tree.c (no_linkage_helper): Remove.
[gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Hacked by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "cp-tree.h"
29 #include "flags.h"
30 #include "real.h"
31 #include "rtl.h"
32 #include "toplev.h"
33 #include "insn-config.h"
34 #include "integrate.h"
35 #include "tree-inline.h"
36 #include "target.h"
37
38 static tree bot_manip (tree *, int *, void *);
39 static tree bot_replace (tree *, int *, void *);
40 static tree build_cplus_array_type_1 (tree, tree);
41 static int list_hash_eq (const void *, const void *);
42 static hashval_t list_hash_pieces (tree, tree, tree);
43 static hashval_t list_hash (const void *);
44 static cp_lvalue_kind lvalue_p_1 (tree, int);
45 static tree mark_local_for_remap_r (tree *, int *, void *);
46 static tree cp_unsave_r (tree *, int *, void *);
47 static tree build_target_expr (tree, tree);
48 static tree count_trees_r (tree *, int *, void *);
49 static tree verify_stmt_tree_r (tree *, int *, void *);
50 static tree find_tree_r (tree *, int *, void *);
51 static tree build_local_temp (tree);
52
53 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
54 static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
55 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
56
57 /* If REF is an lvalue, returns the kind of lvalue that REF is.
58 Otherwise, returns clk_none. If TREAT_CLASS_RVALUES_AS_LVALUES is
59 nonzero, rvalues of class type are considered lvalues. */
60
61 static cp_lvalue_kind
62 lvalue_p_1 (tree ref,
63 int treat_class_rvalues_as_lvalues)
64 {
65 cp_lvalue_kind op1_lvalue_kind = clk_none;
66 cp_lvalue_kind op2_lvalue_kind = clk_none;
67
68 if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
69 return clk_ordinary;
70
71 if (ref == current_class_ptr)
72 return clk_none;
73
74 switch (TREE_CODE (ref))
75 {
76 /* preincrements and predecrements are valid lvals, provided
77 what they refer to are valid lvals. */
78 case PREINCREMENT_EXPR:
79 case PREDECREMENT_EXPR:
80 case SAVE_EXPR:
81 case UNSAVE_EXPR:
82 case TRY_CATCH_EXPR:
83 case WITH_CLEANUP_EXPR:
84 case REALPART_EXPR:
85 case IMAGPART_EXPR:
86 return lvalue_p_1 (TREE_OPERAND (ref, 0),
87 treat_class_rvalues_as_lvalues);
88
89 case COMPONENT_REF:
90 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
91 treat_class_rvalues_as_lvalues);
92 /* In an expression of the form "X.Y", the packed-ness of the
93 expression does not depend on "X". */
94 op1_lvalue_kind &= ~clk_packed;
95 /* Look at the member designator. */
96 if (!op1_lvalue_kind
97 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
98 situations. */
99 || TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
100 ;
101 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
102 {
103 /* Clear the ordinary bit. If this object was a class
104 rvalue we want to preserve that information. */
105 op1_lvalue_kind &= ~clk_ordinary;
106 /* The lvalue is for a bitfield. */
107 op1_lvalue_kind |= clk_bitfield;
108 }
109 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
110 op1_lvalue_kind |= clk_packed;
111
112 return op1_lvalue_kind;
113
114 case STRING_CST:
115 return clk_ordinary;
116
117 case VAR_DECL:
118 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
119 && DECL_LANG_SPECIFIC (ref)
120 && DECL_IN_AGGR_P (ref))
121 return clk_none;
122 case INDIRECT_REF:
123 case ARRAY_REF:
124 case PARM_DECL:
125 case RESULT_DECL:
126 if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
127 return clk_ordinary;
128 break;
129
130 /* A currently unresolved scope ref. */
131 case SCOPE_REF:
132 abort ();
133 case MAX_EXPR:
134 case MIN_EXPR:
135 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
136 treat_class_rvalues_as_lvalues);
137 op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
138 treat_class_rvalues_as_lvalues);
139 break;
140
141 case COND_EXPR:
142 op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
143 treat_class_rvalues_as_lvalues);
144 op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2),
145 treat_class_rvalues_as_lvalues);
146 break;
147
148 case MODIFY_EXPR:
149 return clk_ordinary;
150
151 case COMPOUND_EXPR:
152 return lvalue_p_1 (TREE_OPERAND (ref, 1),
153 treat_class_rvalues_as_lvalues);
154
155 case TARGET_EXPR:
156 return treat_class_rvalues_as_lvalues ? clk_class : clk_none;
157
158 case CALL_EXPR:
159 case VA_ARG_EXPR:
160 /* Any class-valued call would be wrapped in a TARGET_EXPR. */
161 return clk_none;
162
163 case FUNCTION_DECL:
164 /* All functions (except non-static-member functions) are
165 lvalues. */
166 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
167 ? clk_none : clk_ordinary);
168
169 case NON_DEPENDENT_EXPR:
170 /* We must consider NON_DEPENDENT_EXPRs to be lvalues so that
171 things like "&E" where "E" is an expression with a
172 non-dependent type work. It is safe to be lenient because an
173 error will be issued when the template is instantiated if "E"
174 is not an lvalue. */
175 return clk_ordinary;
176
177 default:
178 break;
179 }
180
181 /* If one operand is not an lvalue at all, then this expression is
182 not an lvalue. */
183 if (!op1_lvalue_kind || !op2_lvalue_kind)
184 return clk_none;
185
186 /* Otherwise, it's an lvalue, and it has all the odd properties
187 contributed by either operand. */
188 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
189 /* It's not an ordinary lvalue if it involves either a bit-field or
190 a class rvalue. */
191 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
192 op1_lvalue_kind &= ~clk_ordinary;
193 return op1_lvalue_kind;
194 }
195
196 /* Returns the kind of lvalue that REF is, in the sense of
197 [basic.lval]. This function should really be named lvalue_p; it
198 computes the C++ definition of lvalue. */
199
200 cp_lvalue_kind
201 real_lvalue_p (tree ref)
202 {
203 return lvalue_p_1 (ref,
204 /*treat_class_rvalues_as_lvalues=*/0);
205 }
206
207 /* This differs from real_lvalue_p in that class rvalues are
208 considered lvalues. */
209
210 int
211 lvalue_p (tree ref)
212 {
213 return
214 (lvalue_p_1 (ref, /*class rvalue ok*/ 1) != clk_none);
215 }
216
217 /* Return nonzero if REF is an lvalue valid for this language;
218 otherwise, print an error message and return zero. */
219
220 int
221 lvalue_or_else (tree ref, const char* string)
222 {
223 if (!lvalue_p (ref))
224 {
225 error ("non-lvalue in %s", string);
226 return 0;
227 }
228 return 1;
229 }
230
231 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
232
233 static tree
234 build_target_expr (tree decl, tree value)
235 {
236 tree t;
237
238 t = build (TARGET_EXPR, TREE_TYPE (decl), decl, value,
239 cxx_maybe_build_cleanup (decl), NULL_TREE);
240 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
241 ignore the TARGET_EXPR. If there really turn out to be no
242 side-effects, then the optimizer should be able to get rid of
243 whatever code is generated anyhow. */
244 TREE_SIDE_EFFECTS (t) = 1;
245
246 return t;
247 }
248
249 /* Return an undeclared local temporary of type TYPE for use in building a
250 TARGET_EXPR. */
251
252 static tree
253 build_local_temp (tree type)
254 {
255 tree slot = build_decl (VAR_DECL, NULL_TREE, type);
256 DECL_ARTIFICIAL (slot) = 1;
257 DECL_CONTEXT (slot) = current_function_decl;
258 layout_decl (slot, 0);
259 return slot;
260 }
261
262 /* INIT is a CALL_EXPR which needs info about its target.
263 TYPE is the type that this initialization should appear to have.
264
265 Build an encapsulation of the initialization to perform
266 and return it so that it can be processed by language-independent
267 and language-specific expression expanders. */
268
269 tree
270 build_cplus_new (tree type, tree init)
271 {
272 tree fn;
273 tree slot;
274 tree rval;
275 int is_ctor;
276
277 /* Make sure that we're not trying to create an instance of an
278 abstract class. */
279 abstract_virtuals_error (NULL_TREE, type);
280
281 if (TREE_CODE (init) != CALL_EXPR && TREE_CODE (init) != AGGR_INIT_EXPR)
282 return convert (type, init);
283
284 fn = TREE_OPERAND (init, 0);
285 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
286 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
287 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
288
289 slot = build_local_temp (type);
290
291 /* We split the CALL_EXPR into its function and its arguments here.
