4683c7f779b86e72793fbf60e83f5953ce367e28
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "timevar.h"
41 #include "except.h"
42 #include "target.h"
43 #include "params.h"
44 #include "rtlhooks-def.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "dbgcnt.h"
48
49 /* The basic idea of common subexpression elimination is to go
50 through the code, keeping a record of expressions that would
51 have the same value at the current scan point, and replacing
52 expressions encountered with the cheapest equivalent expression.
53
54 It is too complicated to keep track of the different possibilities
55 when control paths merge in this code; so, at each label, we forget all
56 that is known and start fresh. This can be described as processing each
57 extended basic block separately. We have a separate pass to perform
58 global CSE.
59
60 Note CSE can turn a conditional or computed jump into a nop or
61 an unconditional jump. When this occurs we arrange to run the jump
62 optimizer after CSE to delete the unreachable code.
63
64 We use two data structures to record the equivalent expressions:
65 a hash table for most expressions, and a vector of "quantity
66 numbers" to record equivalent (pseudo) registers.
67
68 The use of the special data structure for registers is desirable
69 because it is faster. It is possible because registers references
70 contain a fairly small number, the register number, taken from
71 a contiguously allocated series, and two register references are
72 identical if they have the same number. General expressions
73 do not have any such thing, so the only way to retrieve the
74 information recorded on an expression other than a register
75 is to keep it in a hash table.
76
77 Registers and "quantity numbers":
78
79 At the start of each basic block, all of the (hardware and pseudo)
80 registers used in the function are given distinct quantity
81 numbers to indicate their contents. During scan, when the code
82 copies one register into another, we copy the quantity number.
83 When a register is loaded in any other way, we allocate a new
84 quantity number to describe the value generated by this operation.
85 `REG_QTY (N)' records what quantity register N is currently thought
86 of as containing.
87
88 All real quantity numbers are greater than or equal to zero.
89 If register N has not been assigned a quantity, `REG_QTY (N)' will
90 equal -N - 1, which is always negative.
91
92 Quantity numbers below zero do not exist and none of the `qty_table'
93 entries should be referenced with a negative index.
94
95 We also maintain a bidirectional chain of registers for each
96 quantity number. The `qty_table` members `first_reg' and `last_reg',
97 and `reg_eqv_table' members `next' and `prev' hold these chains.
98
99 The first register in a chain is the one whose lifespan is least local.
100 Among equals, it is the one that was seen first.
101 We replace any equivalent register with that one.
102
103 If two registers have the same quantity number, it must be true that
104 REG expressions with qty_table `mode' must be in the hash table for both
105 registers and must be in the same class.
106
107 The converse is not true. Since hard registers may be referenced in
108 any mode, two REG expressions might be equivalent in the hash table
109 but not have the same quantity number if the quantity number of one
110 of the registers is not the same mode as those expressions.
111
112 Constants and quantity numbers
113
114 When a quantity has a known constant value, that value is stored
115 in the appropriate qty_table `const_rtx'. This is in addition to
116 putting the constant in the hash table as is usual for non-regs.
117
118 Whether a reg or a constant is preferred is determined by the configuration
119 macro CONST_COSTS and will often depend on the constant value. In any
120 event, expressions containing constants can be simplified, by fold_rtx.
121
122 When a quantity has a known nearly constant value (such as an address
123 of a stack slot), that value is stored in the appropriate qty_table
124 `const_rtx'.
125
126 Integer constants don't have a machine mode. However, cse
127 determines the intended machine mode from the destination
128 of the instruction that moves the constant. The machine mode
129 is recorded in the hash table along with the actual RTL
130 constant expression so that different modes are kept separate.
131
132 Other expressions:
133
134 To record known equivalences among expressions in general
135 we use a hash table called `table'. It has a fixed number of buckets
136 that contain chains of `struct table_elt' elements for expressions.
137 These chains connect the elements whose expressions have the same
138 hash codes.
139
140 Other chains through the same elements connect the elements which
141 currently have equivalent values.
142
143 Register references in an expression are canonicalized before hashing
144 the expression. This is done using `reg_qty' and qty_table `first_reg'.
145 The hash code of a register reference is computed using the quantity
146 number, not the register number.
147
148 When the value of an expression changes, it is necessary to remove from the
149 hash table not just that expression but all expressions whose values
150 could be different as a result.
151
152 1. If the value changing is in memory, except in special cases
153 ANYTHING referring to memory could be changed. That is because
154 nobody knows where a pointer does not point.
155 The function `invalidate_memory' removes what is necessary.
156
157 The special cases are when the address is constant or is
158 a constant plus a fixed register such as the frame pointer
159 or a static chain pointer. When such addresses are stored in,
160 we can tell exactly which other such addresses must be invalidated
161 due to overlap. `invalidate' does this.
162 All expressions that refer to non-constant
163 memory addresses are also invalidated. `invalidate_memory' does this.
164
165 2. If the value changing is a register, all expressions
166 containing references to that register, and only those,
167 must be removed.
168
169 Because searching the entire hash table for expressions that contain
170 a register is very slow, we try to figure out when it isn't necessary.
171 Precisely, this is necessary only when expressions have been
172 entered in the hash table using this register, and then the value has
173 changed, and then another expression wants to be added to refer to
174 the register's new value. This sequence of circumstances is rare
175 within any one basic block.
176
177 `REG_TICK' and `REG_IN_TABLE', accessors for members of
178 cse_reg_info, are used to detect this case. REG_TICK (i) is
179 incremented whenever a value is stored in register i.
180 REG_IN_TABLE (i) holds -1 if no references to register i have been
181 entered in the table; otherwise, it contains the value REG_TICK (i)
182 had when the references were entered. If we want to enter a
183 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184 remove old references. Until we want to enter a new entry, the
185 mere fact that the two vectors don't match makes the entries be
186 ignored if anyone tries to match them.
187
188 Registers themselves are entered in the hash table as well as in
189 the equivalent-register chains. However, `REG_TICK' and
190 `REG_IN_TABLE' do not apply to expressions which are simple
191 register references. These expressions are removed from the table
192 immediately when they become invalid, and this can be done even if
193 we do not immediately search for all the expressions that refer to
194 the register.
195
196 A CLOBBER rtx in an instruction invalidates its operand for further
197 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
198 invalidates everything that resides in memory.
199
200 Related expressions:
201
202 Constant expressions that differ only by an additive integer
203 are called related. When a constant expression is put in
204 the table, the related expression with no constant term
205 is also entered. These are made to point at each other
206 so that it is possible to find out if there exists any
207 register equivalent to an expression related to a given expression. */
208
209 /* Length of qty_table vector. We know in advance we will not need
210 a quantity number this big. */
211
212 static int max_qty;
213
214 /* Next quantity number to be allocated.
215 This is 1 + the largest number needed so far. */
216
217 static int next_qty;
218
219 /* Per-qty information tracking.
220
221 `first_reg' and `last_reg' track the head and tail of the
222 chain of registers which currently contain this quantity.
223
224 `mode' contains the machine mode of this quantity.
225
226 `const_rtx' holds the rtx of the constant value of this
227 quantity, if known. A summations of the frame/arg pointer
228 and a constant can also be entered here. When this holds
229 a known value, `const_insn' is the insn which stored the
230 constant value.
231
232 `comparison_{code,const,qty}' are used to track when a
233 comparison between a quantity and some constant or register has
234 been passed. In such a case, we know the results of the comparison
235 in case we see it again. These members record a comparison that
236 is known to be true. `comparison_code' holds the rtx code of such
237 a comparison, else it is set to UNKNOWN and the other two
238 comparison members are undefined. `comparison_const' holds
239 the constant being compared against, or zero if the comparison
240 is not against a constant. `comparison_qty' holds the quantity
241 being compared against when the result is known. If the comparison
242 is not with a register, `comparison_qty' is -1. */
243
244 struct qty_table_elem
245 {
246 rtx const_rtx;
247 rtx const_insn;
248 rtx comparison_const;
249 int comparison_qty;
250 unsigned int first_reg, last_reg;
251 /* The sizes of these fields should match the sizes of the
252 code and mode fields of struct rtx_def (see rtl.h). */
253 ENUM_BITFIELD(rtx_code) comparison_code : 16;
254 ENUM_BITFIELD(machine_mode) mode : 8;
255 };
256
257 /* The table of all qtys, indexed by qty number. */
258 static struct qty_table_elem *qty_table;
259
260 /* Structure used to pass arguments via for_each_rtx to function
261 cse_change_cc_mode. */
262 struct change_cc_mode_args
263 {
264 rtx insn;
265 rtx newreg;
266 };
267
268 #ifdef HAVE_cc0
269 /* For machines that have a CC0, we do not record its value in the hash
270 table since its use is guaranteed to be the insn immediately following
271 its definition and any other insn is presumed to invalidate it.
272
273 Instead, we store below the current and last value assigned to CC0.
274 If it should happen to be a constant, it is stored in preference
275 to the actual assigned value. In case it is a constant, we store
276 the mode in which the constant should be interpreted. */
277
278 static rtx this_insn_cc0, prev_insn_cc0;
279 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
280 #endif
281
282 /* Insn being scanned. */
283
284 static rtx this_insn;
285 static bool optimize_this_for_speed_p;
286
287 /* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
289 value.
290
291 Or -1 if this register is at the end of the chain.
292
293 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
294
295 /* Per-register equivalence chain. */
296 struct reg_eqv_elem
297 {
298 int next, prev;
299 };
300
301 /* The table of all register equivalence chains. */
302 static struct reg_eqv_elem *reg_eqv_table;
303
304 struct cse_reg_info
305 {
306 /* The timestamp at which this register is initialized. */
307 unsigned int timestamp;
308
309 /* The quantity number of the register's current contents. */
310 int reg_qty;
311
312 /* The number of times the register has been altered in the current
313 basic block. */
314 int reg_tick;
315
316 /* The REG_TICK value at which rtx's containing this register are
317 valid in the hash table. If this does not equal the current
318 reg_tick value, such expressions existing in the hash table are
319 invalid. */
320 int reg_in_table;
321
322 /* The SUBREG that was set when REG_TICK was last incremented. Set
323 to -1 if the last store was to the whole register, not a subreg. */
324 unsigned int subreg_ticked;
325 };
326
327 /* A table of cse_reg_info indexed by register numbers. */
328 static struct cse_reg_info *cse_reg_info_table;
329
330 /* The size of the above table. */
331 static unsigned int cse_reg_info_table_size;
332
333 /* The index of the first entry that has not been initialized. */
334 static unsigned int cse_reg_info_table_first_uninitialized;
335
336 /* The timestamp at the beginning of the current run of
337 cse_extended_basic_block. We increment this variable at the beginning of
338 the current run of cse_extended_basic_block. The timestamp field of a
339 cse_reg_info entry matches the value of this variable if and only
340 if the entry has been initialized during the current run of
341 cse_extended_basic_block. */
342 static unsigned int cse_reg_info_timestamp;
343
344 /* A HARD_REG_SET containing all the hard registers for which there is
345 currently a REG expression in the hash table. Note the difference
346 from the above variables, which indicate if the REG is mentioned in some
347 expression in the table. */
348
349 static HARD_REG_SET hard_regs_in_table;
350
351 /* True if CSE has altered the CFG. */
352 static bool cse_cfg_altered;
353
354 /* True if CSE has altered conditional jump insns in such a way
355 that jump optimization should be redone. */
356 static bool cse_jumps_altered;
357
358 /* True if we put a LABEL_REF into the hash table for an INSN
359 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
360 to put in the note. */
361 static bool recorded_label_ref;
362
363 /* canon_hash stores 1 in do_not_record
364 if it notices a reference to CC0, PC, or some other volatile
365 subexpression. */
366
367 static int do_not_record;
368
369 /* canon_hash stores 1 in hash_arg_in_memory
370 if it notices a reference to memory within the expression being hashed. */
371
372 static int hash_arg_in_memory;
373
374 /* The hash table contains buckets which are chains of `struct table_elt's,
375 each recording one expression's information.
376 That expression is in the `exp' field.
377
378 The canon_exp field contains a canonical (from the point of view of
379 alias analysis) version of the `exp' field.
380
381 Those elements with the same hash code are chained in both directions
382 through the `next_same_hash' and `prev_same_hash' fields.
383
384 Each set of expressions with equivalent values
385 are on a two-way chain through the `next_same_value'
386 and `prev_same_value' fields, and all point with
387 the `first_same_value' field at the first element in
388 that chain. The chain is in order of increasing cost.
389 Each element's cost value is in its `cost' field.
390
391 The `in_memory' field is nonzero for elements that
392 involve any reference to memory. These elements are removed
393 whenever a write is done to an unidentified location in memory.
394 To be safe, we assume that a memory address is unidentified unless
395 the address is either a symbol constant or a constant plus
396 the frame pointer or argument pointer.
397
398 The `related_value' field is used to connect related expressions
399 (that differ by adding an integer).
400 The related expressions are chained in a circular fashion.
401 `related_value' is zero for expressions for which this
402 chain is not useful.
403
404 The `cost' field stores the cost of this element's expression.
405 The `regcost' field stores the value returned by approx_reg_cost for
406 this element's expression.
407
408 The `is_const' flag is set if the element is a constant (including
409 a fixed address).
410
411 The `flag' field is used as a temporary during some search routines.
412
413 The `mode' field is usually the same as GET_MODE (`exp'), but
414 if `exp' is a CONST_INT and has no machine mode then the `mode'
415 field is the mode it was being used as. Each constant is
416 recorded separately for each mode it is used with. */
417
418 struct table_elt
419 {
420 rtx exp;
421 rtx canon_exp;
422 struct table_elt *next_same_hash;
423 struct table_elt *prev_same_hash;
424 struct table_elt *next_same_value;
425 struct table_elt *prev_same_value;
426 struct table_elt *first_same_value;
427 struct table_elt *related_value;
428 int cost;
429 int regcost;
430 /* The size of this field should match the size
431 of the mode field of struct rtx_def (see rtl.h). */
432 ENUM_BITFIELD(machine_mode) mode : 8;
433 char in_memory;
434 char is_const;
435 char flag;
436 };
437
438 /* We don't want a lot of buckets, because we rarely have very many
439 things stored in the hash table, and a lot of buckets slows
440 down a lot of loops that happen frequently. */
441 #define HASH_SHIFT 5
442 #define HASH_SIZE (1 << HASH_SHIFT)
443 #define HASH_MASK (HASH_SIZE - 1)
444
445 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
446 register (hard registers may require `do_not_record' to be set). */
447
448 #define HASH(X, M) \
449 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
450 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
451 : canon_hash (X, M)) & HASH_MASK)
452
453 /* Like HASH, but without side-effects. */
454 #define SAFE_HASH(X, M) \
455 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
456 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
457 : safe_hash (X, M)) & HASH_MASK)
458
459 /* Determine whether register number N is considered a fixed register for the
460 purpose of approximating register costs.
461 It is desirable to replace other regs with fixed regs, to reduce need for
462 non-fixed hard regs.
463 A reg wins if it is either the frame pointer or designated as fixed. */
464 #define FIXED_REGNO_P(N) \
465 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
466 || fixed_regs[N] || global_regs[N])
467
468 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
469 hard registers and pointers into the frame are the cheapest with a cost
470 of 0. Next come pseudos with a cost of one and other hard registers with
471 a cost of 2. Aside from these special cases, call `rtx_cost'. */
472
473 #define CHEAP_REGNO(N) \
474 (REGNO_PTR_FRAME_P(N) \
475 || (HARD_REGISTER_NUM_P (N) \
476 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
477
478 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
479 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
480
481 /* Get the number of times this register has been updated in this
482 basic block. */
483
484 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
485
486 /* Get the point at which REG was recorded in the table. */
487
488 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
489
490 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
491 SUBREG). */
492
493 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
494
495 /* Get the quantity number for REG. */
496
497 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
498
499 /* Determine if the quantity number for register X represents a valid index
500 into the qty_table. */
501
502 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
503
504 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
505
506 #define CHEAPER(X, Y) \
507 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
508
509 static struct table_elt *table[HASH_SIZE];
510
511 /* Chain of `struct table_elt's made so far for this function
512 but currently removed from the table. */
513
514 static struct table_elt *free_element_chain;
515
516 /* Set to the cost of a constant pool reference if one was found for a
517 symbolic constant. If this was found, it means we should try to
518 convert constants into constant pool entries if they don't fit in
519 the insn. */
520
521 static int constant_pool_entries_cost;
522 static int constant_pool_entries_regcost;
523
524 /* Trace a patch through the CFG. */
525
526 struct branch_path
527 {
528 /* The basic block for this path entry. */
529 basic_block bb;
530 };
531
532 /* This data describes a block that will be processed by
533 cse_extended_basic_block. */
534
535 struct cse_basic_block_data
536 {
537 /* Total number of SETs in block. */
538 int nsets;
539 /* Size of current branch path, if any. */
540 int path_size;
541 /* Current path, indicating which basic_blocks will be processed. */
542 struct branch_path *path;
543 };
544
545
546 /* Pointers to the live in/live out bitmaps for the boundaries of the
547 current EBB. */
548 static bitmap cse_ebb_live_in, cse_ebb_live_out;
549
550 /* A simple bitmap to track which basic blocks have been visited
551 already as part of an already processed extended basic block. */
552 static sbitmap cse_visited_basic_blocks;
553
554 static bool fixed_base_plus_p (rtx x);
555 static int notreg_cost (rtx, enum rtx_code);
556 static int approx_reg_cost_1 (rtx *, void *);
557 static int approx_reg_cost (rtx);
558 static int preferable (int, int, int, int);
559 static void new_basic_block (void);
560 static void make_new_qty (unsigned int, enum machine_mode);
561 static void make_regs_eqv (unsigned int, unsigned int);
562 static void delete_reg_equiv (unsigned int);
563 static int mention_regs (rtx);
564 static int insert_regs (rtx, struct table_elt *, int);
565 static void remove_from_table (struct table_elt *, unsigned);
566 static void remove_pseudo_from_table (rtx, unsigned);
567 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
568 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
569 static rtx lookup_as_function (rtx, enum rtx_code);
570 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
571 enum machine_mode, int, int);
572 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
573 enum machine_mode);
574 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
575 static void invalidate (rtx, enum machine_mode);
576 static bool cse_rtx_varies_p (const_rtx, bool);
577 static void remove_invalid_refs (unsigned int);
578 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
579 enum machine_mode);
580 static void rehash_using_reg (rtx);
581 static void invalidate_memory (void);
582 static void invalidate_for_call (void);
583 static rtx use_related_value (rtx, struct table_elt *);
584
585 static inline unsigned canon_hash (rtx, enum machine_mode);
586 static inline unsigned safe_hash (rtx, enum machine_mode);
587 static inline unsigned hash_rtx_string (const char *);
588
589 static rtx canon_reg (rtx, rtx);
590 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
591 enum machine_mode *,
592 enum machine_mode *);
593 static rtx fold_rtx (rtx, rtx);
594 static rtx equiv_constant (rtx);
595 static void record_jump_equiv (rtx, bool);
596 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
597 int);
598 static void cse_insn (rtx);
599 static void cse_prescan_path (struct cse_basic_block_data *);
600 static void invalidate_from_clobbers (rtx);
601 static rtx cse_process_notes (rtx, rtx, bool *);
602 static void cse_extended_basic_block (struct cse_basic_block_data *);
603 static void count_reg_usage (rtx, int *, rtx, int);
604 static int check_for_label_ref (rtx *, void *);
605 extern void dump_class (struct table_elt*);
606 static void get_cse_reg_info_1 (unsigned int regno);
607 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
608 static int check_dependence (rtx *, void *);
609
610 static void flush_hash_table (void);
611 static bool insn_live_p (rtx, int *);
612 static bool set_live_p (rtx, rtx, int *);
613 static int cse_change_cc_mode (rtx *, void *);
614 static void cse_change_cc_mode_insn (rtx, rtx);
615 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
616 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
617 bool);
618 \f
619
620 #undef RTL_HOOKS_GEN_LOWPART
621 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
622
623 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
624 \f
625 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
626 virtual regs here because the simplify_*_operation routines are called
627 by integrate.c, which is called before virtual register instantiation. */
628
629 static bool
630 fixed_base_plus_p (rtx x)
631 {
632 switch (GET_CODE (x))
633 {
634 case REG:
635 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
636 return true;
637 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
638 return true;
639 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
640 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
641 return true;
642 return false;
643
644 case PLUS:
645 if (!CONST_INT_P (XEXP (x, 1)))
646 return false;
647 return fixed_base_plus_p (XEXP (x, 0));
648
649 default:
650 return false;
651 }
652 }
653
654 /* Dump the expressions in the equivalence class indicated by CLASSP.
655 This function is used only for debugging. */
656 void
657 dump_class (struct table_elt *classp)
658 {
659 struct table_elt *elt;
660
661 fprintf (stderr, "Equivalence chain for ");
662 print_rtl (stderr, classp->exp);
663 fprintf (stderr, ": \n");
664
665 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
666 {
667 print_rtl (stderr, elt->exp);
668 fprintf (stderr, "\n");
669 }
670 }
671
672 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
673
674 static int
675 approx_reg_cost_1 (rtx *xp, void *data)
676 {
677 rtx x = *xp;
678 int *cost_p = (int *) data;
679
680 if (x && REG_P (x))
681 {
682 unsigned int regno = REGNO (x);
683
684 if (! CHEAP_REGNO (regno))
685 {
686 if (regno < FIRST_PSEUDO_REGISTER)
687 {
688 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
689 return 1;
690 *cost_p += 2;
691 }
692 else
693 *cost_p += 1;
694 }
695 }
696
697 return 0;
698 }
699
700 /* Return an estimate of the cost of the registers used in an rtx.
701 This is mostly the number of different REG expressions in the rtx;
702 however for some exceptions like fixed registers we use a cost of
703 0. If any other hard register reference occurs, return MAX_COST. */
704
705 static int
706 approx_reg_cost (rtx x)
707 {
708 int cost = 0;
709
710 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
711 return MAX_COST;
712
713 return cost;
714 }
715
716 /* Return a negative value if an rtx A, whose costs are given by COST_A
717 and REGCOST_A, is more desirable than an rtx B.
718 Return a positive value if A is less desirable, or 0 if the two are
719 equally good. */
720 static int
721 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
722 {
723 /* First, get rid of cases involving expressions that are entirely
724 unwanted. */
725 if (cost_a != cost_b)
726 {
727 if (cost_a == MAX_COST)
728 return 1;
729 if (cost_b == MAX_COST)
730 return -1;
731 }
732
733 /* Avoid extending lifetimes of hardregs. */
734 if (regcost_a != regcost_b)
735 {
736 if (regcost_a == MAX_COST)
737 return 1;
738 if (regcost_b == MAX_COST)
739 return -1;
740 }
741
742 /* Normal operation costs take precedence. */
743 if (cost_a != cost_b)
744 return cost_a - cost_b;
745 /* Only if these are identical consider effects on register pressure. */
746 if (regcost_a != regcost_b)
747 return regcost_a - regcost_b;
748 return 0;
749 }
750
751 /* Internal function, to compute cost when X is not a register; called
752 from COST macro to keep it simple. */
753
754 static int
755 notreg_cost (rtx x, enum rtx_code outer)
756 {
757 return ((GET_CODE (x) == SUBREG
758 && REG_P (SUBREG_REG (x))
759 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
760 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
761 && (GET_MODE_SIZE (GET_MODE (x))
762 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
763 && subreg_lowpart_p (x)
764 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
765 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
766 ? 0
767 : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
768 }
769
770 \f
771 /* Initialize CSE_REG_INFO_TABLE. */
772
773 static void
774 init_cse_reg_info (unsigned int nregs)
775 {
776 /* Do we need to grow the table? */
777 if (nregs > cse_reg_info_table_size)
778 {
779 unsigned int new_size;
780
781 if (cse_reg_info_table_size < 2048)
782 {
783 /* Compute a new size that is a power of 2 and no smaller
784 than the large of NREGS and 64. */
785 new_size = (cse_reg_info_table_size
786 ? cse_reg_info_table_size : 64);
787
788 while (new_size < nregs)
789 new_size *= 2;
790 }
791 else
792 {
793 /* If we need a big table, allocate just enough to hold
794 NREGS registers. */
795 new_size = nregs;
796 }
797
798 /* Reallocate the table with NEW_SIZE entries. */
799 if (cse_reg_info_table)
800 free (cse_reg_info_table);
801 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
802 cse_reg_info_table_size = new_size;
803 cse_reg_info_table_first_uninitialized = 0;
804 }
805
806 /* Do we have all of the first NREGS entries initialized? */
807 if (cse_reg_info_table_first_uninitialized < nregs)
808 {
809 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
810 unsigned int i;
811
812 /* Put the old timestamp on newly allocated entries so that they
813 will all be considered out of date. We do not touch those
814 entries beyond the first NREGS entries to be nice to the
815 virtual memory. */
816 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
817 cse_reg_info_table[i].timestamp = old_timestamp;
818
819 cse_reg_info_table_first_uninitialized = nregs;
820 }
821 }
822
823 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
824
825 static void
826 get_cse_reg_info_1 (unsigned int regno)
827 {
828 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
829 entry will be considered to have been initialized. */
830 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
831
832 /* Initialize the rest of the entry. */
833 cse_reg_info_table[regno].reg_tick = 1;
834 cse_reg_info_table[regno].reg_in_table = -1;
835 cse_reg_info_table[regno].subreg_ticked = -1;
836 cse_reg_info_table[regno].reg_qty = -regno - 1;
837 }
838
839 /* Find a cse_reg_info entry for REGNO. */
840
841 static inline struct cse_reg_info *
842 get_cse_reg_info (unsigned int regno)
843 {
844 struct cse_reg_info *p = &cse_reg_info_table[regno];
845
846 /* If this entry has not been initialized, go ahead and initialize
847 it. */
848 if (p->timestamp != cse_reg_info_timestamp)
849 get_cse_reg_info_1 (regno);
850
851 return p;
852 }
853
854 /* Clear the hash table and initialize each register with its own quantity,
855 for a new basic block. */
856
857 static void
858 new_basic_block (void)
859 {
860 int i;
861
862 next_qty = 0;
863
864 /* Invalidate cse_reg_info_table. */
865 cse_reg_info_timestamp++;
866
867 /* Clear out hash table state for this pass. */
868 CLEAR_HARD_REG_SET (hard_regs_in_table);
869
870 /* The per-quantity values used to be initialized here, but it is
871 much faster to initialize each as it is made in `make_new_qty'. */
872
873 for (i = 0; i < HASH_SIZE; i++)
874 {
875 struct table_elt *first;
876
877 first = table[i];
878 if (first != NULL)
879 {
880 struct table_elt *last = first;
881
882 table[i] = NULL;
883
884 while (last->next_same_hash != NULL)
885 last = last->next_same_hash;
886
887 /* Now relink this hash entire chain into
888 the free element list. */
889
890 last->next_same_hash = free_element_chain;
891 free_element_chain = first;
892 }
893 }
894
895 #ifdef HAVE_cc0
896 prev_insn_cc0 = 0;
897 #endif
898 }
899
900 /* Say that register REG contains a quantity in mode MODE not in any
901 register before and initialize that quantity. */
902
903 static void
904 make_new_qty (unsigned int reg, enum machine_mode mode)
905 {
906 int q;
907 struct qty_table_elem *ent;
908 struct reg_eqv_elem *eqv;
909
910 gcc_assert (next_qty < max_qty);
911
912 q = REG_QTY (reg) = next_qty++;
913 ent = &qty_table[q];
914 ent->first_reg = reg;
915 ent->last_reg = reg;
916 ent->mode = mode;
917 ent->const_rtx = ent->const_insn = NULL_RTX;
918 ent->comparison_code = UNKNOWN;
919
920 eqv = &reg_eqv_table[reg];
921 eqv->next = eqv->prev = -1;
922 }
923
924 /* Make reg NEW equivalent to reg OLD.
