re PR c++/18389 (ICE on struct declaration in for statement)
[gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Hacked by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "cp-tree.h"
29 #include "flags.h"
30 #include "real.h"
31 #include "rtl.h"
32 #include "toplev.h"
33 #include "insn-config.h"
34 #include "integrate.h"
35 #include "tree-inline.h"
36 #include "target.h"
37
38 static tree bot_manip (tree *, int *, void *);
39 static tree bot_replace (tree *, int *, void *);
40 static tree build_cplus_array_type_1 (tree, tree);
41 static int list_hash_eq (const void *, const void *);
42 static hashval_t list_hash_pieces (tree, tree, tree);
43 static hashval_t list_hash (const void *);
44 static cp_lvalue_kind lvalue_p_1 (tree, int);
45 static tree build_target_expr (tree, tree);
46 static tree count_trees_r (tree *, int *, void *);
47 static tree verify_stmt_tree_r (tree *, int *, void *);
48 static tree find_tree_r (tree *, int *, void *);
49 static tree build_local_temp (tree);
50
51 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
52 static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
53 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
54
55 /* If REF is an lvalue, returns the kind of lvalue that REF is.
56 Otherwise, returns clk_none. If TREAT_CLASS_RVALUES_AS_LVALUES is
57 nonzero, rvalues of class type are considered lvalues. */
58
59 static cp_lvalue_kind
60 lvalue_p_1 (tree ref,
61 int treat_class_rvalues_as_lvalues)
62 {
63 cp_lvalue_kind op1_lvalue_kind = clk_none;
64 cp_lvalue_kind op2_lvalue_kind = clk_none;
65
66 if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
67 return clk_ordinary;
68
69 if (ref == current_class_ptr)
70 return clk_none;
71
72 switch (TREE_CODE (ref))
73 {
74 /* preincrements and predecrements are valid lvals, provided
75 what they refer to are valid lvals. */
76 case PREINCREMENT_EXPR:
77 case PREDECREMENT_EXPR:
78 case SAVE_EXPR:
79 case TRY_CATCH_EXPR:
80 case WITH_CLEANUP_EXPR:
81 case REALPART_EXPR:
82 case IMAGPART_EXPR:
83 return lvalue_p_1 (TREE_OPERAND (ref, 0),
84 treat_class_rvalues_as_lvalues);
85
86 case COMPONENT_REF:
87 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
88 treat_class_rvalues_as_lvalues);
89 /* In an expression of the form "X.Y", the packed-ness of the
90 expression does not depend on "X". */
91 op1_lvalue_kind &= ~clk_packed;
92 /* Look at the member designator. */
93 if (!op1_lvalue_kind
94 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
95 situations. */
96 || TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
97 ;
98 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
99 {
100 /* Clear the ordinary bit. If this object was a class
101 rvalue we want to preserve that information. */
102 op1_lvalue_kind &= ~clk_ordinary;
103 /* The lvalue is for a bitfield. */
104 op1_lvalue_kind |= clk_bitfield;
105 }
106 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
107 op1_lvalue_kind |= clk_packed;
108
109 return op1_lvalue_kind;
110
111 case STRING_CST:
112 return clk_ordinary;
113
114 case VAR_DECL:
115 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
116 && DECL_LANG_SPECIFIC (ref)
117 && DECL_IN_AGGR_P (ref))
118 return clk_none;
119 case INDIRECT_REF:
120 case ARRAY_REF:
121 case PARM_DECL:
122 case RESULT_DECL:
123 if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
124 return clk_ordinary;
125 break;
126
127 /* A currently unresolved scope ref. */
128 case SCOPE_REF:
129 gcc_unreachable ();
130 case MAX_EXPR:
131 case MIN_EXPR:
132 /* Disallow <? and >? as lvalues if either argument side-effects. */
133 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
134 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
135 return clk_none;
136 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
137 treat_class_rvalues_as_lvalues);
138 op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
139 treat_class_rvalues_as_lvalues);
140 break;
141
142 case COND_EXPR:
143 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
144 treat_class_rvalues_as_lvalues);
145 op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2),
146 treat_class_rvalues_as_lvalues);
147 break;
148
149 case MODIFY_EXPR:
150 return clk_ordinary;
151
152 case COMPOUND_EXPR:
153 return lvalue_p_1 (TREE_OPERAND (ref, 1),
154 treat_class_rvalues_as_lvalues);
155
156 case TARGET_EXPR:
157 return treat_class_rvalues_as_lvalues ? clk_class : clk_none;
158
159 case CALL_EXPR:
160 case VA_ARG_EXPR:
161 /* Any class-valued call would be wrapped in a TARGET_EXPR. */
162 return clk_none;
163
164 case FUNCTION_DECL:
165 /* All functions (except non-static-member functions) are
166 lvalues. */
167 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
168 ? clk_none : clk_ordinary);
169
170 case NON_DEPENDENT_EXPR:
171 /* We must consider NON_DEPENDENT_EXPRs to be lvalues so that
172 things like "&E" where "E" is an expression with a
173 non-dependent type work. It is safe to be lenient because an
174 error will be issued when the template is instantiated if "E"
175 is not an lvalue. */
176 return clk_ordinary;
177
178 default:
179 break;
180 }
181
182 /* If one operand is not an lvalue at all, then this expression is
183 not an lvalue. */
184 if (!op1_lvalue_kind || !op2_lvalue_kind)
185 return clk_none;
186
187 /* Otherwise, it's an lvalue, and it has all the odd properties
188 contributed by either operand. */
189 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
190 /* It's not an ordinary lvalue if it involves either a bit-field or
191 a class rvalue. */
192 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
193 op1_lvalue_kind &= ~clk_ordinary;
194 return op1_lvalue_kind;
195 }
196
197 /* Returns the kind of lvalue that REF is, in the sense of
198 [basic.lval]. This function should really be named lvalue_p; it
199 computes the C++ definition of lvalue. */
200
201 cp_lvalue_kind
202 real_lvalue_p (tree ref)
203 {
204 return lvalue_p_1 (ref,
205 /*treat_class_rvalues_as_lvalues=*/0);
206 }
207
208 /* This differs from real_lvalue_p in that class rvalues are
209 considered lvalues. */
210
211 int
212 lvalue_p (tree ref)
213 {
214 return
215 (lvalue_p_1 (ref, /*class rvalue ok*/ 1) != clk_none);
216 }
217
218 /* Return nonzero if REF is an lvalue valid for this language;
219 otherwise, print an error message and return zero. */
220
221 int
222 lvalue_or_else (tree ref, const char* string)
223 {
224 if (!lvalue_p (ref))
225 {
226 error ("non-lvalue in %s", string);
227 return 0;
228 }
229 return 1;
230 }
231
232 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
233
234 static tree
235 build_target_expr (tree decl, tree value)
236 {
237 tree t;
238
239 t = build4 (TARGET_EXPR, TREE_TYPE (decl), decl, value,
240 cxx_maybe_build_cleanup (decl), NULL_TREE);
241 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
242 ignore the TARGET_EXPR. If there really turn out to be no
243 side-effects, then the optimizer should be able to get rid of
244 whatever code is generated anyhow. */
245 TREE_SIDE_EFFECTS (t) = 1;
246
247 return t;
248 }
249
250 /* Return an undeclared local temporary of type TYPE for use in building a
251 TARGET_EXPR. */
252
253 static tree
254 build_local_temp (tree type)
255 {
256 tree slot = build_decl (VAR_DECL, NULL_TREE, type);
257 DECL_ARTIFICIAL (slot) = 1;
258 DECL_CONTEXT (slot) = current_function_decl;
259 layout_decl (slot, 0);
260 return slot;
261 }
262
263 /* INIT is a CALL_EXPR which needs info about its target.
264 TYPE is the type that this initialization should appear to have.
265
266 Build an encapsulation of the initialization to perform
267 and return it so that it can be processed by language-independent
268 and language-specific expression expanders. */
269
270 tree
271 build_cplus_new (tree type, tree init)
272 {
273 tree fn;
274 tree slot;
275 tree rval;
276 int is_ctor;
277
278 /* Make sure that we're not trying to create an instance of an
279 abstract class. */
280 abstract_virtuals_error (NULL_TREE, type);
281
282 if (TREE_CODE (init) != CALL_EXPR && TREE_CODE (init) != AGGR_INIT_EXPR)
283 return convert (type, init);
284
285 fn = TREE_OPERAND (init, 0);
286 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
287 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
288 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
289
290 slot = build_local_temp (type);
291
292 /* We split the CALL_EXPR into its function and its arguments here.