292 Then, in expand_expr, we put them back together. The reason for
293 this is that this expression might be a default argument
294 expression. In that case, we need a new temporary every time the
295 expression is used. That's what break_out_target_exprs does; it
296 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
297 temporary slot. Then, expand_expr builds up a call-expression
298 using the new slot. */
299
300 /* If we don't need to use a constructor to create an object of this
301 type, don't mess with AGGR_INIT_EXPR. */
302 if (is_ctor || TREE_ADDRESSABLE (type))
303 {
304 rval = build (AGGR_INIT_EXPR, void_type_node, fn,
305 TREE_OPERAND (init, 1), slot);
306 TREE_SIDE_EFFECTS (rval) = 1;
307 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
308 }
309 else
310 rval = init;
311
312 rval = build_target_expr (slot, rval);
313
314 return rval;
315 }
316
317 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
318 indicated TYPE. */
319
320 tree
321 build_target_expr_with_type (tree init, tree type)
322 {
323 tree slot;
324
325 my_friendly_assert (!VOID_TYPE_P (type), 20040130);
326
327 if (TREE_CODE (init) == TARGET_EXPR)
328 return init;
329 else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type)
330 && TREE_CODE (init) != COND_EXPR
331 && TREE_CODE (init) != CONSTRUCTOR
332 && TREE_CODE (init) != VA_ARG_EXPR)
333 /* We need to build up a copy constructor call. COND_EXPR is a special
334 case because we already have copies on the arms and we don't want
335 another one here. A CONSTRUCTOR is aggregate initialization, which
336 is handled separately. A VA_ARG_EXPR is magic creation of an
337 aggregate; there's no additional work to be done. */
338 return force_rvalue (init);
339
340 slot = build_local_temp (type);
341 return build_target_expr (slot, init);
342 }
343
344 /* Like the above function, but without the checking. This function should
345 only be used by code which is deliberately trying to subvert the type
346 system, such as call_builtin_trap. */
347
348 tree
349 force_target_expr (tree type, tree init)
350 {
351 tree slot;
352
353 my_friendly_assert (!VOID_TYPE_P (type), 20040130);
354
355 slot = build_local_temp (type);
356 return build_target_expr (slot, init);
357 }
358
359 /* Like build_target_expr_with_type, but use the type of INIT. */
360
361 tree
362 get_target_expr (tree init)
363 {
364 return build_target_expr_with_type (init, TREE_TYPE (init));
365 }
366
367 \f
368 static tree
369 build_cplus_array_type_1 (tree elt_type, tree index_type)
370 {
371 tree t;
372
373 if (elt_type == error_mark_node || index_type == error_mark_node)
374 return error_mark_node;
375
376 if (dependent_type_p (elt_type)
377 || (index_type
378 && value_dependent_expression_p (TYPE_MAX_VALUE (index_type))))
379 {
380 t = make_node (ARRAY_TYPE);
381 TREE_TYPE (t) = elt_type;
382 TYPE_DOMAIN (t) = index_type;
383 }
384 else
385 t = build_array_type (elt_type, index_type);
386
387 /* Push these needs up so that initialization takes place
388 more easily. */
389 TYPE_NEEDS_CONSTRUCTING (t)
390 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
391 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
392 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
393 return t;
394 }
395
396 tree
397 build_cplus_array_type (tree elt_type, tree index_type)
398 {
399 tree t;
400 int type_quals = cp_type_quals (elt_type);
401
402 if (type_quals != TYPE_UNQUALIFIED)
403 elt_type = cp_build_qualified_type (elt_type, TYPE_UNQUALIFIED);
404
405 t = build_cplus_array_type_1 (elt_type, index_type);
406
407 if (type_quals != TYPE_UNQUALIFIED)
408 t = cp_build_qualified_type (t, type_quals);
409
410 return t;
411 }
412 \f
413 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
414 arrays correctly. In particular, if TYPE is an array of T's, and
415 TYPE_QUALS is non-empty, returns an array of qualified T's.
416
417 FLAGS determines how to deal with illformed qualifications. If
418 tf_ignore_bad_quals is set, then bad qualifications are dropped
419 (this is permitted if TYPE was introduced via a typedef or template
420 type parameter). If bad qualifications are dropped and tf_warning
421 is set, then a warning is issued for non-const qualifications. If
422 tf_ignore_bad_quals is not set and tf_error is not set, we
423 return error_mark_node. Otherwise, we issue an error, and ignore
424 the qualifications.
425
426 Qualification of a reference type is valid when the reference came
427 via a typedef or template type argument. [dcl.ref] No such
428 dispensation is provided for qualifying a function type. [dcl.fct]
429 DR 295 queries this and the proposed resolution brings it into line
430 with qualifying a reference. We implement the DR. We also behave
431 in a similar manner for restricting non-pointer types. */
432
433 tree
434 cp_build_qualified_type_real (tree type,
435 int type_quals,
436 tsubst_flags_t complain)
437 {
438 tree result;
439 int bad_quals = TYPE_UNQUALIFIED;
440
441 if (type == error_mark_node)
442 return type;
443
444 if (type_quals == cp_type_quals (type))
445 return type;
446
447 if (TREE_CODE (type) == ARRAY_TYPE)
448 {
449 /* In C++, the qualification really applies to the array element
450 type. Obtain the appropriately qualified element type. */
451 tree t;
452 tree element_type
453 = cp_build_qualified_type_real (TREE_TYPE (type),
454 type_quals,
455 complain);
456
457 if (element_type == error_mark_node)
458 return error_mark_node;
459
460 /* See if we already have an identically qualified type. */
461 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
462 if (cp_type_quals (t) == type_quals
463 && TYPE_NAME (t) == TYPE_NAME (type)
464 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
465 break;
466
467 if (!t)
468 {
469 /* Make a new array type, just like the old one, but with the
470 appropriately qualified element type. */
471 t = build_type_copy (type);
472 TREE_TYPE (t) = element_type;
473 }
474
475 /* Even if we already had this variant, we update
476 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
477 they changed since the variant was originally created.
478
479 This seems hokey; if there is some way to use a previous
480 variant *without* coming through here,
481 TYPE_NEEDS_CONSTRUCTING will never be updated. */
482 TYPE_NEEDS_CONSTRUCTING (t)
483 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
484 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
485 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
486 return t;
487 }
488 else if (TYPE_PTRMEMFUNC_P (type))
489 {
490 /* For a pointer-to-member type, we can't just return a
491 cv-qualified version of the RECORD_TYPE. If we do, we
492 haven't changed the field that contains the actual pointer to
493 a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
494 tree t;
495
496 t = TYPE_PTRMEMFUNC_FN_TYPE (type);
497 t = cp_build_qualified_type_real (t, type_quals, complain);
498 return build_ptrmemfunc_type (t);
499 }
500
501 /* A reference, function or method type shall not be cv qualified.
502 [dcl.ref], [dct.fct] */
503 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
504 && (TREE_CODE (type) == REFERENCE_TYPE
505 || TREE_CODE (type) == FUNCTION_TYPE
506 || TREE_CODE (type) == METHOD_TYPE))
507 {
508 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
509 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
510 }
511
512 /* A restrict-qualified type must be a pointer (or reference)
513 to object or incomplete type. */
514 if ((type_quals & TYPE_QUAL_RESTRICT)
515 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
516 && TREE_CODE (type) != TYPENAME_TYPE
517 && !POINTER_TYPE_P (type))
518 {
519 bad_quals |= TYPE_QUAL_RESTRICT;
520 type_quals &= ~TYPE_QUAL_RESTRICT;
521 }
522
523 if (bad_quals == TYPE_UNQUALIFIED)
524 /*OK*/;
525 else if (!(complain & (tf_error | tf_ignore_bad_quals)))
526 return error_mark_node;
527 else
528 {
529 if (complain & tf_ignore_bad_quals)
530 /* We're not going to warn about constifying things that can't
531 be constified. */
532 bad_quals &= ~TYPE_QUAL_CONST;
533 if (bad_quals)
534 {
535 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
536
537 if (!(complain & tf_ignore_bad_quals))
538 error ("`%V' qualifiers cannot be applied to `%T'",
539 bad_type, type);
540 }
541 }
542
543 /* Retrieve (or create) the appropriately qualified variant. */
544 result = build_qualified_type (type, type_quals);
545
546 /* If this was a pointer-to-method type, and we just made a copy,
547 then we need to unshare the record that holds the cached
548 pointer-to-member-function type, because these will be distinct
549 between the unqualified and qualified types. */
550 if (result != type
551 && TREE_CODE (type) == POINTER_TYPE
552 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)
553 TYPE_LANG_SPECIFIC (result) = NULL;
554
555 return result;
556 }
557
558 /* Returns the canonical version of TYPE. In other words, if TYPE is
559 a typedef, returns the underlying type. The cv-qualification of
560 the type returned matches the type input; they will always be
561 compatible types. */
562
563 tree
564 canonical_type_variant (tree t)
565 {
566 return cp_build_qualified_type (TYPE_MAIN_VARIANT (t), cp_type_quals (t));
567 }
568 \f
569 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
570 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
571 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
572 VIRT indicates whether TYPE is inherited virtually or not.
573 IGO_PREV points at the previous binfo of the inheritance graph
574 order chain. The newly copied binfo's TREE_CHAIN forms this
575 ordering.
576
577 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
578 correct order. That is in the order the bases themselves should be
579 constructed in.
580
581 The BINFO_INHERITANCE of a virtual base class points to the binfo
582 of the most derived type. ??? We could probably change this so that
583 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
584 remove a field. They currently can only differ for primary virtual
585 virtual bases. */
586
587 tree
588 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
589 {
590 tree new_binfo;
591
592 if (virt)
593 {
594 /* See if we've already made this virtual base. */
595 new_binfo = binfo_for_vbase (type, t);
596 if (new_binfo)
597 return new_binfo;
598 }
599
600 new_binfo = make_tree_binfo (BINFO_LANG_SLOTS);
601 BINFO_TYPE (new_binfo) = type;
602
603 /* Chain it into the inheritance graph. */
604 TREE_CHAIN (*igo_prev) = new_binfo;
605 *igo_prev = new_binfo;
606
607 if (binfo)
608 {
609 int ix, n = BINFO_N_BASE_BINFOS (binfo);
610
611 my_friendly_assert (!BINFO_DEPENDENT_BASE_P (binfo), 20040712);
612 my_friendly_assert (type == BINFO_TYPE (binfo), 20040714);
613
614 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
615 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
616
617 /* Create a new base binfo vector. */
618 if (n)
619 {
620 BINFO_BASE_BINFOS (new_binfo) = make_tree_vec (n);
621 /* We do not need to copy the accesses, as they are read only. */
622 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
623 }
624
625 /* Recursively copy base binfos of BINFO. */
626 for (ix = 0; ix != n; ix++)
627 {
628 tree base_binfo = BINFO_BASE_BINFO (binfo, ix);
629 tree new_base_binfo;
630
631 my_friendly_assert (!BINFO_DEPENDENT_BASE_P (base_binfo), 20040713);
632 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
633 t, igo_prev,
634 BINFO_VIRTUAL_P (base_binfo));
635
636 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
637 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
638 BINFO_BASE_BINFO (new_binfo, ix) = new_base_binfo;
639 }
640 }
641 else
642 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
643
644 if (virt)
645 {
646 /* Push it onto the list after any virtual bases it contains
647 will have been pushed. */
648 VEC_quick_push (tree, CLASSTYPE_VBASECLASSES (t), new_binfo);
649 BINFO_VIRTUAL_P (new_binfo) = 1;
650 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
651 }
652
653 return new_binfo;
654 }
655 \f
656 /* Hashing of lists so that we don't make duplicates.
