langhooks-def.h (LANG_HOOKS_TREE_INLINING_COPY_RES_DECL_FOR_INLINING, [...]): Remove.
[gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Hacked by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "cp-tree.h"
29 #include "flags.h"
30 #include "real.h"
31 #include "rtl.h"
32 #include "toplev.h"
33 #include "insn-config.h"
34 #include "integrate.h"
35 #include "tree-inline.h"
36 #include "target.h"
37
38 static tree bot_manip (tree *, int *, void *);
39 static tree bot_replace (tree *, int *, void *);
40 static tree build_cplus_array_type_1 (tree, tree);
41 static int list_hash_eq (const void *, const void *);
42 static hashval_t list_hash_pieces (tree, tree, tree);
43 static hashval_t list_hash (const void *);
44 static cp_lvalue_kind lvalue_p_1 (tree, int);
45 static tree no_linkage_helper (tree *, int *, void *);
46 static tree mark_local_for_remap_r (tree *, int *, void *);
47 static tree cp_unsave_r (tree *, int *, void *);
48 static tree build_target_expr (tree, tree);
49 static tree count_trees_r (tree *, int *, void *);
50 static tree verify_stmt_tree_r (tree *, int *, void *);
51 static tree find_tree_r (tree *, int *, void *);
52 static tree build_local_temp (tree);
53
54 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
55 static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
56 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
57
58 /* If REF is an lvalue, returns the kind of lvalue that REF is.
59 Otherwise, returns clk_none. If TREAT_CLASS_RVALUES_AS_LVALUES is
60 nonzero, rvalues of class type are considered lvalues. */
61
62 static cp_lvalue_kind
63 lvalue_p_1 (tree ref,
64 int treat_class_rvalues_as_lvalues)
65 {
66 cp_lvalue_kind op1_lvalue_kind = clk_none;
67 cp_lvalue_kind op2_lvalue_kind = clk_none;
68
69 if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
70 return clk_ordinary;
71
72 if (ref == current_class_ptr)
73 return clk_none;
74
75 switch (TREE_CODE (ref))
76 {
77 /* preincrements and predecrements are valid lvals, provided
78 what they refer to are valid lvals. */
79 case PREINCREMENT_EXPR:
80 case PREDECREMENT_EXPR:
81 case SAVE_EXPR:
82 case UNSAVE_EXPR:
83 case TRY_CATCH_EXPR:
84 case WITH_CLEANUP_EXPR:
85 case REALPART_EXPR:
86 case IMAGPART_EXPR:
87 return lvalue_p_1 (TREE_OPERAND (ref, 0),
88 treat_class_rvalues_as_lvalues);
89
90 case COMPONENT_REF:
91 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
92 treat_class_rvalues_as_lvalues);
93 /* In an expression of the form "X.Y", the packed-ness of the
94 expression does not depend on "X". */
95 op1_lvalue_kind &= ~clk_packed;
96 /* Look at the member designator. */
97 if (!op1_lvalue_kind
98 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
99 situations. */
100 || TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
101 ;
102 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
103 {
104 /* Clear the ordinary bit. If this object was a class
105 rvalue we want to preserve that information. */
106 op1_lvalue_kind &= ~clk_ordinary;
107 /* The lvalue is for a bitfield. */
108 op1_lvalue_kind |= clk_bitfield;
109 }
110 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
111 op1_lvalue_kind |= clk_packed;
112
113 return op1_lvalue_kind;
114
115 case STRING_CST:
116 return clk_ordinary;
117
118 case VAR_DECL:
119 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
120 && DECL_LANG_SPECIFIC (ref)
121 && DECL_IN_AGGR_P (ref))
122 return clk_none;
123 case INDIRECT_REF:
124 case ARRAY_REF:
125 case PARM_DECL:
126 case RESULT_DECL:
127 if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
128 return clk_ordinary;
129 break;
130
131 /* A currently unresolved scope ref. */
132 case SCOPE_REF:
133 abort ();
134 case MAX_EXPR:
135 case MIN_EXPR:
136 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
137 treat_class_rvalues_as_lvalues);
138 op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
139 treat_class_rvalues_as_lvalues);
140 break;
141
142 case COND_EXPR:
143 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
144 treat_class_rvalues_as_lvalues);
145 op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2),
146 treat_class_rvalues_as_lvalues);
147 break;
148
149 case MODIFY_EXPR:
150 return clk_ordinary;
151
152 case COMPOUND_EXPR:
153 return lvalue_p_1 (TREE_OPERAND (ref, 1),
154 treat_class_rvalues_as_lvalues);
155
156 case TARGET_EXPR:
157 return treat_class_rvalues_as_lvalues ? clk_class : clk_none;
158
159 case CALL_EXPR:
160 case VA_ARG_EXPR:
161 /* Any class-valued call would be wrapped in a TARGET_EXPR. */
162 return clk_none;
163
164 case FUNCTION_DECL:
165 /* All functions (except non-static-member functions) are
166 lvalues. */
167 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
168 ? clk_none : clk_ordinary);
169
170 case NON_DEPENDENT_EXPR:
171 /* We must consider NON_DEPENDENT_EXPRs to be lvalues so that
172 things like "&E" where "E" is an expression with a
173 non-dependent type work. It is safe to be lenient because an
174 error will be issued when the template is instantiated if "E"
175 is not an lvalue. */
176 return clk_ordinary;
177
178 default:
179 break;
180 }
181
182 /* If one operand is not an lvalue at all, then this expression is
183 not an lvalue. */
184 if (!op1_lvalue_kind || !op2_lvalue_kind)
185 return clk_none;
186
187 /* Otherwise, it's an lvalue, and it has all the odd properties
188 contributed by either operand. */
189 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
190 /* It's not an ordinary lvalue if it involves either a bit-field or
191 a class rvalue. */
192 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
193 op1_lvalue_kind &= ~clk_ordinary;
194 return op1_lvalue_kind;
195 }
196
197 /* Returns the kind of lvalue that REF is, in the sense of
198 [basic.lval]. This function should really be named lvalue_p; it
199 computes the C++ definition of lvalue. */
200
201 cp_lvalue_kind
202 real_lvalue_p (tree ref)
203 {
204 return lvalue_p_1 (ref,
205 /*treat_class_rvalues_as_lvalues=*/0);
206 }
207
208 /* This differs from real_lvalue_p in that class rvalues are
209 considered lvalues. */
210
211 int
212 lvalue_p (tree ref)
213 {
214 return
215 (lvalue_p_1 (ref, /*class rvalue ok*/ 1) != clk_none);
216 }
217
218 /* Return nonzero if REF is an lvalue valid for this language;
219 otherwise, print an error message and return zero. */
220
221 int
222 lvalue_or_else (tree ref, const char* string)
223 {
224 if (!lvalue_p (ref))
225 {
226 error ("non-lvalue in %s", string);
227 return 0;
228 }
229 return 1;
230 }
231
232 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
233
234 static tree
235 build_target_expr (tree decl, tree value)
236 {
237 tree t;
238
239 t = build (TARGET_EXPR, TREE_TYPE (decl), decl, value,
240 cxx_maybe_build_cleanup (decl), NULL_TREE);
241 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
242 ignore the TARGET_EXPR. If there really turn out to be no
243 side-effects, then the optimizer should be able to get rid of
244 whatever code is generated anyhow. */
245 TREE_SIDE_EFFECTS (t) = 1;
246
247 return t;
248 }
249
250 /* Return an undeclared local temporary of type TYPE for use in building a
251 TARGET_EXPR. */
252
253 static tree
254 build_local_temp (tree type)
255 {
256 tree slot = build_decl (VAR_DECL, NULL_TREE, type);
257 DECL_ARTIFICIAL (slot) = 1;
258 DECL_CONTEXT (slot) = current_function_decl;
259 layout_decl (slot, 0);
260 return slot;
261 }
262
263 /* INIT is a CALL_EXPR which needs info about its target.
264 TYPE is the type that this initialization should appear to have.
265
266 Build an encapsulation of the initialization to perform
267 and return it so that it can be processed by language-independent
268 and language-specific expression expanders. */
269
270 tree
271 build_cplus_new (tree type, tree init)
272 {
273 tree fn;
274 tree slot;
275 tree rval;
276 int is_ctor;
277
278 /* Make sure that we're not trying to create an instance of an
279 abstract class. */
280 abstract_virtuals_error (NULL_TREE, type);
281
282 if (TREE_CODE (init) != CALL_EXPR && TREE_CODE (init) != AGGR_INIT_EXPR)
283 return convert (type, init);
284
285 fn = TREE_OPERAND (init, 0);
286 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
287 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
288 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
289
290 slot = build_local_temp (type);
291
292 /* We split the CALL_EXPR into its function and its arguments here.