925 OLD is not changing; NEW is. */
926
927 static void
928 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
929 {
930 unsigned int lastr, firstr;
931 int q = REG_QTY (old_reg);
932 struct qty_table_elem *ent;
933
934 ent = &qty_table[q];
935
936 /* Nothing should become eqv until it has a "non-invalid" qty number. */
937 gcc_assert (REGNO_QTY_VALID_P (old_reg));
938
939 REG_QTY (new_reg) = q;
940 firstr = ent->first_reg;
941 lastr = ent->last_reg;
942
943 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
944 hard regs. Among pseudos, if NEW will live longer than any other reg
945 of the same qty, and that is beyond the current basic block,
946 make it the new canonical replacement for this qty. */
947 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
948 /* Certain fixed registers might be of the class NO_REGS. This means
949 that not only can they not be allocated by the compiler, but
950 they cannot be used in substitutions or canonicalizations
951 either. */
952 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
953 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
954 || (new_reg >= FIRST_PSEUDO_REGISTER
955 && (firstr < FIRST_PSEUDO_REGISTER
956 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
957 && !bitmap_bit_p (cse_ebb_live_out, firstr))
958 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
959 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
960 {
961 reg_eqv_table[firstr].prev = new_reg;
962 reg_eqv_table[new_reg].next = firstr;
963 reg_eqv_table[new_reg].prev = -1;
964 ent->first_reg = new_reg;
965 }
966 else
967 {
968 /* If NEW is a hard reg (known to be non-fixed), insert at end.
969 Otherwise, insert before any non-fixed hard regs that are at the
970 end. Registers of class NO_REGS cannot be used as an
971 equivalent for anything. */
972 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
973 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
974 && new_reg >= FIRST_PSEUDO_REGISTER)
975 lastr = reg_eqv_table[lastr].prev;
976 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
977 if (reg_eqv_table[lastr].next >= 0)
978 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
979 else
980 qty_table[q].last_reg = new_reg;
981 reg_eqv_table[lastr].next = new_reg;
982 reg_eqv_table[new_reg].prev = lastr;
983 }
984 }
985
986 /* Remove REG from its equivalence class. */
987
988 static void
989 delete_reg_equiv (unsigned int reg)
990 {
991 struct qty_table_elem *ent;
992 int q = REG_QTY (reg);
993 int p, n;
994
995 /* If invalid, do nothing. */
996 if (! REGNO_QTY_VALID_P (reg))
997 return;
998
999 ent = &qty_table[q];
1000
1001 p = reg_eqv_table[reg].prev;
1002 n = reg_eqv_table[reg].next;
1003
1004 if (n != -1)
1005 reg_eqv_table[n].prev = p;
1006 else
1007 ent->last_reg = p;
1008 if (p != -1)
1009 reg_eqv_table[p].next = n;
1010 else
1011 ent->first_reg = n;
1012
1013 REG_QTY (reg) = -reg - 1;
1014 }
1015
1016 /* Remove any invalid expressions from the hash table
1017 that refer to any of the registers contained in expression X.
1018
1019 Make sure that newly inserted references to those registers
1020 as subexpressions will be considered valid.
1021
1022 mention_regs is not called when a register itself
1023 is being stored in the table.
1024
1025 Return 1 if we have done something that may have changed the hash code
1026 of X. */
1027
1028 static int
1029 mention_regs (rtx x)
1030 {
1031 enum rtx_code code;
1032 int i, j;
1033 const char *fmt;
1034 int changed = 0;
1035
1036 if (x == 0)
1037 return 0;
1038
1039 code = GET_CODE (x);
1040 if (code == REG)
1041 {
1042 unsigned int regno = REGNO (x);
1043 unsigned int endregno = END_REGNO (x);
1044 unsigned int i;
1045
1046 for (i = regno; i < endregno; i++)
1047 {
1048 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1049 remove_invalid_refs (i);
1050
1051 REG_IN_TABLE (i) = REG_TICK (i);
1052 SUBREG_TICKED (i) = -1;
1053 }
1054
1055 return 0;
1056 }
1057
1058 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1059 pseudo if they don't use overlapping words. We handle only pseudos
1060 here for simplicity. */
1061 if (code == SUBREG && REG_P (SUBREG_REG (x))
1062 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1063 {
1064 unsigned int i = REGNO (SUBREG_REG (x));
1065
1066 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1067 {
1068 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1069 the last store to this register really stored into this
1070 subreg, then remove the memory of this subreg.
1071 Otherwise, remove any memory of the entire register and
1072 all its subregs from the table. */
1073 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1074 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1075 remove_invalid_refs (i);
1076 else
1077 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1078 }
1079
1080 REG_IN_TABLE (i) = REG_TICK (i);
1081 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1082 return 0;
1083 }
1084
1085 /* If X is a comparison or a COMPARE and either operand is a register
1086 that does not have a quantity, give it one. This is so that a later
1087 call to record_jump_equiv won't cause X to be assigned a different
1088 hash code and not found in the table after that call.
1089
1090 It is not necessary to do this here, since rehash_using_reg can
1091 fix up the table later, but doing this here eliminates the need to
1092 call that expensive function in the most common case where the only
1093 use of the register is in the comparison. */
1094
1095 if (code == COMPARE || COMPARISON_P (x))
1096 {
1097 if (REG_P (XEXP (x, 0))
1098 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1099 if (insert_regs (XEXP (x, 0), NULL, 0))
1100 {
1101 rehash_using_reg (XEXP (x, 0));
1102 changed = 1;
1103 }
1104
1105 if (REG_P (XEXP (x, 1))
1106 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1107 if (insert_regs (XEXP (x, 1), NULL, 0))
1108 {
1109 rehash_using_reg (XEXP (x, 1));
1110 changed = 1;
1111 }
1112 }
1113
1114 fmt = GET_RTX_FORMAT (code);
1115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1116 if (fmt[i] == 'e')
1117 changed |= mention_regs (XEXP (x, i));
1118 else if (fmt[i] == 'E')
1119 for (j = 0; j < XVECLEN (x, i); j++)
1120 changed |= mention_regs (XVECEXP (x, i, j));
1121
1122 return changed;
1123 }
1124
1125 /* Update the register quantities for inserting X into the hash table
1126 with a value equivalent to CLASSP.
1127 (If the class does not contain a REG, it is irrelevant.)
1128 If MODIFIED is nonzero, X is a destination; it is being modified.
1129 Note that delete_reg_equiv should be called on a register
1130 before insert_regs is done on that register with MODIFIED != 0.
1131
1132 Nonzero value means that elements of reg_qty have changed
1133 so X's hash code may be different. */
1134
1135 static int
1136 insert_regs (rtx x, struct table_elt *classp, int modified)
1137 {
1138 if (REG_P (x))
1139 {
1140 unsigned int regno = REGNO (x);
1141 int qty_valid;
1142
1143 /* If REGNO is in the equivalence table already but is of the
1144 wrong mode for that equivalence, don't do anything here. */
1145
1146 qty_valid = REGNO_QTY_VALID_P (regno);
1147 if (qty_valid)
1148 {
1149 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1150
1151 if (ent->mode != GET_MODE (x))
1152 return 0;
1153 }
1154
1155 if (modified || ! qty_valid)
1156 {
1157 if (classp)
1158 for (classp = classp->first_same_value;
1159 classp != 0;
1160 classp = classp->next_same_value)
1161 if (REG_P (classp->exp)
1162 && GET_MODE (classp->exp) == GET_MODE (x))
1163 {
1164 unsigned c_regno = REGNO (classp->exp);
1165
1166 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1167
1168 /* Suppose that 5 is hard reg and 100 and 101 are
1169 pseudos. Consider
1170
1171 (set (reg:si 100) (reg:si 5))
1172 (set (reg:si 5) (reg:si 100))
1173 (set (reg:di 101) (reg:di 5))
1174
1175 We would now set REG_QTY (101) = REG_QTY (5), but the
1176 entry for 5 is in SImode. When we use this later in
1177 copy propagation, we get the register in wrong mode. */
1178 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1179 continue;
1180
1181 make_regs_eqv (regno, c_regno);
1182 return 1;
1183 }
1184
1185 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1186 than REG_IN_TABLE to find out if there was only a single preceding
1187 invalidation - for the SUBREG - or another one, which would be
1188 for the full register. However, if we find here that REG_TICK
1189 indicates that the register is invalid, it means that it has
1190 been invalidated in a separate operation. The SUBREG might be used
1191 now (then this is a recursive call), or we might use the full REG
1192 now and a SUBREG of it later. So bump up REG_TICK so that
1193 mention_regs will do the right thing. */
1194 if (! modified
1195 && REG_IN_TABLE (regno) >= 0
1196 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1197 REG_TICK (regno)++;
1198 make_new_qty (regno, GET_MODE (x));
1199 return 1;
1200 }
1201
1202 return 0;
1203 }
1204
1205 /* If X is a SUBREG, we will likely be inserting the inner register in the
1206 table. If that register doesn't have an assigned quantity number at
1207 this point but does later, the insertion that we will be doing now will
1208 not be accessible because its hash code will have changed. So assign
1209 a quantity number now. */
1210
1211 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1212 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1213 {
1214 insert_regs (SUBREG_REG (x), NULL, 0);
1215 mention_regs (x);
1216 return 1;
1217 }
1218 else
1219 return mention_regs (x);
1220 }
1221 \f
1222
1223 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1224 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1225 CST is equal to an anchor. */
1226
1227 static bool
1228 compute_const_anchors (rtx cst,
1229 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1230 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1231 {
1232 HOST_WIDE_INT n = INTVAL (cst);
1233
1234 *lower_base = n & ~(targetm.const_anchor - 1);
1235 if (*lower_base == n)
1236 return false;
1237
1238 *upper_base =
1239 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1240 *upper_offs = n - *upper_base;
1241 *lower_offs = n - *lower_base;
1242 return true;
1243 }
1244
1245 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1246
1247 static void
1248 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1249 enum machine_mode mode)
1250 {
1251 struct table_elt *elt;
1252 unsigned hash;
1253 rtx anchor_exp;
1254 rtx exp;
1255
1256 anchor_exp = GEN_INT (anchor);
1257 hash = HASH (anchor_exp, mode);
1258 elt = lookup (anchor_exp, hash, mode);
1259 if (!elt)
1260 elt = insert (anchor_exp, NULL, hash, mode);
1261
1262 exp = plus_constant (reg, offs);
1263 /* REG has just been inserted and the hash codes recomputed. */
1264 mention_regs (exp);
1265 hash = HASH (exp, mode);
1266
1267 /* Use the cost of the register rather than the whole expression. When
1268 looking up constant anchors we will further offset the corresponding
1269 expression therefore it does not make sense to prefer REGs over
1270 reg-immediate additions. Prefer instead the oldest expression. Also
1271 don't prefer pseudos over hard regs so that we derive constants in
1272 argument registers from other argument registers rather than from the
1273 original pseudo that was used to synthesize the constant. */
1274 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1275 }
1276
1277 /* The constant CST is equivalent to the register REG. Create
1278 equivalences between the two anchors of CST and the corresponding
1279 register-offset expressions using REG. */
1280
1281 static void
1282 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1283 {
1284 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1285
1286 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1287 &upper_base, &upper_offs))
1288 return;
1289
1290 /* Ignore anchors of value 0. Constants accessible from zero are
1291 simple. */
1292 if (lower_base != 0)
1293 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1294
1295 if (upper_base != 0)
1296 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1297 }
1298
1299 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1300 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1301 valid expression. Return the cheapest and oldest of such expressions. In
1302 *OLD, return how old the resulting expression is compared to the other
1303 equivalent expressions. */
1304
1305 static rtx
1306 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1307 unsigned *old)
1308 {
1309 struct table_elt *elt;
1310 unsigned idx;
1311 struct table_elt *match_elt;
1312 rtx match;
1313
1314 /* Find the cheapest and *oldest* expression to maximize the chance of
1315 reusing the same pseudo. */
1316
1317 match_elt = NULL;
1318 match = NULL_RTX;
1319 for (elt = anchor_elt->first_same_value, idx = 0;
1320 elt;
1321 elt = elt->next_same_value, idx++)
1322 {
1323 if (match_elt && CHEAPER (match_elt, elt))
1324 return match;
1325
1326 if (REG_P (elt->exp)
1327 || (GET_CODE (elt->exp) == PLUS
1328 && REG_P (XEXP (elt->exp, 0))
1329 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1330 {
1331 rtx x;
1332
1333 /* Ignore expressions that are no longer valid. */
1334 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1335 continue;
1336
1337 x = plus_constant (elt->exp, offs);
1338 if (REG_P (x)
1339 || (GET_CODE (x) == PLUS
1340 && IN_RANGE (INTVAL (XEXP (x, 1)),
1341 -targetm.const_anchor,
1342 targetm.const_anchor - 1)))
1343 {
1344 match = x;
1345 match_elt = elt;
1346 *old = idx;
1347 }
1348 }
1349 }
1350
1351 return match;
1352 }
1353
1354 /* Try to express the constant SRC_CONST using a register+offset expression
1355 derived from a constant anchor. Return it if successful or NULL_RTX,
1356 otherwise. */
1357
1358 static rtx
1359 try_const_anchors (rtx src_const, enum machine_mode mode)
1360 {
1361 struct table_elt *lower_elt, *upper_elt;
1362 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1363 rtx lower_anchor_rtx, upper_anchor_rtx;
1364 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1365 unsigned lower_old, upper_old;
1366
1367 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1368 &upper_base, &upper_offs))
1369 return NULL_RTX;
1370
1371 lower_anchor_rtx = GEN_INT (lower_base);
1372 upper_anchor_rtx = GEN_INT (upper_base);
1373 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1374 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1375
1376 if (lower_elt)
1377 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1378 if (upper_elt)
1379 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1380
1381 if (!lower_exp)
1382 return upper_exp;
1383 if (!upper_exp)
1384 return lower_exp;
1385
1386 /* Return the older expression. */
1387 return (upper_old > lower_old ? upper_exp : lower_exp);
1388 }
1389 \f
1390 /* Look in or update the hash table. */
1391
1392 /* Remove table element ELT from use in the table.
1393 HASH is its hash code, made using the HASH macro.
1394 It's an argument because often that is known in advance
1395 and we save much time not recomputing it. */
1396
1397 static void
1398 remove_from_table (struct table_elt *elt, unsigned int hash)
1399 {
1400 if (elt == 0)
1401 return;
1402
1403 /* Mark this element as removed. See cse_insn. */
1404 elt->first_same_value = 0;
1405
1406 /* Remove the table element from its equivalence class. */
1407
1408 {
1409 struct table_elt *prev = elt->prev_same_value;
1410 struct table_elt *next = elt->next_same_value;
1411
1412 if (next)
1413 next->prev_same_value = prev;
1414
1415 if (prev)
1416 prev->next_same_value = next;
1417 else
1418 {
1419 struct table_elt *newfirst = next;
1420 while (next)
1421 {
1422 next->first_same_value = newfirst;
1423 next = next->next_same_value;
1424 }
1425 }
1426 }
1427
1428 /* Remove the table element from its hash bucket. */
1429
1430 {
1431 struct table_elt *prev = elt->prev_same_hash;
1432 struct table_elt *next = elt->next_same_hash;
1433
1434 if (next)
1435 next->prev_same_hash = prev;
1436
1437 if (prev)
1438 prev->next_same_hash = next;
1439 else if (table[hash] == elt)
1440 table[hash] = next;
1441 else
1442 {
1443 /* This entry is not in the proper hash bucket. This can happen
1444 when two classes were merged by `merge_equiv_classes'. Search
1445 for the hash bucket that it heads. This happens only very
1446 rarely, so the cost is acceptable. */
1447 for (hash = 0; hash < HASH_SIZE; hash++)
1448 if (table[hash] == elt)
1449 table[hash] = next;
1450 }
1451 }
1452
1453 /* Remove the table element from its related-value circular chain. */
1454
1455 if (elt->related_value != 0 && elt->related_value != elt)
1456 {
1457 struct table_elt *p = elt->related_value;
1458
1459 while (p->related_value != elt)
1460 p = p->related_value;
1461 p->related_value = elt->related_value;
1462 if (p->related_value == p)
1463 p->related_value = 0;
1464 }
1465
1466 /* Now add it to the free element chain. */
1467 elt->next_same_hash = free_element_chain;
1468 free_element_chain = elt;
1469 }
1470
1471 /* Same as above, but X is a pseudo-register. */
1472
1473 static void
1474 remove_pseudo_from_table (rtx x, unsigned int hash)
1475 {
1476 struct table_elt *elt;
1477
1478 /* Because a pseudo-register can be referenced in more than one
1479 mode, we might have to remove more than one table entry. */
1480 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1481 remove_from_table (elt, hash);
1482 }
1483
1484 /* Look up X in the hash table and return its table element,
1485 or 0 if X is not in the table.
1486
1487 MODE is the machine-mode of X, or if X is an integer constant
1488 with VOIDmode then MODE is the mode with which X will be used.
1489
1490 Here we are satisfied to find an expression whose tree structure
1491 looks like X. */
1492
1493 static struct table_elt *
1494 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1495 {
1496 struct table_elt *p;
1497
1498 for (p = table[hash]; p; p = p->next_same_hash)
1499 if (mode == p->mode && ((x == p->exp && REG_P (x))
1500 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1501 return p;
1502
1503 return 0;
1504 }
1505
1506 /* Like `lookup' but don't care whether the table element uses invalid regs.
1507 Also ignore discrepancies in the machine mode of a register. */
1508
1509 static struct table_elt *
1510 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1511 {
1512 struct table_elt *p;
1513
1514 if (REG_P (x))
1515 {
1516 unsigned int regno = REGNO (x);
1517
1518 /* Don't check the machine mode when comparing registers;
1519 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1520 for (p = table[hash]; p; p = p->next_same_hash)
1521 if (REG_P (p->exp)
1522 && REGNO (p->exp) == regno)
1523 return p;
1524 }
1525 else
1526 {
1527 for (p = table[hash]; p; p = p->next_same_hash)
1528 if (mode == p->mode
1529 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1530 return p;
1531 }
1532
1533 return 0;
1534 }
1535
1536 /* Look for an expression equivalent to X and with code CODE.
1537 If one is found, return that expression. */
1538
1539 static rtx
1540 lookup_as_function (rtx x, enum rtx_code code)
1541 {
1542 struct table_elt *p
1543 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1544
1545 if (p == 0)
1546 return 0;
1547
1548 for (p = p->first_same_value; p; p = p->next_same_value)
1549 if (GET_CODE (p->exp) == code
1550 /* Make sure this is a valid entry in the table. */
1551 && exp_equiv_p (p->exp, p->exp, 1, false))
1552 return p->exp;
1553
1554 return 0;
1555 }
1556
1557 /* Insert X in the hash table, assuming HASH is its hash code and
1558 CLASSP is an element of the class it should go in (or 0 if a new
1559 class should be made). COST is the code of X and reg_cost is the
1560 cost of registers in X. It is inserted at the proper position to
1561 keep the class in the order cheapest first.
1562
1563 MODE is the machine-mode of X, or if X is an integer constant
1564 with VOIDmode then MODE is the mode with which X will be used.
1565
1566 For elements of equal cheapness, the most recent one
1567 goes in front, except that the first element in the list
1568 remains first unless a cheaper element is added. The order of
1569 pseudo-registers does not matter, as canon_reg will be called to
1570 find the cheapest when a register is retrieved from the table.
1571
1572 The in_memory field in the hash table element is set to 0.
1573 The caller must set it nonzero if appropriate.
1574
1575 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1576 and if insert_regs returns a nonzero value
1577 you must then recompute its hash code before calling here.
1578
1579 If necessary, update table showing constant values of quantities. */
1580
1581 static struct table_elt *
1582 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1583 enum machine_mode mode, int cost, int reg_cost)
1584 {
1585 struct table_elt *elt;
1586
1587 /* If X is a register and we haven't made a quantity for it,
1588 something is wrong. */
1589 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1590
1591 /* If X is a hard register, show it is being put in the table. */
1592 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1593 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1594
1595 /* Put an element for X into the right hash bucket. */
1596
1597 elt = free_element_chain;
1598 if (elt)
1599 free_element_chain = elt->next_same_hash;
1600 else
1601 elt = XNEW (struct table_elt);
1602
1603 elt->exp = x;
1604 elt->canon_exp = NULL_RTX;
1605 elt->cost = cost;
1606 elt->regcost = reg_cost;
1607 elt->next_same_value = 0;
1608 elt->prev_same_value = 0;
1609 elt->next_same_hash = table[hash];
1610 elt->prev_same_hash = 0;
1611 elt->related_value = 0;
1612 elt->in_memory = 0;
1613 elt->mode = mode;
1614 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1615
1616 if (table[hash])
1617 table[hash]->prev_same_hash = elt;
1618 table[hash] = elt;
1619
1620 /* Put it into the proper value-class. */
1621 if (classp)
1622 {
1623 classp = classp->first_same_value;
1624 if (CHEAPER (elt, classp))
1625 /* Insert at the head of the class. */
1626 {
1627 struct table_elt *p;
1628 elt->next_same_value = classp;
1629 classp->prev_same_value = elt;
1630 elt->first_same_value = elt;
1631
1632 for (p = classp; p; p = p->next_same_value)
1633 p->first_same_value = elt;
1634 }
1635 else
1636 {
1637 /* Insert not at head of the class. */
1638 /* Put it after the last element cheaper than X. */
1639 struct table_elt *p, *next;
1640
1641 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1642 p = next);
1643
1644 /* Put it after P and before NEXT. */
1645 elt->next_same_value = next;
1646 if (next)
1647 next->prev_same_value = elt;
1648
1649 elt->prev_same_value = p;
1650 p->next_same_value = elt;
1651 elt->first_same_value = classp;
1652 }
1653 }
1654 else
1655 elt->first_same_value = elt;
1656
1657 /* If this is a constant being set equivalent to a register or a register
1658 being set equivalent to a constant, note the constant equivalence.
1659
1660 If this is a constant, it cannot be equivalent to a different constant,
1661 and a constant is the only thing that can be cheaper than a register. So
1662 we know the register is the head of the class (before the constant was
1663 inserted).
1664
1665 If this is a register that is not already known equivalent to a
1666 constant, we must check the entire class.
1667
1668 If this is a register that is already known equivalent to an insn,
1669 update the qtys `const_insn' to show that `this_insn' is the latest
1670 insn making that quantity equivalent to the constant. */
1671
1672 if (elt->is_const && classp && REG_P (classp->exp)
1673 && !REG_P (x))
1674 {
1675 int exp_q = REG_QTY (REGNO (classp->exp));
1676 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1677
1678 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1679 exp_ent->const_insn = this_insn;
1680 }
1681
1682 else if (REG_P (x)
1683 && classp
1684 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1685 && ! elt->is_const)
1686 {
1687 struct table_elt *p;
1688
1689 for (p = classp; p != 0; p = p->next_same_value)
1690 {
1691 if (p->is_const && !REG_P (p->exp))
1692 {
1693 int x_q = REG_QTY (REGNO (x));
1694 struct qty_table_elem *x_ent = &qty_table[x_q];
1695
1696 x_ent->const_rtx
1697 = gen_lowpart (GET_MODE (x), p->exp);
1698 x_ent->const_insn = this_insn;
1699 break;
1700 }
1701 }
1702 }
1703
1704 else if (REG_P (x)
1705 && qty_table[REG_QTY (REGNO (x))].const_rtx
1706 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1707 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1708
1709 /* If this is a constant with symbolic value,
1710 and it has a term with an explicit integer value,
1711 link it up with related expressions. */
1712 if (GET_CODE (x) == CONST)
1713 {
1714 rtx subexp = get_related_value (x);
1715 unsigned subhash;
1716 struct table_elt *subelt, *subelt_prev;
1717
1718 if (subexp != 0)
1719 {
1720 /* Get the integer-free subexpression in the hash table. */
1721 subhash = SAFE_HASH (subexp, mode);
1722 subelt = lookup (subexp, subhash, mode);
1723 if (subelt == 0)
1724 subelt = insert (subexp, NULL, subhash, mode);
1725 /* Initialize SUBELT's circular chain if it has none. */
1726 if (subelt->related_value == 0)
1727 subelt->related_value = subelt;
1728 /* Find the element in the circular chain that precedes SUBELT. */
1729 subelt_prev = subelt;
1730 while (subelt_prev->related_value != subelt)
1731 subelt_prev = subelt_prev->related_value;
1732 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1733 This way the element that follows SUBELT is the oldest one. */
1734 elt->related_value = subelt_prev->related_value;
1735 subelt_prev->related_value = elt;
1736 }
1737 }
1738
1739 return elt;
1740 }
1741
1742 /* Wrap insert_with_costs by passing the default costs. */
1743
1744 static struct table_elt *
1745 insert (rtx x, struct table_elt *classp, unsigned int hash,
1746 enum machine_mode mode)
1747 {
1748 return
1749 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1750 }
1751
1752 \f
1753 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1754 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1755 the two classes equivalent.
1756
1757 CLASS1 will be the surviving class; CLASS2 should not be used after this
1758 call.
1759
1760 Any invalid entries in CLASS2 will not be copied. */
1761
1762 static void
1763 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1764 {
1765 struct table_elt *elt, *next, *new_elt;
1766
1767 /* Ensure we start with the head of the classes. */
1768 class1 = class1->first_same_value;
1769 class2 = class2->first_same_value;
1770
1771 /* If they were already equal, forget it. */
1772 if (class1 == class2)
1773 return;
1774
1775 for (elt = class2; elt; elt = next)
1776 {
1777 unsigned int hash;
1778 rtx exp = elt->exp;
1779 enum machine_mode mode = elt->mode;
1780
1781 next = elt->next_same_value;
1782
1783 /* Remove old entry, make a new one in CLASS1's class.
1784 Don't do this for invalid entries as we cannot find their
1785 hash code (it also isn't necessary). */
1786 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1787 {
1788 bool need_rehash = false;
1789
1790 hash_arg_in_memory = 0;
1791 hash = HASH (exp, mode);
1792
1793 if (REG_P (exp))
1794 {
1795 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1796 delete_reg_equiv (REGNO (exp));
1797 }
1798
1799 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1800 remove_pseudo_from_table (exp, hash);
1801 else
1802 remove_from_table (elt, hash);
1803
1804 if (insert_regs (exp, class1, 0) || need_rehash)
1805 {
1806 rehash_using_reg (exp);
1807 hash = HASH (exp, mode);
1808 }
1809 new_elt = insert (exp, class1, hash, mode);
1810 new_elt->in_memory = hash_arg_in_memory;
1811 }
1812 }
1813 }
1814 \f
1815 /* Flush the entire hash table. */
1816
1817 static void
1818 flush_hash_table (void)
1819 {
1820 int i;
1821 struct table_elt *p;
1822
1823 for (i = 0; i < HASH_SIZE; i++)
1824 for (p = table[i]; p; p = table[i])
1825 {
1826 /* Note that invalidate can remove elements
1827 after P in the current hash chain. */
1828 if (REG_P (p->exp))
1829 invalidate (p->exp, VOIDmode);
1830 else
1831 remove_from_table (p, i);
1832 }
1833 }
1834 \f
1835 /* Function called for each rtx to check whether true dependence exist. */
1836 struct check_dependence_data
1837 {
1838 enum machine_mode mode;
1839 rtx exp;
1840 rtx addr;
1841 };
1842
1843 static int
1844 check_dependence (rtx *x, void *data)
1845 {
1846 struct check_dependence_data *d = (struct check_dependence_data *) data;
1847 if (*x && MEM_P (*x))
1848 return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX,
1849 cse_rtx_varies_p);
1850 else
1851 return 0;
1852 }
1853 \f
1854 /* Remove from the hash table, or mark as invalid, all expressions whose
1855 values could be altered by storing in X. X is a register, a subreg, or
1856 a memory reference with nonvarying address (because, when a memory
1857 reference with a varying address is stored in, all memory references are
1858 removed by invalidate_memory so specific invalidation is superfluous).
1859 FULL_MODE, if not VOIDmode, indicates that this much should be
1860 invalidated instead of just the amount indicated by the mode of X. This
1861 is only used for bitfield stores into memory.
1862
1863 A nonvarying address may be just a register or just a symbol reference,
1864 or it may be either of those plus a numeric offset. */
1865
1866 static void
1867 invalidate (rtx x, enum machine_mode full_mode)
1868 {
1869 int i;
1870 struct table_elt *p;
1871 rtx addr;
1872
1873 switch (GET_CODE (x))
1874 {
1875 case REG:
1876 {
1877 /* If X is a register, dependencies on its contents are recorded
1878 through the qty number mechanism. Just change the qty number of
1879 the register, mark it as invalid for expressions that refer to it,
1880 and remove it itself. */
1881 unsigned int regno = REGNO (x);
1882 unsigned int hash = HASH (x, GET_MODE (x));
1883
1884 /* Remove REGNO from any quantity list it might be on and indicate
1885 that its value might have changed. If it is a pseudo, remove its
1886 entry from the hash table.
