3ab6b37a8ea99f51cad920714aa7f161ceff7884
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "diagnostic-core.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "timevar.h"
41 #include "except.h"
42 #include "target.h"
43 #include "params.h"
44 #include "rtlhooks-def.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "dbgcnt.h"
48
49 /* The basic idea of common subexpression elimination is to go
50 through the code, keeping a record of expressions that would
51 have the same value at the current scan point, and replacing
52 expressions encountered with the cheapest equivalent expression.
53
54 It is too complicated to keep track of the different possibilities
55 when control paths merge in this code; so, at each label, we forget all
56 that is known and start fresh. This can be described as processing each
57 extended basic block separately. We have a separate pass to perform
58 global CSE.
59
60 Note CSE can turn a conditional or computed jump into a nop or
61 an unconditional jump. When this occurs we arrange to run the jump
62 optimizer after CSE to delete the unreachable code.
63
64 We use two data structures to record the equivalent expressions:
65 a hash table for most expressions, and a vector of "quantity
66 numbers" to record equivalent (pseudo) registers.
67
68 The use of the special data structure for registers is desirable
69 because it is faster. It is possible because registers references
70 contain a fairly small number, the register number, taken from
71 a contiguously allocated series, and two register references are
72 identical if they have the same number. General expressions
73 do not have any such thing, so the only way to retrieve the
74 information recorded on an expression other than a register
75 is to keep it in a hash table.
76
77 Registers and "quantity numbers":
78
79 At the start of each basic block, all of the (hardware and pseudo)
80 registers used in the function are given distinct quantity
81 numbers to indicate their contents. During scan, when the code
82 copies one register into another, we copy the quantity number.
83 When a register is loaded in any other way, we allocate a new
84 quantity number to describe the value generated by this operation.
85 `REG_QTY (N)' records what quantity register N is currently thought
86 of as containing.
87
88 All real quantity numbers are greater than or equal to zero.
89 If register N has not been assigned a quantity, `REG_QTY (N)' will
90 equal -N - 1, which is always negative.
91
92 Quantity numbers below zero do not exist and none of the `qty_table'
93 entries should be referenced with a negative index.
94
95 We also maintain a bidirectional chain of registers for each
96 quantity number. The `qty_table` members `first_reg' and `last_reg',
97 and `reg_eqv_table' members `next' and `prev' hold these chains.
98
99 The first register in a chain is the one whose lifespan is least local.
100 Among equals, it is the one that was seen first.
101 We replace any equivalent register with that one.
102
103 If two registers have the same quantity number, it must be true that
104 REG expressions with qty_table `mode' must be in the hash table for both
105 registers and must be in the same class.
106
107 The converse is not true. Since hard registers may be referenced in
108 any mode, two REG expressions might be equivalent in the hash table
109 but not have the same quantity number if the quantity number of one
110 of the registers is not the same mode as those expressions.
111
112 Constants and quantity numbers
113
114 When a quantity has a known constant value, that value is stored
115 in the appropriate qty_table `const_rtx'. This is in addition to
116 putting the constant in the hash table as is usual for non-regs.
117
118 Whether a reg or a constant is preferred is determined by the configuration
119 macro CONST_COSTS and will often depend on the constant value. In any
120 event, expressions containing constants can be simplified, by fold_rtx.
121
122 When a quantity has a known nearly constant value (such as an address
123 of a stack slot), that value is stored in the appropriate qty_table
124 `const_rtx'.
125
126 Integer constants don't have a machine mode. However, cse
127 determines the intended machine mode from the destination
128 of the instruction that moves the constant. The machine mode
129 is recorded in the hash table along with the actual RTL
130 constant expression so that different modes are kept separate.
131
132 Other expressions:
133
134 To record known equivalences among expressions in general
135 we use a hash table called `table'. It has a fixed number of buckets
136 that contain chains of `struct table_elt' elements for expressions.
137 These chains connect the elements whose expressions have the same
138 hash codes.
139
140 Other chains through the same elements connect the elements which
141 currently have equivalent values.
142
143 Register references in an expression are canonicalized before hashing
144 the expression. This is done using `reg_qty' and qty_table `first_reg'.
145 The hash code of a register reference is computed using the quantity
146 number, not the register number.
147
148 When the value of an expression changes, it is necessary to remove from the
149 hash table not just that expression but all expressions whose values
150 could be different as a result.
151
152 1. If the value changing is in memory, except in special cases
153 ANYTHING referring to memory could be changed. That is because
154 nobody knows where a pointer does not point.
155 The function `invalidate_memory' removes what is necessary.
156
157 The special cases are when the address is constant or is
158 a constant plus a fixed register such as the frame pointer
159 or a static chain pointer. When such addresses are stored in,
160 we can tell exactly which other such addresses must be invalidated
161 due to overlap. `invalidate' does this.
162 All expressions that refer to non-constant
163 memory addresses are also invalidated. `invalidate_memory' does this.
164
165 2. If the value changing is a register, all expressions
166 containing references to that register, and only those,
167 must be removed.
168
169 Because searching the entire hash table for expressions that contain
170 a register is very slow, we try to figure out when it isn't necessary.
171 Precisely, this is necessary only when expressions have been
172 entered in the hash table using this register, and then the value has
173 changed, and then another expression wants to be added to refer to
174 the register's new value. This sequence of circumstances is rare
175 within any one basic block.
176
177 `REG_TICK' and `REG_IN_TABLE', accessors for members of
178 cse_reg_info, are used to detect this case. REG_TICK (i) is
179 incremented whenever a value is stored in register i.
180 REG_IN_TABLE (i) holds -1 if no references to register i have been
181 entered in the table; otherwise, it contains the value REG_TICK (i)
182 had when the references were entered. If we want to enter a
183 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184 remove old references. Until we want to enter a new entry, the
185 mere fact that the two vectors don't match makes the entries be
186 ignored if anyone tries to match them.
187
188 Registers themselves are entered in the hash table as well as in
189 the equivalent-register chains. However, `REG_TICK' and
190 `REG_IN_TABLE' do not apply to expressions which are simple
191 register references. These expressions are removed from the table
192 immediately when they become invalid, and this can be done even if
193 we do not immediately search for all the expressions that refer to
194 the register.
195
196 A CLOBBER rtx in an instruction invalidates its operand for further
197 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
198 invalidates everything that resides in memory.
199
200 Related expressions:
201
202 Constant expressions that differ only by an additive integer
203 are called related. When a constant expression is put in
204 the table, the related expression with no constant term
205 is also entered. These are made to point at each other
206 so that it is possible to find out if there exists any
207 register equivalent to an expression related to a given expression. */
208
209 /* Length of qty_table vector. We know in advance we will not need
210 a quantity number this big. */
211
212 static int max_qty;
213
214 /* Next quantity number to be allocated.
215 This is 1 + the largest number needed so far. */
216
217 static int next_qty;
218
219 /* Per-qty information tracking.
220
221 `first_reg' and `last_reg' track the head and tail of the
222 chain of registers which currently contain this quantity.
223
224 `mode' contains the machine mode of this quantity.
225
226 `const_rtx' holds the rtx of the constant value of this
227 quantity, if known. A summations of the frame/arg pointer
228 and a constant can also be entered here. When this holds
229 a known value, `const_insn' is the insn which stored the
230 constant value.
231
232 `comparison_{code,const,qty}' are used to track when a
233 comparison between a quantity and some constant or register has
234 been passed. In such a case, we know the results of the comparison
235 in case we see it again. These members record a comparison that
236 is known to be true. `comparison_code' holds the rtx code of such
237 a comparison, else it is set to UNKNOWN and the other two
238 comparison members are undefined. `comparison_const' holds
239 the constant being compared against, or zero if the comparison
240 is not against a constant. `comparison_qty' holds the quantity
241 being compared against when the result is known. If the comparison
242 is not with a register, `comparison_qty' is -1. */
243
244 struct qty_table_elem
245 {
246 rtx const_rtx;
247 rtx const_insn;
248 rtx comparison_const;
249 int comparison_qty;
250 unsigned int first_reg, last_reg;
251 /* The sizes of these fields should match the sizes of the
252 code and mode fields of struct rtx_def (see rtl.h). */
253 ENUM_BITFIELD(rtx_code) comparison_code : 16;
254 ENUM_BITFIELD(machine_mode) mode : 8;
255 };
256
257 /* The table of all qtys, indexed by qty number. */
258 static struct qty_table_elem *qty_table;
259
260 /* Structure used to pass arguments via for_each_rtx to function
261 cse_change_cc_mode. */
262 struct change_cc_mode_args
263 {
264 rtx insn;
265 rtx newreg;
266 };
267
268 #ifdef HAVE_cc0
269 /* For machines that have a CC0, we do not record its value in the hash
270 table since its use is guaranteed to be the insn immediately following
271 its definition and any other insn is presumed to invalidate it.
272
273 Instead, we store below the current and last value assigned to CC0.
274 If it should happen to be a constant, it is stored in preference
275 to the actual assigned value. In case it is a constant, we store
276 the mode in which the constant should be interpreted. */
277
278 static rtx this_insn_cc0, prev_insn_cc0;
279 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
280 #endif
281
282 /* Insn being scanned. */
283
284 static rtx this_insn;
285 static bool optimize_this_for_speed_p;
286
287 /* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
289 value.
290
291 Or -1 if this register is at the end of the chain.
292
293 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
294
295 /* Per-register equivalence chain. */
296 struct reg_eqv_elem
297 {
298 int next, prev;
299 };
300
301 /* The table of all register equivalence chains. */
302 static struct reg_eqv_elem *reg_eqv_table;
303
304 struct cse_reg_info
305 {
306 /* The timestamp at which this register is initialized. */
307 unsigned int timestamp;
308
309 /* The quantity number of the register's current contents. */
310 int reg_qty;
311
312 /* The number of times the register has been altered in the current
313 basic block. */
314 int reg_tick;
315
316 /* The REG_TICK value at which rtx's containing this register are
317 valid in the hash table. If this does not equal the current
318 reg_tick value, such expressions existing in the hash table are
319 invalid. */
320 int reg_in_table;
321
322 /* The SUBREG that was set when REG_TICK was last incremented. Set
323 to -1 if the last store was to the whole register, not a subreg. */
324 unsigned int subreg_ticked;
325 };
326
327 /* A table of cse_reg_info indexed by register numbers. */
328 static struct cse_reg_info *cse_reg_info_table;
329
330 /* The size of the above table. */
331 static unsigned int cse_reg_info_table_size;
332
333 /* The index of the first entry that has not been initialized. */
334 static unsigned int cse_reg_info_table_first_uninitialized;
335
336 /* The timestamp at the beginning of the current run of
337 cse_extended_basic_block. We increment this variable at the beginning of
338 the current run of cse_extended_basic_block. The timestamp field of a
339 cse_reg_info entry matches the value of this variable if and only
340 if the entry has been initialized during the current run of
341 cse_extended_basic_block. */
342 static unsigned int cse_reg_info_timestamp;
343
344 /* A HARD_REG_SET containing all the hard registers for which there is
345 currently a REG expression in the hash table. Note the difference
346 from the above variables, which indicate if the REG is mentioned in some
347 expression in the table. */
348
349 static HARD_REG_SET hard_regs_in_table;
350
351 /* True if CSE has altered the CFG. */
352 static bool cse_cfg_altered;
353
354 /* True if CSE has altered conditional jump insns in such a way
355 that jump optimization should be redone. */
356 static bool cse_jumps_altered;
357
358 /* True if we put a LABEL_REF into the hash table for an INSN
359 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
360 to put in the note. */
361 static bool recorded_label_ref;
362
363 /* canon_hash stores 1 in do_not_record
364 if it notices a reference to CC0, PC, or some other volatile
365 subexpression. */
366
367 static int do_not_record;
368
369 /* canon_hash stores 1 in hash_arg_in_memory
370 if it notices a reference to memory within the expression being hashed. */
371
372 static int hash_arg_in_memory;
373
374 /* The hash table contains buckets which are chains of `struct table_elt's,
375 each recording one expression's information.
376 That expression is in the `exp' field.
377
378 The canon_exp field contains a canonical (from the point of view of
379 alias analysis) version of the `exp' field.
380
381 Those elements with the same hash code are chained in both directions
382 through the `next_same_hash' and `prev_same_hash' fields.
383
384 Each set of expressions with equivalent values
385 are on a two-way chain through the `next_same_value'
386 and `prev_same_value' fields, and all point with
387 the `first_same_value' field at the first element in
388 that chain. The chain is in order of increasing cost.
389 Each element's cost value is in its `cost' field.
390
391 The `in_memory' field is nonzero for elements that
392 involve any reference to memory. These elements are removed
393 whenever a write is done to an unidentified location in memory.
394 To be safe, we assume that a memory address is unidentified unless
395 the address is either a symbol constant or a constant plus
396 the frame pointer or argument pointer.
397
398 The `related_value' field is used to connect related expressions
399 (that differ by adding an integer).
400 The related expressions are chained in a circular fashion.
401 `related_value' is zero for expressions for which this
402 chain is not useful.
403
404 The `cost' field stores the cost of this element's expression.
405 The `regcost' field stores the value returned by approx_reg_cost for
406 this element's expression.
407
408 The `is_const' flag is set if the element is a constant (including
409 a fixed address).
410
411 The `flag' field is used as a temporary during some search routines.
412
413 The `mode' field is usually the same as GET_MODE (`exp'), but
414 if `exp' is a CONST_INT and has no machine mode then the `mode'
415 field is the mode it was being used as. Each constant is
416 recorded separately for each mode it is used with. */
417
418 struct table_elt
419 {
420 rtx exp;
421 rtx canon_exp;
422 struct table_elt *next_same_hash;
423 struct table_elt *prev_same_hash;
424 struct table_elt *next_same_value;
425 struct table_elt *prev_same_value;
426 struct table_elt *first_same_value;
427 struct table_elt *related_value;
428 int cost;
429 int regcost;
430 /* The size of this field should match the size
431 of the mode field of struct rtx_def (see rtl.h). */
432 ENUM_BITFIELD(machine_mode) mode : 8;
433 char in_memory;
434 char is_const;
435 char flag;
436 };
437
438 /* We don't want a lot of buckets, because we rarely have very many
439 things stored in the hash table, and a lot of buckets slows
440 down a lot of loops that happen frequently. */
441 #define HASH_SHIFT 5
442 #define HASH_SIZE (1 << HASH_SHIFT)
443 #define HASH_MASK (HASH_SIZE - 1)
444
445 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
446 register (hard registers may require `do_not_record' to be set). */
447
448 #define HASH(X, M) \
449 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
450 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
451 : canon_hash (X, M)) & HASH_MASK)
452
453 /* Like HASH, but without side-effects. */
454 #define SAFE_HASH(X, M) \
455 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
456 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
457 : safe_hash (X, M)) & HASH_MASK)
458
459 /* Determine whether register number N is considered a fixed register for the
460 purpose of approximating register costs.
461 It is desirable to replace other regs with fixed regs, to reduce need for
462 non-fixed hard regs.
463 A reg wins if it is either the frame pointer or designated as fixed. */
464 #define FIXED_REGNO_P(N) \
465 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
466 || fixed_regs[N] || global_regs[N])
467
468 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
469 hard registers and pointers into the frame are the cheapest with a cost
470 of 0. Next come pseudos with a cost of one and other hard registers with
471 a cost of 2. Aside from these special cases, call `rtx_cost'. */
472
473 #define CHEAP_REGNO(N) \
474 (REGNO_PTR_FRAME_P(N) \
475 || (HARD_REGISTER_NUM_P (N) \
476 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
477
478 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
479 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
480
481 /* Get the number of times this register has been updated in this
482 basic block. */
483
484 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
485
486 /* Get the point at which REG was recorded in the table. */
487
488 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
489
490 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
491 SUBREG). */
492
493 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
494
495 /* Get the quantity number for REG. */
496
497 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
498
499 /* Determine if the quantity number for register X represents a valid index
500 into the qty_table. */
501
502 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
503
504 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
505
506 #define CHEAPER(X, Y) \
507 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
508
509 static struct table_elt *table[HASH_SIZE];
510
511 /* Chain of `struct table_elt's made so far for this function
512 but currently removed from the table. */
513
514 static struct table_elt *free_element_chain;
515
516 /* Set to the cost of a constant pool reference if one was found for a
517 symbolic constant. If this was found, it means we should try to
518 convert constants into constant pool entries if they don't fit in
519 the insn. */
520
521 static int constant_pool_entries_cost;
522 static int constant_pool_entries_regcost;
523
524 /* Trace a patch through the CFG. */
525
526 struct branch_path
527 {
528 /* The basic block for this path entry. */
529 basic_block bb;
530 };
531
532 /* This data describes a block that will be processed by
533 cse_extended_basic_block. */
534
535 struct cse_basic_block_data
536 {
537 /* Total number of SETs in block. */
538 int nsets;
539 /* Size of current branch path, if any. */
540 int path_size;
541 /* Current path, indicating which basic_blocks will be processed. */
542 struct branch_path *path;
543 };
544
545
546 /* Pointers to the live in/live out bitmaps for the boundaries of the
547 current EBB. */
548 static bitmap cse_ebb_live_in, cse_ebb_live_out;
549
550 /* A simple bitmap to track which basic blocks have been visited
551 already as part of an already processed extended basic block. */
552 static sbitmap cse_visited_basic_blocks;
553
554 static bool fixed_base_plus_p (rtx x);
555 static int notreg_cost (rtx, enum rtx_code);
556 static int approx_reg_cost_1 (rtx *, void *);
557 static int approx_reg_cost (rtx);
558 static int preferable (int, int, int, int);
559 static void new_basic_block (void);
560 static void make_new_qty (unsigned int, enum machine_mode);
561 static void make_regs_eqv (unsigned int, unsigned int);
562 static void delete_reg_equiv (unsigned int);
563 static int mention_regs (rtx);
564 static int insert_regs (rtx, struct table_elt *, int);
565 static void remove_from_table (struct table_elt *, unsigned);
566 static void remove_pseudo_from_table (rtx, unsigned);
567 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
568 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
569 static rtx lookup_as_function (rtx, enum rtx_code);
570 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
571 enum machine_mode, int, int);
572 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
573 enum machine_mode);
574 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
575 static void invalidate (rtx, enum machine_mode);
576 static bool cse_rtx_varies_p (const_rtx, bool);
577 static void remove_invalid_refs (unsigned int);
578 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
579 enum machine_mode);
580 static void rehash_using_reg (rtx);
581 static void invalidate_memory (void);
582 static void invalidate_for_call (void);
583 static rtx use_related_value (rtx, struct table_elt *);
584
585 static inline unsigned canon_hash (rtx, enum machine_mode);
586 static inline unsigned safe_hash (rtx, enum machine_mode);
587 static inline unsigned hash_rtx_string (const char *);
588
589 static rtx canon_reg (rtx, rtx);
590 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
591 enum machine_mode *,
592 enum machine_mode *);
593 static rtx fold_rtx (rtx, rtx);
594 static rtx equiv_constant (rtx);
595 static void record_jump_equiv (rtx, bool);
596 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
597 int);
598 static void cse_insn (rtx);
599 static void cse_prescan_path (struct cse_basic_block_data *);
600 static void invalidate_from_clobbers (rtx);
601 static rtx cse_process_notes (rtx, rtx, bool *);
602 static void cse_extended_basic_block (struct cse_basic_block_data *);
603 static void count_reg_usage (rtx, int *, rtx, int);
604 static int check_for_label_ref (rtx *, void *);
605 extern void dump_class (struct table_elt*);
606 static void get_cse_reg_info_1 (unsigned int regno);
607 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
608 static int check_dependence (rtx *, void *);
609
610 static void flush_hash_table (void);
611 static bool insn_live_p (rtx, int *);
612 static bool set_live_p (rtx, rtx, int *);
613 static int cse_change_cc_mode (rtx *, void *);
614 static void cse_change_cc_mode_insn (rtx, rtx);
615 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
616 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
617 bool);
618 \f
619
620 #undef RTL_HOOKS_GEN_LOWPART
621 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
622
623 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
624 \f
625 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
626 virtual regs here because the simplify_*_operation routines are called
627 by integrate.c, which is called before virtual register instantiation. */
628
629 static bool
630 fixed_base_plus_p (rtx x)
631 {
632 switch (GET_CODE (x))
633 {
634 case REG:
635 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
636 return true;
637 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
638 return true;
639 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
640 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
641 return true;
642 return false;
643
644 case PLUS:
645 if (!CONST_INT_P (XEXP (x, 1)))
646 return false;
647 return fixed_base_plus_p (XEXP (x, 0));
648
649 default:
650 return false;
651 }
652 }
653
654 /* Dump the expressions in the equivalence class indicated by CLASSP.
655 This function is used only for debugging. */
656 void
657 dump_class (struct table_elt *classp)
658 {
659 struct table_elt *elt;
660
661 fprintf (stderr, "Equivalence chain for ");
662 print_rtl (stderr, classp->exp);
663 fprintf (stderr, ": \n");
664
665 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
666 {
667 print_rtl (stderr, elt->exp);
668 fprintf (stderr, "\n");
669 }
670 }
671
672 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
673
674 static int
675 approx_reg_cost_1 (rtx *xp, void *data)
676 {
677 rtx x = *xp;
678 int *cost_p = (int *) data;
679
680 if (x && REG_P (x))
681 {
682 unsigned int regno = REGNO (x);
683
684 if (! CHEAP_REGNO (regno))
685 {
686 if (regno < FIRST_PSEUDO_REGISTER)
687 {
688 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
689 return 1;
690 *cost_p += 2;
691 }
692 else
693 *cost_p += 1;
694 }
695 }
696
697 return 0;
698 }
699
700 /* Return an estimate of the cost of the registers used in an rtx.
701 This is mostly the number of different REG expressions in the rtx;
702 however for some exceptions like fixed registers we use a cost of
703 0. If any other hard register reference occurs, return MAX_COST. */
704
705 static int
706 approx_reg_cost (rtx x)
707 {
708 int cost = 0;
709
710 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
711 return MAX_COST;
712
713 return cost;
714 }
715
716 /* Return a negative value if an rtx A, whose costs are given by COST_A
717 and REGCOST_A, is more desirable than an rtx B.
718 Return a positive value if A is less desirable, or 0 if the two are
719 equally good. */
720 static int
721 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
722 {
723 /* First, get rid of cases involving expressions that are entirely
724 unwanted. */
725 if (cost_a != cost_b)
726 {
727 if (cost_a == MAX_COST)
728 return 1;
729 if (cost_b == MAX_COST)
730 return -1;
731 }
732
733 /* Avoid extending lifetimes of hardregs. */
734 if (regcost_a != regcost_b)
735 {
736 if (regcost_a == MAX_COST)
737 return 1;
738 if (regcost_b == MAX_COST)
739 return -1;
740 }
741
742 /* Normal operation costs take precedence. */
743 if (cost_a != cost_b)
744 return cost_a - cost_b;
745 /* Only if these are identical consider effects on register pressure. */
746 if (regcost_a != regcost_b)
747 return regcost_a - regcost_b;
748 return 0;
749 }
750
751 /* Internal function, to compute cost when X is not a register; called
752 from COST macro to keep it simple. */
753
754 static int
755 notreg_cost (rtx x, enum rtx_code outer)
756 {
757 return ((GET_CODE (x) == SUBREG
758 && REG_P (SUBREG_REG (x))
759 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
760 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
761 && (GET_MODE_SIZE (GET_MODE (x))
762 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
763 && subreg_lowpart_p (x)
764 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
765 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
766 ? 0
767 : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
768 }
769
770 \f
771 /* Initialize CSE_REG_INFO_TABLE. */
772
773 static void
774 init_cse_reg_info (unsigned int nregs)
775 {
776 /* Do we need to grow the table? */
777 if (nregs > cse_reg_info_table_size)
778 {
779 unsigned int new_size;
780
781 if (cse_reg_info_table_size < 2048)
782 {
783 /* Compute a new size that is a power of 2 and no smaller
784 than the large of NREGS and 64. */
785 new_size = (cse_reg_info_table_size
786 ? cse_reg_info_table_size : 64);
787
788 while (new_size < nregs)
789 new_size *= 2;
790 }
791 else
792 {
793 /* If we need a big table, allocate just enough to hold
794 NREGS registers. */
795 new_size = nregs;
796 }
797
798 /* Reallocate the table with NEW_SIZE entries. */
799 if (cse_reg_info_table)
800 free (cse_reg_info_table);
801 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
802 cse_reg_info_table_size = new_size;
803 cse_reg_info_table_first_uninitialized = 0;
804 }
805
806 /* Do we have all of the first NREGS entries initialized? */
807 if (cse_reg_info_table_first_uninitialized < nregs)
808 {
809 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
810 unsigned int i;
811
812 /* Put the old timestamp on newly allocated entries so that they
813 will all be considered out of date. We do not touch those
814 entries beyond the first NREGS entries to be nice to the
815 virtual memory. */
816 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
817 cse_reg_info_table[i].timestamp = old_timestamp;
818
819 cse_reg_info_table_first_uninitialized = nregs;
820 }
821 }
822
823 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
824
825 static void
826 get_cse_reg_info_1 (unsigned int regno)
827 {
828 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
829 entry will be considered to have been initialized. */
830 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
831
832 /* Initialize the rest of the entry. */
833 cse_reg_info_table[regno].reg_tick = 1;
834 cse_reg_info_table[regno].reg_in_table = -1;
835 cse_reg_info_table[regno].subreg_ticked = -1;
836 cse_reg_info_table[regno].reg_qty = -regno - 1;
837 }
838
839 /* Find a cse_reg_info entry for REGNO. */
840
841 static inline struct cse_reg_info *
842 get_cse_reg_info (unsigned int regno)
843 {
844 struct cse_reg_info *p = &cse_reg_info_table[regno];
845
846 /* If this entry has not been initialized, go ahead and initialize
847 it. */
848 if (p->timestamp != cse_reg_info_timestamp)
849 get_cse_reg_info_1 (regno);
850
851 return p;
852 }
853
854 /* Clear the hash table and initialize each register with its own quantity,
855 for a new basic block. */
856
857 static void
858 new_basic_block (void)
859 {
860 int i;
861
862 next_qty = 0;
863
864 /* Invalidate cse_reg_info_table. */
865 cse_reg_info_timestamp++;
866
867 /* Clear out hash table state for this pass. */
868 CLEAR_HARD_REG_SET (hard_regs_in_table);
869
870 /* The per-quantity values used to be initialized here, but it is
871 much faster to initialize each as it is made in `make_new_qty'. */
872
873 for (i = 0; i < HASH_SIZE; i++)
874 {
875 struct table_elt *first;
876
877 first = table[i];
878 if (first != NULL)
879 {
880 struct table_elt *last = first;
881
882 table[i] = NULL;
883
884 while (last->next_same_hash != NULL)
885 last = last->next_same_hash;
886
887 /* Now relink this hash entire chain into
888 the free element list. */
889
890 last->next_same_hash = free_element_chain;
891 free_element_chain = first;
892 }
893 }
894
895 #ifdef HAVE_cc0
896 prev_insn_cc0 = 0;
897 #endif
898 }
899
900 /* Say that register REG contains a quantity in mode MODE not in any
901 register before and initialize that quantity. */
902
903 static void
904 make_new_qty (unsigned int reg, enum machine_mode mode)
905 {
906 int q;
907 struct qty_table_elem *ent;
908 struct reg_eqv_elem *eqv;
909
910 gcc_assert (next_qty < max_qty);
911
912 q = REG_QTY (reg) = next_qty++;
913 ent = &qty_table[q];
914 ent->first_reg = reg;
915 ent->last_reg = reg;
916 ent->mode = mode;
917 ent->const_rtx = ent->const_insn = NULL_RTX;
918 ent->comparison_code = UNKNOWN;
919
920 eqv = &reg_eqv_table[reg];
921 eqv->next = eqv->prev = -1;
922 }
923
924 /* Make reg NEW equivalent to reg OLD.
925 OLD is not changing; NEW is. */
926
927 static void
928 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
929 {
930 unsigned int lastr, firstr;
931 int q = REG_QTY (old_reg);
932 struct qty_table_elem *ent;
933
934 ent = &qty_table[q];
935
936 /* Nothing should become eqv until it has a "non-invalid" qty number. */
937 gcc_assert (REGNO_QTY_VALID_P (old_reg));
938
939 REG_QTY (new_reg) = q;
940 firstr = ent->first_reg;
941 lastr = ent->last_reg;
942
943 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
944 hard regs. Among pseudos, if NEW will live longer than any other reg
945 of the same qty, and that is beyond the current basic block,
946 make it the new canonical replacement for this qty. */
947 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
948 /* Certain fixed registers might be of the class NO_REGS. This means
949 that not only can they not be allocated by the compiler, but
950 they cannot be used in substitutions or canonicalizations
951 either. */
952 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
953 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
954 || (new_reg >= FIRST_PSEUDO_REGISTER
955 && (firstr < FIRST_PSEUDO_REGISTER
956 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
957 && !bitmap_bit_p (cse_ebb_live_out, firstr))
958 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
959 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
960 {
961 reg_eqv_table[firstr].prev = new_reg;
962 reg_eqv_table[new_reg].next = firstr;
963 reg_eqv_table[new_reg].prev = -1;
964 ent->first_reg = new_reg;
965 }
966 else
967 {
968 /* If NEW is a hard reg (known to be non-fixed), insert at end.