293 Then, in expand_expr, we put them back together. The reason for
294 this is that this expression might be a default argument
295 expression. In that case, we need a new temporary every time the
296 expression is used. That's what break_out_target_exprs does; it
297 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
298 temporary slot. Then, expand_expr builds up a call-expression
299 using the new slot. */
300
301 /* If we don't need to use a constructor to create an object of this
302 type, don't mess with AGGR_INIT_EXPR. */
303 if (is_ctor || TREE_ADDRESSABLE (type))
304 {
305 rval = build3 (AGGR_INIT_EXPR, void_type_node, fn,
306 TREE_OPERAND (init, 1), slot);
307 TREE_SIDE_EFFECTS (rval) = 1;
308 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
309 }
310 else
311 rval = init;
312
313 rval = build_target_expr (slot, rval);
314
315 return rval;
316 }
317
318 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
319 indicated TYPE. */
320
321 tree
322 build_target_expr_with_type (tree init, tree type)
323 {
324 tree slot;
325
326 gcc_assert (!VOID_TYPE_P (type));
327
328 if (TREE_CODE (init) == TARGET_EXPR)
329 return init;
330 else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type)
331 && TREE_CODE (init) != COND_EXPR
332 && TREE_CODE (init) != CONSTRUCTOR
333 && TREE_CODE (init) != VA_ARG_EXPR)
334 /* We need to build up a copy constructor call. COND_EXPR is a special
335 case because we already have copies on the arms and we don't want
336 another one here. A CONSTRUCTOR is aggregate initialization, which
337 is handled separately. A VA_ARG_EXPR is magic creation of an
338 aggregate; there's no additional work to be done. */
339 return force_rvalue (init);
340
341 slot = build_local_temp (type);
342 return build_target_expr (slot, init);
343 }
344
345 /* Like the above function, but without the checking. This function should
346 only be used by code which is deliberately trying to subvert the type
347 system, such as call_builtin_trap. */
348
349 tree
350 force_target_expr (tree type, tree init)
351 {
352 tree slot;
353
354 gcc_assert (!VOID_TYPE_P (type));
355
356 slot = build_local_temp (type);
357 return build_target_expr (slot, init);
358 }
359
360 /* Like build_target_expr_with_type, but use the type of INIT. */
361
362 tree
363 get_target_expr (tree init)
364 {
365 return build_target_expr_with_type (init, TREE_TYPE (init));
366 }
367
368 \f
369 static tree
370 build_cplus_array_type_1 (tree elt_type, tree index_type)
371 {
372 tree t;
373
374 if (elt_type == error_mark_node || index_type == error_mark_node)
375 return error_mark_node;
376
377 if (dependent_type_p (elt_type)
378 || (index_type
379 && value_dependent_expression_p (TYPE_MAX_VALUE (index_type))))
380 {
381 t = make_node (ARRAY_TYPE);
382 TREE_TYPE (t) = elt_type;
383 TYPE_DOMAIN (t) = index_type;
384 }
385 else
386 t = build_array_type (elt_type, index_type);
387
388 /* Push these needs up so that initialization takes place
389 more easily. */
390 TYPE_NEEDS_CONSTRUCTING (t)
391 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
392 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
393 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
394 return t;
395 }
396
397 tree
398 build_cplus_array_type (tree elt_type, tree index_type)
399 {
400 tree t;
401 int type_quals = cp_type_quals (elt_type);
402
403 if (type_quals != TYPE_UNQUALIFIED)
404 elt_type = cp_build_qualified_type (elt_type, TYPE_UNQUALIFIED);
405
406 t = build_cplus_array_type_1 (elt_type, index_type);
407
408 if (type_quals != TYPE_UNQUALIFIED)
409 t = cp_build_qualified_type (t, type_quals);
410
411 return t;
412 }
413 \f
414 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
415 arrays correctly. In particular, if TYPE is an array of T's, and
416 TYPE_QUALS is non-empty, returns an array of qualified T's.
417
418 FLAGS determines how to deal with illformed qualifications. If
419 tf_ignore_bad_quals is set, then bad qualifications are dropped
420 (this is permitted if TYPE was introduced via a typedef or template
421 type parameter). If bad qualifications are dropped and tf_warning
422 is set, then a warning is issued for non-const qualifications. If
423 tf_ignore_bad_quals is not set and tf_error is not set, we
424 return error_mark_node. Otherwise, we issue an error, and ignore
425 the qualifications.
426
427 Qualification of a reference type is valid when the reference came
428 via a typedef or template type argument. [dcl.ref] No such
429 dispensation is provided for qualifying a function type. [dcl.fct]
430 DR 295 queries this and the proposed resolution brings it into line
431 with qualifying a reference. We implement the DR. We also behave
432 in a similar manner for restricting non-pointer types. */
433
434 tree
435 cp_build_qualified_type_real (tree type,
436 int type_quals,
437 tsubst_flags_t complain)
438 {
439 tree result;
440 int bad_quals = TYPE_UNQUALIFIED;
441
442 if (type == error_mark_node)
443 return type;
444
445 if (type_quals == cp_type_quals (type))
446 return type;
447
448 if (TREE_CODE (type) == ARRAY_TYPE)
449 {
450 /* In C++, the qualification really applies to the array element
451 type. Obtain the appropriately qualified element type. */
452 tree t;
453 tree element_type
454 = cp_build_qualified_type_real (TREE_TYPE (type),
455 type_quals,
456 complain);
457
458 if (element_type == error_mark_node)
459 return error_mark_node;
460
461 /* See if we already have an identically qualified type. */
462 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
463 if (cp_type_quals (t) == type_quals
464 && TYPE_NAME (t) == TYPE_NAME (type)
465 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
466 break;
467
468 if (!t)
469 {
470 /* Make a new array type, just like the old one, but with the
471 appropriately qualified element type. */
472 t = build_variant_type_copy (type);
473 TREE_TYPE (t) = element_type;
474 }
475
476 /* Even if we already had this variant, we update
477 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
478 they changed since the variant was originally created.
479
480 This seems hokey; if there is some way to use a previous
481 variant *without* coming through here,
482 TYPE_NEEDS_CONSTRUCTING will never be updated. */
483 TYPE_NEEDS_CONSTRUCTING (t)
484 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
485 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
486 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
487 return t;
488 }
489 else if (TYPE_PTRMEMFUNC_P (type))
490 {
491 /* For a pointer-to-member type, we can't just return a
492 cv-qualified version of the RECORD_TYPE. If we do, we
493 haven't changed the field that contains the actual pointer to
494 a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
495 tree t;
496
497 t = TYPE_PTRMEMFUNC_FN_TYPE (type);
498 t = cp_build_qualified_type_real (t, type_quals, complain);
499 return build_ptrmemfunc_type (t);
500 }
501
502 /* A reference, function or method type shall not be cv qualified.
503 [dcl.ref], [dct.fct] */
504 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
505 && (TREE_CODE (type) == REFERENCE_TYPE
506 || TREE_CODE (type) == FUNCTION_TYPE
507 || TREE_CODE (type) == METHOD_TYPE))
508 {
509 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
510 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
511 }
512
513 /* A restrict-qualified type must be a pointer (or reference)
514 to object or incomplete type. */
515 if ((type_quals & TYPE_QUAL_RESTRICT)
516 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
517 && TREE_CODE (type) != TYPENAME_TYPE
518 && !POINTER_TYPE_P (type))
519 {
520 bad_quals |= TYPE_QUAL_RESTRICT;
521 type_quals &= ~TYPE_QUAL_RESTRICT;
522 }
523
524 if (bad_quals == TYPE_UNQUALIFIED)
525 /*OK*/;
526 else if (!(complain & (tf_error | tf_ignore_bad_quals)))
527 return error_mark_node;
528 else
529 {
530 if (complain & tf_ignore_bad_quals)
531 /* We're not going to warn about constifying things that can't
532 be constified. */
533 bad_quals &= ~TYPE_QUAL_CONST;
534 if (bad_quals)
535 {
536 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
537
538 if (!(complain & tf_ignore_bad_quals))
539 error ("%qV qualifiers cannot be applied to %qT",
540 bad_type, type);
541 }
542 }
543
544 /* Retrieve (or create) the appropriately qualified variant. */
545 result = build_qualified_type (type, type_quals);
546
547 /* If this was a pointer-to-method type, and we just made a copy,
548 then we need to unshare the record that holds the cached
549 pointer-to-member-function type, because these will be distinct
550 between the unqualified and qualified types. */
551 if (result != type
552 && TREE_CODE (type) == POINTER_TYPE
553 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)
554 TYPE_LANG_SPECIFIC (result) = NULL;
555
556 return result;
557 }
558
559 /* Returns the canonical version of TYPE. In other words, if TYPE is
560 a typedef, returns the underlying type. The cv-qualification of
561 the type returned matches the type input; they will always be
562 compatible types. */
563
564 tree
565 canonical_type_variant (tree t)
566 {
567 return cp_build_qualified_type (TYPE_MAIN_VARIANT (t), cp_type_quals (t));
568 }
569 \f
570 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
571 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
572 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
573 VIRT indicates whether TYPE is inherited virtually or not.
574 IGO_PREV points at the previous binfo of the inheritance graph
575 order chain. The newly copied binfo's TREE_CHAIN forms this
576 ordering.
577
578 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
579 correct order. That is in the order the bases themselves should be
580 constructed in.
