c-decl.c (grokdeclarator): Don't frob current_function_decl around variable_size.
[gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Hacked by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "cp-tree.h"
29 #include "flags.h"
30 #include "real.h"
31 #include "rtl.h"
32 #include "toplev.h"
33 #include "insn-config.h"
34 #include "integrate.h"
35 #include "tree-inline.h"
36 #include "target.h"
37
38 static tree bot_manip (tree *, int *, void *);
39 static tree bot_replace (tree *, int *, void *);
40 static tree build_cplus_array_type_1 (tree, tree);
41 static int list_hash_eq (const void *, const void *);
42 static hashval_t list_hash_pieces (tree, tree, tree);
43 static hashval_t list_hash (const void *);
44 static cp_lvalue_kind lvalue_p_1 (tree, int);
45 static tree no_linkage_helper (tree *, int *, void *);
46 static tree mark_local_for_remap_r (tree *, int *, void *);
47 static tree cp_unsave_r (tree *, int *, void *);
48 static tree build_target_expr (tree, tree);
49 static tree count_trees_r (tree *, int *, void *);
50 static tree verify_stmt_tree_r (tree *, int *, void *);
51 static tree find_tree_r (tree *, int *, void *);
52 static tree build_local_temp (tree);
53
54 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
55 static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
56 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
57
58 /* If REF is an lvalue, returns the kind of lvalue that REF is.
59 Otherwise, returns clk_none. If TREAT_CLASS_RVALUES_AS_LVALUES is
60 nonzero, rvalues of class type are considered lvalues. */
61
62 static cp_lvalue_kind
63 lvalue_p_1 (tree ref,
64 int treat_class_rvalues_as_lvalues)
65 {
66 cp_lvalue_kind op1_lvalue_kind = clk_none;
67 cp_lvalue_kind op2_lvalue_kind = clk_none;
68
69 if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
70 return clk_ordinary;
71
72 if (ref == current_class_ptr)
73 return clk_none;
74
75 switch (TREE_CODE (ref))
76 {
77 /* preincrements and predecrements are valid lvals, provided
78 what they refer to are valid lvals. */
79 case PREINCREMENT_EXPR:
80 case PREDECREMENT_EXPR:
81 case SAVE_EXPR:
82 case UNSAVE_EXPR:
83 case TRY_CATCH_EXPR:
84 case WITH_CLEANUP_EXPR:
85 case REALPART_EXPR:
86 case IMAGPART_EXPR:
87 return lvalue_p_1 (TREE_OPERAND (ref, 0),
88 treat_class_rvalues_as_lvalues);
89
90 case COMPONENT_REF:
91 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
92 treat_class_rvalues_as_lvalues);
93 /* In an expression of the form "X.Y", the packed-ness of the
94 expression does not depend on "X". */
95 op1_lvalue_kind &= ~clk_packed;
96 /* Look at the member designator. */
97 if (!op1_lvalue_kind
98 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
99 situations. */
100 || TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
101 ;
102 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
103 {
104 /* Clear the ordinary bit. If this object was a class
105 rvalue we want to preserve that information. */
106 op1_lvalue_kind &= ~clk_ordinary;
107 /* The lvalue is for a bitfield. */
108 op1_lvalue_kind |= clk_bitfield;
109 }
110 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
111 op1_lvalue_kind |= clk_packed;
112
113 return op1_lvalue_kind;
114
115 case STRING_CST:
116 return clk_ordinary;
117
118 case VAR_DECL:
119 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
120 && DECL_LANG_SPECIFIC (ref)
121 && DECL_IN_AGGR_P (ref))
122 return clk_none;
123 case INDIRECT_REF:
124 case ARRAY_REF:
125 case PARM_DECL:
126 case RESULT_DECL:
127 if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
128 return clk_ordinary;
129 break;
130
131 /* A currently unresolved scope ref. */
132 case SCOPE_REF:
133 abort ();
134 case MAX_EXPR:
135 case MIN_EXPR:
136 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
137 treat_class_rvalues_as_lvalues);
138 op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
139 treat_class_rvalues_as_lvalues);
140 break;
141
142 case COND_EXPR:
143 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
144 treat_class_rvalues_as_lvalues);
145 op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2),
146 treat_class_rvalues_as_lvalues);
147 break;
148
149 case MODIFY_EXPR:
150 return clk_ordinary;
151
152 case COMPOUND_EXPR:
153 return lvalue_p_1 (TREE_OPERAND (ref, 1),
154 treat_class_rvalues_as_lvalues);
155
156 case TARGET_EXPR:
157 return treat_class_rvalues_as_lvalues ? clk_class : clk_none;
158
159 case CALL_EXPR:
160 case VA_ARG_EXPR:
161 /* Any class-valued call would be wrapped in a TARGET_EXPR. */
162 return clk_none;
163
164 case FUNCTION_DECL:
165 /* All functions (except non-static-member functions) are
166 lvalues. */
167 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
168 ? clk_none : clk_ordinary);
169
170 case NON_DEPENDENT_EXPR:
171 /* We must consider NON_DEPENDENT_EXPRs to be lvalues so that
172 things like "&E" where "E" is an expression with a
173 non-dependent type work. It is safe to be lenient because an
174 error will be issued when the template is instantiated if "E"
175 is not an lvalue. */
176 return clk_ordinary;
177
178 default:
179 break;
180 }
181
182 /* If one operand is not an lvalue at all, then this expression is
183 not an lvalue. */
184 if (!op1_lvalue_kind || !op2_lvalue_kind)
185 return clk_none;
186
187 /* Otherwise, it's an lvalue, and it has all the odd properties
188 contributed by either operand. */
189 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
190 /* It's not an ordinary lvalue if it involves either a bit-field or
191 a class rvalue. */
192 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
193 op1_lvalue_kind &= ~clk_ordinary;
194 return op1_lvalue_kind;
195 }
196
197 /* Returns the kind of lvalue that REF is, in the sense of
198 [basic.lval]. This function should really be named lvalue_p; it
199 computes the C++ definition of lvalue. */
200
201 cp_lvalue_kind
202 real_lvalue_p (tree ref)
203 {
204 return lvalue_p_1 (ref,
205 /*treat_class_rvalues_as_lvalues=*/0);
206 }
207
208 /* This differs from real_lvalue_p in that class rvalues are
209 considered lvalues. */
210
211 int
212 lvalue_p (tree ref)
213 {
214 return
215 (lvalue_p_1 (ref, /*class rvalue ok*/ 1) != clk_none);
216 }
217
218 /* Return nonzero if REF is an lvalue valid for this language;
219 otherwise, print an error message and return zero. */
220
221 int
222 lvalue_or_else (tree ref, const char* string)
223 {
224 if (!lvalue_p (ref))
225 {
226 error ("non-lvalue in %s", string);
227 return 0;
228 }
229 return 1;
230 }
231
232 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
233
234 static tree
235 build_target_expr (tree decl, tree value)
236 {
237 tree t;
238
239 t = build (TARGET_EXPR, TREE_TYPE (decl), decl, value,
240 cxx_maybe_build_cleanup (decl), NULL_TREE);
241 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
242 ignore the TARGET_EXPR. If there really turn out to be no
243 side-effects, then the optimizer should be able to get rid of
244 whatever code is generated anyhow. */
245 TREE_SIDE_EFFECTS (t) = 1;
246
247 return t;
248 }
249
250 /* Return an undeclared local temporary of type TYPE for use in building a
251 TARGET_EXPR. */
252
253 static tree
254 build_local_temp (tree type)
255 {
256 tree slot = build_decl (VAR_DECL, NULL_TREE, type);
257 DECL_ARTIFICIAL (slot) = 1;
258 DECL_CONTEXT (slot) = current_function_decl;
259 layout_decl (slot, 0);
260 return slot;
261 }
262
263 /* INIT is a CALL_EXPR which needs info about its target.
264 TYPE is the type that this initialization should appear to have.
265
266 Build an encapsulation of the initialization to perform
267 and return it so that it can be processed by language-independent
268 and language-specific expression expanders. */
269
270 tree
271 build_cplus_new (tree type, tree init)
272 {
273 tree fn;
274 tree slot;
275 tree rval;
276 int is_ctor;
277
278 /* Make sure that we're not trying to create an instance of an
279 abstract class. */
280 abstract_virtuals_error (NULL_TREE, type);
281
282 if (TREE_CODE (init) != CALL_EXPR && TREE_CODE (init) != AGGR_INIT_EXPR)
283 return convert (type, init);
284
285 fn = TREE_OPERAND (init, 0);
286 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
287 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
288 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
289
290 slot = build_local_temp (type);
291
292 /* We split the CALL_EXPR into its function and its arguments here.