969 Otherwise, insert before any non-fixed hard regs that are at the
970 end. Registers of class NO_REGS cannot be used as an
971 equivalent for anything. */
972 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
973 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
974 && new_reg >= FIRST_PSEUDO_REGISTER)
975 lastr = reg_eqv_table[lastr].prev;
976 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
977 if (reg_eqv_table[lastr].next >= 0)
978 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
979 else
980 qty_table[q].last_reg = new_reg;
981 reg_eqv_table[lastr].next = new_reg;
982 reg_eqv_table[new_reg].prev = lastr;
983 }
984 }
985
986 /* Remove REG from its equivalence class. */
987
988 static void
989 delete_reg_equiv (unsigned int reg)
990 {
991 struct qty_table_elem *ent;
992 int q = REG_QTY (reg);
993 int p, n;
994
995 /* If invalid, do nothing. */
996 if (! REGNO_QTY_VALID_P (reg))
997 return;
998
999 ent = &qty_table[q];
1000
1001 p = reg_eqv_table[reg].prev;
1002 n = reg_eqv_table[reg].next;
1003
1004 if (n != -1)
1005 reg_eqv_table[n].prev = p;
1006 else
1007 ent->last_reg = p;
1008 if (p != -1)
1009 reg_eqv_table[p].next = n;
1010 else
1011 ent->first_reg = n;
1012
1013 REG_QTY (reg) = -reg - 1;
1014 }
1015
1016 /* Remove any invalid expressions from the hash table
1017 that refer to any of the registers contained in expression X.
1018
1019 Make sure that newly inserted references to those registers
1020 as subexpressions will be considered valid.
1021
1022 mention_regs is not called when a register itself
1023 is being stored in the table.
1024
1025 Return 1 if we have done something that may have changed the hash code
1026 of X. */
1027
1028 static int
1029 mention_regs (rtx x)
1030 {
1031 enum rtx_code code;
1032 int i, j;
1033 const char *fmt;
1034 int changed = 0;
1035
1036 if (x == 0)
1037 return 0;
1038
1039 code = GET_CODE (x);
1040 if (code == REG)
1041 {
1042 unsigned int regno = REGNO (x);
1043 unsigned int endregno = END_REGNO (x);
1044 unsigned int i;
1045
1046 for (i = regno; i < endregno; i++)
1047 {
1048 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1049 remove_invalid_refs (i);
1050
1051 REG_IN_TABLE (i) = REG_TICK (i);
1052 SUBREG_TICKED (i) = -1;
1053 }
1054
1055 return 0;
1056 }
1057
1058 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1059 pseudo if they don't use overlapping words. We handle only pseudos
1060 here for simplicity. */
1061 if (code == SUBREG && REG_P (SUBREG_REG (x))
1062 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1063 {
1064 unsigned int i = REGNO (SUBREG_REG (x));
1065
1066 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1067 {
1068 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1069 the last store to this register really stored into this
1070 subreg, then remove the memory of this subreg.
1071 Otherwise, remove any memory of the entire register and
1072 all its subregs from the table. */
1073 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1074 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1075 remove_invalid_refs (i);
1076 else
1077 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1078 }
1079
1080 REG_IN_TABLE (i) = REG_TICK (i);
1081 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1082 return 0;
1083 }
1084
1085 /* If X is a comparison or a COMPARE and either operand is a register
1086 that does not have a quantity, give it one. This is so that a later
1087 call to record_jump_equiv won't cause X to be assigned a different
1088 hash code and not found in the table after that call.
1089
1090 It is not necessary to do this here, since rehash_using_reg can
1091 fix up the table later, but doing this here eliminates the need to
1092 call that expensive function in the most common case where the only
1093 use of the register is in the comparison. */
1094
1095 if (code == COMPARE || COMPARISON_P (x))
1096 {
1097 if (REG_P (XEXP (x, 0))
1098 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1099 if (insert_regs (XEXP (x, 0), NULL, 0))
1100 {
1101 rehash_using_reg (XEXP (x, 0));
1102 changed = 1;
1103 }
1104
1105 if (REG_P (XEXP (x, 1))
1106 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1107 if (insert_regs (XEXP (x, 1), NULL, 0))
1108 {
1109 rehash_using_reg (XEXP (x, 1));
1110 changed = 1;
1111 }
1112 }
1113
1114 fmt = GET_RTX_FORMAT (code);
1115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1116 if (fmt[i] == 'e')
1117 changed |= mention_regs (XEXP (x, i));
1118 else if (fmt[i] == 'E')
1119 for (j = 0; j < XVECLEN (x, i); j++)
1120 changed |= mention_regs (XVECEXP (x, i, j));
1121
1122 return changed;
1123 }
1124
1125 /* Update the register quantities for inserting X into the hash table
1126 with a value equivalent to CLASSP.
1127 (If the class does not contain a REG, it is irrelevant.)
1128 If MODIFIED is nonzero, X is a destination; it is being modified.
1129 Note that delete_reg_equiv should be called on a register
1130 before insert_regs is done on that register with MODIFIED != 0.
1131
1132 Nonzero value means that elements of reg_qty have changed
1133 so X's hash code may be different. */
1134
1135 static int
1136 insert_regs (rtx x, struct table_elt *classp, int modified)
1137 {
1138 if (REG_P (x))
1139 {
1140 unsigned int regno = REGNO (x);
1141 int qty_valid;
1142
1143 /* If REGNO is in the equivalence table already but is of the
1144 wrong mode for that equivalence, don't do anything here. */
1145
1146 qty_valid = REGNO_QTY_VALID_P (regno);
1147 if (qty_valid)
1148 {
1149 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1150
1151 if (ent->mode != GET_MODE (x))
1152 return 0;
1153 }
1154
1155 if (modified || ! qty_valid)
1156 {
1157 if (classp)
1158 for (classp = classp->first_same_value;
1159 classp != 0;
1160 classp = classp->next_same_value)
1161 if (REG_P (classp->exp)
1162 && GET_MODE (classp->exp) == GET_MODE (x))
1163 {
1164 unsigned c_regno = REGNO (classp->exp);
1165
1166 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1167
1168 /* Suppose that 5 is hard reg and 100 and 101 are
1169 pseudos. Consider
1170
1171 (set (reg:si 100) (reg:si 5))
1172 (set (reg:si 5) (reg:si 100))
1173 (set (reg:di 101) (reg:di 5))
1174
1175 We would now set REG_QTY (101) = REG_QTY (5), but the
1176 entry for 5 is in SImode. When we use this later in
1177 copy propagation, we get the register in wrong mode. */
1178 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1179 continue;
1180
1181 make_regs_eqv (regno, c_regno);
1182 return 1;
1183 }
1184
1185 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1186 than REG_IN_TABLE to find out if there was only a single preceding
1187 invalidation - for the SUBREG - or another one, which would be
1188 for the full register. However, if we find here that REG_TICK
1189 indicates that the register is invalid, it means that it has
1190 been invalidated in a separate operation. The SUBREG might be used
1191 now (then this is a recursive call), or we might use the full REG
1192 now and a SUBREG of it later. So bump up REG_TICK so that
1193 mention_regs will do the right thing. */
1194 if (! modified
1195 && REG_IN_TABLE (regno) >= 0
1196 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1197 REG_TICK (regno)++;
1198 make_new_qty (regno, GET_MODE (x));
1199 return 1;
1200 }
1201
1202 return 0;
1203 }
1204
1205 /* If X is a SUBREG, we will likely be inserting the inner register in the
1206 table. If that register doesn't have an assigned quantity number at
1207 this point but does later, the insertion that we will be doing now will
1208 not be accessible because its hash code will have changed. So assign
1209 a quantity number now. */
1210
1211 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1212 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1213 {
1214 insert_regs (SUBREG_REG (x), NULL, 0);
1215 mention_regs (x);
1216 return 1;
1217 }
1218 else
1219 return mention_regs (x);
1220 }
1221 \f
1222
1223 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1224 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1225 CST is equal to an anchor. */
1226
1227 static bool
1228 compute_const_anchors (rtx cst,
1229 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1230 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1231 {
1232 HOST_WIDE_INT n = INTVAL (cst);
1233
1234 *lower_base = n & ~(targetm.const_anchor - 1);
1235 if (*lower_base == n)
1236 return false;
1237
1238 *upper_base =
1239 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1240 *upper_offs = n - *upper_base;
1241 *lower_offs = n - *lower_base;
1242 return true;
1243 }
1244
1245 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1246
1247 static void
1248 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1249 enum machine_mode mode)
1250 {
1251 struct table_elt *elt;
1252 unsigned hash;
1253 rtx anchor_exp;
1254 rtx exp;
1255
1256 anchor_exp = GEN_INT (anchor);
1257 hash = HASH (anchor_exp, mode);
1258 elt = lookup (anchor_exp, hash, mode);
1259 if (!elt)
1260 elt = insert (anchor_exp, NULL, hash, mode);
1261
1262 exp = plus_constant (reg, offs);
1263 /* REG has just been inserted and the hash codes recomputed. */
1264 mention_regs (exp);
1265 hash = HASH (exp, mode);
1266
1267 /* Use the cost of the register rather than the whole expression. When
1268 looking up constant anchors we will further offset the corresponding
1269 expression therefore it does not make sense to prefer REGs over
1270 reg-immediate additions. Prefer instead the oldest expression. Also
1271 don't prefer pseudos over hard regs so that we derive constants in
1272 argument registers from other argument registers rather than from the
1273 original pseudo that was used to synthesize the constant. */
1274 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1275 }
1276
1277 /* The constant CST is equivalent to the register REG. Create
1278 equivalences between the two anchors of CST and the corresponding
1279 register-offset expressions using REG. */
1280
1281 static void
1282 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1283 {
1284 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1285
1286 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1287 &upper_base, &upper_offs))
1288 return;
1289
1290 /* Ignore anchors of value 0. Constants accessible from zero are
1291 simple. */
1292 if (lower_base != 0)
1293 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1294
1295 if (upper_base != 0)
1296 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1297 }
1298
1299 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1300 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1301 valid expression. Return the cheapest and oldest of such expressions. In
1302 *OLD, return how old the resulting expression is compared to the other
1303 equivalent expressions. */
1304
1305 static rtx
1306 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1307 unsigned *old)
1308 {
1309 struct table_elt *elt;
1310 unsigned idx;
1311 struct table_elt *match_elt;
1312 rtx match;
1313
1314 /* Find the cheapest and *oldest* expression to maximize the chance of
1315 reusing the same pseudo. */
1316
1317 match_elt = NULL;
1318 match = NULL_RTX;
1319 for (elt = anchor_elt->first_same_value, idx = 0;
1320 elt;
1321 elt = elt->next_same_value, idx++)
1322 {
1323 if (match_elt && CHEAPER (match_elt, elt))
1324 return match;
1325
1326 if (REG_P (elt->exp)
1327 || (GET_CODE (elt->exp) == PLUS
1328 && REG_P (XEXP (elt->exp, 0))
1329 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1330 {
1331 rtx x;
1332
1333 /* Ignore expressions that are no longer valid. */
1334 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1335 continue;
1336
1337 x = plus_constant (elt->exp, offs);
1338 if (REG_P (x)
1339 || (GET_CODE (x) == PLUS
1340 && IN_RANGE (INTVAL (XEXP (x, 1)),
1341 -targetm.const_anchor,
1342 targetm.const_anchor - 1)))
1343 {
1344 match = x;
1345 match_elt = elt;
1346 *old = idx;
1347 }
1348 }
1349 }
1350
1351 return match;
1352 }
1353
1354 /* Try to express the constant SRC_CONST using a register+offset expression
1355 derived from a constant anchor. Return it if successful or NULL_RTX,
1356 otherwise. */
1357
1358 static rtx
1359 try_const_anchors (rtx src_const, enum machine_mode mode)
1360 {
1361 struct table_elt *lower_elt, *upper_elt;
1362 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1363 rtx lower_anchor_rtx, upper_anchor_rtx;
1364 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1365 unsigned lower_old, upper_old;
1366
1367 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1368 &upper_base, &upper_offs))
1369 return NULL_RTX;
1370
1371 lower_anchor_rtx = GEN_INT (lower_base);
1372 upper_anchor_rtx = GEN_INT (upper_base);
1373 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1374 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1375
1376 if (lower_elt)
1377 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1378 if (upper_elt)
1379 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1380
1381 if (!lower_exp)
1382 return upper_exp;
1383 if (!upper_exp)
1384 return lower_exp;
1385
1386 /* Return the older expression. */
1387 return (upper_old > lower_old ? upper_exp : lower_exp);
1388 }
1389 \f
1390 /* Look in or update the hash table. */
1391
1392 /* Remove table element ELT from use in the table.
1393 HASH is its hash code, made using the HASH macro.
1394 It's an argument because often that is known in advance
1395 and we save much time not recomputing it. */
1396
1397 static void
1398 remove_from_table (struct table_elt *elt, unsigned int hash)
1399 {
1400 if (elt == 0)
1401 return;
1402
1403 /* Mark this element as removed. See cse_insn. */
1404 elt->first_same_value = 0;
1405
1406 /* Remove the table element from its equivalence class. */
1407
1408 {
1409 struct table_elt *prev = elt->prev_same_value;
1410 struct table_elt *next = elt->next_same_value;
1411
1412 if (next)
1413 next->prev_same_value = prev;
1414
1415 if (prev)
1416 prev->next_same_value = next;
1417 else
1418 {
1419 struct table_elt *newfirst = next;
1420 while (next)
1421 {
1422 next->first_same_value = newfirst;
1423 next = next->next_same_value;
1424 }
1425 }
1426 }
1427
1428 /* Remove the table element from its hash bucket. */
1429
1430 {
1431 struct table_elt *prev = elt->prev_same_hash;
1432 struct table_elt *next = elt->next_same_hash;
1433
1434 if (next)
1435 next->prev_same_hash = prev;
1436
1437 if (prev)
1438 prev->next_same_hash = next;
1439 else if (table[hash] == elt)
1440 table[hash] = next;
1441 else
1442 {
1443 /* This entry is not in the proper hash bucket. This can happen
1444 when two classes were merged by `merge_equiv_classes'. Search
1445 for the hash bucket that it heads. This happens only very
1446 rarely, so the cost is acceptable. */
1447 for (hash = 0; hash < HASH_SIZE; hash++)
1448 if (table[hash] == elt)
1449 table[hash] = next;
1450 }
1451 }
1452
1453 /* Remove the table element from its related-value circular chain. */
1454
1455 if (elt->related_value != 0 && elt->related_value != elt)
1456 {
1457 struct table_elt *p = elt->related_value;
1458
1459 while (p->related_value != elt)
1460 p = p->related_value;
1461 p->related_value = elt->related_value;
1462 if (p->related_value == p)
1463 p->related_value = 0;
1464 }
1465
1466 /* Now add it to the free element chain. */
1467 elt->next_same_hash = free_element_chain;
1468 free_element_chain = elt;
1469 }
1470
1471 /* Same as above, but X is a pseudo-register. */
1472
1473 static void
1474 remove_pseudo_from_table (rtx x, unsigned int hash)
1475 {
1476 struct table_elt *elt;
1477
1478 /* Because a pseudo-register can be referenced in more than one
1479 mode, we might have to remove more than one table entry. */
1480 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1481 remove_from_table (elt, hash);
1482 }
1483
1484 /* Look up X in the hash table and return its table element,
1485 or 0 if X is not in the table.
1486
1487 MODE is the machine-mode of X, or if X is an integer constant
1488 with VOIDmode then MODE is the mode with which X will be used.
1489
1490 Here we are satisfied to find an expression whose tree structure
1491 looks like X. */
1492
1493 static struct table_elt *
1494 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1495 {
1496 struct table_elt *p;
1497
1498 for (p = table[hash]; p; p = p->next_same_hash)
1499 if (mode == p->mode && ((x == p->exp && REG_P (x))
1500 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1501 return p;
1502
1503 return 0;
1504 }
1505
1506 /* Like `lookup' but don't care whether the table element uses invalid regs.
1507 Also ignore discrepancies in the machine mode of a register. */
1508
1509 static struct table_elt *
1510 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1511 {
1512 struct table_elt *p;
1513
1514 if (REG_P (x))
1515 {
1516 unsigned int regno = REGNO (x);
1517
1518 /* Don't check the machine mode when comparing registers;
1519 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1520 for (p = table[hash]; p; p = p->next_same_hash)
1521 if (REG_P (p->exp)
1522 && REGNO (p->exp) == regno)
1523 return p;
1524 }
1525 else
1526 {
1527 for (p = table[hash]; p; p = p->next_same_hash)
1528 if (mode == p->mode
1529 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1530 return p;
1531 }
1532
1533 return 0;
1534 }
1535
1536 /* Look for an expression equivalent to X and with code CODE.
1537 If one is found, return that expression. */
1538
1539 static rtx
1540 lookup_as_function (rtx x, enum rtx_code code)
1541 {
1542 struct table_elt *p
1543 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1544
1545 if (p == 0)
1546 return 0;
1547
1548 for (p = p->first_same_value; p; p = p->next_same_value)
1549 if (GET_CODE (p->exp) == code
1550 /* Make sure this is a valid entry in the table. */
1551 && exp_equiv_p (p->exp, p->exp, 1, false))
1552 return p->exp;
1553
1554 return 0;
1555 }
1556
1557 /* Insert X in the hash table, assuming HASH is its hash code and
1558 CLASSP is an element of the class it should go in (or 0 if a new
1559 class should be made). COST is the code of X and reg_cost is the
1560 cost of registers in X. It is inserted at the proper position to
1561 keep the class in the order cheapest first.
1562
1563 MODE is the machine-mode of X, or if X is an integer constant
1564 with VOIDmode then MODE is the mode with which X will be used.
1565
1566 For elements of equal cheapness, the most recent one
1567 goes in front, except that the first element in the list
1568 remains first unless a cheaper element is added. The order of
1569 pseudo-registers does not matter, as canon_reg will be called to
1570 find the cheapest when a register is retrieved from the table.
1571
1572 The in_memory field in the hash table element is set to 0.
1573 The caller must set it nonzero if appropriate.
1574
1575 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1576 and if insert_regs returns a nonzero value
1577 you must then recompute its hash code before calling here.
1578
1579 If necessary, update table showing constant values of quantities. */
1580
1581 static struct table_elt *
1582 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1583 enum machine_mode mode, int cost, int reg_cost)
1584 {
1585 struct table_elt *elt;
1586
1587 /* If X is a register and we haven't made a quantity for it,
1588 something is wrong. */
1589 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1590
1591 /* If X is a hard register, show it is being put in the table. */
1592 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1593 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1594
1595 /* Put an element for X into the right hash bucket. */
1596
1597 elt = free_element_chain;
1598 if (elt)
1599 free_element_chain = elt->next_same_hash;
1600 else
1601 elt = XNEW (struct table_elt);
1602
1603 elt->exp = x;
1604 elt->canon_exp = NULL_RTX;
1605 elt->cost = cost;
1606 elt->regcost = reg_cost;
1607 elt->next_same_value = 0;
1608 elt->prev_same_value = 0;
1609 elt->next_same_hash = table[hash];
1610 elt->prev_same_hash = 0;
1611 elt->related_value = 0;
1612 elt->in_memory = 0;
1613 elt->mode = mode;
1614 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1615
1616 if (table[hash])
1617 table[hash]->prev_same_hash = elt;
1618 table[hash] = elt;
1619
1620 /* Put it into the proper value-class. */
1621 if (classp)
1622 {
1623 classp = classp->first_same_value;
1624 if (CHEAPER (elt, classp))
1625 /* Insert at the head of the class. */
1626 {
1627 struct table_elt *p;
1628 elt->next_same_value = classp;
1629 classp->prev_same_value = elt;
1630 elt->first_same_value = elt;
1631
1632 for (p = classp; p; p = p->next_same_value)
1633 p->first_same_value = elt;
1634 }
1635 else
1636 {
1637 /* Insert not at head of the class. */
1638 /* Put it after the last element cheaper than X. */
1639 struct table_elt *p, *next;
1640
1641 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1642 p = next);
1643
1644 /* Put it after P and before NEXT. */
1645 elt->next_same_value = next;
1646 if (next)
1647 next->prev_same_value = elt;
1648
1649 elt->prev_same_value = p;
1650 p->next_same_value = elt;
1651 elt->first_same_value = classp;
1652 }
1653 }
1654 else
1655 elt->first_same_value = elt;
1656
1657 /* If this is a constant being set equivalent to a register or a register
1658 being set equivalent to a constant, note the constant equivalence.
1659
1660 If this is a constant, it cannot be equivalent to a different constant,
1661 and a constant is the only thing that can be cheaper than a register. So
1662 we know the register is the head of the class (before the constant was
1663 inserted).
1664
1665 If this is a register that is not already known equivalent to a
1666 constant, we must check the entire class.
1667
1668 If this is a register that is already known equivalent to an insn,
1669 update the qtys `const_insn' to show that `this_insn' is the latest
1670 insn making that quantity equivalent to the constant. */
1671
1672 if (elt->is_const && classp && REG_P (classp->exp)
1673 && !REG_P (x))
1674 {
1675 int exp_q = REG_QTY (REGNO (classp->exp));
1676 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1677
1678 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1679 exp_ent->const_insn = this_insn;
1680 }
1681
1682 else if (REG_P (x)
1683 && classp
1684 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1685 && ! elt->is_const)
1686 {
1687 struct table_elt *p;
1688
1689 for (p = classp; p != 0; p = p->next_same_value)
1690 {
1691 if (p->is_const && !REG_P (p->exp))
1692 {
1693 int x_q = REG_QTY (REGNO (x));
1694 struct qty_table_elem *x_ent = &qty_table[x_q];
1695
1696 x_ent->const_rtx
1697 = gen_lowpart (GET_MODE (x), p->exp);
1698 x_ent->const_insn = this_insn;
1699 break;
1700 }
1701 }
1702 }
1703
1704 else if (REG_P (x)
1705 && qty_table[REG_QTY (REGNO (x))].const_rtx
1706 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1707 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1708
1709 /* If this is a constant with symbolic value,
1710 and it has a term with an explicit integer value,
1711 link it up with related expressions. */
1712 if (GET_CODE (x) == CONST)
1713 {
1714 rtx subexp = get_related_value (x);
1715 unsigned subhash;
1716 struct table_elt *subelt, *subelt_prev;
1717
1718 if (subexp != 0)
1719 {
1720 /* Get the integer-free subexpression in the hash table. */
1721 subhash = SAFE_HASH (subexp, mode);
1722 subelt = lookup (subexp, subhash, mode);
1723 if (subelt == 0)
1724 subelt = insert (subexp, NULL, subhash, mode);
1725 /* Initialize SUBELT's circular chain if it has none. */
1726 if (subelt->related_value == 0)
1727 subelt->related_value = subelt;
1728 /* Find the element in the circular chain that precedes SUBELT. */
1729 subelt_prev = subelt;
1730 while (subelt_prev->related_value != subelt)
1731 subelt_prev = subelt_prev->related_value;
1732 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1733 This way the element that follows SUBELT is the oldest one. */
1734 elt->related_value = subelt_prev->related_value;
1735 subelt_prev->related_value = elt;
1736 }
1737 }
1738
1739 return elt;
1740 }
1741
1742 /* Wrap insert_with_costs by passing the default costs. */
1743
1744 static struct table_elt *
1745 insert (rtx x, struct table_elt *classp, unsigned int hash,
1746 enum machine_mode mode)
1747 {
1748 return
1749 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1750 }
1751
1752 \f
1753 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1754 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1755 the two classes equivalent.
1756
1757 CLASS1 will be the surviving class; CLASS2 should not be used after this
1758 call.
1759
1760 Any invalid entries in CLASS2 will not be copied. */
1761
1762 static void
1763 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1764 {
1765 struct table_elt *elt, *next, *new_elt;
1766
1767 /* Ensure we start with the head of the classes. */
1768 class1 = class1->first_same_value;
1769 class2 = class2->first_same_value;
1770
1771 /* If they were already equal, forget it. */
1772 if (class1 == class2)
1773 return;
1774
1775 for (elt = class2; elt; elt = next)
1776 {
1777 unsigned int hash;
1778 rtx exp = elt->exp;
1779 enum machine_mode mode = elt->mode;
1780
1781 next = elt->next_same_value;
1782
1783 /* Remove old entry, make a new one in CLASS1's class.
1784 Don't do this for invalid entries as we cannot find their
1785 hash code (it also isn't necessary). */
1786 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1787 {
1788 bool need_rehash = false;
1789
1790 hash_arg_in_memory = 0;
1791 hash = HASH (exp, mode);
1792
1793 if (REG_P (exp))
1794 {
1795 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1796 delete_reg_equiv (REGNO (exp));
1797 }
1798
1799 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1800 remove_pseudo_from_table (exp, hash);
1801 else
1802 remove_from_table (elt, hash);
1803
1804 if (insert_regs (exp, class1, 0) || need_rehash)
1805 {
1806 rehash_using_reg (exp);
1807 hash = HASH (exp, mode);
1808 }
1809 new_elt = insert (exp, class1, hash, mode);
1810 new_elt->in_memory = hash_arg_in_memory;
1811 }
1812 }
1813 }
1814 \f
1815 /* Flush the entire hash table. */
1816
1817 static void
1818 flush_hash_table (void)
1819 {
1820 int i;
1821 struct table_elt *p;
1822
1823 for (i = 0; i < HASH_SIZE; i++)
1824 for (p = table[i]; p; p = table[i])
1825 {
1826 /* Note that invalidate can remove elements
1827 after P in the current hash chain. */
1828 if (REG_P (p->exp))
1829 invalidate (p->exp, VOIDmode);
1830 else
1831 remove_from_table (p, i);
1832 }
1833 }
1834 \f
1835 /* Function called for each rtx to check whether true dependence exist. */
1836 struct check_dependence_data
1837 {
1838 enum machine_mode mode;
1839 rtx exp;
1840 rtx addr;
1841 };
1842
1843 static int
1844 check_dependence (rtx *x, void *data)
1845 {
1846 struct check_dependence_data *d = (struct check_dependence_data *) data;
1847 if (*x && MEM_P (*x))
1848 return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX,
1849 cse_rtx_varies_p);
1850 else
1851 return 0;
1852 }
1853 \f
1854 /* Remove from the hash table, or mark as invalid, all expressions whose
1855 values could be altered by storing in X. X is a register, a subreg, or
1856 a memory reference with nonvarying address (because, when a memory
1857 reference with a varying address is stored in, all memory references are
1858 removed by invalidate_memory so specific invalidation is superfluous).
1859 FULL_MODE, if not VOIDmode, indicates that this much should be
1860 invalidated instead of just the amount indicated by the mode of X. This
1861 is only used for bitfield stores into memory.
1862
1863 A nonvarying address may be just a register or just a symbol reference,
1864 or it may be either of those plus a numeric offset. */
1865
1866 static void
1867 invalidate (rtx x, enum machine_mode full_mode)
1868 {
1869 int i;
1870 struct table_elt *p;
1871 rtx addr;
1872
1873 switch (GET_CODE (x))
1874 {
1875 case REG:
1876 {
1877 /* If X is a register, dependencies on its contents are recorded
1878 through the qty number mechanism. Just change the qty number of
1879 the register, mark it as invalid for expressions that refer to it,
1880 and remove it itself. */
1881 unsigned int regno = REGNO (x);
1882 unsigned int hash = HASH (x, GET_MODE (x));
1883
1884 /* Remove REGNO from any quantity list it might be on and indicate
1885 that its value might have changed. If it is a pseudo, remove its
1886 entry from the hash table.