293 Then, in expand_expr, we put them back together. The reason for
294 this is that this expression might be a default argument
295 expression. In that case, we need a new temporary every time the
296 expression is used. That's what break_out_target_exprs does; it
297 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
298 temporary slot. Then, expand_expr builds up a call-expression
299 using the new slot. */
300
301 /* If we don't need to use a constructor to create an object of this
302 type, don't mess with AGGR_INIT_EXPR. */
303 if (is_ctor || TREE_ADDRESSABLE (type))
304 {
305 rval = build (AGGR_INIT_EXPR, void_type_node, fn,
306 TREE_OPERAND (init, 1), slot);
307 TREE_SIDE_EFFECTS (rval) = 1;
308 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
309 }
310 else
311 rval = init;
312
313 rval = build_target_expr (slot, rval);
314
315 return rval;
316 }
317
318 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
319 indicated TYPE. */
320
321 tree
322 build_target_expr_with_type (tree init, tree type)
323 {
324 tree slot;
325
326 my_friendly_assert (!VOID_TYPE_P (type), 20040130);
327
328 if (TREE_CODE (init) == TARGET_EXPR)
329 return init;
330 else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type)
331 && TREE_CODE (init) != COND_EXPR
332 && TREE_CODE (init) != CONSTRUCTOR
333 && TREE_CODE (init) != VA_ARG_EXPR)
334 /* We need to build up a copy constructor call. COND_EXPR is a special
335 case because we already have copies on the arms and we don't want
336 another one here. A CONSTRUCTOR is aggregate initialization, which
337 is handled separately. A VA_ARG_EXPR is magic creation of an
338 aggregate; there's no additional work to be done. */
339 return force_rvalue (init);
340
341 slot = build_local_temp (type);
342 return build_target_expr (slot, init);
343 }
344
345 /* Like the above function, but without the checking. This function should
346 only be used by code which is deliberately trying to subvert the type
347 system, such as call_builtin_trap. */
348
349 tree
350 force_target_expr (tree type, tree init)
351 {
352 tree slot;
353
354 my_friendly_assert (!VOID_TYPE_P (type), 20040130);
355
356 slot = build_local_temp (type);
357 return build_target_expr (slot, init);
358 }
359
360 /* Like build_target_expr_with_type, but use the type of INIT. */
361
362 tree
363 get_target_expr (tree init)
364 {
365 return build_target_expr_with_type (init, TREE_TYPE (init));
366 }
367
368 \f
369 static tree
370 build_cplus_array_type_1 (tree elt_type, tree index_type)
371 {
372 tree t;
373
374 if (elt_type == error_mark_node || index_type == error_mark_node)
375 return error_mark_node;
376
377 if (dependent_type_p (elt_type)
378 || (index_type
379 && value_dependent_expression_p (TYPE_MAX_VALUE (index_type))))
380 {
381 t = make_node (ARRAY_TYPE);
382 TREE_TYPE (t) = elt_type;
383 TYPE_DOMAIN (t) = index_type;
384 }
385 else
386 t = build_array_type (elt_type, index_type);
387
388 /* Push these needs up so that initialization takes place
389 more easily. */
390 TYPE_NEEDS_CONSTRUCTING (t)
391 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
392 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
393 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
394 return t;
395 }
396
397 tree
398 build_cplus_array_type (tree elt_type, tree index_type)
399 {
400 tree t;
401 int type_quals = cp_type_quals (elt_type);
402
403 if (type_quals != TYPE_UNQUALIFIED)
404 elt_type = cp_build_qualified_type (elt_type, TYPE_UNQUALIFIED);
405
406 t = build_cplus_array_type_1 (elt_type, index_type);
407
408 if (type_quals != TYPE_UNQUALIFIED)
409 t = cp_build_qualified_type (t, type_quals);
410
411 return t;
412 }
413 \f
414 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
415 arrays correctly. In particular, if TYPE is an array of T's, and
416 TYPE_QUALS is non-empty, returns an array of qualified T's.
417
418 FLAGS determines how to deal with illformed qualifications. If
419 tf_ignore_bad_quals is set, then bad qualifications are dropped
420 (this is permitted if TYPE was introduced via a typedef or template
421 type parameter). If bad qualifications are dropped and tf_warning
422 is set, then a warning is issued for non-const qualifications. If
423 tf_ignore_bad_quals is not set and tf_error is not set, we
424 return error_mark_node. Otherwise, we issue an error, and ignore
425 the qualifications.
426
427 Qualification of a reference type is valid when the reference came
428 via a typedef or template type argument. [dcl.ref] No such
429 dispensation is provided for qualifying a function type. [dcl.fct]
430 DR 295 queries this and the proposed resolution brings it into line
431 with qualifying a reference. We implement the DR. We also behave
432 in a similar manner for restricting non-pointer types. */
433
434 tree
435 cp_build_qualified_type_real (tree type,
436 int type_quals,
437 tsubst_flags_t complain)
438 {
439 tree result;
440 int bad_quals = TYPE_UNQUALIFIED;
441
442 if (type == error_mark_node)
443 return type;
444
445 if (type_quals == cp_type_quals (type))
446 return type;
447
448 if (TREE_CODE (type) == ARRAY_TYPE)
449 {
450 /* In C++, the qualification really applies to the array element
451 type. Obtain the appropriately qualified element type. */
452 tree t;
453 tree element_type
454 = cp_build_qualified_type_real (TREE_TYPE (type),
455 type_quals,
456 complain);
457
458 if (element_type == error_mark_node)
459 return error_mark_node;
460
461 /* See if we already have an identically qualified type. */
462 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
463 if (cp_type_quals (t) == type_quals
464 && TYPE_NAME (t) == TYPE_NAME (type)
465 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
466 break;
467
468 if (!t)
469 {
470 /* Make a new array type, just like the old one, but with the
471 appropriately qualified element type. */
472 t = build_type_copy (type);
473 TREE_TYPE (t) = element_type;
474 }
475
476 /* Even if we already had this variant, we update
477 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
478 they changed since the variant was originally created.
479
480 This seems hokey; if there is some way to use a previous
481 variant *without* coming through here,
482 TYPE_NEEDS_CONSTRUCTING will never be updated. */
483 TYPE_NEEDS_CONSTRUCTING (t)
484 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
485 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
486 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
487 return t;
488 }
489 else if (TYPE_PTRMEMFUNC_P (type))
490 {
491 /* For a pointer-to-member type, we can't just return a
492 cv-qualified version of the RECORD_TYPE. If we do, we
493 haven't changed the field that contains the actual pointer to
494 a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
495 tree t;
496
497 t = TYPE_PTRMEMFUNC_FN_TYPE (type);
498 t = cp_build_qualified_type_real (t, type_quals, complain);
499 return build_ptrmemfunc_type (t);
500 }
501
502 /* A reference, function or method type shall not be cv qualified.
503 [dcl.ref], [dct.fct] */
504 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
505 && (TREE_CODE (type) == REFERENCE_TYPE
506 || TREE_CODE (type) == FUNCTION_TYPE
507 || TREE_CODE (type) == METHOD_TYPE))
508 {
509 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
510 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
511 }
512
513 /* A restrict-qualified type must be a pointer (or reference)
514 to object or incomplete type. */
515 if ((type_quals & TYPE_QUAL_RESTRICT)
516 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
517 && TREE_CODE (type) != TYPENAME_TYPE
518 && !POINTER_TYPE_P (type))
519 {
520 bad_quals |= TYPE_QUAL_RESTRICT;
521 type_quals &= ~TYPE_QUAL_RESTRICT;
522 }
523
524 if (bad_quals == TYPE_UNQUALIFIED)
525 /*OK*/;
526 else if (!(complain & (tf_error | tf_ignore_bad_quals)))
527 return error_mark_node;
528 else
529 {
530 if (complain & tf_ignore_bad_quals)
531 /* We're not going to warn about constifying things that can't
532 be constified. */
533 bad_quals &= ~TYPE_QUAL_CONST;
534 if (bad_quals)
535 {
536 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
537
538 if (!(complain & tf_ignore_bad_quals))
539 error ("`%V' qualifiers cannot be applied to `%T'",
540 bad_type, type);
541 }
542 }
543
544 /* Retrieve (or create) the appropriately qualified variant. */
545 result = build_qualified_type (type, type_quals);
546
547 /* If this was a pointer-to-method type, and we just made a copy,
548 then we need to unshare the record that holds the cached
549 pointer-to-member-function type, because these will be distinct
550 between the unqualified and qualified types. */
551 if (result != type
552 && TREE_CODE (type) == POINTER_TYPE
553 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)
554 TYPE_LANG_SPECIFIC (result) = NULL;
555
556 return result;
557 }
558
559 /* Returns the canonical version of TYPE. In other words, if TYPE is
560 a typedef, returns the underlying type. The cv-qualification of
561 the type returned matches the type input; they will always be
562 compatible types. */
563
564 tree
565 canonical_type_variant (tree t)
566 {
567 return cp_build_qualified_type (TYPE_MAIN_VARIANT (t), cp_type_quals (t));
568 }
569 \f
570 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
571 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
572 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
573 VIRT indicates whether TYPE is inherited virtually or not.
574 IGO_PREV points at the previous binfo of the inheritance graph
575 order chain. The newly copied binfo's TREE_CHAIN forms this
576 ordering.
577
578 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
579 correct order. That is in the order the bases themselves should be
580 constructed in.