293 Then, in expand_expr, we put them back together. The reason for
294 this is that this expression might be a default argument
295 expression. In that case, we need a new temporary every time the
296 expression is used. That's what break_out_target_exprs does; it
297 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
298 temporary slot. Then, expand_expr builds up a call-expression
299 using the new slot. */
300
301 /* If we don't need to use a constructor to create an object of this
302 type, don't mess with AGGR_INIT_EXPR. */
303 if (is_ctor || TREE_ADDRESSABLE (type))
304 {
305 rval = build (AGGR_INIT_EXPR, void_type_node, fn,
306 TREE_OPERAND (init, 1), slot);
307 TREE_SIDE_EFFECTS (rval) = 1;
308 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
309 }
310 else
311 rval = init;
312
313 rval = build_target_expr (slot, rval);
314
315 return rval;
316 }
317
318 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
319 indicated TYPE. */
320
321 tree
322 build_target_expr_with_type (tree init, tree type)
323 {
324 tree slot;
325
326 my_friendly_assert (!VOID_TYPE_P (type), 20040130);
327
328 if (TREE_CODE (init) == TARGET_EXPR)
329 return init;
330 else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type)
331 && TREE_CODE (init) != COND_EXPR
332 && TREE_CODE (init) != CONSTRUCTOR
333 && TREE_CODE (init) != VA_ARG_EXPR)
334 /* We need to build up a copy constructor call. COND_EXPR is a special
335 case because we already have copies on the arms and we don't want
336 another one here. A CONSTRUCTOR is aggregate initialization, which
337 is handled separately. A VA_ARG_EXPR is magic creation of an
338 aggregate; there's no additional work to be done. */
339 return force_rvalue (init);
340
341 slot = build_local_temp (type);
342 return build_target_expr (slot, init);
343 }
344
345 /* Like the above function, but without the checking. This function should
346 only be used by code which is deliberately trying to subvert the type
347 system, such as call_builtin_trap. */
348
349 tree
350 force_target_expr (tree type, tree init)
351 {
352 tree slot;
353
354 my_friendly_assert (!VOID_TYPE_P (type), 20040130);
355
356 slot = build_local_temp (type);
357 return build_target_expr (slot, init);
358 }
359
360 /* Like build_target_expr_with_type, but use the type of INIT. */
361
362 tree
363 get_target_expr (tree init)
364 {
365 return build_target_expr_with_type (init, TREE_TYPE (init));
366 }
367
368 \f
369 static tree
370 build_cplus_array_type_1 (tree elt_type, tree index_type)
371 {
372 tree t;
373
374 if (elt_type == error_mark_node || index_type == error_mark_node)
375 return error_mark_node;
376
377 if (dependent_type_p (elt_type)
378 || (index_type
379 && value_dependent_expression_p (TYPE_MAX_VALUE (index_type))))
380 {
381 t = make_node (ARRAY_TYPE);
382 TREE_TYPE (t) = elt_type;
383 TYPE_DOMAIN (t) = index_type;
384 }
385 else
386 t = build_array_type (elt_type, index_type);
387
388 /* Push these needs up so that initialization takes place
389 more easily. */
390 TYPE_NEEDS_CONSTRUCTING (t)
391 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
392 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
393 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
394 return t;
395 }
396
397 tree
398 build_cplus_array_type (tree elt_type, tree index_type)
399 {
400 tree t;
401 int type_quals = cp_type_quals (elt_type);
402
403 if (type_quals != TYPE_UNQUALIFIED)
404 elt_type = cp_build_qualified_type (elt_type, TYPE_UNQUALIFIED);
405
406 t = build_cplus_array_type_1 (elt_type, index_type);
407
408 if (type_quals != TYPE_UNQUALIFIED)
409 t = cp_build_qualified_type (t, type_quals);
410
411 return t;
412 }
413 \f
414 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
415 arrays correctly. In particular, if TYPE is an array of T's, and
416 TYPE_QUALS is non-empty, returns an array of qualified T's.
417
418 FLAGS determines how to deal with illformed qualifications. If
419 tf_ignore_bad_quals is set, then bad qualifications are dropped
420 (this is permitted if TYPE was introduced via a typedef or template
421 type parameter). If bad qualifications are dropped and tf_warning
422 is set, then a warning is issued for non-const qualifications. If
423 tf_ignore_bad_quals is not set and tf_error is not set, we
424 return error_mark_node. Otherwise, we issue an error, and ignore
425 the qualifications.
426
427 Qualification of a reference type is valid when the reference came
428 via a typedef or template type argument. [dcl.ref] No such
429 dispensation is provided for qualifying a function type. [dcl.fct]
430 DR 295 queries this and the proposed resolution brings it into line
431 with qualifying a reference. We implement the DR. We also behave
432 in a similar manner for restricting non-pointer types. */
433
434 tree
435 cp_build_qualified_type_real (tree type,
436 int type_quals,
437 tsubst_flags_t complain)
438 {
439 tree result;
440 int bad_quals = TYPE_UNQUALIFIED;
441
442 if (type == error_mark_node)
443 return type;
444
445 if (type_quals == cp_type_quals (type))
446 return type;
447
448 if (TREE_CODE (type) == ARRAY_TYPE)
449 {
450 /* In C++, the qualification really applies to the array element
451 type. Obtain the appropriately qualified element type. */
452 tree t;
453 tree element_type
454 = cp_build_qualified_type_real (TREE_TYPE (type),
455 type_quals,
456 complain);
457
458 if (element_type == error_mark_node)
459 return error_mark_node;
460
461 /* See if we already have an identically qualified type. */
462 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
463 if (cp_type_quals (t) == type_quals
464 && TYPE_NAME (t) == TYPE_NAME (type)
465 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
466 break;
467
468 if (!t)
469 {
470 /* Make a new array type, just like the old one, but with the
471 appropriately qualified element type. */
472 t = build_type_copy (type);
473 TREE_TYPE (t) = element_type;
474 }
475
476 /* Even if we already had this variant, we update
477 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
478 they changed since the variant was originally created.
479
480 This seems hokey; if there is some way to use a previous
481 variant *without* coming through here,
482 TYPE_NEEDS_CONSTRUCTING will never be updated. */
483 TYPE_NEEDS_CONSTRUCTING (t)
484 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
485 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
486 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
487 return t;
488 }
489 else if (TYPE_PTRMEMFUNC_P (type))
490 {
491 /* For a pointer-to-member type, we can't just return a
492 cv-qualified version of the RECORD_TYPE. If we do, we
493 haven't changed the field that contains the actual pointer to
494 a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
495 tree t;
496
497 t = TYPE_PTRMEMFUNC_FN_TYPE (type);
498 t = cp_build_qualified_type_real (t, type_quals, complain);
499 return build_ptrmemfunc_type (t);
500 }
501
502 /* A reference, function or method type shall not be cv qualified.
503 [dcl.ref], [dct.fct] */
504 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
505 && (TREE_CODE (type) == REFERENCE_TYPE
506 || TREE_CODE (type) == FUNCTION_TYPE
507 || TREE_CODE (type) == METHOD_TYPE))
508 {
509 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
510 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
511 }
512
513 /* A restrict-qualified type must be a pointer (or reference)
514 to object or incomplete type. */
515 if ((type_quals & TYPE_QUAL_RESTRICT)
516 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
517 && TREE_CODE (type) != TYPENAME_TYPE
518 && !POINTER_TYPE_P (type))
519 {
520 bad_quals |= TYPE_QUAL_RESTRICT;
521 type_quals &= ~TYPE_QUAL_RESTRICT;
522 }
523
524 if (bad_quals == TYPE_UNQUALIFIED)
525 /*OK*/;
526 else if (!(complain & (tf_error | tf_ignore_bad_quals)))
527 return error_mark_node;
528 else
529 {
530 if (complain & tf_ignore_bad_quals)
531 /* We're not going to warn about constifying things that can't
532 be constified. */
533 bad_quals &= ~TYPE_QUAL_CONST;
534 if (bad_quals)
535 {
536 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
537
538 if (!(complain & tf_ignore_bad_quals))
539 error ("`%V' qualifiers cannot be applied to `%T'",
540 bad_type, type);
541 }
542 }
543
544 /* Retrieve (or create) the appropriately qualified variant. */
545 result = build_qualified_type (type, type_quals);
546
547 /* If this was a pointer-to-method type, and we just made a copy,
548 then we need to unshare the record that holds the cached
549 pointer-to-member-function type, because these will be distinct
550 between the unqualified and qualified types. */
551 if (result != type
552 && TREE_CODE (type) == POINTER_TYPE
553 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)
554 TYPE_LANG_SPECIFIC (result) = NULL;
555
556 return result;
557 }
558
559 /* Returns the canonical version of TYPE. In other words, if TYPE is
560 a typedef, returns the underlying type. The cv-qualification of
561 the type returned matches the type input; they will always be
562 compatible types. */
563
564 tree
565 canonical_type_variant (tree t)
566 {
567 return cp_build_qualified_type (TYPE_MAIN_VARIANT (t), cp_type_quals (t));
568 }
569 \f
570 /* Makes new binfos for the indirect bases under BINFO. T is the most
571 derived TYPE. PREV is the previous binfo, whose TREE_CHAIN we make
572 point to this binfo. We return the last BINFO created.
573
574 The CLASSTYPE_VBASECLASSES vector of T is constructed in the correct
575 order.
576
577 The BINFO_INHERITANCE of a virtual base class points to the binfo
578 og the most derived type.
579
580 The binfo's TREE_CHAIN is set to inheritance graph order, but bases
581 for non-class types are not included (i.e. those which are
582 dependent bases in non-instantiated templates). */
583
584 tree
585 copy_base_binfos (tree binfo, tree t, tree prev)
586 {
587 tree binfos = BINFO_BASETYPES (binfo);
588 int n, ix;
589
590 if (prev)
591 TREE_CHAIN (prev) = binfo;
592 prev = binfo;
593
594 if (binfos == NULL_TREE)
595 return prev;
596
597 n = TREE_VEC_LENGTH (binfos);
598
599 /* Now copy the structure beneath BINFO. */
600 for (ix = 0; ix != n; ix++)
601 {
602 tree base_binfo = TREE_VEC_ELT (binfos, ix);
603 tree new_binfo = NULL_TREE;
604
605 if (!CLASS_TYPE_P (BINFO_TYPE (base_binfo)))
606 {
607 my_friendly_assert (binfo == TYPE_BINFO (t), 20030204);
608
609 new_binfo = base_binfo;
610 TREE_CHAIN (prev) = new_binfo;
611 prev = new_binfo;
612 BINFO_INHERITANCE_CHAIN (new_binfo) = binfo;
613 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
614 }
615 else if (TREE_VIA_VIRTUAL (base_binfo))
616 new_binfo = binfo_for_vbase (BINFO_TYPE (base_binfo), t);
617
618 if (!new_binfo)
619 {
620 new_binfo = make_binfo (BINFO_OFFSET (base_binfo),
621 base_binfo, NULL_TREE,
622 BINFO_VIRTUALS (base_binfo));
623 prev = copy_base_binfos (new_binfo, t, prev);
624 if (TREE_VIA_VIRTUAL (base_binfo))
625 {
626 VEC_quick_push (tree, CLASSTYPE_VBASECLASSES (t), new_binfo);
627 TREE_VIA_VIRTUAL (new_binfo) = 1;
628 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
629 }
630 else
631 BINFO_INHERITANCE_CHAIN (new_binfo) = binfo;
632 }
633 TREE_VEC_ELT (binfos, ix) = new_binfo;
634 }
635
636 return prev;
637 }
638
639 \f
640 /* Hashing of lists so that we don't make duplicates.