581
582 The BINFO_INHERITANCE of a virtual base class points to the binfo
583 of the most derived type. ??? We could probably change this so that
584 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
585 remove a field. They currently can only differ for primary virtual
586 virtual bases. */
587
588 tree
589 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
590 {
591 tree new_binfo;
592
593 if (virt)
594 {
595 /* See if we've already made this virtual base. */
596 new_binfo = binfo_for_vbase (type, t);
597 if (new_binfo)
598 return new_binfo;
599 }
600
601 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
602 BINFO_TYPE (new_binfo) = type;
603
604 /* Chain it into the inheritance graph. */
605 TREE_CHAIN (*igo_prev) = new_binfo;
606 *igo_prev = new_binfo;
607
608 if (binfo)
609 {
610 int ix;
611 tree base_binfo;
612
613 gcc_assert (!BINFO_DEPENDENT_BASE_P (binfo));
614 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
615
616 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
617 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
618
619 /* We do not need to copy the accesses, as they are read only. */
620 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
621
622 /* Recursively copy base binfos of BINFO. */
623 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
624 {
625 tree new_base_binfo;
626
627 gcc_assert (!BINFO_DEPENDENT_BASE_P (base_binfo));
628 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
629 t, igo_prev,
630 BINFO_VIRTUAL_P (base_binfo));
631
632 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
633 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
634 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
635 }
636 }
637 else
638 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
639
640 if (virt)
641 {
642 /* Push it onto the list after any virtual bases it contains
643 will have been pushed. */
644 VEC_quick_push (tree, CLASSTYPE_VBASECLASSES (t), new_binfo);
645 BINFO_VIRTUAL_P (new_binfo) = 1;
646 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
647 }
648
649 return new_binfo;
650 }
651 \f
652 /* Hashing of lists so that we don't make duplicates.
653 The entry point is `list_hash_canon'. */
654
655 /* Now here is the hash table. When recording a list, it is added
656 to the slot whose index is the hash code mod the table size.
657 Note that the hash table is used for several kinds of lists.
658 While all these live in the same table, they are completely independent,
659 and the hash code is computed differently for each of these. */
660
661 static GTY ((param_is (union tree_node))) htab_t list_hash_table;
662
663 struct list_proxy
664 {
665 tree purpose;
666 tree value;
667 tree chain;
668 };
669
670 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
671 for a node we are thinking about adding). */
672
673 static int
674 list_hash_eq (const void* entry, const void* data)
675 {
676 tree t = (tree) entry;
677 struct list_proxy *proxy = (struct list_proxy *) data;
678
679 return (TREE_VALUE (t) == proxy->value
680 && TREE_PURPOSE (t) == proxy->purpose
681 && TREE_CHAIN (t) == proxy->chain);
682 }
683
684 /* Compute a hash code for a list (chain of TREE_LIST nodes
685 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
686 TREE_COMMON slots), by adding the hash codes of the individual entries. */
687
688 static hashval_t
689 list_hash_pieces (tree purpose, tree value, tree chain)
690 {
691 hashval_t hashcode = 0;
692
693 if (chain)
694 hashcode += TREE_HASH (chain);
695
696 if (value)
697 hashcode += TREE_HASH (value);
698 else
699 hashcode += 1007;
700 if (purpose)
701 hashcode += TREE_HASH (purpose);
702 else
703 hashcode += 1009;
704 return hashcode;
705 }
706
707 /* Hash an already existing TREE_LIST. */
708
709 static hashval_t
710 list_hash (const void* p)
711 {
712 tree t = (tree) p;
713 return list_hash_pieces (TREE_PURPOSE (t),
714 TREE_VALUE (t),
715 TREE_CHAIN (t));
716 }
717
718 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
719 object for an identical list if one already exists. Otherwise, build a
720 new one, and record it as the canonical object. */
721
722 tree
723 hash_tree_cons (tree purpose, tree value, tree chain)
724 {
725 int hashcode = 0;
726 void **slot;
727 struct list_proxy proxy;
728
729 /* Hash the list node. */
730 hashcode = list_hash_pieces (purpose, value, chain);
731 /* Create a proxy for the TREE_LIST we would like to create. We
732 don't actually create it so as to avoid creating garbage. */
733 proxy.purpose = purpose;
734 proxy.value = value;
735 proxy.chain = chain;
736 /* See if it is already in the table. */
737 slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
738 INSERT);
739 /* If not, create a new node. */
740 if (!*slot)
741 *slot = tree_cons (purpose, value, chain);
742 return *slot;
743 }
744
745 /* Constructor for hashed lists. */
746
747 tree
748 hash_tree_chain (tree value, tree chain)
749 {
750 return hash_tree_cons (NULL_TREE, value, chain);
751 }
752
753 /* Similar, but used for concatenating two lists. */
754
755 tree
756 hash_chainon (tree list1, tree list2)
757 {
758 if (list2 == 0)
759 return list1;
760 if (list1 == 0)
761 return list2;
762 if (TREE_CHAIN (list1) == NULL_TREE)
763 return hash_tree_chain (TREE_VALUE (list1), list2);
764 return hash_tree_chain (TREE_VALUE (list1),
765 hash_chainon (TREE_CHAIN (list1), list2));
766 }
767 \f
768 void
769 debug_binfo (tree elem)
770 {
771 HOST_WIDE_INT n;
772 tree virtuals;
773
774 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
775 "\nvtable type:\n",
776 TYPE_NAME_STRING (BINFO_TYPE (elem)),
777 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
778 debug_tree (BINFO_TYPE (elem));
779 if (BINFO_VTABLE (elem))
780 fprintf (stderr, "vtable decl \"%s\"\n",
781 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
782 else
783 fprintf (stderr, "no vtable decl yet\n");
784 fprintf (stderr, "virtuals:\n");
785 virtuals = BINFO_VIRTUALS (elem);
786 n = 0;
787
788 while (virtuals)
789 {
790 tree fndecl = TREE_VALUE (virtuals);
791 fprintf (stderr, "%s [%ld =? %ld]\n",
792 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
793 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
794 ++n;
795 virtuals = TREE_CHAIN (virtuals);
796 }
797 }
798
799 int
800 count_functions (tree t)
801 {
802 int i;
803
804 if (TREE_CODE (t) == FUNCTION_DECL)
805 return 1;
806 gcc_assert (TREE_CODE (t) == OVERLOAD);
807
808 for (i = 0; t; t = OVL_CHAIN (t))
809 i++;
810 return i;
811 }
812
813 int
814 is_overloaded_fn (tree x)
815 {
816 /* A baselink is also considered an overloaded function. */
817 if (TREE_CODE (x) == OFFSET_REF)
818 x = TREE_OPERAND (x, 1);
819 if (BASELINK_P (x))
820 x = BASELINK_FUNCTIONS (x);
821 return (TREE_CODE (x) == FUNCTION_DECL
822 || TREE_CODE (x) == TEMPLATE_ID_EXPR
823 || DECL_FUNCTION_TEMPLATE_P (x)
824 || TREE_CODE (x) == OVERLOAD);
825 }
826
827 int
828 really_overloaded_fn (tree x)
829 {
830 /* A baselink is also considered an overloaded function. */
831 if (TREE_CODE (x) == OFFSET_REF)
832 x = TREE_OPERAND (x, 1);
833 if (BASELINK_P (x))
834 x = BASELINK_FUNCTIONS (x);
835
836 return ((TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x))
837 || DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
838 || TREE_CODE (x) == TEMPLATE_ID_EXPR);
839 }
840
841 tree
842 get_first_fn (tree from)
843 {
844 gcc_assert (is_overloaded_fn (from));
845 /* A baselink is also considered an overloaded function. */
846 if (BASELINK_P (from))
847 from = BASELINK_FUNCTIONS (from);
848 return OVL_CURRENT (from);
849 }
850
851 /* Returns nonzero if T is a ->* or .* expression that refers to a
852 member function. */
853
854 int
855 bound_pmf_p (tree t)
856 {
857 return (TREE_CODE (t) == OFFSET_REF
858 && TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (t, 1))));
859 }
860
861 /* Return a new OVL node, concatenating it with the old one. */
862
863 tree
864 ovl_cons (tree decl, tree chain)
865 {
866 tree result = make_node (OVERLOAD);
867 TREE_TYPE (result) = unknown_type_node;
868 OVL_FUNCTION (result) = decl;
869 TREE_CHAIN (result) = chain;
870
871 return result;
872 }
873
874 /* Build a new overloaded function. If this is the first one,
875 just return it; otherwise, ovl_cons the _DECLs */
876
877 tree
878 build_overload (tree decl, tree chain)
879 {
880 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
881 return decl;
882 if (chain && TREE_CODE (chain) != OVERLOAD)
883 chain = ovl_cons (chain, NULL_TREE);
884 return ovl_cons (decl, chain);
885 }
886
887 \f
888 #define PRINT_RING_SIZE 4
889
890 const char *
891 cxx_printable_name (tree decl, int v)
892 {
893 static tree decl_ring[PRINT_RING_SIZE];
894 static char *print_ring[PRINT_RING_SIZE];
895 static int ring_counter;
896 int i;
897
898 /* Only cache functions. */
899 if (v < 2
900 || TREE_CODE (decl) != FUNCTION_DECL
901 || DECL_LANG_SPECIFIC (decl) == 0)
