sh.md (negc): Delete expander.
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "diagnostic-core.h"
37 #include "toplev.h"
38 #include "ggc.h"
39 #include "except.h"
40 #include "target.h"
41 #include "params.h"
42 #include "rtlhooks-def.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "dbgcnt.h"
46
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
51
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
57
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
61
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
65
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
74
75 Registers and "quantity numbers":
76
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `REG_QTY (N)' records what quantity register N is currently thought
84 of as containing.
85
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, `REG_QTY (N)' will
88 equal -N - 1, which is always negative.
89
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
92
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
96
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
100
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
104
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
109
110 Constants and quantity numbers
111
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
115
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
119
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
123
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
129
130 Other expressions:
131
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
137
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
140
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
145
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
149
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
154
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
162
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
166
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
174
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
185
186 Registers themselves are entered in the hash table as well as in
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
193
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
197
198 Related expressions:
199
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
206
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
209
210 static int max_qty;
211
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
214
215 static int next_qty;
216
217 /* Per-qty information tracking.
218
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
221
222 `mode' contains the machine mode of this quantity.
223
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
229
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
241
242 struct qty_table_elem
243 {
244 rtx const_rtx;
245 rtx const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
253 };
254
255 /* The table of all qtys, indexed by qty number. */
256 static struct qty_table_elem *qty_table;
257
258 /* Structure used to pass arguments via for_each_rtx to function
259 cse_change_cc_mode. */
260 struct change_cc_mode_args
261 {
262 rtx insn;
263 rtx newreg;
264 };
265
266 #ifdef HAVE_cc0
267 /* For machines that have a CC0, we do not record its value in the hash
268 table since its use is guaranteed to be the insn immediately following
269 its definition and any other insn is presumed to invalidate it.
270
271 Instead, we store below the current and last value assigned to CC0.
272 If it should happen to be a constant, it is stored in preference
273 to the actual assigned value. In case it is a constant, we store
274 the mode in which the constant should be interpreted. */
275
276 static rtx this_insn_cc0, prev_insn_cc0;
277 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
278 #endif
279
280 /* Insn being scanned. */
281
282 static rtx this_insn;
283 static bool optimize_this_for_speed_p;
284
285 /* Index by register number, gives the number of the next (or
286 previous) register in the chain of registers sharing the same
287 value.
288
289 Or -1 if this register is at the end of the chain.
290
291 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
292
293 /* Per-register equivalence chain. */
294 struct reg_eqv_elem
295 {
296 int next, prev;
297 };
298
299 /* The table of all register equivalence chains. */
300 static struct reg_eqv_elem *reg_eqv_table;
301
302 struct cse_reg_info
303 {
304 /* The timestamp at which this register is initialized. */
305 unsigned int timestamp;
306
307 /* The quantity number of the register's current contents. */
308 int reg_qty;
309
310 /* The number of times the register has been altered in the current
311 basic block. */
312 int reg_tick;
313
314 /* The REG_TICK value at which rtx's containing this register are
315 valid in the hash table. If this does not equal the current
316 reg_tick value, such expressions existing in the hash table are
317 invalid. */
318 int reg_in_table;
319
320 /* The SUBREG that was set when REG_TICK was last incremented. Set
321 to -1 if the last store was to the whole register, not a subreg. */
322 unsigned int subreg_ticked;
323 };
324
325 /* A table of cse_reg_info indexed by register numbers. */
326 static struct cse_reg_info *cse_reg_info_table;
327
328 /* The size of the above table. */
329 static unsigned int cse_reg_info_table_size;
330
331 /* The index of the first entry that has not been initialized. */
332 static unsigned int cse_reg_info_table_first_uninitialized;
333
334 /* The timestamp at the beginning of the current run of
335 cse_extended_basic_block. We increment this variable at the beginning of
336 the current run of cse_extended_basic_block. The timestamp field of a
337 cse_reg_info entry matches the value of this variable if and only
338 if the entry has been initialized during the current run of
339 cse_extended_basic_block. */
340 static unsigned int cse_reg_info_timestamp;
341
342 /* A HARD_REG_SET containing all the hard registers for which there is
343 currently a REG expression in the hash table. Note the difference
344 from the above variables, which indicate if the REG is mentioned in some
345 expression in the table. */
346
347 static HARD_REG_SET hard_regs_in_table;
348
349 /* True if CSE has altered the CFG. */
350 static bool cse_cfg_altered;
351
352 /* True if CSE has altered conditional jump insns in such a way
353 that jump optimization should be redone. */
354 static bool cse_jumps_altered;
355
356 /* True if we put a LABEL_REF into the hash table for an INSN
357 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
358 to put in the note. */
359 static bool recorded_label_ref;
360
361 /* canon_hash stores 1 in do_not_record
362 if it notices a reference to CC0, PC, or some other volatile
363 subexpression. */
364
365 static int do_not_record;
366
367 /* canon_hash stores 1 in hash_arg_in_memory
368 if it notices a reference to memory within the expression being hashed. */
369
370 static int hash_arg_in_memory;
371
372 /* The hash table contains buckets which are chains of `struct table_elt's,
373 each recording one expression's information.
374 That expression is in the `exp' field.
375
376 The canon_exp field contains a canonical (from the point of view of
377 alias analysis) version of the `exp' field.
378
379 Those elements with the same hash code are chained in both directions
380 through the `next_same_hash' and `prev_same_hash' fields.
381
382 Each set of expressions with equivalent values
383 are on a two-way chain through the `next_same_value'
384 and `prev_same_value' fields, and all point with
385 the `first_same_value' field at the first element in
386 that chain. The chain is in order of increasing cost.
387 Each element's cost value is in its `cost' field.
388
389 The `in_memory' field is nonzero for elements that
390 involve any reference to memory. These elements are removed
391 whenever a write is done to an unidentified location in memory.
392 To be safe, we assume that a memory address is unidentified unless
393 the address is either a symbol constant or a constant plus
394 the frame pointer or argument pointer.
395
396 The `related_value' field is used to connect related expressions
397 (that differ by adding an integer).
398 The related expressions are chained in a circular fashion.
399 `related_value' is zero for expressions for which this
400 chain is not useful.