1887
1888 For a hard register, we do the first two actions above for any
1889 additional hard registers corresponding to X. Then, if any of these
1890 registers are in the table, we must remove any REG entries that
1891 overlap these registers. */
1892
1893 delete_reg_equiv (regno);
1894 REG_TICK (regno)++;
1895 SUBREG_TICKED (regno) = -1;
1896
1897 if (regno >= FIRST_PSEUDO_REGISTER)
1898 remove_pseudo_from_table (x, hash);
1899 else
1900 {
1901 HOST_WIDE_INT in_table
1902 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1903 unsigned int endregno = END_HARD_REGNO (x);
1904 unsigned int tregno, tendregno, rn;
1905 struct table_elt *p, *next;
1906
1907 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1908
1909 for (rn = regno + 1; rn < endregno; rn++)
1910 {
1911 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1912 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1913 delete_reg_equiv (rn);
1914 REG_TICK (rn)++;
1915 SUBREG_TICKED (rn) = -1;
1916 }
1917
1918 if (in_table)
1919 for (hash = 0; hash < HASH_SIZE; hash++)
1920 for (p = table[hash]; p; p = next)
1921 {
1922 next = p->next_same_hash;
1923
1924 if (!REG_P (p->exp)
1925 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1926 continue;
1927
1928 tregno = REGNO (p->exp);
1929 tendregno = END_HARD_REGNO (p->exp);
1930 if (tendregno > regno && tregno < endregno)
1931 remove_from_table (p, hash);
1932 }
1933 }
1934 }
1935 return;
1936
1937 case SUBREG:
1938 invalidate (SUBREG_REG (x), VOIDmode);
1939 return;
1940
1941 case PARALLEL:
1942 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1943 invalidate (XVECEXP (x, 0, i), VOIDmode);
1944 return;
1945
1946 case EXPR_LIST:
1947 /* This is part of a disjoint return value; extract the location in
1948 question ignoring the offset. */
1949 invalidate (XEXP (x, 0), VOIDmode);
1950 return;
1951
1952 case MEM:
1953 addr = canon_rtx (get_addr (XEXP (x, 0)));
1954 /* Calculate the canonical version of X here so that
1955 true_dependence doesn't generate new RTL for X on each call. */
1956 x = canon_rtx (x);
1957
1958 /* Remove all hash table elements that refer to overlapping pieces of
1959 memory. */
1960 if (full_mode == VOIDmode)
1961 full_mode = GET_MODE (x);
1962
1963 for (i = 0; i < HASH_SIZE; i++)
1964 {
1965 struct table_elt *next;
1966
1967 for (p = table[i]; p; p = next)
1968 {
1969 next = p->next_same_hash;
1970 if (p->in_memory)
1971 {
1972 struct check_dependence_data d;
1973
1974 /* Just canonicalize the expression once;
1975 otherwise each time we call invalidate
1976 true_dependence will canonicalize the
1977 expression again. */
1978 if (!p->canon_exp)
1979 p->canon_exp = canon_rtx (p->exp);
1980 d.exp = x;
1981 d.addr = addr;
1982 d.mode = full_mode;
1983 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1984 remove_from_table (p, i);
1985 }
1986 }
1987 }
1988 return;
1989
1990 default:
1991 gcc_unreachable ();
1992 }
1993 }
1994 \f
1995 /* Remove all expressions that refer to register REGNO,
1996 since they are already invalid, and we are about to
1997 mark that register valid again and don't want the old
1998 expressions to reappear as valid. */
1999
2000 static void
2001 remove_invalid_refs (unsigned int regno)
2002 {
2003 unsigned int i;
2004 struct table_elt *p, *next;
2005
2006 for (i = 0; i < HASH_SIZE; i++)
2007 for (p = table[i]; p; p = next)
2008 {
2009 next = p->next_same_hash;
2010 if (!REG_P (p->exp)
2011 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2012 remove_from_table (p, i);
2013 }
2014 }
2015
2016 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2017 and mode MODE. */
2018 static void
2019 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2020 enum machine_mode mode)
2021 {
2022 unsigned int i;
2023 struct table_elt *p, *next;
2024 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2025
2026 for (i = 0; i < HASH_SIZE; i++)
2027 for (p = table[i]; p; p = next)
2028 {
2029 rtx exp = p->exp;
2030 next = p->next_same_hash;
2031
2032 if (!REG_P (exp)
2033 && (GET_CODE (exp) != SUBREG
2034 || !REG_P (SUBREG_REG (exp))
2035 || REGNO (SUBREG_REG (exp)) != regno
2036 || (((SUBREG_BYTE (exp)
2037 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2038 && SUBREG_BYTE (exp) <= end))
2039 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2040 remove_from_table (p, i);
2041 }
2042 }
2043 \f
2044 /* Recompute the hash codes of any valid entries in the hash table that
2045 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2046
2047 This is called when we make a jump equivalence. */
2048
2049 static void
2050 rehash_using_reg (rtx x)
2051 {
2052 unsigned int i;
2053 struct table_elt *p, *next;
2054 unsigned hash;
2055
2056 if (GET_CODE (x) == SUBREG)
2057 x = SUBREG_REG (x);
2058
2059 /* If X is not a register or if the register is known not to be in any
2060 valid entries in the table, we have no work to do. */
2061
2062 if (!REG_P (x)
2063 || REG_IN_TABLE (REGNO (x)) < 0
2064 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2065 return;
2066
2067 /* Scan all hash chains looking for valid entries that mention X.
2068 If we find one and it is in the wrong hash chain, move it. */
2069
2070 for (i = 0; i < HASH_SIZE; i++)
2071 for (p = table[i]; p; p = next)
2072 {
2073 next = p->next_same_hash;
2074 if (reg_mentioned_p (x, p->exp)
2075 && exp_equiv_p (p->exp, p->exp, 1, false)
2076 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2077 {
2078 if (p->next_same_hash)
2079 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2080
2081 if (p->prev_same_hash)
2082 p->prev_same_hash->next_same_hash = p->next_same_hash;
2083 else
2084 table[i] = p->next_same_hash;
2085
2086 p->next_same_hash = table[hash];
2087 p->prev_same_hash = 0;
2088 if (table[hash])
2089 table[hash]->prev_same_hash = p;
2090 table[hash] = p;
2091 }
2092 }
2093 }
2094 \f
2095 /* Remove from the hash table any expression that is a call-clobbered
2096 register. Also update their TICK values. */
2097
2098 static void
2099 invalidate_for_call (void)
2100 {
2101 unsigned int regno, endregno;
2102 unsigned int i;
2103 unsigned hash;
2104 struct table_elt *p, *next;
2105 int in_table = 0;
2106
2107 /* Go through all the hard registers. For each that is clobbered in
2108 a CALL_INSN, remove the register from quantity chains and update
2109 reg_tick if defined. Also see if any of these registers is currently
2110 in the table. */
2111
2112 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2113 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2114 {
2115 delete_reg_equiv (regno);
2116 if (REG_TICK (regno) >= 0)
2117 {
2118 REG_TICK (regno)++;
2119 SUBREG_TICKED (regno) = -1;
2120 }
2121
2122 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2123 }
2124
2125 /* In the case where we have no call-clobbered hard registers in the
2126 table, we are done. Otherwise, scan the table and remove any
2127 entry that overlaps a call-clobbered register. */
2128
2129 if (in_table)
2130 for (hash = 0; hash < HASH_SIZE; hash++)
2131 for (p = table[hash]; p; p = next)
2132 {
2133 next = p->next_same_hash;
2134
2135 if (!REG_P (p->exp)
2136 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2137 continue;
2138
2139 regno = REGNO (p->exp);
2140 endregno = END_HARD_REGNO (p->exp);
2141
2142 for (i = regno; i < endregno; i++)
2143 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2144 {
2145 remove_from_table (p, hash);
2146 break;
2147 }
2148 }
2149 }
2150 \f
2151 /* Given an expression X of type CONST,
2152 and ELT which is its table entry (or 0 if it
2153 is not in the hash table),
2154 return an alternate expression for X as a register plus integer.
2155 If none can be found, return 0. */
2156
2157 static rtx
2158 use_related_value (rtx x, struct table_elt *elt)
2159 {
2160 struct table_elt *relt = 0;
2161 struct table_elt *p, *q;
2162 HOST_WIDE_INT offset;
2163
2164 /* First, is there anything related known?
2165 If we have a table element, we can tell from that.
2166 Otherwise, must look it up. */
2167
2168 if (elt != 0 && elt->related_value != 0)
2169 relt = elt;
2170 else if (elt == 0 && GET_CODE (x) == CONST)
2171 {
2172 rtx subexp = get_related_value (x);
2173 if (subexp != 0)
2174 relt = lookup (subexp,
2175 SAFE_HASH (subexp, GET_MODE (subexp)),
2176 GET_MODE (subexp));
2177 }
2178
2179 if (relt == 0)
2180 return 0;
2181
2182 /* Search all related table entries for one that has an
2183 equivalent register. */
2184
2185 p = relt;
2186 while (1)
2187 {
2188 /* This loop is strange in that it is executed in two different cases.
2189 The first is when X is already in the table. Then it is searching
2190 the RELATED_VALUE list of X's class (RELT). The second case is when
2191 X is not in the table. Then RELT points to a class for the related
2192 value.
2193
2194 Ensure that, whatever case we are in, that we ignore classes that have
2195 the same value as X. */
2196
2197 if (rtx_equal_p (x, p->exp))
2198 q = 0;
2199 else
2200 for (q = p->first_same_value; q; q = q->next_same_value)
2201 if (REG_P (q->exp))
2202 break;
2203
2204 if (q)
2205 break;
2206
2207 p = p->related_value;
2208
2209 /* We went all the way around, so there is nothing to be found.
2210 Alternatively, perhaps RELT was in the table for some other reason
2211 and it has no related values recorded. */
2212 if (p == relt || p == 0)
2213 break;
2214 }
2215
2216 if (q == 0)
2217 return 0;
2218
2219 offset = (get_integer_term (x) - get_integer_term (p->exp));
2220 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2221 return plus_constant (q->exp, offset);
2222 }
2223 \f
2224
2225 /* Hash a string. Just add its bytes up. */
2226 static inline unsigned
2227 hash_rtx_string (const char *ps)
2228 {
2229 unsigned hash = 0;
2230 const unsigned char *p = (const unsigned char *) ps;
2231
2232 if (p)
2233 while (*p)
2234 hash += *p++;
2235
2236 return hash;
2237 }
2238
2239 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2240 When the callback returns true, we continue with the new rtx. */
2241
2242 unsigned
2243 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2244 int *do_not_record_p, int *hash_arg_in_memory_p,
2245 bool have_reg_qty, hash_rtx_callback_function cb)
2246 {
2247 int i, j;
2248 unsigned hash = 0;
2249 enum rtx_code code;
2250 const char *fmt;
2251 enum machine_mode newmode;
2252 rtx newx;
2253
2254 /* Used to turn recursion into iteration. We can't rely on GCC's
2255 tail-recursion elimination since we need to keep accumulating values
2256 in HASH. */
2257 repeat:
2258 if (x == 0)
2259 return hash;
2260
2261 /* Invoke the callback first. */
2262 if (cb != NULL
2263 && ((*cb) (x, mode, &newx, &newmode)))
2264 {
2265 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2266 hash_arg_in_memory_p, have_reg_qty, cb);
2267 return hash;
2268 }
2269
2270 code = GET_CODE (x);
2271 switch (code)
2272 {
2273 case REG:
2274 {
2275 unsigned int regno = REGNO (x);
2276
2277 if (do_not_record_p && !reload_completed)
2278 {
2279 /* On some machines, we can't record any non-fixed hard register,
2280 because extending its life will cause reload problems. We
2281 consider ap, fp, sp, gp to be fixed for this purpose.
2282
2283 We also consider CCmode registers to be fixed for this purpose;
2284 failure to do so leads to failure to simplify 0<100 type of
2285 conditionals.
2286
2287 On all machines, we can't record any global registers.
2288 Nor should we record any register that is in a small
2289 class, as defined by CLASS_LIKELY_SPILLED_P. */
2290 bool record;
2291
2292 if (regno >= FIRST_PSEUDO_REGISTER)
2293 record = true;
2294 else if (x == frame_pointer_rtx
2295 || x == hard_frame_pointer_rtx
2296 || x == arg_pointer_rtx
2297 || x == stack_pointer_rtx
2298 || x == pic_offset_table_rtx)
2299 record = true;
2300 else if (global_regs[regno])
2301 record = false;
2302 else if (fixed_regs[regno])
2303 record = true;
2304 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2305 record = true;
2306 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2307 record = false;
2308 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2309 record = false;
2310 else
2311 record = true;
2312
2313 if (!record)
2314 {
2315 *do_not_record_p = 1;
2316 return 0;
2317 }
2318 }
2319
2320 hash += ((unsigned int) REG << 7);
2321 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2322 return hash;
2323 }
2324
2325 /* We handle SUBREG of a REG specially because the underlying
2326 reg changes its hash value with every value change; we don't
2327 want to have to forget unrelated subregs when one subreg changes. */
2328 case SUBREG:
2329 {
2330 if (REG_P (SUBREG_REG (x)))
2331 {
2332 hash += (((unsigned int) SUBREG << 7)
2333 + REGNO (SUBREG_REG (x))
2334 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2335 return hash;
2336 }
2337 break;
2338 }
2339
2340 case CONST_INT:
2341 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2342 + (unsigned int) INTVAL (x));
2343 return hash;
2344
2345 case CONST_DOUBLE:
2346 /* This is like the general case, except that it only counts
2347 the integers representing the constant. */
2348 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2349 if (GET_MODE (x) != VOIDmode)
2350 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2351 else
2352 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2353 + (unsigned int) CONST_DOUBLE_HIGH (x));
2354 return hash;
2355
2356 case CONST_FIXED:
2357 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2358 hash += fixed_hash (CONST_FIXED_VALUE (x));
2359 return hash;
2360
2361 case CONST_VECTOR:
2362 {
2363 int units;
2364 rtx elt;
2365
2366 units = CONST_VECTOR_NUNITS (x);
2367
2368 for (i = 0; i < units; ++i)
2369 {
2370 elt = CONST_VECTOR_ELT (x, i);
2371 hash += hash_rtx_cb (elt, GET_MODE (elt),
2372 do_not_record_p, hash_arg_in_memory_p,
2373 have_reg_qty, cb);
2374 }
2375
2376 return hash;
2377 }
2378
2379 /* Assume there is only one rtx object for any given label. */
2380 case LABEL_REF:
2381 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2382 differences and differences between each stage's debugging dumps. */
2383 hash += (((unsigned int) LABEL_REF << 7)
2384 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2385 return hash;
2386
2387 case SYMBOL_REF:
2388 {
2389 /* Don't hash on the symbol's address to avoid bootstrap differences.
2390 Different hash values may cause expressions to be recorded in
2391 different orders and thus different registers to be used in the
2392 final assembler. This also avoids differences in the dump files
2393 between various stages. */
2394 unsigned int h = 0;
2395 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2396
2397 while (*p)
2398 h += (h << 7) + *p++; /* ??? revisit */
2399
2400 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2401 return hash;
2402 }
2403
2404 case MEM:
2405 /* We don't record if marked volatile or if BLKmode since we don't
2406 know the size of the move. */
2407 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2408 {
2409 *do_not_record_p = 1;
2410 return 0;
2411 }
2412 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2413 *hash_arg_in_memory_p = 1;
2414
2415 /* Now that we have already found this special case,
2416 might as well speed it up as much as possible. */
2417 hash += (unsigned) MEM;
2418 x = XEXP (x, 0);
2419 goto repeat;
2420
2421 case USE:
2422 /* A USE that mentions non-volatile memory needs special
2423 handling since the MEM may be BLKmode which normally
2424 prevents an entry from being made. Pure calls are
2425 marked by a USE which mentions BLKmode memory.
2426 See calls.c:emit_call_1. */
2427 if (MEM_P (XEXP (x, 0))
2428 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2429 {
2430 hash += (unsigned) USE;
2431 x = XEXP (x, 0);
2432
2433 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2434 *hash_arg_in_memory_p = 1;
2435
2436 /* Now that we have already found this special case,
2437 might as well speed it up as much as possible. */
2438 hash += (unsigned) MEM;
2439 x = XEXP (x, 0);
2440 goto repeat;
2441 }
2442 break;
2443
2444 case PRE_DEC:
2445 case PRE_INC:
2446 case POST_DEC:
2447 case POST_INC:
2448 case PRE_MODIFY:
2449 case POST_MODIFY:
2450 case PC:
2451 case CC0:
2452 case CALL:
2453 case UNSPEC_VOLATILE:
2454 if (do_not_record_p) {
2455 *do_not_record_p = 1;
2456 return 0;
2457 }
2458 else
2459 return hash;
2460 break;
2461
2462 case ASM_OPERANDS:
2463 if (do_not_record_p && MEM_VOLATILE_P (x))
2464 {
2465 *do_not_record_p = 1;
2466 return 0;
2467 }
2468 else
2469 {
2470 /* We don't want to take the filename and line into account. */
2471 hash += (unsigned) code + (unsigned) GET_MODE (x)
2472 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2473 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2474 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2475
2476 if (ASM_OPERANDS_INPUT_LENGTH (x))
2477 {
2478 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2479 {
2480 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2481 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2482 do_not_record_p, hash_arg_in_memory_p,
2483 have_reg_qty, cb)
2484 + hash_rtx_string
2485 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2486 }
2487
2488 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2489 x = ASM_OPERANDS_INPUT (x, 0);
2490 mode = GET_MODE (x);
2491 goto repeat;
2492 }
2493
2494 return hash;
2495 }
2496 break;
2497
2498 default:
2499 break;
2500 }
2501
2502 i = GET_RTX_LENGTH (code) - 1;
2503 hash += (unsigned) code + (unsigned) GET_MODE (x);
2504 fmt = GET_RTX_FORMAT (code);
2505 for (; i >= 0; i--)
2506 {
2507 switch (fmt[i])
2508 {
2509 case 'e':
2510 /* If we are about to do the last recursive call
2511 needed at this level, change it into iteration.
2512 This function is called enough to be worth it. */
2513 if (i == 0)
2514 {
2515 x = XEXP (x, i);
2516 goto repeat;
2517 }
2518
2519 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2520 hash_arg_in_memory_p,
2521 have_reg_qty, cb);
2522 break;
2523
2524 case 'E':
2525 for (j = 0; j < XVECLEN (x, i); j++)
2526 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2527 hash_arg_in_memory_p,
2528 have_reg_qty, cb);
2529 break;
2530
2531 case 's':
2532 hash += hash_rtx_string (XSTR (x, i));
2533 break;
2534
2535 case 'i':
2536 hash += (unsigned int) XINT (x, i);
2537 break;
2538
2539 case '0': case 't':
2540 /* Unused. */
2541 break;
2542
2543 default:
2544 gcc_unreachable ();
2545 }
2546 }
2547
2548 return hash;
2549 }
2550
2551 /* Hash an rtx. We are careful to make sure the value is never negative.
2552 Equivalent registers hash identically.
2553 MODE is used in hashing for CONST_INTs only;
2554 otherwise the mode of X is used.
2555
2556 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2557
2558 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2559 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2560
2561 Note that cse_insn knows that the hash code of a MEM expression
2562 is just (int) MEM plus the hash code of the address. */
2563
2564 unsigned
2565 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2566 int *hash_arg_in_memory_p, bool have_reg_qty)
2567 {
2568 return hash_rtx_cb (x, mode, do_not_record_p,
2569 hash_arg_in_memory_p, have_reg_qty, NULL);
2570 }
2571
2572 /* Hash an rtx X for cse via hash_rtx.
2573 Stores 1 in do_not_record if any subexpression is volatile.
2574 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2575 does not have the RTX_UNCHANGING_P bit set. */
2576
2577 static inline unsigned
2578 canon_hash (rtx x, enum machine_mode mode)
2579 {
2580 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2581 }
2582
2583 /* Like canon_hash but with no side effects, i.e. do_not_record
2584 and hash_arg_in_memory are not changed. */
2585
2586 static inline unsigned
2587 safe_hash (rtx x, enum machine_mode mode)
2588 {
2589 int dummy_do_not_record;
2590 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2591 }
2592 \f
2593 /* Return 1 iff X and Y would canonicalize into the same thing,
2594 without actually constructing the canonicalization of either one.
2595 If VALIDATE is nonzero,
2596 we assume X is an expression being processed from the rtl
2597 and Y was found in the hash table. We check register refs
2598 in Y for being marked as valid.
2599
2600 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2601
2602 int
2603 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2604 {
2605 int i, j;
2606 enum rtx_code code;
2607 const char *fmt;
2608
2609 /* Note: it is incorrect to assume an expression is equivalent to itself
2610 if VALIDATE is nonzero. */
2611 if (x == y && !validate)
2612 return 1;
2613
2614 if (x == 0 || y == 0)
2615 return x == y;
2616
2617 code = GET_CODE (x);
2618 if (code != GET_CODE (y))
2619 return 0;
2620
2621 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2622 if (GET_MODE (x) != GET_MODE (y))
2623 return 0;
2624
2625 /* MEMs refering to different address space are not equivalent. */
2626 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2627 return 0;
2628
2629 switch (code)
2630 {
2631 case PC:
2632 case CC0:
2633 case CONST_INT:
2634 case CONST_DOUBLE:
2635 case CONST_FIXED:
2636 return x == y;
2637
2638 case LABEL_REF:
2639 return XEXP (x, 0) == XEXP (y, 0);
2640
2641 case SYMBOL_REF:
2642 return XSTR (x, 0) == XSTR (y, 0);
2643
2644 case REG:
2645 if (for_gcse)
2646 return REGNO (x) == REGNO (y);
2647 else
2648 {
2649 unsigned int regno = REGNO (y);
2650 unsigned int i;
2651 unsigned int endregno = END_REGNO (y);
2652
2653 /* If the quantities are not the same, the expressions are not
2654 equivalent. If there are and we are not to validate, they
2655 are equivalent. Otherwise, ensure all regs are up-to-date. */
2656
2657 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2658 return 0;
2659
2660 if (! validate)
2661 return 1;
2662
2663 for (i = regno; i < endregno; i++)
2664 if (REG_IN_TABLE (i) != REG_TICK (i))
2665 return 0;
2666
2667 return 1;
2668 }
2669
2670 case MEM:
2671 if (for_gcse)
2672 {
2673 /* A volatile mem should not be considered equivalent to any
2674 other. */
2675 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2676 return 0;
2677
2678 /* Can't merge two expressions in different alias sets, since we
2679 can decide that the expression is transparent in a block when
2680 it isn't, due to it being set with the different alias set.
2681
2682 Also, can't merge two expressions with different MEM_ATTRS.
2683 They could e.g. be two different entities allocated into the
2684 same space on the stack (see e.g. PR25130). In that case, the
2685 MEM addresses can be the same, even though the two MEMs are
2686 absolutely not equivalent.
2687
2688 But because really all MEM attributes should be the same for
2689 equivalent MEMs, we just use the invariant that MEMs that have
2690 the same attributes share the same mem_attrs data structure. */
2691 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2692 return 0;
2693 }
2694 break;
2695
2696 /* For commutative operations, check both orders. */
2697 case PLUS:
2698 case MULT:
2699 case AND:
2700 case IOR:
2701 case XOR:
2702 case NE:
2703 case EQ:
2704 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2705 validate, for_gcse)
2706 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2707 validate, for_gcse))
2708 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2709 validate, for_gcse)
2710 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2711 validate, for_gcse)));
2712
2713 case ASM_OPERANDS:
2714 /* We don't use the generic code below because we want to
2715 disregard filename and line numbers. */
2716
2717 /* A volatile asm isn't equivalent to any other. */
2718 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2719 return 0;
2720
2721 if (GET_MODE (x) != GET_MODE (y)
2722 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2723 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2724 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2725 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2726 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2727 return 0;
2728
2729 if (ASM_OPERANDS_INPUT_LENGTH (x))
2730 {
2731 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2732 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2733 ASM_OPERANDS_INPUT (y, i),
2734 validate, for_gcse)
2735 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2736 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2737 return 0;
2738 }
2739
2740 return 1;
2741
2742 default:
2743 break;
2744 }
2745
2746 /* Compare the elements. If any pair of corresponding elements
2747 fail to match, return 0 for the whole thing. */
2748
2749 fmt = GET_RTX_FORMAT (code);
2750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2751 {
2752 switch (fmt[i])
2753 {
2754 case 'e':
2755 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2756 validate, for_gcse))
2757 return 0;
2758 break;
2759
2760 case 'E':
2761 if (XVECLEN (x, i) != XVECLEN (y, i))
2762 return 0;
2763 for (j = 0; j < XVECLEN (x, i); j++)
2764 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2765 validate, for_gcse))
2766 return 0;
2767 break;
2768
2769 case 's':
2770 if (strcmp (XSTR (x, i), XSTR (y, i)))
2771 return 0;
2772 break;
2773
2774 case 'i':
2775 if (XINT (x, i) != XINT (y, i))
2776 return 0;
2777 break;
2778
2779 case 'w':
2780 if (XWINT (x, i) != XWINT (y, i))
2781 return 0;
2782 break;
2783
2784 case '0':
2785 case 't':
2786 break;
2787
2788 default:
2789 gcc_unreachable ();
2790 }
2791 }
2792
2793 return 1;
2794 }
2795 \f
2796 /* Return 1 if X has a value that can vary even between two
2797 executions of the program. 0 means X can be compared reliably
2798 against certain constants or near-constants. */
2799
2800 static bool
2801 cse_rtx_varies_p (const_rtx x, bool from_alias)
2802 {
2803 /* We need not check for X and the equivalence class being of the same
2804 mode because if X is equivalent to a constant in some mode, it
2805 doesn't vary in any mode. */
2806
2807 if (REG_P (x)
2808 && REGNO_QTY_VALID_P (REGNO (x)))
2809 {
2810 int x_q = REG_QTY (REGNO (x));
2811 struct qty_table_elem *x_ent = &qty_table[x_q];
2812
2813 if (GET_MODE (x) == x_ent->mode
2814 && x_ent->const_rtx != NULL_RTX)
2815 return 0;
2816 }
2817
2818 if (GET_CODE (x) == PLUS
2819 && CONST_INT_P (XEXP (x, 1))
2820 && REG_P (XEXP (x, 0))
2821 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2822 {
2823 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2824 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2825
2826 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2827 && x0_ent->const_rtx != NULL_RTX)
2828 return 0;
2829 }
2830
2831 /* This can happen as the result of virtual register instantiation, if
2832 the initial constant is too large to be a valid address. This gives
2833 us a three instruction sequence, load large offset into a register,
2834 load fp minus a constant into a register, then a MEM which is the
2835 sum of the two `constant' registers. */
2836 if (GET_CODE (x) == PLUS
2837 && REG_P (XEXP (x, 0))
2838 && REG_P (XEXP (x, 1))
2839 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2840 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2841 {
2842 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2843 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2844 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2845 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2846
2847 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2848 && x0_ent->const_rtx != NULL_RTX
2849 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2850 && x1_ent->const_rtx != NULL_RTX)
2851 return 0;
2852 }
2853
2854 return rtx_varies_p (x, from_alias);
2855 }
2856 \f
2857 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2858 the result if necessary. INSN is as for canon_reg. */
2859
2860 static void
2861 validate_canon_reg (rtx *xloc, rtx insn)
2862 {
2863 if (*xloc)
2864 {
2865 rtx new_rtx = canon_reg (*xloc, insn);
2866
2867 /* If replacing pseudo with hard reg or vice versa, ensure the
2868 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2869 gcc_assert (insn && new_rtx);
2870 validate_change (insn, xloc, new_rtx, 1);
2871 }
2872 }
2873
2874 /* Canonicalize an expression:
2875 replace each register reference inside it
2876 with the "oldest" equivalent register.