641 The entry point is `list_hash_canon'. */
642
643 /* Now here is the hash table. When recording a list, it is added
644 to the slot whose index is the hash code mod the table size.
645 Note that the hash table is used for several kinds of lists.
646 While all these live in the same table, they are completely independent,
647 and the hash code is computed differently for each of these. */
648
649 static GTY ((param_is (union tree_node))) htab_t list_hash_table;
650
651 struct list_proxy
652 {
653 tree purpose;
654 tree value;
655 tree chain;
656 };
657
658 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
659 for a node we are thinking about adding). */
660
661 static int
662 list_hash_eq (const void* entry, const void* data)
663 {
664 tree t = (tree) entry;
665 struct list_proxy *proxy = (struct list_proxy *) data;
666
667 return (TREE_VALUE (t) == proxy->value
668 && TREE_PURPOSE (t) == proxy->purpose
669 && TREE_CHAIN (t) == proxy->chain);
670 }
671
672 /* Compute a hash code for a list (chain of TREE_LIST nodes
673 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
674 TREE_COMMON slots), by adding the hash codes of the individual entries. */
675
676 static hashval_t
677 list_hash_pieces (tree purpose, tree value, tree chain)
678 {
679 hashval_t hashcode = 0;
680
681 if (chain)
682 hashcode += TREE_HASH (chain);
683
684 if (value)
685 hashcode += TREE_HASH (value);
686 else
687 hashcode += 1007;
688 if (purpose)
689 hashcode += TREE_HASH (purpose);
690 else
691 hashcode += 1009;
692 return hashcode;
693 }
694
695 /* Hash an already existing TREE_LIST. */
696
697 static hashval_t
698 list_hash (const void* p)
699 {
700 tree t = (tree) p;
701 return list_hash_pieces (TREE_PURPOSE (t),
702 TREE_VALUE (t),
703 TREE_CHAIN (t));
704 }
705
706 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
707 object for an identical list if one already exists. Otherwise, build a
708 new one, and record it as the canonical object. */
709
710 tree
711 hash_tree_cons (tree purpose, tree value, tree chain)
712 {
713 int hashcode = 0;
714 void **slot;
715 struct list_proxy proxy;
716
717 /* Hash the list node. */
718 hashcode = list_hash_pieces (purpose, value, chain);
719 /* Create a proxy for the TREE_LIST we would like to create. We
720 don't actually create it so as to avoid creating garbage. */
721 proxy.purpose = purpose;
722 proxy.value = value;
723 proxy.chain = chain;
724 /* See if it is already in the table. */
725 slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
726 INSERT);
727 /* If not, create a new node. */
728 if (!*slot)
729 *slot = tree_cons (purpose, value, chain);
730 return *slot;
731 }
732
733 /* Constructor for hashed lists. */
734
735 tree
736 hash_tree_chain (tree value, tree chain)
737 {
738 return hash_tree_cons (NULL_TREE, value, chain);
739 }
740
741 /* Similar, but used for concatenating two lists. */
742
743 tree
744 hash_chainon (tree list1, tree list2)
745 {
746 if (list2 == 0)
747 return list1;
748 if (list1 == 0)
749 return list2;
750 if (TREE_CHAIN (list1) == NULL_TREE)
751 return hash_tree_chain (TREE_VALUE (list1), list2);
752 return hash_tree_chain (TREE_VALUE (list1),
753 hash_chainon (TREE_CHAIN (list1), list2));
754 }
755 \f
756 /* Build an association between TYPE and some parameters:
757
758 OFFSET is the offset added to `this' to convert it to a pointer
759 of type `TYPE *'
760
761 BINFO is the base binfo to use, if we are deriving from one. This
762 is necessary, as we want specialized parent binfos from base
763 classes, so that the VTABLE_NAMEs of bases are for the most derived
764 type, instead of the simple type.
765
766 VTABLE is the virtual function table with which to initialize
767 sub-objects of type TYPE.
768
769 VIRTUALS are the virtual functions sitting in VTABLE. */
770
771 tree
772 make_binfo (tree offset, tree binfo, tree vtable, tree virtuals)
773 {
774 tree new_binfo = make_tree_vec (BINFO_LANG_ELTS);
775 tree type;
776
777 if (TREE_CODE (binfo) == TREE_VEC)
778 {
779 type = BINFO_TYPE (binfo);
780 BINFO_DEPENDENT_BASE_P (new_binfo) = BINFO_DEPENDENT_BASE_P (binfo);
781 }
782 else
783 {
784 type = binfo;
785 binfo = NULL_TREE;
786 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
787 }
788
789 TREE_TYPE (new_binfo) = TYPE_MAIN_VARIANT (type);
790 BINFO_OFFSET (new_binfo) = offset;
791 BINFO_VTABLE (new_binfo) = vtable;
792 BINFO_VIRTUALS (new_binfo) = virtuals;
793
794 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo)
795 && BINFO_BASETYPES (binfo) != NULL_TREE)
796 {
797 BINFO_BASETYPES (new_binfo) = copy_node (BINFO_BASETYPES (binfo));
798 /* We do not need to copy the accesses, as they are read only. */
799 BINFO_BASEACCESSES (new_binfo) = BINFO_BASEACCESSES (binfo);
800 }
801 return new_binfo;
802 }
803
804 void
805 debug_binfo (tree elem)
806 {
807 HOST_WIDE_INT n;
808 tree virtuals;
809
810 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
811 "\nvtable type:\n",
812 TYPE_NAME_STRING (BINFO_TYPE (elem)),
813 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
814 debug_tree (BINFO_TYPE (elem));
815 if (BINFO_VTABLE (elem))
816 fprintf (stderr, "vtable decl \"%s\"\n",
817 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
818 else
819 fprintf (stderr, "no vtable decl yet\n");
820 fprintf (stderr, "virtuals:\n");
821 virtuals = BINFO_VIRTUALS (elem);
822 n = 0;
823
824 while (virtuals)
825 {
826 tree fndecl = TREE_VALUE (virtuals);
827 fprintf (stderr, "%s [%ld =? %ld]\n",
828 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
829 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
830 ++n;
831 virtuals = TREE_CHAIN (virtuals);
832 }
833 }
834
835 int
836 count_functions (tree t)
837 {
838 int i;
839 if (TREE_CODE (t) == FUNCTION_DECL)
840 return 1;
841 else if (TREE_CODE (t) == OVERLOAD)
842 {
843 for (i = 0; t; t = OVL_CHAIN (t))
844 i++;
845 return i;
846 }
847
848 abort ();
849 return 0;
850 }
851
852 int
853 is_overloaded_fn (tree x)
854 {
855 /* A baselink is also considered an overloaded function. */
856 if (TREE_CODE (x) == OFFSET_REF)
857 x = TREE_OPERAND (x, 1);
858 if (BASELINK_P (x))
859 x = BASELINK_FUNCTIONS (x);
860 return (TREE_CODE (x) == FUNCTION_DECL
861 || TREE_CODE (x) == TEMPLATE_ID_EXPR
862 || DECL_FUNCTION_TEMPLATE_P (x)
863 || TREE_CODE (x) == OVERLOAD);
864 }
865
866 int
867 really_overloaded_fn (tree x)
868 {
869 /* A baselink is also considered an overloaded function. */
870 if (TREE_CODE (x) == OFFSET_REF)
871 x = TREE_OPERAND (x, 1);
872 if (BASELINK_P (x))
873 x = BASELINK_FUNCTIONS (x);
874
875 return ((TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x))
876 || DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
877 || TREE_CODE (x) == TEMPLATE_ID_EXPR);
878 }
879
880 tree
881 get_first_fn (tree from)
882 {
883 my_friendly_assert (is_overloaded_fn (from), 9);
884 /* A baselink is also considered an overloaded function. */
885 if (BASELINK_P (from))
886 from = BASELINK_FUNCTIONS (from);
887 return OVL_CURRENT (from);
888 }
889
890 /* Returns nonzero if T is a ->* or .* expression that refers to a
891 member function. */
892
893 int
894 bound_pmf_p (tree t)
895 {
896 return (TREE_CODE (t) == OFFSET_REF
897 && TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (t, 1))));
898 }
899
900 /* Return a new OVL node, concatenating it with the old one. */
901
902 tree
903 ovl_cons (tree decl, tree chain)
904 {
905 tree result = make_node (OVERLOAD);
906 TREE_TYPE (result) = unknown_type_node;
907 OVL_FUNCTION (result) = decl;
908 TREE_CHAIN (result) = chain;
909
910 return result;
911 }
912
913 /* Build a new overloaded function. If this is the first one,
914 just return it; otherwise, ovl_cons the _DECLs */
915
916 tree
917 build_overload (tree decl, tree chain)
918 {
919 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
920 return decl;
921 if (chain && TREE_CODE (chain) != OVERLOAD)
922 chain = ovl_cons (chain, NULL_TREE);
923 return ovl_cons (decl, chain);
924 }
925
926 \f
927 #define PRINT_RING_SIZE 4
928
929 const char *
930 cxx_printable_name (tree decl, int v)
931 {
932 static tree decl_ring[PRINT_RING_SIZE];
933 static char *print_ring[PRINT_RING_SIZE];
934 static int ring_counter;
935 int i;
936