401
402 The `cost' field stores the cost of this element's expression.
403 The `regcost' field stores the value returned by approx_reg_cost for
404 this element's expression.
405
406 The `is_const' flag is set if the element is a constant (including
407 a fixed address).
408
409 The `flag' field is used as a temporary during some search routines.
410
411 The `mode' field is usually the same as GET_MODE (`exp'), but
412 if `exp' is a CONST_INT and has no machine mode then the `mode'
413 field is the mode it was being used as. Each constant is
414 recorded separately for each mode it is used with. */
415
416 struct table_elt
417 {
418 rtx exp;
419 rtx canon_exp;
420 struct table_elt *next_same_hash;
421 struct table_elt *prev_same_hash;
422 struct table_elt *next_same_value;
423 struct table_elt *prev_same_value;
424 struct table_elt *first_same_value;
425 struct table_elt *related_value;
426 int cost;
427 int regcost;
428 /* The size of this field should match the size
429 of the mode field of struct rtx_def (see rtl.h). */
430 ENUM_BITFIELD(machine_mode) mode : 8;
431 char in_memory;
432 char is_const;
433 char flag;
434 };
435
436 /* We don't want a lot of buckets, because we rarely have very many
437 things stored in the hash table, and a lot of buckets slows
438 down a lot of loops that happen frequently. */
439 #define HASH_SHIFT 5
440 #define HASH_SIZE (1 << HASH_SHIFT)
441 #define HASH_MASK (HASH_SIZE - 1)
442
443 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
444 register (hard registers may require `do_not_record' to be set). */
445
446 #define HASH(X, M) \
447 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
448 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
449 : canon_hash (X, M)) & HASH_MASK)
450
451 /* Like HASH, but without side-effects. */
452 #define SAFE_HASH(X, M) \
453 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
454 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
455 : safe_hash (X, M)) & HASH_MASK)
456
457 /* Determine whether register number N is considered a fixed register for the
458 purpose of approximating register costs.
459 It is desirable to replace other regs with fixed regs, to reduce need for
460 non-fixed hard regs.
461 A reg wins if it is either the frame pointer or designated as fixed. */
462 #define FIXED_REGNO_P(N) \
463 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
464 || fixed_regs[N] || global_regs[N])
465
466 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
467 hard registers and pointers into the frame are the cheapest with a cost
468 of 0. Next come pseudos with a cost of one and other hard registers with
469 a cost of 2. Aside from these special cases, call `rtx_cost'. */
470
471 #define CHEAP_REGNO(N) \
472 (REGNO_PTR_FRAME_P(N) \
473 || (HARD_REGISTER_NUM_P (N) \
474 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
475
476 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
477 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
478
479 /* Get the number of times this register has been updated in this
480 basic block. */
481
482 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
483
484 /* Get the point at which REG was recorded in the table. */
485
486 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
487
488 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
489 SUBREG). */
490
491 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
492
493 /* Get the quantity number for REG. */
494
495 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
496
497 /* Determine if the quantity number for register X represents a valid index
498 into the qty_table. */
499
500 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
501
502 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
503
504 #define CHEAPER(X, Y) \
505 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
506
507 static struct table_elt *table[HASH_SIZE];
508
509 /* Chain of `struct table_elt's made so far for this function
510 but currently removed from the table. */
511
512 static struct table_elt *free_element_chain;
513
514 /* Set to the cost of a constant pool reference if one was found for a
515 symbolic constant. If this was found, it means we should try to
516 convert constants into constant pool entries if they don't fit in
517 the insn. */
518
519 static int constant_pool_entries_cost;
520 static int constant_pool_entries_regcost;
521
522 /* Trace a patch through the CFG. */
523
524 struct branch_path
525 {
526 /* The basic block for this path entry. */
527 basic_block bb;
528 };
529
530 /* This data describes a block that will be processed by
531 cse_extended_basic_block. */
532
533 struct cse_basic_block_data
534 {
535 /* Total number of SETs in block. */
536 int nsets;
537 /* Size of current branch path, if any. */
538 int path_size;
539 /* Current path, indicating which basic_blocks will be processed. */
540 struct branch_path *path;
541 };
542
543
544 /* Pointers to the live in/live out bitmaps for the boundaries of the
545 current EBB. */
546 static bitmap cse_ebb_live_in, cse_ebb_live_out;
547
548 /* A simple bitmap to track which basic blocks have been visited
549 already as part of an already processed extended basic block. */
550 static sbitmap cse_visited_basic_blocks;
551
552 static bool fixed_base_plus_p (rtx x);
553 static int notreg_cost (rtx, enum rtx_code, int);
554 static int approx_reg_cost_1 (rtx *, void *);
555 static int approx_reg_cost (rtx);
556 static int preferable (int, int, int, int);
557 static void new_basic_block (void);
558 static void make_new_qty (unsigned int, enum machine_mode);
559 static void make_regs_eqv (unsigned int, unsigned int);
560 static void delete_reg_equiv (unsigned int);
561 static int mention_regs (rtx);
562 static int insert_regs (rtx, struct table_elt *, int);
563 static void remove_from_table (struct table_elt *, unsigned);
564 static void remove_pseudo_from_table (rtx, unsigned);
565 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
566 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
567 static rtx lookup_as_function (rtx, enum rtx_code);
568 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
569 enum machine_mode, int, int);
570 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
571 enum machine_mode);
572 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
573 static void invalidate (rtx, enum machine_mode);
574 static void remove_invalid_refs (unsigned int);
575 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
576 enum machine_mode);
577 static void rehash_using_reg (rtx);
578 static void invalidate_memory (void);
579 static void invalidate_for_call (void);
580 static rtx use_related_value (rtx, struct table_elt *);
581
582 static inline unsigned canon_hash (rtx, enum machine_mode);
583 static inline unsigned safe_hash (rtx, enum machine_mode);
584 static inline unsigned hash_rtx_string (const char *);
585
586 static rtx canon_reg (rtx, rtx);
587 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
588 enum machine_mode *,
589 enum machine_mode *);
590 static rtx fold_rtx (rtx, rtx);
591 static rtx equiv_constant (rtx);
592 static void record_jump_equiv (rtx, bool);
593 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
594 int);
595 static void cse_insn (rtx);
596 static void cse_prescan_path (struct cse_basic_block_data *);
597 static void invalidate_from_clobbers (rtx);
598 static void invalidate_from_sets_and_clobbers (rtx);
599 static rtx cse_process_notes (rtx, rtx, bool *);
600 static void cse_extended_basic_block (struct cse_basic_block_data *);
601 static int check_for_label_ref (rtx *, void *);
602 extern void dump_class (struct table_elt*);
603 static void get_cse_reg_info_1 (unsigned int regno);
604 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
605 static int check_dependence (rtx *, void *);
606
607 static void flush_hash_table (void);
608 static bool insn_live_p (rtx, int *);
609 static bool set_live_p (rtx, rtx, int *);
610 static int cse_change_cc_mode (rtx *, void *);
611 static void cse_change_cc_mode_insn (rtx, rtx);
612 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
613 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
614 bool);
615 \f
616
617 #undef RTL_HOOKS_GEN_LOWPART
618 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
619
620 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
621 \f
622 /* Nonzero if X has the form (PLUS frame-pointer integer). */
623
624 static bool
625 fixed_base_plus_p (rtx x)
626 {
627 switch (GET_CODE (x))
628 {
629 case REG:
630 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
631 return true;
632 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
633 return true;
634 return false;
635
636 case PLUS:
637 if (!CONST_INT_P (XEXP (x, 1)))
638 return false;
639 return fixed_base_plus_p (XEXP (x, 0));
640
641 default:
642 return false;
643 }
644 }
645
646 /* Dump the expressions in the equivalence class indicated by CLASSP.