2877
2878 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2879 after we make our substitution. The calls are made with IN_GROUP nonzero
2880 so apply_change_group must be called upon the outermost return from this
2881 function (unless INSN is zero). The result of apply_change_group can
2882 generally be discarded since the changes we are making are optional. */
2883
2884 static rtx
2885 canon_reg (rtx x, rtx insn)
2886 {
2887 int i;
2888 enum rtx_code code;
2889 const char *fmt;
2890
2891 if (x == 0)
2892 return x;
2893
2894 code = GET_CODE (x);
2895 switch (code)
2896 {
2897 case PC:
2898 case CC0:
2899 case CONST:
2900 case CONST_INT:
2901 case CONST_DOUBLE:
2902 case CONST_FIXED:
2903 case CONST_VECTOR:
2904 case SYMBOL_REF:
2905 case LABEL_REF:
2906 case ADDR_VEC:
2907 case ADDR_DIFF_VEC:
2908 return x;
2909
2910 case REG:
2911 {
2912 int first;
2913 int q;
2914 struct qty_table_elem *ent;
2915
2916 /* Never replace a hard reg, because hard regs can appear
2917 in more than one machine mode, and we must preserve the mode
2918 of each occurrence. Also, some hard regs appear in
2919 MEMs that are shared and mustn't be altered. Don't try to
2920 replace any reg that maps to a reg of class NO_REGS. */
2921 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2922 || ! REGNO_QTY_VALID_P (REGNO (x)))
2923 return x;
2924
2925 q = REG_QTY (REGNO (x));
2926 ent = &qty_table[q];
2927 first = ent->first_reg;
2928 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2929 : REGNO_REG_CLASS (first) == NO_REGS ? x
2930 : gen_rtx_REG (ent->mode, first));
2931 }
2932
2933 default:
2934 break;
2935 }
2936
2937 fmt = GET_RTX_FORMAT (code);
2938 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2939 {
2940 int j;
2941
2942 if (fmt[i] == 'e')
2943 validate_canon_reg (&XEXP (x, i), insn);
2944 else if (fmt[i] == 'E')
2945 for (j = 0; j < XVECLEN (x, i); j++)
2946 validate_canon_reg (&XVECEXP (x, i, j), insn);
2947 }
2948
2949 return x;
2950 }
2951 \f
2952 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2953 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2954 what values are being compared.
2955
2956 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2957 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2958 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2959 compared to produce cc0.
2960
2961 The return value is the comparison operator and is either the code of
2962 A or the code corresponding to the inverse of the comparison. */
2963
2964 static enum rtx_code
2965 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2966 enum machine_mode *pmode1, enum machine_mode *pmode2)
2967 {
2968 rtx arg1, arg2;
2969
2970 arg1 = *parg1, arg2 = *parg2;
2971
2972 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2973
2974 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2975 {
2976 /* Set nonzero when we find something of interest. */
2977 rtx x = 0;
2978 int reverse_code = 0;
2979 struct table_elt *p = 0;
2980
2981 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2982 On machines with CC0, this is the only case that can occur, since
2983 fold_rtx will return the COMPARE or item being compared with zero
2984 when given CC0. */
2985
2986 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2987 x = arg1;
2988
2989 /* If ARG1 is a comparison operator and CODE is testing for
2990 STORE_FLAG_VALUE, get the inner arguments. */
2991
2992 else if (COMPARISON_P (arg1))
2993 {
2994 #ifdef FLOAT_STORE_FLAG_VALUE
2995 REAL_VALUE_TYPE fsfv;
2996 #endif
2997
2998 if (code == NE
2999 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3000 && code == LT && STORE_FLAG_VALUE == -1)
3001 #ifdef FLOAT_STORE_FLAG_VALUE
3002 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3003 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3004 REAL_VALUE_NEGATIVE (fsfv)))
3005 #endif
3006 )
3007 x = arg1;
3008 else if (code == EQ
3009 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3010 && code == GE && STORE_FLAG_VALUE == -1)
3011 #ifdef FLOAT_STORE_FLAG_VALUE
3012 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3013 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3014 REAL_VALUE_NEGATIVE (fsfv)))
3015 #endif
3016 )
3017 x = arg1, reverse_code = 1;
3018 }
3019
3020 /* ??? We could also check for
3021
3022 (ne (and (eq (...) (const_int 1))) (const_int 0))
3023
3024 and related forms, but let's wait until we see them occurring. */
3025
3026 if (x == 0)
3027 /* Look up ARG1 in the hash table and see if it has an equivalence
3028 that lets us see what is being compared. */
3029 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3030 if (p)
3031 {
3032 p = p->first_same_value;
3033
3034 /* If what we compare is already known to be constant, that is as
3035 good as it gets.
3036 We need to break the loop in this case, because otherwise we
3037 can have an infinite loop when looking at a reg that is known
3038 to be a constant which is the same as a comparison of a reg
3039 against zero which appears later in the insn stream, which in
3040 turn is constant and the same as the comparison of the first reg
3041 against zero... */
3042 if (p->is_const)
3043 break;
3044 }
3045
3046 for (; p; p = p->next_same_value)
3047 {
3048 enum machine_mode inner_mode = GET_MODE (p->exp);
3049 #ifdef FLOAT_STORE_FLAG_VALUE
3050 REAL_VALUE_TYPE fsfv;
3051 #endif
3052
3053 /* If the entry isn't valid, skip it. */
3054 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3055 continue;
3056
3057 if (GET_CODE (p->exp) == COMPARE
3058 /* Another possibility is that this machine has a compare insn
3059 that includes the comparison code. In that case, ARG1 would
3060 be equivalent to a comparison operation that would set ARG1 to
3061 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3062 ORIG_CODE is the actual comparison being done; if it is an EQ,
3063 we must reverse ORIG_CODE. On machine with a negative value
3064 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3065 || ((code == NE
3066 || (code == LT
3067 && GET_MODE_CLASS (inner_mode) == MODE_INT
3068 && (GET_MODE_BITSIZE (inner_mode)
3069 <= HOST_BITS_PER_WIDE_INT)
3070 && (STORE_FLAG_VALUE
3071 & ((HOST_WIDE_INT) 1
3072 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3073 #ifdef FLOAT_STORE_FLAG_VALUE
3074 || (code == LT
3075 && SCALAR_FLOAT_MODE_P (inner_mode)
3076 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3077 REAL_VALUE_NEGATIVE (fsfv)))
3078 #endif
3079 )
3080 && COMPARISON_P (p->exp)))
3081 {
3082 x = p->exp;
3083 break;
3084 }
3085 else if ((code == EQ
3086 || (code == GE
3087 && GET_MODE_CLASS (inner_mode) == MODE_INT
3088 && (GET_MODE_BITSIZE (inner_mode)
3089 <= HOST_BITS_PER_WIDE_INT)
3090 && (STORE_FLAG_VALUE
3091 & ((HOST_WIDE_INT) 1
3092 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3093 #ifdef FLOAT_STORE_FLAG_VALUE
3094 || (code == GE
3095 && SCALAR_FLOAT_MODE_P (inner_mode)
3096 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3097 REAL_VALUE_NEGATIVE (fsfv)))
3098 #endif
3099 )
3100 && COMPARISON_P (p->exp))
3101 {
3102 reverse_code = 1;
3103 x = p->exp;
3104 break;
3105 }
3106
3107 /* If this non-trapping address, e.g. fp + constant, the
3108 equivalent is a better operand since it may let us predict
3109 the value of the comparison. */
3110 else if (!rtx_addr_can_trap_p (p->exp))
3111 {
3112 arg1 = p->exp;
3113 continue;
3114 }
3115 }
3116
3117 /* If we didn't find a useful equivalence for ARG1, we are done.
3118 Otherwise, set up for the next iteration. */
3119 if (x == 0)
3120 break;
3121
3122 /* If we need to reverse the comparison, make sure that that is
3123 possible -- we can't necessarily infer the value of GE from LT
3124 with floating-point operands. */
3125 if (reverse_code)
3126 {
3127 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3128 if (reversed == UNKNOWN)
3129 break;
3130 else
3131 code = reversed;
3132 }
3133 else if (COMPARISON_P (x))
3134 code = GET_CODE (x);
3135 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3136 }
3137
3138 /* Return our results. Return the modes from before fold_rtx
3139 because fold_rtx might produce const_int, and then it's too late. */
3140 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3141 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3142
3143 return code;
3144 }
3145 \f
3146 /* If X is a nontrivial arithmetic operation on an argument for which
3147 a constant value can be determined, return the result of operating
3148 on that value, as a constant. Otherwise, return X, possibly with
3149 one or more operands changed to a forward-propagated constant.
3150
3151 If X is a register whose contents are known, we do NOT return
3152 those contents here; equiv_constant is called to perform that task.
3153 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3154
3155 INSN is the insn that we may be modifying. If it is 0, make a copy
3156 of X before modifying it. */
3157
3158 static rtx
3159 fold_rtx (rtx x, rtx insn)
3160 {
3161 enum rtx_code code;
3162 enum machine_mode mode;
3163 const char *fmt;
3164 int i;
3165 rtx new_rtx = 0;
3166 int changed = 0;
3167
3168 /* Operands of X. */
3169 rtx folded_arg0;
3170 rtx folded_arg1;
3171
3172 /* Constant equivalents of first three operands of X;
3173 0 when no such equivalent is known. */
3174 rtx const_arg0;
3175 rtx const_arg1;
3176 rtx const_arg2;
3177
3178 /* The mode of the first operand of X. We need this for sign and zero
3179 extends. */
3180 enum machine_mode mode_arg0;
3181
3182 if (x == 0)
3183 return x;
3184
3185 /* Try to perform some initial simplifications on X. */
3186 code = GET_CODE (x);
3187 switch (code)
3188 {
3189 case MEM:
3190 case SUBREG:
3191 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3192 return new_rtx;
3193 return x;
3194
3195 case CONST:
3196 case CONST_INT:
3197 case CONST_DOUBLE:
3198 case CONST_FIXED:
3199 case CONST_VECTOR:
3200 case SYMBOL_REF:
3201 case LABEL_REF:
3202 case REG:
3203 case PC:
3204 /* No use simplifying an EXPR_LIST
3205 since they are used only for lists of args
3206 in a function call's REG_EQUAL note. */
3207 case EXPR_LIST:
3208 return x;
3209
3210 #ifdef HAVE_cc0
3211 case CC0:
3212 return prev_insn_cc0;
3213 #endif
3214
3215 case ASM_OPERANDS:
3216 if (insn)
3217 {
3218 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3219 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3220 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3221 }
3222 return x;
3223
3224 #ifdef NO_FUNCTION_CSE
3225 case CALL:
3226 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3227 return x;
3228 break;
3229 #endif
3230
3231 /* Anything else goes through the loop below. */
3232 default:
3233 break;
3234 }
3235
3236 mode = GET_MODE (x);
3237 const_arg0 = 0;
3238 const_arg1 = 0;
3239 const_arg2 = 0;
3240 mode_arg0 = VOIDmode;
3241
3242 /* Try folding our operands.
3243 Then see which ones have constant values known. */
3244
3245 fmt = GET_RTX_FORMAT (code);
3246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3247 if (fmt[i] == 'e')
3248 {
3249 rtx folded_arg = XEXP (x, i), const_arg;
3250 enum machine_mode mode_arg = GET_MODE (folded_arg);
3251
3252 switch (GET_CODE (folded_arg))
3253 {
3254 case MEM:
3255 case REG:
3256 case SUBREG:
3257 const_arg = equiv_constant (folded_arg);
3258 break;
3259
3260 case CONST:
3261 case CONST_INT:
3262 case SYMBOL_REF:
3263 case LABEL_REF:
3264 case CONST_DOUBLE:
3265 case CONST_FIXED:
3266 case CONST_VECTOR:
3267 const_arg = folded_arg;
3268 break;
3269
3270 #ifdef HAVE_cc0
3271 case CC0:
3272 folded_arg = prev_insn_cc0;
3273 mode_arg = prev_insn_cc0_mode;
3274 const_arg = equiv_constant (folded_arg);
3275 break;
3276 #endif
3277
3278 default:
3279 folded_arg = fold_rtx (folded_arg, insn);
3280 const_arg = equiv_constant (folded_arg);
3281 break;
3282 }
3283
3284 /* For the first three operands, see if the operand
3285 is constant or equivalent to a constant. */
3286 switch (i)
3287 {
3288 case 0:
3289 folded_arg0 = folded_arg;
3290 const_arg0 = const_arg;
3291 mode_arg0 = mode_arg;
3292 break;
3293 case 1:
3294 folded_arg1 = folded_arg;
3295 const_arg1 = const_arg;
3296 break;
3297 case 2:
3298 const_arg2 = const_arg;
3299 break;
3300 }
3301
3302 /* Pick the least expensive of the argument and an equivalent constant
3303 argument. */
3304 if (const_arg != 0
3305 && const_arg != folded_arg
3306 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3307
3308 /* It's not safe to substitute the operand of a conversion
3309 operator with a constant, as the conversion's identity
3310 depends upon the mode of its operand. This optimization
3311 is handled by the call to simplify_unary_operation. */
3312 && (GET_RTX_CLASS (code) != RTX_UNARY
3313 || GET_MODE (const_arg) == mode_arg0
3314 || (code != ZERO_EXTEND
3315 && code != SIGN_EXTEND
3316 && code != TRUNCATE
3317 && code != FLOAT_TRUNCATE
3318 && code != FLOAT_EXTEND
3319 && code != FLOAT
3320 && code != FIX
3321 && code != UNSIGNED_FLOAT
3322 && code != UNSIGNED_FIX)))
3323 folded_arg = const_arg;
3324
3325 if (folded_arg == XEXP (x, i))
3326 continue;
3327
3328 if (insn == NULL_RTX && !changed)
3329 x = copy_rtx (x);
3330 changed = 1;
3331 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3332 }
3333
3334 if (changed)
3335 {
3336 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3337 consistent with the order in X. */
3338 if (canonicalize_change_group (insn, x))
3339 {
3340 rtx tem;
3341 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3342 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3343 }
3344
3345 apply_change_group ();
3346 }
3347
3348 /* If X is an arithmetic operation, see if we can simplify it. */
3349
3350 switch (GET_RTX_CLASS (code))
3351 {
3352 case RTX_UNARY:
3353 {
3354 /* We can't simplify extension ops unless we know the
3355 original mode. */
3356 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3357 && mode_arg0 == VOIDmode)
3358 break;
3359
3360 new_rtx = simplify_unary_operation (code, mode,
3361 const_arg0 ? const_arg0 : folded_arg0,
3362 mode_arg0);
3363 }
3364 break;
3365
3366 case RTX_COMPARE:
3367 case RTX_COMM_COMPARE:
3368 /* See what items are actually being compared and set FOLDED_ARG[01]
3369 to those values and CODE to the actual comparison code. If any are
3370 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3371 do anything if both operands are already known to be constant. */
3372
3373 /* ??? Vector mode comparisons are not supported yet. */
3374 if (VECTOR_MODE_P (mode))
3375 break;
3376
3377 if (const_arg0 == 0 || const_arg1 == 0)
3378 {
3379 struct table_elt *p0, *p1;
3380 rtx true_rtx, false_rtx;
3381 enum machine_mode mode_arg1;
3382
3383 if (SCALAR_FLOAT_MODE_P (mode))
3384 {
3385 #ifdef FLOAT_STORE_FLAG_VALUE
3386 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3387 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3388 #else
3389 true_rtx = NULL_RTX;
3390 #endif
3391 false_rtx = CONST0_RTX (mode);
3392 }
3393 else
3394 {
3395 true_rtx = const_true_rtx;
3396 false_rtx = const0_rtx;
3397 }
3398
3399 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3400 &mode_arg0, &mode_arg1);
3401
3402 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3403 what kinds of things are being compared, so we can't do
3404 anything with this comparison. */
3405
3406 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3407 break;
3408
3409 const_arg0 = equiv_constant (folded_arg0);
3410 const_arg1 = equiv_constant (folded_arg1);
3411
3412 /* If we do not now have two constants being compared, see
3413 if we can nevertheless deduce some things about the
3414 comparison. */
3415 if (const_arg0 == 0 || const_arg1 == 0)
3416 {
3417 if (const_arg1 != NULL)
3418 {
3419 rtx cheapest_simplification;
3420 int cheapest_cost;
3421 rtx simp_result;
3422 struct table_elt *p;
3423
3424 /* See if we can find an equivalent of folded_arg0
3425 that gets us a cheaper expression, possibly a
3426 constant through simplifications. */
3427 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3428 mode_arg0);
3429
3430 if (p != NULL)
3431 {
3432 cheapest_simplification = x;
3433 cheapest_cost = COST (x);
3434
3435 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3436 {
3437 int cost;
3438
3439 /* If the entry isn't valid, skip it. */
3440 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3441 continue;
3442
3443 /* Try to simplify using this equivalence. */
3444 simp_result
3445 = simplify_relational_operation (code, mode,
3446 mode_arg0,
3447 p->exp,
3448 const_arg1);
3449
3450 if (simp_result == NULL)
3451 continue;
3452
3453 cost = COST (simp_result);
3454 if (cost < cheapest_cost)
3455 {
3456 cheapest_cost = cost;
3457 cheapest_simplification = simp_result;
3458 }
3459 }
3460
3461 /* If we have a cheaper expression now, use that
3462 and try folding it further, from the top. */
3463 if (cheapest_simplification != x)
3464 return fold_rtx (copy_rtx (cheapest_simplification),
3465 insn);
3466 }
3467 }
3468
3469 /* See if the two operands are the same. */
3470
3471 if ((REG_P (folded_arg0)
3472 && REG_P (folded_arg1)
3473 && (REG_QTY (REGNO (folded_arg0))
3474 == REG_QTY (REGNO (folded_arg1))))
3475 || ((p0 = lookup (folded_arg0,
3476 SAFE_HASH (folded_arg0, mode_arg0),
3477 mode_arg0))
3478 && (p1 = lookup (folded_arg1,
3479 SAFE_HASH (folded_arg1, mode_arg0),
3480 mode_arg0))
3481 && p0->first_same_value == p1->first_same_value))
3482 folded_arg1 = folded_arg0;
3483
3484 /* If FOLDED_ARG0 is a register, see if the comparison we are
3485 doing now is either the same as we did before or the reverse
3486 (we only check the reverse if not floating-point). */
3487 else if (REG_P (folded_arg0))
3488 {
3489 int qty = REG_QTY (REGNO (folded_arg0));
3490
3491 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3492 {
3493 struct qty_table_elem *ent = &qty_table[qty];
3494
3495 if ((comparison_dominates_p (ent->comparison_code, code)
3496 || (! FLOAT_MODE_P (mode_arg0)
3497 && comparison_dominates_p (ent->comparison_code,
3498 reverse_condition (code))))
3499 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3500 || (const_arg1
3501 && rtx_equal_p (ent->comparison_const,
3502 const_arg1))
3503 || (REG_P (folded_arg1)
3504 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3505 {
3506 if (comparison_dominates_p (ent->comparison_code, code))
3507 {
3508 if (true_rtx)
3509 return true_rtx;
3510 else
3511 break;
3512 }
3513 else
3514 return false_rtx;
3515 }
3516 }
3517 }
3518 }
3519 }
3520
3521 /* If we are comparing against zero, see if the first operand is
3522 equivalent to an IOR with a constant. If so, we may be able to
3523 determine the result of this comparison. */
3524 if (const_arg1 == const0_rtx && !const_arg0)
3525 {
3526 rtx y = lookup_as_function (folded_arg0, IOR);
3527 rtx inner_const;
3528
3529 if (y != 0
3530 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3531 && CONST_INT_P (inner_const)
3532 && INTVAL (inner_const) != 0)
3533 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3534 }
3535
3536 {
3537 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3538 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3539 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3540 }
3541 break;
3542
3543 case RTX_BIN_ARITH:
3544 case RTX_COMM_ARITH:
3545 switch (code)
3546 {
3547 case PLUS:
3548 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3549 with that LABEL_REF as its second operand. If so, the result is
3550 the first operand of that MINUS. This handles switches with an
3551 ADDR_DIFF_VEC table. */
3552 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3553 {
3554 rtx y
3555 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3556 : lookup_as_function (folded_arg0, MINUS);
3557
3558 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3559 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3560 return XEXP (y, 0);
3561
3562 /* Now try for a CONST of a MINUS like the above. */
3563 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3564 : lookup_as_function (folded_arg0, CONST))) != 0
3565 && GET_CODE (XEXP (y, 0)) == MINUS
3566 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3567 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3568 return XEXP (XEXP (y, 0), 0);
3569 }
3570
3571 /* Likewise if the operands are in the other order. */
3572 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3573 {
3574 rtx y
3575 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3576 : lookup_as_function (folded_arg1, MINUS);
3577
3578 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3579 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3580 return XEXP (y, 0);
3581
3582 /* Now try for a CONST of a MINUS like the above. */
3583 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3584 : lookup_as_function (folded_arg1, CONST))) != 0
3585 && GET_CODE (XEXP (y, 0)) == MINUS
3586 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3587 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3588 return XEXP (XEXP (y, 0), 0);
3589 }
3590
3591 /* If second operand is a register equivalent to a negative
3592 CONST_INT, see if we can find a register equivalent to the
3593 positive constant. Make a MINUS if so. Don't do this for
3594 a non-negative constant since we might then alternate between
3595 choosing positive and negative constants. Having the positive
3596 constant previously-used is the more common case. Be sure
3597 the resulting constant is non-negative; if const_arg1 were
3598 the smallest negative number this would overflow: depending
3599 on the mode, this would either just be the same value (and
3600 hence not save anything) or be incorrect. */
3601 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3602 && INTVAL (const_arg1) < 0
3603 /* This used to test
3604
3605 -INTVAL (const_arg1) >= 0
3606
3607 But The Sun V5.0 compilers mis-compiled that test. So
3608 instead we test for the problematic value in a more direct
3609 manner and hope the Sun compilers get it correct. */
3610 && INTVAL (const_arg1) !=
3611 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3612 && REG_P (folded_arg1))
3613 {
3614 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3615 struct table_elt *p
3616 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3617
3618 if (p)
3619 for (p = p->first_same_value; p; p = p->next_same_value)
3620 if (REG_P (p->exp))
3621 return simplify_gen_binary (MINUS, mode, folded_arg0,
3622 canon_reg (p->exp, NULL_RTX));
3623 }
3624 goto from_plus;
3625
3626 case MINUS:
3627 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3628 If so, produce (PLUS Z C2-C). */
3629 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3630 {
3631 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3632 if (y && CONST_INT_P (XEXP (y, 1)))
3633 return fold_rtx (plus_constant (copy_rtx (y),
3634 -INTVAL (const_arg1)),
3635 NULL_RTX);
3636 }
3637
3638 /* Fall through. */
3639
3640 from_plus:
3641 case SMIN: case SMAX: case UMIN: case UMAX:
3642 case IOR: case AND: case XOR:
3643 case MULT:
3644 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3645 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3646 is known to be of similar form, we may be able to replace the
3647 operation with a combined operation. This may eliminate the
3648 intermediate operation if every use is simplified in this way.
3649 Note that the similar optimization done by combine.c only works
3650 if the intermediate operation's result has only one reference. */
3651
3652 if (REG_P (folded_arg0)
3653 && const_arg1 && CONST_INT_P (const_arg1))
3654 {
3655 int is_shift
3656 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3657 rtx y, inner_const, new_const;
3658 rtx canon_const_arg1 = const_arg1;
3659 enum rtx_code associate_code;
3660
3661 if (is_shift
3662 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3663 || INTVAL (const_arg1) < 0))
3664 {
3665 if (SHIFT_COUNT_TRUNCATED)
3666 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3667 & (GET_MODE_BITSIZE (mode)
3668 - 1));
3669 else
3670 break;
3671 }
3672
3673 y = lookup_as_function (folded_arg0, code);
3674 if (y == 0)
3675 break;
3676
3677 /* If we have compiled a statement like
3678 "if (x == (x & mask1))", and now are looking at
3679 "x & mask2", we will have a case where the first operand
3680 of Y is the same as our first operand. Unless we detect
3681 this case, an infinite loop will result. */
3682 if (XEXP (y, 0) == folded_arg0)
3683 break;
3684
3685 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3686 if (!inner_const || !CONST_INT_P (inner_const))
3687 break;
3688
3689 /* Don't associate these operations if they are a PLUS with the
3690 same constant and it is a power of two. These might be doable
3691 with a pre- or post-increment. Similarly for two subtracts of
3692 identical powers of two with post decrement. */
3693
3694 if (code == PLUS && const_arg1 == inner_const
3695 && ((HAVE_PRE_INCREMENT
3696 && exact_log2 (INTVAL (const_arg1)) >= 0)
3697 || (HAVE_POST_INCREMENT
3698 && exact_log2 (INTVAL (const_arg1)) >= 0)
3699 || (HAVE_PRE_DECREMENT
3700 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3701 || (HAVE_POST_DECREMENT
3702 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3703 break;
3704
3705 /* ??? Vector mode shifts by scalar
3706 shift operand are not supported yet. */
3707 if (is_shift && VECTOR_MODE_P (mode))
3708 break;
3709
3710 if (is_shift
3711 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3712 || INTVAL (inner_const) < 0))
3713 {
3714 if (SHIFT_COUNT_TRUNCATED)
3715 inner_const = GEN_INT (INTVAL (inner_const)
3716 & (GET_MODE_BITSIZE (mode) - 1));
3717 else
3718 break;
3719 }
3720
3721 /* Compute the code used to compose the constants. For example,
3722 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3723
3724 associate_code = (is_shift || code == MINUS ? PLUS : code);
3725
3726 new_const = simplify_binary_operation (associate_code, mode,
3727 canon_const_arg1,
3728 inner_const);
3729
3730 if (new_const == 0)
3731 break;
3732
3733 /* If we are associating shift operations, don't let this
3734 produce a shift of the size of the object or larger.
3735 This could occur when we follow a sign-extend by a right
3736 shift on a machine that does a sign-extend as a pair
3737 of shifts. */
3738
3739 if (is_shift
3740 && CONST_INT_P (new_const)
3741 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3742 {
3743 /* As an exception, we can turn an ASHIFTRT of this
3744 form into a shift of the number of bits - 1. */
3745 if (code == ASHIFTRT)
3746 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3747 else if (!side_effects_p (XEXP (y, 0)))
3748 return CONST0_RTX (mode);
3749 else
3750 break;
3751 }
3752
3753 y = copy_rtx (XEXP (y, 0));
3754
3755 /* If Y contains our first operand (the most common way this
3756 can happen is if Y is a MEM), we would do into an infinite
3757 loop if we tried to fold it. So don't in that case. */
3758
3759 if (! reg_mentioned_p (folded_arg0, y))
3760 y = fold_rtx (y, insn);
3761
3762 return simplify_gen_binary (code, mode, y, new_const);
3763 }
3764 break;
3765
3766 case DIV: case UDIV:
3767 /* ??? The associative optimization performed immediately above is
3768 also possible for DIV and UDIV using associate_code of MULT.
3769 However, we would need extra code to verify that the
3770 multiplication does not overflow, that is, there is no overflow
3771 in the calculation of new_const. */
3772 break;
3773
3774 default:
3775 break;
3776 }
3777
3778 new_rtx = simplify_binary_operation (code, mode,
3779 const_arg0 ? const_arg0 : folded_arg0,
3780 const_arg1 ? const_arg1 : folded_arg1);
3781 break;
3782
3783 case RTX_OBJ:
3784 /* (lo_sum (high X) X) is simply X. */
3785 if (code == LO_SUM && const_arg0 != 0
3786 && GET_CODE (const_arg0) == HIGH
3787 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3788 return const_arg1;
3789 break;
3790
3791 case RTX_TERNARY:
3792 case RTX_BITFIELD_OPS:
3793 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3794 const_arg0 ? const_arg0 : folded_arg0,
3795 const_arg1 ? const_arg1 : folded_arg1,
3796 const_arg2 ? const_arg2 : XEXP (x, 2));
3797 break;
3798
3799 default:
3800 break;
3801 }
3802
3803 return new_rtx ? new_rtx : x;
3804 }
3805 \f
3806 /* Return a constant value currently equivalent to X.