581
582 The BINFO_INHERITANCE of a virtual base class points to the binfo
583 of the most derived type. ??? We could probably change this so that
584 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
585 remove a field. They currently can only differ for primary virtual
586 virtual bases. */
587
588 tree
589 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
590 {
591 tree new_binfo;
592
593 if (virt)
594 {
595 /* See if we've already made this virtual base. */
596 new_binfo = binfo_for_vbase (type, t);
597 if (new_binfo)
598 return new_binfo;
599 }
600
601 new_binfo = make_tree_binfo (BINFO_LANG_SLOTS);
602 BINFO_TYPE (new_binfo) = type;
603
604 /* Chain it into the inheritance graph. */
605 TREE_CHAIN (*igo_prev) = new_binfo;
606 *igo_prev = new_binfo;
607
608 if (binfo)
609 {
610 int ix, n = BINFO_N_BASE_BINFOS (binfo);
611
612 my_friendly_assert (!BINFO_DEPENDENT_BASE_P (binfo), 20040712);
613 my_friendly_assert (type == BINFO_TYPE (binfo), 20040714);
614
615 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
616 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
617
618 /* Create a new base binfo vector. */
619 if (n)
620 {
621 BINFO_BASE_BINFOS (new_binfo) = make_tree_vec (n);
622 /* We do not need to copy the accesses, as they are read only. */
623 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
624 }
625
626 /* Recursively copy base binfos of BINFO. */
627 for (ix = 0; ix != n; ix++)
628 {
629 tree base_binfo = BINFO_BASE_BINFO (binfo, ix);
630 tree new_base_binfo;
631
632 my_friendly_assert (!BINFO_DEPENDENT_BASE_P (base_binfo), 20040713);
633 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
634 t, igo_prev,
635 BINFO_VIRTUAL_P (base_binfo));
636
637 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
638 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
639 BINFO_BASE_BINFO (new_binfo, ix) = new_base_binfo;
640 }
641 }
642 else
643 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
644
645 if (virt)
646 {
647 /* Push it onto the list after any virtual bases it contains
648 will have been pushed. */
649 VEC_quick_push (tree, CLASSTYPE_VBASECLASSES (t), new_binfo);
650 BINFO_VIRTUAL_P (new_binfo) = 1;
651 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
652 }
653
654 return new_binfo;
655 }
656 \f
657 /* Hashing of lists so that we don't make duplicates.
658 The entry point is `list_hash_canon'. */
659
660 /* Now here is the hash table. When recording a list, it is added
661 to the slot whose index is the hash code mod the table size.
662 Note that the hash table is used for several kinds of lists.
663 While all these live in the same table, they are completely independent,
664 and the hash code is computed differently for each of these. */
665
666 static GTY ((param_is (union tree_node))) htab_t list_hash_table;
667
668 struct list_proxy
669 {
670 tree purpose;
671 tree value;
672 tree chain;
673 };
674
675 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
676 for a node we are thinking about adding). */
677
678 static int
679 list_hash_eq (const void* entry, const void* data)
680 {
681 tree t = (tree) entry;
682 struct list_proxy *proxy = (struct list_proxy *) data;
683
684 return (TREE_VALUE (t) == proxy->value
685 && TREE_PURPOSE (t) == proxy->purpose
686 && TREE_CHAIN (t) == proxy->chain);
687 }
688
689 /* Compute a hash code for a list (chain of TREE_LIST nodes
690 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
691 TREE_COMMON slots), by adding the hash codes of the individual entries. */
692
693 static hashval_t
694 list_hash_pieces (tree purpose, tree value, tree chain)
695 {
696 hashval_t hashcode = 0;
697
698 if (chain)
699 hashcode += TREE_HASH (chain);
700
701 if (value)
702 hashcode += TREE_HASH (value);
703 else
704 hashcode += 1007;
705 if (purpose)
706 hashcode += TREE_HASH (purpose);
707 else
708 hashcode += 1009;
709 return hashcode;
710 }
711
712 /* Hash an already existing TREE_LIST. */
713
714 static hashval_t
715 list_hash (const void* p)
716 {
717 tree t = (tree) p;
718 return list_hash_pieces (TREE_PURPOSE (t),
719 TREE_VALUE (t),
720 TREE_CHAIN (t));
721 }
722
723 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
724 object for an identical list if one already exists. Otherwise, build a
725 new one, and record it as the canonical object. */
726
727 tree
728 hash_tree_cons (tree purpose, tree value, tree chain)
729 {
730 int hashcode = 0;
731 void **slot;
732 struct list_proxy proxy;
733
734 /* Hash the list node. */
735 hashcode = list_hash_pieces (purpose, value, chain);
736 /* Create a proxy for the TREE_LIST we would like to create. We
737 don't actually create it so as to avoid creating garbage. */
738 proxy.purpose = purpose;
739 proxy.value = value;
740 proxy.chain = chain;
741 /* See if it is already in the table. */
742 slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
743 INSERT);
744 /* If not, create a new node. */
745 if (!*slot)
746 *slot = tree_cons (purpose, value, chain);
747 return *slot;
748 }
749
750 /* Constructor for hashed lists. */
751
752 tree
753 hash_tree_chain (tree value, tree chain)
754 {
755 return hash_tree_cons (NULL_TREE, value, chain);
756 }
757
758 /* Similar, but used for concatenating two lists. */
759
760 tree
761 hash_chainon (tree list1, tree list2)
762 {
763 if (list2 == 0)
764 return list1;
765 if (list1 == 0)
766 return list2;
767 if (TREE_CHAIN (list1) == NULL_TREE)
768 return hash_tree_chain (TREE_VALUE (list1), list2);
769 return hash_tree_chain (TREE_VALUE (list1),
770 hash_chainon (TREE_CHAIN (list1), list2));
771 }
772 \f
773 void
774 debug_binfo (tree elem)
775 {
776 HOST_WIDE_INT n;
777 tree virtuals;
778
779 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
780 "\nvtable type:\n",
781 TYPE_NAME_STRING (BINFO_TYPE (elem)),
782 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
783 debug_tree (BINFO_TYPE (elem));
784 if (BINFO_VTABLE (elem))
785 fprintf (stderr, "vtable decl \"%s\"\n",
786 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
787 else
788 fprintf (stderr, "no vtable decl yet\n");
789 fprintf (stderr, "virtuals:\n");
790 virtuals = BINFO_VIRTUALS (elem);
791 n = 0;
792
793 while (virtuals)
794 {
795 tree fndecl = TREE_VALUE (virtuals);
796 fprintf (stderr, "%s [%ld =? %ld]\n",
797 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
798 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
799 ++n;
800 virtuals = TREE_CHAIN (virtuals);
801 }
802 }
803
804 int
805 count_functions (tree t)
806 {
807 int i;
808 if (TREE_CODE (t) == FUNCTION_DECL)
809 return 1;
810 else if (TREE_CODE (t) == OVERLOAD)
811 {
812 for (i = 0; t; t = OVL_CHAIN (t))
813 i++;
814 return i;
815 }
816
817 abort ();
818 return 0;
819 }
820
821 int
822 is_overloaded_fn (tree x)
823 {
824 /* A baselink is also considered an overloaded function. */
825 if (TREE_CODE (x) == OFFSET_REF)
826 x = TREE_OPERAND (x, 1);
827 if (BASELINK_P (x))
828 x = BASELINK_FUNCTIONS (x);
829 return (TREE_CODE (x) == FUNCTION_DECL
830 || TREE_CODE (x) == TEMPLATE_ID_EXPR
831 || DECL_FUNCTION_TEMPLATE_P (x)
832 || TREE_CODE (x) == OVERLOAD);
833 }
834
835 int
836 really_overloaded_fn (tree x)
837 {
838 /* A baselink is also considered an overloaded function. */
839 if (TREE_CODE (x) == OFFSET_REF)
840 x = TREE_OPERAND (x, 1);
841 if (BASELINK_P (x))
842 x = BASELINK_FUNCTIONS (x);
843
844 return ((TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x))
845 || DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
846 || TREE_CODE (x) == TEMPLATE_ID_EXPR);
847 }
848
849 tree
850 get_first_fn (tree from)
851 {
852 my_friendly_assert (is_overloaded_fn (from), 9);
853 /* A baselink is also considered an overloaded function. */
854 if (BASELINK_P (from))
855 from = BASELINK_FUNCTIONS (from);
856 return OVL_CURRENT (from);
857 }
858
859 /* Returns nonzero if T is a ->* or .* expression that refers to a
860 member function. */
861
862 int
863 bound_pmf_p (tree t)
864 {
865 return (TREE_CODE (t) == OFFSET_REF
866 && TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (t, 1))));
867 }
868
869 /* Return a new OVL node, concatenating it with the old one. */
870
871 tree
872 ovl_cons (tree decl, tree chain)
873 {
874 tree result = make_node (OVERLOAD);
875 TREE_TYPE (result) = unknown_type_node;
876 OVL_FUNCTION (result) = decl;
877 TREE_CHAIN (result) = chain;
878
879 return result;
880 }
881
882 /* Build a new overloaded function. If this is the first one,
883 just return it; otherwise, ovl_cons the _DECLs */
884
885 tree
886 build_overload (tree decl, tree chain)
887 {
888 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