657 The entry point is `list_hash_canon'. */
658
659 /* Now here is the hash table. When recording a list, it is added
660 to the slot whose index is the hash code mod the table size.
661 Note that the hash table is used for several kinds of lists.
662 While all these live in the same table, they are completely independent,
663 and the hash code is computed differently for each of these. */
664
665 static GTY ((param_is (union tree_node))) htab_t list_hash_table;
666
667 struct list_proxy
668 {
669 tree purpose;
670 tree value;
671 tree chain;
672 };
673
674 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
675 for a node we are thinking about adding). */
676
677 static int
678 list_hash_eq (const void* entry, const void* data)
679 {
680 tree t = (tree) entry;
681 struct list_proxy *proxy = (struct list_proxy *) data;
682
683 return (TREE_VALUE (t) == proxy->value
684 && TREE_PURPOSE (t) == proxy->purpose
685 && TREE_CHAIN (t) == proxy->chain);
686 }
687
688 /* Compute a hash code for a list (chain of TREE_LIST nodes
689 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
690 TREE_COMMON slots), by adding the hash codes of the individual entries. */
691
692 static hashval_t
693 list_hash_pieces (tree purpose, tree value, tree chain)
694 {
695 hashval_t hashcode = 0;
696
697 if (chain)
698 hashcode += TREE_HASH (chain);
699
700 if (value)
701 hashcode += TREE_HASH (value);
702 else
703 hashcode += 1007;
704 if (purpose)
705 hashcode += TREE_HASH (purpose);
706 else
707 hashcode += 1009;
708 return hashcode;
709 }
710
711 /* Hash an already existing TREE_LIST. */
712
713 static hashval_t
714 list_hash (const void* p)
715 {
716 tree t = (tree) p;
717 return list_hash_pieces (TREE_PURPOSE (t),
718 TREE_VALUE (t),
719 TREE_CHAIN (t));
720 }
721
722 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
723 object for an identical list if one already exists. Otherwise, build a
724 new one, and record it as the canonical object. */
725
726 tree
727 hash_tree_cons (tree purpose, tree value, tree chain)
728 {
729 int hashcode = 0;
730 void **slot;
731 struct list_proxy proxy;
732
733 /* Hash the list node. */
734 hashcode = list_hash_pieces (purpose, value, chain);
735 /* Create a proxy for the TREE_LIST we would like to create. We
736 don't actually create it so as to avoid creating garbage. */
737 proxy.purpose = purpose;
738 proxy.value = value;
739 proxy.chain = chain;
740 /* See if it is already in the table. */
741 slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
742 INSERT);
743 /* If not, create a new node. */
744 if (!*slot)
745 *slot = tree_cons (purpose, value, chain);
746 return *slot;
747 }
748
749 /* Constructor for hashed lists. */
750
751 tree
752 hash_tree_chain (tree value, tree chain)
753 {
754 return hash_tree_cons (NULL_TREE, value, chain);
755 }
756
757 /* Similar, but used for concatenating two lists. */
758
759 tree
760 hash_chainon (tree list1, tree list2)
761 {
762 if (list2 == 0)
763 return list1;
764 if (list1 == 0)
765 return list2;
766 if (TREE_CHAIN (list1) == NULL_TREE)
767 return hash_tree_chain (TREE_VALUE (list1), list2);
768 return hash_tree_chain (TREE_VALUE (list1),
769 hash_chainon (TREE_CHAIN (list1), list2));
770 }
771 \f
772 void
773 debug_binfo (tree elem)
774 {
775 HOST_WIDE_INT n;
776 tree virtuals;
777
778 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
779 "\nvtable type:\n",
780 TYPE_NAME_STRING (BINFO_TYPE (elem)),
781 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
782 debug_tree (BINFO_TYPE (elem));
783 if (BINFO_VTABLE (elem))
784 fprintf (stderr, "vtable decl \"%s\"\n",
785 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
786 else
787 fprintf (stderr, "no vtable decl yet\n");
788 fprintf (stderr, "virtuals:\n");
789 virtuals = BINFO_VIRTUALS (elem);
790 n = 0;
791
792 while (virtuals)
793 {
794 tree fndecl = TREE_VALUE (virtuals);
795 fprintf (stderr, "%s [%ld =? %ld]\n",
796 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
797 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
798 ++n;
799 virtuals = TREE_CHAIN (virtuals);
800 }
801 }
802
803 int
804 count_functions (tree t)
805 {
806 int i;
807 if (TREE_CODE (t) == FUNCTION_DECL)
808 return 1;
809 else if (TREE_CODE (t) == OVERLOAD)
810 {
811 for (i = 0; t; t = OVL_CHAIN (t))
812 i++;
813 return i;
814 }
815
816 abort ();
817 return 0;
818 }
819
820 int
821 is_overloaded_fn (tree x)
822 {
823 /* A baselink is also considered an overloaded function. */
824 if (TREE_CODE (x) == OFFSET_REF)
825 x = TREE_OPERAND (x, 1);
826 if (BASELINK_P (x))
827 x = BASELINK_FUNCTIONS (x);
828 return (TREE_CODE (x) == FUNCTION_DECL
829 || TREE_CODE (x) == TEMPLATE_ID_EXPR
830 || DECL_FUNCTION_TEMPLATE_P (x)
831 || TREE_CODE (x) == OVERLOAD);
832 }
833
834 int
835 really_overloaded_fn (tree x)
836 {
837 /* A baselink is also considered an overloaded function. */
838 if (TREE_CODE (x) == OFFSET_REF)
839 x = TREE_OPERAND (x, 1);
840 if (BASELINK_P (x))
841 x = BASELINK_FUNCTIONS (x);
842
843 return ((TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x))
844 || DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
845 || TREE_CODE (x) == TEMPLATE_ID_EXPR);
846 }
847
848 tree
849 get_first_fn (tree from)
850 {
851 my_friendly_assert (is_overloaded_fn (from), 9);
852 /* A baselink is also considered an overloaded function. */
853 if (BASELINK_P (from))
854 from = BASELINK_FUNCTIONS (from);
855 return OVL_CURRENT (from);
856 }
857
858 /* Returns nonzero if T is a ->* or .* expression that refers to a
859 member function. */
860
861 int
862 bound_pmf_p (tree t)
863 {
864 return (TREE_CODE (t) == OFFSET_REF
865 && TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (t, 1))));
866 }
867
868 /* Return a new OVL node, concatenating it with the old one. */
869
870 tree
871 ovl_cons (tree decl, tree chain)
872 {
873 tree result = make_node (OVERLOAD);
874 TREE_TYPE (result) = unknown_type_node;
875 OVL_FUNCTION (result) = decl;
876 TREE_CHAIN (result) = chain;
877
878 return result;
879 }
880
881 /* Build a new overloaded function. If this is the first one,
882 just return it; otherwise, ovl_cons the _DECLs */
883
884 tree
885 build_overload (tree decl, tree chain)
886 {
887 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
888 return decl;
889 if (chain && TREE_CODE (chain) != OVERLOAD)
890 chain = ovl_cons (chain, NULL_TREE);
891 return ovl_cons (decl, chain);
892 }
893
894 \f
895 #define PRINT_RING_SIZE 4
896
897 const char *
898 cxx_printable_name (tree decl, int v)
899 {
900 static tree decl_ring[PRINT_RING_SIZE];
901 static char *print_ring[PRINT_RING_SIZE];
902 static int ring_counter;
903 int i;
904
905 /* Only cache functions. */
906 if (v < 2
907 || TREE_CODE (decl) != FUNCTION_DECL
908 || DECL_LANG_SPECIFIC (decl) == 0)
909 return lang_decl_name (decl, v);
910
911 /* See if this print name is lying around. */
912 for (i = 0; i < PRINT_RING_SIZE; i++)
913 if (decl_ring[i] == decl)
914 /* yes, so return it. */
915 return print_ring[i];
916
917 if (++ring_counter == PRINT_RING_SIZE)
918 ring_counter = 0;
919
920 if (current_function_decl != NULL_TREE)
921 {
922 if (decl_ring[ring_counter] == current_function_decl)
923 ring_counter += 1;
924 if (ring_counter == PRINT_RING_SIZE)
925 ring_counter = 0;
926 if (decl_ring[ring_counter] == current_function_decl)
927 abort ();
928 }
929
930 if (print_ring[ring_counter])
931 free (print_ring[ring_counter]);
932
933 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v));
934 decl_ring[ring_counter] = decl;
935 return print_ring[ring_counter];
936 }
937 \f
938 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
939 listed in RAISES. */
940
941 tree
942 build_exception_variant (tree type, tree raises)