937 /* Only cache functions. */
938 if (v < 2
939 || TREE_CODE (decl) != FUNCTION_DECL
940 || DECL_LANG_SPECIFIC (decl) == 0)
941 return lang_decl_name (decl, v);
942
943 /* See if this print name is lying around. */
944 for (i = 0; i < PRINT_RING_SIZE; i++)
945 if (decl_ring[i] == decl)
946 /* yes, so return it. */
947 return print_ring[i];
948
949 if (++ring_counter == PRINT_RING_SIZE)
950 ring_counter = 0;
951
952 if (current_function_decl != NULL_TREE)
953 {
954 if (decl_ring[ring_counter] == current_function_decl)
955 ring_counter += 1;
956 if (ring_counter == PRINT_RING_SIZE)
957 ring_counter = 0;
958 if (decl_ring[ring_counter] == current_function_decl)
959 abort ();
960 }
961
962 if (print_ring[ring_counter])
963 free (print_ring[ring_counter]);
964
965 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v));
966 decl_ring[ring_counter] = decl;
967 return print_ring[ring_counter];
968 }
969 \f
970 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
971 listed in RAISES. */
972
973 tree
974 build_exception_variant (tree type, tree raises)
975 {
976 tree v = TYPE_MAIN_VARIANT (type);
977 int type_quals = TYPE_QUALS (type);
978
979 for (; v; v = TYPE_NEXT_VARIANT (v))
980 if (check_qualified_type (v, type, type_quals)
981 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1))
982 return v;
983
984 /* Need to build a new variant. */
985 v = build_type_copy (type);
986 TYPE_RAISES_EXCEPTIONS (v) = raises;
987 return v;
988 }
989
990 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
991 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
992 arguments. */
993
994 tree
995 bind_template_template_parm (tree t, tree newargs)
996 {
997 tree decl = TYPE_NAME (t);
998 tree t2;
999
1000 t2 = make_aggr_type (BOUND_TEMPLATE_TEMPLATE_PARM);
1001 decl = build_decl (TYPE_DECL, DECL_NAME (decl), NULL_TREE);
1002
1003 /* These nodes have to be created to reflect new TYPE_DECL and template
1004 arguments. */
1005 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
1006 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
1007 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
1008 = tree_cons (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t),
1009 newargs, NULL_TREE);
1010
1011 TREE_TYPE (decl) = t2;
1012 TYPE_NAME (t2) = decl;
1013 TYPE_STUB_DECL (t2) = decl;
1014 TYPE_SIZE (t2) = 0;
1015
1016 return t2;
1017 }
1018
1019 /* Called from count_trees via walk_tree. */
1020
1021 static tree
1022 count_trees_r (tree *tp, int *walk_subtrees, void *data)
1023 {
1024 ++*((int *) data);
1025
1026 if (TYPE_P (*tp))
1027 *walk_subtrees = 0;
1028
1029 return NULL_TREE;
1030 }
1031
1032 /* Debugging function for measuring the rough complexity of a tree
1033 representation. */
1034
1035 int
1036 count_trees (tree t)
1037 {
1038 int n_trees = 0;
1039 walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
1040 return n_trees;
1041 }
1042
1043 /* Called from verify_stmt_tree via walk_tree. */
1044
1045 static tree
1046 verify_stmt_tree_r (tree* tp,
1047 int* walk_subtrees ATTRIBUTE_UNUSED ,
1048 void* data)
1049 {
1050 tree t = *tp;
1051 htab_t *statements = (htab_t *) data;
1052 void **slot;
1053
1054 if (!STATEMENT_CODE_P (TREE_CODE (t)))
1055 return NULL_TREE;
1056
1057 /* If this statement is already present in the hash table, then
1058 there is a circularity in the statement tree. */
1059 if (htab_find (*statements, t))
1060 abort ();
1061
1062 slot = htab_find_slot (*statements, t, INSERT);
1063 *slot = t;
1064
1065 return NULL_TREE;
1066 }
1067
1068 /* Debugging function to check that the statement T has not been
1069 corrupted. For now, this function simply checks that T contains no
1070 circularities. */
1071
1072 void
1073 verify_stmt_tree (tree t)
1074 {
1075 htab_t statements;
1076 statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
1077 walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
1078 htab_delete (statements);
1079 }
1080
1081 /* Called from find_tree via walk_tree. */
1082
1083 static tree
1084 find_tree_r (tree* tp,
1085 int* walk_subtrees ATTRIBUTE_UNUSED ,
1086 void* data)
1087 {
1088 if (*tp == (tree) data)
1089 return (tree) data;
1090
1091 return NULL_TREE;
1092 }
1093
1094 /* Returns X if X appears in the tree structure rooted at T. */
1095
1096 tree
1097 find_tree (tree t, tree x)
1098 {
1099 return walk_tree_without_duplicates (&t, find_tree_r, x);
1100 }
1101
1102 /* Passed to walk_tree. Checks for the use of types with no linkage. */
1103
1104 static tree
1105 no_linkage_helper (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
1106 void *data ATTRIBUTE_UNUSED)
1107 {
1108 tree t = *tp;
1109
1110 if (TYPE_P (t)
1111 && (CLASS_TYPE_P (t) || TREE_CODE (t) == ENUMERAL_TYPE)
1112 && (decl_function_context (TYPE_MAIN_DECL (t))
1113 || TYPE_ANONYMOUS_P (t)))
1114 return t;
1115
1116 return NULL_TREE;
1117 }
1118
1119 /* Check if the type T depends on a type with no linkage and if so, return
1120 it. */
1121
1122 tree
1123 no_linkage_check (tree t)
1124 {
1125 /* There's no point in checking linkage on template functions; we
1126 can't know their complete types. */
1127 if (processing_template_decl)
1128 return NULL_TREE;
1129
1130 t = walk_tree_without_duplicates (&t, no_linkage_helper, NULL);
1131 if (t != error_mark_node)
1132 return t;
1133 return NULL_TREE;
1134 }
1135
1136 #ifdef GATHER_STATISTICS
1137 extern int depth_reached;
1138 #endif
1139
1140 void
1141 cxx_print_statistics (void)
1142 {
1143 print_search_statistics ();
1144 print_class_statistics ();
1145 #ifdef GATHER_STATISTICS
1146 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
1147 depth_reached);
1148 #endif
1149 }
1150
1151 /* Return, as an INTEGER_CST node, the number of elements for TYPE
1152 (which is an ARRAY_TYPE). This counts only elements of the top
1153 array. */
1154
1155 tree
1156 array_type_nelts_top (tree type)
1157 {
1158 return fold (build (PLUS_EXPR, sizetype,
1159 array_type_nelts (type),
1160 integer_one_node));
1161 }
1162
1163 /* Return, as an INTEGER_CST node, the number of elements for TYPE
1164 (which is an ARRAY_TYPE). This one is a recursive count of all
1165 ARRAY_TYPEs that are clumped together. */
1166
1167 tree
1168 array_type_nelts_total (tree type)
1169 {
1170 tree sz = array_type_nelts_top (type);
1171 type = TREE_TYPE (type);
1172 while (TREE_CODE (type) == ARRAY_TYPE)
1173 {
1174 tree n = array_type_nelts_top (type);
1175 sz = fold (build (MULT_EXPR, sizetype, sz, n));
1176 type = TREE_TYPE (type);
1177 }
1178 return sz;
1179 }
1180
1181 /* Called from break_out_target_exprs via mapcar. */
1182
1183 static tree
1184 bot_manip (tree* tp, int* walk_subtrees, void* data)
1185 {
1186 splay_tree target_remap = ((splay_tree) data);
1187 tree t = *tp;
1188
1189 if (!TYPE_P (t) && TREE_CONSTANT (t))
1190 {
1191 /* There can't be any TARGET_EXPRs or their slot variables below
1192 this point. We used to check !TREE_SIDE_EFFECTS, but then we
1193 failed to copy an ADDR_EXPR of the slot VAR_DECL. */
1194 *walk_subtrees = 0;
1195 return NULL_TREE;
1196 }
1197 if (TREE_CODE (t) == TARGET_EXPR)
1198 {
1199 tree u;
1200
1201 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
1202 {
1203 mark_used (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 1), 0), 0));
1204 u = build_cplus_new
1205 (TREE_TYPE (t), break_out_target_exprs (TREE_OPERAND (t, 1)));
1206 }
1207 else
1208 {
1209 u = build_target_expr_with_type
1210 (break_out_target_exprs (TREE_OPERAND (t, 1)), TREE_TYPE (t));
1211 }
1212
1213 /* Map the old variable to the new one. */
1214 splay_tree_insert (target_remap,
1215 (splay_tree_key) TREE_OPERAND (t, 0),
1216 (splay_tree_value) TREE_OPERAND (u, 0));
1217
1218 /* Replace the old expression with the new version. */
1219 *tp = u;
1220 /* We don't have to go below this point; the recursive call to
1221 break_out_target_exprs will have handled anything below this
1222 point. */
1223 *walk_subtrees = 0;
1224 return NULL_TREE;
1225 }
1226 else if (TREE_CODE (t) == CALL_EXPR)
1227 mark_used (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
1228
1229 /* Make a copy of this node. */
1230 return copy_tree_r (tp, walk_subtrees, NULL);
1231 }
1232
1233 /* Replace all remapped VAR_DECLs in T with their new equivalents.