902 return lang_decl_name (decl, v);
903
904 /* See if this print name is lying around. */
905 for (i = 0; i < PRINT_RING_SIZE; i++)
906 if (decl_ring[i] == decl)
907 /* yes, so return it. */
908 return print_ring[i];
909
910 if (++ring_counter == PRINT_RING_SIZE)
911 ring_counter = 0;
912
913 if (current_function_decl != NULL_TREE)
914 {
915 if (decl_ring[ring_counter] == current_function_decl)
916 ring_counter += 1;
917 if (ring_counter == PRINT_RING_SIZE)
918 ring_counter = 0;
919 gcc_assert (decl_ring[ring_counter] != current_function_decl);
920 }
921
922 if (print_ring[ring_counter])
923 free (print_ring[ring_counter]);
924
925 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v));
926 decl_ring[ring_counter] = decl;
927 return print_ring[ring_counter];
928 }
929 \f
930 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
931 listed in RAISES. */
932
933 tree
934 build_exception_variant (tree type, tree raises)
935 {
936 tree v = TYPE_MAIN_VARIANT (type);
937 int type_quals = TYPE_QUALS (type);
938
939 for (; v; v = TYPE_NEXT_VARIANT (v))
940 if (check_qualified_type (v, type, type_quals)
941 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1))
942 return v;
943
944 /* Need to build a new variant. */
945 v = build_variant_type_copy (type);
946 TYPE_RAISES_EXCEPTIONS (v) = raises;
947 return v;
948 }
949
950 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
951 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
952 arguments. */
953
954 tree
955 bind_template_template_parm (tree t, tree newargs)
956 {
957 tree decl = TYPE_NAME (t);
958 tree t2;
959
960 t2 = make_aggr_type (BOUND_TEMPLATE_TEMPLATE_PARM);
961 decl = build_decl (TYPE_DECL, DECL_NAME (decl), NULL_TREE);
962
963 /* These nodes have to be created to reflect new TYPE_DECL and template
964 arguments. */
965 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
966 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
967 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
968 = tree_cons (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t),
969 newargs, NULL_TREE);
970
971 TREE_TYPE (decl) = t2;
972 TYPE_NAME (t2) = decl;
973 TYPE_STUB_DECL (t2) = decl;
974 TYPE_SIZE (t2) = 0;
975
976 return t2;
977 }
978
979 /* Called from count_trees via walk_tree. */
980
981 static tree
982 count_trees_r (tree *tp, int *walk_subtrees, void *data)
983 {
984 ++*((int *) data);
985
986 if (TYPE_P (*tp))
987 *walk_subtrees = 0;
988
989 return NULL_TREE;
990 }
991
992 /* Debugging function for measuring the rough complexity of a tree
993 representation. */
994
995 int
996 count_trees (tree t)
997 {
998 int n_trees = 0;
999 walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
1000 return n_trees;
1001 }
1002
1003 /* Called from verify_stmt_tree via walk_tree. */
1004
1005 static tree
1006 verify_stmt_tree_r (tree* tp,
1007 int* walk_subtrees ATTRIBUTE_UNUSED ,
1008 void* data)
1009 {
1010 tree t = *tp;
1011 htab_t *statements = (htab_t *) data;
1012 void **slot;
1013
1014 if (!STATEMENT_CODE_P (TREE_CODE (t)))
1015 return NULL_TREE;
1016
1017 /* If this statement is already present in the hash table, then
1018 there is a circularity in the statement tree. */
1019 gcc_assert (!htab_find (*statements, t));
1020
1021 slot = htab_find_slot (*statements, t, INSERT);
1022 *slot = t;
1023
1024 return NULL_TREE;
1025 }
1026
1027 /* Debugging function to check that the statement T has not been
1028 corrupted. For now, this function simply checks that T contains no
1029 circularities. */
1030
1031 void
1032 verify_stmt_tree (tree t)
1033 {
1034 htab_t statements;
1035 statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
1036 walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
1037 htab_delete (statements);
1038 }
1039
1040 /* Called from find_tree via walk_tree. */
1041
1042 static tree
1043 find_tree_r (tree* tp,
1044 int* walk_subtrees ATTRIBUTE_UNUSED ,
1045 void* data)
1046 {
1047 if (*tp == (tree) data)
1048 return (tree) data;
1049
1050 return NULL_TREE;
1051 }
1052
1053 /* Returns X if X appears in the tree structure rooted at T. */
1054
1055 tree
1056 find_tree (tree t, tree x)
1057 {
1058 return walk_tree_without_duplicates (&t, find_tree_r, x);
1059 }
1060
1061 /* Check if the type T depends on a type with no linkage and if so, return
1062 it. If RELAXED_P then do not consider a class type declared within
1063 a TREE_PUBLIC function to have no linkage. */
1064
1065 tree
1066 no_linkage_check (tree t, bool relaxed_p)
1067 {
1068 tree r;
1069
1070 /* There's no point in checking linkage on template functions; we
1071 can't know their complete types. */
1072 if (processing_template_decl)
1073 return NULL_TREE;
1074
1075 switch (TREE_CODE (t))
1076 {
1077 tree fn;
1078
1079 case RECORD_TYPE:
1080 if (TYPE_PTRMEMFUNC_P (t))
1081 goto ptrmem;
1082 /* Fall through. */
1083 case UNION_TYPE:
1084 if (!CLASS_TYPE_P (t))
1085 return NULL_TREE;
1086 /* Fall through. */
1087 case ENUMERAL_TYPE:
1088 if (TYPE_ANONYMOUS_P (t))
1089 return t;
1090 fn = decl_function_context (TYPE_MAIN_DECL (t));
1091 if (fn && (!relaxed_p || !TREE_PUBLIC (fn)))
1092 return t;
1093 return NULL_TREE;
1094
1095 case ARRAY_TYPE:
1096 case POINTER_TYPE:
1097 case REFERENCE_TYPE:
1098 return no_linkage_check (TREE_TYPE (t), relaxed_p);
1099
1100 case OFFSET_TYPE:
1101 ptrmem:
1102 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
1103 relaxed_p);
1104 if (r)
1105 return r;
1106 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
1107
1108 case METHOD_TYPE:
1109 r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p);
1110 if (r)
1111 return r;
1112 /* Fall through. */
1113 case FUNCTION_TYPE:
1114 {
1115 tree parm;
1116 for (parm = TYPE_ARG_TYPES (t);
1117 parm && parm != void_list_node;
1118 parm = TREE_CHAIN (parm))
1119 {
1120 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
1121 if (r)
1122 return r;
1123 }
1124 return no_linkage_check (TREE_TYPE (t), relaxed_p);
1125 }
1126
1127 default:
1128 return NULL_TREE;
1129 }
1130 }
1131
1132 #ifdef GATHER_STATISTICS
1133 extern int depth_reached;
1134 #endif
1135
1136 void
1137 cxx_print_statistics (void)
1138 {
1139 print_search_statistics ();
1140 print_class_statistics ();
1141 #ifdef GATHER_STATISTICS
1142 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
1143 depth_reached);
1144 #endif
1145 }
1146
1147 /* Return, as an INTEGER_CST node, the number of elements for TYPE
1148 (which is an ARRAY_TYPE). This counts only elements of the top
1149 array. */
1150
1151 tree
1152 array_type_nelts_top (tree type)
1153 {
1154 return fold (build2 (PLUS_EXPR, sizetype,
1155 array_type_nelts (type),
1156 integer_one_node));
1157 }
1158
1159 /* Return, as an INTEGER_CST node, the number of elements for TYPE
1160 (which is an ARRAY_TYPE). This one is a recursive count of all
1161 ARRAY_TYPEs that are clumped together. */
1162
1163 tree
1164 array_type_nelts_total (tree type)
1165 {
1166 tree sz = array_type_nelts_top (type);
1167 type = TREE_TYPE (type);
1168 while (TREE_CODE (type) == ARRAY_TYPE)
1169 {
1170 tree n = array_type_nelts_top (type);
1171 sz = fold (build2 (MULT_EXPR, sizetype, sz, n));
1172 type = TREE_TYPE (type);
1173 }
1174 return sz;
1175 }
1176
1177 /* Called from break_out_target_exprs via mapcar. */
1178
1179 static tree
1180 bot_manip (tree* tp, int* walk_subtrees, void* data)
1181 {
1182 splay_tree target_remap = ((splay_tree) data);
1183 tree t = *tp;
1184
1185 if (!TYPE_P (t) && TREE_CONSTANT (t))
1186 {
1187 /* There can't be any TARGET_EXPRs or their slot variables below
1188 this point. We used to check !TREE_SIDE_EFFECTS, but then we
1189 failed to copy an ADDR_EXPR of the slot VAR_DECL. */
1190 *walk_subtrees = 0;
1191 return NULL_TREE;
1192 }
1193 if (TREE_CODE (t) == TARGET_EXPR)
1194 {
1195 tree u;
1196
1197 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
1198 {
1199 mark_used (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 1), 0), 0));
1200 u = build_cplus_new
1201 (TREE_TYPE (t), break_out_target_exprs (TREE_OPERAND (t, 1)));
1202 }
1203 else
1204 {
1205 u = build_target_expr_with_type
1206 (break_out_target_exprs (TREE_OPERAND (t, 1)), TREE_TYPE (t));
1207 }
1208
1209 /* Map the old variable to the new one. */
1210 splay_tree_insert (target_remap,
1211 (splay_tree_key) TREE_OPERAND (t, 0),
1212 (splay_tree_value) TREE_OPERAND (u, 0));
1213
1214 /* Replace the old expression with the new version. */
1215 *tp = u;
1216 /* We don't have to go below this point; the recursive call to
1217 break_out_target_exprs will have handled anything below this
1218 point. */
1219 *walk_subtrees = 0;
1220 return NULL_TREE;
1221 }
1222 else if (TREE_CODE (t) == CALL_EXPR)
1223 mark_used (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
1224
1225 /* Make a copy of this node. */
1226 return copy_tree_r (tp, walk_subtrees, NULL);
1227 }
1228
1229 /* Replace all remapped VAR_DECLs in T with their new equivalents.