943 {
944 tree v = TYPE_MAIN_VARIANT (type);
945 int type_quals = TYPE_QUALS (type);
946
947 for (; v; v = TYPE_NEXT_VARIANT (v))
948 if (check_qualified_type (v, type, type_quals)
949 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1))
950 return v;
951
952 /* Need to build a new variant. */
953 v = build_type_copy (type);
954 TYPE_RAISES_EXCEPTIONS (v) = raises;
955 return v;
956 }
957
958 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
959 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
960 arguments. */
961
962 tree
963 bind_template_template_parm (tree t, tree newargs)
964 {
965 tree decl = TYPE_NAME (t);
966 tree t2;
967
968 t2 = make_aggr_type (BOUND_TEMPLATE_TEMPLATE_PARM);
969 decl = build_decl (TYPE_DECL, DECL_NAME (decl), NULL_TREE);
970
971 /* These nodes have to be created to reflect new TYPE_DECL and template
972 arguments. */
973 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
974 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
975 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
976 = tree_cons (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t),
977 newargs, NULL_TREE);
978
979 TREE_TYPE (decl) = t2;
980 TYPE_NAME (t2) = decl;
981 TYPE_STUB_DECL (t2) = decl;
982 TYPE_SIZE (t2) = 0;
983
984 return t2;
985 }
986
987 /* Called from count_trees via walk_tree. */
988
989 static tree
990 count_trees_r (tree *tp, int *walk_subtrees, void *data)
991 {
992 ++*((int *) data);
993
994 if (TYPE_P (*tp))
995 *walk_subtrees = 0;
996
997 return NULL_TREE;
998 }
999
1000 /* Debugging function for measuring the rough complexity of a tree
1001 representation. */
1002
1003 int
1004 count_trees (tree t)
1005 {
1006 int n_trees = 0;
1007 walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
1008 return n_trees;
1009 }
1010
1011 /* Called from verify_stmt_tree via walk_tree. */
1012
1013 static tree
1014 verify_stmt_tree_r (tree* tp,
1015 int* walk_subtrees ATTRIBUTE_UNUSED ,
1016 void* data)
1017 {
1018 tree t = *tp;
1019 htab_t *statements = (htab_t *) data;
1020 void **slot;
1021
1022 if (!STATEMENT_CODE_P (TREE_CODE (t)))
1023 return NULL_TREE;
1024
1025 /* If this statement is already present in the hash table, then
1026 there is a circularity in the statement tree. */
1027 if (htab_find (*statements, t))
1028 abort ();
1029
1030 slot = htab_find_slot (*statements, t, INSERT);
1031 *slot = t;
1032
1033 return NULL_TREE;
1034 }
1035
1036 /* Debugging function to check that the statement T has not been
1037 corrupted. For now, this function simply checks that T contains no
1038 circularities. */
1039
1040 void
1041 verify_stmt_tree (tree t)
1042 {
1043 htab_t statements;
1044 statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
1045 walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
1046 htab_delete (statements);
1047 }
1048
1049 /* Called from find_tree via walk_tree. */
1050
1051 static tree
1052 find_tree_r (tree* tp,
1053 int* walk_subtrees ATTRIBUTE_UNUSED ,
1054 void* data)
1055 {
1056 if (*tp == (tree) data)
1057 return (tree) data;
1058
1059 return NULL_TREE;
1060 }
1061
1062 /* Returns X if X appears in the tree structure rooted at T. */
1063
1064 tree
1065 find_tree (tree t, tree x)
1066 {
1067 return walk_tree_without_duplicates (&t, find_tree_r, x);
1068 }
1069
1070 /* Check if the type T depends on a type with no linkage and if so, return
1071 it. */
1072
1073 tree
1074 no_linkage_check (tree t)
1075 {
1076 tree r;
1077
1078 /* There's no point in checking linkage on template functions; we
1079 can't know their complete types. */
1080 if (processing_template_decl)
1081 return NULL_TREE;
1082
1083 switch (TREE_CODE (t))
1084 {
1085 case RECORD_TYPE:
1086 if (TYPE_PTRMEMFUNC_P (t))
1087 goto ptrmem;
1088 /* Fall through. */
1089 case UNION_TYPE:
1090 if (!CLASS_TYPE_P (t))
1091 return NULL_TREE;
1092 /* Fall through. */
1093 case ENUMERAL_TYPE:
1094 if (decl_function_context (TYPE_MAIN_DECL (t))
1095 || TYPE_ANONYMOUS_P (t))
1096 return t;
1097 return NULL_TREE;
1098
1099 case ARRAY_TYPE:
1100 case POINTER_TYPE:
1101 case REFERENCE_TYPE:
1102 return no_linkage_check (TREE_TYPE (t));
1103
1104 case OFFSET_TYPE:
1105 ptrmem:
1106 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t));
1107 if (r)
1108 return r;
1109 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t));
1110
1111 case METHOD_TYPE:
1112 r = no_linkage_check (TYPE_METHOD_BASETYPE (t));
1113 if (r)
1114 return r;
1115 /* Fall through. */
1116 case FUNCTION_TYPE:
1117 {
1118 tree parm;
1119 for (parm = TYPE_ARG_TYPES (t);
1120 parm && parm != void_list_node;
1121 parm = TREE_CHAIN (parm))
1122 {
1123 r = no_linkage_check (TREE_VALUE (parm));
1124 if (r)
1125 return r;
1126 }
1127 return no_linkage_check (TREE_TYPE (t));
1128 }
1129
1130 default:
1131 return NULL_TREE;
1132 }
1133 }
1134
1135 #ifdef GATHER_STATISTICS
1136 extern int depth_reached;
1137 #endif
1138
1139 void
1140 cxx_print_statistics (void)
1141 {
1142 print_search_statistics ();
1143 print_class_statistics ();
1144 #ifdef GATHER_STATISTICS
1145 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
1146 depth_reached);
1147 #endif
1148 }
1149
1150 /* Return, as an INTEGER_CST node, the number of elements for TYPE
1151 (which is an ARRAY_TYPE). This counts only elements of the top
1152 array. */
1153
1154 tree
1155 array_type_nelts_top (tree type)
1156 {
1157 return fold (build (PLUS_EXPR, sizetype,
1158 array_type_nelts (type),
1159 integer_one_node));
1160 }
1161
1162 /* Return, as an INTEGER_CST node, the number of elements for TYPE
1163 (which is an ARRAY_TYPE). This one is a recursive count of all
1164 ARRAY_TYPEs that are clumped together. */
1165
1166 tree
1167 array_type_nelts_total (tree type)
1168 {
1169 tree sz = array_type_nelts_top (type);
1170 type = TREE_TYPE (type);
1171 while (TREE_CODE (type) == ARRAY_TYPE)
1172 {
1173 tree n = array_type_nelts_top (type);
1174 sz = fold (build (MULT_EXPR, sizetype, sz, n));
1175 type = TREE_TYPE (type);
1176 }
1177 return sz;
1178 }
1179
1180 /* Called from break_out_target_exprs via mapcar. */
1181
1182 static tree
1183 bot_manip (tree* tp, int* walk_subtrees, void* data)
1184 {
1185 splay_tree target_remap = ((splay_tree) data);
1186 tree t = *tp;
1187
1188 if (!TYPE_P (t) && TREE_CONSTANT (t))
1189 {
1190 /* There can't be any TARGET_EXPRs or their slot variables below
1191 this point. We used to check !TREE_SIDE_EFFECTS, but then we
1192 failed to copy an ADDR_EXPR of the slot VAR_DECL. */
1193 *walk_subtrees = 0;
1194 return NULL_TREE;
1195 }
1196 if (TREE_CODE (t) == TARGET_EXPR)
1197 {
1198 tree u;
1199
1200 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
1201 {
1202 mark_used (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 1), 0), 0));
1203 u = build_cplus_new
1204 (TREE_TYPE (t), break_out_target_exprs (TREE_OPERAND (t, 1)));
1205 }
1206 else
1207 {
1208 u = build_target_expr_with_type
1209 (break_out_target_exprs (TREE_OPERAND (t, 1)), TREE_TYPE (t));
1210 }
1211
1212 /* Map the old variable to the new one. */
1213 splay_tree_insert (target_remap,
1214 (splay_tree_key) TREE_OPERAND (t, 0),
1215 (splay_tree_value) TREE_OPERAND (u, 0));
1216
1217 /* Replace the old expression with the new version. */
1218 *tp = u;
1219 /* We don't have to go below this point; the recursive call to
1220 break_out_target_exprs will have handled anything below this
1221 point. */
1222 *walk_subtrees = 0;
1223 return NULL_TREE;
1224 }
1225 else if (TREE_CODE (t) == CALL_EXPR)
1226 mark_used (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
1227
1228 /* Make a copy of this node. */
1229 return copy_tree_r (tp, walk_subtrees, NULL);
1230 }
1231
1232 /* Replace all remapped VAR_DECLs in T with their new equivalents.