889 return decl;
890 if (chain && TREE_CODE (chain) != OVERLOAD)
891 chain = ovl_cons (chain, NULL_TREE);
892 return ovl_cons (decl, chain);
893 }
894
895 \f
896 #define PRINT_RING_SIZE 4
897
898 const char *
899 cxx_printable_name (tree decl, int v)
900 {
901 static tree decl_ring[PRINT_RING_SIZE];
902 static char *print_ring[PRINT_RING_SIZE];
903 static int ring_counter;
904 int i;
905
906 /* Only cache functions. */
907 if (v < 2
908 || TREE_CODE (decl) != FUNCTION_DECL
909 || DECL_LANG_SPECIFIC (decl) == 0)
910 return lang_decl_name (decl, v);
911
912 /* See if this print name is lying around. */
913 for (i = 0; i < PRINT_RING_SIZE; i++)
914 if (decl_ring[i] == decl)
915 /* yes, so return it. */
916 return print_ring[i];
917
918 if (++ring_counter == PRINT_RING_SIZE)
919 ring_counter = 0;
920
921 if (current_function_decl != NULL_TREE)
922 {
923 if (decl_ring[ring_counter] == current_function_decl)
924 ring_counter += 1;
925 if (ring_counter == PRINT_RING_SIZE)
926 ring_counter = 0;
927 if (decl_ring[ring_counter] == current_function_decl)
928 abort ();
929 }
930
931 if (print_ring[ring_counter])
932 free (print_ring[ring_counter]);
933
934 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v));
935 decl_ring[ring_counter] = decl;
936 return print_ring[ring_counter];
937 }
938 \f
939 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
940 listed in RAISES. */
941
942 tree
943 build_exception_variant (tree type, tree raises)
944 {
945 tree v = TYPE_MAIN_VARIANT (type);
946 int type_quals = TYPE_QUALS (type);
947
948 for (; v; v = TYPE_NEXT_VARIANT (v))
949 if (check_qualified_type (v, type, type_quals)
950 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1))
951 return v;
952
953 /* Need to build a new variant. */
954 v = build_type_copy (type);
955 TYPE_RAISES_EXCEPTIONS (v) = raises;
956 return v;
957 }
958
959 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
960 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
961 arguments. */
962
963 tree
964 bind_template_template_parm (tree t, tree newargs)
965 {
966 tree decl = TYPE_NAME (t);
967 tree t2;
968
969 t2 = make_aggr_type (BOUND_TEMPLATE_TEMPLATE_PARM);
970 decl = build_decl (TYPE_DECL, DECL_NAME (decl), NULL_TREE);
971
972 /* These nodes have to be created to reflect new TYPE_DECL and template
973 arguments. */
974 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
975 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
976 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
977 = tree_cons (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t),
978 newargs, NULL_TREE);
979
980 TREE_TYPE (decl) = t2;
981 TYPE_NAME (t2) = decl;
982 TYPE_STUB_DECL (t2) = decl;
983 TYPE_SIZE (t2) = 0;
984
985 return t2;
986 }
987
988 /* Called from count_trees via walk_tree. */
989
990 static tree
991 count_trees_r (tree *tp, int *walk_subtrees, void *data)
992 {
993 ++*((int *) data);
994
995 if (TYPE_P (*tp))
996 *walk_subtrees = 0;
997
998 return NULL_TREE;
999 }
1000
1001 /* Debugging function for measuring the rough complexity of a tree
1002 representation. */
1003
1004 int
1005 count_trees (tree t)
1006 {
1007 int n_trees = 0;
1008 walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
1009 return n_trees;
1010 }
1011
1012 /* Called from verify_stmt_tree via walk_tree. */
1013
1014 static tree
1015 verify_stmt_tree_r (tree* tp,
1016 int* walk_subtrees ATTRIBUTE_UNUSED ,
1017 void* data)
1018 {
1019 tree t = *tp;
1020 htab_t *statements = (htab_t *) data;
1021 void **slot;
1022
1023 if (!STATEMENT_CODE_P (TREE_CODE (t)))
1024 return NULL_TREE;
1025
1026 /* If this statement is already present in the hash table, then
1027 there is a circularity in the statement tree. */
1028 if (htab_find (*statements, t))
1029 abort ();
1030
1031 slot = htab_find_slot (*statements, t, INSERT);
1032 *slot = t;
1033
1034 return NULL_TREE;
1035 }
1036
1037 /* Debugging function to check that the statement T has not been
1038 corrupted. For now, this function simply checks that T contains no
1039 circularities. */
1040
1041 void
1042 verify_stmt_tree (tree t)
1043 {
1044 htab_t statements;
1045 statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
1046 walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
1047 htab_delete (statements);
1048 }
1049
1050 /* Called from find_tree via walk_tree. */
1051
1052 static tree
1053 find_tree_r (tree* tp,
1054 int* walk_subtrees ATTRIBUTE_UNUSED ,
1055 void* data)
1056 {
1057 if (*tp == (tree) data)
1058 return (tree) data;
1059
1060 return NULL_TREE;
1061 }
1062
1063 /* Returns X if X appears in the tree structure rooted at T. */
1064
1065 tree
1066 find_tree (tree t, tree x)
1067 {
1068 return walk_tree_without_duplicates (&t, find_tree_r, x);
1069 }
1070
1071 /* Passed to walk_tree. Checks for the use of types with no linkage. */
1072
1073 static tree
1074 no_linkage_helper (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
1075 void *data ATTRIBUTE_UNUSED)
1076 {
1077 tree t = *tp;
1078
1079 if (TYPE_P (t)
1080 && (CLASS_TYPE_P (t) || TREE_CODE (t) == ENUMERAL_TYPE)
1081 && (decl_function_context (TYPE_MAIN_DECL (t))
1082 || TYPE_ANONYMOUS_P (t)))
1083 return t;
1084
1085 return NULL_TREE;
1086 }
1087
1088 /* Check if the type T depends on a type with no linkage and if so, return
1089 it. */
1090
1091 tree
1092 no_linkage_check (tree t)
1093 {
1094 /* There's no point in checking linkage on template functions; we
1095 can't know their complete types. */
1096 if (processing_template_decl)
1097 return NULL_TREE;
1098
1099 t = walk_tree_without_duplicates (&t, no_linkage_helper, NULL);
1100 if (t != error_mark_node)
1101 return t;
1102 return NULL_TREE;
1103 }
1104
1105 #ifdef GATHER_STATISTICS
1106 extern int depth_reached;
1107 #endif
1108
1109 void
1110 cxx_print_statistics (void)
1111 {
1112 print_search_statistics ();
1113 print_class_statistics ();
1114 #ifdef GATHER_STATISTICS
1115 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
1116 depth_reached);
1117 #endif
1118 }
1119
1120 /* Return, as an INTEGER_CST node, the number of elements for TYPE
1121 (which is an ARRAY_TYPE). This counts only elements of the top
1122 array. */
1123
1124 tree
1125 array_type_nelts_top (tree type)
1126 {
1127 return fold (build (PLUS_EXPR, sizetype,
1128 array_type_nelts (type),
1129 integer_one_node));
1130 }
1131
1132 /* Return, as an INTEGER_CST node, the number of elements for TYPE
1133 (which is an ARRAY_TYPE). This one is a recursive count of all
1134 ARRAY_TYPEs that are clumped together. */
1135
1136 tree
1137 array_type_nelts_total (tree type)
1138 {
1139 tree sz = array_type_nelts_top (type);
1140 type = TREE_TYPE (type);
1141 while (TREE_CODE (type) == ARRAY_TYPE)
1142 {
1143 tree n = array_type_nelts_top (type);
1144 sz = fold (build (MULT_EXPR, sizetype, sz, n));
1145 type = TREE_TYPE (type);
1146 }
1147 return sz;
1148 }
1149
1150 /* Called from break_out_target_exprs via mapcar. */
1151
1152 static tree
1153 bot_manip (tree* tp, int* walk_subtrees, void* data)
1154 {
1155 splay_tree target_remap = ((splay_tree) data);
1156 tree t = *tp;
1157
1158 if (!TYPE_P (t) && TREE_CONSTANT (t))
1159 {
1160 /* There can't be any TARGET_EXPRs or their slot variables below
1161 this point. We used to check !TREE_SIDE_EFFECTS, but then we
1162 failed to copy an ADDR_EXPR of the slot VAR_DECL. */
1163 *walk_subtrees = 0;
1164 return NULL_TREE;
1165 }
1166 if (TREE_CODE (t) == TARGET_EXPR)
1167 {
1168 tree u;
1169
1170 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
1171 {
1172 mark_used (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 1), 0), 0));
1173 u = build_cplus_new
1174 (TREE_TYPE (t), break_out_target_exprs (TREE_OPERAND (t, 1)));
1175 }
1176 else
1177 {
1178 u = build_target_expr_with_type
1179 (break_out_target_exprs (TREE_OPERAND (t, 1)), TREE_TYPE (t));
1180 }
1181
1182 /* Map the old variable to the new one. */
1183 splay_tree_insert (target_remap,
1184 (splay_tree_key) TREE_OPERAND (t, 0),
1185 (splay_tree_value) TREE_OPERAND (u, 0));
1186
1187 /* Replace the old expression with the new version. */
1188 *tp = u;
1189 /* We don't have to go below this point; the recursive call to
1190 break_out_target_exprs will have handled anything below this
1191 point. */
1192 *walk_subtrees = 0;
1193 return NULL_TREE;
1194 }
1195 else if (TREE_CODE (t) == CALL_EXPR)
1196 mark_used (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
1197
1198 /* Make a copy of this node. */
1199 return copy_tree_r (tp, walk_subtrees, NULL);
1200 }
1201
1202 /* Replace all remapped VAR_DECLs in T with their new equivalents.