1234 DATA is really a splay-tree mapping old variables to new
1235 variables. */
1236
1237 static tree
1238 bot_replace (tree* t,
1239 int* walk_subtrees ATTRIBUTE_UNUSED ,
1240 void* data)
1241 {
1242 splay_tree target_remap = ((splay_tree) data);
1243
1244 if (TREE_CODE (*t) == VAR_DECL)
1245 {
1246 splay_tree_node n = splay_tree_lookup (target_remap,
1247 (splay_tree_key) *t);
1248 if (n)
1249 *t = (tree) n->value;
1250 }
1251
1252 return NULL_TREE;
1253 }
1254
1255 /* When we parse a default argument expression, we may create
1256 temporary variables via TARGET_EXPRs. When we actually use the
1257 default-argument expression, we make a copy of the expression, but
1258 we must replace the temporaries with appropriate local versions. */
1259
1260 tree
1261 break_out_target_exprs (tree t)
1262 {
1263 static int target_remap_count;
1264 static splay_tree target_remap;
1265
1266 if (!target_remap_count++)
1267 target_remap = splay_tree_new (splay_tree_compare_pointers,
1268 /*splay_tree_delete_key_fn=*/NULL,
1269 /*splay_tree_delete_value_fn=*/NULL);
1270 walk_tree (&t, bot_manip, target_remap, NULL);
1271 walk_tree (&t, bot_replace, target_remap, NULL);
1272
1273 if (!--target_remap_count)
1274 {
1275 splay_tree_delete (target_remap);
1276 target_remap = NULL;
1277 }
1278
1279 return t;
1280 }
1281
1282 /* Similar to `build_nt', but for template definitions of dependent
1283 expressions */
1284
1285 tree
1286 build_min_nt (enum tree_code code, ...)
1287 {
1288 tree t;
1289 int length;
1290 int i;
1291 va_list p;
1292
1293 va_start (p, code);
1294
1295 t = make_node (code);
1296 length = TREE_CODE_LENGTH (code);
1297
1298 for (i = 0; i < length; i++)
1299 {
1300 tree x = va_arg (p, tree);
1301 TREE_OPERAND (t, i) = x;
1302 }
1303
1304 va_end (p);
1305 return t;
1306 }
1307
1308 /* Similar to `build', but for template definitions. */
1309
1310 tree
1311 build_min (enum tree_code code, tree tt, ...)
1312 {
1313 tree t;
1314 int length;
1315 int i;
1316 va_list p;
1317
1318 va_start (p, tt);
1319
1320 t = make_node (code);
1321 length = TREE_CODE_LENGTH (code);
1322 TREE_TYPE (t) = tt;
1323
1324 for (i = 0; i < length; i++)
1325 {
1326 tree x = va_arg (p, tree);
1327 TREE_OPERAND (t, i) = x;
1328 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
1329 TREE_SIDE_EFFECTS (t) = 1;
1330 }
1331
1332 va_end (p);
1333 return t;
1334 }
1335
1336 /* Similar to `build', but for template definitions of non-dependent
1337 expressions. NON_DEP is the non-dependent expression that has been
1338 built. */
1339
1340 tree
1341 build_min_non_dep (enum tree_code code, tree non_dep, ...)
1342 {
1343 tree t;
1344 int length;
1345 int i;
1346 va_list p;
1347
1348 va_start (p, non_dep);
1349
1350 t = make_node (code);
1351 length = TREE_CODE_LENGTH (code);
1352 TREE_TYPE (t) = TREE_TYPE (non_dep);
1353 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
1354
1355 for (i = 0; i < length; i++)
1356 {
1357 tree x = va_arg (p, tree);
1358 TREE_OPERAND (t, i) = x;
1359 }
1360
1361 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
1362 /* This should not be considered a COMPOUND_EXPR, because it
1363 resolves to an overload. */
1364 COMPOUND_EXPR_OVERLOADED (t) = 1;
1365
1366 va_end (p);
1367 return t;
1368 }
1369
1370 /* Returns an INTEGER_CST (of type `int') corresponding to I.
1371 Multiple calls with the same value of I may or may not yield the
1372 same node; therefore, callers should never modify the node
1373 returned. */
1374
1375 static GTY(()) tree shared_int_cache[256];
1376
1377 tree
1378 build_shared_int_cst (int i)
1379 {
1380 if (i >= 256)
1381 return build_int_2 (i, 0);
1382
1383 if (!shared_int_cache[i])
1384 shared_int_cache[i] = build_int_2 (i, 0);
1385
1386 return shared_int_cache[i];
1387 }
1388
1389 tree
1390 get_type_decl (tree t)
1391 {
1392 if (TREE_CODE (t) == TYPE_DECL)
1393 return t;
1394 if (TYPE_P (t))
1395 return TYPE_STUB_DECL (t);
1396 if (t == error_mark_node)
1397 return t;
1398
1399 abort ();
1400
1401 /* Stop compiler from complaining control reaches end of non-void function. */
1402 return 0;
1403 }
1404
1405 /* Return first vector element whose BINFO_TYPE is ELEM.
1406 Return 0 if ELEM is not in VEC. VEC may be NULL_TREE. */
1407
1408 tree
1409 vec_binfo_member (tree elem, tree vec)
1410 {
1411 int i;
1412
1413 if (vec)
1414 for (i = 0; i < TREE_VEC_LENGTH (vec); ++i)
1415 if (same_type_p (elem, BINFO_TYPE (TREE_VEC_ELT (vec, i))))
1416 return TREE_VEC_ELT (vec, i);
1417
1418 return NULL_TREE;
1419 }
1420
1421 /* Returns the namespace that contains DECL, whether directly or
1422 indirectly. */
1423
1424 tree
1425 decl_namespace_context (tree decl)
1426 {
1427 while (1)
1428 {
1429 if (TREE_CODE (decl) == NAMESPACE_DECL)
1430 return decl;
1431 else if (TYPE_P (decl))
1432 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
1433 else
1434 decl = CP_DECL_CONTEXT (decl);
1435 }
1436 }
1437
1438 /* Return truthvalue of whether T1 is the same tree structure as T2.
1439 Return 1 if they are the same. Return 0 if they are different. */
1440
1441 bool
1442 cp_tree_equal (tree t1, tree t2)
1443 {
1444 enum tree_code code1, code2;
1445
1446 if (t1 == t2)
1447 return true;
1448 if (!t1 || !t2)
1449 return false;
1450
1451 for (code1 = TREE_CODE (t1);
1452 code1 == NOP_EXPR || code1 == CONVERT_EXPR
1453 || code1 == NON_LVALUE_EXPR;
1454 code1 = TREE_CODE (t1))
1455 t1 = TREE_OPERAND (t1, 0);
1456 for (code2 = TREE_CODE (t2);
1457 code2 == NOP_EXPR || code2 == CONVERT_EXPR
1458 || code1 == NON_LVALUE_EXPR;
1459 code2 = TREE_CODE (t2))
1460 t2 = TREE_OPERAND (t2, 0);
1461
1462 /* They might have become equal now. */
1463 if (t1 == t2)
1464 return true;
1465
1466 if (code1 != code2)
1467 return false;
1468
1469 switch (code1)
1470 {
1471 case INTEGER_CST:
1472 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
1473 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
1474
1475 case REAL_CST:
1476 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
1477
1478 case STRING_CST:
1479 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
1480 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
1481 TREE_STRING_LENGTH (t1));
1482
1483 case CONSTRUCTOR:
1484 /* We need to do this when determining whether or not two
1485 non-type pointer to member function template arguments
1486 are the same. */
1487 if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
1488 /* The first operand is RTL. */
1489 && TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0)))
1490 return false;
1491 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1492
1493 case TREE_LIST:
1494 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
1495 return false;
1496 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
1497 return false;
1498 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
1499
1500 case SAVE_EXPR:
1501 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1502
1503 case CALL_EXPR:
1504 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1505 return false;
1506 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1507
1508 case TARGET_EXPR:
1509 {
1510 tree o1 = TREE_OPERAND (t1, 0);
1511 tree o2 = TREE_OPERAND (t2, 0);
1512
1513 /* Special case: if either target is an unallocated VAR_DECL,
1514 it means that it's going to be unified with whatever the
1515 TARGET_EXPR is really supposed to initialize, so treat it
1516 as being equivalent to anything. */
1517 if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
1518 && !DECL_RTL_SET_P (o1))
1519 /*Nop*/;
1520 else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
1521 && !DECL_RTL_SET_P (o2))
1522 /*Nop*/;
1523 else if (!cp_tree_equal (o1, o2))
1524 return false;
1525
1526 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1527 }
1528
1529 case WITH_CLEANUP_EXPR:
1530 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1531 return false;
1532 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
1533
1534 case COMPONENT_REF:
1535 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
1536 return false;
1537 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1538
1539 case VAR_DECL:
1540 case PARM_DECL:
1541 case CONST_DECL:
1542 case FUNCTION_DECL:
1543 case TEMPLATE_DECL:
1544 case IDENTIFIER_NODE:
1545 return false;
1546
1547 case TEMPLATE_PARM_INDEX:
1548 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
1549 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
1550 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
1551 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
1552
1553 case TEMPLATE_ID_EXPR:
1554 {
1555 unsigned ix;
1556 tree vec1, vec2;
1557
1558 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1559 return false;
1560 vec1 = TREE_OPERAND (t1, 1);
1561 vec2 = TREE_OPERAND (t2, 1);
1562
1563 if (!vec1 || !vec2)
1564 return !vec1 && !vec2;
1565