1887
1888 For a hard register, we do the first two actions above for any
1889 additional hard registers corresponding to X. Then, if any of these
1890 registers are in the table, we must remove any REG entries that
1891 overlap these registers. */
1892
1893 delete_reg_equiv (regno);
1894 REG_TICK (regno)++;
1895 SUBREG_TICKED (regno) = -1;
1896
1897 if (regno >= FIRST_PSEUDO_REGISTER)
1898 remove_pseudo_from_table (x, hash);
1899 else
1900 {
1901 HOST_WIDE_INT in_table
1902 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1903 unsigned int endregno = END_HARD_REGNO (x);
1904 unsigned int tregno, tendregno, rn;
1905 struct table_elt *p, *next;
1906
1907 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1908
1909 for (rn = regno + 1; rn < endregno; rn++)
1910 {
1911 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1912 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1913 delete_reg_equiv (rn);
1914 REG_TICK (rn)++;
1915 SUBREG_TICKED (rn) = -1;
1916 }
1917
1918 if (in_table)
1919 for (hash = 0; hash < HASH_SIZE; hash++)
1920 for (p = table[hash]; p; p = next)
1921 {
1922 next = p->next_same_hash;
1923
1924 if (!REG_P (p->exp)
1925 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1926 continue;
1927
1928 tregno = REGNO (p->exp);
1929 tendregno = END_HARD_REGNO (p->exp);
1930 if (tendregno > regno && tregno < endregno)
1931 remove_from_table (p, hash);
1932 }
1933 }
1934 }
1935 return;
1936
1937 case SUBREG:
1938 invalidate (SUBREG_REG (x), VOIDmode);
1939 return;
1940
1941 case PARALLEL:
1942 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1943 invalidate (XVECEXP (x, 0, i), VOIDmode);
1944 return;
1945
1946 case EXPR_LIST:
1947 /* This is part of a disjoint return value; extract the location in
1948 question ignoring the offset. */
1949 invalidate (XEXP (x, 0), VOIDmode);
1950 return;
1951
1952 case MEM:
1953 addr = canon_rtx (get_addr (XEXP (x, 0)));
1954 /* Calculate the canonical version of X here so that
1955 true_dependence doesn't generate new RTL for X on each call. */
1956 x = canon_rtx (x);
1957
1958 /* Remove all hash table elements that refer to overlapping pieces of
1959 memory. */
1960 if (full_mode == VOIDmode)
1961 full_mode = GET_MODE (x);
1962
1963 for (i = 0; i < HASH_SIZE; i++)
1964 {
1965 struct table_elt *next;
1966
1967 for (p = table[i]; p; p = next)
1968 {
1969 next = p->next_same_hash;
1970 if (p->in_memory)
1971 {
1972 struct check_dependence_data d;
1973
1974 /* Just canonicalize the expression once;
1975 otherwise each time we call invalidate
1976 true_dependence will canonicalize the
1977 expression again. */
1978 if (!p->canon_exp)
1979 p->canon_exp = canon_rtx (p->exp);
1980 d.exp = x;
1981 d.addr = addr;
1982 d.mode = full_mode;
1983 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1984 remove_from_table (p, i);
1985 }
1986 }
1987 }
1988 return;
1989
1990 default:
1991 gcc_unreachable ();
1992 }
1993 }
1994 \f
1995 /* Remove all expressions that refer to register REGNO,
1996 since they are already invalid, and we are about to
1997 mark that register valid again and don't want the old
1998 expressions to reappear as valid. */
1999
2000 static void
2001 remove_invalid_refs (unsigned int regno)
2002 {
2003 unsigned int i;
2004 struct table_elt *p, *next;
2005
2006 for (i = 0; i < HASH_SIZE; i++)
2007 for (p = table[i]; p; p = next)
2008 {
2009 next = p->next_same_hash;
2010 if (!REG_P (p->exp)
2011 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2012 remove_from_table (p, i);
2013 }
2014 }
2015
2016 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2017 and mode MODE. */
2018 static void
2019 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2020 enum machine_mode mode)
2021 {
2022 unsigned int i;
2023 struct table_elt *p, *next;
2024 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2025
2026 for (i = 0; i < HASH_SIZE; i++)
2027 for (p = table[i]; p; p = next)
2028 {
2029 rtx exp = p->exp;
2030 next = p->next_same_hash;
2031
2032 if (!REG_P (exp)
2033 && (GET_CODE (exp) != SUBREG
2034 || !REG_P (SUBREG_REG (exp))
2035 || REGNO (SUBREG_REG (exp)) != regno
2036 || (((SUBREG_BYTE (exp)
2037 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2038 && SUBREG_BYTE (exp) <= end))
2039 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2040 remove_from_table (p, i);
2041 }
2042 }
2043 \f
2044 /* Recompute the hash codes of any valid entries in the hash table that
2045 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2046
2047 This is called when we make a jump equivalence. */
2048
2049 static void
2050 rehash_using_reg (rtx x)
2051 {
2052 unsigned int i;
2053 struct table_elt *p, *next;
2054 unsigned hash;
2055
2056 if (GET_CODE (x) == SUBREG)
2057 x = SUBREG_REG (x);
2058
2059 /* If X is not a register or if the register is known not to be in any
2060 valid entries in the table, we have no work to do. */
2061
2062 if (!REG_P (x)
2063 || REG_IN_TABLE (REGNO (x)) < 0
2064 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2065 return;
2066
2067 /* Scan all hash chains looking for valid entries that mention X.
2068 If we find one and it is in the wrong hash chain, move it. */
2069
2070 for (i = 0; i < HASH_SIZE; i++)
2071 for (p = table[i]; p; p = next)
2072 {
2073 next = p->next_same_hash;
2074 if (reg_mentioned_p (x, p->exp)
2075 && exp_equiv_p (p->exp, p->exp, 1, false)
2076 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2077 {
2078 if (p->next_same_hash)
2079 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2080
2081 if (p->prev_same_hash)
2082 p->prev_same_hash->next_same_hash = p->next_same_hash;
2083 else
2084 table[i] = p->next_same_hash;
2085
2086 p->next_same_hash = table[hash];
2087 p->prev_same_hash = 0;
2088 if (table[hash])
2089 table[hash]->prev_same_hash = p;
2090 table[hash] = p;
2091 }
2092 }
2093 }
2094 \f
2095 /* Remove from the hash table any expression that is a call-clobbered
2096 register. Also update their TICK values. */
2097
2098 static void
2099 invalidate_for_call (void)
2100 {
2101 unsigned int regno, endregno;
2102 unsigned int i;
2103 unsigned hash;
2104 struct table_elt *p, *next;
2105 int in_table = 0;
2106
2107 /* Go through all the hard registers. For each that is clobbered in
2108 a CALL_INSN, remove the register from quantity chains and update
2109 reg_tick if defined. Also see if any of these registers is currently
2110 in the table. */
2111
2112 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2113 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2114 {
2115 delete_reg_equiv (regno);
2116 if (REG_TICK (regno) >= 0)
2117 {
2118 REG_TICK (regno)++;
2119 SUBREG_TICKED (regno) = -1;
2120 }
2121
2122 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2123 }
2124
2125 /* In the case where we have no call-clobbered hard registers in the
2126 table, we are done. Otherwise, scan the table and remove any
2127 entry that overlaps a call-clobbered register. */
2128
2129 if (in_table)
2130 for (hash = 0; hash < HASH_SIZE; hash++)
2131 for (p = table[hash]; p; p = next)
2132 {
2133 next = p->next_same_hash;
2134
2135 if (!REG_P (p->exp)
2136 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2137 continue;
2138
2139 regno = REGNO (p->exp);
2140 endregno = END_HARD_REGNO (p->exp);
2141
2142 for (i = regno; i < endregno; i++)
2143 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2144 {
2145 remove_from_table (p, hash);
2146 break;
2147 }
2148 }
2149 }
2150 \f
2151 /* Given an expression X of type CONST,
2152 and ELT which is its table entry (or 0 if it
2153 is not in the hash table),
2154 return an alternate expression for X as a register plus integer.
2155 If none can be found, return 0. */
2156
2157 static rtx
2158 use_related_value (rtx x, struct table_elt *elt)
2159 {
2160 struct table_elt *relt = 0;
2161 struct table_elt *p, *q;
2162 HOST_WIDE_INT offset;
2163
2164 /* First, is there anything related known?
2165 If we have a table element, we can tell from that.
2166 Otherwise, must look it up. */
2167
2168 if (elt != 0 && elt->related_value != 0)
2169 relt = elt;
2170 else if (elt == 0 && GET_CODE (x) == CONST)
2171 {
2172 rtx subexp = get_related_value (x);
2173 if (subexp != 0)
2174 relt = lookup (subexp,
2175 SAFE_HASH (subexp, GET_MODE (subexp)),
2176 GET_MODE (subexp));
2177 }
2178
2179 if (relt == 0)
2180 return 0;
2181
2182 /* Search all related table entries for one that has an
2183 equivalent register. */
2184
2185 p = relt;
2186 while (1)
2187 {
2188 /* This loop is strange in that it is executed in two different cases.
2189 The first is when X is already in the table. Then it is searching
2190 the RELATED_VALUE list of X's class (RELT). The second case is when
2191 X is not in the table. Then RELT points to a class for the related
2192 value.
2193
2194 Ensure that, whatever case we are in, that we ignore classes that have
2195 the same value as X. */
2196
2197 if (rtx_equal_p (x, p->exp))
2198 q = 0;
2199 else
2200 for (q = p->first_same_value; q; q = q->next_same_value)
2201 if (REG_P (q->exp))
2202 break;
2203
2204 if (q)
2205 break;
2206
2207 p = p->related_value;
2208
2209 /* We went all the way around, so there is nothing to be found.
2210 Alternatively, perhaps RELT was in the table for some other reason
2211 and it has no related values recorded. */
2212 if (p == relt || p == 0)
2213 break;
2214 }
2215
2216 if (q == 0)
2217 return 0;
2218
2219 offset = (get_integer_term (x) - get_integer_term (p->exp));
2220 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2221 return plus_constant (q->exp, offset);
2222 }
2223 \f
2224
2225 /* Hash a string. Just add its bytes up. */
2226 static inline unsigned
2227 hash_rtx_string (const char *ps)
2228 {
2229 unsigned hash = 0;
2230 const unsigned char *p = (const unsigned char *) ps;
2231
2232 if (p)
2233 while (*p)
2234 hash += *p++;
2235
2236 return hash;
2237 }
2238
2239 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2240 When the callback returns true, we continue with the new rtx. */
2241
2242 unsigned
2243 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2244 int *do_not_record_p, int *hash_arg_in_memory_p,
2245 bool have_reg_qty, hash_rtx_callback_function cb)
2246 {
2247 int i, j;
2248 unsigned hash = 0;
2249 enum rtx_code code;
2250 const char *fmt;
2251 enum machine_mode newmode;
2252 rtx newx;
2253
2254 /* Used to turn recursion into iteration. We can't rely on GCC's
2255 tail-recursion elimination since we need to keep accumulating values
2256 in HASH. */
2257 repeat:
2258 if (x == 0)
2259 return hash;
2260
2261 /* Invoke the callback first. */
2262 if (cb != NULL
2263 && ((*cb) (x, mode, &newx, &newmode)))
2264 {
2265 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2266 hash_arg_in_memory_p, have_reg_qty, cb);
2267 return hash;
2268 }
2269
2270 code = GET_CODE (x);
2271 switch (code)
2272 {
2273 case REG:
2274 {
2275 unsigned int regno = REGNO (x);
2276
2277 if (do_not_record_p && !reload_completed)
2278 {
2279 /* On some machines, we can't record any non-fixed hard register,
2280 because extending its life will cause reload problems. We
2281 consider ap, fp, sp, gp to be fixed for this purpose.
2282
2283 We also consider CCmode registers to be fixed for this purpose;
2284 failure to do so leads to failure to simplify 0<100 type of
2285 conditionals.
2286
2287 On all machines, we can't record any global registers.
2288 Nor should we record any register that is in a small
2289 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2290 bool record;
2291
2292 if (regno >= FIRST_PSEUDO_REGISTER)
2293 record = true;
2294 else if (x == frame_pointer_rtx
2295 || x == hard_frame_pointer_rtx
2296 || x == arg_pointer_rtx
2297 || x == stack_pointer_rtx
2298 || x == pic_offset_table_rtx)
2299 record = true;
2300 else if (global_regs[regno])
2301 record = false;
2302 else if (fixed_regs[regno])
2303 record = true;
2304 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2305 record = true;
2306 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2307 record = false;
2308 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2309 record = false;
2310 else
2311 record = true;
2312
2313 if (!record)
2314 {
2315 *do_not_record_p = 1;
2316 return 0;
2317 }
2318 }
2319
2320 hash += ((unsigned int) REG << 7);
2321 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2322 return hash;
2323 }
2324
2325 /* We handle SUBREG of a REG specially because the underlying
2326 reg changes its hash value with every value change; we don't
2327 want to have to forget unrelated subregs when one subreg changes. */
2328 case SUBREG:
2329 {
2330 if (REG_P (SUBREG_REG (x)))
2331 {
2332 hash += (((unsigned int) SUBREG << 7)
2333 + REGNO (SUBREG_REG (x))
2334 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2335 return hash;
2336 }
2337 break;
2338 }
2339
2340 case CONST_INT:
2341 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2342 + (unsigned int) INTVAL (x));
2343 return hash;
2344
2345 case CONST_DOUBLE:
2346 /* This is like the general case, except that it only counts
2347 the integers representing the constant. */
2348 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2349 if (GET_MODE (x) != VOIDmode)
2350 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2351 else
2352 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2353 + (unsigned int) CONST_DOUBLE_HIGH (x));
2354 return hash;
2355
2356 case CONST_FIXED:
2357 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2358 hash += fixed_hash (CONST_FIXED_VALUE (x));
2359 return hash;
2360
2361 case CONST_VECTOR:
2362 {
2363 int units;
2364 rtx elt;
2365
2366 units = CONST_VECTOR_NUNITS (x);
2367
2368 for (i = 0; i < units; ++i)
2369 {
2370 elt = CONST_VECTOR_ELT (x, i);
2371 hash += hash_rtx_cb (elt, GET_MODE (elt),
2372 do_not_record_p, hash_arg_in_memory_p,
2373 have_reg_qty, cb);
2374 }
2375
2376 return hash;
2377 }
2378
2379 /* Assume there is only one rtx object for any given label. */
2380 case LABEL_REF:
2381 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2382 differences and differences between each stage's debugging dumps. */
2383 hash += (((unsigned int) LABEL_REF << 7)
2384 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2385 return hash;
2386
2387 case SYMBOL_REF:
2388 {
2389 /* Don't hash on the symbol's address to avoid bootstrap differences.
2390 Different hash values may cause expressions to be recorded in
2391 different orders and thus different registers to be used in the
2392 final assembler. This also avoids differences in the dump files
2393 between various stages. */
2394 unsigned int h = 0;
2395 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2396
2397 while (*p)
2398 h += (h << 7) + *p++; /* ??? revisit */
2399
2400 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2401 return hash;
2402 }
2403
2404 case MEM:
2405 /* We don't record if marked volatile or if BLKmode since we don't
2406 know the size of the move. */
2407 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2408 {
2409 *do_not_record_p = 1;
2410 return 0;
2411 }
2412 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2413 *hash_arg_in_memory_p = 1;
2414
2415 /* Now that we have already found this special case,
2416 might as well speed it up as much as possible. */
2417 hash += (unsigned) MEM;
2418 x = XEXP (x, 0);
2419 goto repeat;
2420
2421 case USE:
2422 /* A USE that mentions non-volatile memory needs special
2423 handling since the MEM may be BLKmode which normally
2424 prevents an entry from being made. Pure calls are
2425 marked by a USE which mentions BLKmode memory.
2426 See calls.c:emit_call_1. */
2427 if (MEM_P (XEXP (x, 0))
2428 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2429 {
2430 hash += (unsigned) USE;
2431 x = XEXP (x, 0);
2432
2433 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2434 *hash_arg_in_memory_p = 1;
2435
2436 /* Now that we have already found this special case,
2437 might as well speed it up as much as possible. */
2438 hash += (unsigned) MEM;
2439 x = XEXP (x, 0);
2440 goto repeat;
2441 }
2442 break;
2443
2444 case PRE_DEC:
2445 case PRE_INC:
2446 case POST_DEC:
2447 case POST_INC:
2448 case PRE_MODIFY:
2449 case POST_MODIFY:
2450 case PC:
2451 case CC0:
2452 case CALL:
2453 case UNSPEC_VOLATILE:
2454 if (do_not_record_p) {
2455 *do_not_record_p = 1;
2456 return 0;
2457 }
2458 else
2459 return hash;
2460 break;
2461
2462 case ASM_OPERANDS:
2463 if (do_not_record_p && MEM_VOLATILE_P (x))
2464 {
2465 *do_not_record_p = 1;
2466 return 0;
2467 }
2468 else
2469 {
2470 /* We don't want to take the filename and line into account. */
2471 hash += (unsigned) code + (unsigned) GET_MODE (x)
2472 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2473 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2474 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2475
2476 if (ASM_OPERANDS_INPUT_LENGTH (x))
2477 {
2478 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2479 {
2480 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2481 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2482 do_not_record_p, hash_arg_in_memory_p,
2483 have_reg_qty, cb)
2484 + hash_rtx_string
2485 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2486 }
2487
2488 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2489 x = ASM_OPERANDS_INPUT (x, 0);
2490 mode = GET_MODE (x);
2491 goto repeat;
2492 }
2493
2494 return hash;
2495 }
2496 break;
2497
2498 default:
2499 break;
2500 }
2501
2502 i = GET_RTX_LENGTH (code) - 1;
2503 hash += (unsigned) code + (unsigned) GET_MODE (x);
2504 fmt = GET_RTX_FORMAT (code);
2505 for (; i >= 0; i--)
2506 {
2507 switch (fmt[i])
2508 {
2509 case 'e':
2510 /* If we are about to do the last recursive call
2511 needed at this level, change it into iteration.
2512 This function is called enough to be worth it. */
2513 if (i == 0)
2514 {
2515 x = XEXP (x, i);
2516 goto repeat;
2517 }
2518
2519 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2520 hash_arg_in_memory_p,
2521 have_reg_qty, cb);
2522 break;
2523
2524 case 'E':
2525 for (j = 0; j < XVECLEN (x, i); j++)
2526 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2527 hash_arg_in_memory_p,
2528 have_reg_qty, cb);
2529 break;
2530
2531 case 's':
2532 hash += hash_rtx_string (XSTR (x, i));
2533 break;
2534
2535 case 'i':
2536 hash += (unsigned int) XINT (x, i);
2537 break;
2538
2539 case '0': case 't':
2540 /* Unused. */
2541 break;
2542
2543 default:
2544 gcc_unreachable ();
2545 }
2546 }
2547
2548 return hash;
2549 }
2550
2551 /* Hash an rtx. We are careful to make sure the value is never negative.
2552 Equivalent registers hash identically.
2553 MODE is used in hashing for CONST_INTs only;
2554 otherwise the mode of X is used.
2555
2556 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2557
2558 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2559 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2560
2561 Note that cse_insn knows that the hash code of a MEM expression
2562 is just (int) MEM plus the hash code of the address. */
2563
2564 unsigned
2565 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2566 int *hash_arg_in_memory_p, bool have_reg_qty)
2567 {
2568 return hash_rtx_cb (x, mode, do_not_record_p,
2569 hash_arg_in_memory_p, have_reg_qty, NULL);
2570 }
2571
2572 /* Hash an rtx X for cse via hash_rtx.
2573 Stores 1 in do_not_record if any subexpression is volatile.
2574 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2575 does not have the RTX_UNCHANGING_P bit set. */
2576
2577 static inline unsigned
2578 canon_hash (rtx x, enum machine_mode mode)
2579 {
2580 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2581 }
2582
2583 /* Like canon_hash but with no side effects, i.e. do_not_record
2584 and hash_arg_in_memory are not changed. */
2585
2586 static inline unsigned
2587 safe_hash (rtx x, enum machine_mode mode)
2588 {
2589 int dummy_do_not_record;
2590 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2591 }
2592 \f
2593 /* Return 1 iff X and Y would canonicalize into the same thing,
2594 without actually constructing the canonicalization of either one.
2595 If VALIDATE is nonzero,
2596 we assume X is an expression being processed from the rtl
2597 and Y was found in the hash table. We check register refs
2598 in Y for being marked as valid.
2599
2600 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2601
2602 int
2603 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2604 {
2605 int i, j;
2606 enum rtx_code code;
2607 const char *fmt;
2608
2609 /* Note: it is incorrect to assume an expression is equivalent to itself
2610 if VALIDATE is nonzero. */
2611 if (x == y && !validate)
2612 return 1;
2613
2614 if (x == 0 || y == 0)
2615 return x == y;
2616
2617 code = GET_CODE (x);
2618 if (code != GET_CODE (y))
2619 return 0;
2620
2621 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2622 if (GET_MODE (x) != GET_MODE (y))
2623 return 0;
2624
2625 /* MEMs refering to different address space are not equivalent. */
2626 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2627 return 0;
2628
2629 switch (code)
2630 {
2631 case PC:
2632 case CC0:
2633 case CONST_INT:
2634 case CONST_DOUBLE:
2635 case CONST_FIXED:
2636 return x == y;
2637
2638 case LABEL_REF:
2639 return XEXP (x, 0) == XEXP (y, 0);
2640
2641 case SYMBOL_REF:
2642 return XSTR (x, 0) == XSTR (y, 0);
2643
2644 case REG:
2645 if (for_gcse)
2646 return REGNO (x) == REGNO (y);
2647 else
2648 {
2649 unsigned int regno = REGNO (y);
2650 unsigned int i;
2651 unsigned int endregno = END_REGNO (y);
2652
2653 /* If the quantities are not the same, the expressions are not
2654 equivalent. If there are and we are not to validate, they
2655 are equivalent. Otherwise, ensure all regs are up-to-date. */
2656
2657 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2658 return 0;
2659
2660 if (! validate)
2661 return 1;
2662
2663 for (i = regno; i < endregno; i++)
2664 if (REG_IN_TABLE (i) != REG_TICK (i))
2665 return 0;
2666
2667 return 1;
2668 }
2669
2670 case MEM:
2671 if (for_gcse)
2672 {
2673 /* Can't merge two expressions in different alias sets, since we
2674 can decide that the expression is transparent in a block when
2675 it isn't, due to it being set with the different alias set. */
2676 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
2677 return 0;
2678
2679 /* A volatile mem should not be considered equivalent to any
2680 other. */
2681 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2682 return 0;
2683 }
2684 break;
2685
2686 /* For commutative operations, check both orders. */
2687 case PLUS:
2688 case MULT:
2689 case AND:
2690 case IOR:
2691 case XOR:
2692 case NE:
2693 case EQ:
2694 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2695 validate, for_gcse)
2696 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2697 validate, for_gcse))
2698 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2699 validate, for_gcse)
2700 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2701 validate, for_gcse)));
2702
2703 case ASM_OPERANDS:
2704 /* We don't use the generic code below because we want to
2705 disregard filename and line numbers. */
2706
2707 /* A volatile asm isn't equivalent to any other. */
2708 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2709 return 0;
2710
2711 if (GET_MODE (x) != GET_MODE (y)
2712 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2713 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2714 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2715 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2716 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2717 return 0;
2718
2719 if (ASM_OPERANDS_INPUT_LENGTH (x))
2720 {
2721 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2722 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2723 ASM_OPERANDS_INPUT (y, i),
2724 validate, for_gcse)
2725 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2726 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2727 return 0;
2728 }
2729
2730 return 1;
2731
2732 default:
2733 break;
2734 }
2735
2736 /* Compare the elements. If any pair of corresponding elements
2737 fail to match, return 0 for the whole thing. */
2738
2739 fmt = GET_RTX_FORMAT (code);
2740 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2741 {
2742 switch (fmt[i])
2743 {
2744 case 'e':
2745 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2746 validate, for_gcse))
2747 return 0;
2748 break;
2749
2750 case 'E':
2751 if (XVECLEN (x, i) != XVECLEN (y, i))
2752 return 0;
2753 for (j = 0; j < XVECLEN (x, i); j++)
2754 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2755 validate, for_gcse))
2756 return 0;
2757 break;
2758
2759 case 's':
2760 if (strcmp (XSTR (x, i), XSTR (y, i)))
2761 return 0;
2762 break;
2763
2764 case 'i':
2765 if (XINT (x, i) != XINT (y, i))
2766 return 0;
2767 break;
2768
2769 case 'w':
2770 if (XWINT (x, i) != XWINT (y, i))
2771 return 0;
2772 break;
2773
2774 case '0':
2775 case 't':
2776 break;
2777
2778 default:
2779 gcc_unreachable ();
2780 }
2781 }
2782
2783 return 1;
2784 }
2785 \f
2786 /* Return 1 if X has a value that can vary even between two
2787 executions of the program. 0 means X can be compared reliably
2788 against certain constants or near-constants. */
2789
2790 static bool
2791 cse_rtx_varies_p (const_rtx x, bool from_alias)
2792 {
2793 /* We need not check for X and the equivalence class being of the same
2794 mode because if X is equivalent to a constant in some mode, it
2795 doesn't vary in any mode. */
2796
2797 if (REG_P (x)
2798 && REGNO_QTY_VALID_P (REGNO (x)))
2799 {
2800 int x_q = REG_QTY (REGNO (x));
2801 struct qty_table_elem *x_ent = &qty_table[x_q];
2802
2803 if (GET_MODE (x) == x_ent->mode
2804 && x_ent->const_rtx != NULL_RTX)
2805 return 0;
2806 }
2807
2808 if (GET_CODE (x) == PLUS
2809 && CONST_INT_P (XEXP (x, 1))
2810 && REG_P (XEXP (x, 0))
2811 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2812 {
2813 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2814 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2815
2816 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2817 && x0_ent->const_rtx != NULL_RTX)
2818 return 0;
2819 }
2820
2821 /* This can happen as the result of virtual register instantiation, if
2822 the initial constant is too large to be a valid address. This gives
2823 us a three instruction sequence, load large offset into a register,
2824 load fp minus a constant into a register, then a MEM which is the
2825 sum of the two `constant' registers. */
2826 if (GET_CODE (x) == PLUS
2827 && REG_P (XEXP (x, 0))
2828 && REG_P (XEXP (x, 1))
2829 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2830 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2831 {
2832 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2833 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2834 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2835 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2836
2837 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2838 && x0_ent->const_rtx != NULL_RTX
2839 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2840 && x1_ent->const_rtx != NULL_RTX)
2841 return 0;
2842 }
2843
2844 return rtx_varies_p (x, from_alias);
2845 }
2846 \f
2847 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2848 the result if necessary. INSN is as for canon_reg. */
2849
2850 static void
2851 validate_canon_reg (rtx *xloc, rtx insn)
2852 {
2853 if (*xloc)
2854 {
2855 rtx new_rtx = canon_reg (*xloc, insn);
2856
2857 /* If replacing pseudo with hard reg or vice versa, ensure the
2858 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2859 gcc_assert (insn && new_rtx);
2860 validate_change (insn, xloc, new_rtx, 1);
2861 }
2862 }
2863
2864 /* Canonicalize an expression:
2865 replace each register reference inside it
2866 with the "oldest" equivalent register.
2867
2868 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2869 after we make our substitution. The calls are made with IN_GROUP nonzero
2870 so apply_change_group must be called upon the outermost return from this
2871 function (unless INSN is zero). The result of apply_change_group can
2872 generally be discarded since the changes we are making are optional. */
2873
2874 static rtx
2875 canon_reg (rtx x, rtx insn)
2876 {
2877 int i;
2878 enum rtx_code code;
2879 const char *fmt;
2880
2881 if (x == 0)
2882 return x;
2883
2884 code = GET_CODE (x);
2885 switch (code)
2886 {
2887 case PC:
2888 case CC0:
2889 case CONST:
2890 case CONST_INT:
2891 case CONST_DOUBLE:
2892 case CONST_FIXED:
2893 case CONST_VECTOR:
2894 case SYMBOL_REF:
2895 case LABEL_REF:
2896 case ADDR_VEC:
2897 case ADDR_DIFF_VEC:
2898 return x;
2899
2900 case REG:
2901 {
2902 int first;
2903 int q;
2904 struct qty_table_elem *ent;
2905
2906 /* Never replace a hard reg, because hard regs can appear
2907 in more than one machine mode, and we must preserve the mode
2908 of each occurrence. Also, some hard regs appear in
2909 MEMs that are shared and mustn't be altered. Don't try to
2910 replace any reg that maps to a reg of class NO_REGS. */
2911 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2912 || ! REGNO_QTY_VALID_P (REGNO (x)))
2913 return x;
2914
2915 q = REG_QTY (REGNO (x));
2916 ent = &qty_table[q];
2917 first = ent->first_reg;
2918 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2919 : REGNO_REG_CLASS (first) == NO_REGS ? x
2920 : gen_rtx_REG (ent->mode, first));
2921 }
2922
2923 default:
2924 break;
2925 }
2926
2927 fmt = GET_RTX_FORMAT (code);
2928 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2929 {
2930 int j;
2931
2932 if (fmt[i] == 'e')
2933 validate_canon_reg (&XEXP (x, i), insn);
2934 else if (fmt[i] == 'E')
2935 for (j = 0; j < XVECLEN (x, i); j++)
2936 validate_canon_reg (&XVECEXP (x, i, j), insn);
2937 }
2938
2939 return x;
2940 }
2941 \f
2942 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2943 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2944 what values are being compared.