1230 DATA is really a splay-tree mapping old variables to new
1231 variables. */
1232
1233 static tree
1234 bot_replace (tree* t,
1235 int* walk_subtrees ATTRIBUTE_UNUSED ,
1236 void* data)
1237 {
1238 splay_tree target_remap = ((splay_tree) data);
1239
1240 if (TREE_CODE (*t) == VAR_DECL)
1241 {
1242 splay_tree_node n = splay_tree_lookup (target_remap,
1243 (splay_tree_key) *t);
1244 if (n)
1245 *t = (tree) n->value;
1246 }
1247
1248 return NULL_TREE;
1249 }
1250
1251 /* When we parse a default argument expression, we may create
1252 temporary variables via TARGET_EXPRs. When we actually use the
1253 default-argument expression, we make a copy of the expression, but
1254 we must replace the temporaries with appropriate local versions. */
1255
1256 tree
1257 break_out_target_exprs (tree t)
1258 {
1259 static int target_remap_count;
1260 static splay_tree target_remap;
1261
1262 if (!target_remap_count++)
1263 target_remap = splay_tree_new (splay_tree_compare_pointers,
1264 /*splay_tree_delete_key_fn=*/NULL,
1265 /*splay_tree_delete_value_fn=*/NULL);
1266 walk_tree (&t, bot_manip, target_remap, NULL);
1267 walk_tree (&t, bot_replace, target_remap, NULL);
1268
1269 if (!--target_remap_count)
1270 {
1271 splay_tree_delete (target_remap);
1272 target_remap = NULL;
1273 }
1274
1275 return t;
1276 }
1277
1278 /* Similar to `build_nt', but for template definitions of dependent
1279 expressions */
1280
1281 tree
1282 build_min_nt (enum tree_code code, ...)
1283 {
1284 tree t;
1285 int length;
1286 int i;
1287 va_list p;
1288
1289 va_start (p, code);
1290
1291 t = make_node (code);
1292 length = TREE_CODE_LENGTH (code);
1293
1294 for (i = 0; i < length; i++)
1295 {
1296 tree x = va_arg (p, tree);
1297 TREE_OPERAND (t, i) = x;
1298 }
1299
1300 va_end (p);
1301 return t;
1302 }
1303
1304 /* Similar to `build', but for template definitions. */
1305
1306 tree
1307 build_min (enum tree_code code, tree tt, ...)
1308 {
1309 tree t;
1310 int length;
1311 int i;
1312 va_list p;
1313
1314 va_start (p, tt);
1315
1316 t = make_node (code);
1317 length = TREE_CODE_LENGTH (code);
1318 TREE_TYPE (t) = tt;
1319
1320 for (i = 0; i < length; i++)
1321 {
1322 tree x = va_arg (p, tree);
1323 TREE_OPERAND (t, i) = x;
1324 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
1325 TREE_SIDE_EFFECTS (t) = 1;
1326 }
1327
1328 va_end (p);
1329 return t;
1330 }
1331
1332 /* Similar to `build', but for template definitions of non-dependent
1333 expressions. NON_DEP is the non-dependent expression that has been
1334 built. */
1335
1336 tree
1337 build_min_non_dep (enum tree_code code, tree non_dep, ...)
1338 {
1339 tree t;
1340 int length;
1341 int i;
1342 va_list p;
1343
1344 va_start (p, non_dep);
1345
1346 t = make_node (code);
1347 length = TREE_CODE_LENGTH (code);
1348 TREE_TYPE (t) = TREE_TYPE (non_dep);
1349 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
1350
1351 for (i = 0; i < length; i++)
1352 {
1353 tree x = va_arg (p, tree);
1354 TREE_OPERAND (t, i) = x;
1355 }
1356
1357 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
1358 /* This should not be considered a COMPOUND_EXPR, because it
1359 resolves to an overload. */
1360 COMPOUND_EXPR_OVERLOADED (t) = 1;
1361
1362 va_end (p);
1363 return t;
1364 }
1365
1366 tree
1367 get_type_decl (tree t)
1368 {
1369 if (TREE_CODE (t) == TYPE_DECL)
1370 return t;
1371 if (TYPE_P (t))
1372 return TYPE_STUB_DECL (t);
1373 gcc_assert (t == error_mark_node);
1374 return t;
1375 }
1376
1377 /* Returns the namespace that contains DECL, whether directly or
1378 indirectly. */
1379
1380 tree
1381 decl_namespace_context (tree decl)
1382 {
1383 while (1)
1384 {
1385 if (TREE_CODE (decl) == NAMESPACE_DECL)
1386 return decl;
1387 else if (TYPE_P (decl))
1388 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
1389 else
1390 decl = CP_DECL_CONTEXT (decl);
1391 }
1392 }
1393
1394 /* Return truthvalue of whether T1 is the same tree structure as T2.
1395 Return 1 if they are the same. Return 0 if they are different. */
1396
1397 bool
1398 cp_tree_equal (tree t1, tree t2)
1399 {
1400 enum tree_code code1, code2;
1401
1402 if (t1 == t2)
1403 return true;
1404 if (!t1 || !t2)
1405 return false;
1406
1407 for (code1 = TREE_CODE (t1);
1408 code1 == NOP_EXPR || code1 == CONVERT_EXPR
1409 || code1 == NON_LVALUE_EXPR;
1410 code1 = TREE_CODE (t1))
1411 t1 = TREE_OPERAND (t1, 0);
1412 for (code2 = TREE_CODE (t2);
1413 code2 == NOP_EXPR || code2 == CONVERT_EXPR
1414 || code1 == NON_LVALUE_EXPR;
1415 code2 = TREE_CODE (t2))
1416 t2 = TREE_OPERAND (t2, 0);
1417
1418 /* They might have become equal now. */
1419 if (t1 == t2)
1420 return true;
1421
1422 if (code1 != code2)
1423 return false;
1424
1425 switch (code1)
1426 {
1427 case INTEGER_CST:
1428 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
1429 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
1430
1431 case REAL_CST:
1432 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
1433
1434 case STRING_CST:
1435 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
1436 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
1437 TREE_STRING_LENGTH (t1));
1438
1439 case CONSTRUCTOR:
1440 /* We need to do this when determining whether or not two
1441 non-type pointer to member function template arguments
1442 are the same. */
1443 if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
1444 /* The first operand is RTL. */
1445 && TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0)))
1446 return false;
1447 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1448
1449 case TREE_LIST:
1450 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
1451 return false;
1452 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
1453 return false;
1454 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
1455
1456 case SAVE_EXPR:
1457 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1458
1459 case CALL_EXPR:
1460 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1461 return false;
1462 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1463
1464 case TARGET_EXPR:
1465 {
1466 tree o1 = TREE_OPERAND (t1, 0);
1467 tree o2 = TREE_OPERAND (t2, 0);
1468
1469 /* Special case: if either target is an unallocated VAR_DECL,
1470 it means that it's going to be unified with whatever the
1471 TARGET_EXPR is really supposed to initialize, so treat it
1472 as being equivalent to anything. */
1473 if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
1474 && !DECL_RTL_SET_P (o1))
1475 /*Nop*/;
1476 else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
1477 && !DECL_RTL_SET_P (o2))
1478 /*Nop*/;
1479 else if (!cp_tree_equal (o1, o2))
1480 return false;
1481
1482 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1483 }
1484
1485 case WITH_CLEANUP_EXPR:
1486 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1487 return false;
1488 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
1489
1490 case COMPONENT_REF:
1491 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
1492 return false;
1493 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1494
1495 case VAR_DECL:
1496 case PARM_DECL:
1497 case CONST_DECL:
1498 case FUNCTION_DECL:
1499 case TEMPLATE_DECL:
1500 case IDENTIFIER_NODE:
1501 return false;
1502
1503 case BASELINK:
1504 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
1505 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
1506 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
1507 BASELINK_FUNCTIONS (t2)));
1508
1509 case TEMPLATE_PARM_INDEX:
1510 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
1511 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
1512 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
1513 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
1514
1515 case TEMPLATE_ID_EXPR:
1516 {
1517 unsigned ix;
1518 tree vec1, vec2;
1519
1520 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1521 return false;
1522 vec1 = TREE_OPERAND (t1, 1);
1523 vec2 = TREE_OPERAND (t2, 1);
1524
1525 if (!vec1 || !vec2)
1526 return !vec1 && !vec2;
1527
1528 if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2))
1529 return false;
1530
1531 for (ix = TREE_VEC_LENGTH (vec1); ix--;)
1532 if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix),
1533 TREE_VEC_ELT (vec2, ix)))
1534 return false;
1535
1536 return true;
1537 }
1538
1539 case SIZEOF_EXPR:
1540 case ALIGNOF_EXPR:
1541 {
1542 tree o1 = TREE_OPERAND (t1, 0);
1543 tree o2 = TREE_OPERAND (t2, 0);
1544
1545 if (TREE_CODE (o1) != TREE_CODE (o2))
1546 return false;
1547 if (TYPE_P (o1))
1548 return same_type_p (o1, o2);
1549 else
1550 return cp_tree_equal (o1, o2);
1551 }
1552
1553 case PTRMEM_CST:
1554 /* Two pointer-to-members are the same if they point to the same
1555 field or function in the same class. */
1556 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
1557 return false;
1558
1559 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
1560
1561 default:
1562 break;
1563 }
1564
1565 switch (TREE_CODE_CLASS (code1))
1566 {
1567 case tcc_unary:
1568 case tcc_binary:
1569 case tcc_comparison:
1570 case tcc_expression:
1571 case tcc_reference:
1572 case tcc_statement:
1573 {
1574 int i;
1575
1576 for (i = 0; i < TREE_CODE_LENGTH (code1); ++i)
1577 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
1578 return false;
1579
1580 return true;
1581 }
1582
1583 case tcc_type:
1584 return same_type_p (t1, t2);
1585 default:
1586 gcc_unreachable ();
1587 }
1588 /* We can get here with --disable-checking. */
1589 return false;
1590 }
1591
1592 /* The type of ARG when used as an lvalue. */
1593
1594 tree
1595 lvalue_type (tree arg)
1596 {
1597 tree type = TREE_TYPE (arg);
1598 return type;
1599 }
1600
1601 /* The type of ARG for printing error messages; denote lvalues with
1602 reference types. */
1603
1604 tree
1605 error_type (tree arg)
1606 {
1607 tree type = TREE_TYPE (arg);
1608
1609 if (TREE_CODE (type) == ARRAY_TYPE)
1610 ;
1611 else if (TREE_CODE (type) == ERROR_MARK)
1612 ;
1613 else if (real_lvalue_p (arg))
1614 type = build_reference_type (lvalue_type (arg));
1615 else if (IS_AGGR_TYPE (type))
1616 type = lvalue_type (arg);
1617
1618 return type;
1619 }
1620
1621 /* Does FUNCTION use a variable-length argument list? */
1622
1623 int
1624 varargs_function_p (tree function)
1625 {
1626 tree parm = TYPE_ARG_TYPES (TREE_TYPE (function));
1627 for (; parm; parm = TREE_CHAIN (parm))
1628 if (TREE_VALUE (parm) == void_type_node)
1629 return 0;
1630 return 1;
1631 }
1632
1633 /* Returns 1 if decl is a member of a class. */
1634
1635 int
1636 member_p (tree decl)
1637 {
1638 const tree ctx = DECL_CONTEXT (decl);
1639 return (ctx && TYPE_P (ctx));
1640 }
1641
1642 /* Create a placeholder for member access where we don't actually have an
1643 object that the access is against. */
1644
1645 tree
1646 build_dummy_object (tree type)
1647 {
1648 tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
1649 return build_indirect_ref (decl, NULL);
1650 }
1651
1652 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
1653 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
1654 binfo path from current_class_type to TYPE, or 0. */
1655
1656 tree
1657 maybe_dummy_object (tree type, tree* binfop)
1658 {
1659 tree decl, context;
1660 tree binfo;
1661
1662 if (current_class_type
1663 && (binfo = lookup_base (current_class_type, type,
1664 ba_unique | ba_quiet, NULL)))
1665 context = current_class_type;
1666 else
1667 {
1668 /* Reference from a nested class member function. */
1669 context = type;
1670 binfo = TYPE_BINFO (type);
1671 }
1672
1673 if (binfop)
1674 *binfop = binfo;
1675
1676 if (current_class_ref && context == current_class_type
1677 /* Kludge: Make sure that current_class_type is actually
1678 correct. It might not be if we're in the middle of
1679 tsubst_default_argument. */
1680 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)),
1681 current_class_type))
1682 decl = current_class_ref;
1683 else
1684 decl = build_dummy_object (context);
1685
1686 return decl;
1687 }
1688
1689 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
1690
1691 int
1692 is_dummy_object (tree ob)
1693 {
1694 if (TREE_CODE (ob) == INDIRECT_REF)
1695 ob = TREE_OPERAND (ob, 0);
1696 return (TREE_CODE (ob) == NOP_EXPR
1697 && TREE_OPERAND (ob, 0) == void_zero_node);
1698 }
1699
1700 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
1701
1702 int
1703 pod_type_p (tree t)
1704 {
1705 t = strip_array_types (t);
1706
1707 if (t == error_mark_node)
1708 return 1;
1709 if (INTEGRAL_TYPE_P (t))
1710 return 1; /* integral, character or enumeral type */
1711 if (FLOAT_TYPE_P (t))
1712 return 1;
1713 if (TYPE_PTR_P (t))
1714 return 1; /* pointer to non-member */
1715 if (TYPE_PTR_TO_MEMBER_P (t))
1716 return 1; /* pointer to member */
1717
1718 if (TREE_CODE (t) == VECTOR_TYPE)
1719 return 1; /* vectors are (small) arrays of scalars */
1720
1721 if (! CLASS_TYPE_P (t))
1722 return 0; /* other non-class type (reference or function) */
1723 if (CLASSTYPE_NON_POD_P (t))
1724 return 0;
1725 return 1;
1726 }
1727
1728 /* Returns 1 iff zero initialization of type T means actually storing
1729 zeros in it. */
1730
1731 int
1732 zero_init_p (tree t)
1733 {
1734 t = strip_array_types (t);
1735
1736 if (t == error_mark_node)
1737 return 1;
1738
1739 /* NULL pointers to data members are initialized with -1. */
1740 if (TYPE_PTRMEM_P (t))
1741 return 0;
1742
1743 /* Classes that contain types that can't be zero-initialized, cannot
1744 be zero-initialized themselves. */
1745 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
1746 return 0;
1747
1748 return 1;
1749 }
1750
1751 /* Table of valid C++ attributes. */
1752 const struct attribute_spec cxx_attribute_table[] =
1753 {
1754 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
1755 { "java_interface", 0, 0, false, false, false, handle_java_interface_attribute },
1756 { "com_interface", 0, 0, false, false, false, handle_com_interface_attribute },
1757 { "init_priority", 1, 1, true, false, false, handle_init_priority_attribute },
1758 { NULL, 0, 0, false, false, false, NULL }
1759 };
1760
1761 /* Handle a "java_interface" attribute; arguments as in
1762 struct attribute_spec.handler. */
1763 static tree
1764 handle_java_interface_attribute (tree* node,
1765 tree name,
1766 tree args ATTRIBUTE_UNUSED ,
1767 int flags,
1768 bool* no_add_attrs)
1769 {
1770 if (DECL_P (*node)
1771 || !CLASS_TYPE_P (*node)
1772 || !TYPE_FOR_JAVA (*node))
1773 {
1774 error ("%qE attribute can only be applied to Java class definitions",
1775 name);