647 This function is used only for debugging. */
648 DEBUG_FUNCTION void
649 dump_class (struct table_elt *classp)
650 {
651 struct table_elt *elt;
652
653 fprintf (stderr, "Equivalence chain for ");
654 print_rtl (stderr, classp->exp);
655 fprintf (stderr, ": \n");
656
657 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
658 {
659 print_rtl (stderr, elt->exp);
660 fprintf (stderr, "\n");
661 }
662 }
663
664 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
665
666 static int
667 approx_reg_cost_1 (rtx *xp, void *data)
668 {
669 rtx x = *xp;
670 int *cost_p = (int *) data;
671
672 if (x && REG_P (x))
673 {
674 unsigned int regno = REGNO (x);
675
676 if (! CHEAP_REGNO (regno))
677 {
678 if (regno < FIRST_PSEUDO_REGISTER)
679 {
680 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
681 return 1;
682 *cost_p += 2;
683 }
684 else
685 *cost_p += 1;
686 }
687 }
688
689 return 0;
690 }
691
692 /* Return an estimate of the cost of the registers used in an rtx.
693 This is mostly the number of different REG expressions in the rtx;
694 however for some exceptions like fixed registers we use a cost of
695 0. If any other hard register reference occurs, return MAX_COST. */
696
697 static int
698 approx_reg_cost (rtx x)
699 {
700 int cost = 0;
701
702 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
703 return MAX_COST;
704
705 return cost;
706 }
707
708 /* Return a negative value if an rtx A, whose costs are given by COST_A
709 and REGCOST_A, is more desirable than an rtx B.
710 Return a positive value if A is less desirable, or 0 if the two are
711 equally good. */
712 static int
713 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
714 {
715 /* First, get rid of cases involving expressions that are entirely
716 unwanted. */
717 if (cost_a != cost_b)
718 {
719 if (cost_a == MAX_COST)
720 return 1;
721 if (cost_b == MAX_COST)
722 return -1;
723 }
724
725 /* Avoid extending lifetimes of hardregs. */
726 if (regcost_a != regcost_b)
727 {
728 if (regcost_a == MAX_COST)
729 return 1;
730 if (regcost_b == MAX_COST)
731 return -1;
732 }
733
734 /* Normal operation costs take precedence. */
735 if (cost_a != cost_b)
736 return cost_a - cost_b;
737 /* Only if these are identical consider effects on register pressure. */
738 if (regcost_a != regcost_b)
739 return regcost_a - regcost_b;
740 return 0;
741 }
742
743 /* Internal function, to compute cost when X is not a register; called
744 from COST macro to keep it simple. */
745
746 static int
747 notreg_cost (rtx x, enum rtx_code outer, int opno)
748 {
749 return ((GET_CODE (x) == SUBREG
750 && REG_P (SUBREG_REG (x))
751 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
752 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
753 && (GET_MODE_SIZE (GET_MODE (x))
754 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
755 && subreg_lowpart_p (x)
756 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
757 GET_MODE (SUBREG_REG (x))))
758 ? 0
759 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
760 }
761
762 \f
763 /* Initialize CSE_REG_INFO_TABLE. */
764
765 static void
766 init_cse_reg_info (unsigned int nregs)
767 {
768 /* Do we need to grow the table? */
769 if (nregs > cse_reg_info_table_size)
770 {
771 unsigned int new_size;
772
773 if (cse_reg_info_table_size < 2048)
774 {
775 /* Compute a new size that is a power of 2 and no smaller
776 than the large of NREGS and 64. */
777 new_size = (cse_reg_info_table_size
778 ? cse_reg_info_table_size : 64);
779
780 while (new_size < nregs)
781 new_size *= 2;
782 }
783 else
784 {
785 /* If we need a big table, allocate just enough to hold
786 NREGS registers. */
787 new_size = nregs;
788 }
789
790 /* Reallocate the table with NEW_SIZE entries. */
791 free (cse_reg_info_table);
792 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
793 cse_reg_info_table_size = new_size;
794 cse_reg_info_table_first_uninitialized = 0;
795 }
796
797 /* Do we have all of the first NREGS entries initialized? */
798 if (cse_reg_info_table_first_uninitialized < nregs)
799 {
800 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
801 unsigned int i;
802
803 /* Put the old timestamp on newly allocated entries so that they
804 will all be considered out of date. We do not touch those
805 entries beyond the first NREGS entries to be nice to the
806 virtual memory. */
807 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
808 cse_reg_info_table[i].timestamp = old_timestamp;
809
810 cse_reg_info_table_first_uninitialized = nregs;
811 }
812 }
813
814 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
815
816 static void
817 get_cse_reg_info_1 (unsigned int regno)
818 {
819 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
820 entry will be considered to have been initialized. */
821 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
822
823 /* Initialize the rest of the entry. */
824 cse_reg_info_table[regno].reg_tick = 1;
825 cse_reg_info_table[regno].reg_in_table = -1;
826 cse_reg_info_table[regno].subreg_ticked = -1;
827 cse_reg_info_table[regno].reg_qty = -regno - 1;
828 }
829
830 /* Find a cse_reg_info entry for REGNO. */
831
832 static inline struct cse_reg_info *
833 get_cse_reg_info (unsigned int regno)