3807 Return 0 if we don't know one. */
3808
3809 static rtx
3810 equiv_constant (rtx x)
3811 {
3812 if (REG_P (x)
3813 && REGNO_QTY_VALID_P (REGNO (x)))
3814 {
3815 int x_q = REG_QTY (REGNO (x));
3816 struct qty_table_elem *x_ent = &qty_table[x_q];
3817
3818 if (x_ent->const_rtx)
3819 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3820 }
3821
3822 if (x == 0 || CONSTANT_P (x))
3823 return x;
3824
3825 if (GET_CODE (x) == SUBREG)
3826 {
3827 enum machine_mode mode = GET_MODE (x);
3828 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3829 rtx new_rtx;
3830
3831 /* See if we previously assigned a constant value to this SUBREG. */
3832 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3833 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3834 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3835 return new_rtx;
3836
3837 /* If we didn't and if doing so makes sense, see if we previously
3838 assigned a constant value to the enclosing word mode SUBREG. */
3839 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3840 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3841 {
3842 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3843 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3844 {
3845 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3846 new_rtx = lookup_as_function (y, CONST_INT);
3847 if (new_rtx)
3848 return gen_lowpart (mode, new_rtx);
3849 }
3850 }
3851
3852 /* Otherwise see if we already have a constant for the inner REG. */
3853 if (REG_P (SUBREG_REG (x))
3854 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3855 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3856
3857 return 0;
3858 }
3859
3860 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3861 the hash table in case its value was seen before. */
3862
3863 if (MEM_P (x))
3864 {
3865 struct table_elt *elt;
3866
3867 x = avoid_constant_pool_reference (x);
3868 if (CONSTANT_P (x))
3869 return x;
3870
3871 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3872 if (elt == 0)
3873 return 0;
3874
3875 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3876 if (elt->is_const && CONSTANT_P (elt->exp))
3877 return elt->exp;
3878 }
3879
3880 return 0;
3881 }
3882 \f
3883 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3884 "taken" branch.
3885
3886 In certain cases, this can cause us to add an equivalence. For example,
3887 if we are following the taken case of
3888 if (i == 2)
3889 we can add the fact that `i' and '2' are now equivalent.
3890
3891 In any case, we can record that this comparison was passed. If the same
3892 comparison is seen later, we will know its value. */
3893
3894 static void
3895 record_jump_equiv (rtx insn, bool taken)
3896 {
3897 int cond_known_true;
3898 rtx op0, op1;
3899 rtx set;
3900 enum machine_mode mode, mode0, mode1;
3901 int reversed_nonequality = 0;
3902 enum rtx_code code;
3903
3904 /* Ensure this is the right kind of insn. */
3905 gcc_assert (any_condjump_p (insn));
3906
3907 set = pc_set (insn);
3908
3909 /* See if this jump condition is known true or false. */
3910 if (taken)
3911 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3912 else
3913 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3914
3915 /* Get the type of comparison being done and the operands being compared.
3916 If we had to reverse a non-equality condition, record that fact so we
3917 know that it isn't valid for floating-point. */
3918 code = GET_CODE (XEXP (SET_SRC (set), 0));
3919 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3920 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3921
3922 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3923 if (! cond_known_true)
3924 {
3925 code = reversed_comparison_code_parts (code, op0, op1, insn);
3926
3927 /* Don't remember if we can't find the inverse. */
3928 if (code == UNKNOWN)
3929 return;
3930 }
3931
3932 /* The mode is the mode of the non-constant. */
3933 mode = mode0;
3934 if (mode1 != VOIDmode)
3935 mode = mode1;
3936
3937 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3938 }
3939
3940 /* Yet another form of subreg creation. In this case, we want something in
3941 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3942
3943 static rtx
3944 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3945 {
3946 enum machine_mode op_mode = GET_MODE (op);
3947 if (op_mode == mode || op_mode == VOIDmode)
3948 return op;
3949 return lowpart_subreg (mode, op, op_mode);
3950 }
3951
3952 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3953 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3954 Make any useful entries we can with that information. Called from
3955 above function and called recursively. */
3956
3957 static void
3958 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3959 rtx op1, int reversed_nonequality)
3960 {
3961 unsigned op0_hash, op1_hash;
3962 int op0_in_memory, op1_in_memory;
3963 struct table_elt *op0_elt, *op1_elt;
3964
3965 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3966 we know that they are also equal in the smaller mode (this is also
3967 true for all smaller modes whether or not there is a SUBREG, but
3968 is not worth testing for with no SUBREG). */
3969
3970 /* Note that GET_MODE (op0) may not equal MODE. */
3971 if (code == EQ && GET_CODE (op0) == SUBREG
3972 && (GET_MODE_SIZE (GET_MODE (op0))
3973 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3974 {
3975 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3976 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3977 if (tem)
3978 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3979 reversed_nonequality);
3980 }
3981
3982 if (code == EQ && GET_CODE (op1) == SUBREG
3983 && (GET_MODE_SIZE (GET_MODE (op1))
3984 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3985 {
3986 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3987 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3988 if (tem)
3989 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3990 reversed_nonequality);
3991 }
3992
3993 /* Similarly, if this is an NE comparison, and either is a SUBREG
3994 making a smaller mode, we know the whole thing is also NE. */
3995
3996 /* Note that GET_MODE (op0) may not equal MODE;
3997 if we test MODE instead, we can get an infinite recursion
3998 alternating between two modes each wider than MODE. */
3999
4000 if (code == NE && GET_CODE (op0) == SUBREG
4001 && subreg_lowpart_p (op0)
4002 && (GET_MODE_SIZE (GET_MODE (op0))
4003 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4004 {
4005 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4006 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4007 if (tem)
4008 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4009 reversed_nonequality);
4010 }
4011
4012 if (code == NE && GET_CODE (op1) == SUBREG
4013 && subreg_lowpart_p (op1)
4014 && (GET_MODE_SIZE (GET_MODE (op1))
4015 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4016 {
4017 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4018 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4019 if (tem)
4020 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4021 reversed_nonequality);
4022 }
4023
4024 /* Hash both operands. */
4025
4026 do_not_record = 0;
4027 hash_arg_in_memory = 0;
4028 op0_hash = HASH (op0, mode);
4029 op0_in_memory = hash_arg_in_memory;
4030
4031 if (do_not_record)
4032 return;
4033
4034 do_not_record = 0;
4035 hash_arg_in_memory = 0;
4036 op1_hash = HASH (op1, mode);
4037 op1_in_memory = hash_arg_in_memory;
4038
4039 if (do_not_record)
4040 return;
4041
4042 /* Look up both operands. */
4043 op0_elt = lookup (op0, op0_hash, mode);
4044 op1_elt = lookup (op1, op1_hash, mode);
4045
4046 /* If both operands are already equivalent or if they are not in the
4047 table but are identical, do nothing. */
4048 if ((op0_elt != 0 && op1_elt != 0
4049 && op0_elt->first_same_value == op1_elt->first_same_value)
4050 || op0 == op1 || rtx_equal_p (op0, op1))
4051 return;
4052
4053 /* If we aren't setting two things equal all we can do is save this
4054 comparison. Similarly if this is floating-point. In the latter
4055 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4056 If we record the equality, we might inadvertently delete code
4057 whose intent was to change -0 to +0. */
4058
4059 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4060 {
4061 struct qty_table_elem *ent;
4062 int qty;
4063
4064 /* If we reversed a floating-point comparison, if OP0 is not a
4065 register, or if OP1 is neither a register or constant, we can't
4066 do anything. */
4067
4068 if (!REG_P (op1))
4069 op1 = equiv_constant (op1);
4070
4071 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4072 || !REG_P (op0) || op1 == 0)
4073 return;
4074
4075 /* Put OP0 in the hash table if it isn't already. This gives it a
4076 new quantity number. */
4077 if (op0_elt == 0)
4078 {
4079 if (insert_regs (op0, NULL, 0))
4080 {
4081 rehash_using_reg (op0);
4082 op0_hash = HASH (op0, mode);
4083
4084 /* If OP0 is contained in OP1, this changes its hash code
4085 as well. Faster to rehash than to check, except
4086 for the simple case of a constant. */
4087 if (! CONSTANT_P (op1))
4088 op1_hash = HASH (op1,mode);
4089 }
4090
4091 op0_elt = insert (op0, NULL, op0_hash, mode);
4092 op0_elt->in_memory = op0_in_memory;
4093 }
4094
4095 qty = REG_QTY (REGNO (op0));
4096 ent = &qty_table[qty];
4097
4098 ent->comparison_code = code;
4099 if (REG_P (op1))
4100 {
4101 /* Look it up again--in case op0 and op1 are the same. */
4102 op1_elt = lookup (op1, op1_hash, mode);
4103
4104 /* Put OP1 in the hash table so it gets a new quantity number. */
4105 if (op1_elt == 0)
4106 {
4107 if (insert_regs (op1, NULL, 0))
4108 {
4109 rehash_using_reg (op1);
4110 op1_hash = HASH (op1, mode);
4111 }
4112
4113 op1_elt = insert (op1, NULL, op1_hash, mode);
4114 op1_elt->in_memory = op1_in_memory;
4115 }
4116
4117 ent->comparison_const = NULL_RTX;
4118 ent->comparison_qty = REG_QTY (REGNO (op1));
4119 }
4120 else
4121 {
4122 ent->comparison_const = op1;
4123 ent->comparison_qty = -1;
4124 }
4125
4126 return;
4127 }
4128
4129 /* If either side is still missing an equivalence, make it now,
4130 then merge the equivalences. */
4131
4132 if (op0_elt == 0)
4133 {
4134 if (insert_regs (op0, NULL, 0))
4135 {
4136 rehash_using_reg (op0);
4137 op0_hash = HASH (op0, mode);
4138 }
4139
4140 op0_elt = insert (op0, NULL, op0_hash, mode);
4141 op0_elt->in_memory = op0_in_memory;
4142 }
4143
4144 if (op1_elt == 0)
4145 {
4146 if (insert_regs (op1, NULL, 0))
4147 {
4148 rehash_using_reg (op1);
4149 op1_hash = HASH (op1, mode);
4150 }
4151
4152 op1_elt = insert (op1, NULL, op1_hash, mode);
4153 op1_elt->in_memory = op1_in_memory;
4154 }
4155
4156 merge_equiv_classes (op0_elt, op1_elt);
4157 }
4158 \f
4159 /* CSE processing for one instruction.
4160 First simplify sources and addresses of all assignments
4161 in the instruction, using previously-computed equivalents values.
4162 Then install the new sources and destinations in the table
4163 of available values. */
4164
4165 /* Data on one SET contained in the instruction. */
4166
4167 struct set
4168 {
4169 /* The SET rtx itself. */
4170 rtx rtl;
4171 /* The SET_SRC of the rtx (the original value, if it is changing). */
4172 rtx src;
4173 /* The hash-table element for the SET_SRC of the SET. */
4174 struct table_elt *src_elt;
4175 /* Hash value for the SET_SRC. */
4176 unsigned src_hash;
4177 /* Hash value for the SET_DEST. */
4178 unsigned dest_hash;
4179 /* The SET_DEST, with SUBREG, etc., stripped. */
4180 rtx inner_dest;
4181 /* Nonzero if the SET_SRC is in memory. */
4182 char src_in_memory;
4183 /* Nonzero if the SET_SRC contains something
4184 whose value cannot be predicted and understood. */
4185 char src_volatile;
4186 /* Original machine mode, in case it becomes a CONST_INT.
4187 The size of this field should match the size of the mode
4188 field of struct rtx_def (see rtl.h). */
4189 ENUM_BITFIELD(machine_mode) mode : 8;
4190 /* A constant equivalent for SET_SRC, if any. */
4191 rtx src_const;
4192 /* Hash value of constant equivalent for SET_SRC. */
4193 unsigned src_const_hash;
4194 /* Table entry for constant equivalent for SET_SRC, if any. */
4195 struct table_elt *src_const_elt;
4196 /* Table entry for the destination address. */
4197 struct table_elt *dest_addr_elt;
4198 };
4199
4200 static void
4201 cse_insn (rtx insn)
4202 {
4203 rtx x = PATTERN (insn);
4204 int i;
4205 rtx tem;
4206 int n_sets = 0;
4207
4208 rtx src_eqv = 0;
4209 struct table_elt *src_eqv_elt = 0;
4210 int src_eqv_volatile = 0;
4211 int src_eqv_in_memory = 0;
4212 unsigned src_eqv_hash = 0;
4213
4214 struct set *sets = (struct set *) 0;
4215
4216 this_insn = insn;
4217 #ifdef HAVE_cc0
4218 /* Records what this insn does to set CC0. */
4219 this_insn_cc0 = 0;
4220 this_insn_cc0_mode = VOIDmode;
4221 #endif
4222
4223 /* Find all the SETs and CLOBBERs in this instruction.
4224 Record all the SETs in the array `set' and count them.
4225 Also determine whether there is a CLOBBER that invalidates
4226 all memory references, or all references at varying addresses. */
4227
4228 if (CALL_P (insn))
4229 {
4230 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4231 {
4232 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4233 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4234 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4235 }
4236 }
4237
4238 if (GET_CODE (x) == SET)
4239 {
4240 sets = XALLOCA (struct set);
4241 sets[0].rtl = x;
4242
4243 /* Ignore SETs that are unconditional jumps.
4244 They never need cse processing, so this does not hurt.
4245 The reason is not efficiency but rather
4246 so that we can test at the end for instructions
4247 that have been simplified to unconditional jumps
4248 and not be misled by unchanged instructions
4249 that were unconditional jumps to begin with. */
4250 if (SET_DEST (x) == pc_rtx
4251 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4252 ;
4253
4254 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4255 The hard function value register is used only once, to copy to
4256 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4257 Ensure we invalidate the destination register. On the 80386 no
4258 other code would invalidate it since it is a fixed_reg.
4259 We need not check the return of apply_change_group; see canon_reg. */
4260
4261 else if (GET_CODE (SET_SRC (x)) == CALL)
4262 {
4263 canon_reg (SET_SRC (x), insn);
4264 apply_change_group ();
4265 fold_rtx (SET_SRC (x), insn);
4266 invalidate (SET_DEST (x), VOIDmode);
4267 }
4268 else
4269 n_sets = 1;
4270 }
4271 else if (GET_CODE (x) == PARALLEL)
4272 {
4273 int lim = XVECLEN (x, 0);
4274
4275 sets = XALLOCAVEC (struct set, lim);
4276
4277 /* Find all regs explicitly clobbered in this insn,
4278 and ensure they are not replaced with any other regs
4279 elsewhere in this insn.
4280 When a reg that is clobbered is also used for input,
4281 we should presume that that is for a reason,
4282 and we should not substitute some other register
4283 which is not supposed to be clobbered.
4284 Therefore, this loop cannot be merged into the one below
4285 because a CALL may precede a CLOBBER and refer to the
4286 value clobbered. We must not let a canonicalization do
4287 anything in that case. */
4288 for (i = 0; i < lim; i++)
4289 {
4290 rtx y = XVECEXP (x, 0, i);
4291 if (GET_CODE (y) == CLOBBER)
4292 {
4293 rtx clobbered = XEXP (y, 0);
4294
4295 if (REG_P (clobbered)
4296 || GET_CODE (clobbered) == SUBREG)
4297 invalidate (clobbered, VOIDmode);
4298 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4299 || GET_CODE (clobbered) == ZERO_EXTRACT)
4300 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4301 }
4302 }
4303
4304 for (i = 0; i < lim; i++)
4305 {
4306 rtx y = XVECEXP (x, 0, i);
4307 if (GET_CODE (y) == SET)
4308 {
4309 /* As above, we ignore unconditional jumps and call-insns and
4310 ignore the result of apply_change_group. */
4311 if (GET_CODE (SET_SRC (y)) == CALL)
4312 {
4313 canon_reg (SET_SRC (y), insn);
4314 apply_change_group ();
4315 fold_rtx (SET_SRC (y), insn);
4316 invalidate (SET_DEST (y), VOIDmode);
4317 }
4318 else if (SET_DEST (y) == pc_rtx
4319 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4320 ;
4321 else
4322 sets[n_sets++].rtl = y;
4323 }
4324 else if (GET_CODE (y) == CLOBBER)
4325 {
4326 /* If we clobber memory, canon the address.
4327 This does nothing when a register is clobbered
4328 because we have already invalidated the reg. */
4329 if (MEM_P (XEXP (y, 0)))
4330 canon_reg (XEXP (y, 0), insn);
4331 }
4332 else if (GET_CODE (y) == USE
4333 && ! (REG_P (XEXP (y, 0))
4334 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4335 canon_reg (y, insn);
4336 else if (GET_CODE (y) == CALL)
4337 {
4338 /* The result of apply_change_group can be ignored; see
4339 canon_reg. */
4340 canon_reg (y, insn);
4341 apply_change_group ();
4342 fold_rtx (y, insn);
4343 }
4344 }
4345 }
4346 else if (GET_CODE (x) == CLOBBER)
4347 {
4348 if (MEM_P (XEXP (x, 0)))
4349 canon_reg (XEXP (x, 0), insn);
4350 }
4351
4352 /* Canonicalize a USE of a pseudo register or memory location. */
4353 else if (GET_CODE (x) == USE
4354 && ! (REG_P (XEXP (x, 0))
4355 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4356 canon_reg (XEXP (x, 0), insn);
4357 else if (GET_CODE (x) == CALL)
4358 {
4359 /* The result of apply_change_group can be ignored; see canon_reg. */
4360 canon_reg (x, insn);
4361 apply_change_group ();
4362 fold_rtx (x, insn);
4363 }
4364 else if (DEBUG_INSN_P (insn))
4365 canon_reg (PATTERN (insn), insn);
4366
4367 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4368 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4369 is handled specially for this case, and if it isn't set, then there will
4370 be no equivalence for the destination. */
4371 if (n_sets == 1 && REG_NOTES (insn) != 0
4372 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4373 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4374 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4375 {
4376 /* The result of apply_change_group can be ignored; see canon_reg. */
4377 canon_reg (XEXP (tem, 0), insn);
4378 apply_change_group ();
4379 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4380 XEXP (tem, 0) = copy_rtx (src_eqv);
4381 df_notes_rescan (insn);
4382 }
4383
4384 /* Canonicalize sources and addresses of destinations.
4385 We do this in a separate pass to avoid problems when a MATCH_DUP is
4386 present in the insn pattern. In that case, we want to ensure that
4387 we don't break the duplicate nature of the pattern. So we will replace
4388 both operands at the same time. Otherwise, we would fail to find an
4389 equivalent substitution in the loop calling validate_change below.
4390
4391 We used to suppress canonicalization of DEST if it appears in SRC,
4392 but we don't do this any more. */
4393
4394 for (i = 0; i < n_sets; i++)
4395 {
4396 rtx dest = SET_DEST (sets[i].rtl);
4397 rtx src = SET_SRC (sets[i].rtl);
4398 rtx new_rtx = canon_reg (src, insn);
4399
4400 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4401
4402 if (GET_CODE (dest) == ZERO_EXTRACT)
4403 {
4404 validate_change (insn, &XEXP (dest, 1),
4405 canon_reg (XEXP (dest, 1), insn), 1);
4406 validate_change (insn, &XEXP (dest, 2),
4407 canon_reg (XEXP (dest, 2), insn), 1);
4408 }
4409
4410 while (GET_CODE (dest) == SUBREG
4411 || GET_CODE (dest) == ZERO_EXTRACT
4412 || GET_CODE (dest) == STRICT_LOW_PART)
4413 dest = XEXP (dest, 0);
4414
4415 if (MEM_P (dest))
4416 canon_reg (dest, insn);
4417 }
4418
4419 /* Now that we have done all the replacements, we can apply the change
4420 group and see if they all work. Note that this will cause some
4421 canonicalizations that would have worked individually not to be applied
4422 because some other canonicalization didn't work, but this should not
4423 occur often.
4424
4425 The result of apply_change_group can be ignored; see canon_reg. */
4426
4427 apply_change_group ();
4428
4429 /* Set sets[i].src_elt to the class each source belongs to.
4430 Detect assignments from or to volatile things
4431 and set set[i] to zero so they will be ignored
4432 in the rest of this function.
4433
4434 Nothing in this loop changes the hash table or the register chains. */
4435
4436 for (i = 0; i < n_sets; i++)
4437 {
4438 bool repeat = false;
4439 rtx src, dest;
4440 rtx src_folded;
4441 struct table_elt *elt = 0, *p;
4442 enum machine_mode mode;
4443 rtx src_eqv_here;
4444 rtx src_const = 0;
4445 rtx src_related = 0;
4446 bool src_related_is_const_anchor = false;
4447 struct table_elt *src_const_elt = 0;
4448 int src_cost = MAX_COST;
4449 int src_eqv_cost = MAX_COST;
4450 int src_folded_cost = MAX_COST;
4451 int src_related_cost = MAX_COST;
4452 int src_elt_cost = MAX_COST;
4453 int src_regcost = MAX_COST;
4454 int src_eqv_regcost = MAX_COST;
4455 int src_folded_regcost = MAX_COST;
4456 int src_related_regcost = MAX_COST;
4457 int src_elt_regcost = MAX_COST;
4458 /* Set nonzero if we need to call force_const_mem on with the
4459 contents of src_folded before using it. */
4460 int src_folded_force_flag = 0;
4461
4462 dest = SET_DEST (sets[i].rtl);
4463 src = SET_SRC (sets[i].rtl);
4464
4465 /* If SRC is a constant that has no machine mode,
4466 hash it with the destination's machine mode.
4467 This way we can keep different modes separate. */
4468
4469 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4470 sets[i].mode = mode;
4471
4472 if (src_eqv)
4473 {
4474 enum machine_mode eqvmode = mode;
4475 if (GET_CODE (dest) == STRICT_LOW_PART)
4476 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4477 do_not_record = 0;
4478 hash_arg_in_memory = 0;
4479 src_eqv_hash = HASH (src_eqv, eqvmode);
4480
4481 /* Find the equivalence class for the equivalent expression. */
4482
4483 if (!do_not_record)
4484 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4485
4486 src_eqv_volatile = do_not_record;
4487 src_eqv_in_memory = hash_arg_in_memory;
4488 }
4489
4490 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4491 value of the INNER register, not the destination. So it is not
4492 a valid substitution for the source. But save it for later. */
4493 if (GET_CODE (dest) == STRICT_LOW_PART)
4494 src_eqv_here = 0;
4495 else
4496 src_eqv_here = src_eqv;
4497
4498 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4499 simplified result, which may not necessarily be valid. */
4500 src_folded = fold_rtx (src, insn);
4501
4502 #if 0
4503 /* ??? This caused bad code to be generated for the m68k port with -O2.
4504 Suppose src is (CONST_INT -1), and that after truncation src_folded
4505 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4506 At the end we will add src and src_const to the same equivalence
4507 class. We now have 3 and -1 on the same equivalence class. This
4508 causes later instructions to be mis-optimized. */
4509 /* If storing a constant in a bitfield, pre-truncate the constant
4510 so we will be able to record it later. */
4511 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4512 {
4513 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4514
4515 if (CONST_INT_P (src)
4516 && CONST_INT_P (width)
4517 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4518 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4519 src_folded
4520 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4521 << INTVAL (width)) - 1));
4522 }
4523 #endif
4524
4525 /* Compute SRC's hash code, and also notice if it
4526 should not be recorded at all. In that case,
4527 prevent any further processing of this assignment. */
4528 do_not_record = 0;
4529 hash_arg_in_memory = 0;
4530
4531 sets[i].src = src;
4532 sets[i].src_hash = HASH (src, mode);
4533 sets[i].src_volatile = do_not_record;
4534 sets[i].src_in_memory = hash_arg_in_memory;
4535
4536 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4537 a pseudo, do not record SRC. Using SRC as a replacement for
4538 anything else will be incorrect in that situation. Note that
4539 this usually occurs only for stack slots, in which case all the
4540 RTL would be referring to SRC, so we don't lose any optimization
4541 opportunities by not having SRC in the hash table. */
4542
4543 if (MEM_P (src)
4544 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4545 && REG_P (dest)
4546 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4547 sets[i].src_volatile = 1;
4548
4549 #if 0
4550 /* It is no longer clear why we used to do this, but it doesn't
4551 appear to still be needed. So let's try without it since this
4552 code hurts cse'ing widened ops. */
4553 /* If source is a paradoxical subreg (such as QI treated as an SI),
4554 treat it as volatile. It may do the work of an SI in one context
4555 where the extra bits are not being used, but cannot replace an SI
4556 in general. */
4557 if (GET_CODE (src) == SUBREG
4558 && (GET_MODE_SIZE (GET_MODE (src))
4559 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4560 sets[i].src_volatile = 1;
4561 #endif
4562
4563 /* Locate all possible equivalent forms for SRC. Try to replace
4564 SRC in the insn with each cheaper equivalent.
4565
4566 We have the following types of equivalents: SRC itself, a folded
4567 version, a value given in a REG_EQUAL note, or a value related
4568 to a constant.
4569
4570 Each of these equivalents may be part of an additional class
4571 of equivalents (if more than one is in the table, they must be in
4572 the same class; we check for this).
4573
4574 If the source is volatile, we don't do any table lookups.
4575
4576 We note any constant equivalent for possible later use in a
4577 REG_NOTE. */
4578
4579 if (!sets[i].src_volatile)
4580 elt = lookup (src, sets[i].src_hash, mode);
4581
4582 sets[i].src_elt = elt;
4583
4584 if (elt && src_eqv_here && src_eqv_elt)
4585 {
4586 if (elt->first_same_value != src_eqv_elt->first_same_value)
4587 {
4588 /* The REG_EQUAL is indicating that two formerly distinct
4589 classes are now equivalent. So merge them. */
4590 merge_equiv_classes (elt, src_eqv_elt);
4591 src_eqv_hash = HASH (src_eqv, elt->mode);
4592 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4593 }
4594
4595 src_eqv_here = 0;
4596 }
4597
4598 else if (src_eqv_elt)
4599 elt = src_eqv_elt;
4600
4601 /* Try to find a constant somewhere and record it in `src_const'.
