) == CALL_EXPR)
3891 {
3892 stabilize_call (t, initp);
3893 return true;
3894 }
3895
3896 if (TREE_CODE (t) == AGGR_INIT_EXPR)
3897 {
3898 stabilize_aggr_init (t, initp);
3899 return true;
3900 }
3901
3902 /* The initialization is being performed via a bitwise copy -- and
3903 the item copied may have side effects. */
3904 return !TREE_SIDE_EFFECTS (init);
3905 }
3906
3907 /* Like "fold", but should be used whenever we might be processing the
3908 body of a template. */
3909
3910 tree
3911 fold_if_not_in_template (tree expr)
3912 {
3913 /* In the body of a template, there is never any need to call
3914 "fold". We will call fold later when actually instantiating the
3915 template. Integral constant expressions in templates will be
3916 evaluated via fold_non_dependent_expr, as necessary. */
3917 if (processing_template_decl)
3918 return expr;
3919
3920 /* Fold C++ front-end specific tree codes. */
3921 if (TREE_CODE (expr) == UNARY_PLUS_EXPR)
3922 return fold_convert (TREE_TYPE (expr), TREE_OPERAND (expr, 0));
3923
3924 return fold (expr);
3925 }
3926
3927 /* Returns true if a cast to TYPE may appear in an integral constant
3928 expression. */
3929
3930 bool
3931 cast_valid_in_integral_constant_expression_p (tree type)
3932 {
3933 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3934 || cxx_dialect >= cxx0x
3935 || dependent_type_p (type)
3936 || type == error_mark_node);
3937 }
3938
3939 /* Return true if we need to fix linkage information of DECL. */
3940
3941 static bool
3942 cp_fix_function_decl_p (tree decl)
3943 {
3944 /* Skip if DECL is not externally visible. */
3945 if (!TREE_PUBLIC (decl))
3946 return false;
3947
3948 /* We need to fix DECL if it a appears to be exported but with no
3949 function body. Thunks do not have CFGs and we may need to
3950 handle them specially later. */
3951 if (!gimple_has_body_p (decl)
3952 && !DECL_THUNK_P (decl)
3953 && !DECL_EXTERNAL (decl))
3954 {
3955 struct cgraph_node *node = cgraph_get_node (decl);
3956
3957 /* Don't fix same_body aliases. Although they don't have their own
3958 CFG, they share it with what they alias to. */
3959 if (!node || !node->alias
3960 || !vec_safe_length (node->symbol.ref_list.references))
3961 return true;
3962 }
3963
3964 return false;
3965 }
3966
3967 /* Clean the C++ specific parts of the tree T. */
3968
3969 void
3970 cp_free_lang_data (tree t)
3971 {
3972 if (TREE_CODE (t) == METHOD_TYPE
3973 || TREE_CODE (t) == FUNCTION_TYPE)
3974 {
3975 /* Default args are not interesting anymore. */
3976 tree argtypes = TYPE_ARG_TYPES (t);
3977 while (argtypes)
3978 {
3979 TREE_PURPOSE (argtypes) = 0;
3980 argtypes = TREE_CHAIN (argtypes);
3981 }
3982 }
3983 else if (TREE_CODE (t) == FUNCTION_DECL
3984 && cp_fix_function_decl_p (t))
3985 {
3986 /* If T is used in this translation unit at all, the definition
3987 must exist somewhere else since we have decided to not emit it
3988 in this TU. So make it an external reference. */
3989 DECL_EXTERNAL (t) = 1;
3990 TREE_STATIC (t) = 0;
3991 }
3992 if (TREE_CODE (t) == NAMESPACE_DECL)
3993 {
3994 /* The list of users of a namespace isn't useful for the middle-end
3995 or debug generators. */
3996 DECL_NAMESPACE_USERS (t) = NULL_TREE;
3997 /* Neither do we need the leftover chaining of namespaces
3998 from the binding level. */
3999 DECL_CHAIN (t) = NULL_TREE;
4000 }
4001 }
4002
4003 /* Stub for c-common. Please keep in sync with c-decl.c.
4004 FIXME: If address space support is target specific, then this
4005 should be a C target hook. But currently this is not possible,
4006 because this function is called via REGISTER_TARGET_PRAGMAS. */
4007 void
4008 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
4009 {
4010 }
4011
4012 /* Return the number of operands in T that we care about for things like
4013 mangling. */
4014
4015 int
4016 cp_tree_operand_length (const_tree t)
4017 {
4018 enum tree_code code = TREE_CODE (t);
4019
4020 switch (code)
4021 {
4022 case PREINCREMENT_EXPR:
4023 case PREDECREMENT_EXPR:
4024 case POSTINCREMENT_EXPR:
4025 case POSTDECREMENT_EXPR:
4026 return 1;
4027
4028 case ARRAY_REF:
4029 return 2;
4030
4031 case EXPR_PACK_EXPANSION:
4032 return 1;
4033
4034 default:
4035 return TREE_OPERAND_LENGTH (t);
4036 }
4037 }
4038
4039 /* Implement -Wzero_as_null_pointer_constant. Return true if the
4040 conditions for the warning hold, false otherwise. */
4041 bool
4042 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
4043 {
4044 if (c_inhibit_evaluation_warnings == 0
4045 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
4046 {
4047 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
4048 "zero as null pointer constant");
4049 return true;
4050 }
4051 return false;
4052 }
4053 \f
4054 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4055 /* Complain that some language-specific thing hanging off a tree
4056 node has been accessed improperly. */
4057
4058 void
4059 lang_check_failed (const char* file, int line, const char* function)
4060 {
4061 internal_error ("lang_* check: failed in %s, at %s:%d",
4062 function, trim_filename (file), line);
4063 }
4064 #endif /* ENABLE_TREE_CHECKING */
4065
4066 #include "gt-cp-tree.h"