834 {
835 struct cse_reg_info *p = &cse_reg_info_table[regno];
836
837 /* If this entry has not been initialized, go ahead and initialize
838 it. */
839 if (p->timestamp != cse_reg_info_timestamp)
840 get_cse_reg_info_1 (regno);
841
842 return p;
843 }
844
845 /* Clear the hash table and initialize each register with its own quantity,
846 for a new basic block. */
847
848 static void
849 new_basic_block (void)
850 {
851 int i;
852
853 next_qty = 0;
854
855 /* Invalidate cse_reg_info_table. */
856 cse_reg_info_timestamp++;
857
858 /* Clear out hash table state for this pass. */
859 CLEAR_HARD_REG_SET (hard_regs_in_table);
860
861 /* The per-quantity values used to be initialized here, but it is
862 much faster to initialize each as it is made in `make_new_qty'. */
863
864 for (i = 0; i < HASH_SIZE; i++)
865 {
866 struct table_elt *first;
867
868 first = table[i];
869 if (first != NULL)
870 {
871 struct table_elt *last = first;
872
873 table[i] = NULL;
874
875 while (last->next_same_hash != NULL)
876 last = last->next_same_hash;
877
878 /* Now relink this hash entire chain into
879 the free element list. */
880
881 last->next_same_hash = free_element_chain;
882 free_element_chain = first;
883 }
884 }
885
886 #ifdef HAVE_cc0
887 prev_insn_cc0 = 0;
888 #endif
889 }
890
891 /* Say that register REG contains a quantity in mode MODE not in any
892 register before and initialize that quantity. */
893
894 static void
895 make_new_qty (unsigned int reg, enum machine_mode mode)
896 {
897 int q;
898 struct qty_table_elem *ent;
899 struct reg_eqv_elem *eqv;
900
901 gcc_assert (next_qty < max_qty);
902
903 q = REG_QTY (reg) = next_qty++;
904 ent = &qty_table[q];
905 ent->first_reg = reg;
906 ent->last_reg = reg;
907 ent->mode = mode;
908 ent->const_rtx = ent->const_insn = NULL_RTX;
909 ent->comparison_code = UNKNOWN;
910
911 eqv = &reg_eqv_table[reg];
912 eqv->next = eqv->prev = -1;
913 }
914
915 /* Make reg NEW equivalent to reg OLD.
916 OLD is not changing; NEW is. */
917
918 static void
919 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
920 {
921 unsigned int lastr, firstr;
922 int q = REG_QTY (old_reg);
923 struct qty_table_elem *ent;
924
925 ent = &qty_table[q];
926
927 /* Nothing should become eqv until it has a "non-invalid" qty number. */
928 gcc_assert (REGNO_QTY_VALID_P (old_reg));
929
930 REG_QTY (new_reg) = q;
931 firstr = ent->first_reg;
932 lastr = ent->last_reg;
933
934 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
935 hard regs. Among pseudos, if NEW will live longer than any other reg
936 of the same qty, and that is beyond the current basic block,
937 make it the new canonical replacement for this qty. */
938 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
939 /* Certain fixed registers might be of the class NO_REGS. This means
940 that not only can they not be allocated by the compiler, but
941 they cannot be used in substitutions or canonicalizations
942 either. */
943 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
944 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
945 || (new_reg >= FIRST_PSEUDO_REGISTER
946 && (firstr < FIRST_PSEUDO_REGISTER
947 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
948 && !bitmap_bit_p (cse_ebb_live_out, firstr))
949 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
950 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
951 {
952 reg_eqv_table[firstr].prev = new_reg;
953 reg_eqv_table[new_reg].next = firstr;
954 reg_eqv_table[new_reg].prev = -1;
955 ent->first_reg = new_reg;
956 }
957 else
958 {
959 /* If NEW is a hard reg (known to be non-fixed), insert at end.
960 Otherwise, insert before any non-fixed hard regs that are at the
961 end. Registers of class NO_REGS cannot be used as an
962 equivalent for anything. */
963 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
964 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
965 && new_reg >= FIRST_PSEUDO_REGISTER)
966 lastr = reg_eqv_table[lastr].prev;
967 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
968 if (reg_eqv_table[lastr].next >= 0)
969 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
970 else
971 qty_table[q].last_reg = new_reg;
972 reg_eqv_table[lastr].next = new_reg;
973 reg_eqv_table[new_reg].prev = lastr;
974 }
975 }
976
977 /* Remove REG from its equivalence class. */
978
979 static void
980 delete_reg_equiv (unsigned int reg)
981 {
982 struct qty_table_elem *ent;
983 int q = REG_QTY (reg);
984 int p, n;
985
986 /* If invalid, do nothing. */
987 if (! REGNO_QTY_VALID_P (reg))
988 return;
989
990 ent = &qty_table[q];
991
992 p = reg_eqv_table[reg].prev;
993 n = reg_eqv_table[reg].next;
994
995 if (n != -1)
996 reg_eqv_table[n].prev = p;
997 else
998 ent->last_reg = p;
999 if (p != -1)
1000 reg_eqv_table[p].next = n;
1001 else
1002 ent->first_reg = n;
1003
1004 REG_QTY (reg) = -reg - 1;
1005 }
1006
1007 /* Remove any invalid expressions from the hash table
1008 that refer to any of the registers contained in expression X.
1009
1010 Make sure that newly inserted references to those registers
1011 as subexpressions will be considered valid.
1012
1013 mention_regs is not called when a register itself
1014 is being stored in the table.