1233 DATA is really a splay-tree mapping old variables to new
1234 variables. */
1235
1236 static tree
1237 bot_replace (tree* t,
1238 int* walk_subtrees ATTRIBUTE_UNUSED ,
1239 void* data)
1240 {
1241 splay_tree target_remap = ((splay_tree) data);
1242
1243 if (TREE_CODE (*t) == VAR_DECL)
1244 {
1245 splay_tree_node n = splay_tree_lookup (target_remap,
1246 (splay_tree_key) *t);
1247 if (n)
1248 *t = (tree) n->value;
1249 }
1250
1251 return NULL_TREE;
1252 }
1253
1254 /* When we parse a default argument expression, we may create
1255 temporary variables via TARGET_EXPRs. When we actually use the
1256 default-argument expression, we make a copy of the expression, but
1257 we must replace the temporaries with appropriate local versions. */
1258
1259 tree
1260 break_out_target_exprs (tree t)
1261 {
1262 static int target_remap_count;
1263 static splay_tree target_remap;
1264
1265 if (!target_remap_count++)
1266 target_remap = splay_tree_new (splay_tree_compare_pointers,
1267 /*splay_tree_delete_key_fn=*/NULL,
1268 /*splay_tree_delete_value_fn=*/NULL);
1269 walk_tree (&t, bot_manip, target_remap, NULL);
1270 walk_tree (&t, bot_replace, target_remap, NULL);
1271
1272 if (!--target_remap_count)
1273 {
1274 splay_tree_delete (target_remap);
1275 target_remap = NULL;
1276 }
1277
1278 return t;
1279 }
1280
1281 /* Similar to `build_nt', but for template definitions of dependent
1282 expressions */
1283
1284 tree
1285 build_min_nt (enum tree_code code, ...)
1286 {
1287 tree t;
1288 int length;
1289 int i;
1290 va_list p;
1291
1292 va_start (p, code);
1293
1294 t = make_node (code);
1295 length = TREE_CODE_LENGTH (code);
1296
1297 for (i = 0; i < length; i++)
1298 {
1299 tree x = va_arg (p, tree);
1300 TREE_OPERAND (t, i) = x;
1301 }
1302
1303 va_end (p);
1304 return t;
1305 }
1306
1307 /* Similar to `build', but for template definitions. */
1308
1309 tree
1310 build_min (enum tree_code code, tree tt, ...)
1311 {
1312 tree t;
1313 int length;
1314 int i;
1315 va_list p;
1316
1317 va_start (p, tt);
1318
1319 t = make_node (code);
1320 length = TREE_CODE_LENGTH (code);
1321 TREE_TYPE (t) = tt;
1322
1323 for (i = 0; i < length; i++)
1324 {
1325 tree x = va_arg (p, tree);
1326 TREE_OPERAND (t, i) = x;
1327 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
1328 TREE_SIDE_EFFECTS (t) = 1;
1329 }
1330
1331 va_end (p);
1332 return t;
1333 }
1334
1335 /* Similar to `build', but for template definitions of non-dependent
1336 expressions. NON_DEP is the non-dependent expression that has been
1337 built. */
1338
1339 tree
1340 build_min_non_dep (enum tree_code code, tree non_dep, ...)
1341 {
1342 tree t;
1343 int length;
1344 int i;
1345 va_list p;
1346
1347 va_start (p, non_dep);
1348
1349 t = make_node (code);
1350 length = TREE_CODE_LENGTH (code);
1351 TREE_TYPE (t) = TREE_TYPE (non_dep);
1352 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
1353
1354 for (i = 0; i < length; i++)
1355 {
1356 tree x = va_arg (p, tree);
1357 TREE_OPERAND (t, i) = x;
1358 }
1359
1360 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
1361 /* This should not be considered a COMPOUND_EXPR, because it
1362 resolves to an overload. */
1363 COMPOUND_EXPR_OVERLOADED (t) = 1;
1364
1365 va_end (p);
1366 return t;
1367 }
1368
1369 /* Returns an INTEGER_CST (of type `int') corresponding to I.
1370 Multiple calls with the same value of I may or may not yield the
1371 same node; therefore, callers should never modify the node
1372 returned. */
1373
1374 static GTY(()) tree shared_int_cache[256];
1375
1376 tree
1377 build_shared_int_cst (int i)
1378 {
1379 if (i >= 256)
1380 return build_int_2 (i, 0);
1381
1382 if (!shared_int_cache[i])
1383 shared_int_cache[i] = build_int_2 (i, 0);
1384
1385 return shared_int_cache[i];
1386 }
1387
1388 tree
1389 get_type_decl (tree t)
1390 {
1391 if (TREE_CODE (t) == TYPE_DECL)
1392 return t;
1393 if (TYPE_P (t))
1394 return TYPE_STUB_DECL (t);
1395 if (t == error_mark_node)
1396 return t;
1397
1398 abort ();
1399
1400 /* Stop compiler from complaining control reaches end of non-void function. */
1401 return 0;
1402 }
1403
1404 /* Return first vector element whose BINFO_TYPE is ELEM.
1405 Return 0 if ELEM is not in VEC. VEC may be NULL_TREE. */
1406
1407 tree
1408 vec_binfo_member (tree elem, tree vec)
1409 {
1410 int i;
1411
1412 if (vec)
1413 for (i = 0; i < TREE_VEC_LENGTH (vec); ++i)
1414 if (same_type_p (elem, BINFO_TYPE (TREE_VEC_ELT (vec, i))))
1415 return TREE_VEC_ELT (vec, i);
1416
1417 return NULL_TREE;
1418 }
1419
1420 /* Returns the namespace that contains DECL, whether directly or
1421 indirectly. */
1422
1423 tree
1424 decl_namespace_context (tree decl)
1425 {
1426 while (1)
1427 {
1428 if (TREE_CODE (decl) == NAMESPACE_DECL)
1429 return decl;
1430 else if (TYPE_P (decl))
1431 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
1432 else
1433 decl = CP_DECL_CONTEXT (decl);
1434 }
1435 }
1436
1437 /* Return truthvalue of whether T1 is the same tree structure as T2.
1438 Return 1 if they are the same. Return 0 if they are different. */
1439
1440 bool
1441 cp_tree_equal (tree t1, tree t2)
1442 {
1443 enum tree_code code1, code2;
1444
1445 if (t1 == t2)
1446 return true;
1447 if (!t1 || !t2)
1448 return false;
1449
1450 for (code1 = TREE_CODE (t1);
1451 code1 == NOP_EXPR || code1 == CONVERT_EXPR
1452 || code1 == NON_LVALUE_EXPR;
1453 code1 = TREE_CODE (t1))
1454 t1 = TREE_OPERAND (t1, 0);
1455 for (code2 = TREE_CODE (t2);
1456 code2 == NOP_EXPR || code2 == CONVERT_EXPR
1457 || code1 == NON_LVALUE_EXPR;
1458 code2 = TREE_CODE (t2))
1459 t2 = TREE_OPERAND (t2, 0);
1460
1461 /* They might have become equal now. */
1462 if (t1 == t2)
1463 return true;
1464
1465 if (code1 != code2)
1466 return false;
1467
1468 switch (code1)
1469 {
1470 case INTEGER_CST:
1471 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
1472 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
1473
1474 case REAL_CST:
1475 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
1476
1477 case STRING_CST:
1478 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
1479 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
1480 TREE_STRING_LENGTH (t1));
1481
1482 case CONSTRUCTOR:
1483 /* We need to do this when determining whether or not two
1484 non-type pointer to member function template arguments
1485 are the same. */
1486 if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
1487 /* The first operand is RTL. */
1488 && TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0)))
1489 return false;
1490 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1491
1492 case TREE_LIST:
1493 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
1494 return false;
1495 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
1496 return false;
1497 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
1498
1499 case SAVE_EXPR:
1500 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1501
1502 case CALL_EXPR:
1503 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1504 return false;
1505 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1506
1507 case TARGET_EXPR:
1508 {
1509 tree o1 = TREE_OPERAND (t1, 0);
1510 tree o2 = TREE_OPERAND (t2, 0);
1511
1512 /* Special case: if either target is an unallocated VAR_DECL,
1513 it means that it's going to be unified with whatever the
1514 TARGET_EXPR is really supposed to initialize, so treat it
1515 as being equivalent to anything. */
1516 if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
1517 && !DECL_RTL_SET_P (o1))
1518 /*Nop*/;
1519 else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
1520 && !DECL_RTL_SET_P (o2))
1521 /*Nop*/;
1522 else if (!cp_tree_equal (o1, o2))
1523 return false;
1524
1525 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
1526 }
1527
1528 case WITH_CLEANUP_EXPR:
1529 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1530 return false;
1531 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
1532
1533 case COMPONENT_REF:
1534 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
1535 return false;
1536 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1537
1538 case VAR_DECL:
1539 case PARM_DECL:
1540 case CONST_DECL:
1541 case FUNCTION_DECL:
1542 case TEMPLATE_DECL:
1543 case IDENTIFIER_NODE:
1544 return false;
1545
1546 case TEMPLATE_PARM_INDEX:
1547 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
1548 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
1549 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