4602 Record its table element, if any, in `src_const_elt'. Look in
4603 any known equivalences first. (If the constant is not in the
4604 table, also set `sets[i].src_const_hash'). */
4605 if (elt)
4606 for (p = elt->first_same_value; p; p = p->next_same_value)
4607 if (p->is_const)
4608 {
4609 src_const = p->exp;
4610 src_const_elt = elt;
4611 break;
4612 }
4613
4614 if (src_const == 0
4615 && (CONSTANT_P (src_folded)
4616 /* Consider (minus (label_ref L1) (label_ref L2)) as
4617 "constant" here so we will record it. This allows us
4618 to fold switch statements when an ADDR_DIFF_VEC is used. */
4619 || (GET_CODE (src_folded) == MINUS
4620 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4621 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4622 src_const = src_folded, src_const_elt = elt;
4623 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4624 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4625
4626 /* If we don't know if the constant is in the table, get its
4627 hash code and look it up. */
4628 if (src_const && src_const_elt == 0)
4629 {
4630 sets[i].src_const_hash = HASH (src_const, mode);
4631 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4632 }
4633
4634 sets[i].src_const = src_const;
4635 sets[i].src_const_elt = src_const_elt;
4636
4637 /* If the constant and our source are both in the table, mark them as
4638 equivalent. Otherwise, if a constant is in the table but the source
4639 isn't, set ELT to it. */
4640 if (src_const_elt && elt
4641 && src_const_elt->first_same_value != elt->first_same_value)
4642 merge_equiv_classes (elt, src_const_elt);
4643 else if (src_const_elt && elt == 0)
4644 elt = src_const_elt;
4645
4646 /* See if there is a register linearly related to a constant
4647 equivalent of SRC. */
4648 if (src_const
4649 && (GET_CODE (src_const) == CONST
4650 || (src_const_elt && src_const_elt->related_value != 0)))
4651 {
4652 src_related = use_related_value (src_const, src_const_elt);
4653 if (src_related)
4654 {
4655 struct table_elt *src_related_elt
4656 = lookup (src_related, HASH (src_related, mode), mode);
4657 if (src_related_elt && elt)
4658 {
4659 if (elt->first_same_value
4660 != src_related_elt->first_same_value)
4661 /* This can occur when we previously saw a CONST
4662 involving a SYMBOL_REF and then see the SYMBOL_REF
4663 twice. Merge the involved classes. */
4664 merge_equiv_classes (elt, src_related_elt);
4665
4666 src_related = 0;
4667 src_related_elt = 0;
4668 }
4669 else if (src_related_elt && elt == 0)
4670 elt = src_related_elt;
4671 }
4672 }
4673
4674 /* See if we have a CONST_INT that is already in a register in a
4675 wider mode. */
4676
4677 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4678 && GET_MODE_CLASS (mode) == MODE_INT
4679 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4680 {
4681 enum machine_mode wider_mode;
4682
4683 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4684 wider_mode != VOIDmode
4685 && GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4686 && src_related == 0;
4687 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4688 {
4689 struct table_elt *const_elt
4690 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4691
4692 if (const_elt == 0)
4693 continue;
4694
4695 for (const_elt = const_elt->first_same_value;
4696 const_elt; const_elt = const_elt->next_same_value)
4697 if (REG_P (const_elt->exp))
4698 {
4699 src_related = gen_lowpart (mode, const_elt->exp);
4700 break;
4701 }
4702 }
4703 }
4704
4705 /* Another possibility is that we have an AND with a constant in
4706 a mode narrower than a word. If so, it might have been generated
4707 as part of an "if" which would narrow the AND. If we already
4708 have done the AND in a wider mode, we can use a SUBREG of that
4709 value. */
4710
4711 if (flag_expensive_optimizations && ! src_related
4712 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4713 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4714 {
4715 enum machine_mode tmode;
4716 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4717
4718 for (tmode = GET_MODE_WIDER_MODE (mode);
4719 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4720 tmode = GET_MODE_WIDER_MODE (tmode))
4721 {
4722 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4723 struct table_elt *larger_elt;
4724
4725 if (inner)
4726 {
4727 PUT_MODE (new_and, tmode);
4728 XEXP (new_and, 0) = inner;
4729 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4730 if (larger_elt == 0)
4731 continue;
4732
4733 for (larger_elt = larger_elt->first_same_value;
4734 larger_elt; larger_elt = larger_elt->next_same_value)
4735 if (REG_P (larger_elt->exp))
4736 {
4737 src_related
4738 = gen_lowpart (mode, larger_elt->exp);
4739 break;
4740 }
4741
4742 if (src_related)
4743 break;
4744 }
4745 }
4746 }
4747
4748 #ifdef LOAD_EXTEND_OP
4749 /* See if a MEM has already been loaded with a widening operation;
4750 if it has, we can use a subreg of that. Many CISC machines
4751 also have such operations, but this is only likely to be
4752 beneficial on these machines. */
4753
4754 if (flag_expensive_optimizations && src_related == 0
4755 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4756 && GET_MODE_CLASS (mode) == MODE_INT
4757 && MEM_P (src) && ! do_not_record
4758 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4759 {
4760 struct rtx_def memory_extend_buf;
4761 rtx memory_extend_rtx = &memory_extend_buf;
4762 enum machine_mode tmode;
4763
4764 /* Set what we are trying to extend and the operation it might
4765 have been extended with. */
4766 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4767 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4768 XEXP (memory_extend_rtx, 0) = src;
4769
4770 for (tmode = GET_MODE_WIDER_MODE (mode);
4771 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4772 tmode = GET_MODE_WIDER_MODE (tmode))
4773 {
4774 struct table_elt *larger_elt;
4775
4776 PUT_MODE (memory_extend_rtx, tmode);
4777 larger_elt = lookup (memory_extend_rtx,
4778 HASH (memory_extend_rtx, tmode), tmode);
4779 if (larger_elt == 0)
4780 continue;
4781
4782 for (larger_elt = larger_elt->first_same_value;
4783 larger_elt; larger_elt = larger_elt->next_same_value)
4784 if (REG_P (larger_elt->exp))
4785 {
4786 src_related = gen_lowpart (mode, larger_elt->exp);
4787 break;
4788 }
4789
4790 if (src_related)
4791 break;
4792 }
4793 }
4794 #endif /* LOAD_EXTEND_OP */
4795
4796 /* Try to express the constant using a register+offset expression
4797 derived from a constant anchor. */
4798
4799 if (targetm.const_anchor
4800 && !src_related
4801 && src_const
4802 && GET_CODE (src_const) == CONST_INT)
4803 {
4804 src_related = try_const_anchors (src_const, mode);
4805 src_related_is_const_anchor = src_related != NULL_RTX;
4806 }
4807
4808
4809 if (src == src_folded)
4810 src_folded = 0;
4811
4812 /* At this point, ELT, if nonzero, points to a class of expressions
4813 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4814 and SRC_RELATED, if nonzero, each contain additional equivalent
4815 expressions. Prune these latter expressions by deleting expressions
4816 already in the equivalence class.
4817
4818 Check for an equivalent identical to the destination. If found,
4819 this is the preferred equivalent since it will likely lead to
4820 elimination of the insn. Indicate this by placing it in
4821 `src_related'. */
4822
4823 if (elt)
4824 elt = elt->first_same_value;
4825 for (p = elt; p; p = p->next_same_value)
4826 {
4827 enum rtx_code code = GET_CODE (p->exp);
4828
4829 /* If the expression is not valid, ignore it. Then we do not
4830 have to check for validity below. In most cases, we can use
4831 `rtx_equal_p', since canonicalization has already been done. */
4832 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4833 continue;
4834
4835 /* Also skip paradoxical subregs, unless that's what we're
4836 looking for. */
4837 if (code == SUBREG
4838 && (GET_MODE_SIZE (GET_MODE (p->exp))
4839 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4840 && ! (src != 0
4841 && GET_CODE (src) == SUBREG
4842 && GET_MODE (src) == GET_MODE (p->exp)
4843 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4844 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4845 continue;
4846
4847 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4848 src = 0;
4849 else if (src_folded && GET_CODE (src_folded) == code
4850 && rtx_equal_p (src_folded, p->exp))
4851 src_folded = 0;
4852 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4853 && rtx_equal_p (src_eqv_here, p->exp))
4854 src_eqv_here = 0;
4855 else if (src_related && GET_CODE (src_related) == code
4856 && rtx_equal_p (src_related, p->exp))
4857 src_related = 0;
4858
4859 /* This is the same as the destination of the insns, we want
4860 to prefer it. Copy it to src_related. The code below will
4861 then give it a negative cost. */
4862 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4863 src_related = dest;
4864 }
4865
4866 /* Find the cheapest valid equivalent, trying all the available
4867 possibilities. Prefer items not in the hash table to ones
4868 that are when they are equal cost. Note that we can never
4869 worsen an insn as the current contents will also succeed.
4870 If we find an equivalent identical to the destination, use it as best,
4871 since this insn will probably be eliminated in that case. */
4872 if (src)
4873 {
4874 if (rtx_equal_p (src, dest))
4875 src_cost = src_regcost = -1;
4876 else
4877 {
4878 src_cost = COST (src);
4879 src_regcost = approx_reg_cost (src);
4880 }
4881 }
4882
4883 if (src_eqv_here)
4884 {
4885 if (rtx_equal_p (src_eqv_here, dest))
4886 src_eqv_cost = src_eqv_regcost = -1;
4887 else
4888 {
4889 src_eqv_cost = COST (src_eqv_here);
4890 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4891 }
4892 }
4893
4894 if (src_folded)
4895 {
4896 if (rtx_equal_p (src_folded, dest))
4897 src_folded_cost = src_folded_regcost = -1;
4898 else
4899 {
4900 src_folded_cost = COST (src_folded);
4901 src_folded_regcost = approx_reg_cost (src_folded);
4902 }
4903 }
4904
4905 if (src_related)
4906 {
4907 if (rtx_equal_p (src_related, dest))
4908 src_related_cost = src_related_regcost = -1;
4909 else
4910 {
4911 src_related_cost = COST (src_related);
4912 src_related_regcost = approx_reg_cost (src_related);
4913
4914 /* If a const-anchor is used to synthesize a constant that
4915 normally requires multiple instructions then slightly prefer
4916 it over the original sequence. These instructions are likely
4917 to become redundant now. We can't compare against the cost
4918 of src_eqv_here because, on MIPS for example, multi-insn
4919 constants have zero cost; they are assumed to be hoisted from
4920 loops. */
4921 if (src_related_is_const_anchor
4922 && src_related_cost == src_cost
4923 && src_eqv_here)
4924 src_related_cost--;
4925 }
4926 }
4927
4928 /* If this was an indirect jump insn, a known label will really be
4929 cheaper even though it looks more expensive. */
4930 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4931 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4932
4933 /* Terminate loop when replacement made. This must terminate since
4934 the current contents will be tested and will always be valid. */
4935 while (1)
4936 {
4937 rtx trial;
4938
4939 /* Skip invalid entries. */
4940 while (elt && !REG_P (elt->exp)
4941 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4942 elt = elt->next_same_value;
4943
4944 /* A paradoxical subreg would be bad here: it'll be the right
4945 size, but later may be adjusted so that the upper bits aren't
4946 what we want. So reject it. */
4947 if (elt != 0
4948 && GET_CODE (elt->exp) == SUBREG
4949 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4950 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4951 /* It is okay, though, if the rtx we're trying to match
4952 will ignore any of the bits we can't predict. */
4953 && ! (src != 0
4954 && GET_CODE (src) == SUBREG
4955 && GET_MODE (src) == GET_MODE (elt->exp)
4956 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4957 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4958 {
4959 elt = elt->next_same_value;
4960 continue;
4961 }
4962
4963 if (elt)
4964 {
4965 src_elt_cost = elt->cost;
4966 src_elt_regcost = elt->regcost;
4967 }
4968
4969 /* Find cheapest and skip it for the next time. For items
4970 of equal cost, use this order:
4971 src_folded, src, src_eqv, src_related and hash table entry. */
4972 if (src_folded
4973 && preferable (src_folded_cost, src_folded_regcost,
4974 src_cost, src_regcost) <= 0
4975 && preferable (src_folded_cost, src_folded_regcost,
4976 src_eqv_cost, src_eqv_regcost) <= 0
4977 && preferable (src_folded_cost, src_folded_regcost,
4978 src_related_cost, src_related_regcost) <= 0
4979 && preferable (src_folded_cost, src_folded_regcost,
4980 src_elt_cost, src_elt_regcost) <= 0)
4981 {
4982 trial = src_folded, src_folded_cost = MAX_COST;
4983 if (src_folded_force_flag)
4984 {
4985 rtx forced = force_const_mem (mode, trial);
4986 if (forced)
4987 trial = forced;
4988 }
4989 }
4990 else if (src
4991 && preferable (src_cost, src_regcost,
4992 src_eqv_cost, src_eqv_regcost) <= 0
4993 && preferable (src_cost, src_regcost,
4994 src_related_cost, src_related_regcost) <= 0
4995 && preferable (src_cost, src_regcost,
4996 src_elt_cost, src_elt_regcost) <= 0)
4997 trial = src, src_cost = MAX_COST;
4998 else if (src_eqv_here
4999 && preferable (src_eqv_cost, src_eqv_regcost,
5000 src_related_cost, src_related_regcost) <= 0
5001 && preferable (src_eqv_cost, src_eqv_regcost,
5002 src_elt_cost, src_elt_regcost) <= 0)
5003 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5004 else if (src_related
5005 && preferable (src_related_cost, src_related_regcost,
5006 src_elt_cost, src_elt_regcost) <= 0)
5007 trial = src_related, src_related_cost = MAX_COST;
5008 else
5009 {
5010 trial = elt->exp;
5011 elt = elt->next_same_value;
5012 src_elt_cost = MAX_COST;
5013 }
5014
5015 /* Avoid creation of overlapping memory moves. */
5016 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5017 {
5018 rtx src, dest;
5019
5020 /* BLKmode moves are not handled by cse anyway. */
5021 if (GET_MODE (trial) == BLKmode)
5022 break;
5023
5024 src = canon_rtx (trial);
5025 dest = canon_rtx (SET_DEST (sets[i].rtl));
5026
5027 if (!MEM_P (src) || !MEM_P (dest)
5028 || !nonoverlapping_memrefs_p (src, dest))
5029 break;
5030 }
5031
5032 /* Try to optimize
5033 (set (reg:M N) (const_int A))
5034 (set (reg:M2 O) (const_int B))
5035 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5036 (reg:M2 O)). */
5037 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5038 && CONST_INT_P (trial)
5039 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5040 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5041 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5042 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (sets[i].rtl)))
5043 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5044 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5045 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5046 <= HOST_BITS_PER_WIDE_INT))
5047 {
5048 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5049 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5050 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5051 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5052 struct table_elt *dest_elt
5053 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5054 rtx dest_cst = NULL;
5055
5056 if (dest_elt)
5057 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5058 if (p->is_const && CONST_INT_P (p->exp))
5059 {
5060 dest_cst = p->exp;
5061 break;
5062 }
5063 if (dest_cst)
5064 {
5065 HOST_WIDE_INT val = INTVAL (dest_cst);
5066 HOST_WIDE_INT mask;
5067 unsigned int shift;
5068 if (BITS_BIG_ENDIAN)
5069 shift = GET_MODE_BITSIZE (GET_MODE (dest_reg))
5070 - INTVAL (pos) - INTVAL (width);
5071 else
5072 shift = INTVAL (pos);
5073 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5074 mask = ~(HOST_WIDE_INT) 0;
5075 else
5076 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5077 val &= ~(mask << shift);
5078 val |= (INTVAL (trial) & mask) << shift;
5079 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5080 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5081 dest_reg, 1);
5082 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5083 GEN_INT (val), 1);
5084 if (apply_change_group ())
5085 {
5086 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5087 if (note)
5088 {
5089 remove_note (insn, note);
5090 df_notes_rescan (insn);
5091 }
5092 src_eqv = NULL_RTX;
5093 src_eqv_elt = NULL;
5094 src_eqv_volatile = 0;
5095 src_eqv_in_memory = 0;
5096 src_eqv_hash = 0;
5097 repeat = true;
5098 break;
5099 }
5100 }
5101 }
5102
5103 /* We don't normally have an insn matching (set (pc) (pc)), so
5104 check for this separately here. We will delete such an
5105 insn below.
5106
5107 For other cases such as a table jump or conditional jump
5108 where we know the ultimate target, go ahead and replace the
5109 operand. While that may not make a valid insn, we will
5110 reemit the jump below (and also insert any necessary
5111 barriers). */
5112 if (n_sets == 1 && dest == pc_rtx
5113 && (trial == pc_rtx
5114 || (GET_CODE (trial) == LABEL_REF
5115 && ! condjump_p (insn))))
5116 {
5117 /* Don't substitute non-local labels, this confuses CFG. */
5118 if (GET_CODE (trial) == LABEL_REF
5119 && LABEL_REF_NONLOCAL_P (trial))
5120 continue;
5121
5122 SET_SRC (sets[i].rtl) = trial;
5123 cse_jumps_altered = true;
5124 break;
5125 }
5126
5127 /* Reject certain invalid forms of CONST that we create. */
5128 else if (CONSTANT_P (trial)
5129 && GET_CODE (trial) == CONST
5130 /* Reject cases that will cause decode_rtx_const to
5131 die. On the alpha when simplifying a switch, we
5132 get (const (truncate (minus (label_ref)
5133 (label_ref)))). */
5134 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5135 /* Likewise on IA-64, except without the
5136 truncate. */
5137 || (GET_CODE (XEXP (trial, 0)) == MINUS
5138 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5139 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5140 /* Do nothing for this case. */
5141 ;
5142
5143 /* Look for a substitution that makes a valid insn. */
5144 else if (validate_unshare_change
5145 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5146 {
5147 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5148
5149 /* The result of apply_change_group can be ignored; see
5150 canon_reg. */
5151
5152 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5153 apply_change_group ();
5154
5155 break;
5156 }
5157
5158 /* If we previously found constant pool entries for
5159 constants and this is a constant, try making a
5160 pool entry. Put it in src_folded unless we already have done
5161 this since that is where it likely came from. */
5162
5163 else if (constant_pool_entries_cost
5164 && CONSTANT_P (trial)
5165 && (src_folded == 0
5166 || (!MEM_P (src_folded)
5167 && ! src_folded_force_flag))
5168 && GET_MODE_CLASS (mode) != MODE_CC
5169 && mode != VOIDmode)
5170 {
5171 src_folded_force_flag = 1;
5172 src_folded = trial;
5173 src_folded_cost = constant_pool_entries_cost;
5174 src_folded_regcost = constant_pool_entries_regcost;
5175 }
5176 }
5177
5178 /* If we changed the insn too much, handle this set from scratch. */
5179 if (repeat)
5180 {
5181 i--;
5182 continue;
5183 }
5184
5185 src = SET_SRC (sets[i].rtl);
5186
5187 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5188 However, there is an important exception: If both are registers
5189 that are not the head of their equivalence class, replace SET_SRC
5190 with the head of the class. If we do not do this, we will have
5191 both registers live over a portion of the basic block. This way,
5192 their lifetimes will likely abut instead of overlapping. */
5193 if (REG_P (dest)
5194 && REGNO_QTY_VALID_P (REGNO (dest)))
5195 {
5196 int dest_q = REG_QTY (REGNO (dest));
5197 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5198
5199 if (dest_ent->mode == GET_MODE (dest)
5200 && dest_ent->first_reg != REGNO (dest)
5201 && REG_P (src) && REGNO (src) == REGNO (dest)
5202 /* Don't do this if the original insn had a hard reg as
5203 SET_SRC or SET_DEST. */
5204 && (!REG_P (sets[i].src)
5205 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5206 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5207 /* We can't call canon_reg here because it won't do anything if
5208 SRC is a hard register. */
5209 {
5210 int src_q = REG_QTY (REGNO (src));
5211 struct qty_table_elem *src_ent = &qty_table[src_q];
5212 int first = src_ent->first_reg;
5213 rtx new_src
5214 = (first >= FIRST_PSEUDO_REGISTER
5215 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5216
5217 /* We must use validate-change even for this, because this
5218 might be a special no-op instruction, suitable only to
5219 tag notes onto. */
5220 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5221 {
5222 src = new_src;
5223 /* If we had a constant that is cheaper than what we are now
5224 setting SRC to, use that constant. We ignored it when we
5225 thought we could make this into a no-op. */
5226 if (src_const && COST (src_const) < COST (src)
5227 && validate_change (insn, &SET_SRC (sets[i].rtl),
5228 src_const, 0))
5229 src = src_const;
5230 }
5231 }
5232 }
5233
5234 /* If we made a change, recompute SRC values. */
5235 if (src != sets[i].src)
5236 {
5237 do_not_record = 0;
5238 hash_arg_in_memory = 0;
5239 sets[i].src = src;
5240 sets[i].src_hash = HASH (src, mode);
5241 sets[i].src_volatile = do_not_record;
5242 sets[i].src_in_memory = hash_arg_in_memory;
5243 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5244 }
5245
5246 /* If this is a single SET, we are setting a register, and we have an
5247 equivalent constant, we want to add a REG_NOTE. We don't want
5248 to write a REG_EQUAL note for a constant pseudo since verifying that
5249 that pseudo hasn't been eliminated is a pain. Such a note also
5250 won't help anything.
5251
5252 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5253 which can be created for a reference to a compile time computable
5254 entry in a jump table. */
5255
5256 if (n_sets == 1 && src_const && REG_P (dest)
5257 && !REG_P (src_const)
5258 && ! (GET_CODE (src_const) == CONST
5259 && GET_CODE (XEXP (src_const, 0)) == MINUS
5260 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5261 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5262 {
5263 /* We only want a REG_EQUAL note if src_const != src. */
5264 if (! rtx_equal_p (src, src_const))
5265 {
5266 /* Make sure that the rtx is not shared. */
5267 src_const = copy_rtx (src_const);
5268
5269 /* Record the actual constant value in a REG_EQUAL note,
5270 making a new one if one does not already exist. */
5271 set_unique_reg_note (insn, REG_EQUAL, src_const);
5272 df_notes_rescan (insn);
5273 }
5274 }
5275
5276 /* Now deal with the destination. */
5277 do_not_record = 0;
5278
5279 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5280 while (GET_CODE (dest) == SUBREG
5281 || GET_CODE (dest) == ZERO_EXTRACT
5282 || GET_CODE (dest) == STRICT_LOW_PART)
5283 dest = XEXP (dest, 0);
5284
5285 sets[i].inner_dest = dest;
5286
5287 if (MEM_P (dest))
5288 {
5289 #ifdef PUSH_ROUNDING
5290 /* Stack pushes invalidate the stack pointer. */
5291 rtx addr = XEXP (dest, 0);
5292 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5293 && XEXP (addr, 0) == stack_pointer_rtx)
5294 invalidate (stack_pointer_rtx, VOIDmode);
5295 #endif
5296 dest = fold_rtx (dest, insn);
5297 }
5298
5299 /* Compute the hash code of the destination now,
5300 before the effects of this instruction are recorded,
5301 since the register values used in the address computation
5302 are those before this instruction. */
5303 sets[i].dest_hash = HASH (dest, mode);
5304
5305 /* Don't enter a bit-field in the hash table
5306 because the value in it after the store
5307 may not equal what was stored, due to truncation. */
5308
5309 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5310 {
5311 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5312
5313 if (src_const != 0 && CONST_INT_P (src_const)
5314 && CONST_INT_P (width)
5315 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5316 && ! (INTVAL (src_const)
5317 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5318 /* Exception: if the value is constant,
5319 and it won't be truncated, record it. */
5320 ;
5321 else
5322 {
5323 /* This is chosen so that the destination will be invalidated
5324 but no new value will be recorded.
5325 We must invalidate because sometimes constant
5326 values can be recorded for bitfields. */
5327 sets[i].src_elt = 0;
5328 sets[i].src_volatile = 1;
5329 src_eqv = 0;
5330 src_eqv_elt = 0;
5331 }
5332 }
5333
5334 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5335 the insn. */
5336 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5337 {
5338 /* One less use of the label this insn used to jump to. */
5339 delete_insn_and_edges (insn);
5340 cse_jumps_altered = true;
5341 /* No more processing for this set. */
5342 sets[i].rtl = 0;
5343 }
5344
5345 /* If this SET is now setting PC to a label, we know it used to
5346 be a conditional or computed branch. */
5347 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5348 && !LABEL_REF_NONLOCAL_P (src))
5349 {
5350 /* We reemit the jump in as many cases as possible just in
5351 case the form of an unconditional jump is significantly
5352 different than a computed jump or conditional jump.
5353
5354 If this insn has multiple sets, then reemitting the
5355 jump is nontrivial. So instead we just force rerecognition
5356 and hope for the best. */
5357 if (n_sets == 1)
5358 {
5359 rtx new_rtx, note;
5360
5361 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5362 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5363 LABEL_NUSES (XEXP (src, 0))++;
5364
5365 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5366 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5367 if (note)
5368 {
5369 XEXP (note, 1) = NULL_RTX;
5370 REG_NOTES (new_rtx) = note;
5371 }
5372
5373 delete_insn_and_edges (insn);
5374 insn = new_rtx;
5375 }
5376 else
5377 INSN_CODE (insn) = -1;
5378
5379 /* Do not bother deleting any unreachable code, let jump do it. */
5380 cse_jumps_altered = true;
5381 sets[i].rtl = 0;
5382 }
5383
5384 /* If destination is volatile, invalidate it and then do no further
5385 processing for this assignment. */
5386
5387 else if (do_not_record)
5388 {
5389 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5390 invalidate (dest, VOIDmode);
5391 else if (MEM_P (dest))
5392 invalidate (dest, VOIDmode);
5393 else if (GET_CODE (dest) == STRICT_LOW_PART
5394 || GET_CODE (dest) == ZERO_EXTRACT)
5395 invalidate (XEXP (dest, 0), GET_MODE (dest));
5396 sets[i].rtl = 0;
5397 }
5398
5399 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5400 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5401
5402 #ifdef HAVE_cc0
5403 /* If setting CC0, record what it was set to, or a constant, if it
5404 is equivalent to a constant. If it is being set to a floating-point
5405 value, make a COMPARE with the appropriate constant of 0. If we
5406 don't do this, later code can interpret this as a test against
5407 const0_rtx, which can cause problems if we try to put it into an
5408 insn as a floating-point operand. */
5409 if (dest == cc0_rtx)
5410 {
5411 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5412 this_insn_cc0_mode = mode;
5413 if (FLOAT_MODE_P (mode))
5414 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5415 CONST0_RTX (mode));
5416 }
5417 #endif
5418 }
5419
5420 /* Now enter all non-volatile source expressions in the hash table
5421 if they are not already present.
5422 Record their equivalence classes in src_elt.
5423 This way we can insert the corresponding destinations into
5424 the same classes even if the actual sources are no longer in them
5425 (having been invalidated). */
5426
5427 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5428 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5429 {
5430 struct table_elt *elt;
5431 struct table_elt *classp = sets[0].src_elt;
5432 rtx dest = SET_DEST (sets[0].rtl);
5433 enum machine_mode eqvmode = GET_MODE (dest);
5434
5435 if (GET_CODE (dest) == STRICT_LOW_PART)
5436 {
5437 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5438 classp = 0;
5439 }
5440 if (insert_regs (src_eqv, classp, 0))
5441 {
5442 rehash_using_reg (src_eqv);
5443 src_eqv_hash = HASH (src_eqv, eqvmode);
5444 }
5445 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5446 elt->in_memory = src_eqv_in_memory;
5447 src_eqv_elt = elt;
5448
5449 /* Check to see if src_eqv_elt is the same as a set source which
5450 does not yet have an elt, and if so set the elt of the set source
5451 to src_eqv_elt. */
5452 for (i = 0; i < n_sets; i++)
5453 if (sets[i].rtl && sets[i].src_elt == 0
5454 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5455 sets[i].src_elt = src_eqv_elt;
5456 }
5457
5458 for (i = 0; i < n_sets; i++)
5459 if (sets[i].rtl && ! sets[i].src_volatile
5460 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5461 {
5462 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5463 {
5464 /* REG_EQUAL in setting a STRICT_LOW_PART
5465 gives an equivalent for the entire destination register,
5466 not just for the subreg being stored in now.
5467 This is a more interesting equivalence, so we arrange later
5468 to treat the entire reg as the destination. */
5469 sets[i].src_elt = src_eqv_elt;
5470 sets[i].src_hash = src_eqv_hash;
5471 }
5472 else
5473 {
5474 /* Insert source and constant equivalent into hash table, if not
5475 already present. */
5476 struct table_elt *classp = src_eqv_elt;
5477 rtx src = sets[i].src;
5478 rtx dest = SET_DEST (sets[i].rtl);
5479 enum machine_mode mode
5480 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5481
5482 /* It's possible that we have a source value known to be
5483 constant but don't have a REG_EQUAL note on the insn.
5484 Lack of a note will mean src_eqv_elt will be NULL. This
5485 can happen where we've generated a SUBREG to access a
5486 CONST_INT that is already in a register in a wider mode.
5487 Ensure that the source expression is put in the proper
5488 constant class. */
5489 if (!classp)
5490 classp = sets[i].src_const_elt;
5491
5492 if (sets[i].src_elt == 0)
5493 {
5494 struct table_elt *elt;
5495
5496 /* Note that these insert_regs calls cannot remove
5497 any of the src_elt's, because they would have failed to
5498 match if not still valid. */
5499 if (insert_regs (src, classp, 0))
5500 {
5501 rehash_using_reg (src);
5502 sets[i].src_hash = HASH (src, mode);
5503 }
5504 elt = insert (src, classp, sets[i].src_hash, mode);
5505 elt->in_memory = sets[i].src_in_memory;
5506 sets[i].src_elt = classp = elt;
5507 }
5508 if (sets[i].src_const && sets[i].src_const_elt == 0
5509 && src != sets[i].src_const
5510 && ! rtx_equal_p (sets[i].src_const, src))
5511 sets[i].src_elt = insert (sets[i].src_const, classp,
5512 sets[i].src_const_hash, mode);
5513 }
5514 }
5515 else if (sets[i].src_elt == 0)
5516 /* If we did not insert the source into the hash table (e.g., it was
5517 volatile), note the equivalence class for the REG_EQUAL value, if any,
5518 so that the destination goes into that class. */
5519 sets[i].src_elt = src_eqv_elt;
5520
5521 /* Record destination addresses in the hash table. This allows us to
5522 check if they are invalidated by other sets. */
5523 for (i = 0; i < n_sets; i++)
5524 {
5525 if (sets[i].rtl)
5526 {
5527 rtx x = sets[i].inner_dest;
5528 struct table_elt *elt;
5529 enum machine_mode mode;
5530 unsigned hash;
5531
5532 if (MEM_P (x))
5533 {
5534 x = XEXP (x, 0);
5535 mode = GET_MODE (x);
5536 hash = HASH (x, mode);
5537 elt = lookup (x, hash, mode);
5538 if (!elt)
5539 {
5540 if (insert_regs (x, NULL, 0))
5541 {
5542 rtx dest = SET_DEST (sets[i].rtl);
5543
5544 rehash_using_reg (x);
5545 hash = HASH (x, mode);
5546 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5547 }
5548 elt = insert (x, NULL, hash, mode);
5549 }
5550
5551 sets[i].dest_addr_elt = elt;
5552 }
5553 else
5554 sets[i].dest_addr_elt = NULL;
5555 }
5556 }
5557
5558 invalidate_from_clobbers (x);
5559
5560 /* Some registers are invalidated by subroutine calls. Memory is
5561 invalidated by non-constant calls. */
5562
5563 if (CALL_P (insn))
5564 {
5565 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5566 invalidate_memory ();
5567 invalidate_for_call ();
5568 }
5569
5570 /* Now invalidate everything set by this instruction.