1203 DATA is really a splay-tree mapping old variables to new
1204 variables. */
1205
1206 static tree
1207 bot_replace (tree* t,
1208 int* walk_subtrees ATTRIBUTE_UNUSED ,
1209 void* data)
1210 {
1211 splay_tree target_remap = ((splay_tree) data);
1212
1213 if (TREE_CODE (*t) == VAR_DECL)
1214 {
1215 splay_tree_node n = splay_tree_lookup (target_remap,
1216 (splay_tree_key) *t);
1217 if (n)
1218 *t = (tree) n->value;
1219 }
1220
1221 return NULL_TREE;
1222 }
1223
1224 /* When we parse a default argument expression, we may create
1225 temporary variables via TARGET_EXPRs. When we actually use the
1226 default-argument expression, we make a copy of the expression, but
1227 we must replace the temporaries with appropriate local versions. */
1228
1229 tree
1230 break_out_target_exprs (tree t)
1231 {
1232 static int target_remap_count;
1233 static splay_tree target_remap;
1234
1235 if (!target_remap_count++)
1236 target_remap = splay_tree_new (splay_tree_compare_pointers,
1237 /*splay_tree_delete_key_fn=*/NULL,
1238 /*splay_tree_delete_value_fn=*/NULL);
1239 walk_tree (&t, bot_manip, target_remap, NULL);
1240 walk_tree (&t, bot_replace, target_remap, NULL);
1241
1242 if (!--target_remap_count)
1243 {
1244 splay_tree_delete (target_remap);
1245 target_remap = NULL;
1246 }
1247
1248 return t;
1249 }
1250
1251 /* Similar to `build_nt', but for template definitions of dependent
1252 expressions */
1253
1254 tree
1255 build_min_nt (enum tree_code code, ...)
1256 {
1257 tree t;
1258 int length;
1259 int i;
1260 va_list p;
1261
1262 va_start (p, code);
1263
1264 t = make_node (code);
1265 length = TREE_CODE_LENGTH (code);
1266
1267 for (i = 0; i < length; i++)
1268 {
1269 tree x = va_arg (p, tree);
1270 TREE_OPERAND (t, i) = x;
1271 }
1272
1273 va_end (p);
1274 return t;
1275 }
1276
1277 /* Similar to `build', but for template definitions. */
1278
1279 tree
1280 build_min (enum tree_code code, tree tt, ...)
1281 {
1282 tree t;
1283 int length;
1284 int i;
1285 va_list p;
1286
1287 va_start (p, tt);
1288
1289 t = make_node (code);
1290 length = TREE_CODE_LENGTH (code);
1291 TREE_TYPE (t) = tt;
1292
1293 for (i = 0; i < length; i++)
1294 {
1295 tree x = va_arg (p, tree);
1296 TREE_OPERAND (t, i) = x;
1297 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
1298 TREE_SIDE_EFFECTS (t) = 1;
1299 }
1300
1301 va_end (p);
1302 return t;
1303 }
1304
1305 /* Similar to `build', but for template definitions of non-dependent
1306 expressions. NON_DEP is the non-dependent expression that has been
1307 built. */
1308
1309 tree
1310 build_min_non_dep (enum tree_code code, tree non_dep, ...)
1311 {
1312 tree t;
1313 int length;
1314 int i;
1315 va_list p;
1316
1317 va_start (p, non_dep);
1318
1319 t = make_node (code);
1320 length = TREE_CODE_LENGTH (code);
1321 TREE_TYPE (t) = TREE_TYPE (non_dep);
1322 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
1323
1324 for (i = 0; i < length; i++)
1325 {
1326 tree x = va_arg (p, tree);
1327 TREE_OPERAND (t, i) = x;
1328 }
1329
1330 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
1331 /* This should not be considered a COMPOUND_EXPR, because it
1332 resolves to an overload. */
1333 COMPOUND_EXPR_OVERLOADED (t) = 1;
1334
1335 va_end (p);
1336 return t;
1337 }
1338
1339 /* Returns an INTEGER_CST (of type `int') corresponding to I.
1340 Multiple calls with the same value of I may or may not yield the
1341 same node; therefore, callers should never modify the node
1342 returned. */
1343
1344 static GTY(()) tree shared_int_cache[256];
1345
1346 tree
1347 build_shared_int_cst (int i)
1348 {
1349 if (i >= 256)
1350 return build_int_2 (i, 0);
1351
1352 if (!shared_int_cache[i])
1353 shared_int_cache[i] = build_int_2 (i, 0);
1354
1355 return shared_int_cache[i];
1356 }
1357
1358 tree
1359 get_type_decl (tree t)
1360 {
1361 if (TREE_CODE (t) == TYPE_DECL)
1362 return t;
1363 if (TYPE_P (t))
1364 return TYPE_STUB_DECL (t);
1365 if (t == error_mark_node)
1366 return t;
1367
1368 abort ();
1369
1370 /* Stop compiler from complaining control reaches end of non-void function. */
1371 return 0;
1372 }
1373
1374 /* Return first vector element whose BINFO_TYPE is ELEM.
1375 Return 0 if ELEM is not in VEC. VEC may be NULL_TREE. */
1376
1377 tree
1378 vec_binfo_member (tree elem, tree vec)
1379 {
1380 int i;
1381
1382 if (vec)
1383 for (i = 0; i < TREE_VEC_LENGTH (vec); ++i)
1384 if (same_type_p (elem, BINFO_TYPE (TREE_VEC_ELT (vec, i))))
1385 return TREE_VEC_ELT (vec, i);
1386
1387 return NULL_TREE;
1388 }
1389
1390 /* Returns the namespace that contains DECL, whether directly or
1391 indirectly. */
1392
1393 tree
1394 decl_namespace_context (tree decl)
1395 {
1396 while (1)
1397 {
1398 if (TREE_CODE (decl) == NAMESPACE_DECL)
1399 return decl;
1400 else if (TYPE_P (decl))
1401 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
1402 else
1403 decl = CP_DECL_CONTEXT (decl);
1404 }
1405 }
1406
1407 /* Return truthvalue of whether T1 is the same tree structure as T2.
1408 Return 1 if they are the same. Return 0 if they are different. */
1409
1410 bool
1411 cp_tree_equal (tree t1, tree t2)
1412 {
1413 enum tree_code code1, code2;
1414
1415 if (t1 == t2)
1416 return true;
1417 if (!t1 || !t2)
1418 return false;
1419
1420 for (code1 = TREE_CODE (t1);
1421 code1 == NOP_EXPR || code1 == CONVERT_EXPR
1422 || code1 == NON_LVALUE_EXPR;
1423 code1 = TREE_CODE (t1))
1424 t1 = TREE_OPERAND (t1, 0);
1425 for (code2 = TREE_CODE (t2);
1426 code2 == NOP_EXPR || code2 == CONVERT_EXPR
1427 || code1 == NON_LVALUE_EXPR;
1428 code2 = TREE_CODE (t2))
1429 t2 = TREE_OPERAND (t2, 0);
1430
1431 /* They might have become equal now. */
1432 if (t1 == t2)
1433 return true;
1434
1435 if (code1 != code2)
1436 return false;
1437
1438 switch (code1)
1439 {
1440 case INTEGER_CST:
1441 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
1442 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
1443
1444 case REAL_CST:
1445 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
1446
1447 case STRING_CST:
1448 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
1449 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
1450 TREE_STRING_LENGTH (t1));
1451
1452 case CONSTRUCTOR:
1453 /* We need to do this when determining whether or not two
1454 non-type pointer to member function template arguments
1455 are the same. */
1456 if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
1457 /* The first operand is RTL. */
1458 && TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0)))
1459 return false;
1460 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1461
1462 case TREE_LIST:
1463 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
1464 return false;
1465 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
1466 return false;
1467 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
1468
1469 case SAVE_EXPR:
1470 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1471
1472 case CALL_EXPR:
1473 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1474 return false;
1475 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1476
1477 case TARGET_EXPR:
1478 {
1479 tree o1 = TREE_OPERAND (t1, 0);
1480 tree o2 = TREE_OPERAND (t2, 0);
1481
1482 /* Special case: if either target is an unallocated VAR_DECL,
1483 it means that it's going to be unified with whatever the
1484 TARGET_EXPR is really supposed to initialize, so treat it
1485 as being equivalent to anything. */
1486 if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
1487 && !DECL_RTL_SET_P (o1))
1488 /*Nop*/;
1489 else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
1490 && !DECL_RTL_SET_P (o2))
1491 /*Nop*/;
1492 else if (!cp_tree_equal (o1, o2))
1493 return false;
1494
1495 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1496 }
1497
1498 case WITH_CLEANUP_EXPR:
1499 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1500 return false;
1501 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
1502
1503 case COMPONENT_REF:
1504 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
1505 return false;
1506 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1507
1508 case VAR_DECL:
1509 case PARM_DECL:
1510 case CONST_DECL:
1511 case FUNCTION_DECL:
1512 case TEMPLATE_DECL:
1513 case IDENTIFIER_NODE:
1514 return false;
1515
1516 case TEMPLATE_PARM_INDEX:
1517 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
1518 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
1519 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