1550 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
1551
1552 case TEMPLATE_ID_EXPR:
1553 {
1554 unsigned ix;
1555 tree vec1, vec2;
1556
1557 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
1558 return false;
1559 vec1 = TREE_OPERAND (t1, 1);
1560 vec2 = TREE_OPERAND (t2, 1);
1561
1562 if (!vec1 || !vec2)
1563 return !vec1 && !vec2;
1564
1565 if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2))
1566 return false;
1567
1568 for (ix = TREE_VEC_LENGTH (vec1); ix--;)
1569 if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix),
1570 TREE_VEC_ELT (vec2, ix)))
1571 return false;
1572
1573 return true;
1574 }
1575
1576 case SIZEOF_EXPR:
1577 case ALIGNOF_EXPR:
1578 {
1579 tree o1 = TREE_OPERAND (t1, 0);
1580 tree o2 = TREE_OPERAND (t2, 0);
1581
1582 if (TREE_CODE (o1) != TREE_CODE (o2))
1583 return false;
1584 if (TYPE_P (o1))
1585 return same_type_p (o1, o2);
1586 else
1587 return cp_tree_equal (o1, o2);
1588 }
1589
1590 case PTRMEM_CST:
1591 /* Two pointer-to-members are the same if they point to the same
1592 field or function in the same class. */
1593 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
1594 return false;
1595
1596 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
1597
1598 default:
1599 break;
1600 }
1601
1602 switch (TREE_CODE_CLASS (code1))
1603 {
1604 case '1':
1605 case '2':
1606 case '<':
1607 case 'e':
1608 case 'r':
1609 case 's':
1610 {
1611 int i;
1612
1613 for (i = 0; i < TREE_CODE_LENGTH (code1); ++i)
1614 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
1615 return false;
1616
1617 return true;
1618 }
1619
1620 case 't':
1621 return same_type_p (t1, t2);
1622 }
1623
1624 my_friendly_assert (0, 20030617);
1625 return false;
1626 }
1627
1628 /* The type of ARG when used as an lvalue. */
1629
1630 tree
1631 lvalue_type (tree arg)
1632 {
1633 tree type = TREE_TYPE (arg);
1634 return type;
1635 }
1636
1637 /* The type of ARG for printing error messages; denote lvalues with
1638 reference types. */
1639
1640 tree
1641 error_type (tree arg)
1642 {
1643 tree type = TREE_TYPE (arg);
1644
1645 if (TREE_CODE (type) == ARRAY_TYPE)
1646 ;
1647 else if (TREE_CODE (type) == ERROR_MARK)
1648 ;
1649 else if (real_lvalue_p (arg))
1650 type = build_reference_type (lvalue_type (arg));
1651 else if (IS_AGGR_TYPE (type))
1652 type = lvalue_type (arg);
1653
1654 return type;
1655 }
1656
1657 /* Does FUNCTION use a variable-length argument list? */
1658
1659 int
1660 varargs_function_p (tree function)
1661 {
1662 tree parm = TYPE_ARG_TYPES (TREE_TYPE (function));
1663 for (; parm; parm = TREE_CHAIN (parm))
1664 if (TREE_VALUE (parm) == void_type_node)
1665 return 0;
1666 return 1;
1667 }
1668
1669 /* Returns 1 if decl is a member of a class. */
1670
1671 int
1672 member_p (tree decl)
1673 {
1674 const tree ctx = DECL_CONTEXT (decl);
1675 return (ctx && TYPE_P (ctx));
1676 }
1677
1678 /* Create a placeholder for member access where we don't actually have an
1679 object that the access is against. */
1680
1681 tree
1682 build_dummy_object (tree type)
1683 {
1684 tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
1685 return build_indirect_ref (decl, NULL);
1686 }
1687
1688 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
1689 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
1690 binfo path from current_class_type to TYPE, or 0. */
1691
1692 tree
1693 maybe_dummy_object (tree type, tree* binfop)
1694 {
1695 tree decl, context;
1696 tree binfo;
1697
1698 if (current_class_type
1699 && (binfo = lookup_base (current_class_type, type,
1700 ba_ignore | ba_quiet, NULL)))
1701 context = current_class_type;
1702 else
1703 {
1704 /* Reference from a nested class member function. */
1705 context = type;
1706 binfo = TYPE_BINFO (type);
1707 }
1708
1709 if (binfop)
1710 *binfop = binfo;
1711
1712 if (current_class_ref && context == current_class_type
1713 /* Kludge: Make sure that current_class_type is actually
1714 correct. It might not be if we're in the middle of
1715 tsubst_default_argument. */
1716 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)),
1717 current_class_type))
1718 decl = current_class_ref;
1719 else
1720 decl = build_dummy_object (context);
1721
1722 return decl;
1723 }
1724
1725 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
1726
1727 int
1728 is_dummy_object (tree ob)
1729 {
1730 if (TREE_CODE (ob) == INDIRECT_REF)
1731 ob = TREE_OPERAND (ob, 0);
1732 return (TREE_CODE (ob) == NOP_EXPR
1733 && TREE_OPERAND (ob, 0) == void_zero_node);
1734 }
1735
1736 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
1737
1738 int
1739 pod_type_p (tree t)
1740 {
1741 t = strip_array_types (t);
1742
1743 if (t == error_mark_node)
1744 return 1;
1745 if (INTEGRAL_TYPE_P (t))
1746 return 1; /* integral, character or enumeral type */
1747 if (FLOAT_TYPE_P (t))
1748 return 1;
1749 if (TYPE_PTR_P (t))
1750 return 1; /* pointer to non-member */
1751 if (TYPE_PTR_TO_MEMBER_P (t))
1752 return 1; /* pointer to member */
1753
1754 if (TREE_CODE (t) == VECTOR_TYPE)
1755 return 1; /* vectors are (small) arrays if scalars */
1756
1757 if (! CLASS_TYPE_P (t))
1758 return 0; /* other non-class type (reference or function) */
1759 if (CLASSTYPE_NON_POD_P (t))
1760 return 0;
1761 return 1;
1762 }
1763
1764 /* Returns 1 iff zero initialization of type T means actually storing
1765 zeros in it. */
1766
1767 int
1768 zero_init_p (tree t)
1769 {
1770 t = strip_array_types (t);
1771
1772 if (t == error_mark_node)
1773 return 1;
1774
1775 /* NULL pointers to data members are initialized with -1. */
1776 if (TYPE_PTRMEM_P (t))
1777 return 0;
1778
1779 /* Classes that contain types that can't be zero-initialized, cannot
1780 be zero-initialized themselves. */
1781 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
1782 return 0;
1783
1784 return 1;
1785 }
1786
1787 /* Table of valid C++ attributes. */
1788 const struct attribute_spec cxx_attribute_table[] =
1789 {
1790 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
1791 { "java_interface", 0, 0, false, false, false, handle_java_interface_attribute },
1792 { "com_interface", 0, 0, false, false, false, handle_com_interface_attribute },
1793 { "init_priority", 1, 1, true, false, false, handle_init_priority_attribute },
1794 { NULL, 0, 0, false, false, false, NULL }
1795 };
1796
1797 /* Handle a "java_interface" attribute; arguments as in
1798 struct attribute_spec.handler. */
1799 static tree
1800 handle_java_interface_attribute (tree* node,
1801 tree name,
1802 tree args ATTRIBUTE_UNUSED ,
1803 int flags,
1804 bool* no_add_attrs)
1805 {
1806 if (DECL_P (*node)
1807 || !CLASS_TYPE_P (*node)
1808 || !TYPE_FOR_JAVA (*node))
1809 {
1810 error ("`%E' attribute can only be applied to Java class definitions",
1811 name);
1812 *no_add_attrs = true;
1813 return NULL_TREE;
1814 }
1815 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
1816 *node = build_type_copy (*node);
1817 TYPE_JAVA_INTERFACE (*node) = 1;
1818
1819 return NULL_TREE;
1820 }
1821
1822 /* Handle a "com_interface" attribute; arguments as in
1823 struct attribute_spec.handler. */
1824 static tree
1825 handle_com_interface_attribute (tree* node,
1826 tree name,
1827 tree args ATTRIBUTE_UNUSED ,
1828 int flags ATTRIBUTE_UNUSED ,
1829 bool* no_add_attrs)
1830 {
1831 static int warned;
1832
1833 *no_add_attrs = true;
1834
1835 if (DECL_P (*node)
1836 || !CLASS_TYPE_P (*node)
1837 || *node != TYPE_MAIN_VARIANT (*node))
1838 {
1839 warning ("`%E' attribute can only be applied to class definitions",
1840 name);
1841 return NULL_TREE;
1842 }
1843
1844 if (!warned++)
1845 warning ("`%E' is obsolete; g++ vtables are now COM-compatible by default",
1846 name);
1847
1848 return NULL_TREE;
1849 }
1850
1851 /* Handle an "init_priority" attribute; arguments as in
1852 struct attribute_spec.handler. */
1853 static tree
1854 handle_init_priority_attribute (tree* node,
1855 tree name,
1856 tree args,
1857 int flags ATTRIBUTE_UNUSED ,
1858 bool* no_add_attrs)
1859 {
1860 tree initp_expr = TREE_VALUE (args);
1861 tree decl = *node;
1862 tree type = TREE_TYPE (decl);
1863 int pri;
1864
1865 STRIP_NOPS (initp_expr);
1866
1867 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
1868 {
1869 error ("requested init_priority is not an integer constant");
1870 *no_add_attrs = true;
1871 return NULL_TREE;
1872 }
1873
1874 pri = TREE_INT_CST_LOW (initp_expr);
1875
1876 type = strip_array_types (type);
1877
1878 if (decl == NULL_TREE
1879 || TREE_CODE (decl) != VAR_DECL
1880 || !TREE_STATIC (decl)
1881 || DECL_EXTERNAL (decl)