5571 If a SUBREG or other funny destination is being set,
5572 sets[i].rtl is still nonzero, so here we invalidate the reg
5573 a part of which is being set. */
5574
5575 for (i = 0; i < n_sets; i++)
5576 if (sets[i].rtl)
5577 {
5578 /* We can't use the inner dest, because the mode associated with
5579 a ZERO_EXTRACT is significant. */
5580 rtx dest = SET_DEST (sets[i].rtl);
5581
5582 /* Needed for registers to remove the register from its
5583 previous quantity's chain.
5584 Needed for memory if this is a nonvarying address, unless
5585 we have just done an invalidate_memory that covers even those. */
5586 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5587 invalidate (dest, VOIDmode);
5588 else if (MEM_P (dest))
5589 invalidate (dest, VOIDmode);
5590 else if (GET_CODE (dest) == STRICT_LOW_PART
5591 || GET_CODE (dest) == ZERO_EXTRACT)
5592 invalidate (XEXP (dest, 0), GET_MODE (dest));
5593 }
5594
5595 /* A volatile ASM invalidates everything. */
5596 if (NONJUMP_INSN_P (insn)
5597 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5598 && MEM_VOLATILE_P (PATTERN (insn)))
5599 flush_hash_table ();
5600
5601 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5602 the regs restored by the longjmp come from a later time
5603 than the setjmp. */
5604 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5605 {
5606 flush_hash_table ();
5607 goto done;
5608 }
5609
5610 /* Make sure registers mentioned in destinations
5611 are safe for use in an expression to be inserted.
5612 This removes from the hash table
5613 any invalid entry that refers to one of these registers.
5614
5615 We don't care about the return value from mention_regs because
5616 we are going to hash the SET_DEST values unconditionally. */
5617
5618 for (i = 0; i < n_sets; i++)
5619 {
5620 if (sets[i].rtl)
5621 {
5622 rtx x = SET_DEST (sets[i].rtl);
5623
5624 if (!REG_P (x))
5625 mention_regs (x);
5626 else
5627 {
5628 /* We used to rely on all references to a register becoming
5629 inaccessible when a register changes to a new quantity,
5630 since that changes the hash code. However, that is not
5631 safe, since after HASH_SIZE new quantities we get a
5632 hash 'collision' of a register with its own invalid
5633 entries. And since SUBREGs have been changed not to
5634 change their hash code with the hash code of the register,
5635 it wouldn't work any longer at all. So we have to check
5636 for any invalid references lying around now.
5637 This code is similar to the REG case in mention_regs,
5638 but it knows that reg_tick has been incremented, and
5639 it leaves reg_in_table as -1 . */
5640 unsigned int regno = REGNO (x);
5641 unsigned int endregno = END_REGNO (x);
5642 unsigned int i;
5643
5644 for (i = regno; i < endregno; i++)
5645 {
5646 if (REG_IN_TABLE (i) >= 0)
5647 {
5648 remove_invalid_refs (i);
5649 REG_IN_TABLE (i) = -1;
5650 }
5651 }
5652 }
5653 }
5654 }
5655
5656 /* We may have just removed some of the src_elt's from the hash table.
5657 So replace each one with the current head of the same class.
5658 Also check if destination addresses have been removed. */
5659
5660 for (i = 0; i < n_sets; i++)
5661 if (sets[i].rtl)
5662 {
5663 if (sets[i].dest_addr_elt
5664 && sets[i].dest_addr_elt->first_same_value == 0)
5665 {
5666 /* The elt was removed, which means this destination is not
5667 valid after this instruction. */
5668 sets[i].rtl = NULL_RTX;
5669 }
5670 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5671 /* If elt was removed, find current head of same class,
5672 or 0 if nothing remains of that class. */
5673 {
5674 struct table_elt *elt = sets[i].src_elt;
5675
5676 while (elt && elt->prev_same_value)
5677 elt = elt->prev_same_value;
5678
5679 while (elt && elt->first_same_value == 0)
5680 elt = elt->next_same_value;
5681 sets[i].src_elt = elt ? elt->first_same_value : 0;
5682 }
5683 }
5684
5685 /* Now insert the destinations into their equivalence classes. */
5686
5687 for (i = 0; i < n_sets; i++)
5688 if (sets[i].rtl)
5689 {
5690 rtx dest = SET_DEST (sets[i].rtl);
5691 struct table_elt *elt;
5692
5693 /* Don't record value if we are not supposed to risk allocating
5694 floating-point values in registers that might be wider than
5695 memory. */
5696 if ((flag_float_store
5697 && MEM_P (dest)
5698 && FLOAT_MODE_P (GET_MODE (dest)))
5699 /* Don't record BLKmode values, because we don't know the
5700 size of it, and can't be sure that other BLKmode values
5701 have the same or smaller size. */
5702 || GET_MODE (dest) == BLKmode
5703 /* If we didn't put a REG_EQUAL value or a source into the hash
5704 table, there is no point is recording DEST. */
5705 || sets[i].src_elt == 0
5706 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5707 or SIGN_EXTEND, don't record DEST since it can cause
5708 some tracking to be wrong.
5709
5710 ??? Think about this more later. */
5711 || (GET_CODE (dest) == SUBREG
5712 && (GET_MODE_SIZE (GET_MODE (dest))
5713 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5714 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5715 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5716 continue;
5717
5718 /* STRICT_LOW_PART isn't part of the value BEING set,
5719 and neither is the SUBREG inside it.
5720 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5721 if (GET_CODE (dest) == STRICT_LOW_PART)
5722 dest = SUBREG_REG (XEXP (dest, 0));
5723
5724 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5725 /* Registers must also be inserted into chains for quantities. */
5726 if (insert_regs (dest, sets[i].src_elt, 1))
5727 {
5728 /* If `insert_regs' changes something, the hash code must be
5729 recalculated. */
5730 rehash_using_reg (dest);
5731 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5732 }
5733
5734 elt = insert (dest, sets[i].src_elt,
5735 sets[i].dest_hash, GET_MODE (dest));
5736
5737 /* If this is a constant, insert the constant anchors with the
5738 equivalent register-offset expressions using register DEST. */
5739 if (targetm.const_anchor
5740 && REG_P (dest)
5741 && SCALAR_INT_MODE_P (GET_MODE (dest))
5742 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5743 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5744
5745 elt->in_memory = (MEM_P (sets[i].inner_dest)
5746 && !MEM_READONLY_P (sets[i].inner_dest));
5747
5748 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5749 narrower than M2, and both M1 and M2 are the same number of words,
5750 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5751 make that equivalence as well.
5752
5753 However, BAR may have equivalences for which gen_lowpart
5754 will produce a simpler value than gen_lowpart applied to
5755 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5756 BAR's equivalences. If we don't get a simplified form, make
5757 the SUBREG. It will not be used in an equivalence, but will
5758 cause two similar assignments to be detected.
5759
5760 Note the loop below will find SUBREG_REG (DEST) since we have
5761 already entered SRC and DEST of the SET in the table. */
5762
5763 if (GET_CODE (dest) == SUBREG
5764 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5765 / UNITS_PER_WORD)
5766 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5767 && (GET_MODE_SIZE (GET_MODE (dest))
5768 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5769 && sets[i].src_elt != 0)
5770 {
5771 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5772 struct table_elt *elt, *classp = 0;
5773
5774 for (elt = sets[i].src_elt->first_same_value; elt;
5775 elt = elt->next_same_value)
5776 {
5777 rtx new_src = 0;
5778 unsigned src_hash;
5779 struct table_elt *src_elt;
5780 int byte = 0;
5781
5782 /* Ignore invalid entries. */
5783 if (!REG_P (elt->exp)
5784 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5785 continue;
5786
5787 /* We may have already been playing subreg games. If the
5788 mode is already correct for the destination, use it. */
5789 if (GET_MODE (elt->exp) == new_mode)
5790 new_src = elt->exp;
5791 else
5792 {
5793 /* Calculate big endian correction for the SUBREG_BYTE.
5794 We have already checked that M1 (GET_MODE (dest))
5795 is not narrower than M2 (new_mode). */
5796 if (BYTES_BIG_ENDIAN)
5797 byte = (GET_MODE_SIZE (GET_MODE (dest))
5798 - GET_MODE_SIZE (new_mode));
5799
5800 new_src = simplify_gen_subreg (new_mode, elt->exp,
5801 GET_MODE (dest), byte);
5802 }
5803
5804 /* The call to simplify_gen_subreg fails if the value
5805 is VOIDmode, yet we can't do any simplification, e.g.
5806 for EXPR_LISTs denoting function call results.
5807 It is invalid to construct a SUBREG with a VOIDmode
5808 SUBREG_REG, hence a zero new_src means we can't do
5809 this substitution. */
5810 if (! new_src)
5811 continue;
5812
5813 src_hash = HASH (new_src, new_mode);
5814 src_elt = lookup (new_src, src_hash, new_mode);
5815
5816 /* Put the new source in the hash table is if isn't
5817 already. */
5818 if (src_elt == 0)
5819 {
5820 if (insert_regs (new_src, classp, 0))
5821 {
5822 rehash_using_reg (new_src);
5823 src_hash = HASH (new_src, new_mode);
5824 }
5825 src_elt = insert (new_src, classp, src_hash, new_mode);
5826 src_elt->in_memory = elt->in_memory;
5827 }
5828 else if (classp && classp != src_elt->first_same_value)
5829 /* Show that two things that we've seen before are
5830 actually the same. */
5831 merge_equiv_classes (src_elt, classp);
5832
5833 classp = src_elt->first_same_value;
5834 /* Ignore invalid entries. */
5835 while (classp
5836 && !REG_P (classp->exp)
5837 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5838 classp = classp->next_same_value;
5839 }
5840 }
5841 }
5842
5843 /* Special handling for (set REG0 REG1) where REG0 is the
5844 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5845 be used in the sequel, so (if easily done) change this insn to
5846 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5847 that computed their value. Then REG1 will become a dead store
5848 and won't cloud the situation for later optimizations.
5849
5850 Do not make this change if REG1 is a hard register, because it will
5851 then be used in the sequel and we may be changing a two-operand insn
5852 into a three-operand insn.
5853
5854 Also do not do this if we are operating on a copy of INSN. */
5855
5856 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5857 && NEXT_INSN (PREV_INSN (insn)) == insn
5858 && REG_P (SET_SRC (sets[0].rtl))
5859 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5860 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5861 {
5862 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5863 struct qty_table_elem *src_ent = &qty_table[src_q];
5864
5865 if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5866 {
5867 /* Scan for the previous nonnote insn, but stop at a basic
5868 block boundary. */
5869 rtx prev = insn;
5870 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5871 do
5872 {
5873 prev = PREV_INSN (prev);
5874 }
5875 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
5876
5877 /* Do not swap the registers around if the previous instruction
5878 attaches a REG_EQUIV note to REG1.
5879
5880 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5881 from the pseudo that originally shadowed an incoming argument
5882 to another register. Some uses of REG_EQUIV might rely on it
5883 being attached to REG1 rather than REG2.
5884
5885 This section previously turned the REG_EQUIV into a REG_EQUAL
5886 note. We cannot do that because REG_EQUIV may provide an
5887 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5888 if (NONJUMP_INSN_P (prev)
5889 && GET_CODE (PATTERN (prev)) == SET
5890 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5891 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5892 {
5893 rtx dest = SET_DEST (sets[0].rtl);
5894 rtx src = SET_SRC (sets[0].rtl);
5895 rtx note;
5896
5897 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5898 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5899 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5900 apply_change_group ();
5901
5902 /* If INSN has a REG_EQUAL note, and this note mentions
5903 REG0, then we must delete it, because the value in
5904 REG0 has changed. If the note's value is REG1, we must
5905 also delete it because that is now this insn's dest. */
5906 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5907 if (note != 0
5908 && (reg_mentioned_p (dest, XEXP (note, 0))
5909 || rtx_equal_p (src, XEXP (note, 0))))
5910 remove_note (insn, note);
5911 }
5912 }
5913 }
5914
5915 done:;
5916 }
5917 \f
5918 /* Remove from the hash table all expressions that reference memory. */
5919
5920 static void
5921 invalidate_memory (void)
5922 {
5923 int i;
5924 struct table_elt *p, *next;
5925
5926 for (i = 0; i < HASH_SIZE; i++)
5927 for (p = table[i]; p; p = next)
5928 {
5929 next = p->next_same_hash;
5930 if (p->in_memory)
5931 remove_from_table (p, i);
5932 }
5933 }
5934
5935 /* Perform invalidation on the basis of everything about an insn
5936 except for invalidating the actual places that are SET in it.
5937 This includes the places CLOBBERed, and anything that might
5938 alias with something that is SET or CLOBBERed.
5939
5940 X is the pattern of the insn. */
5941
5942 static void
5943 invalidate_from_clobbers (rtx x)
5944 {
5945 if (GET_CODE (x) == CLOBBER)
5946 {
5947 rtx ref = XEXP (x, 0);
5948 if (ref)
5949 {
5950 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5951 || MEM_P (ref))
5952 invalidate (ref, VOIDmode);
5953 else if (GET_CODE (ref) == STRICT_LOW_PART
5954 || GET_CODE (ref) == ZERO_EXTRACT)
5955 invalidate (XEXP (ref, 0), GET_MODE (ref));
5956 }
5957 }
5958 else if (GET_CODE (x) == PARALLEL)
5959 {
5960 int i;
5961 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5962 {
5963 rtx y = XVECEXP (x, 0, i);
5964 if (GET_CODE (y) == CLOBBER)
5965 {
5966 rtx ref = XEXP (y, 0);
5967 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5968 || MEM_P (ref))
5969 invalidate (ref, VOIDmode);
5970 else if (GET_CODE (ref) == STRICT_LOW_PART
5971 || GET_CODE (ref) == ZERO_EXTRACT)
5972 invalidate (XEXP (ref, 0), GET_MODE (ref));
5973 }
5974 }
5975 }
5976 }
5977 \f
5978 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5979 and replace any registers in them with either an equivalent constant
5980 or the canonical form of the register. If we are inside an address,
5981 only do this if the address remains valid.
5982
5983 OBJECT is 0 except when within a MEM in which case it is the MEM.
5984
5985 Return the replacement for X. */
5986
5987 static rtx
5988 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5989 {
5990 enum rtx_code code = GET_CODE (x);
5991 const char *fmt = GET_RTX_FORMAT (code);
5992 int i;
5993
5994 switch (code)
5995 {
5996 case CONST_INT:
5997 case CONST:
5998 case SYMBOL_REF:
5999 case LABEL_REF:
6000 case CONST_DOUBLE:
6001 case CONST_FIXED:
6002 case CONST_VECTOR:
6003 case PC:
6004 case CC0:
6005 case LO_SUM:
6006 return x;
6007
6008 case MEM:
6009 validate_change (x, &XEXP (x, 0),
6010 cse_process_notes (XEXP (x, 0), x, changed), 0);
6011 return x;
6012
6013 case EXPR_LIST:
6014 case INSN_LIST:
6015 if (REG_NOTE_KIND (x) == REG_EQUAL)
6016 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6017 if (XEXP (x, 1))
6018 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6019 return x;
6020
6021 case SIGN_EXTEND:
6022 case ZERO_EXTEND:
6023 case SUBREG:
6024 {
6025 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6026 /* We don't substitute VOIDmode constants into these rtx,
6027 since they would impede folding. */
6028 if (GET_MODE (new_rtx) != VOIDmode)
6029 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6030 return x;
6031 }
6032
6033 case REG:
6034 i = REG_QTY (REGNO (x));
6035
6036 /* Return a constant or a constant register. */
6037 if (REGNO_QTY_VALID_P (REGNO (x)))
6038 {
6039 struct qty_table_elem *ent = &qty_table[i];
6040
6041 if (ent->const_rtx != NULL_RTX
6042 && (CONSTANT_P (ent->const_rtx)
6043 || REG_P (ent->const_rtx)))
6044 {
6045 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6046 if (new_rtx)
6047 return copy_rtx (new_rtx);
6048 }
6049 }
6050
6051 /* Otherwise, canonicalize this register. */
6052 return canon_reg (x, NULL_RTX);
6053
6054 default:
6055 break;
6056 }
6057
6058 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6059 if (fmt[i] == 'e')
6060 validate_change (object, &XEXP (x, i),
6061 cse_process_notes (XEXP (x, i), object, changed), 0);
6062
6063 return x;
6064 }
6065
6066 static rtx
6067 cse_process_notes (rtx x, rtx object, bool *changed)
6068 {
6069 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6070 if (new_rtx != x)
6071 *changed = true;
6072 return new_rtx;
6073 }
6074
6075 \f
6076 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6077
6078 DATA is a pointer to a struct cse_basic_block_data, that is used to
6079 describe the path.
6080 It is filled with a queue of basic blocks, starting with FIRST_BB
6081 and following a trace through the CFG.
6082
6083 If all paths starting at FIRST_BB have been followed, or no new path
6084 starting at FIRST_BB can be constructed, this function returns FALSE.
6085 Otherwise, DATA->path is filled and the function returns TRUE indicating
6086 that a path to follow was found.
6087
6088 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6089 block in the path will be FIRST_BB. */
6090
6091 static bool
6092 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6093 int follow_jumps)
6094 {
6095 basic_block bb;
6096 edge e;
6097 int path_size;
6098
6099 SET_BIT (cse_visited_basic_blocks, first_bb->index);
6100
6101 /* See if there is a previous path. */
6102 path_size = data->path_size;
6103
6104 /* There is a previous path. Make sure it started with FIRST_BB. */
6105 if (path_size)
6106 gcc_assert (data->path[0].bb == first_bb);
6107
6108 /* There was only one basic block in the last path. Clear the path and
6109 return, so that paths starting at another basic block can be tried. */
6110 if (path_size == 1)
6111 {
6112 path_size = 0;
6113 goto done;
6114 }
6115
6116 /* If the path was empty from the beginning, construct a new path. */
6117 if (path_size == 0)
6118 data->path[path_size++].bb = first_bb;
6119 else
6120 {
6121 /* Otherwise, path_size must be equal to or greater than 2, because
6122 a previous path exists that is at least two basic blocks long.
6123
6124 Update the previous branch path, if any. If the last branch was
6125 previously along the branch edge, take the fallthrough edge now. */
6126 while (path_size >= 2)
6127 {
6128 basic_block last_bb_in_path, previous_bb_in_path;
6129 edge e;
6130
6131 --path_size;
6132 last_bb_in_path = data->path[path_size].bb;
6133 previous_bb_in_path = data->path[path_size - 1].bb;
6134
6135 /* If we previously followed a path along the branch edge, try
6136 the fallthru edge now. */
6137 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6138 && any_condjump_p (BB_END (previous_bb_in_path))
6139 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6140 && e == BRANCH_EDGE (previous_bb_in_path))
6141 {
6142 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6143 if (bb != EXIT_BLOCK_PTR
6144 && single_pred_p (bb)
6145 /* We used to assert here that we would only see blocks
6146 that we have not visited yet. But we may end up
6147 visiting basic blocks twice if the CFG has changed
6148 in this run of cse_main, because when the CFG changes
6149 the topological sort of the CFG also changes. A basic
6150 blocks that previously had more than two predecessors
6151 may now have a single predecessor, and become part of
6152 a path that starts at another basic block.
6153
6154 We still want to visit each basic block only once, so
6155 halt the path here if we have already visited BB. */
6156 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
6157 {
6158 SET_BIT (cse_visited_basic_blocks, bb->index);
6159 data->path[path_size++].bb = bb;
6160 break;
6161 }
6162 }
6163
6164 data->path[path_size].bb = NULL;
6165 }
6166
6167 /* If only one block remains in the path, bail. */
6168 if (path_size == 1)
6169 {
6170 path_size = 0;
6171 goto done;
6172 }
6173 }
6174
6175 /* Extend the path if possible. */
6176 if (follow_jumps)
6177 {
6178 bb = data->path[path_size - 1].bb;
6179 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6180 {
6181 if (single_succ_p (bb))
6182 e = single_succ_edge (bb);
6183 else if (EDGE_COUNT (bb->succs) == 2
6184 && any_condjump_p (BB_END (bb)))
6185 {
6186 /* First try to follow the branch. If that doesn't lead
6187 to a useful path, follow the fallthru edge. */
6188 e = BRANCH_EDGE (bb);
6189 if (!single_pred_p (e->dest))
6190 e = FALLTHRU_EDGE (bb);
6191 }
6192 else
6193 e = NULL;
6194
6195 if (e && e->dest != EXIT_BLOCK_PTR
6196 && single_pred_p (e->dest)
6197 /* Avoid visiting basic blocks twice. The large comment
6198 above explains why this can happen. */
6199 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
6200 {
6201 basic_block bb2 = e->dest;
6202 SET_BIT (cse_visited_basic_blocks, bb2->index);
6203 data->path[path_size++].bb = bb2;
6204 bb = bb2;
6205 }
6206 else
6207 bb = NULL;
6208 }
6209 }
6210
6211 done:
6212 data->path_size = path_size;
6213 return path_size != 0;
6214 }
6215 \f
6216 /* Dump the path in DATA to file F. NSETS is the number of sets
6217 in the path. */
6218
6219 static void
6220 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6221 {
6222 int path_entry;
6223
6224 fprintf (f, ";; Following path with %d sets: ", nsets);
6225 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6226 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6227 fputc ('\n', dump_file);
6228 fflush (f);
6229 }
6230
6231 \f
6232 /* Return true if BB has exception handling successor edges. */
6233
6234 static bool
6235 have_eh_succ_edges (basic_block bb)
6236 {
6237 edge e;
6238 edge_iterator ei;
6239
6240 FOR_EACH_EDGE (e, ei, bb->succs)
6241 if (e->flags & EDGE_EH)
6242 return true;
6243
6244 return false;
6245 }
6246
6247 \f
6248 /* Scan to the end of the path described by DATA. Return an estimate of
6249 the total number of SETs of all insns in the path. */
6250
6251 static void
6252 cse_prescan_path (struct cse_basic_block_data *data)
6253 {
6254 int nsets = 0;
6255 int path_size = data->path_size;
6256 int path_entry;
6257
6258 /* Scan to end of each basic block in the path. */
6259 for (path_entry = 0; path_entry < path_size; path_entry++)
6260 {
6261 basic_block bb;
6262 rtx insn;
6263
6264 bb = data->path[path_entry].bb;
6265
6266 FOR_BB_INSNS (bb, insn)
6267 {
6268 if (!INSN_P (insn))
6269 continue;
6270
6271 /* A PARALLEL can have lots of SETs in it,
6272 especially if it is really an ASM_OPERANDS. */
6273 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6274 nsets += XVECLEN (PATTERN (insn), 0);
6275 else
6276 nsets += 1;
6277 }
6278 }
6279
6280 data->nsets = nsets;
6281 }
6282 \f
6283 /* Process a single extended basic block described by EBB_DATA. */
6284
6285 static void
6286 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6287 {
6288 int path_size = ebb_data->path_size;
6289 int path_entry;
6290 int num_insns = 0;
6291
6292 /* Allocate the space needed by qty_table. */
6293 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6294
6295 new_basic_block ();
6296 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6297 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6298 for (path_entry = 0; path_entry < path_size; path_entry++)
6299 {
6300 basic_block bb;
6301 rtx insn;
6302
6303 bb = ebb_data->path[path_entry].bb;
6304
6305 /* Invalidate recorded information for eh regs if there is an EH
6306 edge pointing to that bb. */
6307 if (bb_has_eh_pred (bb))
6308 {
6309 df_ref *def_rec;
6310
6311 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6312 {
6313 df_ref def = *def_rec;
6314 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6315 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6316 }
6317 }
6318
6319 FOR_BB_INSNS (bb, insn)
6320 {
6321 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6322 /* If we have processed 1,000 insns, flush the hash table to
6323 avoid extreme quadratic behavior. We must not include NOTEs
6324 in the count since there may be more of them when generating
6325 debugging information. If we clear the table at different
6326 times, code generated with -g -O might be different than code
6327 generated with -O but not -g.
6328
6329 FIXME: This is a real kludge and needs to be done some other
6330 way. */
6331 if (NONDEBUG_INSN_P (insn)
6332 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6333 {
6334 flush_hash_table ();
6335 num_insns = 0;
6336 }
6337
6338 if (INSN_P (insn))
6339 {
6340 /* Process notes first so we have all notes in canonical forms
6341 when looking for duplicate operations. */
6342 if (REG_NOTES (insn))
6343 {
6344 bool changed = false;
6345 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6346 NULL_RTX, &changed);
6347 if (changed)
6348 df_notes_rescan (insn);
6349 }
6350
6351 cse_insn (insn);
6352
6353 /* If we haven't already found an insn where we added a LABEL_REF,
6354 check this one. */
6355 if (INSN_P (insn) && !recorded_label_ref
6356 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6357 (void *) insn))
6358 recorded_label_ref = true;
6359
6360 #ifdef HAVE_cc0
6361 /* If the previous insn set CC0 and this insn no longer
6362 references CC0, delete the previous insn. Here we use
6363 fact that nothing expects CC0 to be valid over an insn,
6364 which is true until the final pass. */
6365 {
6366 rtx prev_insn, tem;
6367
6368 prev_insn = PREV_INSN (insn);
6369 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6370 && (tem = single_set (prev_insn)) != 0
6371 && SET_DEST (tem) == cc0_rtx
6372 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6373 delete_insn (prev_insn);
6374 }
6375
6376 /* If this insn is not the last insn in the basic block,
6377 it will be PREV_INSN(insn) in the next iteration. If
6378 we recorded any CC0-related information for this insn,
6379 remember it. */
6380 if (insn != BB_END (bb))
6381 {
6382 prev_insn_cc0 = this_insn_cc0;
6383 prev_insn_cc0_mode = this_insn_cc0_mode;
6384 }
6385 #endif
6386 }
6387 }
6388
6389 /* With non-call exceptions, we are not always able to update
6390 the CFG properly inside cse_insn. So clean up possibly
6391 redundant EH edges here. */
6392 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6393 cse_cfg_altered |= purge_dead_edges (bb);
6394
6395 /* If we changed a conditional jump, we may have terminated
6396 the path we are following. Check that by verifying that
6397 the edge we would take still exists. If the edge does
6398 not exist anymore, purge the remainder of the path.
6399 Note that this will cause us to return to the caller. */
6400 if (path_entry < path_size - 1)
6401 {
6402 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6403 if (!find_edge (bb, next_bb))
6404 {
6405 do
6406 {
6407 path_size--;
6408
6409 /* If we truncate the path, we must also reset the
6410 visited bit on the remaining blocks in the path,
6411 or we will never visit them at all. */
6412 RESET_BIT (cse_visited_basic_blocks,
6413 ebb_data->path[path_size].bb->index);
6414 ebb_data->path[path_size].bb = NULL;
6415 }
6416 while (path_size - 1 != path_entry);
6417 ebb_data->path_size = path_size;
6418 }
6419 }
6420
6421 /* If this is a conditional jump insn, record any known
6422 equivalences due to the condition being tested. */
6423 insn = BB_END (bb);
6424 if (path_entry < path_size - 1
6425 && JUMP_P (insn)
6426 && single_set (insn)
6427 && any_condjump_p (insn))
6428 {
6429 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6430 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6431 record_jump_equiv (insn, taken);
6432 }
6433
6434 #ifdef HAVE_cc0
6435 /* Clear the CC0-tracking related insns, they can't provide
6436 useful information across basic block boundaries. */
6437 prev_insn_cc0 = 0;
6438 #endif
6439 }
6440
6441 gcc_assert (next_qty <= max_qty);
6442
6443 free (qty_table);
6444 }
6445
6446 \f
6447 /* Perform cse on the instructions of a function.