1015
1016 Return 1 if we have done something that may have changed the hash code
1017 of X. */
1018
1019 static int
1020 mention_regs (rtx x)
1021 {
1022 enum rtx_code code;
1023 int i, j;
1024 const char *fmt;
1025 int changed = 0;
1026
1027 if (x == 0)
1028 return 0;
1029
1030 code = GET_CODE (x);
1031 if (code == REG)
1032 {
1033 unsigned int regno = REGNO (x);
1034 unsigned int endregno = END_REGNO (x);
1035 unsigned int i;
1036
1037 for (i = regno; i < endregno; i++)
1038 {
1039 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1040 remove_invalid_refs (i);
1041
1042 REG_IN_TABLE (i) = REG_TICK (i);
1043 SUBREG_TICKED (i) = -1;
1044 }
1045
1046 return 0;
1047 }
1048
1049 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1050 pseudo if they don't use overlapping words. We handle only pseudos
1051 here for simplicity. */
1052 if (code == SUBREG && REG_P (SUBREG_REG (x))
1053 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1054 {
1055 unsigned int i = REGNO (SUBREG_REG (x));
1056
1057 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1058 {
1059 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1060 the last store to this register really stored into this
1061 subreg, then remove the memory of this subreg.
1062 Otherwise, remove any memory of the entire register and
1063 all its subregs from the table. */
1064 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1065 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1066 remove_invalid_refs (i);
1067 else
1068 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1069 }
1070
1071 REG_IN_TABLE (i) = REG_TICK (i);
1072 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1073 return 0;
1074 }
1075
1076 /* If X is a comparison or a COMPARE and either operand is a register
1077 that does not have a quantity, give it one. This is so that a later
1078 call to record_jump_equiv won't cause X to be assigned a different
1079 hash code and not found in the table after that call.
1080
1081 It is not necessary to do this here, since rehash_using_reg can
1082 fix up the table later, but doing this here eliminates the need to
1083 call that expensive function in the most common case where the only
1084 use of the register is in the comparison. */
1085
1086 if (code == COMPARE || COMPARISON_P (x))
1087 {
1088 if (REG_P (XEXP (x, 0))
1089 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1090 if (insert_regs (XEXP (x, 0), NULL, 0))
1091 {
1092 rehash_using_reg (XEXP (x, 0));
1093 changed = 1;
1094 }
1095
1096 if (REG_P (XEXP (x, 1))
1097 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1098 if (insert_regs (XEXP (x, 1), NULL, 0))
1099 {
1100 rehash_using_reg (XEXP (x, 1));
1101 changed = 1;
1102 }
1103 }
1104
1105 fmt = GET_RTX_FORMAT (code);
1106 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1107 if (fmt[i] == 'e')
1108 changed |= mention_regs (XEXP (x, i));
1109 else if (fmt[i] == 'E')
1110 for (j = 0; j < XVECLEN (x, i); j++)
1111 changed |= mention_regs (XVECEXP (x, i, j));
1112
1113 return changed;
1114 }
1115
1116 /* Update the register quantities for inserting X into the hash table
1117 with a value equivalent to CLASSP.
1118 (If the class does not contain a REG, it is irrelevant.)
1119 If MODIFIED is nonzero, X is a destination; it is being modified.
1120 Note that delete_reg_equiv should be called on a register
1121 before insert_regs is done on that register with MODIFIED != 0.
1122
1123 Nonzero value means that elements of reg_qty have changed
1124 so X's hash code may be different. */
1125
1126 static int
1127 insert_regs (rtx x, struct table_elt *classp, int modified)
1128 {
1129 if (REG_P (x))
1130 {
1131 unsigned int regno = REGNO (x);
1132 int qty_valid;
1133
1134 /* If REGNO is in the equivalence table already but is of the
1135 wrong mode for that equivalence, don't do anything here. */
1136
1137 qty_valid = REGNO_QTY_VALID_P (regno);
1138 if (qty_valid)
1139 {
1140 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1141
1142 if (ent->mode != GET_MODE (x))
1143 return 0;
1144 }
1145
1146 if (modified || ! qty_valid)
1147 {
1148 if (classp)
1149 for (classp = classp->first_same_value;
1150 classp != 0;
1151 classp = classp->next_same_value)
1152 if (REG_P (classp->exp)
1153 && GET_MODE (classp->exp) == GET_MODE (x))
1154 {
1155 unsigned c_regno = REGNO (classp->exp);
1156
1157 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1158
1159 /* Suppose that 5 is hard reg and 100 and 101 are
1160 pseudos. Consider
1161
1162 (set (reg:si 100) (reg:si 5))
1163 (set (reg:si 5) (reg:si 100))
1164 (set (reg:di 101) (reg:di 5))
1165
1166 We would now set REG_QTY (101) = REG_QTY (5), but the
1167 entry for 5 is in SImode. When we use this later in
1168 copy propagation, we get the register in wrong mode. */
1169 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1170 continue;
1171
1172 make_regs_eqv (regno, c_regno);
1173 return 1;
1174 }
1175
1176 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1177 than REG_IN_TABLE to find out if there was only a single preceding
1178 invalidation - for the SUBREG - or another one, which would be
1179 for the full register. However, if we find here that REG_TICK
1180 indicates that the register is invalid, it means that it has
1181 been invalidated in a separate operation. The SUBREG might be used
1182 now (then this is a recursive call), or we might use the full REG
1183 now and a SUBREG of it later. So bump up REG_TICK so that
1184 mention_regs will do the right thing. */
1185 if (! modified
1186 && REG_IN_TABLE (regno) >= 0
1187 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1188 REG_TICK (regno)++;
1189 make_new_qty (regno, GET_MODE (x));
1190 return 1;
1191 }
1192
1193 return 0;
1194 }
1195
1196 /* If X is a SUBREG, we will likely be inserting the inner register in the
1197 table. If that register doesn't have an assigned quantity number at