1566 if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2))
1567 return false;
1568
1569 for (ix = TREE_VEC_LENGTH (vec1); ix--;)
1570 if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix),
1571 TREE_VEC_ELT (vec2, ix)))
1572 return false;
1573
1574 return true;
1575 }
1576
1577 case SIZEOF_EXPR:
1578 case ALIGNOF_EXPR:
1579 {
1580 tree o1 = TREE_OPERAND (t1, 0);
1581 tree o2 = TREE_OPERAND (t2, 0);
1582
1583 if (TREE_CODE (o1) != TREE_CODE (o2))
1584 return false;
1585 if (TYPE_P (o1))
1586 return same_type_p (o1, o2);
1587 else
1588 return cp_tree_equal (o1, o2);
1589 }
1590
1591 case PTRMEM_CST:
1592 /* Two pointer-to-members are the same if they point to the same
1593 field or function in the same class. */
1594 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
1595 return false;
1596
1597 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
1598
1599 default:
1600 break;
1601 }
1602
1603 switch (TREE_CODE_CLASS (code1))
1604 {
1605 case '1':
1606 case '2':
1607 case '<':
1608 case 'e':
1609 case 'r':
1610 case 's':
1611 {
1612 int i;
1613
1614 for (i = 0; i < TREE_CODE_LENGTH (code1); ++i)
1615 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
1616 return false;
1617
1618 return true;
1619 }
1620
1621 case 't':
1622 return same_type_p (t1, t2);
1623 }
1624
1625 my_friendly_assert (0, 20030617);
1626 return false;
1627 }
1628
1629 /* The type of ARG when used as an lvalue. */
1630
1631 tree
1632 lvalue_type (tree arg)
1633 {
1634 tree type = TREE_TYPE (arg);
1635 return type;
1636 }
1637
1638 /* The type of ARG for printing error messages; denote lvalues with
1639 reference types. */
1640
1641 tree
1642 error_type (tree arg)
1643 {
1644 tree type = TREE_TYPE (arg);
1645
1646 if (TREE_CODE (type) == ARRAY_TYPE)
1647 ;
1648 else if (TREE_CODE (type) == ERROR_MARK)
1649 ;
1650 else if (real_lvalue_p (arg))
1651 type = build_reference_type (lvalue_type (arg));
1652 else if (IS_AGGR_TYPE (type))
1653 type = lvalue_type (arg);
1654
1655 return type;
1656 }
1657
1658 /* Does FUNCTION use a variable-length argument list? */
1659
1660 int
1661 varargs_function_p (tree function)
1662 {
1663 tree parm = TYPE_ARG_TYPES (TREE_TYPE (function));
1664 for (; parm; parm = TREE_CHAIN (parm))
1665 if (TREE_VALUE (parm) == void_type_node)
1666 return 0;
1667 return 1;
1668 }
1669
1670 /* Returns 1 if decl is a member of a class. */
1671
1672 int
1673 member_p (tree decl)
1674 {
1675 const tree ctx = DECL_CONTEXT (decl);
1676 return (ctx && TYPE_P (ctx));
1677 }
1678
1679 /* Create a placeholder for member access where we don't actually have an
1680 object that the access is against. */
1681
1682 tree
1683 build_dummy_object (tree type)
1684 {
1685 tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
1686 return build_indirect_ref (decl, NULL);
1687 }
1688
1689 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
1690 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
1691 binfo path from current_class_type to TYPE, or 0. */
1692
1693 tree
1694 maybe_dummy_object (tree type, tree* binfop)
1695 {
1696 tree decl, context;
1697 tree binfo;
1698
1699 if (current_class_type
1700 && (binfo = lookup_base (current_class_type, type,
1701 ba_ignore | ba_quiet, NULL)))
1702 context = current_class_type;
1703 else
1704 {
1705 /* Reference from a nested class member function. */
1706 context = type;
1707 binfo = TYPE_BINFO (type);
1708 }
1709
1710 if (binfop)
1711 *binfop = binfo;
1712
1713 if (current_class_ref && context == current_class_type
1714 /* Kludge: Make sure that current_class_type is actually
1715 correct. It might not be if we're in the middle of
1716 tsubst_default_argument. */
1717 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)),
1718 current_class_type))
1719 decl = current_class_ref;
1720 else
1721 decl = build_dummy_object (context);
1722
1723 return decl;
1724 }
1725
1726 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
1727
1728 int
1729 is_dummy_object (tree ob)
1730 {
1731 if (TREE_CODE (ob) == INDIRECT_REF)
1732 ob = TREE_OPERAND (ob, 0);
1733 return (TREE_CODE (ob) == NOP_EXPR
1734 && TREE_OPERAND (ob, 0) == void_zero_node);
1735 }
1736
1737 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
1738
1739 int
1740 pod_type_p (tree t)
1741 {
1742 t = strip_array_types (t);
1743
1744 if (t == error_mark_node)
1745 return 1;
1746 if (INTEGRAL_TYPE_P (t))
1747 return 1; /* integral, character or enumeral type */
1748 if (FLOAT_TYPE_P (t))
1749 return 1;
1750 if (TYPE_PTR_P (t))
1751 return 1; /* pointer to non-member */
1752 if (TYPE_PTR_TO_MEMBER_P (t))
1753 return 1; /* pointer to member */
1754
1755 if (TREE_CODE (t) == VECTOR_TYPE)
1756 return 1; /* vectors are (small) arrays if scalars */
1757
1758 if (! CLASS_TYPE_P (t))
1759 return 0; /* other non-class type (reference or function) */
1760 if (CLASSTYPE_NON_POD_P (t))
1761 return 0;
1762 return 1;
1763 }
1764
1765 /* Returns 1 iff zero initialization of type T means actually storing
1766 zeros in it. */
1767
1768 int
1769 zero_init_p (tree t)
1770 {
1771 t = strip_array_types (t);
1772
1773 if (t == error_mark_node)
1774 return 1;
1775
1776 /* NULL pointers to data members are initialized with -1. */
1777 if (TYPE_PTRMEM_P (t))
1778 return 0;
1779
1780 /* Classes that contain types that can't be zero-initialized, cannot
1781 be zero-initialized themselves. */
1782 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
1783 return 0;
1784
1785 return 1;
1786 }
1787
1788 /* Table of valid C++ attributes. */
1789 const struct attribute_spec cxx_attribute_table[] =
1790 {
1791 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
1792 { "java_interface", 0, 0, false, false, false, handle_java_interface_attribute },
1793 { "com_interface", 0, 0, false, false, false, handle_com_interface_attribute },
1794 { "init_priority", 1, 1, true, false, false, handle_init_priority_attribute },
1795 { NULL, 0, 0, false, false, false, NULL }
1796 };
1797
1798 /* Handle a "java_interface" attribute; arguments as in
1799 struct attribute_spec.handler. */
1800 static tree
1801 handle_java_interface_attribute (tree* node,
1802 tree name,
1803 tree args ATTRIBUTE_UNUSED ,
1804 int flags,
1805 bool* no_add_attrs)
1806 {
1807 if (DECL_P (*node)
1808 || !CLASS_TYPE_P (*node)
1809 || !TYPE_FOR_JAVA (*node))
1810 {
1811 error ("`%E' attribute can only be applied to Java class definitions",
1812 name);
1813 *no_add_attrs = true;
1814 return NULL_TREE;
1815 }
1816 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
1817 *node = build_type_copy (*node);
1818 TYPE_JAVA_INTERFACE (*node) = 1;
1819
1820 return NULL_TREE;
1821 }
1822
1823 /* Handle a "com_interface" attribute; arguments as in
1824 struct attribute_spec.handler. */
1825 static tree
1826 handle_com_interface_attribute (tree* node,
1827 tree name,
1828 tree args ATTRIBUTE_UNUSED ,
1829 int flags ATTRIBUTE_UNUSED ,
1830 bool* no_add_attrs)
1831 {
1832 static int warned;
1833
1834 *no_add_attrs = true;
1835
1836 if (DECL_P (*node)
1837 || !CLASS_TYPE_P (*node)
1838 || *node != TYPE_MAIN_VARIANT (*node))
1839 {
1840 warning ("`%E' attribute can only be applied to class definitions",
1841 name);
1842 return NULL_TREE;
1843 }
1844
1845 if (!warned++)
1846 warning ("`%E' is obsolete; g++ vtables are now COM-compatible by default",
1847 name);
1848
1849 return NULL_TREE;
1850 }
1851
1852 /* Handle an "init_priority" attribute; arguments as in
1853 struct attribute_spec.handler. */
1854 static tree
1855 handle_init_priority_attribute (tree* node,
1856 tree name,
1857 tree args,
1858 int flags ATTRIBUTE_UNUSED ,
1859 bool* no_add_attrs)
1860 {
1861 tree initp_expr = TREE_VALUE (args);
1862 tree decl = *node;
1863 tree type = TREE_TYPE (decl);
1864 int pri;
1865
1866 STRIP_NOPS (initp_expr);
1867
1868 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
1869 {
1870 error ("requested init_priority is not an integer constant");
1871 *no_add_attrs = true;
1872 return NULL_TREE;
1873 }
1874
1875 pri = TREE_INT_CST_LOW (initp_expr);
1876
1877 type = strip_array_types (type);
1878
1879 if (decl == NULL_TREE
1880 || TREE_CODE (decl) != VAR_DECL
1881 || !TREE_STATIC (decl)
1882 || DECL_EXTERNAL (decl)
1883 || (TREE_CODE (type) != RECORD_TYPE
1884 && TREE_CODE (type) != UNION_TYPE)
1885 /* Static objects in functions are initialized the
1886 first time control passes through that
1887 function. This is not precise enough to pin down an
1888 init_priority value, so don't allow it. */
1889 || current_function_decl)
1890 {
1891 error ("can only use `%E' attribute on file-scope definitions "
1892 "of objects of class type", name);
1893 *no_add_attrs = true;
1894 return NULL_TREE;
1895 }
1896
1897 if (pri > MAX_INIT_PRIORITY || pri <= 0)
1898 {
1899 error ("requested init_priority is out of range");
1900 *no_add_attrs = true;
1901 return NULL_TREE;
1902 }
1903