6448 F is the first instruction.
6449 NREGS is one plus the highest pseudo-reg number used in the instruction.
6450
6451 Return 2 if jump optimizations should be redone due to simplifications
6452 in conditional jump instructions.
6453 Return 1 if the CFG should be cleaned up because it has been modified.
6454 Return 0 otherwise. */
6455
6456 int
6457 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6458 {
6459 struct cse_basic_block_data ebb_data;
6460 basic_block bb;
6461 int *rc_order = XNEWVEC (int, last_basic_block);
6462 int i, n_blocks;
6463
6464 df_set_flags (DF_LR_RUN_DCE);
6465 df_analyze ();
6466 df_set_flags (DF_DEFER_INSN_RESCAN);
6467
6468 reg_scan (get_insns (), max_reg_num ());
6469 init_cse_reg_info (nregs);
6470
6471 ebb_data.path = XNEWVEC (struct branch_path,
6472 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6473
6474 cse_cfg_altered = false;
6475 cse_jumps_altered = false;
6476 recorded_label_ref = false;
6477 constant_pool_entries_cost = 0;
6478 constant_pool_entries_regcost = 0;
6479 ebb_data.path_size = 0;
6480 ebb_data.nsets = 0;
6481 rtl_hooks = cse_rtl_hooks;
6482
6483 init_recog ();
6484 init_alias_analysis ();
6485
6486 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6487
6488 /* Set up the table of already visited basic blocks. */
6489 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6490 sbitmap_zero (cse_visited_basic_blocks);
6491
6492 /* Loop over basic blocks in reverse completion order (RPO),
6493 excluding the ENTRY and EXIT blocks. */
6494 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6495 i = 0;
6496 while (i < n_blocks)
6497 {
6498 /* Find the first block in the RPO queue that we have not yet
6499 processed before. */
6500 do
6501 {
6502 bb = BASIC_BLOCK (rc_order[i++]);
6503 }
6504 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6505 && i < n_blocks);
6506
6507 /* Find all paths starting with BB, and process them. */
6508 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6509 {
6510 /* Pre-scan the path. */
6511 cse_prescan_path (&ebb_data);
6512
6513 /* If this basic block has no sets, skip it. */
6514 if (ebb_data.nsets == 0)
6515 continue;
6516
6517 /* Get a reasonable estimate for the maximum number of qty's
6518 needed for this path. For this, we take the number of sets
6519 and multiply that by MAX_RECOG_OPERANDS. */
6520 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6521
6522 /* Dump the path we're about to process. */
6523 if (dump_file)
6524 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6525
6526 cse_extended_basic_block (&ebb_data);
6527 }
6528 }
6529
6530 /* Clean up. */
6531 end_alias_analysis ();
6532 free (reg_eqv_table);
6533 free (ebb_data.path);
6534 sbitmap_free (cse_visited_basic_blocks);
6535 free (rc_order);
6536 rtl_hooks = general_rtl_hooks;
6537
6538 if (cse_jumps_altered || recorded_label_ref)
6539 return 2;
6540 else if (cse_cfg_altered)
6541 return 1;
6542 else
6543 return 0;
6544 }
6545 \f
6546 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6547 which there isn't a REG_LABEL_OPERAND note.
6548 Return one if so. DATA is the insn. */
6549
6550 static int
6551 check_for_label_ref (rtx *rtl, void *data)
6552 {
6553 rtx insn = (rtx) data;
6554
6555 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6556 note for it, we must rerun jump since it needs to place the note. If
6557 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6558 don't do this since no REG_LABEL_OPERAND will be added. */
6559 return (GET_CODE (*rtl) == LABEL_REF
6560 && ! LABEL_REF_NONLOCAL_P (*rtl)
6561 && (!JUMP_P (insn)
6562 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6563 && LABEL_P (XEXP (*rtl, 0))
6564 && INSN_UID (XEXP (*rtl, 0)) != 0
6565 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6566 }
6567 \f
6568 /* Count the number of times registers are used (not set) in X.
6569 COUNTS is an array in which we accumulate the count, INCR is how much
6570 we count each register usage.
6571
6572 Don't count a usage of DEST, which is the SET_DEST of a SET which
6573 contains X in its SET_SRC. This is because such a SET does not
6574 modify the liveness of DEST.
6575 DEST is set to pc_rtx for a trapping insn, which means that we must count
6576 uses of a SET_DEST regardless because the insn can't be deleted here. */
6577
6578 static void
6579 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6580 {
6581 enum rtx_code code;
6582 rtx note;
6583 const char *fmt;
6584 int i, j;
6585
6586 if (x == 0)
6587 return;
6588
6589 switch (code = GET_CODE (x))
6590 {
6591 case REG:
6592 if (x != dest)
6593 counts[REGNO (x)] += incr;
6594 return;
6595
6596 case PC:
6597 case CC0:
6598 case CONST:
6599 case CONST_INT:
6600 case CONST_DOUBLE:
6601 case CONST_FIXED:
6602 case CONST_VECTOR:
6603 case SYMBOL_REF:
6604 case LABEL_REF:
6605 return;
6606
6607 case CLOBBER:
6608 /* If we are clobbering a MEM, mark any registers inside the address
6609 as being used. */
6610 if (MEM_P (XEXP (x, 0)))
6611 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6612 return;
6613
6614 case SET:
6615 /* Unless we are setting a REG, count everything in SET_DEST. */
6616 if (!REG_P (SET_DEST (x)))
6617 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6618 count_reg_usage (SET_SRC (x), counts,
6619 dest ? dest : SET_DEST (x),
6620 incr);
6621 return;
6622
6623 case DEBUG_INSN:
6624 return;
6625
6626 case CALL_INSN:
6627 case INSN:
6628 case JUMP_INSN:
6629 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6630 this fact by setting DEST to pc_rtx. */
6631 if (insn_could_throw_p (x))
6632 dest = pc_rtx;
6633 if (code == CALL_INSN)
6634 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6635 count_reg_usage (PATTERN (x), counts, dest, incr);
6636
6637 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6638 use them. */
6639
6640 note = find_reg_equal_equiv_note (x);
6641 if (note)
6642 {
6643 rtx eqv = XEXP (note, 0);
6644
6645 if (GET_CODE (eqv) == EXPR_LIST)
6646 /* This REG_EQUAL note describes the result of a function call.
6647 Process all the arguments. */
6648 do
6649 {
6650 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6651 eqv = XEXP (eqv, 1);
6652 }
6653 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6654 else
6655 count_reg_usage (eqv, counts, dest, incr);
6656 }
6657 return;
6658
6659 case EXPR_LIST:
6660 if (REG_NOTE_KIND (x) == REG_EQUAL
6661 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6662 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6663 involving registers in the address. */
6664 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6665 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6666
6667 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6668 return;
6669
6670 case ASM_OPERANDS:
6671 /* If the asm is volatile, then this insn cannot be deleted,
6672 and so the inputs *must* be live. */
6673 if (MEM_VOLATILE_P (x))
6674 dest = NULL_RTX;
6675 /* Iterate over just the inputs, not the constraints as well. */
6676 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6677 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6678 return;
6679
6680 case INSN_LIST:
6681 gcc_unreachable ();
6682
6683 default:
6684 break;
6685 }
6686
6687 fmt = GET_RTX_FORMAT (code);
6688 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6689 {
6690 if (fmt[i] == 'e')
6691 count_reg_usage (XEXP (x, i), counts, dest, incr);
6692 else if (fmt[i] == 'E')
6693 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6694 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6695 }
6696 }
6697 \f
6698 /* Return true if a register is dead. Can be used in for_each_rtx. */
6699
6700 static int
6701 is_dead_reg (rtx *loc, void *data)
6702 {
6703 rtx x = *loc;
6704 int *counts = (int *)data;
6705
6706 return (REG_P (x)
6707 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6708 && counts[REGNO (x)] == 0);
6709 }
6710
6711 /* Return true if set is live. */
6712 static bool
6713 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6714 int *counts)
6715 {
6716 #ifdef HAVE_cc0
6717 rtx tem;
6718 #endif
6719
6720 if (set_noop_p (set))
6721 ;
6722
6723 #ifdef HAVE_cc0
6724 else if (GET_CODE (SET_DEST (set)) == CC0
6725 && !side_effects_p (SET_SRC (set))
6726 && ((tem = next_nonnote_insn (insn)) == 0
6727 || !INSN_P (tem)
6728 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6729 return false;
6730 #endif
6731 else if (!is_dead_reg (&SET_DEST (set), counts)
6732 || side_effects_p (SET_SRC (set)))
6733 return true;
6734 return false;
6735 }
6736
6737 /* Return true if insn is live. */
6738
6739 static bool
6740 insn_live_p (rtx insn, int *counts)
6741 {
6742 int i;
6743 if (insn_could_throw_p (insn))
6744 return true;
6745 else if (GET_CODE (PATTERN (insn)) == SET)
6746 return set_live_p (PATTERN (insn), insn, counts);
6747 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6748 {
6749 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6750 {
6751 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6752
6753 if (GET_CODE (elt) == SET)
6754 {
6755 if (set_live_p (elt, insn, counts))
6756 return true;
6757 }
6758 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6759 return true;
6760 }
6761 return false;
6762 }
6763 else if (DEBUG_INSN_P (insn))
6764 {
6765 rtx next;
6766
6767 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6768 if (NOTE_P (next))
6769 continue;
6770 else if (!DEBUG_INSN_P (next))
6771 return true;
6772 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6773 return false;
6774
6775 /* If this debug insn references a dead register, drop the
6776 location expression for now. ??? We could try to find the
6777 def and see if propagation is possible. */
6778 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn), is_dead_reg, counts))
6779 {
6780 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
6781 df_insn_rescan (insn);
6782 }
6783
6784 return true;
6785 }
6786 else
6787 return true;
6788 }
6789
6790 /* Scan all the insns and delete any that are dead; i.e., they store a register
6791 that is never used or they copy a register to itself.
6792
6793 This is used to remove insns made obviously dead by cse, loop or other
6794 optimizations. It improves the heuristics in loop since it won't try to
6795 move dead invariants out of loops or make givs for dead quantities. The
6796 remaining passes of the compilation are also sped up. */
6797
6798 int
6799 delete_trivially_dead_insns (rtx insns, int nreg)
6800 {
6801 int *counts;
6802 rtx insn, prev;
6803 int ndead = 0;
6804
6805 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6806 /* First count the number of times each register is used. */
6807 counts = XCNEWVEC (int, nreg);
6808 for (insn = insns; insn; insn = NEXT_INSN (insn))
6809 if (INSN_P (insn))
6810 count_reg_usage (insn, counts, NULL_RTX, 1);
6811
6812 /* Go from the last insn to the first and delete insns that only set unused
6813 registers or copy a register to itself. As we delete an insn, remove
6814 usage counts for registers it uses.
6815
6816 The first jump optimization pass may leave a real insn as the last
6817 insn in the function. We must not skip that insn or we may end
6818 up deleting code that is not really dead. */
6819 for (insn = get_last_insn (); insn; insn = prev)
6820 {
6821 int live_insn = 0;
6822
6823 prev = PREV_INSN (insn);
6824 if (!INSN_P (insn))
6825 continue;
6826
6827 live_insn = insn_live_p (insn, counts);
6828
6829 /* If this is a dead insn, delete it and show registers in it aren't
6830 being used. */
6831
6832 if (! live_insn && dbg_cnt (delete_trivial_dead))
6833 {
6834 count_reg_usage (insn, counts, NULL_RTX, -1);
6835 delete_insn_and_edges (insn);
6836 ndead++;
6837 }
6838 }
6839
6840 if (dump_file && ndead)
6841 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6842 ndead);
6843 /* Clean up. */
6844 free (counts);
6845 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6846 return ndead;
6847 }
6848
6849 /* This function is called via for_each_rtx. The argument, NEWREG, is
6850 a condition code register with the desired mode. If we are looking
6851 at the same register in a different mode, replace it with
6852 NEWREG. */
6853
6854 static int
6855 cse_change_cc_mode (rtx *loc, void *data)
6856 {
6857 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6858
6859 if (*loc
6860 && REG_P (*loc)
6861 && REGNO (*loc) == REGNO (args->newreg)
6862 && GET_MODE (*loc) != GET_MODE (args->newreg))
6863 {
6864 validate_change (args->insn, loc, args->newreg, 1);
6865
6866 return -1;
6867 }
6868 return 0;
6869 }
6870
6871 /* Change the mode of any reference to the register REGNO (NEWREG) to
6872 GET_MODE (NEWREG) in INSN. */
6873
6874 static void
6875 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6876 {
6877 struct change_cc_mode_args args;
6878 int success;
6879
6880 if (!INSN_P (insn))
6881 return;
6882
6883 args.insn = insn;
6884 args.newreg = newreg;
6885
6886 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6887 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6888
6889 /* If the following assertion was triggered, there is most probably
6890 something wrong with the cc_modes_compatible back end function.
6891 CC modes only can be considered compatible if the insn - with the mode
6892 replaced by any of the compatible modes - can still be recognized. */
6893 success = apply_change_group ();
6894 gcc_assert (success);
6895 }
6896
6897 /* Change the mode of any reference to the register REGNO (NEWREG) to
6898 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6899 any instruction which modifies NEWREG. */
6900
6901 static void
6902 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6903 {
6904 rtx insn;
6905
6906 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6907 {
6908 if (! INSN_P (insn))
6909 continue;
6910
6911 if (reg_set_p (newreg, insn))
6912 return;
6913
6914 cse_change_cc_mode_insn (insn, newreg);
6915 }
6916 }
6917
6918 /* BB is a basic block which finishes with CC_REG as a condition code
6919 register which is set to CC_SRC. Look through the successors of BB
6920 to find blocks which have a single predecessor (i.e., this one),
6921 and look through those blocks for an assignment to CC_REG which is
6922 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6923 permitted to change the mode of CC_SRC to a compatible mode. This
6924 returns VOIDmode if no equivalent assignments were found.
6925 Otherwise it returns the mode which CC_SRC should wind up with.
6926 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
6927 but is passed unmodified down to recursive calls in order to prevent
6928 endless recursion.
6929
6930 The main complexity in this function is handling the mode issues.
6931 We may have more than one duplicate which we can eliminate, and we
6932 try to find a mode which will work for multiple duplicates. */
6933
6934 static enum machine_mode
6935 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
6936 bool can_change_mode)
6937 {
6938 bool found_equiv;
6939 enum machine_mode mode;
6940 unsigned int insn_count;
6941 edge e;
6942 rtx insns[2];
6943 enum machine_mode modes[2];
6944 rtx last_insns[2];
6945 unsigned int i;
6946 rtx newreg;
6947 edge_iterator ei;
6948
6949 /* We expect to have two successors. Look at both before picking
6950 the final mode for the comparison. If we have more successors
6951 (i.e., some sort of table jump, although that seems unlikely),
6952 then we require all beyond the first two to use the same
6953 mode. */
6954
6955 found_equiv = false;
6956 mode = GET_MODE (cc_src);
6957 insn_count = 0;
6958 FOR_EACH_EDGE (e, ei, bb->succs)
6959 {
6960 rtx insn;
6961 rtx end;
6962
6963 if (e->flags & EDGE_COMPLEX)
6964 continue;
6965
6966 if (EDGE_COUNT (e->dest->preds) != 1
6967 || e->dest == EXIT_BLOCK_PTR
6968 /* Avoid endless recursion on unreachable blocks. */
6969 || e->dest == orig_bb)
6970 continue;
6971
6972 end = NEXT_INSN (BB_END (e->dest));
6973 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6974 {
6975 rtx set;
6976
6977 if (! INSN_P (insn))
6978 continue;
6979
6980 /* If CC_SRC is modified, we have to stop looking for
6981 something which uses it. */
6982 if (modified_in_p (cc_src, insn))
6983 break;
6984
6985 /* Check whether INSN sets CC_REG to CC_SRC. */
6986 set = single_set (insn);
6987 if (set
6988 && REG_P (SET_DEST (set))
6989 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6990 {
6991 bool found;
6992 enum machine_mode set_mode;
6993 enum machine_mode comp_mode;
6994
6995 found = false;
6996 set_mode = GET_MODE (SET_SRC (set));
6997 comp_mode = set_mode;
6998 if (rtx_equal_p (cc_src, SET_SRC (set)))
6999 found = true;
7000 else if (GET_CODE (cc_src) == COMPARE
7001 && GET_CODE (SET_SRC (set)) == COMPARE
7002 && mode != set_mode
7003 && rtx_equal_p (XEXP (cc_src, 0),
7004 XEXP (SET_SRC (set), 0))
7005 && rtx_equal_p (XEXP (cc_src, 1),
7006 XEXP (SET_SRC (set), 1)))
7007
7008 {
7009 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7010 if (comp_mode != VOIDmode
7011 && (can_change_mode || comp_mode == mode))
7012 found = true;
7013 }
7014
7015 if (found)
7016 {
7017 found_equiv = true;
7018 if (insn_count < ARRAY_SIZE (insns))
7019 {
7020 insns[insn_count] = insn;
7021 modes[insn_count] = set_mode;
7022 last_insns[insn_count] = end;
7023 ++insn_count;
7024
7025 if (mode != comp_mode)
7026 {
7027 gcc_assert (can_change_mode);
7028 mode = comp_mode;
7029
7030 /* The modified insn will be re-recognized later. */
7031 PUT_MODE (cc_src, mode);
7032 }
7033 }
7034 else
7035 {
7036 if (set_mode != mode)
7037 {
7038 /* We found a matching expression in the
7039 wrong mode, but we don't have room to
7040 store it in the array. Punt. This case
7041 should be rare. */
7042 break;
7043 }
7044 /* INSN sets CC_REG to a value equal to CC_SRC
7045 with the right mode. We can simply delete
7046 it. */
7047 delete_insn (insn);
7048 }
7049
7050 /* We found an instruction to delete. Keep looking,
7051 in the hopes of finding a three-way jump. */
7052 continue;
7053 }
7054
7055 /* We found an instruction which sets the condition
7056 code, so don't look any farther. */
7057 break;
7058 }
7059
7060 /* If INSN sets CC_REG in some other way, don't look any
7061 farther. */
7062 if (reg_set_p (cc_reg, insn))
7063 break;
7064 }
7065
7066 /* If we fell off the bottom of the block, we can keep looking
7067 through successors. We pass CAN_CHANGE_MODE as false because
7068 we aren't prepared to handle compatibility between the
7069 further blocks and this block. */
7070 if (insn == end)
7071 {
7072 enum machine_mode submode;
7073
7074 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7075 if (submode != VOIDmode)
7076 {
7077 gcc_assert (submode == mode);
7078 found_equiv = true;
7079 can_change_mode = false;
7080 }
7081 }
7082 }
7083
7084 if (! found_equiv)
7085 return VOIDmode;
7086
7087 /* Now INSN_COUNT is the number of instructions we found which set
7088 CC_REG to a value equivalent to CC_SRC. The instructions are in
7089 INSNS. The modes used by those instructions are in MODES. */
7090
7091 newreg = NULL_RTX;
7092 for (i = 0; i < insn_count; ++i)
7093 {
7094 if (modes[i] != mode)
7095 {
7096 /* We need to change the mode of CC_REG in INSNS[i] and
7097 subsequent instructions. */
7098 if (! newreg)
7099 {
7100 if (GET_MODE (cc_reg) == mode)
7101 newreg = cc_reg;
7102 else
7103 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7104 }
7105 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7106 newreg);
7107 }
7108
7109 delete_insn_and_edges (insns[i]);
7110 }
7111
7112 return mode;
7113 }
7114
7115 /* If we have a fixed condition code register (or two), walk through
7116 the instructions and try to eliminate duplicate assignments. */
7117
7118 static void
7119 cse_condition_code_reg (void)
7120 {
7121 unsigned int cc_regno_1;
7122 unsigned int cc_regno_2;
7123 rtx cc_reg_1;
7124 rtx cc_reg_2;
7125 basic_block bb;
7126
7127 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7128 return;
7129
7130 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7131 if (cc_regno_2 != INVALID_REGNUM)
7132 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7133 else
7134 cc_reg_2 = NULL_RTX;
7135
7136 FOR_EACH_BB (bb)
7137 {
7138 rtx last_insn;
7139 rtx cc_reg;
7140 rtx insn;
7141 rtx cc_src_insn;
7142 rtx cc_src;
7143 enum machine_mode mode;
7144 enum machine_mode orig_mode;
7145
7146 /* Look for blocks which end with a conditional jump based on a
7147 condition code register. Then look for the instruction which
7148 sets the condition code register. Then look through the
7149 successor blocks for instructions which set the condition
7150 code register to the same value. There are other possible
7151 uses of the condition code register, but these are by far the
7152 most common and the ones which we are most likely to be able
7153 to optimize. */
7154
7155 last_insn = BB_END (bb);
7156 if (!JUMP_P (last_insn))
7157 continue;
7158
7159 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7160 cc_reg = cc_reg_1;
7161 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7162 cc_reg = cc_reg_2;
7163 else
7164 continue;
7165
7166 cc_src_insn = NULL_RTX;
7167 cc_src = NULL_RTX;
7168 for (insn = PREV_INSN (last_insn);
7169 insn && insn != PREV_INSN (BB_HEAD (bb));
7170 insn = PREV_INSN (insn))
7171 {
7172 rtx set;
7173
7174 if (! INSN_P (insn))
7175 continue;
7176 set = single_set (insn);
7177 if (set
7178 && REG_P (SET_DEST (set))
7179 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7180 {
7181 cc_src_insn = insn;
7182 cc_src = SET_SRC (set);
7183 break;
7184 }
7185 else if (reg_set_p (cc_reg, insn))
7186 break;
7187 }
7188
7189 if (! cc_src_insn)
7190 continue;
7191
7192 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7193 continue;
7194
7195 /* Now CC_REG is a condition code register used for a
7196 conditional jump at the end of the block, and CC_SRC, in
7197 CC_SRC_INSN, is the value to which that condition code
7198 register is set, and CC_SRC is still meaningful at the end of
7199 the basic block. */
7200
7201 orig_mode = GET_MODE (cc_src);
7202 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7203 if (mode != VOIDmode)
7204 {
7205 gcc_assert (mode == GET_MODE (cc_src));
7206 if (mode != orig_mode)
7207 {
7208 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7209
7210 cse_change_cc_mode_insn (cc_src_insn, newreg);
7211
7212 /* Do the same in the following insns that use the
7213 current value of CC_REG within BB. */
7214 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7215 NEXT_INSN (last_insn),
7216 newreg);
7217 }
7218 }
7219 }
7220 }
7221 \f
7222
7223 /* Perform common subexpression elimination. Nonzero value from
7224 `cse_main' means that jumps were simplified and some code may now
7225 be unreachable, so do jump optimization again. */
7226 static bool
7227 gate_handle_cse (void)
7228 {
7229 return optimize > 0;
7230 }
7231
7232 static unsigned int
7233 rest_of_handle_cse (void)
7234 {
7235 int tem;
7236
7237 if (dump_file)
7238 dump_flow_info (dump_file, dump_flags);
7239
7240 tem = cse_main (get_insns (), max_reg_num ());
7241
7242 /* If we are not running more CSE passes, then we are no longer
7243 expecting CSE to be run. But always rerun it in a cheap mode. */
7244 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7245
7246 if (tem == 2)
7247 {
7248 timevar_push (TV_JUMP);
7249 rebuild_jump_labels (get_insns ());
7250 cleanup_cfg (0);
7251 timevar_pop (TV_JUMP);
7252 }
7253 else if (tem == 1 || optimize > 1)
7254 cleanup_cfg (0);
7255
7256 return 0;
7257 }
7258
7259 struct rtl_opt_pass pass_cse =
7260 {
7261 {
7262 RTL_PASS,
7263 "cse1", /* name */
7264 gate_handle_cse, /* gate */
7265 rest_of_handle_cse, /* execute */
7266 NULL, /* sub */
7267 NULL, /* next */
7268 0, /* static_pass_number */
7269 TV_CSE, /* tv_id */
7270 0, /* properties_required */
7271 0, /* properties_provided */
7272 0, /* properties_destroyed */
7273 0, /* todo_flags_start */
7274 TODO_df_finish | TODO_verify_rtl_sharing |
7275 TODO_dump_func |
7276 TODO_ggc_collect |
7277 TODO_verify_flow, /* todo_flags_finish */
7278 }
7279 };
7280
7281
7282 static bool
7283 gate_handle_cse2 (void)
7284 {
7285 return optimize > 0 && flag_rerun_cse_after_loop;
7286 }
7287
7288 /* Run second CSE pass after loop optimizations. */
7289 static unsigned int
7290 rest_of_handle_cse2 (void)
7291 {
7292 int tem;
7293
7294 if (dump_file)
7295 dump_flow_info (dump_file, dump_flags);
7296
7297 tem = cse_main (get_insns (), max_reg_num ());
7298
7299 /* Run a pass to eliminate duplicated assignments to condition code
7300 registers. We have to run this after bypass_jumps, because it
7301 makes it harder for that pass to determine whether a jump can be
7302 bypassed safely. */
7303 cse_condition_code_reg ();
7304
7305 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7306
7307 if (tem == 2)
7308 {
7309 timevar_push (TV_JUMP);
7310 rebuild_jump_labels (get_insns ());
7311 cleanup_cfg (0);
7312 timevar_pop (TV_JUMP);
7313 }
7314 else if (tem == 1)
7315 cleanup_cfg (0);
7316
7317 cse_not_expected = 1;
7318 return 0;
7319 }
7320
7321
7322 struct rtl_opt_pass pass_cse2 =
7323 {
7324 {
7325 RTL_PASS,
7326 "cse2", /* name */
7327 gate_handle_cse2, /* gate */
7328 rest_of_handle_cse2, /* execute */
7329 NULL, /* sub */
7330 NULL, /* next */
7331 0, /* static_pass_number */
7332 TV_CSE2, /* tv_id */
7333 0, /* properties_required */
7334 0, /* properties_provided */
7335 0, /* properties_destroyed */
7336 0, /* todo_flags_start */
7337 TODO_df_finish | TODO_verify_rtl_sharing |
7338 TODO_dump_func |
7339 TODO_ggc_collect |
7340 TODO_verify_flow /* todo_flags_finish */
7341 }
7342 };
7343
7344 static bool
7345 gate_handle_cse_after_global_opts (void)
7346 {
7347 return optimize > 0 && flag_rerun_cse_after_global_opts;
7348 }
7349
7350 /* Run second CSE pass after loop optimizations. */
7351 static unsigned int
7352 rest_of_handle_cse_after_global_opts (void)
7353 {
7354 int save_cfj;
7355 int tem;
7356
7357 /* We only want to do local CSE, so don't follow jumps. */
7358 save_cfj = flag_cse_follow_jumps;
7359 flag_cse_follow_jumps = 0;
7360
7361 rebuild_jump_labels (get_insns ());
7362 tem = cse_main (get_insns (), max_reg_num ());
7363 purge_all_dead_edges ();
7364 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7365
7366 cse_not_expected = !flag_rerun_cse_after_loop;
7367
7368 /* If cse altered any jumps, rerun jump opts to clean things up. */
7369 if (tem == 2)
7370 {
7371 timevar_push (TV_JUMP);
7372 rebuild_jump_labels (get_insns ());
7373 cleanup_cfg (0);
7374 timevar_pop (TV_JUMP);
7375 }
7376 else if (tem == 1)
7377 cleanup_cfg (0);
7378
7379 flag_cse_follow_jumps = save_cfj;
7380 return 0;
7381 }
7382
7383 struct rtl_opt_pass pass_cse_after_global_opts =
7384 {
7385 {
7386 RTL_PASS,
7387 "cse_local", /* name */
7388 gate_handle_cse_after_global_opts, /* gate */
7389 rest_of_handle_cse_after_global_opts, /* execute */
7390 NULL, /* sub */
7391 NULL, /* next */
7392 0, /* static_pass_number */
7393 TV_CSE, /* tv_id */
7394 0, /* properties_required */
7395 0, /* properties_provided */
7396 0, /* properties_destroyed */
7397 0, /* todo_flags_start */
7398 TODO_df_finish | TODO_verify_rtl_sharing |
7399 TODO_dump_func |
7400 TODO_ggc_collect |
7401 TODO_verify_flow /* todo_flags_finish */
7402 }
7403 };