1882 || (TREE_CODE (type) != RECORD_TYPE
1883 && TREE_CODE (type) != UNION_TYPE)
1884 /* Static objects in functions are initialized the
1885 first time control passes through that
1886 function. This is not precise enough to pin down an
1887 init_priority value, so don't allow it. */
1888 || current_function_decl)
1889 {
1890 error ("can only use `%E' attribute on file-scope definitions "
1891 "of objects of class type", name);
1892 *no_add_attrs = true;
1893 return NULL_TREE;
1894 }
1895
1896 if (pri > MAX_INIT_PRIORITY || pri <= 0)
1897 {
1898 error ("requested init_priority is out of range");
1899 *no_add_attrs = true;
1900 return NULL_TREE;
1901 }
1902
1903 /* Check for init_priorities that are reserved for
1904 language and runtime support implementations.*/
1905 if (pri <= MAX_RESERVED_INIT_PRIORITY)
1906 {
1907 warning
1908 ("requested init_priority is reserved for internal use");
1909 }
1910
1911 if (SUPPORTS_INIT_PRIORITY)
1912 {
1913 DECL_INIT_PRIORITY (decl) = pri;
1914 return NULL_TREE;
1915 }
1916 else
1917 {
1918 error ("`%E' attribute is not supported on this platform", name);
1919 *no_add_attrs = true;
1920 return NULL_TREE;
1921 }
1922 }
1923
1924 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
1925 thing pointed to by the constant. */
1926
1927 tree
1928 make_ptrmem_cst (tree type, tree member)
1929 {
1930 tree ptrmem_cst = make_node (PTRMEM_CST);
1931 TREE_TYPE (ptrmem_cst) = type;
1932 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
1933 return ptrmem_cst;
1934 }
1935
1936 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
1937 return an existing type of an appropriate type already exists. */
1938
1939 tree
1940 cp_build_type_attribute_variant (tree type, tree attributes)
1941 {
1942 tree new_type;
1943
1944 new_type = build_type_attribute_variant (type, attributes);
1945 if (TREE_CODE (new_type) == FUNCTION_TYPE
1946 && (TYPE_RAISES_EXCEPTIONS (new_type)
1947 != TYPE_RAISES_EXCEPTIONS (type)))
1948 new_type = build_exception_variant (new_type,
1949 TYPE_RAISES_EXCEPTIONS (type));
1950 return new_type;
1951 }
1952
1953 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
1954 traversal. Called from walk_tree. */
1955
1956 tree
1957 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
1958 void *data, void *htab)
1959 {
1960 enum tree_code code = TREE_CODE (*tp);
1961 location_t save_locus;
1962 tree result;
1963
1964 #define WALK_SUBTREE(NODE) \
1965 do \
1966 { \
1967 result = walk_tree (&(NODE), func, data, htab); \
1968 if (result) goto out; \
1969 } \
1970 while (0)
1971
1972 /* Set input_location here so we get the right instantiation context
1973 if we call instantiate_decl from inlinable_function_p. */
1974 save_locus = input_location;
1975 if (EXPR_HAS_LOCATION (*tp))
1976 input_location = EXPR_LOCATION (*tp);
1977
1978 /* Not one of the easy cases. We must explicitly go through the
1979 children. */
1980 result = NULL_TREE;
1981 switch (code)
1982 {
1983 case DEFAULT_ARG:
1984 case TEMPLATE_TEMPLATE_PARM:
1985 case BOUND_TEMPLATE_TEMPLATE_PARM:
1986 case UNBOUND_CLASS_TEMPLATE:
1987 case TEMPLATE_PARM_INDEX:
1988 case TEMPLATE_TYPE_PARM:
1989 case TYPENAME_TYPE:
1990 case TYPEOF_TYPE:
1991 case BASELINK:
1992 /* None of these have subtrees other than those already walked
1993 above. */
1994 *walk_subtrees_p = 0;
1995 break;
1996
1997 case PTRMEM_CST:
1998 WALK_SUBTREE (TREE_TYPE (*tp));
1999 *walk_subtrees_p = 0;
2000 break;
2001
2002 case TREE_LIST:
2003 WALK_SUBTREE (TREE_PURPOSE (*tp));
2004 break;
2005
2006 case OVERLOAD:
2007 WALK_SUBTREE (OVL_FUNCTION (*tp));
2008 WALK_SUBTREE (OVL_CHAIN (*tp));
2009 *walk_subtrees_p = 0;
2010 break;
2011
2012 case RECORD_TYPE:
2013 if (TYPE_PTRMEMFUNC_P (*tp))
2014 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
2015 break;
2016
2017 default:
2018 input_location = save_locus;
2019 return NULL_TREE;
2020 }
2021
2022 /* We didn't find what we were looking for. */
2023 out:
2024 input_location = save_locus;
2025 return result;
2026
2027 #undef WALK_SUBTREE
2028 }
2029
2030 /* Decide whether there are language-specific reasons to not inline a
2031 function as a tree. */
2032
2033 int
2034 cp_cannot_inline_tree_fn (tree* fnp)
2035 {
2036 tree fn = *fnp;
2037
2038 /* We can inline a template instantiation only if it's fully
2039 instantiated. */
2040 if (DECL_TEMPLATE_INFO (fn)
2041 && TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
2042 {
2043 /* Don't instantiate functions that are not going to be
2044 inlined. */
2045 if (!DECL_INLINE (DECL_TEMPLATE_RESULT
2046 (template_for_substitution (fn))))
2047 return 1;
2048
2049 fn = *fnp = instantiate_decl (fn, /*defer_ok=*/0, /*undefined_ok=*/0);
2050
2051 if (TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
2052 return 1;
2053 }
2054
2055 if (flag_really_no_inline
2056 && lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) == NULL)
2057 return 1;
2058
2059 /* Don't auto-inline anything that might not be bound within
2060 this unit of translation.
2061 Exclude comdat functions from this rule. While they can be bound
2062 to the other unit, they all must be the same. This is especially
2063 important so templates can inline. */
2064 if (!DECL_DECLARED_INLINE_P (fn) && !(*targetm.binds_local_p) (fn)
2065 && !DECL_COMDAT (fn))
2066 {
2067 DECL_UNINLINABLE (fn) = 1;
2068 return 1;
2069 }
2070
2071 if (varargs_function_p (fn))
2072 {
2073 DECL_UNINLINABLE (fn) = 1;
2074 return 1;
2075 }
2076
2077 if (! function_attribute_inlinable_p (fn))
2078 {
2079 DECL_UNINLINABLE (fn) = 1;
2080 return 1;
2081 }
2082
2083 return 0;
2084 }
2085
2086 /* Add any pending functions other than the current function (already
2087 handled by the caller), that thus cannot be inlined, to FNS_P, then
2088 return the latest function added to the array, PREV_FN. */
2089
2090 tree
2091 cp_add_pending_fn_decls (void* fns_p, tree prev_fn)
2092 {
2093 varray_type *fnsp = (varray_type *)fns_p;
2094 struct saved_scope *s;
2095
2096 for (s = scope_chain; s; s = s->prev)
2097 if (s->function_decl && s->function_decl != prev_fn)
2098 {
2099 VARRAY_PUSH_TREE (*fnsp, s->function_decl);
2100 prev_fn = s->function_decl;
2101 }
2102
2103 return prev_fn;
2104 }
2105
2106 /* Determine whether a tree node is an OVERLOAD node. Used to decide
2107 whether to copy a node or to preserve its chain when inlining a
2108 function. */
2109
2110 int
2111 cp_is_overload_p (tree t)
2112 {
2113 return TREE_CODE (t) == OVERLOAD;
2114 }
2115
2116 /* Determine whether VAR is a declaration of an automatic variable in
2117 function FN. */
2118
2119 int
2120 cp_auto_var_in_fn_p (tree var, tree fn)
2121 {
2122 return (DECL_P (var) && DECL_CONTEXT (var) == fn
2123 && nonstatic_local_decl_p (var));
2124 }
2125
2126 /* FN body has been duplicated. Update language specific fields. */
2127
2128 void
2129 cp_update_decl_after_saving (tree fn,
2130 void* decl_map_)
2131 {
2132 splay_tree decl_map = (splay_tree)decl_map_;
2133 tree nrv = DECL_SAVED_FUNCTION_DATA (fn)->x_return_value;
2134 if (nrv)
2135 {
2136 DECL_SAVED_FUNCTION_DATA (fn)->x_return_value
2137 = (tree) splay_tree_lookup (decl_map, (splay_tree_key) nrv)->value;
2138 }
2139 }
2140 /* Initialize tree.c. */
2141
2142 void
2143 init_tree (void)
2144 {
2145 list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
2146 }
2147
2148 /* Called via walk_tree. If *TP points to a DECL_EXPR for a local
2149 declaration, copies the declaration and enters it in the splay_tree
2150 pointed to by DATA (which is really a `splay_tree *'). */
2151
2152 static tree
2153 mark_local_for_remap_r (tree* tp,
2154 int* walk_subtrees ATTRIBUTE_UNUSED ,
2155 void* data)
2156 {
2157 tree t = *tp;
2158 splay_tree st = (splay_tree) data;
2159 tree decl;
2160
2161
2162 if (TREE_CODE (t) == DECL_EXPR
2163 && nonstatic_local_decl_p (DECL_EXPR_DECL (t)))
2164 decl = DECL_EXPR_DECL (t);
2165 else if (TREE_CODE (t) == LABEL_EXPR)
2166 decl = LABEL_EXPR_LABEL (t);
2167 else if (TREE_CODE (t) == TARGET_EXPR
2168 && nonstatic_local_decl_p (TREE_OPERAND (t, 0)))
2169 decl = TREE_OPERAND (t, 0);
2170 else if (TREE_CODE (t) == CASE_LABEL_EXPR)
2171 decl = CASE_LABEL (t);
2172 else
2173 decl = NULL_TREE;
2174
2175 if (decl)
2176 {
2177 tree copy;
2178
2179 /* Make a copy. */
2180 copy = copy_decl_for_inlining (decl,
2181 DECL_CONTEXT (decl),
2182 DECL_CONTEXT (decl));
2183
2184 /* Remember the copy. */
2185 splay_tree_insert (st,
2186 (splay_tree_key) decl,
2187 (splay_tree_value) copy);
2188 }
2189