1776 *no_add_attrs = true;
1777 return NULL_TREE;
1778 }
1779 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
1780 *node = build_variant_type_copy (*node);
1781 TYPE_JAVA_INTERFACE (*node) = 1;
1782
1783 return NULL_TREE;
1784 }
1785
1786 /* Handle a "com_interface" attribute; arguments as in
1787 struct attribute_spec.handler. */
1788 static tree
1789 handle_com_interface_attribute (tree* node,
1790 tree name,
1791 tree args ATTRIBUTE_UNUSED ,
1792 int flags ATTRIBUTE_UNUSED ,
1793 bool* no_add_attrs)
1794 {
1795 static int warned;
1796
1797 *no_add_attrs = true;
1798
1799 if (DECL_P (*node)
1800 || !CLASS_TYPE_P (*node)
1801 || *node != TYPE_MAIN_VARIANT (*node))
1802 {
1803 warning ("%qE attribute can only be applied to class definitions", name);
1804 return NULL_TREE;
1805 }
1806
1807 if (!warned++)
1808 warning ("%qE is obsolete; g++ vtables are now COM-compatible by default",
1809 name);
1810
1811 return NULL_TREE;
1812 }
1813
1814 /* Handle an "init_priority" attribute; arguments as in
1815 struct attribute_spec.handler. */
1816 static tree
1817 handle_init_priority_attribute (tree* node,
1818 tree name,
1819 tree args,
1820 int flags ATTRIBUTE_UNUSED ,
1821 bool* no_add_attrs)
1822 {
1823 tree initp_expr = TREE_VALUE (args);
1824 tree decl = *node;
1825 tree type = TREE_TYPE (decl);
1826 int pri;
1827
1828 STRIP_NOPS (initp_expr);
1829
1830 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
1831 {
1832 error ("requested init_priority is not an integer constant");
1833 *no_add_attrs = true;
1834 return NULL_TREE;
1835 }
1836
1837 pri = TREE_INT_CST_LOW (initp_expr);
1838
1839 type = strip_array_types (type);
1840
1841 if (decl == NULL_TREE
1842 || TREE_CODE (decl) != VAR_DECL
1843 || !TREE_STATIC (decl)
1844 || DECL_EXTERNAL (decl)
1845 || (TREE_CODE (type) != RECORD_TYPE
1846 && TREE_CODE (type) != UNION_TYPE)
1847 /* Static objects in functions are initialized the
1848 first time control passes through that
1849 function. This is not precise enough to pin down an
1850 init_priority value, so don't allow it. */
1851 || current_function_decl)
1852 {
1853 error ("can only use %qE attribute on file-scope definitions "
1854 "of objects of class type", name);
1855 *no_add_attrs = true;
1856 return NULL_TREE;
1857 }
1858
1859 if (pri > MAX_INIT_PRIORITY || pri <= 0)
1860 {
1861 error ("requested init_priority is out of range");
1862 *no_add_attrs = true;
1863 return NULL_TREE;
1864 }
1865
1866 /* Check for init_priorities that are reserved for
1867 language and runtime support implementations.*/
1868 if (pri <= MAX_RESERVED_INIT_PRIORITY)
1869 {
1870 warning
1871 ("requested init_priority is reserved for internal use");
1872 }
1873
1874 if (SUPPORTS_INIT_PRIORITY)
1875 {
1876 DECL_INIT_PRIORITY (decl) = pri;
1877 return NULL_TREE;
1878 }
1879 else
1880 {
1881 error ("%qE attribute is not supported on this platform", name);
1882 *no_add_attrs = true;
1883 return NULL_TREE;
1884 }
1885 }
1886
1887 /* Return a new TINST_LEVEL for DECL at location locus. */
1888 tree
1889 make_tinst_level (tree decl, location_t locus)
1890 {
1891 tree tinst_level = make_node (TINST_LEVEL);
1892 TREE_CHAIN (tinst_level) = NULL_TREE;
1893 TINST_DECL (tinst_level) = decl;
1894 TINST_LOCATION (tinst_level) = locus;
1895 return tinst_level;
1896 }
1897
1898 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
1899 thing pointed to by the constant. */
1900
1901 tree
1902 make_ptrmem_cst (tree type, tree member)
1903 {
1904 tree ptrmem_cst = make_node (PTRMEM_CST);
1905 TREE_TYPE (ptrmem_cst) = type;
1906 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
1907 return ptrmem_cst;
1908 }
1909
1910 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
1911 return an existing type of an appropriate type already exists. */
1912
1913 tree
1914 cp_build_type_attribute_variant (tree type, tree attributes)
1915 {
1916 tree new_type;
1917
1918 new_type = build_type_attribute_variant (type, attributes);
1919 if (TREE_CODE (new_type) == FUNCTION_TYPE
1920 && (TYPE_RAISES_EXCEPTIONS (new_type)
1921 != TYPE_RAISES_EXCEPTIONS (type)))
1922 new_type = build_exception_variant (new_type,
1923 TYPE_RAISES_EXCEPTIONS (type));
1924 return new_type;
1925 }
1926
1927 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
1928 traversal. Called from walk_tree. */
1929
1930 tree
1931 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
1932 void *data, struct pointer_set_t *pset)
1933 {
1934 enum tree_code code = TREE_CODE (*tp);
1935 location_t save_locus;
1936 tree result;
1937
1938 #define WALK_SUBTREE(NODE) \
1939 do \
1940 { \
1941 result = walk_tree (&(NODE), func, data, pset); \
1942 if (result) goto out; \
1943 } \
1944 while (0)
1945
1946 /* Set input_location here so we get the right instantiation context
1947 if we call instantiate_decl from inlinable_function_p. */
1948 save_locus = input_location;
1949 if (EXPR_HAS_LOCATION (*tp))
1950 input_location = EXPR_LOCATION (*tp);
1951
1952 /* Not one of the easy cases. We must explicitly go through the
1953 children. */
1954 result = NULL_TREE;
1955 switch (code)
1956 {
1957 case DEFAULT_ARG:
1958 case TEMPLATE_TEMPLATE_PARM:
1959 case BOUND_TEMPLATE_TEMPLATE_PARM:
1960 case UNBOUND_CLASS_TEMPLATE:
1961 case TEMPLATE_PARM_INDEX:
1962 case TEMPLATE_TYPE_PARM:
1963 case TYPENAME_TYPE:
1964 case TYPEOF_TYPE:
1965 case BASELINK:
1966 /* None of these have subtrees other than those already walked
1967 above. */
1968 *walk_subtrees_p = 0;
1969 break;
1970
1971 case TINST_LEVEL:
1972 WALK_SUBTREE (TINST_DECL (*tp));
1973 *walk_subtrees_p = 0;
1974 break;
1975
1976 case PTRMEM_CST:
1977 WALK_SUBTREE (TREE_TYPE (*tp));
1978 *walk_subtrees_p = 0;
1979 break;
1980
1981 case TREE_LIST:
1982 WALK_SUBTREE (TREE_PURPOSE (*tp));
1983 break;
1984
1985 case OVERLOAD:
1986 WALK_SUBTREE (OVL_FUNCTION (*tp));
1987 WALK_SUBTREE (OVL_CHAIN (*tp));
1988 *walk_subtrees_p = 0;
1989 break;
1990
1991 case RECORD_TYPE:
1992 if (TYPE_PTRMEMFUNC_P (*tp))
1993 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
1994 break;
1995
1996 default:
1997 input_location = save_locus;
1998 return NULL_TREE;
1999 }
2000
2001 /* We didn't find what we were looking for. */
2002 out:
2003 input_location = save_locus;
2004 return result;
2005
2006 #undef WALK_SUBTREE
2007 }
2008
2009 /* Decide whether there are language-specific reasons to not inline a
2010 function as a tree. */
2011
2012 int
2013 cp_cannot_inline_tree_fn (tree* fnp)
2014 {
2015 tree fn = *fnp;
2016
2017 /* We can inline a template instantiation only if it's fully
2018 instantiated. */
2019 if (DECL_TEMPLATE_INFO (fn)
2020 && TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
2021 {
2022 /* Don't instantiate functions that are not going to be
2023 inlined. */
2024 if (!DECL_INLINE (DECL_TEMPLATE_RESULT
2025 (template_for_substitution (fn))))
2026 return 1;
2027
2028 fn = *fnp = instantiate_decl (fn, /*defer_ok=*/0, /*undefined_ok=*/0);
2029
2030 if (TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
2031 return 1;
2032 }
2033
2034 if (flag_really_no_inline
2035 && lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) == NULL)
2036 return 1;
2037
2038 /* Don't auto-inline anything that might not be bound within
2039 this unit of translation.