1520 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
1521
1522 case TEMPLATE_ID_EXPR:
1523 {
1524 unsigned ix;
1525 tree vec1, vec2;
1526
1527 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1528 return false;
1529 vec1 = TREE_OPERAND (t1, 1);
1530 vec2 = TREE_OPERAND (t2, 1);
1531
1532 if (!vec1 || !vec2)
1533 return !vec1 && !vec2;
1534
1535 if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2))
1536 return false;
1537
1538 for (ix = TREE_VEC_LENGTH (vec1); ix--;)
1539 if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix),
1540 TREE_VEC_ELT (vec2, ix)))
1541 return false;
1542
1543 return true;
1544 }
1545
1546 case SIZEOF_EXPR:
1547 case ALIGNOF_EXPR:
1548 {
1549 tree o1 = TREE_OPERAND (t1, 0);
1550 tree o2 = TREE_OPERAND (t2, 0);
1551
1552 if (TREE_CODE (o1) != TREE_CODE (o2))
1553 return false;
1554 if (TYPE_P (o1))
1555 return same_type_p (o1, o2);
1556 else
1557 return cp_tree_equal (o1, o2);
1558 }
1559
1560 case PTRMEM_CST:
1561 /* Two pointer-to-members are the same if they point to the same
1562 field or function in the same class. */
1563 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
1564 return false;
1565
1566 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
1567
1568 default:
1569 break;
1570 }
1571
1572 switch (TREE_CODE_CLASS (code1))
1573 {
1574 case '1':
1575 case '2':
1576 case '<':
1577 case 'e':
1578 case 'r':
1579 case 's':
1580 {
1581 int i;
1582
1583 for (i = 0; i < TREE_CODE_LENGTH (code1); ++i)
1584 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
1585 return false;
1586
1587 return true;
1588 }
1589
1590 case 't':
1591 return same_type_p (t1, t2);
1592 }
1593
1594 my_friendly_assert (0, 20030617);
1595 return false;
1596 }
1597
1598 /* The type of ARG when used as an lvalue. */
1599
1600 tree
1601 lvalue_type (tree arg)
1602 {
1603 tree type = TREE_TYPE (arg);
1604 return type;
1605 }
1606
1607 /* The type of ARG for printing error messages; denote lvalues with
1608 reference types. */
1609
1610 tree
1611 error_type (tree arg)
1612 {
1613 tree type = TREE_TYPE (arg);
1614
1615 if (TREE_CODE (type) == ARRAY_TYPE)
1616 ;
1617 else if (TREE_CODE (type) == ERROR_MARK)
1618 ;
1619 else if (real_lvalue_p (arg))
1620 type = build_reference_type (lvalue_type (arg));
1621 else if (IS_AGGR_TYPE (type))
1622 type = lvalue_type (arg);
1623
1624 return type;
1625 }
1626
1627 /* Does FUNCTION use a variable-length argument list? */
1628
1629 int
1630 varargs_function_p (tree function)
1631 {
1632 tree parm = TYPE_ARG_TYPES (TREE_TYPE (function));
1633 for (; parm; parm = TREE_CHAIN (parm))
1634 if (TREE_VALUE (parm) == void_type_node)
1635 return 0;
1636 return 1;
1637 }
1638
1639 /* Returns 1 if decl is a member of a class. */
1640
1641 int
1642 member_p (tree decl)
1643 {
1644 const tree ctx = DECL_CONTEXT (decl);
1645 return (ctx && TYPE_P (ctx));
1646 }
1647
1648 /* Create a placeholder for member access where we don't actually have an
1649 object that the access is against. */
1650
1651 tree
1652 build_dummy_object (tree type)
1653 {
1654 tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
1655 return build_indirect_ref (decl, NULL);
1656 }
1657
1658 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
1659 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
1660 binfo path from current_class_type to TYPE, or 0. */
1661
1662 tree
1663 maybe_dummy_object (tree type, tree* binfop)
1664 {
1665 tree decl, context;
1666 tree binfo;
1667
1668 if (current_class_type
1669 && (binfo = lookup_base (current_class_type, type,
1670 ba_ignore | ba_quiet, NULL)))
1671 context = current_class_type;
1672 else
1673 {
1674 /* Reference from a nested class member function. */
1675 context = type;
1676 binfo = TYPE_BINFO (type);
1677 }
1678
1679 if (binfop)
1680 *binfop = binfo;
1681
1682 if (current_class_ref && context == current_class_type
1683 /* Kludge: Make sure that current_class_type is actually
1684 correct. It might not be if we're in the middle of
1685 tsubst_default_argument. */
1686 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)),
1687 current_class_type))
1688 decl = current_class_ref;
1689 else
1690 decl = build_dummy_object (context);
1691
1692 return decl;
1693 }
1694
1695 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
1696
1697 int
1698 is_dummy_object (tree ob)
1699 {
1700 if (TREE_CODE (ob) == INDIRECT_REF)
1701 ob = TREE_OPERAND (ob, 0);
1702 return (TREE_CODE (ob) == NOP_EXPR
1703 && TREE_OPERAND (ob, 0) == void_zero_node);
1704 }
1705
1706 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
1707
1708 int
1709 pod_type_p (tree t)
1710 {
1711 t = strip_array_types (t);
1712
1713 if (t == error_mark_node)
1714 return 1;
1715 if (INTEGRAL_TYPE_P (t))
1716 return 1; /* integral, character or enumeral type */
1717 if (FLOAT_TYPE_P (t))
1718 return 1;
1719 if (TYPE_PTR_P (t))
1720 return 1; /* pointer to non-member */
1721 if (TYPE_PTR_TO_MEMBER_P (t))
1722 return 1; /* pointer to member */
1723
1724 if (TREE_CODE (t) == VECTOR_TYPE)
1725 return 1; /* vectors are (small) arrays if scalars */
1726
1727 if (! CLASS_TYPE_P (t))
1728 return 0; /* other non-class type (reference or function) */
1729 if (CLASSTYPE_NON_POD_P (t))
1730 return 0;
1731 return 1;
1732 }
1733
1734 /* Returns 1 iff zero initialization of type T means actually storing
1735 zeros in it. */
1736
1737 int
1738 zero_init_p (tree t)
1739 {
1740 t = strip_array_types (t);
1741
1742 if (t == error_mark_node)
1743 return 1;
1744
1745 /* NULL pointers to data members are initialized with -1. */
1746 if (TYPE_PTRMEM_P (t))
1747 return 0;
1748
1749 /* Classes that contain types that can't be zero-initialized, cannot
1750 be zero-initialized themselves. */
1751 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
1752 return 0;
1753
1754 return 1;
1755 }
1756
1757 /* Table of valid C++ attributes. */
1758 const struct attribute_spec cxx_attribute_table[] =
1759 {
1760 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
1761 { "java_interface", 0, 0, false, false, false, handle_java_interface_attribute },
1762 { "com_interface", 0, 0, false, false, false, handle_com_interface_attribute },
1763 { "init_priority", 1, 1, true, false, false, handle_init_priority_attribute },
1764 { NULL, 0, 0, false, false, false, NULL }
1765 };
1766
1767 /* Handle a "java_interface" attribute; arguments as in
1768 struct attribute_spec.handler. */
1769 static tree
1770 handle_java_interface_attribute (tree* node,
1771 tree name,
1772 tree args ATTRIBUTE_UNUSED ,
1773 int flags,
1774 bool* no_add_attrs)
1775 {
1776 if (DECL_P (*node)
1777 || !CLASS_TYPE_P (*node)
1778 || !TYPE_FOR_JAVA (*node))
1779 {
1780 error ("`%E' attribute can only be applied to Java class definitions",
1781 name);
1782 *no_add_attrs = true;
1783 return NULL_TREE;
1784 }
1785 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
1786 *node = build_type_copy (*node);
1787 TYPE_JAVA_INTERFACE (*node) = 1;
1788
1789 return NULL_TREE;
1790 }
1791
1792 /* Handle a "com_interface" attribute; arguments as in
1793 struct attribute_spec.handler. */
1794 static tree
1795 handle_com_interface_attribute (tree* node,
1796 tree name,
1797 tree args ATTRIBUTE_UNUSED ,
1798 int flags ATTRIBUTE_UNUSED ,
1799 bool* no_add_attrs)
1800 {
1801 static int warned;
1802
1803 *no_add_attrs = true;
1804
1805 if (DECL_P (*node)
1806 || !CLASS_TYPE_P (*node)
1807 || *node != TYPE_MAIN_VARIANT (*node))
1808 {
1809 warning ("`%E' attribute can only be applied to class definitions",
1810 name);
1811 return NULL_TREE;
1812 }
1813
1814 if (!warned++)
1815 warning ("`%E' is obsolete; g++ vtables are now COM-compatible by default",
1816 name);
1817
1818 return NULL_TREE;
1819 }
1820
1821 /* Handle an "init_priority" attribute; arguments as in
1822 struct attribute_spec.handler. */
1823 static tree
1824 handle_init_priority_attribute (tree* node,
1825 tree name,
1826 tree args,
1827 int flags ATTRIBUTE_UNUSED ,
1828 bool* no_add_attrs)
1829 {
1830 tree initp_expr = TREE_VALUE (args);
1831 tree decl = *node;
1832 tree type = TREE_TYPE (decl);
1833 int pri;
1834
1835 STRIP_NOPS (initp_expr);
1836
1837 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
1838 {
1839 error ("requested init_priority is not an integer constant");
1840 *no_add_attrs = true;
1841 return NULL_TREE;
1842 }
1843
1844 pri = TREE_INT_CST_LOW (initp_expr);
1845
1846 type = strip_array_types (type);
1847
1848 if (decl == NULL_TREE
1849 || TREE_CODE (decl) != VAR_DECL
1850 || !TREE_STATIC (decl)
1851 || DECL_EXTERNAL (decl)