1904 /* Check for init_priorities that are reserved for
1905 language and runtime support implementations.*/
1906 if (pri <= MAX_RESERVED_INIT_PRIORITY)
1907 {
1908 warning
1909 ("requested init_priority is reserved for internal use");
1910 }
1911
1912 if (SUPPORTS_INIT_PRIORITY)
1913 {
1914 DECL_INIT_PRIORITY (decl) = pri;
1915 return NULL_TREE;
1916 }
1917 else
1918 {
1919 error ("`%E' attribute is not supported on this platform", name);
1920 *no_add_attrs = true;
1921 return NULL_TREE;
1922 }
1923 }
1924
1925 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
1926 thing pointed to by the constant. */
1927
1928 tree
1929 make_ptrmem_cst (tree type, tree member)
1930 {
1931 tree ptrmem_cst = make_node (PTRMEM_CST);
1932 TREE_TYPE (ptrmem_cst) = type;
1933 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
1934 return ptrmem_cst;
1935 }
1936
1937 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
1938 return an existing type of an appropriate type already exists. */
1939
1940 tree
1941 cp_build_type_attribute_variant (tree type, tree attributes)
1942 {
1943 tree new_type;
1944
1945 new_type = build_type_attribute_variant (type, attributes);
1946 if (TREE_CODE (new_type) == FUNCTION_TYPE
1947 && (TYPE_RAISES_EXCEPTIONS (new_type)
1948 != TYPE_RAISES_EXCEPTIONS (type)))
1949 new_type = build_exception_variant (new_type,
1950 TYPE_RAISES_EXCEPTIONS (type));
1951 return new_type;
1952 }
1953
1954 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
1955 traversal. Called from walk_tree. */
1956
1957 tree
1958 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
1959 void *data, void *htab)
1960 {
1961 enum tree_code code = TREE_CODE (*tp);
1962 location_t save_locus;
1963 tree result;
1964
1965 #define WALK_SUBTREE(NODE) \
1966 do \
1967 { \
1968 result = walk_tree (&(NODE), func, data, htab); \
1969 if (result) goto out; \
1970 } \
1971 while (0)
1972
1973 /* Set input_location here so we get the right instantiation context
1974 if we call instantiate_decl from inlinable_function_p. */
1975 save_locus = input_location;
1976 if (EXPR_HAS_LOCATION (*tp))
1977 input_location = EXPR_LOCATION (*tp);
1978
1979 /* Not one of the easy cases. We must explicitly go through the
1980 children. */
1981 result = NULL_TREE;
1982 switch (code)
1983 {
1984 case DEFAULT_ARG:
1985 case TEMPLATE_TEMPLATE_PARM:
1986 case BOUND_TEMPLATE_TEMPLATE_PARM:
1987 case UNBOUND_CLASS_TEMPLATE:
1988 case TEMPLATE_PARM_INDEX:
1989 case TEMPLATE_TYPE_PARM:
1990 case TYPENAME_TYPE:
1991 case TYPEOF_TYPE:
1992 case BASELINK:
1993 /* None of these have subtrees other than those already walked
1994 above. */
1995 *walk_subtrees_p = 0;
1996 break;
1997
1998 case PTRMEM_CST:
1999 WALK_SUBTREE (TREE_TYPE (*tp));
2000 *walk_subtrees_p = 0;
2001 break;
2002
2003 case TREE_LIST:
2004 WALK_SUBTREE (TREE_PURPOSE (*tp));
2005 break;
2006
2007 case OVERLOAD:
2008 WALK_SUBTREE (OVL_FUNCTION (*tp));
2009 WALK_SUBTREE (OVL_CHAIN (*tp));
2010 *walk_subtrees_p = 0;
2011 break;
2012
2013 case RECORD_TYPE:
2014 if (TYPE_PTRMEMFUNC_P (*tp))
2015 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
2016 break;
2017
2018 default:
2019 input_location = save_locus;
2020 return NULL_TREE;
2021 }
2022
2023 /* We didn't find what we were looking for. */
2024 out:
2025 input_location = save_locus;
2026 return result;
2027
2028 #undef WALK_SUBTREE
2029 }
2030
2031 /* Decide whether there are language-specific reasons to not inline a
2032 function as a tree. */
2033
2034 int
2035 cp_cannot_inline_tree_fn (tree* fnp)
2036 {
2037 tree fn = *fnp;
2038
2039 /* We can inline a template instantiation only if it's fully
2040 instantiated. */
2041 if (DECL_TEMPLATE_INFO (fn)
2042 && TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
2043 {
2044 /* Don't instantiate functions that are not going to be
2045 inlined. */
2046 if (!DECL_INLINE (DECL_TEMPLATE_RESULT
2047 (template_for_substitution (fn))))
2048 return 1;
2049
2050 fn = *fnp = instantiate_decl (fn, /*defer_ok=*/0, /*undefined_ok=*/0);
2051
2052 if (TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
2053 return 1;
2054 }
2055
2056 if (flag_really_no_inline
2057 && lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) == NULL)
2058 return 1;
2059
2060 /* Don't auto-inline anything that might not be bound within
2061 this unit of translation.
2062 Exclude comdat functions from this rule. While they can be bound
2063 to the other unit, they all must be the same. This is especially
2064 important so templates can inline. */
2065 if (!DECL_DECLARED_INLINE_P (fn) && !(*targetm.binds_local_p) (fn)
2066 && !DECL_COMDAT (fn))
2067 {
2068 DECL_UNINLINABLE (fn) = 1;
2069 return 1;
2070 }
2071
2072 if (varargs_function_p (fn))
2073 {
2074 DECL_UNINLINABLE (fn) = 1;
2075 return 1;
2076 }
2077
2078 if (! function_attribute_inlinable_p (fn))
2079 {
2080 DECL_UNINLINABLE (fn) = 1;
2081 return 1;
2082 }
2083
2084 return 0;
2085 }
2086
2087 /* Add any pending functions other than the current function (already
2088 handled by the caller), that thus cannot be inlined, to FNS_P, then
2089 return the latest function added to the array, PREV_FN. */
2090
2091 tree
2092 cp_add_pending_fn_decls (void* fns_p, tree prev_fn)
2093 {
2094 varray_type *fnsp = (varray_type *)fns_p;
2095 struct saved_scope *s;
2096
2097 for (s = scope_chain; s; s = s->prev)
2098 if (s->function_decl && s->function_decl != prev_fn)
2099 {
2100 VARRAY_PUSH_TREE (*fnsp, s->function_decl);
2101 prev_fn = s->function_decl;
2102 }
2103
2104 return prev_fn;
2105 }
2106
2107 /* Determine whether a tree node is an OVERLOAD node. Used to decide
2108 whether to copy a node or to preserve its chain when inlining a
2109 function. */
2110
2111 int
2112 cp_is_overload_p (tree t)
2113 {
2114 return TREE_CODE (t) == OVERLOAD;
2115 }
2116
2117 /* Determine whether VAR is a declaration of an automatic variable in
2118 function FN. */
2119
2120 int
2121 cp_auto_var_in_fn_p (tree var, tree fn)
2122 {
2123 return (DECL_P (var) && DECL_CONTEXT (var) == fn
2124 && nonstatic_local_decl_p (var));
2125 }
2126
2127 /* Tell whether a declaration is needed for the RESULT of a function
2128 FN being inlined into CALLER or if the top node of target_exprs is
2129 to be used. */
2130
2131 tree
2132 cp_copy_res_decl_for_inlining (tree result,
2133 tree fn,
2134 tree caller,
2135 void* decl_map_ ATTRIBUTE_UNUSED,
2136 int* need_decl,
2137 tree return_slot_addr)
2138 {
2139 tree var;
2140
2141 /* If FN returns an aggregate then the caller will always pass the
2142 address of the return slot explicitly. If we were just to
2143 create a new VAR_DECL here, then the result of this function
2144 would be copied (bitwise) into the variable initialized by the
2145 TARGET_EXPR. That's incorrect, so we must transform any
2146 references to the RESULT into references to the target. */
2147
2148 /* We should have an explicit return slot iff the return type is
2149 TREE_ADDRESSABLE. See gimplify_aggr_init_expr. */
2150 if (TREE_ADDRESSABLE (TREE_TYPE (result))
2151 != (return_slot_addr != NULL_TREE))
2152 abort ();
2153
2154 *need_decl = !return_slot_addr;
2155 if (return_slot_addr)
2156 {
2157 var = build_indirect_ref (return_slot_addr, "");
2158 if (! same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (var),
2159 TREE_TYPE (result)))
2160 abort ();
2161 }
2162 /* Otherwise, make an appropriate copy. */
2163 else
2164 var = copy_decl_for_inlining (result, fn, caller);
2165
2166 return var;
2167 }
2168
2169 /* FN body has been duplicated. Update language specific fields. */
2170
2171 void
2172 cp_update_decl_after_saving (tree fn,
2173 void* decl_map_)
2174 {
2175 splay_tree decl_map = (splay_tree)decl_map_;
2176 tree nrv = DECL_SAVED_FUNCTION_DATA (fn)->x_return_value;
2177 if (nrv)
2178 {
2179 DECL_SAVED_FUNCTION_DATA (fn)->x_return_value
2180 = (tree) splay_tree_lookup (decl_map, (splay_tree_key) nrv)->value;
2181 }
2182 }
2183 /* Initialize tree.c. */
2184
2185 void
2186 init_tree (void)
2187 {
2188 list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
2189 }
2190
2191 /* Called via walk_tree. If *TP points to a DECL_EXPR for a local
2192 declaration, copies the declaration and enters it in the splay_tree
2193 pointed to by DATA (which is really a `splay_tree *'). */
2194
2195 static tree
2196 mark_local_for_remap_r (tree* tp,
2197 int* walk_subtrees ATTRIBUTE_UNUSED ,
2198 void* data)
2199 {
2200 tree t = *tp;
2201 splay_tree st = (splay_tree) data;
2202 tree decl;
2203
2204
2205 if (TREE_CODE (t) == DECL_EXPR
2206 && nonstatic_local_decl_p (DECL_EXPR_DECL (t)))
2207 decl = DECL_EXPR_DECL (t);
2208 else if (TREE_CODE (t) == LABEL_EXPR)
2209 decl = LABEL_EXPR_LABEL (t);
2210 else if (TREE_CODE (t) == TARGET_EXPR
2211 && nonstatic_local_decl_p (TREE_OPERAND (t, 0)))
2212 decl = TREE_OPERAND (t, 0);
2213 else if (TREE_CODE (t) == CASE_LABEL_EXPR)