2190 return NULL_TREE;
2191 }
2192
2193 /* Called via walk_tree when an expression is unsaved. Using the
2194 splay_tree pointed to by ST (which is really a `splay_tree'),
2195 remaps all local declarations to appropriate replacements. */
2196
2197 static tree
2198 cp_unsave_r (tree* tp,
2199 int* walk_subtrees,
2200 void* data)
2201 {
2202 splay_tree st = (splay_tree) data;
2203 splay_tree_node n;
2204
2205 /* Only a local declaration (variable or label). */
2206 if (nonstatic_local_decl_p (*tp))
2207 {
2208 /* Lookup the declaration. */
2209 n = splay_tree_lookup (st, (splay_tree_key) *tp);
2210
2211 /* If it's there, remap it. */
2212 if (n)
2213 *tp = (tree) n->value;
2214 }
2215 else if (TREE_CODE (*tp) == SAVE_EXPR)
2216 remap_save_expr (tp, st, walk_subtrees);
2217 else
2218 {
2219 copy_tree_r (tp, walk_subtrees, NULL);
2220
2221 /* Do whatever unsaving is required. */
2222 unsave_expr_1 (*tp);
2223 }
2224
2225 /* Keep iterating. */
2226 return NULL_TREE;
2227 }
2228
2229 /* Called whenever an expression needs to be unsaved. */
2230
2231 tree
2232 cxx_unsave_expr_now (tree tp)
2233 {
2234 splay_tree st;
2235
2236 /* Create a splay-tree to map old local variable declarations to new
2237 ones. */
2238 st = splay_tree_new (splay_tree_compare_pointers, NULL, NULL);
2239
2240 /* Walk the tree once figuring out what needs to be remapped. */
2241 walk_tree (&tp, mark_local_for_remap_r, st, NULL);
2242
2243 /* Walk the tree again, copying, remapping, and unsaving. */
2244 walk_tree (&tp, cp_unsave_r, st, NULL);
2245
2246 /* Clean up. */
2247 splay_tree_delete (st);
2248
2249 return tp;
2250 }
2251
2252 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
2253 is. Note that sfk_none is zero, so this function can be used as a
2254 predicate to test whether or not DECL is a special function. */
2255
2256 special_function_kind
2257 special_function_p (tree decl)
2258 {
2259 /* Rather than doing all this stuff with magic names, we should
2260 probably have a field of type `special_function_kind' in
2261 DECL_LANG_SPECIFIC. */
2262 if (DECL_COPY_CONSTRUCTOR_P (decl))
2263 return sfk_copy_constructor;
2264 if (DECL_CONSTRUCTOR_P (decl))
2265 return sfk_constructor;
2266 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
2267 return sfk_assignment_operator;
2268 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
2269 return sfk_destructor;
2270 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
2271 return sfk_complete_destructor;
2272 if (DECL_BASE_DESTRUCTOR_P (decl))
2273 return sfk_base_destructor;
2274 if (DECL_DELETING_DESTRUCTOR_P (decl))
2275 return sfk_deleting_destructor;
2276 if (DECL_CONV_FN_P (decl))
2277 return sfk_conversion;
2278
2279 return sfk_none;
2280 }
2281
2282 /* Returns true if and only if NODE is a name, i.e., a node created
2283 by the parser when processing an id-expression. */
2284
2285 bool
2286 name_p (tree node)
2287 {
2288 if (TREE_CODE (node) == TEMPLATE_ID_EXPR)
2289 node = TREE_OPERAND (node, 0);
2290 return (/* An ordinary unqualified name. */
2291 TREE_CODE (node) == IDENTIFIER_NODE
2292 /* A destructor name. */
2293 || TREE_CODE (node) == BIT_NOT_EXPR
2294 /* A qualified name. */
2295 || TREE_CODE (node) == SCOPE_REF);
2296 }
2297
2298 /* Returns nonzero if TYPE is a character type, including wchar_t. */
2299
2300 int
2301 char_type_p (tree type)
2302 {
2303 return (same_type_p (type, char_type_node)
2304 || same_type_p (type, unsigned_char_type_node)
2305 || same_type_p (type, signed_char_type_node)
2306 || same_type_p (type, wchar_type_node));
2307 }
2308
2309 /* Returns the kind of linkage associated with the indicated DECL. Th
2310 value returned is as specified by the language standard; it is
2311 independent of implementation details regarding template
2312 instantiation, etc. For example, it is possible that a declaration
2313 to which this function assigns external linkage would not show up
2314 as a global symbol when you run `nm' on the resulting object file. */
2315
2316 linkage_kind
2317 decl_linkage (tree decl)
2318 {
2319 /* This function doesn't attempt to calculate the linkage from first
2320 principles as given in [basic.link]. Instead, it makes use of
2321 the fact that we have already set TREE_PUBLIC appropriately, and
2322 then handles a few special cases. Ideally, we would calculate
2323 linkage first, and then transform that into a concrete
2324 implementation. */
2325
2326 /* Things that don't have names have no linkage. */
2327 if (!DECL_NAME (decl))
2328 return lk_none;
2329
2330 /* Things that are TREE_PUBLIC have external linkage. */
2331 if (TREE_PUBLIC (decl))
2332 return lk_external;
2333
2334 /* Some things that are not TREE_PUBLIC have external linkage, too.
2335 For example, on targets that don't have weak symbols, we make all
2336 template instantiations have internal linkage (in the object
2337 file), but the symbols should still be treated as having external
2338 linkage from the point of view of the language. */
2339 if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
2340 return lk_external;
2341
2342 /* Things in local scope do not have linkage, if they don't have
2343 TREE_PUBLIC set. */
2344 if (decl_function_context (decl))
2345 return lk_none;
2346
2347 /* Everything else has internal linkage. */
2348 return lk_internal;
2349 }
2350 \f
2351 /* EXP is an expression that we want to pre-evaluate. Returns via INITP an
2352 expression to perform the pre-evaluation, and returns directly an
2353 expression to use the precalculated result. */
2354
2355 tree
2356 stabilize_expr (tree exp, tree* initp)
2357 {
2358 tree init_expr;
2359
2360 if (!TREE_SIDE_EFFECTS (exp))
2361 {
2362 init_expr = NULL_TREE;
2363 }
2364 else if (!real_lvalue_p (exp)
2365 || !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp)))
2366 {
2367 init_expr = get_target_expr (exp);
2368 exp = TARGET_EXPR_SLOT (init_expr);
2369 }
2370 else
2371 {
2372 exp = build_unary_op (ADDR_EXPR, exp, 1);
2373 init_expr = get_target_expr (exp);
2374 exp = TARGET_EXPR_SLOT (init_expr);
2375 exp = build_indirect_ref (exp, 0);
2376 }
2377
2378 *initp = init_expr;
2379 return exp;
2380 }
2381
2382 /* Like stabilize_expr, but for a call whose args we want to
2383 pre-evaluate. */
2384
2385 void
2386 stabilize_call (tree call, tree *initp)
2387 {
2388 tree inits = NULL_TREE;
2389 tree t;
2390
2391 if (call == error_mark_node)
2392 return;
2393
2394 if (TREE_CODE (call) != CALL_EXPR
2395 && TREE_CODE (call) != AGGR_INIT_EXPR)
2396 abort ();
2397
2398 for (t = TREE_OPERAND (call, 1); t; t = TREE_CHAIN (t))
2399 if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
2400 {
2401 tree init;
2402 TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
2403 if (!init)
2404 /* Nothing. */;
2405 else if (inits)
2406 inits = build (COMPOUND_EXPR, void_type_node, inits, init);
2407 else
2408 inits = init;
2409 }
2410
2411 *initp = inits;
2412 }
2413
2414 /* Like stabilize_expr, but for an initialization. If we are initializing
2415 an object of class type, we don't want to introduce an extra temporary,
2416 so we look past the TARGET_EXPR and stabilize the arguments of the call
2417 instead. */
2418
2419 bool
2420 stabilize_init (tree init, tree *initp)
2421 {
2422 tree t = init;
2423
2424 if (t == error_mark_node)
2425 return true;
2426
2427 if (TREE_CODE (t) == INIT_EXPR
2428 && TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR)
2429 TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp);
2430 else
2431 {
2432 if (TREE_CODE (t) == INIT_EXPR)
2433 t = TREE_OPERAND (t, 1);
2434 if (TREE_CODE (t) == TARGET_EXPR)
2435 t = TARGET_EXPR_INITIAL (t);
2436 if (TREE_CODE (t) == CONSTRUCTOR
2437 && CONSTRUCTOR_ELTS (t) == NULL_TREE)
2438 {
2439 /* Default-initialization. */
2440 *initp = NULL_TREE;
2441 return true;
2442 }
2443
2444 /* If the initializer is a COND_EXPR, we can't preevaluate
2445 anything. */
2446 if (TREE_CODE (t) == COND_EXPR)
2447 return false;
2448
2449 stabilize_call (t, initp);
2450 }
2451
2452 return true;
2453 }
2454
2455 \f
2456 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
2457 /* Complain that some language-specific thing hanging off a tree
2458 node has been accessed improperly. */
2459
2460 void
2461 lang_check_failed (const char* file, int line, const char* function)
2462 {
2463 internal_error ("lang_* check: failed in %s, at %s:%d",
2464 function, trim_filename (file), line);
2465 }
2466 #endif /* ENABLE_TREE_CHECKING */
2467
2468 #include "gt-cp-tree.h"