2945
2946 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2947 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2948 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2949 compared to produce cc0.
2950
2951 The return value is the comparison operator and is either the code of
2952 A or the code corresponding to the inverse of the comparison. */
2953
2954 static enum rtx_code
2955 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2956 enum machine_mode *pmode1, enum machine_mode *pmode2)
2957 {
2958 rtx arg1, arg2;
2959
2960 arg1 = *parg1, arg2 = *parg2;
2961
2962 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2963
2964 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2965 {
2966 /* Set nonzero when we find something of interest. */
2967 rtx x = 0;
2968 int reverse_code = 0;
2969 struct table_elt *p = 0;
2970
2971 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2972 On machines with CC0, this is the only case that can occur, since
2973 fold_rtx will return the COMPARE or item being compared with zero
2974 when given CC0. */
2975
2976 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2977 x = arg1;
2978
2979 /* If ARG1 is a comparison operator and CODE is testing for
2980 STORE_FLAG_VALUE, get the inner arguments. */
2981
2982 else if (COMPARISON_P (arg1))
2983 {
2984 #ifdef FLOAT_STORE_FLAG_VALUE
2985 REAL_VALUE_TYPE fsfv;
2986 #endif
2987
2988 if (code == NE
2989 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2990 && code == LT && STORE_FLAG_VALUE == -1)
2991 #ifdef FLOAT_STORE_FLAG_VALUE
2992 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2993 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2994 REAL_VALUE_NEGATIVE (fsfv)))
2995 #endif
2996 )
2997 x = arg1;
2998 else if (code == EQ
2999 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3000 && code == GE && STORE_FLAG_VALUE == -1)
3001 #ifdef FLOAT_STORE_FLAG_VALUE
3002 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3003 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3004 REAL_VALUE_NEGATIVE (fsfv)))
3005 #endif
3006 )
3007 x = arg1, reverse_code = 1;
3008 }
3009
3010 /* ??? We could also check for
3011
3012 (ne (and (eq (...) (const_int 1))) (const_int 0))
3013
3014 and related forms, but let's wait until we see them occurring. */
3015
3016 if (x == 0)
3017 /* Look up ARG1 in the hash table and see if it has an equivalence
3018 that lets us see what is being compared. */
3019 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3020 if (p)
3021 {
3022 p = p->first_same_value;
3023
3024 /* If what we compare is already known to be constant, that is as
3025 good as it gets.
3026 We need to break the loop in this case, because otherwise we
3027 can have an infinite loop when looking at a reg that is known
3028 to be a constant which is the same as a comparison of a reg
3029 against zero which appears later in the insn stream, which in
3030 turn is constant and the same as the comparison of the first reg
3031 against zero... */
3032 if (p->is_const)
3033 break;
3034 }
3035
3036 for (; p; p = p->next_same_value)
3037 {
3038 enum machine_mode inner_mode = GET_MODE (p->exp);
3039 #ifdef FLOAT_STORE_FLAG_VALUE
3040 REAL_VALUE_TYPE fsfv;
3041 #endif
3042
3043 /* If the entry isn't valid, skip it. */
3044 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3045 continue;
3046
3047 if (GET_CODE (p->exp) == COMPARE
3048 /* Another possibility is that this machine has a compare insn
3049 that includes the comparison code. In that case, ARG1 would
3050 be equivalent to a comparison operation that would set ARG1 to
3051 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3052 ORIG_CODE is the actual comparison being done; if it is an EQ,
3053 we must reverse ORIG_CODE. On machine with a negative value
3054 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3055 || ((code == NE
3056 || (code == LT
3057 && GET_MODE_CLASS (inner_mode) == MODE_INT
3058 && (GET_MODE_BITSIZE (inner_mode)
3059 <= HOST_BITS_PER_WIDE_INT)
3060 && (STORE_FLAG_VALUE
3061 & ((HOST_WIDE_INT) 1
3062 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3063 #ifdef FLOAT_STORE_FLAG_VALUE
3064 || (code == LT
3065 && SCALAR_FLOAT_MODE_P (inner_mode)
3066 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3067 REAL_VALUE_NEGATIVE (fsfv)))
3068 #endif
3069 )
3070 && COMPARISON_P (p->exp)))
3071 {
3072 x = p->exp;
3073 break;
3074 }
3075 else if ((code == EQ
3076 || (code == GE
3077 && GET_MODE_CLASS (inner_mode) == MODE_INT
3078 && (GET_MODE_BITSIZE (inner_mode)
3079 <= HOST_BITS_PER_WIDE_INT)
3080 && (STORE_FLAG_VALUE
3081 & ((HOST_WIDE_INT) 1
3082 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3083 #ifdef FLOAT_STORE_FLAG_VALUE
3084 || (code == GE
3085 && SCALAR_FLOAT_MODE_P (inner_mode)
3086 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3087 REAL_VALUE_NEGATIVE (fsfv)))
3088 #endif
3089 )
3090 && COMPARISON_P (p->exp))
3091 {
3092 reverse_code = 1;
3093 x = p->exp;
3094 break;
3095 }
3096
3097 /* If this non-trapping address, e.g. fp + constant, the
3098 equivalent is a better operand since it may let us predict
3099 the value of the comparison. */
3100 else if (!rtx_addr_can_trap_p (p->exp))
3101 {
3102 arg1 = p->exp;
3103 continue;
3104 }
3105 }
3106
3107 /* If we didn't find a useful equivalence for ARG1, we are done.
3108 Otherwise, set up for the next iteration. */
3109 if (x == 0)
3110 break;
3111
3112 /* If we need to reverse the comparison, make sure that that is
3113 possible -- we can't necessarily infer the value of GE from LT
3114 with floating-point operands. */
3115 if (reverse_code)
3116 {
3117 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3118 if (reversed == UNKNOWN)
3119 break;
3120 else
3121 code = reversed;
3122 }
3123 else if (COMPARISON_P (x))
3124 code = GET_CODE (x);
3125 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3126 }
3127
3128 /* Return our results. Return the modes from before fold_rtx
3129 because fold_rtx might produce const_int, and then it's too late. */
3130 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3131 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3132
3133 return code;
3134 }
3135 \f
3136 /* If X is a nontrivial arithmetic operation on an argument for which
3137 a constant value can be determined, return the result of operating
3138 on that value, as a constant. Otherwise, return X, possibly with
3139 one or more operands changed to a forward-propagated constant.
3140
3141 If X is a register whose contents are known, we do NOT return
3142 those contents here; equiv_constant is called to perform that task.
3143 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3144
3145 INSN is the insn that we may be modifying. If it is 0, make a copy
3146 of X before modifying it. */
3147
3148 static rtx
3149 fold_rtx (rtx x, rtx insn)
3150 {
3151 enum rtx_code code;
3152 enum machine_mode mode;
3153 const char *fmt;
3154 int i;
3155 rtx new_rtx = 0;
3156 int changed = 0;
3157
3158 /* Operands of X. */
3159 rtx folded_arg0;
3160 rtx folded_arg1;
3161
3162 /* Constant equivalents of first three operands of X;
3163 0 when no such equivalent is known. */
3164 rtx const_arg0;
3165 rtx const_arg1;
3166 rtx const_arg2;
3167
3168 /* The mode of the first operand of X. We need this for sign and zero
3169 extends. */
3170 enum machine_mode mode_arg0;
3171
3172 if (x == 0)
3173 return x;
3174
3175 /* Try to perform some initial simplifications on X. */
3176 code = GET_CODE (x);
3177 switch (code)
3178 {
3179 case MEM:
3180 case SUBREG:
3181 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3182 return new_rtx;
3183 return x;
3184
3185 case CONST:
3186 case CONST_INT:
3187 case CONST_DOUBLE:
3188 case CONST_FIXED:
3189 case CONST_VECTOR:
3190 case SYMBOL_REF:
3191 case LABEL_REF:
3192 case REG:
3193 case PC:
3194 /* No use simplifying an EXPR_LIST
3195 since they are used only for lists of args
3196 in a function call's REG_EQUAL note. */
3197 case EXPR_LIST:
3198 return x;
3199
3200 #ifdef HAVE_cc0
3201 case CC0:
3202 return prev_insn_cc0;
3203 #endif
3204
3205 case ASM_OPERANDS:
3206 if (insn)
3207 {
3208 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3209 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3210 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3211 }
3212 return x;
3213
3214 #ifdef NO_FUNCTION_CSE
3215 case CALL:
3216 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3217 return x;
3218 break;
3219 #endif
3220
3221 /* Anything else goes through the loop below. */
3222 default:
3223 break;
3224 }
3225
3226 mode = GET_MODE (x);
3227 const_arg0 = 0;
3228 const_arg1 = 0;
3229 const_arg2 = 0;
3230 mode_arg0 = VOIDmode;
3231
3232 /* Try folding our operands.
3233 Then see which ones have constant values known. */
3234
3235 fmt = GET_RTX_FORMAT (code);
3236 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3237 if (fmt[i] == 'e')
3238 {
3239 rtx folded_arg = XEXP (x, i), const_arg;
3240 enum machine_mode mode_arg = GET_MODE (folded_arg);
3241
3242 switch (GET_CODE (folded_arg))
3243 {
3244 case MEM:
3245 case REG:
3246 case SUBREG:
3247 const_arg = equiv_constant (folded_arg);
3248 break;
3249
3250 case CONST:
3251 case CONST_INT:
3252 case SYMBOL_REF:
3253 case LABEL_REF:
3254 case CONST_DOUBLE:
3255 case CONST_FIXED:
3256 case CONST_VECTOR:
3257 const_arg = folded_arg;
3258 break;
3259
3260 #ifdef HAVE_cc0
3261 case CC0:
3262 folded_arg = prev_insn_cc0;
3263 mode_arg = prev_insn_cc0_mode;
3264 const_arg = equiv_constant (folded_arg);
3265 break;
3266 #endif
3267
3268 default:
3269 folded_arg = fold_rtx (folded_arg, insn);
3270 const_arg = equiv_constant (folded_arg);
3271 break;
3272 }
3273
3274 /* For the first three operands, see if the operand
3275 is constant or equivalent to a constant. */
3276 switch (i)
3277 {
3278 case 0:
3279 folded_arg0 = folded_arg;
3280 const_arg0 = const_arg;
3281 mode_arg0 = mode_arg;
3282 break;
3283 case 1:
3284 folded_arg1 = folded_arg;
3285 const_arg1 = const_arg;
3286 break;
3287 case 2:
3288 const_arg2 = const_arg;
3289 break;
3290 }
3291
3292 /* Pick the least expensive of the argument and an equivalent constant
3293 argument. */
3294 if (const_arg != 0
3295 && const_arg != folded_arg
3296 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3297
3298 /* It's not safe to substitute the operand of a conversion
3299 operator with a constant, as the conversion's identity
3300 depends upon the mode of its operand. This optimization
3301 is handled by the call to simplify_unary_operation. */
3302 && (GET_RTX_CLASS (code) != RTX_UNARY
3303 || GET_MODE (const_arg) == mode_arg0
3304 || (code != ZERO_EXTEND
3305 && code != SIGN_EXTEND
3306 && code != TRUNCATE
3307 && code != FLOAT_TRUNCATE
3308 && code != FLOAT_EXTEND
3309 && code != FLOAT
3310 && code != FIX
3311 && code != UNSIGNED_FLOAT
3312 && code != UNSIGNED_FIX)))
3313 folded_arg = const_arg;
3314
3315 if (folded_arg == XEXP (x, i))
3316 continue;
3317
3318 if (insn == NULL_RTX && !changed)
3319 x = copy_rtx (x);
3320 changed = 1;
3321 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3322 }
3323
3324 if (changed)
3325 {
3326 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3327 consistent with the order in X. */
3328 if (canonicalize_change_group (insn, x))
3329 {
3330 rtx tem;
3331 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3332 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3333 }
3334
3335 apply_change_group ();
3336 }
3337
3338 /* If X is an arithmetic operation, see if we can simplify it. */
3339
3340 switch (GET_RTX_CLASS (code))
3341 {
3342 case RTX_UNARY:
3343 {
3344 /* We can't simplify extension ops unless we know the
3345 original mode. */
3346 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3347 && mode_arg0 == VOIDmode)
3348 break;
3349
3350 new_rtx = simplify_unary_operation (code, mode,
3351 const_arg0 ? const_arg0 : folded_arg0,
3352 mode_arg0);
3353 }
3354 break;
3355
3356 case RTX_COMPARE:
3357 case RTX_COMM_COMPARE:
3358 /* See what items are actually being compared and set FOLDED_ARG[01]
3359 to those values and CODE to the actual comparison code. If any are
3360 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3361 do anything if both operands are already known to be constant. */
3362
3363 /* ??? Vector mode comparisons are not supported yet. */
3364 if (VECTOR_MODE_P (mode))
3365 break;
3366
3367 if (const_arg0 == 0 || const_arg1 == 0)
3368 {
3369 struct table_elt *p0, *p1;
3370 rtx true_rtx, false_rtx;
3371 enum machine_mode mode_arg1;
3372
3373 if (SCALAR_FLOAT_MODE_P (mode))
3374 {
3375 #ifdef FLOAT_STORE_FLAG_VALUE
3376 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3377 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3378 #else
3379 true_rtx = NULL_RTX;
3380 #endif
3381 false_rtx = CONST0_RTX (mode);
3382 }
3383 else
3384 {
3385 true_rtx = const_true_rtx;
3386 false_rtx = const0_rtx;
3387 }
3388
3389 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3390 &mode_arg0, &mode_arg1);
3391
3392 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3393 what kinds of things are being compared, so we can't do
3394 anything with this comparison. */
3395
3396 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3397 break;
3398
3399 const_arg0 = equiv_constant (folded_arg0);
3400 const_arg1 = equiv_constant (folded_arg1);
3401
3402 /* If we do not now have two constants being compared, see
3403 if we can nevertheless deduce some things about the
3404 comparison. */
3405 if (const_arg0 == 0 || const_arg1 == 0)
3406 {
3407 if (const_arg1 != NULL)
3408 {
3409 rtx cheapest_simplification;
3410 int cheapest_cost;
3411 rtx simp_result;
3412 struct table_elt *p;
3413
3414 /* See if we can find an equivalent of folded_arg0
3415 that gets us a cheaper expression, possibly a
3416 constant through simplifications. */
3417 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3418 mode_arg0);
3419
3420 if (p != NULL)
3421 {
3422 cheapest_simplification = x;
3423 cheapest_cost = COST (x);
3424
3425 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3426 {
3427 int cost;
3428
3429 /* If the entry isn't valid, skip it. */
3430 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3431 continue;
3432
3433 /* Try to simplify using this equivalence. */
3434 simp_result
3435 = simplify_relational_operation (code, mode,
3436 mode_arg0,
3437 p->exp,
3438 const_arg1);
3439
3440 if (simp_result == NULL)
3441 continue;
3442
3443 cost = COST (simp_result);
3444 if (cost < cheapest_cost)
3445 {
3446 cheapest_cost = cost;
3447 cheapest_simplification = simp_result;
3448 }
3449 }
3450
3451 /* If we have a cheaper expression now, use that
3452 and try folding it further, from the top. */
3453 if (cheapest_simplification != x)
3454 return fold_rtx (copy_rtx (cheapest_simplification),
3455 insn);
3456 }
3457 }
3458
3459 /* See if the two operands are the same. */
3460
3461 if ((REG_P (folded_arg0)
3462 && REG_P (folded_arg1)
3463 && (REG_QTY (REGNO (folded_arg0))
3464 == REG_QTY (REGNO (folded_arg1))))
3465 || ((p0 = lookup (folded_arg0,
3466 SAFE_HASH (folded_arg0, mode_arg0),
3467 mode_arg0))
3468 && (p1 = lookup (folded_arg1,
3469 SAFE_HASH (folded_arg1, mode_arg0),
3470 mode_arg0))
3471 && p0->first_same_value == p1->first_same_value))
3472 folded_arg1 = folded_arg0;
3473
3474 /* If FOLDED_ARG0 is a register, see if the comparison we are
3475 doing now is either the same as we did before or the reverse
3476 (we only check the reverse if not floating-point). */
3477 else if (REG_P (folded_arg0))
3478 {
3479 int qty = REG_QTY (REGNO (folded_arg0));
3480
3481 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3482 {
3483 struct qty_table_elem *ent = &qty_table[qty];
3484
3485 if ((comparison_dominates_p (ent->comparison_code, code)
3486 || (! FLOAT_MODE_P (mode_arg0)
3487 && comparison_dominates_p (ent->comparison_code,
3488 reverse_condition (code))))
3489 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3490 || (const_arg1
3491 && rtx_equal_p (ent->comparison_const,
3492 const_arg1))
3493 || (REG_P (folded_arg1)
3494 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3495 {
3496 if (comparison_dominates_p (ent->comparison_code, code))
3497 {
3498 if (true_rtx)
3499 return true_rtx;
3500 else
3501 break;
3502 }
3503 else
3504 return false_rtx;
3505 }
3506 }
3507 }
3508 }
3509 }
3510
3511 /* If we are comparing against zero, see if the first operand is
3512 equivalent to an IOR with a constant. If so, we may be able to
3513 determine the result of this comparison. */
3514 if (const_arg1 == const0_rtx && !const_arg0)
3515 {
3516 rtx y = lookup_as_function (folded_arg0, IOR);
3517 rtx inner_const;
3518
3519 if (y != 0
3520 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3521 && CONST_INT_P (inner_const)
3522 && INTVAL (inner_const) != 0)
3523 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3524 }
3525
3526 {
3527 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3528 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3529 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3530 }
3531 break;
3532
3533 case RTX_BIN_ARITH:
3534 case RTX_COMM_ARITH:
3535 switch (code)
3536 {
3537 case PLUS:
3538 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3539 with that LABEL_REF as its second operand. If so, the result is
3540 the first operand of that MINUS. This handles switches with an
3541 ADDR_DIFF_VEC table. */
3542 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3543 {
3544 rtx y
3545 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3546 : lookup_as_function (folded_arg0, MINUS);
3547
3548 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3549 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3550 return XEXP (y, 0);
3551
3552 /* Now try for a CONST of a MINUS like the above. */
3553 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3554 : lookup_as_function (folded_arg0, CONST))) != 0
3555 && GET_CODE (XEXP (y, 0)) == MINUS
3556 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3557 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3558 return XEXP (XEXP (y, 0), 0);
3559 }
3560
3561 /* Likewise if the operands are in the other order. */
3562 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3563 {
3564 rtx y
3565 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3566 : lookup_as_function (folded_arg1, MINUS);
3567
3568 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3569 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3570 return XEXP (y, 0);
3571
3572 /* Now try for a CONST of a MINUS like the above. */
3573 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3574 : lookup_as_function (folded_arg1, CONST))) != 0
3575 && GET_CODE (XEXP (y, 0)) == MINUS
3576 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3577 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3578 return XEXP (XEXP (y, 0), 0);
3579 }
3580
3581 /* If second operand is a register equivalent to a negative
3582 CONST_INT, see if we can find a register equivalent to the
3583 positive constant. Make a MINUS if so. Don't do this for
3584 a non-negative constant since we might then alternate between
3585 choosing positive and negative constants. Having the positive
3586 constant previously-used is the more common case. Be sure
3587 the resulting constant is non-negative; if const_arg1 were
3588 the smallest negative number this would overflow: depending
3589 on the mode, this would either just be the same value (and
3590 hence not save anything) or be incorrect. */
3591 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3592 && INTVAL (const_arg1) < 0
3593 /* This used to test
3594
3595 -INTVAL (const_arg1) >= 0
3596
3597 But The Sun V5.0 compilers mis-compiled that test. So
3598 instead we test for the problematic value in a more direct
3599 manner and hope the Sun compilers get it correct. */
3600 && INTVAL (const_arg1) !=
3601 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3602 && REG_P (folded_arg1))
3603 {
3604 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3605 struct table_elt *p
3606 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3607
3608 if (p)
3609 for (p = p->first_same_value; p; p = p->next_same_value)
3610 if (REG_P (p->exp))
3611 return simplify_gen_binary (MINUS, mode, folded_arg0,
3612 canon_reg (p->exp, NULL_RTX));
3613 }
3614 goto from_plus;
3615
3616 case MINUS:
3617 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3618 If so, produce (PLUS Z C2-C). */
3619 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3620 {
3621 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3622 if (y && CONST_INT_P (XEXP (y, 1)))
3623 return fold_rtx (plus_constant (copy_rtx (y),
3624 -INTVAL (const_arg1)),
3625 NULL_RTX);
3626 }
3627
3628 /* Fall through. */
3629
3630 from_plus:
3631 case SMIN: case SMAX: case UMIN: case UMAX:
3632 case IOR: case AND: case XOR:
3633 case MULT:
3634 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3635 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3636 is known to be of similar form, we may be able to replace the
3637 operation with a combined operation. This may eliminate the
3638 intermediate operation if every use is simplified in this way.
3639 Note that the similar optimization done by combine.c only works
3640 if the intermediate operation's result has only one reference. */
3641
3642 if (REG_P (folded_arg0)
3643 && const_arg1 && CONST_INT_P (const_arg1))
3644 {
3645 int is_shift
3646 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3647 rtx y, inner_const, new_const;
3648 rtx canon_const_arg1 = const_arg1;
3649 enum rtx_code associate_code;
3650
3651 if (is_shift
3652 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3653 || INTVAL (const_arg1) < 0))
3654 {
3655 if (SHIFT_COUNT_TRUNCATED)
3656 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3657 & (GET_MODE_BITSIZE (mode)
3658 - 1));
3659 else
3660 break;
3661 }
3662
3663 y = lookup_as_function (folded_arg0, code);
3664 if (y == 0)
3665 break;
3666
3667 /* If we have compiled a statement like
3668 "if (x == (x & mask1))", and now are looking at
3669 "x & mask2", we will have a case where the first operand
3670 of Y is the same as our first operand. Unless we detect
3671 this case, an infinite loop will result. */
3672 if (XEXP (y, 0) == folded_arg0)
3673 break;
3674
3675 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3676 if (!inner_const || !CONST_INT_P (inner_const))
3677 break;
3678
3679 /* Don't associate these operations if they are a PLUS with the
3680 same constant and it is a power of two. These might be doable
3681 with a pre- or post-increment. Similarly for two subtracts of
3682 identical powers of two with post decrement. */
3683
3684 if (code == PLUS && const_arg1 == inner_const
3685 && ((HAVE_PRE_INCREMENT
3686 && exact_log2 (INTVAL (const_arg1)) >= 0)
3687 || (HAVE_POST_INCREMENT
3688 && exact_log2 (INTVAL (const_arg1)) >= 0)
3689 || (HAVE_PRE_DECREMENT
3690 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3691 || (HAVE_POST_DECREMENT
3692 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3693 break;
3694
3695 /* ??? Vector mode shifts by scalar
3696 shift operand are not supported yet. */
3697 if (is_shift && VECTOR_MODE_P (mode))
3698 break;
3699
3700 if (is_shift
3701 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3702 || INTVAL (inner_const) < 0))
3703 {
3704 if (SHIFT_COUNT_TRUNCATED)
3705 inner_const = GEN_INT (INTVAL (inner_const)
3706 & (GET_MODE_BITSIZE (mode) - 1));
3707 else
3708 break;
3709 }
3710
3711 /* Compute the code used to compose the constants. For example,
3712 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3713
3714 associate_code = (is_shift || code == MINUS ? PLUS : code);
3715
3716 new_const = simplify_binary_operation (associate_code, mode,
3717 canon_const_arg1,
3718 inner_const);
3719
3720 if (new_const == 0)
3721 break;
3722
3723 /* If we are associating shift operations, don't let this
3724 produce a shift of the size of the object or larger.
3725 This could occur when we follow a sign-extend by a right
3726 shift on a machine that does a sign-extend as a pair
3727 of shifts. */
3728
3729 if (is_shift
3730 && CONST_INT_P (new_const)
3731 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3732 {
3733 /* As an exception, we can turn an ASHIFTRT of this
3734 form into a shift of the number of bits - 1. */
3735 if (code == ASHIFTRT)
3736 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3737 else if (!side_effects_p (XEXP (y, 0)))
3738 return CONST0_RTX (mode);
3739 else
3740 break;
3741 }
3742
3743 y = copy_rtx (XEXP (y, 0));
3744
3745 /* If Y contains our first operand (the most common way this
3746 can happen is if Y is a MEM), we would do into an infinite
3747 loop if we tried to fold it. So don't in that case. */
3748
3749 if (! reg_mentioned_p (folded_arg0, y))
3750 y = fold_rtx (y, insn);
3751
3752 return simplify_gen_binary (code, mode, y, new_const);
3753 }
3754 break;
3755
3756 case DIV: case UDIV:
3757 /* ??? The associative optimization performed immediately above is
3758 also possible for DIV and UDIV using associate_code of MULT.
3759 However, we would need extra code to verify that the
3760 multiplication does not overflow, that is, there is no overflow
3761 in the calculation of new_const. */
3762 break;
3763
3764 default:
3765 break;
3766 }
3767
3768 new_rtx = simplify_binary_operation (code, mode,
3769 const_arg0 ? const_arg0 : folded_arg0,
3770 const_arg1 ? const_arg1 : folded_arg1);
3771 break;
3772
3773 case RTX_OBJ:
3774 /* (lo_sum (high X) X) is simply X. */
3775 if (code == LO_SUM && const_arg0 != 0
3776 && GET_CODE (const_arg0) == HIGH
3777 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3778 return const_arg1;
3779 break;
3780
3781 case RTX_TERNARY:
3782 case RTX_BITFIELD_OPS:
3783 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3784 const_arg0 ? const_arg0 : folded_arg0,
3785 const_arg1 ? const_arg1 : folded_arg1,
3786 const_arg2 ? const_arg2 : XEXP (x, 2));
3787 break;
3788
3789 default:
3790 break;
3791 }
3792
3793 return new_rtx ? new_rtx : x;
3794 }
3795 \f
3796 /* Return a constant value currently equivalent to X.
3797 Return 0 if we don't know one. */
3798
3799 static rtx
3800 equiv_constant (rtx x)
3801 {
3802 if (REG_P (x)
3803 && REGNO_QTY_VALID_P (REGNO (x)))
3804 {
3805 int x_q = REG_QTY (REGNO (x));
3806 struct qty_table_elem *x_ent = &qty_table[x_q];
3807
3808 if (x_ent->const_rtx)
3809 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3810 }
3811
3812 if (x == 0 || CONSTANT_P (x))
3813 return x;
3814
3815 if (GET_CODE (x) == SUBREG)
3816 {
3817 enum machine_mode mode = GET_MODE (x);
3818 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3819 rtx new_rtx;
3820
3821 /* See if we previously assigned a constant value to this SUBREG. */
3822 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3823 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3824 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3825 return new_rtx;
3826
3827 /* If we didn't and if doing so makes sense, see if we previously
3828 assigned a constant value to the enclosing word mode SUBREG. */
3829 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3830 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3831 {
3832 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3833 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3834 {
3835 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3836 new_rtx = lookup_as_function (y, CONST_INT);
3837 if (new_rtx)
3838 return gen_lowpart (mode, new_rtx);
3839 }
3840 }
3841
3842 /* Otherwise see if we already have a constant for the inner REG. */
3843 if (REG_P (SUBREG_REG (x))
3844 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3845 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3846
3847 return 0;
3848 }
3849
3850 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3851 the hash table in case its value was seen before. */
3852
3853 if (MEM_P (x))
3854 {
3855 struct table_elt *elt;
3856
3857 x = avoid_constant_pool_reference (x);
3858 if (CONSTANT_P (x))
3859 return x;
3860
3861 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3862 if (elt == 0)
3863 return 0;
3864
3865 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3866 if (elt->is_const && CONSTANT_P (elt->exp))
3867 return elt->exp;
3868 }
3869
3870 return 0;
3871 }
3872 \f
3873 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3874 "taken" branch.
3875
3876 In certain cases, this can cause us to add an equivalence. For example,
3877 if we are following the taken case of
3878 if (i == 2)
3879 we can add the fact that `i' and '2' are now equivalent.
3880
3881 In any case, we can record that this comparison was passed. If the same
3882 comparison is seen later, we will know its value. */
3883
3884 static void
3885 record_jump_equiv (rtx insn, bool taken)
3886 {
3887 int cond_known_true;
3888 rtx op0, op1;
3889 rtx set;
3890 enum machine_mode mode, mode0, mode1;
3891 int reversed_nonequality = 0;
3892 enum rtx_code code;
3893
3894 /* Ensure this is the right kind of insn. */
3895 gcc_assert (any_condjump_p (insn));
3896
3897 set = pc_set (insn);
3898
3899 /* See if this jump condition is known true or false. */
3900 if (taken)
3901 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3902 else
3903 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3904
3905 /* Get the type of comparison being done and the operands being compared.