2214 decl = CASE_LABEL (t);
2215 else
2216 decl = NULL_TREE;
2217
2218 if (decl)
2219 {
2220 tree copy;
2221
2222 /* Make a copy. */
2223 copy = copy_decl_for_inlining (decl,
2224 DECL_CONTEXT (decl),
2225 DECL_CONTEXT (decl));
2226
2227 /* Remember the copy. */
2228 splay_tree_insert (st,
2229 (splay_tree_key) decl,
2230 (splay_tree_value) copy);
2231 }
2232
2233 return NULL_TREE;
2234 }
2235
2236 /* Called via walk_tree when an expression is unsaved. Using the
2237 splay_tree pointed to by ST (which is really a `splay_tree'),
2238 remaps all local declarations to appropriate replacements. */
2239
2240 static tree
2241 cp_unsave_r (tree* tp,
2242 int* walk_subtrees,
2243 void* data)
2244 {
2245 splay_tree st = (splay_tree) data;
2246 splay_tree_node n;
2247
2248 /* Only a local declaration (variable or label). */
2249 if (nonstatic_local_decl_p (*tp))
2250 {
2251 /* Lookup the declaration. */
2252 n = splay_tree_lookup (st, (splay_tree_key) *tp);
2253
2254 /* If it's there, remap it. */
2255 if (n)
2256 *tp = (tree) n->value;
2257 }
2258 else if (TREE_CODE (*tp) == SAVE_EXPR)
2259 remap_save_expr (tp, st, walk_subtrees);
2260 else
2261 {
2262 copy_tree_r (tp, walk_subtrees, NULL);
2263
2264 /* Do whatever unsaving is required. */
2265 unsave_expr_1 (*tp);
2266 }
2267
2268 /* Keep iterating. */
2269 return NULL_TREE;
2270 }
2271
2272 /* Called whenever an expression needs to be unsaved. */
2273
2274 tree
2275 cxx_unsave_expr_now (tree tp)
2276 {
2277 splay_tree st;
2278
2279 /* Create a splay-tree to map old local variable declarations to new
2280 ones. */
2281 st = splay_tree_new (splay_tree_compare_pointers, NULL, NULL);
2282
2283 /* Walk the tree once figuring out what needs to be remapped. */
2284 walk_tree (&tp, mark_local_for_remap_r, st, NULL);
2285
2286 /* Walk the tree again, copying, remapping, and unsaving. */
2287 walk_tree (&tp, cp_unsave_r, st, NULL);
2288
2289 /* Clean up. */
2290 splay_tree_delete (st);
2291
2292 return tp;
2293 }
2294
2295 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
2296 is. Note that sfk_none is zero, so this function can be used as a
2297 predicate to test whether or not DECL is a special function. */
2298
2299 special_function_kind
2300 special_function_p (tree decl)
2301 {
2302 /* Rather than doing all this stuff with magic names, we should
2303 probably have a field of type `special_function_kind' in
2304 DECL_LANG_SPECIFIC. */
2305 if (DECL_COPY_CONSTRUCTOR_P (decl))
2306 return sfk_copy_constructor;
2307 if (DECL_CONSTRUCTOR_P (decl))
2308 return sfk_constructor;
2309 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
2310 return sfk_assignment_operator;
2311 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
2312 return sfk_destructor;
2313 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
2314 return sfk_complete_destructor;
2315 if (DECL_BASE_DESTRUCTOR_P (decl))
2316 return sfk_base_destructor;
2317 if (DECL_DELETING_DESTRUCTOR_P (decl))
2318 return sfk_deleting_destructor;
2319 if (DECL_CONV_FN_P (decl))
2320 return sfk_conversion;
2321
2322 return sfk_none;
2323 }
2324
2325 /* Returns true if and only if NODE is a name, i.e., a node created
2326 by the parser when processing an id-expression. */
2327
2328 bool
2329 name_p (tree node)
2330 {
2331 if (TREE_CODE (node) == TEMPLATE_ID_EXPR)
2332 node = TREE_OPERAND (node, 0);
2333 return (/* An ordinary unqualified name. */
2334 TREE_CODE (node) == IDENTIFIER_NODE
2335 /* A destructor name. */
2336 || TREE_CODE (node) == BIT_NOT_EXPR
2337 /* A qualified name. */
2338 || TREE_CODE (node) == SCOPE_REF);
2339 }
2340
2341 /* Returns nonzero if TYPE is a character type, including wchar_t. */
2342
2343 int
2344 char_type_p (tree type)
2345 {
2346 return (same_type_p (type, char_type_node)
2347 || same_type_p (type, unsigned_char_type_node)
2348 || same_type_p (type, signed_char_type_node)
2349 || same_type_p (type, wchar_type_node));
2350 }
2351
2352 /* Returns the kind of linkage associated with the indicated DECL. Th
2353 value returned is as specified by the language standard; it is
2354 independent of implementation details regarding template
2355 instantiation, etc. For example, it is possible that a declaration
2356 to which this function assigns external linkage would not show up
2357 as a global symbol when you run `nm' on the resulting object file. */
2358
2359 linkage_kind
2360 decl_linkage (tree decl)
2361 {
2362 /* This function doesn't attempt to calculate the linkage from first
2363 principles as given in [basic.link]. Instead, it makes use of
2364 the fact that we have already set TREE_PUBLIC appropriately, and
2365 then handles a few special cases. Ideally, we would calculate
2366 linkage first, and then transform that into a concrete
2367 implementation. */
2368
2369 /* Things that don't have names have no linkage. */
2370 if (!DECL_NAME (decl))
2371 return lk_none;
2372
2373 /* Things that are TREE_PUBLIC have external linkage. */
2374 if (TREE_PUBLIC (decl))
2375 return lk_external;
2376
2377 /* Some things that are not TREE_PUBLIC have external linkage, too.
2378 For example, on targets that don't have weak symbols, we make all
2379 template instantiations have internal linkage (in the object
2380 file), but the symbols should still be treated as having external
2381 linkage from the point of view of the language. */
2382 if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
2383 return lk_external;
2384
2385 /* Things in local scope do not have linkage, if they don't have
2386 TREE_PUBLIC set. */
2387 if (decl_function_context (decl))
2388 return lk_none;
2389
2390 /* Everything else has internal linkage. */
2391 return lk_internal;
2392 }
2393 \f
2394 /* EXP is an expression that we want to pre-evaluate. Returns via INITP an
2395 expression to perform the pre-evaluation, and returns directly an
2396 expression to use the precalculated result. */
2397
2398 tree
2399 stabilize_expr (tree exp, tree* initp)
2400 {
2401 tree init_expr;
2402
2403 if (!TREE_SIDE_EFFECTS (exp))
2404 {
2405 init_expr = NULL_TREE;
2406 }
2407 else if (!real_lvalue_p (exp)
2408 || !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp)))
2409 {
2410 init_expr = get_target_expr (exp);
2411 exp = TARGET_EXPR_SLOT (init_expr);
2412 }
2413 else
2414 {
2415 exp = build_unary_op (ADDR_EXPR, exp, 1);
2416 init_expr = get_target_expr (exp);
2417 exp = TARGET_EXPR_SLOT (init_expr);
2418 exp = build_indirect_ref (exp, 0);
2419 }
2420
2421 *initp = init_expr;
2422 return exp;
2423 }
2424
2425 /* Like stabilize_expr, but for a call whose args we want to
2426 pre-evaluate. */
2427
2428 void
2429 stabilize_call (tree call, tree *initp)
2430 {
2431 tree inits = NULL_TREE;
2432 tree t;
2433
2434 if (call == error_mark_node)
2435 return;
2436
2437 if (TREE_CODE (call) != CALL_EXPR
2438 && TREE_CODE (call) != AGGR_INIT_EXPR)
2439 abort ();
2440
2441 for (t = TREE_OPERAND (call, 1); t; t = TREE_CHAIN (t))
2442 if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
2443 {
2444 tree init;
2445 TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
2446 if (!init)
2447 /* Nothing. */;
2448 else if (inits)
2449 inits = build (COMPOUND_EXPR, void_type_node, inits, init);
2450 else
2451 inits = init;
2452 }
2453
2454 *initp = inits;
2455 }
2456
2457 /* Like stabilize_expr, but for an initialization. If we are initializing
2458 an object of class type, we don't want to introduce an extra temporary,
2459 so we look past the TARGET_EXPR and stabilize the arguments of the call
2460 instead. */
2461
2462 bool
2463 stabilize_init (tree init, tree *initp)
2464 {
2465 tree t = init;
2466
2467 if (t == error_mark_node)
2468 return true;
2469
2470 if (TREE_CODE (t) == INIT_EXPR
2471 && TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR)
2472 TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp);
2473 else
2474 {
2475 if (TREE_CODE (t) == INIT_EXPR)
2476 t = TREE_OPERAND (t, 1);
2477 if (TREE_CODE (t) == TARGET_EXPR)
2478 t = TARGET_EXPR_INITIAL (t);
2479 if (TREE_CODE (t) == CONSTRUCTOR
2480 && CONSTRUCTOR_ELTS (t) == NULL_TREE)
2481 {
2482 /* Default-initialization. */
2483 *initp = NULL_TREE;
2484 return true;
2485 }
2486
2487 /* If the initializer is a COND_EXPR, we can't preevaluate
2488 anything. */
2489 if (TREE_CODE (t) == COND_EXPR)
2490 return false;
2491
2492 stabilize_call (t, initp);
2493 }
2494
2495 return true;
2496 }
2497
2498 \f
2499 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
2500 /* Complain that some language-specific thing hanging off a tree
2501 node has been accessed improperly. */
2502
2503 void
2504 lang_check_failed (const char* file, int line, const char* function)
2505 {
2506 internal_error ("lang_* check: failed in %s, at %s:%d",
2507 function, trim_filename (file), line);
2508 }
2509 #endif /* ENABLE_TREE_CHECKING */
2510
2511 #include "gt-cp-tree.h"