2040 Exclude comdat functions from this rule. While they can be bound
2041 to the other unit, they all must be the same. This is especially
2042 important so templates can inline. */
2043 if (!DECL_DECLARED_INLINE_P (fn) && !(*targetm.binds_local_p) (fn)
2044 && !DECL_COMDAT (fn))
2045 {
2046 DECL_UNINLINABLE (fn) = 1;
2047 return 1;
2048 }
2049
2050 if (varargs_function_p (fn))
2051 {
2052 DECL_UNINLINABLE (fn) = 1;
2053 return 1;
2054 }
2055
2056 if (! function_attribute_inlinable_p (fn))
2057 {
2058 DECL_UNINLINABLE (fn) = 1;
2059 return 1;
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* Add any pending functions other than the current function (already
2066 handled by the caller), that thus cannot be inlined, to FNS_P, then
2067 return the latest function added to the array, PREV_FN. */
2068
2069 tree
2070 cp_add_pending_fn_decls (void* fns_p, tree prev_fn)
2071 {
2072 varray_type *fnsp = (varray_type *)fns_p;
2073 struct saved_scope *s;
2074
2075 for (s = scope_chain; s; s = s->prev)
2076 if (s->function_decl && s->function_decl != prev_fn)
2077 {
2078 VARRAY_PUSH_TREE (*fnsp, s->function_decl);
2079 prev_fn = s->function_decl;
2080 }
2081
2082 return prev_fn;
2083 }
2084
2085 /* Determine whether a tree node is an OVERLOAD node. Used to decide
2086 whether to copy a node or to preserve its chain when inlining a
2087 function. */
2088
2089 int
2090 cp_is_overload_p (tree t)
2091 {
2092 return TREE_CODE (t) == OVERLOAD;
2093 }
2094
2095 /* Determine whether VAR is a declaration of an automatic variable in
2096 function FN. */
2097
2098 int
2099 cp_auto_var_in_fn_p (tree var, tree fn)
2100 {
2101 return (DECL_P (var) && DECL_CONTEXT (var) == fn
2102 && nonstatic_local_decl_p (var));
2103 }
2104
2105 /* FN body has been duplicated. Update language specific fields. */
2106
2107 void
2108 cp_update_decl_after_saving (tree fn,
2109 void* decl_map_)
2110 {
2111 splay_tree decl_map = (splay_tree)decl_map_;
2112 tree nrv = DECL_SAVED_FUNCTION_DATA (fn)->x_return_value;
2113 if (nrv)
2114 {
2115 DECL_SAVED_FUNCTION_DATA (fn)->x_return_value
2116 = (tree) splay_tree_lookup (decl_map, (splay_tree_key) nrv)->value;
2117 }
2118 }
2119 /* Initialize tree.c. */
2120
2121 void
2122 init_tree (void)
2123 {
2124 list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
2125 }
2126
2127 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
2128 is. Note that sfk_none is zero, so this function can be used as a
2129 predicate to test whether or not DECL is a special function. */
2130
2131 special_function_kind
2132 special_function_p (tree decl)
2133 {
2134 /* Rather than doing all this stuff with magic names, we should
2135 probably have a field of type `special_function_kind' in
2136 DECL_LANG_SPECIFIC. */
2137 if (DECL_COPY_CONSTRUCTOR_P (decl))
2138 return sfk_copy_constructor;
2139 if (DECL_CONSTRUCTOR_P (decl))
2140 return sfk_constructor;
2141 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
2142 return sfk_assignment_operator;
2143 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
2144 return sfk_destructor;
2145 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
2146 return sfk_complete_destructor;
2147 if (DECL_BASE_DESTRUCTOR_P (decl))
2148 return sfk_base_destructor;
2149 if (DECL_DELETING_DESTRUCTOR_P (decl))
2150 return sfk_deleting_destructor;
2151 if (DECL_CONV_FN_P (decl))
2152 return sfk_conversion;
2153
2154 return sfk_none;
2155 }
2156
2157 /* Returns true if and only if NODE is a name, i.e., a node created
2158 by the parser when processing an id-expression. */
2159
2160 bool
2161 name_p (tree node)
2162 {
2163 if (TREE_CODE (node) == TEMPLATE_ID_EXPR)
2164 node = TREE_OPERAND (node, 0);
2165 return (/* An ordinary unqualified name. */
2166 TREE_CODE (node) == IDENTIFIER_NODE
2167 /* A destructor name. */
2168 || TREE_CODE (node) == BIT_NOT_EXPR
2169 /* A qualified name. */
2170 || TREE_CODE (node) == SCOPE_REF);
2171 }
2172
2173 /* Returns nonzero if TYPE is a character type, including wchar_t. */
2174
2175 int
2176 char_type_p (tree type)
2177 {
2178 return (same_type_p (type, char_type_node)
2179 || same_type_p (type, unsigned_char_type_node)
2180 || same_type_p (type, signed_char_type_node)
2181 || same_type_p (type, wchar_type_node));
2182 }
2183
2184 /* Returns the kind of linkage associated with the indicated DECL. Th
2185 value returned is as specified by the language standard; it is
2186 independent of implementation details regarding template
2187 instantiation, etc. For example, it is possible that a declaration
2188 to which this function assigns external linkage would not show up
2189 as a global symbol when you run `nm' on the resulting object file. */
2190
2191 linkage_kind
2192 decl_linkage (tree decl)
2193 {
2194 /* This function doesn't attempt to calculate the linkage from first
2195 principles as given in [basic.link]. Instead, it makes use of
2196 the fact that we have already set TREE_PUBLIC appropriately, and
2197 then handles a few special cases. Ideally, we would calculate
2198 linkage first, and then transform that into a concrete
2199 implementation. */
2200
2201 /* Things that don't have names have no linkage. */
2202 if (!DECL_NAME (decl))
2203 return lk_none;
2204
2205 /* Things that are TREE_PUBLIC have external linkage. */
2206 if (TREE_PUBLIC (decl))
2207 return lk_external;
2208
2209 /* Some things that are not TREE_PUBLIC have external linkage, too.
2210 For example, on targets that don't have weak symbols, we make all
2211 template instantiations have internal linkage (in the object
2212 file), but the symbols should still be treated as having external
2213 linkage from the point of view of the language. */
2214 if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
2215 return lk_external;
2216
2217 /* Things in local scope do not have linkage, if they don't have
2218 TREE_PUBLIC set. */
2219 if (decl_function_context (decl))
2220 return lk_none;
2221
2222 /* Everything else has internal linkage. */
2223 return lk_internal;
2224 }
2225 \f
2226 /* EXP is an expression that we want to pre-evaluate. Returns via INITP an
2227 expression to perform the pre-evaluation, and returns directly an
2228 expression to use the precalculated result. */
2229
2230 tree
2231 stabilize_expr (tree exp, tree* initp)
2232 {
2233 tree init_expr;
2234
2235 if (!TREE_SIDE_EFFECTS (exp))
2236 {
2237 init_expr = NULL_TREE;
2238 }
2239 else if (!real_lvalue_p (exp)
2240 || !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp)))
2241 {
2242 init_expr = get_target_expr (exp);
2243 exp = TARGET_EXPR_SLOT (init_expr);
2244 }
2245 else
2246 {
2247 exp = build_unary_op (ADDR_EXPR, exp, 1);
2248 init_expr = get_target_expr (exp);
2249 exp = TARGET_EXPR_SLOT (init_expr);
2250 exp = build_indirect_ref (exp, 0);
2251 }
2252
2253 *initp = init_expr;
2254 return exp;
2255 }
2256
2257 /* Add NEW, an expression whose value we don't care about, after the
2258 similar expression ORIG. */
2259
2260 tree
2261 add_stmt_to_compound (tree orig, tree new)
2262 {
2263 if (!new || !TREE_SIDE_EFFECTS (new))
2264 return orig;
2265 if (!orig || !TREE_SIDE_EFFECTS (orig))
2266 return new;
2267 return build2 (COMPOUND_EXPR, void_type_node, orig, new);
2268 }
2269
2270 /* Like stabilize_expr, but for a call whose args we want to
2271 pre-evaluate. */
2272
2273 void
2274 stabilize_call (tree call, tree *initp)
2275 {
2276 tree inits = NULL_TREE;
2277 tree t;
2278
2279 if (call == error_mark_node)
2280 return;
2281
2282 gcc_assert (TREE_CODE (call) == CALL_EXPR
2283 || TREE_CODE (call) == AGGR_INIT_EXPR);
2284
2285 for (t = TREE_OPERAND (call, 1); t; t = TREE_CHAIN (t))
2286 if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
2287 {
2288 tree init;
2289 TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
2290 inits = add_stmt_to_compound (inits, init);
2291 }
2292
2293 *initp = inits;
2294 }
2295
2296 /* Like stabilize_expr, but for an initialization. If we are initializing
2297 an object of class type, we don't want to introduce an extra temporary,
2298 so we look past the TARGET_EXPR and stabilize the arguments of the call
2299 instead. */
2300
2301 bool
2302 stabilize_init (tree init, tree *initp)
2303 {
2304 tree t = init;
2305
2306 if (t == error_mark_node)
2307 return true;
2308
2309 if (TREE_CODE (t) == INIT_EXPR
2310 && TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR)
2311 TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp);
2312 else
2313 {
2314 if (TREE_CODE (t) == INIT_EXPR)
2315 t = TREE_OPERAND (t, 1);
2316 if (TREE_CODE (t) == TARGET_EXPR)
2317 t = TARGET_EXPR_INITIAL (t);
2318 if (TREE_CODE (t) == COMPOUND_EXPR)
2319 t = expr_last (t);
2320 if (TREE_CODE (t) == CONSTRUCTOR
2321 && CONSTRUCTOR_ELTS (t) == NULL_TREE)
2322 {
2323 /* Default-initialization. */
2324 *initp = NULL_TREE;
2325 return true;
2326 }
2327
2328 /* If the initializer is a COND_EXPR, we can't preevaluate
2329 anything. */
2330 if (TREE_CODE (t) == COND_EXPR)
2331 return false;
2332
2333 stabilize_call (t, initp);
2334 }
2335
2336 return true;
2337 }
2338
2339 /* Like "fold", but should be used whenever we might be processing the
2340 body of a template. */
2341
2342 tree
2343 fold_if_not_in_template (tree expr)
2344 {
2345 /* In the body of a template, there is never any need to call
2346 "fold". We will call fold later when actually instantiating the
2347 template. Integral constant expressions in templates will be
2348 evaluated via fold_non_dependent_expr, as necessary. */
2349 return (processing_template_decl ? expr : fold (expr));
2350 }
2351
2352 \f
2353 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
2354 /* Complain that some language-specific thing hanging off a tree
2355 node has been accessed improperly. */
2356
2357 void
2358 lang_check_failed (const char* file, int line, const char* function)
2359 {
2360 internal_error ("lang_* check: failed in %s, at %s:%d",
2361 function, trim_filename (file), line);
2362 }
2363 #endif /* ENABLE_TREE_CHECKING */
2364
2365 #include "gt-cp-tree.h"