3906 If we had to reverse a non-equality condition, record that fact so we
3907 know that it isn't valid for floating-point. */
3908 code = GET_CODE (XEXP (SET_SRC (set), 0));
3909 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3910 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3911
3912 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3913 if (! cond_known_true)
3914 {
3915 code = reversed_comparison_code_parts (code, op0, op1, insn);
3916
3917 /* Don't remember if we can't find the inverse. */
3918 if (code == UNKNOWN)
3919 return;
3920 }
3921
3922 /* The mode is the mode of the non-constant. */
3923 mode = mode0;
3924 if (mode1 != VOIDmode)
3925 mode = mode1;
3926
3927 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3928 }
3929
3930 /* Yet another form of subreg creation. In this case, we want something in
3931 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3932
3933 static rtx
3934 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3935 {
3936 enum machine_mode op_mode = GET_MODE (op);
3937 if (op_mode == mode || op_mode == VOIDmode)
3938 return op;
3939 return lowpart_subreg (mode, op, op_mode);
3940 }
3941
3942 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3943 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3944 Make any useful entries we can with that information. Called from
3945 above function and called recursively. */
3946
3947 static void
3948 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3949 rtx op1, int reversed_nonequality)
3950 {
3951 unsigned op0_hash, op1_hash;
3952 int op0_in_memory, op1_in_memory;
3953 struct table_elt *op0_elt, *op1_elt;
3954
3955 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3956 we know that they are also equal in the smaller mode (this is also
3957 true for all smaller modes whether or not there is a SUBREG, but
3958 is not worth testing for with no SUBREG). */
3959
3960 /* Note that GET_MODE (op0) may not equal MODE. */
3961 if (code == EQ && GET_CODE (op0) == SUBREG
3962 && (GET_MODE_SIZE (GET_MODE (op0))
3963 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3964 {
3965 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3966 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3967 if (tem)
3968 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3969 reversed_nonequality);
3970 }
3971
3972 if (code == EQ && GET_CODE (op1) == SUBREG
3973 && (GET_MODE_SIZE (GET_MODE (op1))
3974 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3975 {
3976 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3977 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3978 if (tem)
3979 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3980 reversed_nonequality);
3981 }
3982
3983 /* Similarly, if this is an NE comparison, and either is a SUBREG
3984 making a smaller mode, we know the whole thing is also NE. */
3985
3986 /* Note that GET_MODE (op0) may not equal MODE;
3987 if we test MODE instead, we can get an infinite recursion
3988 alternating between two modes each wider than MODE. */
3989
3990 if (code == NE && GET_CODE (op0) == SUBREG
3991 && subreg_lowpart_p (op0)
3992 && (GET_MODE_SIZE (GET_MODE (op0))
3993 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3994 {
3995 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3996 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3997 if (tem)
3998 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3999 reversed_nonequality);
4000 }
4001
4002 if (code == NE && GET_CODE (op1) == SUBREG
4003 && subreg_lowpart_p (op1)
4004 && (GET_MODE_SIZE (GET_MODE (op1))
4005 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4006 {
4007 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4008 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4009 if (tem)
4010 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4011 reversed_nonequality);
4012 }
4013
4014 /* Hash both operands. */
4015
4016 do_not_record = 0;
4017 hash_arg_in_memory = 0;
4018 op0_hash = HASH (op0, mode);
4019 op0_in_memory = hash_arg_in_memory;
4020
4021 if (do_not_record)
4022 return;
4023
4024 do_not_record = 0;
4025 hash_arg_in_memory = 0;
4026 op1_hash = HASH (op1, mode);
4027 op1_in_memory = hash_arg_in_memory;
4028
4029 if (do_not_record)
4030 return;
4031
4032 /* Look up both operands. */
4033 op0_elt = lookup (op0, op0_hash, mode);
4034 op1_elt = lookup (op1, op1_hash, mode);
4035
4036 /* If both operands are already equivalent or if they are not in the
4037 table but are identical, do nothing. */
4038 if ((op0_elt != 0 && op1_elt != 0
4039 && op0_elt->first_same_value == op1_elt->first_same_value)
4040 || op0 == op1 || rtx_equal_p (op0, op1))
4041 return;
4042
4043 /* If we aren't setting two things equal all we can do is save this
4044 comparison. Similarly if this is floating-point. In the latter
4045 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4046 If we record the equality, we might inadvertently delete code
4047 whose intent was to change -0 to +0. */
4048
4049 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4050 {
4051 struct qty_table_elem *ent;
4052 int qty;
4053
4054 /* If we reversed a floating-point comparison, if OP0 is not a
4055 register, or if OP1 is neither a register or constant, we can't
4056 do anything. */
4057
4058 if (!REG_P (op1))
4059 op1 = equiv_constant (op1);
4060
4061 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4062 || !REG_P (op0) || op1 == 0)
4063 return;
4064
4065 /* Put OP0 in the hash table if it isn't already. This gives it a
4066 new quantity number. */
4067 if (op0_elt == 0)
4068 {
4069 if (insert_regs (op0, NULL, 0))
4070 {
4071 rehash_using_reg (op0);
4072 op0_hash = HASH (op0, mode);
4073
4074 /* If OP0 is contained in OP1, this changes its hash code
4075 as well. Faster to rehash than to check, except
4076 for the simple case of a constant. */
4077 if (! CONSTANT_P (op1))
4078 op1_hash = HASH (op1,mode);
4079 }
4080
4081 op0_elt = insert (op0, NULL, op0_hash, mode);
4082 op0_elt->in_memory = op0_in_memory;
4083 }
4084
4085 qty = REG_QTY (REGNO (op0));
4086 ent = &qty_table[qty];
4087
4088 ent->comparison_code = code;
4089 if (REG_P (op1))
4090 {
4091 /* Look it up again--in case op0 and op1 are the same. */
4092 op1_elt = lookup (op1, op1_hash, mode);
4093
4094 /* Put OP1 in the hash table so it gets a new quantity number. */
4095 if (op1_elt == 0)
4096 {
4097 if (insert_regs (op1, NULL, 0))
4098 {
4099 rehash_using_reg (op1);
4100 op1_hash = HASH (op1, mode);
4101 }
4102
4103 op1_elt = insert (op1, NULL, op1_hash, mode);
4104 op1_elt->in_memory = op1_in_memory;
4105 }
4106
4107 ent->comparison_const = NULL_RTX;
4108 ent->comparison_qty = REG_QTY (REGNO (op1));
4109 }
4110 else
4111 {
4112 ent->comparison_const = op1;
4113 ent->comparison_qty = -1;
4114 }
4115
4116 return;
4117 }
4118
4119 /* If either side is still missing an equivalence, make it now,
4120 then merge the equivalences. */
4121
4122 if (op0_elt == 0)
4123 {
4124 if (insert_regs (op0, NULL, 0))
4125 {
4126 rehash_using_reg (op0);
4127 op0_hash = HASH (op0, mode);
4128 }
4129
4130 op0_elt = insert (op0, NULL, op0_hash, mode);
4131 op0_elt->in_memory = op0_in_memory;
4132 }
4133
4134 if (op1_elt == 0)
4135 {
4136 if (insert_regs (op1, NULL, 0))
4137 {
4138 rehash_using_reg (op1);
4139 op1_hash = HASH (op1, mode);
4140 }
4141
4142 op1_elt = insert (op1, NULL, op1_hash, mode);
4143 op1_elt->in_memory = op1_in_memory;
4144 }
4145
4146 merge_equiv_classes (op0_elt, op1_elt);
4147 }
4148 \f
4149 /* CSE processing for one instruction.
4150 First simplify sources and addresses of all assignments
4151 in the instruction, using previously-computed equivalents values.
4152 Then install the new sources and destinations in the table
4153 of available values. */
4154
4155 /* Data on one SET contained in the instruction. */
4156
4157 struct set
4158 {
4159 /* The SET rtx itself. */
4160 rtx rtl;
4161 /* The SET_SRC of the rtx (the original value, if it is changing). */
4162 rtx src;
4163 /* The hash-table element for the SET_SRC of the SET. */
4164 struct table_elt *src_elt;
4165 /* Hash value for the SET_SRC. */
4166 unsigned src_hash;
4167 /* Hash value for the SET_DEST. */
4168 unsigned dest_hash;
4169 /* The SET_DEST, with SUBREG, etc., stripped. */
4170 rtx inner_dest;
4171 /* Nonzero if the SET_SRC is in memory. */
4172 char src_in_memory;
4173 /* Nonzero if the SET_SRC contains something
4174 whose value cannot be predicted and understood. */
4175 char src_volatile;
4176 /* Original machine mode, in case it becomes a CONST_INT.
4177 The size of this field should match the size of the mode
4178 field of struct rtx_def (see rtl.h). */
4179 ENUM_BITFIELD(machine_mode) mode : 8;
4180 /* A constant equivalent for SET_SRC, if any. */
4181 rtx src_const;
4182 /* Hash value of constant equivalent for SET_SRC. */
4183 unsigned src_const_hash;
4184 /* Table entry for constant equivalent for SET_SRC, if any. */
4185 struct table_elt *src_const_elt;
4186 /* Table entry for the destination address. */
4187 struct table_elt *dest_addr_elt;
4188 };
4189
4190 static void
4191 cse_insn (rtx insn)
4192 {
4193 rtx x = PATTERN (insn);
4194 int i;
4195 rtx tem;
4196 int n_sets = 0;
4197
4198 rtx src_eqv = 0;
4199 struct table_elt *src_eqv_elt = 0;
4200 int src_eqv_volatile = 0;
4201 int src_eqv_in_memory = 0;
4202 unsigned src_eqv_hash = 0;
4203
4204 struct set *sets = (struct set *) 0;
4205
4206 this_insn = insn;
4207 #ifdef HAVE_cc0
4208 /* Records what this insn does to set CC0. */
4209 this_insn_cc0 = 0;
4210 this_insn_cc0_mode = VOIDmode;
4211 #endif
4212
4213 /* Find all the SETs and CLOBBERs in this instruction.
4214 Record all the SETs in the array `set' and count them.
4215 Also determine whether there is a CLOBBER that invalidates
4216 all memory references, or all references at varying addresses. */
4217
4218 if (CALL_P (insn))
4219 {
4220 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4221 {
4222 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4223 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4224 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4225 }
4226 }
4227
4228 if (GET_CODE (x) == SET)
4229 {
4230 sets = XALLOCA (struct set);
4231 sets[0].rtl = x;
4232
4233 /* Ignore SETs that are unconditional jumps.
4234 They never need cse processing, so this does not hurt.
4235 The reason is not efficiency but rather
4236 so that we can test at the end for instructions
4237 that have been simplified to unconditional jumps
4238 and not be misled by unchanged instructions
4239 that were unconditional jumps to begin with. */
4240 if (SET_DEST (x) == pc_rtx
4241 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4242 ;
4243
4244 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4245 The hard function value register is used only once, to copy to
4246 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4247 Ensure we invalidate the destination register. On the 80386 no
4248 other code would invalidate it since it is a fixed_reg.
4249 We need not check the return of apply_change_group; see canon_reg. */
4250
4251 else if (GET_CODE (SET_SRC (x)) == CALL)
4252 {
4253 canon_reg (SET_SRC (x), insn);
4254 apply_change_group ();
4255 fold_rtx (SET_SRC (x), insn);
4256 invalidate (SET_DEST (x), VOIDmode);
4257 }
4258 else
4259 n_sets = 1;
4260 }
4261 else if (GET_CODE (x) == PARALLEL)
4262 {
4263 int lim = XVECLEN (x, 0);
4264
4265 sets = XALLOCAVEC (struct set, lim);
4266
4267 /* Find all regs explicitly clobbered in this insn,
4268 and ensure they are not replaced with any other regs
4269 elsewhere in this insn.
4270 When a reg that is clobbered is also used for input,
4271 we should presume that that is for a reason,
4272 and we should not substitute some other register
4273 which is not supposed to be clobbered.
4274 Therefore, this loop cannot be merged into the one below
4275 because a CALL may precede a CLOBBER and refer to the
4276 value clobbered. We must not let a canonicalization do
4277 anything in that case. */
4278 for (i = 0; i < lim; i++)
4279 {
4280 rtx y = XVECEXP (x, 0, i);
4281 if (GET_CODE (y) == CLOBBER)
4282 {
4283 rtx clobbered = XEXP (y, 0);
4284
4285 if (REG_P (clobbered)
4286 || GET_CODE (clobbered) == SUBREG)
4287 invalidate (clobbered, VOIDmode);
4288 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4289 || GET_CODE (clobbered) == ZERO_EXTRACT)
4290 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4291 }
4292 }
4293
4294 for (i = 0; i < lim; i++)
4295 {
4296 rtx y = XVECEXP (x, 0, i);
4297 if (GET_CODE (y) == SET)
4298 {
4299 /* As above, we ignore unconditional jumps and call-insns and
4300 ignore the result of apply_change_group. */
4301 if (GET_CODE (SET_SRC (y)) == CALL)
4302 {
4303 canon_reg (SET_SRC (y), insn);
4304 apply_change_group ();
4305 fold_rtx (SET_SRC (y), insn);
4306 invalidate (SET_DEST (y), VOIDmode);
4307 }
4308 else if (SET_DEST (y) == pc_rtx
4309 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4310 ;
4311 else
4312 sets[n_sets++].rtl = y;
4313 }
4314 else if (GET_CODE (y) == CLOBBER)
4315 {
4316 /* If we clobber memory, canon the address.
4317 This does nothing when a register is clobbered
4318 because we have already invalidated the reg. */
4319 if (MEM_P (XEXP (y, 0)))
4320 canon_reg (XEXP (y, 0), insn);
4321 }
4322 else if (GET_CODE (y) == USE
4323 && ! (REG_P (XEXP (y, 0))
4324 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4325 canon_reg (y, insn);
4326 else if (GET_CODE (y) == CALL)
4327 {
4328 /* The result of apply_change_group can be ignored; see
4329 canon_reg. */
4330 canon_reg (y, insn);
4331 apply_change_group ();
4332 fold_rtx (y, insn);
4333 }
4334 }
4335 }
4336 else if (GET_CODE (x) == CLOBBER)
4337 {
4338 if (MEM_P (XEXP (x, 0)))
4339 canon_reg (XEXP (x, 0), insn);
4340 }
4341 /* Canonicalize a USE of a pseudo register or memory location. */
4342 else if (GET_CODE (x) == USE
4343 && ! (REG_P (XEXP (x, 0))
4344 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4345 canon_reg (x, insn);
4346 else if (GET_CODE (x) == ASM_OPERANDS)
4347 {
4348 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4349 {
4350 rtx input = ASM_OPERANDS_INPUT (x, i);
4351 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4352 {
4353 input = canon_reg (input, insn);
4354 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4355 }
4356 }
4357 }
4358 else if (GET_CODE (x) == CALL)
4359 {
4360 /* The result of apply_change_group can be ignored; see canon_reg. */
4361 canon_reg (x, insn);
4362 apply_change_group ();
4363 fold_rtx (x, insn);
4364 }
4365 else if (DEBUG_INSN_P (insn))
4366 canon_reg (PATTERN (insn), insn);
4367
4368 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4369 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4370 is handled specially for this case, and if it isn't set, then there will
4371 be no equivalence for the destination. */
4372 if (n_sets == 1 && REG_NOTES (insn) != 0
4373 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4374 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4375 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4376 {
4377 /* The result of apply_change_group can be ignored; see canon_reg. */
4378 canon_reg (XEXP (tem, 0), insn);
4379 apply_change_group ();
4380 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4381 XEXP (tem, 0) = copy_rtx (src_eqv);
4382 df_notes_rescan (insn);
4383 }
4384
4385 /* Canonicalize sources and addresses of destinations.
4386 We do this in a separate pass to avoid problems when a MATCH_DUP is
4387 present in the insn pattern. In that case, we want to ensure that
4388 we don't break the duplicate nature of the pattern. So we will replace
4389 both operands at the same time. Otherwise, we would fail to find an
4390 equivalent substitution in the loop calling validate_change below.
4391
4392 We used to suppress canonicalization of DEST if it appears in SRC,
4393 but we don't do this any more. */
4394
4395 for (i = 0; i < n_sets; i++)
4396 {
4397 rtx dest = SET_DEST (sets[i].rtl);
4398 rtx src = SET_SRC (sets[i].rtl);
4399 rtx new_rtx = canon_reg (src, insn);
4400
4401 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4402
4403 if (GET_CODE (dest) == ZERO_EXTRACT)
4404 {
4405 validate_change (insn, &XEXP (dest, 1),
4406 canon_reg (XEXP (dest, 1), insn), 1);
4407 validate_change (insn, &XEXP (dest, 2),
4408 canon_reg (XEXP (dest, 2), insn), 1);
4409 }
4410
4411 while (GET_CODE (dest) == SUBREG
4412 || GET_CODE (dest) == ZERO_EXTRACT
4413 || GET_CODE (dest) == STRICT_LOW_PART)
4414 dest = XEXP (dest, 0);
4415
4416 if (MEM_P (dest))
4417 canon_reg (dest, insn);
4418 }
4419
4420 /* Now that we have done all the replacements, we can apply the change
4421 group and see if they all work. Note that this will cause some
4422 canonicalizations that would have worked individually not to be applied
4423 because some other canonicalization didn't work, but this should not
4424 occur often.
4425
4426 The result of apply_change_group can be ignored; see canon_reg. */
4427
4428 apply_change_group ();
4429
4430 /* Set sets[i].src_elt to the class each source belongs to.
4431 Detect assignments from or to volatile things
4432 and set set[i] to zero so they will be ignored
4433 in the rest of this function.
4434
4435 Nothing in this loop changes the hash table or the register chains. */
4436
4437 for (i = 0; i < n_sets; i++)
4438 {
4439 bool repeat = false;
4440 rtx src, dest;
4441 rtx src_folded;
4442 struct table_elt *elt = 0, *p;
4443 enum machine_mode mode;
4444 rtx src_eqv_here;
4445 rtx src_const = 0;
4446 rtx src_related = 0;
4447 bool src_related_is_const_anchor = false;
4448 struct table_elt *src_const_elt = 0;
4449 int src_cost = MAX_COST;
4450 int src_eqv_cost = MAX_COST;
4451 int src_folded_cost = MAX_COST;
4452 int src_related_cost = MAX_COST;
4453 int src_elt_cost = MAX_COST;
4454 int src_regcost = MAX_COST;
4455 int src_eqv_regcost = MAX_COST;
4456 int src_folded_regcost = MAX_COST;
4457 int src_related_regcost = MAX_COST;
4458 int src_elt_regcost = MAX_COST;
4459 /* Set nonzero if we need to call force_const_mem on with the
4460 contents of src_folded before using it. */
4461 int src_folded_force_flag = 0;
4462
4463 dest = SET_DEST (sets[i].rtl);
4464 src = SET_SRC (sets[i].rtl);
4465
4466 /* If SRC is a constant that has no machine mode,
4467 hash it with the destination's machine mode.
4468 This way we can keep different modes separate. */
4469
4470 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4471 sets[i].mode = mode;
4472
4473 if (src_eqv)
4474 {
4475 enum machine_mode eqvmode = mode;
4476 if (GET_CODE (dest) == STRICT_LOW_PART)
4477 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4478 do_not_record = 0;
4479 hash_arg_in_memory = 0;
4480 src_eqv_hash = HASH (src_eqv, eqvmode);
4481
4482 /* Find the equivalence class for the equivalent expression. */
4483
4484 if (!do_not_record)
4485 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4486
4487 src_eqv_volatile = do_not_record;
4488 src_eqv_in_memory = hash_arg_in_memory;
4489 }
4490
4491 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4492 value of the INNER register, not the destination. So it is not
4493 a valid substitution for the source. But save it for later. */
4494 if (GET_CODE (dest) == STRICT_LOW_PART)
4495 src_eqv_here = 0;
4496 else
4497 src_eqv_here = src_eqv;
4498
4499 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4500 simplified result, which may not necessarily be valid. */
4501 src_folded = fold_rtx (src, insn);
4502
4503 #if 0
4504 /* ??? This caused bad code to be generated for the m68k port with -O2.
4505 Suppose src is (CONST_INT -1), and that after truncation src_folded
4506 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4507 At the end we will add src and src_const to the same equivalence
4508 class. We now have 3 and -1 on the same equivalence class. This
4509 causes later instructions to be mis-optimized. */
4510 /* If storing a constant in a bitfield, pre-truncate the constant
4511 so we will be able to record it later. */
4512 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4513 {
4514 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4515
4516 if (CONST_INT_P (src)
4517 && CONST_INT_P (width)
4518 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4519 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4520 src_folded
4521 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4522 << INTVAL (width)) - 1));
4523 }
4524 #endif
4525
4526 /* Compute SRC's hash code, and also notice if it
4527 should not be recorded at all. In that case,
4528 prevent any further processing of this assignment. */
4529 do_not_record = 0;
4530 hash_arg_in_memory = 0;
4531
4532 sets[i].src = src;
4533 sets[i].src_hash = HASH (src, mode);
4534 sets[i].src_volatile = do_not_record;
4535 sets[i].src_in_memory = hash_arg_in_memory;
4536
4537 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4538 a pseudo, do not record SRC. Using SRC as a replacement for
4539 anything else will be incorrect in that situation. Note that
4540 this usually occurs only for stack slots, in which case all the
4541 RTL would be referring to SRC, so we don't lose any optimization
4542 opportunities by not having SRC in the hash table. */
4543
4544 if (MEM_P (src)
4545 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4546 && REG_P (dest)
4547 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4548 sets[i].src_volatile = 1;
4549
4550 #if 0
4551 /* It is no longer clear why we used to do this, but it doesn't
4552 appear to still be needed. So let's try without it since this
4553 code hurts cse'ing widened ops. */
4554 /* If source is a paradoxical subreg (such as QI treated as an SI),
4555 treat it as volatile. It may do the work of an SI in one context
4556 where the extra bits are not being used, but cannot replace an SI
4557 in general. */
4558 if (GET_CODE (src) == SUBREG
4559 && (GET_MODE_SIZE (GET_MODE (src))
4560 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4561 sets[i].src_volatile = 1;
4562 #endif
4563
4564 /* Locate all possible equivalent forms for SRC. Try to replace
4565 SRC in the insn with each cheaper equivalent.
4566
4567 We have the following types of equivalents: SRC itself, a folded
4568 version, a value given in a REG_EQUAL note, or a value related
4569 to a constant.
4570
4571 Each of these equivalents may be part of an additional class
4572 of equivalents (if more than one is in the table, they must be in
4573 the same class; we check for this).
4574
4575 If the source is volatile, we don't do any table lookups.
4576
4577 We note any constant equivalent for possible later use in a
4578 REG_NOTE. */
4579
4580 if (!sets[i].src_volatile)
4581 elt = lookup (src, sets[i].src_hash, mode);
4582
4583 sets[i].src_elt = elt;
4584
4585 if (elt && src_eqv_here && src_eqv_elt)
4586 {
4587 if (elt->first_same_value != src_eqv_elt->first_same_value)
4588 {
4589 /* The REG_EQUAL is indicating that two formerly distinct
4590 classes are now equivalent. So merge them. */
4591 merge_equiv_classes (elt, src_eqv_elt);
4592 src_eqv_hash = HASH (src_eqv, elt->mode);
4593 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4594 }
4595
4596 src_eqv_here = 0;
4597 }
4598
4599 else if (src_eqv_elt)
4600 elt = src_eqv_elt;
4601
4602 /* Try to find a constant somewhere and record it in `src_const'.
4603 Record its table element, if any, in `src_const_elt'. Look in
4604 any known equivalences first. (If the constant is not in the
4605 table, also set `sets[i].src_const_hash'). */
4606 if (elt)
4607 for (p = elt->first_same_value; p; p = p->next_same_value)
4608 if (p->is_const)
4609 {
4610 src_const = p->exp;
4611 src_const_elt = elt;
4612 break;
4613 }
4614
4615 if (src_const == 0
4616 && (CONSTANT_P (src_folded)
4617 /* Consider (minus (label_ref L1) (label_ref L2)) as
4618 "constant" here so we will record it. This allows us
4619 to fold switch statements when an ADDR_DIFF_VEC is used. */
4620 || (GET_CODE (src_folded) == MINUS
4621 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4622 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4623 src_const = src_folded, src_const_elt = elt;
4624 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4625 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4626
4627 /* If we don't know if the constant is in the table, get its
4628 hash code and look it up. */
4629 if (src_const && src_const_elt == 0)
4630 {
4631 sets[i].src_const_hash = HASH (src_const, mode);
4632 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4633 }
4634
4635 sets[i].src_const = src_const;
4636 sets[i].src_const_elt = src_const_elt;
4637
4638 /* If the constant and our source are both in the table, mark them as
4639 equivalent. Otherwise, if a constant is in the table but the source
4640 isn't, set ELT to it. */
4641 if (src_const_elt && elt
4642 && src_const_elt->first_same_value != elt->first_same_value)
4643 merge_equiv_classes (elt, src_const_elt);
4644 else if (src_const_elt && elt == 0)
4645 elt = src_const_elt;
4646
4647 /* See if there is a register linearly related to a constant
4648 equivalent of SRC. */
4649 if (src_const
4650 && (GET_CODE (src_const) == CONST
4651 || (src_const_elt && src_const_elt->related_value != 0)))
4652 {
4653 src_related = use_related_value (src_const, src_const_elt);
4654 if (src_related)
4655 {
4656 struct table_elt *src_related_elt
4657 = lookup (src_related, HASH (src_related, mode), mode);
4658 if (src_related_elt && elt)
4659 {
4660 if (elt->first_same_value
4661 != src_related_elt->first_same_value)
4662 /* This can occur when we previously saw a CONST
4663 involving a SYMBOL_REF and then see the SYMBOL_REF
4664 twice. Merge the involved classes. */
4665 merge_equiv_classes (elt, src_related_elt);
4666
4667 src_related = 0;
4668 src_related_elt = 0;
4669 }
4670 else if (src_related_elt && elt == 0)
4671 elt = src_related_elt;
4672 }
4673 }
4674
4675 /* See if we have a CONST_INT that is already in a register in a
4676 wider mode. */
4677
4678 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4679 && GET_MODE_CLASS (mode) == MODE_INT
4680 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4681 {
4682 enum machine_mode wider_mode;
4683
4684 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4685 wider_mode != VOIDmode
4686 && GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4687 && src_related == 0;
4688 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4689 {
4690 struct table_elt *const_elt
4691 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4692
4693 if (const_elt == 0)
4694 continue;
4695
4696 for (const_elt = const_elt->first_same_value;
4697 const_elt; const_elt = const_elt->next_same_value)
4698 if (REG_P (const_elt->exp))
4699 {
4700 src_related = gen_lowpart (mode, const_elt->exp);
4701 break;
4702 }
4703 }
4704 }
4705
4706 /* Another possibility is that we have an AND with a constant in
4707 a mode narrower than a word. If so, it might have been generated
4708 as part of an "if" which would narrow the AND. If we already
4709 have done the AND in a wider mode, we can use a SUBREG of that
4710 value. */
4711
4712 if (flag_expensive_optimizations && ! src_related
4713 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4714 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4715 {
4716 enum machine_mode tmode;
4717 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4718
4719 for (tmode = GET_MODE_WIDER_MODE (mode);
4720 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4721 tmode = GET_MODE_WIDER_MODE (tmode))
4722 {
4723 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4724 struct table_elt *larger_elt;
4725
4726 if (inner)
4727 {
4728 PUT_MODE (new_and, tmode);
4729 XEXP (new_and, 0) = inner;
4730 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4731 if (larger_elt == 0)
4732 continue;
4733
4734 for (larger_elt = larger_elt->first_same_value;
4735 larger_elt; larger_elt = larger_elt->next_same_value)
4736 if (REG_P (larger_elt->exp))
4737 {
4738 src_related
4739 = gen_lowpart (mode, larger_elt->exp);
4740 break;
4741 }
4742
4743 if (src_related)
4744 break;
4745 }
4746 }
4747 }
4748
4749 #ifdef LOAD_EXTEND_OP
4750 /* See if a MEM has already been loaded with a widening operation;
4751 if it has, we can use a subreg of that. Many CISC machines
4752 also have such operations, but this is only likely to be
4753 beneficial on these machines. */
4754
4755 if (flag_expensive_optimizations && src_related == 0
4756 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4757 && GET_MODE_CLASS (mode) == MODE_INT
4758 && MEM_P (src) && ! do_not_record
4759 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4760 {
4761 struct rtx_def memory_extend_buf;
4762 rtx memory_extend_rtx = &memory_extend_buf;
4763 enum machine_mode tmode;
4764
4765 /* Set what we are trying to extend and the operation it might
4766 have been extended with. */
4767 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4768 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4769 XEXP (memory_extend_rtx, 0) = src;
4770
4771 for (tmode = GET_MODE_WIDER_MODE (mode);
4772 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4773 tmode = GET_MODE_WIDER_MODE (tmode))
4774 {
4775 struct table_elt *larger_elt;
4776
4777 PUT_MODE (memory_extend_rtx, tmode);
4778 larger_elt = lookup (memory_extend_rtx,
4779 HASH (memory_extend_rtx, tmode), tmode);
4780 if (larger_elt == 0)
4781 continue;
4782
4783 for (larger_elt = larger_elt->first_same_value;
4784 larger_elt; larger_elt = larger_elt->next_same_value)
4785 if (REG_P (larger_elt->exp))
4786 {
4787 src_related = gen_lowpart (mode, larger_elt->exp);
4788 break;
4789 }
4790
4791 if (src_related)
4792 break;
4793 }
4794 }
4795 #endif /* LOAD_EXTEND_OP */
4796
4797 /* Try to express the constant using a register+offset expression
4798 derived from a constant anchor. */
4799
4800 if (targetm.const_anchor
4801 && !src_related
4802 && src_const
4803 && GET_CODE (src_const) == CONST_INT)
4804 {
4805 src_related = try_const_anchors (src_const, mode);
4806 src_related_is_const_anchor = src_related != NULL_RTX;
4807 }
4808
4809
4810 if (src == src_folded)
4811 src_folded = 0;
4812
4813 /* At this point, ELT, if nonzero, points to a class of expressions
4814 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4815 and SRC_RELATED, if nonzero, each contain additional equivalent
4816 expressions. Prune these latter expressions by deleting expressions
4817 already in the equivalence class.