1198 this point but does later, the insertion that we will be doing now will
1199 not be accessible because its hash code will have changed. So assign
1200 a quantity number now. */
1201
1202 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1203 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1204 {
1205 insert_regs (SUBREG_REG (x), NULL, 0);
1206 mention_regs (x);
1207 return 1;
1208 }
1209 else
1210 return mention_regs (x);
1211 }
1212 \f
1213
1214 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1215 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1216 CST is equal to an anchor. */
1217
1218 static bool
1219 compute_const_anchors (rtx cst,
1220 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1221 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1222 {
1223 HOST_WIDE_INT n = INTVAL (cst);
1224
1225 *lower_base = n & ~(targetm.const_anchor - 1);
1226 if (*lower_base == n)
1227 return false;
1228
1229 *upper_base =
1230 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1231 *upper_offs = n - *upper_base;
1232 *lower_offs = n - *lower_base;
1233 return true;
1234 }
1235
1236 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1237
1238 static void
1239 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1240 enum machine_mode mode)
1241 {
1242 struct table_elt *elt;
1243 unsigned hash;
1244 rtx anchor_exp;
1245 rtx exp;
1246
1247 anchor_exp = GEN_INT (anchor);
1248 hash = HASH (anchor_exp, mode);
1249 elt = lookup (anchor_exp, hash, mode);
1250 if (!elt)
1251 elt = insert (anchor_exp, NULL, hash, mode);
1252
1253 exp = plus_constant (mode, reg, offs);
1254 /* REG has just been inserted and the hash codes recomputed. */
1255 mention_regs (exp);
1256 hash = HASH (exp, mode);
1257
1258 /* Use the cost of the register rather than the whole expression. When
1259 looking up constant anchors we will further offset the corresponding
1260 expression therefore it does not make sense to prefer REGs over
1261 reg-immediate additions. Prefer instead the oldest expression. Also
1262 don't prefer pseudos over hard regs so that we derive constants in
1263 argument registers from other argument registers rather than from the
1264 original pseudo that was used to synthesize the constant. */
1265 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1266 }
1267
1268 /* The constant CST is equivalent to the register REG. Create
1269 equivalences between the two anchors of CST and the corresponding
1270 register-offset expressions using REG. */
1271
1272 static void
1273 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1274 {
1275 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1276
1277 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1278 &upper_base, &upper_offs))
1279 return;
1280
1281 /* Ignore anchors of value 0. Constants accessible from zero are
1282 simple. */
1283 if (lower_base != 0)
1284 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1285
1286 if (upper_base != 0)
1287 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1288 }
1289
1290 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1291 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1292 valid expression. Return the cheapest and oldest of such expressions. In
1293 *OLD, return how old the resulting expression is compared to the other
1294 equivalent expressions. */
1295
1296 static rtx
1297 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1298 unsigned *old)
1299 {
1300 struct table_elt *elt;
1301 unsigned idx;
1302 struct table_elt *match_elt;
1303 rtx match;
1304
1305 /* Find the cheapest and *oldest* expression to maximize the chance of
1306 reusing the same pseudo. */
1307
1308 match_elt = NULL;
1309 match = NULL_RTX;
1310 for (elt = anchor_elt->first_same_value, idx = 0;
1311 elt;
1312 elt = elt->next_same_value, idx++)
1313 {
1314 if (match_elt && CHEAPER (match_elt, elt))
1315 return match;
1316
1317 if (REG_P (elt->exp)
1318 || (GET_CODE (elt->exp) == PLUS
1319 && REG_P (XEXP (elt->exp, 0))
1320 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1321 {
1322 rtx x;
1323
1324 /* Ignore expressions that are no longer valid. */
1325 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1326 continue;
1327
1328 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1329 if (REG_P (x)
1330 || (GET_CODE (x) == PLUS
1331 && IN_RANGE (INTVAL (XEXP (x, 1)),
1332 -targetm.const_anchor,
1333 targetm.const_anchor - 1)))
1334 {
1335 match = x;
1336 match_elt = elt;
1337 *old = idx;
1338 }
1339 }
1340 }
1341
1342 return match;
1343 }
1344
1345 /* Try to express the constant SRC_CONST using a register+offset expression
1346 derived from a constant anchor. Return it if successful or NULL_RTX,
1347 otherwise. */
1348
1349 static rtx
1350 try_const_anchors (rtx src_const, enum machine_mode mode)
1351 {
1352 struct table_elt *lower_elt, *upper_elt;
1353 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1354 rtx lower_anchor_rtx, upper_anchor_rtx;
1355 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1356 unsigned lower_old, upper_old;
1357
1358 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1359 &upper_base, &upper_offs))
1360 return NULL_RTX;
1361
1362 lower_anchor_rtx = GEN_INT (lower_base);
1363 upper_anchor_rtx = GEN_INT (upper_base);
1364 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1365 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1366
1367 if (lower_elt)
1368 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1369 if (upper_elt)
1370 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1371
1372 if (!lower_exp)
1373 return upper_exp;
1374 if (!upper_exp)
1375 return lower_exp;
1376
1377 /* Return the older expression. */
1378 return (upper_old > lower_old ? upper_exp : lower_exp);
1379 }
1380 \f
1381 /* Look in or update the hash table. */
1382
1383 /* Remove table element ELT from use in the table.