1852 || (TREE_CODE (type) != RECORD_TYPE
1853 && TREE_CODE (type) != UNION_TYPE)
1854 /* Static objects in functions are initialized the
1855 first time control passes through that
1856 function. This is not precise enough to pin down an
1857 init_priority value, so don't allow it. */
1858 || current_function_decl)
1859 {
1860 error ("can only use `%E' attribute on file-scope definitions "
1861 "of objects of class type", name);
1862 *no_add_attrs = true;
1863 return NULL_TREE;
1864 }
1865
1866 if (pri > MAX_INIT_PRIORITY || pri <= 0)
1867 {
1868 error ("requested init_priority is out of range");
1869 *no_add_attrs = true;
1870 return NULL_TREE;
1871 }
1872
1873 /* Check for init_priorities that are reserved for
1874 language and runtime support implementations.*/
1875 if (pri <= MAX_RESERVED_INIT_PRIORITY)
1876 {
1877 warning
1878 ("requested init_priority is reserved for internal use");
1879 }
1880
1881 if (SUPPORTS_INIT_PRIORITY)
1882 {
1883 DECL_INIT_PRIORITY (decl) = pri;
1884 return NULL_TREE;
1885 }
1886 else
1887 {
1888 error ("`%E' attribute is not supported on this platform", name);
1889 *no_add_attrs = true;
1890 return NULL_TREE;
1891 }
1892 }
1893
1894 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
1895 thing pointed to by the constant. */
1896
1897 tree
1898 make_ptrmem_cst (tree type, tree member)
1899 {
1900 tree ptrmem_cst = make_node (PTRMEM_CST);
1901 TREE_TYPE (ptrmem_cst) = type;
1902 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
1903 return ptrmem_cst;
1904 }
1905
1906 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
1907 return an existing type of an appropriate type already exists. */
1908
1909 tree
1910 cp_build_type_attribute_variant (tree type, tree attributes)
1911 {
1912 tree new_type;
1913
1914 new_type = build_type_attribute_variant (type, attributes);
1915 if (TREE_CODE (new_type) == FUNCTION_TYPE
1916 && (TYPE_RAISES_EXCEPTIONS (new_type)
1917 != TYPE_RAISES_EXCEPTIONS (type)))
1918 new_type = build_exception_variant (new_type,
1919 TYPE_RAISES_EXCEPTIONS (type));
1920 return new_type;
1921 }
1922
1923 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
1924 traversal. Called from walk_tree. */
1925
1926 tree
1927 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
1928 void *data, void *htab)
1929 {
1930 enum tree_code code = TREE_CODE (*tp);
1931 location_t save_locus;
1932 tree result;
1933
1934 #define WALK_SUBTREE(NODE) \
1935 do \
1936 { \
1937 result = walk_tree (&(NODE), func, data, htab); \
1938 if (result) goto out; \
1939 } \
1940 while (0)
1941
1942 /* Set input_location here so we get the right instantiation context
1943 if we call instantiate_decl from inlinable_function_p. */
1944 save_locus = input_location;
1945 if (EXPR_HAS_LOCATION (*tp))
1946 input_location = EXPR_LOCATION (*tp);
1947
1948 /* Not one of the easy cases. We must explicitly go through the
1949 children. */
1950 result = NULL_TREE;
1951 switch (code)
1952 {
1953 case DEFAULT_ARG:
1954 case TEMPLATE_TEMPLATE_PARM:
1955 case BOUND_TEMPLATE_TEMPLATE_PARM:
1956 case UNBOUND_CLASS_TEMPLATE:
1957 case TEMPLATE_PARM_INDEX:
1958 case TEMPLATE_TYPE_PARM:
1959 case TYPENAME_TYPE:
1960 case TYPEOF_TYPE:
1961 case BASELINK:
1962 /* None of these have subtrees other than those already walked
1963 above. */
1964 *walk_subtrees_p = 0;
1965 break;
1966
1967 case PTRMEM_CST:
1968 WALK_SUBTREE (TREE_TYPE (*tp));
1969 *walk_subtrees_p = 0;
1970 break;
1971
1972 case TREE_LIST:
1973 WALK_SUBTREE (TREE_PURPOSE (*tp));
1974 break;
1975
1976 case OVERLOAD:
1977 WALK_SUBTREE (OVL_FUNCTION (*tp));
1978 WALK_SUBTREE (OVL_CHAIN (*tp));
1979 *walk_subtrees_p = 0;
1980 break;
1981
1982 case RECORD_TYPE:
1983 if (TYPE_PTRMEMFUNC_P (*tp))
1984 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
1985 break;
1986
1987 default:
1988 input_location = save_locus;
1989 return NULL_TREE;
1990 }
1991
1992 /* We didn't find what we were looking for. */
1993 out:
1994 input_location = save_locus;
1995 return result;
1996
1997 #undef WALK_SUBTREE
1998 }
1999
2000 /* Decide whether there are language-specific reasons to not inline a
2001 function as a tree. */
2002
2003 int
2004 cp_cannot_inline_tree_fn (tree* fnp)
2005 {
2006 tree fn = *fnp;
2007
2008 /* We can inline a template instantiation only if it's fully
2009 instantiated. */
2010 if (DECL_TEMPLATE_INFO (fn)
2011 && TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
2012 {
2013 /* Don't instantiate functions that are not going to be
2014 inlined. */
2015 if (!DECL_INLINE (DECL_TEMPLATE_RESULT
2016 (template_for_substitution (fn))))
2017 return 1;
2018
2019 fn = *fnp = instantiate_decl (fn, /*defer_ok=*/0, /*undefined_ok=*/0);
2020
2021 if (TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
2022 return 1;
2023 }
2024
2025 if (flag_really_no_inline
2026 && lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) == NULL)
2027 return 1;
2028
2029 /* Don't auto-inline anything that might not be bound within
2030 this unit of translation.
2031 Exclude comdat functions from this rule. While they can be bound
2032 to the other unit, they all must be the same. This is especially
2033 important so templates can inline. */
2034 if (!DECL_DECLARED_INLINE_P (fn) && !(*targetm.binds_local_p) (fn)
2035 && !DECL_COMDAT (fn))
2036 {
2037 DECL_UNINLINABLE (fn) = 1;
2038 return 1;
2039 }
2040
2041 if (varargs_function_p (fn))
2042 {
2043 DECL_UNINLINABLE (fn) = 1;
2044 return 1;
2045 }
2046
2047 if (! function_attribute_inlinable_p (fn))
2048 {
2049 DECL_UNINLINABLE (fn) = 1;
2050 return 1;
2051 }
2052
2053 return 0;
2054 }
2055
2056 /* Add any pending functions other than the current function (already
2057 handled by the caller), that thus cannot be inlined, to FNS_P, then
2058 return the latest function added to the array, PREV_FN. */
2059
2060 tree
2061 cp_add_pending_fn_decls (void* fns_p, tree prev_fn)
2062 {
2063 varray_type *fnsp = (varray_type *)fns_p;
2064 struct saved_scope *s;
2065
2066 for (s = scope_chain; s; s = s->prev)
2067 if (s->function_decl && s->function_decl != prev_fn)
2068 {
2069 VARRAY_PUSH_TREE (*fnsp, s->function_decl);
2070 prev_fn = s->function_decl;
2071 }
2072
2073 return prev_fn;
2074 }
2075
2076 /* Determine whether a tree node is an OVERLOAD node. Used to decide
2077 whether to copy a node or to preserve its chain when inlining a
2078 function. */
2079
2080 int
2081 cp_is_overload_p (tree t)
2082 {
2083 return TREE_CODE (t) == OVERLOAD;
2084 }
2085
2086 /* Determine whether VAR is a declaration of an automatic variable in
2087 function FN. */
2088
2089 int
2090 cp_auto_var_in_fn_p (tree var, tree fn)
2091 {
2092 return (DECL_P (var) && DECL_CONTEXT (var) == fn
2093 && nonstatic_local_decl_p (var));
2094 }
2095
2096 /* FN body has been duplicated. Update language specific fields. */
2097
2098 void
2099 cp_update_decl_after_saving (tree fn,
2100 void* decl_map_)
2101 {
2102 splay_tree decl_map = (splay_tree)decl_map_;
2103 tree nrv = DECL_SAVED_FUNCTION_DATA (fn)->x_return_value;
2104 if (nrv)
2105 {
2106 DECL_SAVED_FUNCTION_DATA (fn)->x_return_value
2107 = (tree) splay_tree_lookup (decl_map, (splay_tree_key) nrv)->value;
2108 }
2109 }
2110 /* Initialize tree.c. */
2111
2112 void
2113 init_tree (void)
2114 {
2115 list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
2116 }
2117
2118 /* Called via walk_tree. If *TP points to a DECL_EXPR for a local
2119 declaration, copies the declaration and enters it in the splay_tree
2120 pointed to by DATA (which is really a `splay_tree *'). */
2121
2122 static tree
2123 mark_local_for_remap_r (tree* tp,
2124 int* walk_subtrees ATTRIBUTE_UNUSED ,
2125 void* data)
2126 {
2127 tree t = *tp;
2128 splay_tree st = (splay_tree) data;
2129 tree decl;
2130
2131
2132 if (TREE_CODE (t) == DECL_EXPR
2133 && nonstatic_local_decl_p (DECL_EXPR_DECL (t)))
2134 decl = DECL_EXPR_DECL (t);
2135 else if (TREE_CODE (t) == LABEL_EXPR)
2136 decl = LABEL_EXPR_LABEL (t);
2137 else if (TREE_CODE (t) == TARGET_EXPR
2138 && nonstatic_local_decl_p (TREE_OPERAND (t, 0)))
2139 decl = TREE_OPERAND (t, 0);
2140 else if (TREE_CODE (t) == CASE_LABEL_EXPR)
2141 decl = CASE_LABEL (t);
2142 else
2143 decl = NULL_TREE;
2144
2145 if (decl)
2146 {
2147 tree copy;
2148
2149 /* Make a copy. */
2150 copy = copy_decl_for_inlining (decl,
2151 DECL_CONTEXT (decl),
2152 DECL_CONTEXT (decl));
2153
2154 /* Remember the copy. */
2155 splay_tree_insert (st,
2156 (splay_tree_key) decl,
2157 (splay_tree_value) copy);
2158 }
2159