4818
4819 Check for an equivalent identical to the destination. If found,
4820 this is the preferred equivalent since it will likely lead to
4821 elimination of the insn. Indicate this by placing it in
4822 `src_related'. */
4823
4824 if (elt)
4825 elt = elt->first_same_value;
4826 for (p = elt; p; p = p->next_same_value)
4827 {
4828 enum rtx_code code = GET_CODE (p->exp);
4829
4830 /* If the expression is not valid, ignore it. Then we do not
4831 have to check for validity below. In most cases, we can use
4832 `rtx_equal_p', since canonicalization has already been done. */
4833 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4834 continue;
4835
4836 /* Also skip paradoxical subregs, unless that's what we're
4837 looking for. */
4838 if (code == SUBREG
4839 && (GET_MODE_SIZE (GET_MODE (p->exp))
4840 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4841 && ! (src != 0
4842 && GET_CODE (src) == SUBREG
4843 && GET_MODE (src) == GET_MODE (p->exp)
4844 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4845 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4846 continue;
4847
4848 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4849 src = 0;
4850 else if (src_folded && GET_CODE (src_folded) == code
4851 && rtx_equal_p (src_folded, p->exp))
4852 src_folded = 0;
4853 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4854 && rtx_equal_p (src_eqv_here, p->exp))
4855 src_eqv_here = 0;
4856 else if (src_related && GET_CODE (src_related) == code
4857 && rtx_equal_p (src_related, p->exp))
4858 src_related = 0;
4859
4860 /* This is the same as the destination of the insns, we want
4861 to prefer it. Copy it to src_related. The code below will
4862 then give it a negative cost. */
4863 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4864 src_related = dest;
4865 }
4866
4867 /* Find the cheapest valid equivalent, trying all the available
4868 possibilities. Prefer items not in the hash table to ones
4869 that are when they are equal cost. Note that we can never
4870 worsen an insn as the current contents will also succeed.
4871 If we find an equivalent identical to the destination, use it as best,
4872 since this insn will probably be eliminated in that case. */
4873 if (src)
4874 {
4875 if (rtx_equal_p (src, dest))
4876 src_cost = src_regcost = -1;
4877 else
4878 {
4879 src_cost = COST (src);
4880 src_regcost = approx_reg_cost (src);
4881 }
4882 }
4883
4884 if (src_eqv_here)
4885 {
4886 if (rtx_equal_p (src_eqv_here, dest))
4887 src_eqv_cost = src_eqv_regcost = -1;
4888 else
4889 {
4890 src_eqv_cost = COST (src_eqv_here);
4891 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4892 }
4893 }
4894
4895 if (src_folded)
4896 {
4897 if (rtx_equal_p (src_folded, dest))
4898 src_folded_cost = src_folded_regcost = -1;
4899 else
4900 {
4901 src_folded_cost = COST (src_folded);
4902 src_folded_regcost = approx_reg_cost (src_folded);
4903 }
4904 }
4905
4906 if (src_related)
4907 {
4908 if (rtx_equal_p (src_related, dest))
4909 src_related_cost = src_related_regcost = -1;
4910 else
4911 {
4912 src_related_cost = COST (src_related);
4913 src_related_regcost = approx_reg_cost (src_related);
4914
4915 /* If a const-anchor is used to synthesize a constant that
4916 normally requires multiple instructions then slightly prefer
4917 it over the original sequence. These instructions are likely
4918 to become redundant now. We can't compare against the cost
4919 of src_eqv_here because, on MIPS for example, multi-insn
4920 constants have zero cost; they are assumed to be hoisted from
4921 loops. */
4922 if (src_related_is_const_anchor
4923 && src_related_cost == src_cost
4924 && src_eqv_here)
4925 src_related_cost--;
4926 }
4927 }
4928
4929 /* If this was an indirect jump insn, a known label will really be
4930 cheaper even though it looks more expensive. */
4931 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4932 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4933
4934 /* Terminate loop when replacement made. This must terminate since
4935 the current contents will be tested and will always be valid. */
4936 while (1)
4937 {
4938 rtx trial;
4939
4940 /* Skip invalid entries. */
4941 while (elt && !REG_P (elt->exp)
4942 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4943 elt = elt->next_same_value;
4944
4945 /* A paradoxical subreg would be bad here: it'll be the right
4946 size, but later may be adjusted so that the upper bits aren't
4947 what we want. So reject it. */
4948 if (elt != 0
4949 && GET_CODE (elt->exp) == SUBREG
4950 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4951 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4952 /* It is okay, though, if the rtx we're trying to match
4953 will ignore any of the bits we can't predict. */
4954 && ! (src != 0
4955 && GET_CODE (src) == SUBREG
4956 && GET_MODE (src) == GET_MODE (elt->exp)
4957 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4958 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4959 {
4960 elt = elt->next_same_value;
4961 continue;
4962 }
4963
4964 if (elt)
4965 {
4966 src_elt_cost = elt->cost;
4967 src_elt_regcost = elt->regcost;
4968 }
4969
4970 /* Find cheapest and skip it for the next time. For items
4971 of equal cost, use this order:
4972 src_folded, src, src_eqv, src_related and hash table entry. */
4973 if (src_folded
4974 && preferable (src_folded_cost, src_folded_regcost,
4975 src_cost, src_regcost) <= 0
4976 && preferable (src_folded_cost, src_folded_regcost,
4977 src_eqv_cost, src_eqv_regcost) <= 0
4978 && preferable (src_folded_cost, src_folded_regcost,
4979 src_related_cost, src_related_regcost) <= 0
4980 && preferable (src_folded_cost, src_folded_regcost,
4981 src_elt_cost, src_elt_regcost) <= 0)
4982 {
4983 trial = src_folded, src_folded_cost = MAX_COST;
4984 if (src_folded_force_flag)
4985 {
4986 rtx forced = force_const_mem (mode, trial);
4987 if (forced)
4988 trial = forced;
4989 }
4990 }
4991 else if (src
4992 && preferable (src_cost, src_regcost,
4993 src_eqv_cost, src_eqv_regcost) <= 0
4994 && preferable (src_cost, src_regcost,
4995 src_related_cost, src_related_regcost) <= 0
4996 && preferable (src_cost, src_regcost,
4997 src_elt_cost, src_elt_regcost) <= 0)
4998 trial = src, src_cost = MAX_COST;
4999 else if (src_eqv_here
5000 && preferable (src_eqv_cost, src_eqv_regcost,
5001 src_related_cost, src_related_regcost) <= 0
5002 && preferable (src_eqv_cost, src_eqv_regcost,
5003 src_elt_cost, src_elt_regcost) <= 0)
5004 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5005 else if (src_related
5006 && preferable (src_related_cost, src_related_regcost,
5007 src_elt_cost, src_elt_regcost) <= 0)
5008 trial = src_related, src_related_cost = MAX_COST;
5009 else
5010 {
5011 trial = elt->exp;
5012 elt = elt->next_same_value;
5013 src_elt_cost = MAX_COST;
5014 }
5015
5016 /* Avoid creation of overlapping memory moves. */
5017 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5018 {
5019 rtx src, dest;
5020
5021 /* BLKmode moves are not handled by cse anyway. */
5022 if (GET_MODE (trial) == BLKmode)
5023 break;
5024
5025 src = canon_rtx (trial);
5026 dest = canon_rtx (SET_DEST (sets[i].rtl));
5027
5028 if (!MEM_P (src) || !MEM_P (dest)
5029 || !nonoverlapping_memrefs_p (src, dest, false))
5030 break;
5031 }
5032
5033 /* Try to optimize
5034 (set (reg:M N) (const_int A))
5035 (set (reg:M2 O) (const_int B))
5036 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5037 (reg:M2 O)). */
5038 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5039 && CONST_INT_P (trial)
5040 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5041 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5042 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5043 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (sets[i].rtl)))
5044 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5045 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5046 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5047 <= HOST_BITS_PER_WIDE_INT))
5048 {
5049 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5050 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5051 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5052 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5053 struct table_elt *dest_elt
5054 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5055 rtx dest_cst = NULL;
5056
5057 if (dest_elt)
5058 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5059 if (p->is_const && CONST_INT_P (p->exp))
5060 {
5061 dest_cst = p->exp;
5062 break;
5063 }
5064 if (dest_cst)
5065 {
5066 HOST_WIDE_INT val = INTVAL (dest_cst);
5067 HOST_WIDE_INT mask;
5068 unsigned int shift;
5069 if (BITS_BIG_ENDIAN)
5070 shift = GET_MODE_BITSIZE (GET_MODE (dest_reg))
5071 - INTVAL (pos) - INTVAL (width);
5072 else
5073 shift = INTVAL (pos);
5074 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5075 mask = ~(HOST_WIDE_INT) 0;
5076 else
5077 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5078 val &= ~(mask << shift);
5079 val |= (INTVAL (trial) & mask) << shift;
5080 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5081 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5082 dest_reg, 1);
5083 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5084 GEN_INT (val), 1);
5085 if (apply_change_group ())
5086 {
5087 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5088 if (note)
5089 {
5090 remove_note (insn, note);
5091 df_notes_rescan (insn);
5092 }
5093 src_eqv = NULL_RTX;
5094 src_eqv_elt = NULL;
5095 src_eqv_volatile = 0;
5096 src_eqv_in_memory = 0;
5097 src_eqv_hash = 0;
5098 repeat = true;
5099 break;
5100 }
5101 }
5102 }
5103
5104 /* We don't normally have an insn matching (set (pc) (pc)), so
5105 check for this separately here. We will delete such an
5106 insn below.
5107
5108 For other cases such as a table jump or conditional jump
5109 where we know the ultimate target, go ahead and replace the
5110 operand. While that may not make a valid insn, we will
5111 reemit the jump below (and also insert any necessary
5112 barriers). */
5113 if (n_sets == 1 && dest == pc_rtx
5114 && (trial == pc_rtx
5115 || (GET_CODE (trial) == LABEL_REF
5116 && ! condjump_p (insn))))
5117 {
5118 /* Don't substitute non-local labels, this confuses CFG. */
5119 if (GET_CODE (trial) == LABEL_REF
5120 && LABEL_REF_NONLOCAL_P (trial))
5121 continue;
5122
5123 SET_SRC (sets[i].rtl) = trial;
5124 cse_jumps_altered = true;
5125 break;
5126 }
5127
5128 /* Reject certain invalid forms of CONST that we create. */
5129 else if (CONSTANT_P (trial)
5130 && GET_CODE (trial) == CONST
5131 /* Reject cases that will cause decode_rtx_const to
5132 die. On the alpha when simplifying a switch, we
5133 get (const (truncate (minus (label_ref)
5134 (label_ref)))). */
5135 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5136 /* Likewise on IA-64, except without the
5137 truncate. */
5138 || (GET_CODE (XEXP (trial, 0)) == MINUS
5139 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5140 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5141 /* Do nothing for this case. */
5142 ;
5143
5144 /* Look for a substitution that makes a valid insn. */
5145 else if (validate_unshare_change
5146 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5147 {
5148 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5149
5150 /* The result of apply_change_group can be ignored; see
5151 canon_reg. */
5152
5153 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5154 apply_change_group ();
5155
5156 break;
5157 }
5158
5159 /* If we previously found constant pool entries for
5160 constants and this is a constant, try making a
5161 pool entry. Put it in src_folded unless we already have done
5162 this since that is where it likely came from. */
5163
5164 else if (constant_pool_entries_cost
5165 && CONSTANT_P (trial)
5166 && (src_folded == 0
5167 || (!MEM_P (src_folded)
5168 && ! src_folded_force_flag))
5169 && GET_MODE_CLASS (mode) != MODE_CC
5170 && mode != VOIDmode)
5171 {
5172 src_folded_force_flag = 1;
5173 src_folded = trial;
5174 src_folded_cost = constant_pool_entries_cost;
5175 src_folded_regcost = constant_pool_entries_regcost;
5176 }
5177 }
5178
5179 /* If we changed the insn too much, handle this set from scratch. */
5180 if (repeat)
5181 {
5182 i--;
5183 continue;
5184 }
5185
5186 src = SET_SRC (sets[i].rtl);
5187
5188 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5189 However, there is an important exception: If both are registers
5190 that are not the head of their equivalence class, replace SET_SRC
5191 with the head of the class. If we do not do this, we will have
5192 both registers live over a portion of the basic block. This way,
5193 their lifetimes will likely abut instead of overlapping. */
5194 if (REG_P (dest)
5195 && REGNO_QTY_VALID_P (REGNO (dest)))
5196 {
5197 int dest_q = REG_QTY (REGNO (dest));
5198 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5199
5200 if (dest_ent->mode == GET_MODE (dest)
5201 && dest_ent->first_reg != REGNO (dest)
5202 && REG_P (src) && REGNO (src) == REGNO (dest)
5203 /* Don't do this if the original insn had a hard reg as
5204 SET_SRC or SET_DEST. */
5205 && (!REG_P (sets[i].src)
5206 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5207 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5208 /* We can't call canon_reg here because it won't do anything if
5209 SRC is a hard register. */
5210 {
5211 int src_q = REG_QTY (REGNO (src));
5212 struct qty_table_elem *src_ent = &qty_table[src_q];
5213 int first = src_ent->first_reg;
5214 rtx new_src
5215 = (first >= FIRST_PSEUDO_REGISTER
5216 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5217
5218 /* We must use validate-change even for this, because this
5219 might be a special no-op instruction, suitable only to
5220 tag notes onto. */
5221 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5222 {
5223 src = new_src;
5224 /* If we had a constant that is cheaper than what we are now
5225 setting SRC to, use that constant. We ignored it when we
5226 thought we could make this into a no-op. */
5227 if (src_const && COST (src_const) < COST (src)
5228 && validate_change (insn, &SET_SRC (sets[i].rtl),
5229 src_const, 0))
5230 src = src_const;
5231 }
5232 }
5233 }
5234
5235 /* If we made a change, recompute SRC values. */
5236 if (src != sets[i].src)
5237 {
5238 do_not_record = 0;
5239 hash_arg_in_memory = 0;
5240 sets[i].src = src;
5241 sets[i].src_hash = HASH (src, mode);
5242 sets[i].src_volatile = do_not_record;
5243 sets[i].src_in_memory = hash_arg_in_memory;
5244 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5245 }
5246
5247 /* If this is a single SET, we are setting a register, and we have an
5248 equivalent constant, we want to add a REG_NOTE. We don't want
5249 to write a REG_EQUAL note for a constant pseudo since verifying that
5250 that pseudo hasn't been eliminated is a pain. Such a note also
5251 won't help anything.
5252
5253 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5254 which can be created for a reference to a compile time computable
5255 entry in a jump table. */
5256
5257 if (n_sets == 1 && src_const && REG_P (dest)
5258 && !REG_P (src_const)
5259 && ! (GET_CODE (src_const) == CONST
5260 && GET_CODE (XEXP (src_const, 0)) == MINUS
5261 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5262 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5263 {
5264 /* We only want a REG_EQUAL note if src_const != src. */
5265 if (! rtx_equal_p (src, src_const))
5266 {
5267 /* Make sure that the rtx is not shared. */
5268 src_const = copy_rtx (src_const);
5269
5270 /* Record the actual constant value in a REG_EQUAL note,
5271 making a new one if one does not already exist. */
5272 set_unique_reg_note (insn, REG_EQUAL, src_const);
5273 df_notes_rescan (insn);
5274 }
5275 }
5276
5277 /* Now deal with the destination. */
5278 do_not_record = 0;
5279
5280 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5281 while (GET_CODE (dest) == SUBREG
5282 || GET_CODE (dest) == ZERO_EXTRACT
5283 || GET_CODE (dest) == STRICT_LOW_PART)
5284 dest = XEXP (dest, 0);
5285
5286 sets[i].inner_dest = dest;
5287
5288 if (MEM_P (dest))
5289 {
5290 #ifdef PUSH_ROUNDING
5291 /* Stack pushes invalidate the stack pointer. */
5292 rtx addr = XEXP (dest, 0);
5293 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5294 && XEXP (addr, 0) == stack_pointer_rtx)
5295 invalidate (stack_pointer_rtx, VOIDmode);
5296 #endif
5297 dest = fold_rtx (dest, insn);
5298 }
5299
5300 /* Compute the hash code of the destination now,
5301 before the effects of this instruction are recorded,
5302 since the register values used in the address computation
5303 are those before this instruction. */
5304 sets[i].dest_hash = HASH (dest, mode);
5305
5306 /* Don't enter a bit-field in the hash table
5307 because the value in it after the store
5308 may not equal what was stored, due to truncation. */
5309
5310 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5311 {
5312 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5313
5314 if (src_const != 0 && CONST_INT_P (src_const)
5315 && CONST_INT_P (width)
5316 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5317 && ! (INTVAL (src_const)
5318 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5319 /* Exception: if the value is constant,
5320 and it won't be truncated, record it. */
5321 ;
5322 else
5323 {
5324 /* This is chosen so that the destination will be invalidated
5325 but no new value will be recorded.
5326 We must invalidate because sometimes constant
5327 values can be recorded for bitfields. */
5328 sets[i].src_elt = 0;
5329 sets[i].src_volatile = 1;
5330 src_eqv = 0;
5331 src_eqv_elt = 0;
5332 }
5333 }
5334
5335 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5336 the insn. */
5337 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5338 {
5339 /* One less use of the label this insn used to jump to. */
5340 delete_insn_and_edges (insn);
5341 cse_jumps_altered = true;
5342 /* No more processing for this set. */
5343 sets[i].rtl = 0;
5344 }
5345
5346 /* If this SET is now setting PC to a label, we know it used to
5347 be a conditional or computed branch. */
5348 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5349 && !LABEL_REF_NONLOCAL_P (src))
5350 {
5351 /* We reemit the jump in as many cases as possible just in
5352 case the form of an unconditional jump is significantly
5353 different than a computed jump or conditional jump.
5354
5355 If this insn has multiple sets, then reemitting the
5356 jump is nontrivial. So instead we just force rerecognition
5357 and hope for the best. */
5358 if (n_sets == 1)
5359 {
5360 rtx new_rtx, note;
5361
5362 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5363 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5364 LABEL_NUSES (XEXP (src, 0))++;
5365
5366 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5367 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5368 if (note)
5369 {
5370 XEXP (note, 1) = NULL_RTX;
5371 REG_NOTES (new_rtx) = note;
5372 }
5373
5374 delete_insn_and_edges (insn);
5375 insn = new_rtx;
5376 }
5377 else
5378 INSN_CODE (insn) = -1;
5379
5380 /* Do not bother deleting any unreachable code, let jump do it. */
5381 cse_jumps_altered = true;
5382 sets[i].rtl = 0;
5383 }
5384
5385 /* If destination is volatile, invalidate it and then do no further
5386 processing for this assignment. */
5387
5388 else if (do_not_record)
5389 {
5390 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5391 invalidate (dest, VOIDmode);
5392 else if (MEM_P (dest))
5393 invalidate (dest, VOIDmode);
5394 else if (GET_CODE (dest) == STRICT_LOW_PART
5395 || GET_CODE (dest) == ZERO_EXTRACT)
5396 invalidate (XEXP (dest, 0), GET_MODE (dest));
5397 sets[i].rtl = 0;
5398 }
5399
5400 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5401 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5402
5403 #ifdef HAVE_cc0
5404 /* If setting CC0, record what it was set to, or a constant, if it
5405 is equivalent to a constant. If it is being set to a floating-point
5406 value, make a COMPARE with the appropriate constant of 0. If we
5407 don't do this, later code can interpret this as a test against
5408 const0_rtx, which can cause problems if we try to put it into an
5409 insn as a floating-point operand. */
5410 if (dest == cc0_rtx)
5411 {
5412 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5413 this_insn_cc0_mode = mode;
5414 if (FLOAT_MODE_P (mode))
5415 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5416 CONST0_RTX (mode));
5417 }
5418 #endif
5419 }
5420
5421 /* Now enter all non-volatile source expressions in the hash table
5422 if they are not already present.
5423 Record their equivalence classes in src_elt.
5424 This way we can insert the corresponding destinations into
5425 the same classes even if the actual sources are no longer in them
5426 (having been invalidated). */
5427
5428 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5429 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5430 {
5431 struct table_elt *elt;
5432 struct table_elt *classp = sets[0].src_elt;
5433 rtx dest = SET_DEST (sets[0].rtl);
5434 enum machine_mode eqvmode = GET_MODE (dest);
5435
5436 if (GET_CODE (dest) == STRICT_LOW_PART)
5437 {
5438 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5439 classp = 0;
5440 }
5441 if (insert_regs (src_eqv, classp, 0))
5442 {
5443 rehash_using_reg (src_eqv);
5444 src_eqv_hash = HASH (src_eqv, eqvmode);
5445 }
5446 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5447 elt->in_memory = src_eqv_in_memory;
5448 src_eqv_elt = elt;
5449
5450 /* Check to see if src_eqv_elt is the same as a set source which
5451 does not yet have an elt, and if so set the elt of the set source
5452 to src_eqv_elt. */
5453 for (i = 0; i < n_sets; i++)
5454 if (sets[i].rtl && sets[i].src_elt == 0
5455 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5456 sets[i].src_elt = src_eqv_elt;
5457 }
5458
5459 for (i = 0; i < n_sets; i++)
5460 if (sets[i].rtl && ! sets[i].src_volatile
5461 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5462 {
5463 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5464 {
5465 /* REG_EQUAL in setting a STRICT_LOW_PART
5466 gives an equivalent for the entire destination register,
5467 not just for the subreg being stored in now.
5468 This is a more interesting equivalence, so we arrange later
5469 to treat the entire reg as the destination. */
5470 sets[i].src_elt = src_eqv_elt;
5471 sets[i].src_hash = src_eqv_hash;
5472 }
5473 else
5474 {
5475 /* Insert source and constant equivalent into hash table, if not
5476 already present. */
5477 struct table_elt *classp = src_eqv_elt;
5478 rtx src = sets[i].src;
5479 rtx dest = SET_DEST (sets[i].rtl);
5480 enum machine_mode mode
5481 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5482
5483 /* It's possible that we have a source value known to be
5484 constant but don't have a REG_EQUAL note on the insn.
5485 Lack of a note will mean src_eqv_elt will be NULL. This
5486 can happen where we've generated a SUBREG to access a
5487 CONST_INT that is already in a register in a wider mode.
5488 Ensure that the source expression is put in the proper
5489 constant class. */
5490 if (!classp)
5491 classp = sets[i].src_const_elt;
5492
5493 if (sets[i].src_elt == 0)
5494 {
5495 struct table_elt *elt;
5496
5497 /* Note that these insert_regs calls cannot remove
5498 any of the src_elt's, because they would have failed to
5499 match if not still valid. */
5500 if (insert_regs (src, classp, 0))
5501 {
5502 rehash_using_reg (src);
5503 sets[i].src_hash = HASH (src, mode);
5504 }
5505 elt = insert (src, classp, sets[i].src_hash, mode);
5506 elt->in_memory = sets[i].src_in_memory;
5507 sets[i].src_elt = classp = elt;
5508 }
5509 if (sets[i].src_const && sets[i].src_const_elt == 0
5510 && src != sets[i].src_const
5511 && ! rtx_equal_p (sets[i].src_const, src))
5512 sets[i].src_elt = insert (sets[i].src_const, classp,
5513 sets[i].src_const_hash, mode);
5514 }
5515 }
5516 else if (sets[i].src_elt == 0)
5517 /* If we did not insert the source into the hash table (e.g., it was
5518 volatile), note the equivalence class for the REG_EQUAL value, if any,
5519 so that the destination goes into that class. */
5520 sets[i].src_elt = src_eqv_elt;
5521
5522 /* Record destination addresses in the hash table. This allows us to
5523 check if they are invalidated by other sets. */
5524 for (i = 0; i < n_sets; i++)
5525 {
5526 if (sets[i].rtl)
5527 {
5528 rtx x = sets[i].inner_dest;
5529 struct table_elt *elt;
5530 enum machine_mode mode;
5531 unsigned hash;
5532
5533 if (MEM_P (x))
5534 {
5535 x = XEXP (x, 0);
5536 mode = GET_MODE (x);
5537 hash = HASH (x, mode);
5538 elt = lookup (x, hash, mode);
5539 if (!elt)
5540 {
5541 if (insert_regs (x, NULL, 0))
5542 {
5543 rtx dest = SET_DEST (sets[i].rtl);
5544
5545 rehash_using_reg (x);
5546 hash = HASH (x, mode);
5547 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5548 }
5549 elt = insert (x, NULL, hash, mode);
5550 }
5551
5552 sets[i].dest_addr_elt = elt;
5553 }
5554 else
5555 sets[i].dest_addr_elt = NULL;
5556 }
5557 }
5558
5559 invalidate_from_clobbers (x);
5560
5561 /* Some registers are invalidated by subroutine calls. Memory is
5562 invalidated by non-constant calls. */
5563
5564 if (CALL_P (insn))
5565 {
5566 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5567 invalidate_memory ();
5568 invalidate_for_call ();
5569 }
5570
5571 /* Now invalidate everything set by this instruction.
5572 If a SUBREG or other funny destination is being set,
5573 sets[i].rtl is still nonzero, so here we invalidate the reg
5574 a part of which is being set. */
5575
5576 for (i = 0; i < n_sets; i++)
5577 if (sets[i].rtl)
5578 {
5579 /* We can't use the inner dest, because the mode associated with
5580 a ZERO_EXTRACT is significant. */
5581 rtx dest = SET_DEST (sets[i].rtl);
5582
5583 /* Needed for registers to remove the register from its
5584 previous quantity's chain.
5585 Needed for memory if this is a nonvarying address, unless
5586 we have just done an invalidate_memory that covers even those. */
5587 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5588 invalidate (dest, VOIDmode);
5589 else if (MEM_P (dest))
5590 invalidate (dest, VOIDmode);
5591 else if (GET_CODE (dest) == STRICT_LOW_PART
5592 || GET_CODE (dest) == ZERO_EXTRACT)
5593 invalidate (XEXP (dest, 0), GET_MODE (dest));
5594 }
5595
5596 /* A volatile ASM invalidates everything. */
5597 if (NONJUMP_INSN_P (insn)
5598 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5599 && MEM_VOLATILE_P (PATTERN (insn)))
5600 flush_hash_table ();
5601
5602 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5603 the regs restored by the longjmp come from a later time
5604 than the setjmp. */
5605 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5606 {
5607 flush_hash_table ();
5608 goto done;
5609 }
5610
5611 /* Make sure registers mentioned in destinations
5612 are safe for use in an expression to be inserted.
5613 This removes from the hash table
5614 any invalid entry that refers to one of these registers.
5615
5616 We don't care about the return value from mention_regs because
5617 we are going to hash the SET_DEST values unconditionally. */
5618
5619 for (i = 0; i < n_sets; i++)
5620 {
5621 if (sets[i].rtl)
5622 {
5623 rtx x = SET_DEST (sets[i].rtl);
5624
5625 if (!REG_P (x))
5626 mention_regs (x);
5627 else
5628 {
5629 /* We used to rely on all references to a register becoming
5630 inaccessible when a register changes to a new quantity,
5631 since that changes the hash code. However, that is not
5632 safe, since after HASH_SIZE new quantities we get a
5633 hash 'collision' of a register with its own invalid
5634 entries. And since SUBREGs have been changed not to
5635 change their hash code with the hash code of the register,
5636 it wouldn't work any longer at all. So we have to check
5637 for any invalid references lying around now.