1384 HASH is its hash code, made using the HASH macro.
1385 It's an argument because often that is known in advance
1386 and we save much time not recomputing it. */
1387
1388 static void
1389 remove_from_table (struct table_elt *elt, unsigned int hash)
1390 {
1391 if (elt == 0)
1392 return;
1393
1394 /* Mark this element as removed. See cse_insn. */
1395 elt->first_same_value = 0;
1396
1397 /* Remove the table element from its equivalence class. */
1398
1399 {
1400 struct table_elt *prev = elt->prev_same_value;
1401 struct table_elt *next = elt->next_same_value;
1402
1403 if (next)
1404 next->prev_same_value = prev;
1405
1406 if (prev)
1407 prev->next_same_value = next;
1408 else
1409 {
1410 struct table_elt *newfirst = next;
1411 while (next)
1412 {
1413 next->first_same_value = newfirst;
1414 next = next->next_same_value;
1415 }
1416 }
1417 }
1418
1419 /* Remove the table element from its hash bucket. */
1420
1421 {
1422 struct table_elt *prev = elt->prev_same_hash;
1423 struct table_elt *next = elt->next_same_hash;
1424
1425 if (next)
1426 next->prev_same_hash = prev;
1427
1428 if (prev)
1429 prev->next_same_hash = next;
1430 else if (table[hash] == elt)
1431 table[hash] = next;
1432 else
1433 {
1434 /* This entry is not in the proper hash bucket. This can happen
1435 when two classes were merged by `merge_equiv_classes'. Search
1436 for the hash bucket that it heads. This happens only very
1437 rarely, so the cost is acceptable. */
1438 for (hash = 0; hash < HASH_SIZE; hash++)
1439 if (table[hash] == elt)
1440 table[hash] = next;
1441 }
1442 }
1443
1444 /* Remove the table element from its related-value circular chain. */
1445
1446 if (elt->related_value != 0 && elt->related_value != elt)
1447 {
1448 struct table_elt *p = elt->related_value;
1449
1450 while (p->related_value != elt)
1451 p = p->related_value;
1452 p->related_value = elt->related_value;
1453 if (p->related_value == p)
1454 p->related_value = 0;
1455 }
1456
1457 /* Now add it to the free element chain. */
1458 elt->next_same_hash = free_element_chain;
1459 free_element_chain = elt;
1460 }
1461
1462 /* Same as above, but X is a pseudo-register. */
1463
1464 static void
1465 remove_pseudo_from_table (rtx x, unsigned int hash)
1466 {
1467 struct table_elt *elt;
1468
1469 /* Because a pseudo-register can be referenced in more than one
1470 mode, we might have to remove more than one table entry. */
1471 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1472 remove_from_table (elt, hash);
1473 }
1474
1475 /* Look up X in the hash table and return its table element,
1476 or 0 if X is not in the table.
1477
1478 MODE is the machine-mode of X, or if X is an integer constant
1479 with VOIDmode then MODE is the mode with which X will be used.
1480
1481 Here we are satisfied to find an expression whose tree structure
1482 looks like X. */
1483
1484 static struct table_elt *
1485 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1486 {
1487 struct table_elt *p;
1488
1489 for (p = table[hash]; p; p = p->next_same_hash)
1490 if (mode == p->mode && ((x == p->exp && REG_P (x))
1491 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1492 return p;
1493
1494 return 0;
1495 }
1496
1497 /* Like `lookup' but don't care whether the table element uses invalid regs.
1498 Also ignore discrepancies in the machine mode of a register. */
1499
1500 static struct table_elt *
1501 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1502 {
1503 struct table_elt *p;
1504
1505 if (REG_P (x))
1506 {
1507 unsigned int regno = REGNO (x);
1508
1509 /* Don't check the machine mode when comparing registers;
1510 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1511 for (p = table[hash]; p; p = p->next_same_hash)
1512 if (REG_P (p->exp)
1513 && REGNO (p->exp) == regno)
1514 return p;
1515 }
1516 else
1517 {
1518 for (p = table[hash]; p; p = p->next_same_hash)
1519 if (mode == p->mode
1520 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1521 return p;
1522 }
1523
1524 return 0;
1525 }
1526
1527 /* Look for an expression equivalent to X and with code CODE.
1528 If one is found, return that expression. */
1529
1530 static rtx
1531 lookup_as_function (rtx x, enum rtx_code code)
1532 {
1533 struct table_elt *p
1534 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1535
1536 if (p == 0)
1537 return 0;
1538
1539 for (p = p->first_same_value; p; p = p->next_same_value)
1540 if (GET_CODE (p->exp) == code
1541 /* Make sure this is a valid entry in the table. */
1542 && exp_equiv_p (p->exp, p->exp, 1, false))
1543 return p->exp;
1544
1545 return 0;
1546 }
1547
1548 /* Insert X in the hash table, assuming HASH is its hash code and
1549 CLASSP is an element of the class it should go in (or 0 if a new
1550 class should be made). COST is the code of X and reg_cost is the
1551 cost of registers in X. It is inserted at the proper position to
1552 keep the class in the order cheapest first.
1553
1554 MODE is the machine-mode of X, or if X is an integer constant
1555 with VOIDmode then MODE is the mode with which X will be used.
1556
1557 For elements of equal cheapness, the most recent one
1558 goes in front, except that the first element in the list
1559 remains first unless a cheaper element is added. The order of
1560 pseudo-registers does not matter, as canon_reg will be called to
1561 find the cheapest when a register is retrieved from the table.
1562
1563 The in_memory field in the hash table element is set to 0.
1564 The caller must set it nonzero if appropriate.
1565
1566 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1567 and if insert_regs returns a nonzero value
1568 you must then recompute its hash code before calling here.
1569
1570 If necessary, update table showing constant values of quantities. */
1571
1572 static struct table_elt *
1573 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1574 enum machine_mode mode, int cost, int reg_cost)
1575 {
1576 struct table_elt *elt;
1577
1578 /* If X is a register and we haven't made a quantity for it,
1579 something is wrong. */
1580 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1581
1582 /* If X is a hard register, show it is being put in the table. */
1583 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1584 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1585
1586 /* Put an element for X into the right hash bucket. */
1587
1588 elt = free_element_chain;
1589 if (elt)
1590 free_element_chain = elt->next_same_hash;
1591 else
1592 elt = XNEW (struct table_elt);
1593
1594 elt->exp = x;
1595 elt->canon_exp = NULL_RTX;
1596 elt->cost = cost;
1597 elt->regcost = reg_cost;
1598 elt->next_same_value = 0;
1599 elt->prev_same_value = 0;
1600 elt->next_same_hash = table[hash];
1601 elt->prev_same_hash = 0;
1602 elt->related_value = 0;
1603 elt->in_memory = 0;
1604 elt->mode = mode;
1605 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1606
1607 if (table[hash])
1608 table[hash]->prev_same_hash = elt;
1609 table[hash] = elt;
1610
1611 /* Put it into the proper value-class. */
1612 if (classp)
1613 {
1614 classp = classp->first_same_value;
1615 if (CHEAPER (elt, classp))
1616 /* Insert at the head of the class. */
1617 {
1618 struct table_elt *p;
1619 elt->next_same_value = classp;
1620 classp->prev_same_value = elt;
1621 elt->first_same_value = elt;
1622
1623 for (p = classp; p; p = p->next_same_value)
1624 p->first_same_value = elt;
1625 }
1626 else
1627 {
1628 /* Insert not at head of the class. */
1629 /* Put it after the last element cheaper than X. */
1630 struct table_elt *p, *next;
1631
1632 for (p = classp;
1633 (next = p->next_same_value) && CHEAPER (next, elt);
1634 p = next)
1635 ;
1636
1637 /* Put it after P and before NEXT. */
1638 elt->next_same_value = next;
1639 if (next)
1640 next->prev_same_value = elt;
1641
1642 elt->prev_same_value = p;
1643 p->next_same_value = elt;
1644 elt->first_same_value = classp;
1645 }
1646 }
1647 else
1648 elt->first_same_value = elt;
1649
1650 /* If this is a constant being set equivalent to a register or a register
1651 being set equivalent to a constant, note the constant equivalence.