2160 return NULL_TREE;
2161 }
2162
2163 /* Called via walk_tree when an expression is unsaved. Using the
2164 splay_tree pointed to by ST (which is really a `splay_tree'),
2165 remaps all local declarations to appropriate replacements. */
2166
2167 static tree
2168 cp_unsave_r (tree* tp,
2169 int* walk_subtrees,
2170 void* data)
2171 {
2172 splay_tree st = (splay_tree) data;
2173 splay_tree_node n;
2174
2175 /* Only a local declaration (variable or label). */
2176 if (nonstatic_local_decl_p (*tp))
2177 {
2178 /* Lookup the declaration. */
2179 n = splay_tree_lookup (st, (splay_tree_key) *tp);
2180
2181 /* If it's there, remap it. */
2182 if (n)
2183 *tp = (tree) n->value;
2184 }
2185 else if (TREE_CODE (*tp) == SAVE_EXPR)
2186 remap_save_expr (tp, st, walk_subtrees);
2187 else
2188 {
2189 copy_tree_r (tp, walk_subtrees, NULL);
2190
2191 /* Do whatever unsaving is required. */
2192 unsave_expr_1 (*tp);
2193 }
2194
2195 /* Keep iterating. */
2196 return NULL_TREE;
2197 }
2198
2199 /* Called whenever an expression needs to be unsaved. */
2200
2201 tree
2202 cxx_unsave_expr_now (tree tp)
2203 {
2204 splay_tree st;
2205
2206 /* Create a splay-tree to map old local variable declarations to new
2207 ones. */
2208 st = splay_tree_new (splay_tree_compare_pointers, NULL, NULL);
2209
2210 /* Walk the tree once figuring out what needs to be remapped. */
2211 walk_tree (&tp, mark_local_for_remap_r, st, NULL);
2212
2213 /* Walk the tree again, copying, remapping, and unsaving. */
2214 walk_tree (&tp, cp_unsave_r, st, NULL);
2215
2216 /* Clean up. */
2217 splay_tree_delete (st);
2218
2219 return tp;
2220 }
2221
2222 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
2223 is. Note that sfk_none is zero, so this function can be used as a
2224 predicate to test whether or not DECL is a special function. */
2225
2226 special_function_kind
2227 special_function_p (tree decl)
2228 {
2229 /* Rather than doing all this stuff with magic names, we should
2230 probably have a field of type `special_function_kind' in
2231 DECL_LANG_SPECIFIC. */
2232 if (DECL_COPY_CONSTRUCTOR_P (decl))
2233 return sfk_copy_constructor;
2234 if (DECL_CONSTRUCTOR_P (decl))
2235 return sfk_constructor;
2236 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
2237 return sfk_assignment_operator;
2238 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
2239 return sfk_destructor;
2240 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
2241 return sfk_complete_destructor;
2242 if (DECL_BASE_DESTRUCTOR_P (decl))
2243 return sfk_base_destructor;
2244 if (DECL_DELETING_DESTRUCTOR_P (decl))
2245 return sfk_deleting_destructor;
2246 if (DECL_CONV_FN_P (decl))
2247 return sfk_conversion;
2248
2249 return sfk_none;
2250 }
2251
2252 /* Returns true if and only if NODE is a name, i.e., a node created
2253 by the parser when processing an id-expression. */
2254
2255 bool
2256 name_p (tree node)
2257 {
2258 if (TREE_CODE (node) == TEMPLATE_ID_EXPR)
2259 node = TREE_OPERAND (node, 0);
2260 return (/* An ordinary unqualified name. */
2261 TREE_CODE (node) == IDENTIFIER_NODE
2262 /* A destructor name. */
2263 || TREE_CODE (node) == BIT_NOT_EXPR
2264 /* A qualified name. */
2265 || TREE_CODE (node) == SCOPE_REF);
2266 }
2267
2268 /* Returns nonzero if TYPE is a character type, including wchar_t. */
2269
2270 int
2271 char_type_p (tree type)
2272 {
2273 return (same_type_p (type, char_type_node)
2274 || same_type_p (type, unsigned_char_type_node)
2275 || same_type_p (type, signed_char_type_node)
2276 || same_type_p (type, wchar_type_node));
2277 }
2278
2279 /* Returns the kind of linkage associated with the indicated DECL. Th
2280 value returned is as specified by the language standard; it is
2281 independent of implementation details regarding template
2282 instantiation, etc. For example, it is possible that a declaration
2283 to which this function assigns external linkage would not show up
2284 as a global symbol when you run `nm' on the resulting object file. */
2285
2286 linkage_kind
2287 decl_linkage (tree decl)
2288 {
2289 /* This function doesn't attempt to calculate the linkage from first
2290 principles as given in [basic.link]. Instead, it makes use of
2291 the fact that we have already set TREE_PUBLIC appropriately, and
2292 then handles a few special cases. Ideally, we would calculate
2293 linkage first, and then transform that into a concrete
2294 implementation. */
2295
2296 /* Things that don't have names have no linkage. */
2297 if (!DECL_NAME (decl))
2298 return lk_none;
2299
2300 /* Things that are TREE_PUBLIC have external linkage. */
2301 if (TREE_PUBLIC (decl))
2302 return lk_external;
2303
2304 /* Some things that are not TREE_PUBLIC have external linkage, too.
2305 For example, on targets that don't have weak symbols, we make all
2306 template instantiations have internal linkage (in the object
2307 file), but the symbols should still be treated as having external
2308 linkage from the point of view of the language. */
2309 if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
2310 return lk_external;
2311
2312 /* Things in local scope do not have linkage, if they don't have
2313 TREE_PUBLIC set. */
2314 if (decl_function_context (decl))
2315 return lk_none;
2316
2317 /* Everything else has internal linkage. */
2318 return lk_internal;
2319 }
2320 \f
2321 /* EXP is an expression that we want to pre-evaluate. Returns via INITP an
2322 expression to perform the pre-evaluation, and returns directly an
2323 expression to use the precalculated result. */
2324
2325 tree
2326 stabilize_expr (tree exp, tree* initp)
2327 {
2328 tree init_expr;
2329
2330 if (!TREE_SIDE_EFFECTS (exp))
2331 {
2332 init_expr = NULL_TREE;
2333 }
2334 else if (!real_lvalue_p (exp)
2335 || !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp)))
2336 {
2337 init_expr = get_target_expr (exp);
2338 exp = TARGET_EXPR_SLOT (init_expr);
2339 }
2340 else
2341 {
2342 exp = build_unary_op (ADDR_EXPR, exp, 1);
2343 init_expr = get_target_expr (exp);
2344 exp = TARGET_EXPR_SLOT (init_expr);
2345 exp = build_indirect_ref (exp, 0);
2346 }
2347
2348 *initp = init_expr;
2349 return exp;
2350 }
2351
2352 /* Like stabilize_expr, but for a call whose args we want to
2353 pre-evaluate. */
2354
2355 void
2356 stabilize_call (tree call, tree *initp)
2357 {
2358 tree inits = NULL_TREE;
2359 tree t;
2360
2361 if (call == error_mark_node)
2362 return;
2363
2364 if (TREE_CODE (call) != CALL_EXPR
2365 && TREE_CODE (call) != AGGR_INIT_EXPR)
2366 abort ();
2367
2368 for (t = TREE_OPERAND (call, 1); t; t = TREE_CHAIN (t))
2369 if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
2370 {
2371 tree init;
2372 TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
2373 if (!init)
2374 /* Nothing. */;
2375 else if (inits)
2376 inits = build (COMPOUND_EXPR, void_type_node, inits, init);
2377 else
2378 inits = init;
2379 }
2380
2381 *initp = inits;
2382 }
2383
2384 /* Like stabilize_expr, but for an initialization. If we are initializing
2385 an object of class type, we don't want to introduce an extra temporary,
2386 so we look past the TARGET_EXPR and stabilize the arguments of the call
2387 instead. */
2388
2389 bool
2390 stabilize_init (tree init, tree *initp)
2391 {
2392 tree t = init;
2393
2394 if (t == error_mark_node)
2395 return true;
2396
2397 if (TREE_CODE (t) == INIT_EXPR
2398 && TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR)
2399 TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp);
2400 else
2401 {
2402 if (TREE_CODE (t) == INIT_EXPR)
2403 t = TREE_OPERAND (t, 1);
2404 if (TREE_CODE (t) == TARGET_EXPR)
2405 t = TARGET_EXPR_INITIAL (t);
2406 if (TREE_CODE (t) == CONSTRUCTOR
2407 && CONSTRUCTOR_ELTS (t) == NULL_TREE)
2408 {
2409 /* Default-initialization. */
2410 *initp = NULL_TREE;
2411 return true;
2412 }
2413
2414 /* If the initializer is a COND_EXPR, we can't preevaluate
2415 anything. */
2416 if (TREE_CODE (t) == COND_EXPR)
2417 return false;
2418
2419 stabilize_call (t, initp);
2420 }
2421
2422 return true;
2423 }
2424
2425 \f
2426 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
2427 /* Complain that some language-specific thing hanging off a tree
2428 node has been accessed improperly. */
2429
2430 void
2431 lang_check_failed (const char* file, int line, const char* function)
2432 {
2433 internal_error ("lang_* check: failed in %s, at %s:%d",
2434 function, trim_filename (file), line);
2435 }
2436 #endif /* ENABLE_TREE_CHECKING */
2437
2438 #include "gt-cp-tree.h"