5638 This code is similar to the REG case in mention_regs,
5639 but it knows that reg_tick has been incremented, and
5640 it leaves reg_in_table as -1 . */
5641 unsigned int regno = REGNO (x);
5642 unsigned int endregno = END_REGNO (x);
5643 unsigned int i;
5644
5645 for (i = regno; i < endregno; i++)
5646 {
5647 if (REG_IN_TABLE (i) >= 0)
5648 {
5649 remove_invalid_refs (i);
5650 REG_IN_TABLE (i) = -1;
5651 }
5652 }
5653 }
5654 }
5655 }
5656
5657 /* We may have just removed some of the src_elt's from the hash table.
5658 So replace each one with the current head of the same class.
5659 Also check if destination addresses have been removed. */
5660
5661 for (i = 0; i < n_sets; i++)
5662 if (sets[i].rtl)
5663 {
5664 if (sets[i].dest_addr_elt
5665 && sets[i].dest_addr_elt->first_same_value == 0)
5666 {
5667 /* The elt was removed, which means this destination is not
5668 valid after this instruction. */
5669 sets[i].rtl = NULL_RTX;
5670 }
5671 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5672 /* If elt was removed, find current head of same class,
5673 or 0 if nothing remains of that class. */
5674 {
5675 struct table_elt *elt = sets[i].src_elt;
5676
5677 while (elt && elt->prev_same_value)
5678 elt = elt->prev_same_value;
5679
5680 while (elt && elt->first_same_value == 0)
5681 elt = elt->next_same_value;
5682 sets[i].src_elt = elt ? elt->first_same_value : 0;
5683 }
5684 }
5685
5686 /* Now insert the destinations into their equivalence classes. */
5687
5688 for (i = 0; i < n_sets; i++)
5689 if (sets[i].rtl)
5690 {
5691 rtx dest = SET_DEST (sets[i].rtl);
5692 struct table_elt *elt;
5693
5694 /* Don't record value if we are not supposed to risk allocating
5695 floating-point values in registers that might be wider than
5696 memory. */
5697 if ((flag_float_store
5698 && MEM_P (dest)
5699 && FLOAT_MODE_P (GET_MODE (dest)))
5700 /* Don't record BLKmode values, because we don't know the
5701 size of it, and can't be sure that other BLKmode values
5702 have the same or smaller size. */
5703 || GET_MODE (dest) == BLKmode
5704 /* If we didn't put a REG_EQUAL value or a source into the hash
5705 table, there is no point is recording DEST. */
5706 || sets[i].src_elt == 0
5707 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5708 or SIGN_EXTEND, don't record DEST since it can cause
5709 some tracking to be wrong.
5710
5711 ??? Think about this more later. */
5712 || (GET_CODE (dest) == SUBREG
5713 && (GET_MODE_SIZE (GET_MODE (dest))
5714 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5715 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5716 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5717 continue;
5718
5719 /* STRICT_LOW_PART isn't part of the value BEING set,
5720 and neither is the SUBREG inside it.
5721 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5722 if (GET_CODE (dest) == STRICT_LOW_PART)
5723 dest = SUBREG_REG (XEXP (dest, 0));
5724
5725 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5726 /* Registers must also be inserted into chains for quantities. */
5727 if (insert_regs (dest, sets[i].src_elt, 1))
5728 {
5729 /* If `insert_regs' changes something, the hash code must be
5730 recalculated. */
5731 rehash_using_reg (dest);
5732 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5733 }
5734
5735 elt = insert (dest, sets[i].src_elt,
5736 sets[i].dest_hash, GET_MODE (dest));
5737
5738 /* If this is a constant, insert the constant anchors with the
5739 equivalent register-offset expressions using register DEST. */
5740 if (targetm.const_anchor
5741 && REG_P (dest)
5742 && SCALAR_INT_MODE_P (GET_MODE (dest))
5743 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5744 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5745
5746 elt->in_memory = (MEM_P (sets[i].inner_dest)
5747 && !MEM_READONLY_P (sets[i].inner_dest));
5748
5749 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5750 narrower than M2, and both M1 and M2 are the same number of words,
5751 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5752 make that equivalence as well.
5753
5754 However, BAR may have equivalences for which gen_lowpart
5755 will produce a simpler value than gen_lowpart applied to
5756 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5757 BAR's equivalences. If we don't get a simplified form, make
5758 the SUBREG. It will not be used in an equivalence, but will
5759 cause two similar assignments to be detected.
5760
5761 Note the loop below will find SUBREG_REG (DEST) since we have
5762 already entered SRC and DEST of the SET in the table. */
5763
5764 if (GET_CODE (dest) == SUBREG
5765 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5766 / UNITS_PER_WORD)
5767 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5768 && (GET_MODE_SIZE (GET_MODE (dest))
5769 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5770 && sets[i].src_elt != 0)
5771 {
5772 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5773 struct table_elt *elt, *classp = 0;
5774
5775 for (elt = sets[i].src_elt->first_same_value; elt;
5776 elt = elt->next_same_value)
5777 {
5778 rtx new_src = 0;
5779 unsigned src_hash;
5780 struct table_elt *src_elt;
5781 int byte = 0;
5782
5783 /* Ignore invalid entries. */
5784 if (!REG_P (elt->exp)
5785 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5786 continue;
5787
5788 /* We may have already been playing subreg games. If the
5789 mode is already correct for the destination, use it. */
5790 if (GET_MODE (elt->exp) == new_mode)
5791 new_src = elt->exp;
5792 else
5793 {
5794 /* Calculate big endian correction for the SUBREG_BYTE.
5795 We have already checked that M1 (GET_MODE (dest))
5796 is not narrower than M2 (new_mode). */
5797 if (BYTES_BIG_ENDIAN)
5798 byte = (GET_MODE_SIZE (GET_MODE (dest))
5799 - GET_MODE_SIZE (new_mode));
5800
5801 new_src = simplify_gen_subreg (new_mode, elt->exp,
5802 GET_MODE (dest), byte);
5803 }
5804
5805 /* The call to simplify_gen_subreg fails if the value
5806 is VOIDmode, yet we can't do any simplification, e.g.
5807 for EXPR_LISTs denoting function call results.
5808 It is invalid to construct a SUBREG with a VOIDmode
5809 SUBREG_REG, hence a zero new_src means we can't do
5810 this substitution. */
5811 if (! new_src)
5812 continue;
5813
5814 src_hash = HASH (new_src, new_mode);
5815 src_elt = lookup (new_src, src_hash, new_mode);
5816
5817 /* Put the new source in the hash table is if isn't
5818 already. */
5819 if (src_elt == 0)
5820 {
5821 if (insert_regs (new_src, classp, 0))
5822 {
5823 rehash_using_reg (new_src);
5824 src_hash = HASH (new_src, new_mode);
5825 }
5826 src_elt = insert (new_src, classp, src_hash, new_mode);
5827 src_elt->in_memory = elt->in_memory;
5828 }
5829 else if (classp && classp != src_elt->first_same_value)
5830 /* Show that two things that we've seen before are
5831 actually the same. */
5832 merge_equiv_classes (src_elt, classp);
5833
5834 classp = src_elt->first_same_value;
5835 /* Ignore invalid entries. */
5836 while (classp
5837 && !REG_P (classp->exp)
5838 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5839 classp = classp->next_same_value;
5840 }
5841 }
5842 }
5843
5844 /* Special handling for (set REG0 REG1) where REG0 is the
5845 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5846 be used in the sequel, so (if easily done) change this insn to
5847 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5848 that computed their value. Then REG1 will become a dead store
5849 and won't cloud the situation for later optimizations.
5850
5851 Do not make this change if REG1 is a hard register, because it will
5852 then be used in the sequel and we may be changing a two-operand insn
5853 into a three-operand insn.
5854
5855 Also do not do this if we are operating on a copy of INSN. */
5856
5857 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5858 && NEXT_INSN (PREV_INSN (insn)) == insn
5859 && REG_P (SET_SRC (sets[0].rtl))
5860 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5861 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5862 {
5863 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5864 struct qty_table_elem *src_ent = &qty_table[src_q];
5865
5866 if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5867 {
5868 /* Scan for the previous nonnote insn, but stop at a basic
5869 block boundary. */
5870 rtx prev = insn;
5871 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5872 do
5873 {
5874 prev = PREV_INSN (prev);
5875 }
5876 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
5877
5878 /* Do not swap the registers around if the previous instruction
5879 attaches a REG_EQUIV note to REG1.
5880
5881 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5882 from the pseudo that originally shadowed an incoming argument
5883 to another register. Some uses of REG_EQUIV might rely on it
5884 being attached to REG1 rather than REG2.
5885
5886 This section previously turned the REG_EQUIV into a REG_EQUAL
5887 note. We cannot do that because REG_EQUIV may provide an
5888 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5889 if (NONJUMP_INSN_P (prev)
5890 && GET_CODE (PATTERN (prev)) == SET
5891 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5892 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5893 {
5894 rtx dest = SET_DEST (sets[0].rtl);
5895 rtx src = SET_SRC (sets[0].rtl);
5896 rtx note;
5897
5898 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5899 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5900 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5901 apply_change_group ();
5902
5903 /* If INSN has a REG_EQUAL note, and this note mentions
5904 REG0, then we must delete it, because the value in
5905 REG0 has changed. If the note's value is REG1, we must
5906 also delete it because that is now this insn's dest. */
5907 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5908 if (note != 0
5909 && (reg_mentioned_p (dest, XEXP (note, 0))
5910 || rtx_equal_p (src, XEXP (note, 0))))
5911 remove_note (insn, note);
5912 }
5913 }
5914 }
5915
5916 done:;
5917 }
5918 \f
5919 /* Remove from the hash table all expressions that reference memory. */
5920
5921 static void
5922 invalidate_memory (void)
5923 {
5924 int i;
5925 struct table_elt *p, *next;
5926
5927 for (i = 0; i < HASH_SIZE; i++)
5928 for (p = table[i]; p; p = next)
5929 {
5930 next = p->next_same_hash;
5931 if (p->in_memory)
5932 remove_from_table (p, i);
5933 }
5934 }
5935
5936 /* Perform invalidation on the basis of everything about an insn
5937 except for invalidating the actual places that are SET in it.
5938 This includes the places CLOBBERed, and anything that might
5939 alias with something that is SET or CLOBBERed.
5940
5941 X is the pattern of the insn. */
5942
5943 static void
5944 invalidate_from_clobbers (rtx x)
5945 {
5946 if (GET_CODE (x) == CLOBBER)
5947 {
5948 rtx ref = XEXP (x, 0);
5949 if (ref)
5950 {
5951 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5952 || MEM_P (ref))
5953 invalidate (ref, VOIDmode);
5954 else if (GET_CODE (ref) == STRICT_LOW_PART
5955 || GET_CODE (ref) == ZERO_EXTRACT)
5956 invalidate (XEXP (ref, 0), GET_MODE (ref));
5957 }
5958 }
5959 else if (GET_CODE (x) == PARALLEL)
5960 {
5961 int i;
5962 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5963 {
5964 rtx y = XVECEXP (x, 0, i);
5965 if (GET_CODE (y) == CLOBBER)
5966 {
5967 rtx ref = XEXP (y, 0);
5968 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5969 || MEM_P (ref))
5970 invalidate (ref, VOIDmode);
5971 else if (GET_CODE (ref) == STRICT_LOW_PART
5972 || GET_CODE (ref) == ZERO_EXTRACT)
5973 invalidate (XEXP (ref, 0), GET_MODE (ref));
5974 }
5975 }
5976 }
5977 }
5978 \f
5979 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5980 and replace any registers in them with either an equivalent constant
5981 or the canonical form of the register. If we are inside an address,
5982 only do this if the address remains valid.
5983
5984 OBJECT is 0 except when within a MEM in which case it is the MEM.
5985
5986 Return the replacement for X. */
5987
5988 static rtx
5989 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5990 {
5991 enum rtx_code code = GET_CODE (x);
5992 const char *fmt = GET_RTX_FORMAT (code);
5993 int i;
5994
5995 switch (code)
5996 {
5997 case CONST_INT:
5998 case CONST:
5999 case SYMBOL_REF:
6000 case LABEL_REF:
6001 case CONST_DOUBLE:
6002 case CONST_FIXED:
6003 case CONST_VECTOR:
6004 case PC:
6005 case CC0:
6006 case LO_SUM:
6007 return x;
6008
6009 case MEM:
6010 validate_change (x, &XEXP (x, 0),
6011 cse_process_notes (XEXP (x, 0), x, changed), 0);
6012 return x;
6013
6014 case EXPR_LIST:
6015 case INSN_LIST:
6016 if (REG_NOTE_KIND (x) == REG_EQUAL)
6017 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6018 if (XEXP (x, 1))
6019 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6020 return x;
6021
6022 case SIGN_EXTEND:
6023 case ZERO_EXTEND:
6024 case SUBREG:
6025 {
6026 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6027 /* We don't substitute VOIDmode constants into these rtx,
6028 since they would impede folding. */
6029 if (GET_MODE (new_rtx) != VOIDmode)
6030 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6031 return x;
6032 }
6033
6034 case REG:
6035 i = REG_QTY (REGNO (x));
6036
6037 /* Return a constant or a constant register. */
6038 if (REGNO_QTY_VALID_P (REGNO (x)))
6039 {
6040 struct qty_table_elem *ent = &qty_table[i];
6041
6042 if (ent->const_rtx != NULL_RTX
6043 && (CONSTANT_P (ent->const_rtx)
6044 || REG_P (ent->const_rtx)))
6045 {
6046 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6047 if (new_rtx)
6048 return copy_rtx (new_rtx);
6049 }
6050 }
6051
6052 /* Otherwise, canonicalize this register. */
6053 return canon_reg (x, NULL_RTX);
6054
6055 default:
6056 break;
6057 }
6058
6059 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6060 if (fmt[i] == 'e')
6061 validate_change (object, &XEXP (x, i),
6062 cse_process_notes (XEXP (x, i), object, changed), 0);
6063
6064 return x;
6065 }
6066
6067 static rtx
6068 cse_process_notes (rtx x, rtx object, bool *changed)
6069 {
6070 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6071 if (new_rtx != x)
6072 *changed = true;
6073 return new_rtx;
6074 }
6075
6076 \f
6077 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6078
6079 DATA is a pointer to a struct cse_basic_block_data, that is used to
6080 describe the path.
6081 It is filled with a queue of basic blocks, starting with FIRST_BB
6082 and following a trace through the CFG.
6083
6084 If all paths starting at FIRST_BB have been followed, or no new path
6085 starting at FIRST_BB can be constructed, this function returns FALSE.
6086 Otherwise, DATA->path is filled and the function returns TRUE indicating
6087 that a path to follow was found.
6088
6089 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6090 block in the path will be FIRST_BB. */
6091
6092 static bool
6093 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6094 int follow_jumps)
6095 {
6096 basic_block bb;
6097 edge e;
6098 int path_size;
6099
6100 SET_BIT (cse_visited_basic_blocks, first_bb->index);
6101
6102 /* See if there is a previous path. */
6103 path_size = data->path_size;
6104
6105 /* There is a previous path. Make sure it started with FIRST_BB. */
6106 if (path_size)
6107 gcc_assert (data->path[0].bb == first_bb);
6108
6109 /* There was only one basic block in the last path. Clear the path and
6110 return, so that paths starting at another basic block can be tried. */
6111 if (path_size == 1)
6112 {
6113 path_size = 0;
6114 goto done;
6115 }
6116
6117 /* If the path was empty from the beginning, construct a new path. */
6118 if (path_size == 0)
6119 data->path[path_size++].bb = first_bb;
6120 else
6121 {
6122 /* Otherwise, path_size must be equal to or greater than 2, because
6123 a previous path exists that is at least two basic blocks long.
6124
6125 Update the previous branch path, if any. If the last branch was
6126 previously along the branch edge, take the fallthrough edge now. */
6127 while (path_size >= 2)
6128 {
6129 basic_block last_bb_in_path, previous_bb_in_path;
6130 edge e;
6131
6132 --path_size;
6133 last_bb_in_path = data->path[path_size].bb;
6134 previous_bb_in_path = data->path[path_size - 1].bb;
6135
6136 /* If we previously followed a path along the branch edge, try
6137 the fallthru edge now. */
6138 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6139 && any_condjump_p (BB_END (previous_bb_in_path))
6140 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6141 && e == BRANCH_EDGE (previous_bb_in_path))
6142 {
6143 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6144 if (bb != EXIT_BLOCK_PTR
6145 && single_pred_p (bb)
6146 /* We used to assert here that we would only see blocks
6147 that we have not visited yet. But we may end up
6148 visiting basic blocks twice if the CFG has changed
6149 in this run of cse_main, because when the CFG changes
6150 the topological sort of the CFG also changes. A basic
6151 blocks that previously had more than two predecessors
6152 may now have a single predecessor, and become part of
6153 a path that starts at another basic block.
6154
6155 We still want to visit each basic block only once, so
6156 halt the path here if we have already visited BB. */
6157 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
6158 {
6159 SET_BIT (cse_visited_basic_blocks, bb->index);
6160 data->path[path_size++].bb = bb;
6161 break;
6162 }
6163 }
6164
6165 data->path[path_size].bb = NULL;
6166 }
6167
6168 /* If only one block remains in the path, bail. */
6169 if (path_size == 1)
6170 {
6171 path_size = 0;
6172 goto done;
6173 }
6174 }
6175
6176 /* Extend the path if possible. */
6177 if (follow_jumps)
6178 {
6179 bb = data->path[path_size - 1].bb;
6180 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6181 {
6182 if (single_succ_p (bb))
6183 e = single_succ_edge (bb);
6184 else if (EDGE_COUNT (bb->succs) == 2
6185 && any_condjump_p (BB_END (bb)))
6186 {
6187 /* First try to follow the branch. If that doesn't lead
6188 to a useful path, follow the fallthru edge. */
6189 e = BRANCH_EDGE (bb);
6190 if (!single_pred_p (e->dest))
6191 e = FALLTHRU_EDGE (bb);
6192 }
6193 else
6194 e = NULL;
6195
6196 if (e && e->dest != EXIT_BLOCK_PTR
6197 && single_pred_p (e->dest)
6198 /* Avoid visiting basic blocks twice. The large comment
6199 above explains why this can happen. */
6200 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
6201 {
6202 basic_block bb2 = e->dest;
6203 SET_BIT (cse_visited_basic_blocks, bb2->index);
6204 data->path[path_size++].bb = bb2;
6205 bb = bb2;
6206 }
6207 else
6208 bb = NULL;
6209 }
6210 }
6211
6212 done:
6213 data->path_size = path_size;
6214 return path_size != 0;
6215 }
6216 \f
6217 /* Dump the path in DATA to file F. NSETS is the number of sets
6218 in the path. */
6219
6220 static void
6221 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6222 {
6223 int path_entry;
6224
6225 fprintf (f, ";; Following path with %d sets: ", nsets);
6226 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6227 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6228 fputc ('\n', dump_file);
6229 fflush (f);
6230 }
6231
6232 \f
6233 /* Return true if BB has exception handling successor edges. */
6234
6235 static bool
6236 have_eh_succ_edges (basic_block bb)
6237 {
6238 edge e;
6239 edge_iterator ei;
6240
6241 FOR_EACH_EDGE (e, ei, bb->succs)
6242 if (e->flags & EDGE_EH)
6243 return true;
6244
6245 return false;
6246 }
6247
6248 \f
6249 /* Scan to the end of the path described by DATA. Return an estimate of
6250 the total number of SETs of all insns in the path. */
6251
6252 static void
6253 cse_prescan_path (struct cse_basic_block_data *data)
6254 {
6255 int nsets = 0;
6256 int path_size = data->path_size;
6257 int path_entry;
6258
6259 /* Scan to end of each basic block in the path. */
6260 for (path_entry = 0; path_entry < path_size; path_entry++)
6261 {
6262 basic_block bb;
6263 rtx insn;
6264
6265 bb = data->path[path_entry].bb;
6266
6267 FOR_BB_INSNS (bb, insn)
6268 {
6269 if (!INSN_P (insn))
6270 continue;
6271
6272 /* A PARALLEL can have lots of SETs in it,
6273 especially if it is really an ASM_OPERANDS. */
6274 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6275 nsets += XVECLEN (PATTERN (insn), 0);
6276 else
6277 nsets += 1;
6278 }
6279 }
6280
6281 data->nsets = nsets;
6282 }
6283 \f
6284 /* Process a single extended basic block described by EBB_DATA. */
6285
6286 static void
6287 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6288 {
6289 int path_size = ebb_data->path_size;
6290 int path_entry;
6291 int num_insns = 0;
6292
6293 /* Allocate the space needed by qty_table. */
6294 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6295
6296 new_basic_block ();
6297 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6298 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6299 for (path_entry = 0; path_entry < path_size; path_entry++)
6300 {
6301 basic_block bb;
6302 rtx insn;
6303
6304 bb = ebb_data->path[path_entry].bb;
6305
6306 /* Invalidate recorded information for eh regs if there is an EH
6307 edge pointing to that bb. */
6308 if (bb_has_eh_pred (bb))
6309 {
6310 df_ref *def_rec;
6311
6312 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6313 {
6314 df_ref def = *def_rec;
6315 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6316 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6317 }
6318 }
6319
6320 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6321 FOR_BB_INSNS (bb, insn)
6322 {
6323 /* If we have processed 1,000 insns, flush the hash table to
6324 avoid extreme quadratic behavior. We must not include NOTEs
6325 in the count since there may be more of them when generating
6326 debugging information. If we clear the table at different
6327 times, code generated with -g -O might be different than code
6328 generated with -O but not -g.
6329
6330 FIXME: This is a real kludge and needs to be done some other
6331 way. */
6332 if (NONDEBUG_INSN_P (insn)
6333 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6334 {
6335 flush_hash_table ();
6336 num_insns = 0;
6337 }
6338
6339 if (INSN_P (insn))
6340 {
6341 /* Process notes first so we have all notes in canonical forms
6342 when looking for duplicate operations. */
6343 if (REG_NOTES (insn))
6344 {
6345 bool changed = false;
6346 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6347 NULL_RTX, &changed);
6348 if (changed)
6349 df_notes_rescan (insn);
6350 }
6351
6352 cse_insn (insn);
6353
6354 /* If we haven't already found an insn where we added a LABEL_REF,
6355 check this one. */
6356 if (INSN_P (insn) && !recorded_label_ref
6357 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6358 (void *) insn))
6359 recorded_label_ref = true;
6360
6361 #ifdef HAVE_cc0
6362 if (NONDEBUG_INSN_P (insn))
6363 {
6364 /* If the previous insn sets CC0 and this insn no
6365 longer references CC0, delete the previous insn.
6366 Here we use fact that nothing expects CC0 to be
6367 valid over an insn, which is true until the final
6368 pass. */
6369 rtx prev_insn, tem;
6370
6371 prev_insn = prev_nonnote_nondebug_insn (insn);
6372 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6373 && (tem = single_set (prev_insn)) != NULL_RTX
6374 && SET_DEST (tem) == cc0_rtx
6375 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6376 delete_insn (prev_insn);
6377
6378 /* If this insn is not the last insn in the basic
6379 block, it will be PREV_INSN(insn) in the next
6380 iteration. If we recorded any CC0-related
6381 information for this insn, remember it. */
6382 if (insn != BB_END (bb))
6383 {
6384 prev_insn_cc0 = this_insn_cc0;
6385 prev_insn_cc0_mode = this_insn_cc0_mode;
6386 }
6387 }
6388 #endif
6389 }
6390 }
6391
6392 /* With non-call exceptions, we are not always able to update
6393 the CFG properly inside cse_insn. So clean up possibly
6394 redundant EH edges here. */
6395 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6396 cse_cfg_altered |= purge_dead_edges (bb);
6397
6398 /* If we changed a conditional jump, we may have terminated
6399 the path we are following. Check that by verifying that
6400 the edge we would take still exists. If the edge does
6401 not exist anymore, purge the remainder of the path.
6402 Note that this will cause us to return to the caller. */
6403 if (path_entry < path_size - 1)
6404 {
6405 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6406 if (!find_edge (bb, next_bb))
6407 {
6408 do
6409 {
6410 path_size--;
6411
6412 /* If we truncate the path, we must also reset the
6413 visited bit on the remaining blocks in the path,
6414 or we will never visit them at all. */
6415 RESET_BIT (cse_visited_basic_blocks,
6416 ebb_data->path[path_size].bb->index);
6417 ebb_data->path[path_size].bb = NULL;
6418 }
6419 while (path_size - 1 != path_entry);
6420 ebb_data->path_size = path_size;
6421 }
6422 }
6423
6424 /* If this is a conditional jump insn, record any known
6425 equivalences due to the condition being tested. */
6426 insn = BB_END (bb);
6427 if (path_entry < path_size - 1
6428 && JUMP_P (insn)
6429 && single_set (insn)
6430 && any_condjump_p (insn))
6431 {
6432 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6433 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6434 record_jump_equiv (insn, taken);
6435 }
6436
6437 #ifdef HAVE_cc0
6438 /* Clear the CC0-tracking related insns, they can't provide
6439 useful information across basic block boundaries. */
6440 prev_insn_cc0 = 0;
6441 #endif
6442 }
6443
6444 gcc_assert (next_qty <= max_qty);
6445
6446 free (qty_table);
6447 }
6448
6449 \f
6450 /* Perform cse on the instructions of a function.
6451 F is the first instruction.
6452 NREGS is one plus the highest pseudo-reg number used in the instruction.
6453
6454 Return 2 if jump optimizations should be redone due to simplifications
6455 in conditional jump instructions.
6456 Return 1 if the CFG should be cleaned up because it has been modified.
6457 Return 0 otherwise. */
6458
6459 int
6460 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6461 {
6462 struct cse_basic_block_data ebb_data;
6463 basic_block bb;
6464 int *rc_order = XNEWVEC (int, last_basic_block);
6465 int i, n_blocks;
6466
6467 df_set_flags (DF_LR_RUN_DCE);
6468 df_analyze ();
6469 df_set_flags (DF_DEFER_INSN_RESCAN);
6470
6471 reg_scan (get_insns (), max_reg_num ());
6472 init_cse_reg_info (nregs);
6473
6474 ebb_data.path = XNEWVEC (struct branch_path,
6475 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6476
6477 cse_cfg_altered = false;
6478 cse_jumps_altered = false;
6479 recorded_label_ref = false;
6480 constant_pool_entries_cost = 0;
6481 constant_pool_entries_regcost = 0;
6482 ebb_data.path_size = 0;
6483 ebb_data.nsets = 0;
6484 rtl_hooks = cse_rtl_hooks;
6485
6486 init_recog ();
6487 init_alias_analysis ();
6488
6489 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6490
6491 /* Set up the table of already visited basic blocks. */
6492 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6493 sbitmap_zero (cse_visited_basic_blocks);
6494
6495 /* Loop over basic blocks in reverse completion order (RPO),
6496 excluding the ENTRY and EXIT blocks. */
6497 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6498 i = 0;
6499 while (i < n_blocks)
6500 {
6501 /* Find the first block in the RPO queue that we have not yet
6502 processed before. */
6503 do
6504 {
6505 bb = BASIC_BLOCK (rc_order[i++]);
6506 }
6507 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6508 && i < n_blocks);
6509
6510 /* Find all paths starting with BB, and process them. */
6511 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6512 {
6513 /* Pre-scan the path. */
6514 cse_prescan_path (&ebb_data);
6515
6516 /* If this basic block has no sets, skip it. */
6517 if (ebb_data.nsets == 0)
6518 continue;
6519
6520 /* Get a reasonable estimate for the maximum number of qty's
6521 needed for this path. For this, we take the number of sets
6522 and multiply that by MAX_RECOG_OPERANDS. */
6523 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6524
6525 /* Dump the path we're about to process. */
6526 if (dump_file)
6527 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6528
6529 cse_extended_basic_block (&ebb_data);
6530 }
6531 }
6532
6533 /* Clean up. */
6534 end_alias_analysis ();
6535 free (reg_eqv_table);
6536 free (ebb_data.path);
6537 sbitmap_free (cse_visited_basic_blocks);
6538 free (rc_order);
6539 rtl_hooks = general_rtl_hooks;
6540
6541 if (cse_jumps_altered || recorded_label_ref)
6542 return 2;
6543 else if (cse_cfg_altered)
6544 return 1;
6545 else
6546 return 0;
6547 }
6548 \f
6549 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6550 which there isn't a REG_LABEL_OPERAND note.
6551 Return one if so. DATA is the insn. */
6552
6553 static int
6554 check_for_label_ref (rtx *rtl, void *data)
6555 {
6556 rtx insn = (rtx) data;
6557
6558 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6559 note for it, we must rerun jump since it needs to place the note. If
6560 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6561 don't do this since no REG_LABEL_OPERAND will be added. */
6562 return (GET_CODE (*rtl) == LABEL_REF
6563 && ! LABEL_REF_NONLOCAL_P (*rtl)
6564 && (!JUMP_P (insn)
6565 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6566 && LABEL_P (XEXP (*rtl, 0))
6567 && INSN_UID (XEXP (*rtl, 0)) != 0
6568 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6569 }
6570 \f
6571 /* Count the number of times registers are used (not set) in X.
6572 COUNTS is an array in which we accumulate the count, INCR is how much
6573 we count each register usage.
6574
6575 Don't count a usage of DEST, which is the SET_DEST of a SET which
6576 contains X in its SET_SRC. This is because such a SET does not
6577 modify the liveness of DEST.
6578 DEST is set to pc_rtx for a trapping insn, which means that we must count
6579 uses of a SET_DEST regardless because the insn can't be deleted here. */
6580
6581 static void
6582 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6583 {
6584 enum rtx_code code;
6585 rtx note;
6586 const char *fmt;
6587 int i, j;
6588
6589 if (x == 0)
6590 return;
6591
6592 switch (code = GET_CODE (x))
6593 {
6594 case REG:
6595 if (x != dest)
6596 counts[REGNO (x)] += incr;
6597 return;
6598
6599 case PC:
6600 case CC0:
6601 case CONST:
6602 case CONST_INT:
6603 case CONST_DOUBLE:
6604 case CONST_FIXED:
6605 case CONST_VECTOR:
6606 case SYMBOL_REF:
6607 case LABEL_REF:
6608 return;
6609
6610 case CLOBBER:
6611 /* If we are clobbering a MEM, mark any registers inside the address
6612 as being used. */
6613 if (MEM_P (XEXP (x, 0)))
6614 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6615 return;
6616
6617 case SET:
6618 /* Unless we are setting a REG, count everything in SET_DEST. */
6619 if (!REG_P (SET_DEST (x)))
6620 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6621 count_reg_usage (SET_SRC (x), counts,
6622 dest ? dest : SET_DEST (x),
6623 incr);
6624 return;
6625
6626 case DEBUG_INSN:
6627 return;
6628
6629 case CALL_INSN:
6630 case INSN:
6631 case JUMP_INSN:
6632 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6633 this fact by setting DEST to pc_rtx. */
6634 if (insn_could_throw_p (x))
6635 dest = pc_rtx;
6636 if (code == CALL_INSN)
6637 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6638 count_reg_usage (PATTERN (x), counts, dest, incr);
6639
6640 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6641 use them. */
6642
6643 note = find_reg_equal_equiv_note (x);
6644 if (note)
6645 {
6646 rtx eqv = XEXP (note, 0);
6647
6648 if (GET_CODE (eqv) == EXPR_LIST)
6649 /* This REG_EQUAL note describes the result of a function call.
6650 Process all the arguments. */
6651 do
6652 {
6653 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6654 eqv = XEXP (eqv, 1);
6655 }
6656 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6657 else
6658 count_reg_usage (eqv, counts, dest, incr);
6659 }
6660 return;
6661
6662 case EXPR_LIST:
6663 if (REG_NOTE_KIND (x) == REG_EQUAL
6664 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6665 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6666 involving registers in the address. */
6667 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6668 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6669
6670 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6671 return;
6672
6673 case ASM_OPERANDS:
6674 /* If the asm is volatile, then this insn cannot be deleted,
6675 and so the inputs *must* be live. */
6676 if (MEM_VOLATILE_P (x))
6677 dest = NULL_RTX;
6678 /* Iterate over just the inputs, not the constraints as well. */
6679 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6680 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6681 return;
6682
6683 case INSN_LIST:
6684 gcc_unreachable ();
6685
6686 default:
6687 break;
6688 }
6689
6690 fmt = GET_RTX_FORMAT (code);
6691 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6692 {
6693 if (fmt[i] == 'e')
6694 count_reg_usage (XEXP (x, i), counts, dest, incr);
6695 else if (fmt[i] == 'E')
6696 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6697 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6698 }
6699 }
6700 \f
6701 /* Return true if X is a dead register. */
6702
6703 static inline int
6704 is_dead_reg (rtx x, int *counts)
6705 {
6706 return (REG_P (x)
6707 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6708 && counts[REGNO (x)] == 0);
6709 }
6710
6711 /* Return true if set is live. */
6712 static bool
6713 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6714 int *counts)
6715 {
6716 #ifdef HAVE_cc0
6717 rtx tem;
6718 #endif
6719
6720 if (set_noop_p (set))
6721 ;
6722
6723 #ifdef HAVE_cc0
6724 else if (GET_CODE (SET_DEST (set)) == CC0
6725 && !side_effects_p (SET_SRC (set))
6726 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6727 || !INSN_P (tem)
6728 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6729 return false;
6730 #endif
6731 else if (!is_dead_reg (SET_DEST (set), counts)
6732 || side_effects_p (SET_SRC (set)))
6733 return true;
6734 return false;
6735 }
6736
6737 /* Return true if insn is live. */
6738
6739 static bool
6740 insn_live_p (rtx insn, int *counts)
6741 {
6742 int i;
6743 if (insn_could_throw_p (insn))
6744 return true;
6745 else if (GET_CODE (PATTERN (insn)) == SET)
6746 return set_live_p (PATTERN (insn), insn, counts);
6747 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6748 {
6749 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6750 {
6751 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6752
6753 if (GET_CODE (elt) == SET)
6754 {
6755 if (set_live_p (elt, insn, counts))
6756 return true;
6757 }
6758 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6759 return true;
6760 }
6761 return false;
6762 }
6763 else if (DEBUG_INSN_P (insn))
6764 {
6765 rtx next;
6766
6767 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6768 if (NOTE_P (next))
6769 continue;
6770 else if (!DEBUG_INSN_P (next))
6771 return true;
6772 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6773 return false;
6774
6775 return true;
6776 }
6777 else
6778 return true;
6779 }
6780
6781 /* Count the number of stores into pseudo. Callback for note_stores. */
6782
6783 static void
6784 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6785 {
6786 int *counts = (int *) data;
6787 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6788 counts[REGNO (x)]++;
6789 }
6790
6791 struct dead_debug_insn_data
6792 {
6793 int *counts;
6794 rtx *replacements;
6795 bool seen_repl;
6796 };
6797
6798 /* Return if a DEBUG_INSN needs to be reset because some dead
6799 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6800
6801 static int
6802 is_dead_debug_insn (rtx *loc, void *data)
6803 {
6804 rtx x = *loc;
6805 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6806
6807 if (is_dead_reg (x, ddid->counts))
6808 {
6809 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6810 ddid->seen_repl = true;
6811 else
6812 return 1;
6813 }
6814 return 0;
6815 }
6816
6817 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6818 Callback for simplify_replace_fn_rtx. */
6819
6820 static rtx
6821 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6822 {
6823 rtx *replacements = (rtx *) data;
6824
6825 if (REG_P (x)
6826 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6827 && replacements[REGNO (x)] != NULL_RTX)
6828 {
6829 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6830 return replacements[REGNO (x)];
6831 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6832 GET_MODE (replacements[REGNO (x)]));
6833 }
6834 return NULL_RTX;
6835 }
6836
6837 /* Scan all the insns and delete any that are dead; i.e., they store a register
6838 that is never used or they copy a register to itself.
6839
6840 This is used to remove insns made obviously dead by cse, loop or other
6841 optimizations. It improves the heuristics in loop since it won't try to
6842 move dead invariants out of loops or make givs for dead quantities. The
6843 remaining passes of the compilation are also sped up. */
6844
6845 int
6846 delete_trivially_dead_insns (rtx insns, int nreg)
6847 {
6848 int *counts;
6849 rtx insn, prev;
6850 rtx *replacements = NULL;
6851 int ndead = 0;
6852
6853 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6854 /* First count the number of times each register is used. */
6855 if (MAY_HAVE_DEBUG_INSNS)
6856 {
6857 counts = XCNEWVEC (int, nreg * 3);
6858 for (insn = insns; insn; insn = NEXT_INSN (insn))
6859 if (DEBUG_INSN_P (insn))
6860 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6861 NULL_RTX, 1);
6862 else if (INSN_P (insn))
6863 {
6864 count_reg_usage (insn, counts, NULL_RTX, 1);
6865 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6866 }
6867 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6868 First one counts how many times each pseudo is used outside
6869 of debug insns, second counts how many times each pseudo is
6870 used in debug insns and third counts how many times a pseudo
6871 is stored. */
6872 }
6873 else
6874 {
6875 counts = XCNEWVEC (int, nreg);
6876 for (insn = insns; insn; insn = NEXT_INSN (insn))
6877 if (INSN_P (insn))
6878 count_reg_usage (insn, counts, NULL_RTX, 1);
6879 /* If no debug insns can be present, COUNTS is just an array
6880 which counts how many times each pseudo is used. */
6881 }
6882 /* Go from the last insn to the first and delete insns that only set unused
6883 registers or copy a register to itself. As we delete an insn, remove
6884 usage counts for registers it uses.
6885
6886 The first jump optimization pass may leave a real insn as the last
6887 insn in the function. We must not skip that insn or we may end
6888 up deleting code that is not really dead.
6889
6890 If some otherwise unused register is only used in DEBUG_INSNs,
6891 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6892 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6893 has been created for the unused register, replace it with
6894 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6895 for (insn = get_last_insn (); insn; insn = prev)
6896 {
6897 int live_insn = 0;
6898
6899 prev = PREV_INSN (insn);
6900 if (!INSN_P (insn))
6901 continue;
6902
6903 live_insn = insn_live_p (insn, counts);
6904
6905 /* If this is a dead insn, delete it and show registers in it aren't
6906 being used. */
6907
6908 if (! live_insn && dbg_cnt (delete_trivial_dead))
6909 {
6910 if (DEBUG_INSN_P (insn))
6911 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6912 NULL_RTX, -1);
6913 else
6914 {
6915 rtx set;
6916 if (MAY_HAVE_DEBUG_INSNS
6917 && (set = single_set (insn)) != NULL_RTX
6918 && is_dead_reg (SET_DEST (set), counts)
6919 /* Used at least once in some DEBUG_INSN. */
6920 && counts[REGNO (SET_DEST (set)) + nreg] > 0
6921 /* And set exactly once. */
6922 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6923 && !side_effects_p (SET_SRC (set))
6924 && asm_noperands (PATTERN (insn)) < 0)
6925 {
6926 rtx dval, bind;
6927
6928 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
6929 dval = make_debug_expr_from_rtl (SET_DEST (set));
6930
6931 /* Emit a debug bind insn before the insn in which
6932 reg dies. */
6933 bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
6934 DEBUG_EXPR_TREE_DECL (dval),
6935 SET_SRC (set),
6936 VAR_INIT_STATUS_INITIALIZED);
6937 count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
6938
6939 bind = emit_debug_insn_before (bind, insn);
6940 df_insn_rescan (bind);
6941
6942 if (replacements == NULL)
6943 replacements = XCNEWVEC (rtx, nreg);
6944 replacements[REGNO (SET_DEST (set))] = dval;
6945 }
6946
6947 count_reg_usage (insn, counts, NULL_RTX, -1);
6948 ndead++;
6949 }
6950 delete_insn_and_edges (insn);
6951 }
6952 }
6953
6954 if (MAY_HAVE_DEBUG_INSNS)
6955 {
6956 struct dead_debug_insn_data ddid;
6957 ddid.counts = counts;
6958 ddid.replacements = replacements;
6959 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
6960 if (DEBUG_INSN_P (insn))
6961 {
6962 /* If this debug insn references a dead register that wasn't replaced
6963 with an DEBUG_EXPR, reset the DEBUG_INSN. */
6964 ddid.seen_repl = false;
6965 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
6966 is_dead_debug_insn, &ddid))
6967 {
6968 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
6969 df_insn_rescan (insn);
6970 }
6971 else if (ddid.seen_repl)
6972 {
6973 INSN_VAR_LOCATION_LOC (insn)
6974 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
6975 NULL_RTX, replace_dead_reg,
6976 replacements);
6977 df_insn_rescan (insn);
6978 }
6979 }
6980 if (replacements)
6981 free (replacements);
6982 }
6983
6984 if (dump_file && ndead)
6985 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6986 ndead);
6987 /* Clean up. */
6988 free (counts);
6989 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6990 return ndead;
6991 }
6992
6993 /* This function is called via for_each_rtx. The argument, NEWREG, is
6994 a condition code register with the desired mode. If we are looking
6995 at the same register in a different mode, replace it with
6996 NEWREG. */
6997
6998 static int
6999 cse_change_cc_mode (rtx *loc, void *data)
7000 {
7001 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7002
7003 if (*loc
7004 && REG_P (*loc)
7005 && REGNO (*loc) == REGNO (args->newreg)
7006 && GET_MODE (*loc) != GET_MODE (args->newreg))
7007 {
7008 validate_change (args->insn, loc, args->newreg, 1);
7009
7010 return -1;
7011 }
7012 return 0;
7013 }
7014
7015 /* Change the mode of any reference to the register REGNO (NEWREG) to
7016 GET_MODE (NEWREG) in INSN. */
7017
7018 static void
7019 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7020 {
7021 struct change_cc_mode_args args;
7022 int success;
7023
7024 if (!INSN_P (insn))
7025 return;
7026
7027 args.insn = insn;
7028 args.newreg = newreg;
7029
7030 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7031 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7032
7033 /* If the following assertion was triggered, there is most probably
7034 something wrong with the cc_modes_compatible back end function.
7035 CC modes only can be considered compatible if the insn - with the mode
7036 replaced by any of the compatible modes - can still be recognized. */
7037 success = apply_change_group ();
7038 gcc_assert (success);
7039 }
7040
7041 /* Change the mode of any reference to the register REGNO (NEWREG) to
7042 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7043 any instruction which modifies NEWREG. */
7044
7045 static void
7046 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7047 {
7048 rtx insn;
7049
7050 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7051 {
7052 if (! INSN_P (insn))
7053 continue;
7054
7055 if (reg_set_p (newreg, insn))
7056 return;
7057
7058 cse_change_cc_mode_insn (insn, newreg);
7059 }
7060 }
7061
7062 /* BB is a basic block which finishes with CC_REG as a condition code
7063 register which is set to CC_SRC. Look through the successors of BB
7064 to find blocks which have a single predecessor (i.e., this one),
7065 and look through those blocks for an assignment to CC_REG which is
7066 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7067 permitted to change the mode of CC_SRC to a compatible mode. This
7068 returns VOIDmode if no equivalent assignments were found.
7069 Otherwise it returns the mode which CC_SRC should wind up with.
7070 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7071 but is passed unmodified down to recursive calls in order to prevent
7072 endless recursion.
7073
7074 The main complexity in this function is handling the mode issues.
7075 We may have more than one duplicate which we can eliminate, and we
7076 try to find a mode which will work for multiple duplicates. */
7077
7078 static enum machine_mode
7079 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7080 bool can_change_mode)
7081 {
7082 bool found_equiv;
7083 enum machine_mode mode;
7084 unsigned int insn_count;
7085 edge e;
7086 rtx insns[2];
7087 enum machine_mode modes[2];
7088 rtx last_insns[2];
7089 unsigned int i;
7090 rtx newreg;
7091 edge_iterator ei;
7092
7093 /* We expect to have two successors. Look at both before picking
7094 the final mode for the comparison. If we have more successors
7095 (i.e., some sort of table jump, although that seems unlikely),
7096 then we require all beyond the first two to use the same
7097 mode. */
7098
7099 found_equiv = false;
7100 mode = GET_MODE (cc_src);
7101 insn_count = 0;
7102 FOR_EACH_EDGE (e, ei, bb->succs)
7103 {
7104 rtx insn;
7105 rtx end;
7106
7107 if (e->flags & EDGE_COMPLEX)
7108 continue;
7109
7110 if (EDGE_COUNT (e->dest->preds) != 1
7111 || e->dest == EXIT_BLOCK_PTR
7112 /* Avoid endless recursion on unreachable blocks. */
7113 || e->dest == orig_bb)
7114 continue;
7115
7116 end = NEXT_INSN (BB_END (e->dest));
7117 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7118 {
7119 rtx set;
7120
7121 if (! INSN_P (insn))
7122 continue;
7123
7124 /* If CC_SRC is modified, we have to stop looking for
7125 something which uses it. */
7126 if (modified_in_p (cc_src, insn))
7127 break;
7128
7129 /* Check whether INSN sets CC_REG to CC_SRC. */
7130 set = single_set (insn);
7131 if (set
7132 && REG_P (SET_DEST (set))
7133 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7134 {
7135 bool found;
7136 enum machine_mode set_mode;
7137 enum machine_mode comp_mode;
7138
7139 found = false;
7140 set_mode = GET_MODE (SET_SRC (set));
7141 comp_mode = set_mode;
7142 if (rtx_equal_p (cc_src, SET_SRC (set)))
7143 found = true;
7144 else if (GET_CODE (cc_src) == COMPARE
7145 && GET_CODE (SET_SRC (set)) == COMPARE
7146 && mode != set_mode
7147 && rtx_equal_p (XEXP (cc_src, 0),
7148 XEXP (SET_SRC (set), 0))
7149 && rtx_equal_p (XEXP (cc_src, 1),
7150 XEXP (SET_SRC (set), 1)))
7151
7152 {
7153 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7154 if (comp_mode != VOIDmode
7155 && (can_change_mode || comp_mode == mode))
7156 found = true;
7157 }
7158
7159 if (found)
7160 {
7161 found_equiv = true;
7162 if (insn_count < ARRAY_SIZE (insns))
7163 {
7164 insns[insn_count] = insn;
7165 modes[insn_count] = set_mode;
7166 last_insns[insn_count] = end;
7167 ++insn_count;
7168
7169 if (mode != comp_mode)
7170 {
7171 gcc_assert (can_change_mode);
7172 mode = comp_mode;
7173
7174 /* The modified insn will be re-recognized later. */
7175 PUT_MODE (cc_src, mode);
7176 }
7177 }
7178 else
7179 {
7180 if (set_mode != mode)
7181 {
7182 /* We found a matching expression in the
7183 wrong mode, but we don't have room to
7184 store it in the array. Punt. This case
7185 should be rare. */
7186 break;
7187 }
7188 /* INSN sets CC_REG to a value equal to CC_SRC
7189 with the right mode. We can simply delete
7190 it. */
7191 delete_insn (insn);
7192 }
7193
7194 /* We found an instruction to delete. Keep looking,
7195 in the hopes of finding a three-way jump. */
7196 continue;
7197 }
7198
7199 /* We found an instruction which sets the condition
7200 code, so don't look any farther. */
7201 break;
7202 }
7203
7204 /* If INSN sets CC_REG in some other way, don't look any
7205 farther. */
7206 if (reg_set_p (cc_reg, insn))
7207 break;
7208 }
7209
7210 /* If we fell off the bottom of the block, we can keep looking
7211 through successors. We pass CAN_CHANGE_MODE as false because
7212 we aren't prepared to handle compatibility between the
7213 further blocks and this block. */
7214 if (insn == end)
7215 {
7216 enum machine_mode submode;
7217
7218 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7219 if (submode != VOIDmode)
7220 {
7221 gcc_assert (submode == mode);
7222 found_equiv = true;
7223 can_change_mode = false;
7224 }
7225 }
7226 }
7227
7228 if (! found_equiv)
7229 return VOIDmode;
7230
7231 /* Now INSN_COUNT is the number of instructions we found which set
7232 CC_REG to a value equivalent to CC_SRC. The instructions are in
7233 INSNS. The modes used by those instructions are in MODES. */
7234
7235 newreg = NULL_RTX;
7236 for (i = 0; i < insn_count; ++i)
7237 {
7238 if (modes[i] != mode)
7239 {
7240 /* We need to change the mode of CC_REG in INSNS[i] and
7241 subsequent instructions. */
7242 if (! newreg)
7243 {
7244 if (GET_MODE (cc_reg) == mode)
7245 newreg = cc_reg;
7246 else
7247 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7248 }
7249 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7250 newreg);
7251 }
7252
7253 delete_insn_and_edges (insns[i]);
7254 }
7255
7256 return mode;
7257 }
7258
7259 /* If we have a fixed condition code register (or two), walk through
7260 the instructions and try to eliminate duplicate assignments. */
7261
7262 static void
7263 cse_condition_code_reg (void)
7264 {
7265 unsigned int cc_regno_1;
7266 unsigned int cc_regno_2;
7267 rtx cc_reg_1;
7268 rtx cc_reg_2;
7269 basic_block bb;
7270
7271 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7272 return;
7273
7274 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7275 if (cc_regno_2 != INVALID_REGNUM)
7276 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7277 else
7278 cc_reg_2 = NULL_RTX;
7279
7280 FOR_EACH_BB (bb)
7281 {
7282 rtx last_insn;
7283 rtx cc_reg;
7284 rtx insn;
7285 rtx cc_src_insn;
7286 rtx cc_src;
7287 enum machine_mode mode;
7288 enum machine_mode orig_mode;
7289
7290 /* Look for blocks which end with a conditional jump based on a
7291 condition code register. Then look for the instruction which
7292 sets the condition code register. Then look through the
7293 successor blocks for instructions which set the condition
7294 code register to the same value. There are other possible
7295 uses of the condition code register, but these are by far the
7296 most common and the ones which we are most likely to be able
7297 to optimize. */
7298
7299 last_insn = BB_END (bb);
7300 if (!JUMP_P (last_insn))
7301 continue;
7302
7303 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7304 cc_reg = cc_reg_1;
7305 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7306 cc_reg = cc_reg_2;
7307 else
7308 continue;
7309
7310 cc_src_insn = NULL_RTX;
7311 cc_src = NULL_RTX;
7312 for (insn = PREV_INSN (last_insn);
7313 insn && insn != PREV_INSN (BB_HEAD (bb));
7314 insn = PREV_INSN (insn))
7315 {
7316 rtx set;
7317
7318 if (! INSN_P (insn))
7319 continue;
7320 set = single_set (insn);
7321 if (set
7322 && REG_P (SET_DEST (set))
7323 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7324 {
7325 cc_src_insn = insn;
7326 cc_src = SET_SRC (set);
7327 break;
7328 }
7329 else if (reg_set_p (cc_reg, insn))
7330 break;
7331 }
7332
7333 if (! cc_src_insn)
7334 continue;
7335
7336 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7337 continue;
7338
7339 /* Now CC_REG is a condition code register used for a
7340 conditional jump at the end of the block, and CC_SRC, in
7341 CC_SRC_INSN, is the value to which that condition code
7342 register is set, and CC_SRC is still meaningful at the end of
7343 the basic block. */
7344
7345 orig_mode = GET_MODE (cc_src);
7346 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7347 if (mode != VOIDmode)
7348 {
7349 gcc_assert (mode == GET_MODE (cc_src));
7350 if (mode != orig_mode)
7351 {
7352 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7353
7354 cse_change_cc_mode_insn (cc_src_insn, newreg);
7355
7356 /* Do the same in the following insns that use the
7357 current value of CC_REG within BB. */
7358 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7359 NEXT_INSN (last_insn),
7360 newreg);
7361 }
7362 }
7363 }
7364 }
7365 \f
7366
7367 /* Perform common subexpression elimination. Nonzero value from
7368 `cse_main' means that jumps were simplified and some code may now
7369 be unreachable, so do jump optimization again. */
7370 static bool
7371 gate_handle_cse (void)
7372 {
7373 return optimize > 0;
7374 }
7375
7376 static unsigned int
7377 rest_of_handle_cse (void)
7378 {
7379 int tem;
7380
7381 if (dump_file)
7382 dump_flow_info (dump_file, dump_flags);
7383
7384 tem = cse_main (get_insns (), max_reg_num ());
7385
7386 /* If we are not running more CSE passes, then we are no longer
7387 expecting CSE to be run. But always rerun it in a cheap mode. */
7388 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7389
7390 if (tem == 2)
7391 {
7392 timevar_push (TV_JUMP);
7393 rebuild_jump_labels (get_insns ());
7394 cleanup_cfg (0);
7395 timevar_pop (TV_JUMP);
7396 }
7397 else if (tem == 1 || optimize > 1)
7398 cleanup_cfg (0);
7399
7400 return 0;
7401 }
7402
7403 struct rtl_opt_pass pass_cse =
7404 {
7405 {
7406 RTL_PASS,
7407 "cse1", /* name */
7408 gate_handle_cse, /* gate */
7409 rest_of_handle_cse, /* execute */
7410 NULL, /* sub */
7411 NULL, /* next */
7412 0, /* static_pass_number */
7413 TV_CSE, /* tv_id */
7414 0, /* properties_required */
7415 0, /* properties_provided */
7416 0, /* properties_destroyed */
7417 0, /* todo_flags_start */
7418 TODO_df_finish | TODO_verify_rtl_sharing |
7419 TODO_dump_func |
7420 TODO_ggc_collect |
7421 TODO_verify_flow, /* todo_flags_finish */
7422 }
7423 };
7424
7425
7426 static bool
7427 gate_handle_cse2 (void)
7428 {
7429 return optimize > 0 && flag_rerun_cse_after_loop;
7430 }
7431
7432 /* Run second CSE pass after loop optimizations. */
7433 static unsigned int
7434 rest_of_handle_cse2 (void)
7435 {
7436 int tem;
7437
7438 if (dump_file)
7439 dump_flow_info (dump_file, dump_flags);
7440
7441 tem = cse_main (get_insns (), max_reg_num ());
7442
7443 /* Run a pass to eliminate duplicated assignments to condition code
7444 registers. We have to run this after bypass_jumps, because it
7445 makes it harder for that pass to determine whether a jump can be
7446 bypassed safely. */
7447 cse_condition_code_reg ();
7448
7449 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7450
7451 if (tem == 2)
7452 {
7453 timevar_push (TV_JUMP);
7454 rebuild_jump_labels (get_insns ());
7455 cleanup_cfg (0);
7456 timevar_pop (TV_JUMP);
7457 }
7458 else if (tem == 1)
7459 cleanup_cfg (0);
7460
7461 cse_not_expected = 1;
7462 return 0;
7463 }
7464
7465
7466 struct rtl_opt_pass pass_cse2 =
7467 {
7468 {
7469 RTL_PASS,
7470 "cse2", /* name */
7471 gate_handle_cse2, /* gate */
7472 rest_of_handle_cse2, /* execute */
7473 NULL, /* sub */
7474 NULL, /* next */
7475 0, /* static_pass_number */
7476 TV_CSE2, /* tv_id */
7477 0, /* properties_required */
7478 0, /* properties_provided */
7479 0, /* properties_destroyed */
7480 0, /* todo_flags_start */
7481 TODO_df_finish | TODO_verify_rtl_sharing |
7482 TODO_dump_func |
7483 TODO_ggc_collect |
7484 TODO_verify_flow /* todo_flags_finish */
7485 }
7486 };
7487
7488 static bool
7489 gate_handle_cse_after_global_opts (void)
7490 {
7491 return optimize > 0 && flag_rerun_cse_after_global_opts;
7492 }
7493
7494 /* Run second CSE pass after loop optimizations. */
7495 static unsigned int
7496 rest_of_handle_cse_after_global_opts (void)
7497 {
7498 int save_cfj;
7499 int tem;
7500
7501 /* We only want to do local CSE, so don't follow jumps. */
7502 save_cfj = flag_cse_follow_jumps;
7503 flag_cse_follow_jumps = 0;
7504
7505 rebuild_jump_labels (get_insns ());
7506 tem = cse_main (get_insns (), max_reg_num ());
7507 purge_all_dead_edges ();
7508 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7509
7510 cse_not_expected = !flag_rerun_cse_after_loop;
7511
7512 /* If cse altered any jumps, rerun jump opts to clean things up. */
7513 if (tem == 2)
7514 {
7515 timevar_push (TV_JUMP);
7516 rebuild_jump_labels (get_insns ());
7517 cleanup_cfg (0);
7518 timevar_pop (TV_JUMP);
7519 }
7520 else if (tem == 1)
7521 cleanup_cfg (0);
7522
7523 flag_cse_follow_jumps = save_cfj;
7524 return 0;
7525 }
7526
7527 struct rtl_opt_pass pass_cse_after_global_opts =
7528 {
7529 {
7530 RTL_PASS,
7531 "cse_local", /* name */
7532 gate_handle_cse_after_global_opts, /* gate */
7533 rest_of_handle_cse_after_global_opts, /* execute */
7534 NULL, /* sub */
7535 NULL, /* next */
7536 0, /* static_pass_number */
7537 TV_CSE, /* tv_id */
7538 0, /* properties_required */
7539 0, /* properties_provided */
7540 0, /* properties_destroyed */
7541 0, /* todo_flags_start */
7542 TODO_df_finish | TODO_verify_rtl_sharing |
7543 TODO_dump_func |
7544 TODO_ggc_collect |
7545 TODO_verify_flow /* todo_flags_finish */
7546 }
7547 };