1652
1653 If this is a constant, it cannot be equivalent to a different constant,
1654 and a constant is the only thing that can be cheaper than a register. So
1655 we know the register is the head of the class (before the constant was
1656 inserted).
1657
1658 If this is a register that is not already known equivalent to a
1659 constant, we must check the entire class.
1660
1661 If this is a register that is already known equivalent to an insn,
1662 update the qtys `const_insn' to show that `this_insn' is the latest
1663 insn making that quantity equivalent to the constant. */
1664
1665 if (elt->is_const && classp && REG_P (classp->exp)
1666 && !REG_P (x))
1667 {
1668 int exp_q = REG_QTY (REGNO (classp->exp));
1669 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1670
1671 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1672 exp_ent->const_insn = this_insn;
1673 }
1674
1675 else if (REG_P (x)
1676 && classp
1677 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1678 && ! elt->is_const)
1679 {
1680 struct table_elt *p;
1681
1682 for (p = classp; p != 0; p = p->next_same_value)
1683 {
1684 if (p->is_const && !REG_P (p->exp))
1685 {
1686 int x_q = REG_QTY (REGNO (x));
1687 struct qty_table_elem *x_ent = &qty_table[x_q];
1688
1689 x_ent->const_rtx
1690 = gen_lowpart (GET_MODE (x), p->exp);
1691 x_ent->const_insn = this_insn;
1692 break;
1693 }
1694 }
1695 }
1696
1697 else if (REG_P (x)
1698 && qty_table[REG_QTY (REGNO (x))].const_rtx
1699 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1700 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1701
1702 /* If this is a constant with symbolic value,
1703 and it has a term with an explicit integer value,
1704 link it up with related expressions. */
1705 if (GET_CODE (x) == CONST)
1706 {
1707 rtx subexp = get_related_value (x);
1708 unsigned subhash;
1709 struct table_elt *subelt, *subelt_prev;
1710
1711 if (subexp != 0)
1712 {
1713 /* Get the integer-free subexpression in the hash table. */
1714 subhash = SAFE_HASH (subexp, mode);
1715 subelt = lookup (subexp, subhash, mode);
1716 if (subelt == 0)
1717 subelt = insert (subexp, NULL, subhash, mode);
1718 /* Initialize SUBELT's circular chain if it has none. */
1719 if (subelt->related_value == 0)
1720 subelt->related_value = subelt;
1721 /* Find the element in the circular chain that precedes SUBELT. */
1722 subelt_prev = subelt;
1723 while (subelt_prev->related_value != subelt)
1724 subelt_prev = subelt_prev->related_value;
1725 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1726 This way the element that follows SUBELT is the oldest one. */
1727 elt->related_value = subelt_prev->related_value;
1728 subelt_prev->related_value = elt;
1729 }
1730 }
1731
1732 return elt;
1733 }
1734
1735 /* Wrap insert_with_costs by passing the default costs. */
1736
1737 static struct table_elt *
1738 insert (rtx x, struct table_elt *classp, unsigned int hash,
1739 enum machine_mode mode)
1740 {
1741 return
1742 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1743 }
1744
1745 \f
1746 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1747 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1748 the two classes equivalent.
1749
1750 CLASS1 will be the surviving class; CLASS2 should not be used after this
1751 call.
1752
1753 Any invalid entries in CLASS2 will not be copied. */
1754
1755 static void
1756 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1757 {
1758 struct table_elt *elt, *next, *new_elt;
1759
1760 /* Ensure we start with the head of the classes. */
1761 class1 = class1->first_same_value;
1762 class2 = class2->first_same_value;
1763
1764 /* If they were already equal, forget it. */
1765 if (class1 == class2)
1766 return;
1767
1768 for (elt = class2; elt; elt = next)
1769 {
1770 unsigned int hash;
1771 rtx exp = elt->exp;
1772 enum machine_mode mode = elt->mode;
1773
1774 next = elt->next_same_value;
1775
1776 /* Remove old entry, make a new one in CLASS1's class.
1777 Don't do this for invalid entries as we cannot find their
1778 hash code (it also isn't necessary). */
1779 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1780 {
1781 bool need_rehash = false;
1782
1783 hash_arg_in_memory = 0;
1784 hash = HASH (exp, mode);
1785
1786 if (REG_P (exp))
1787 {
1788 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1789 delete_reg_equiv (REGNO (exp));
1790 }
1791
1792 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1793 remove_pseudo_from_table (exp, hash);
1794 else
1795 remove_from_table (elt, hash);
1796
1797 if (insert_regs (exp, class1, 0) || need_rehash)
1798 {
1799 rehash_using_reg (exp);
1800 hash = HASH (exp, mode);
1801 }
1802 new_elt = insert (exp, class1, hash, mode);
1803 new_elt->in_memory = hash_arg_in_memory;
1804 }
1805 }
1806 }
1807 \f
1808 /* Flush the entire hash table. */
1809
1810 static void
1811 flush_hash_table (void)
1812 {
1813 int i;
1814 struct table_elt *p;
1815
1816 for (i = 0; i < HASH_SIZE; i++)
1817 for (p = table[i]; p; p = table[i])
1818 {
1819 /* Note that invalidate can remove elements
1820 after P in the current hash chain. */
1821 if (REG_P (p->exp))
1822 invalidate (p->exp, VOIDmode);
1823 else
1824 remove_from_table (p, i);
1825 }
1826 }
1827 \f
1828 /* Function called for each rtx to check whether true dependence exist. */
1829 struct check_dependence_data
1830 {
1831 enum machine_mode mode;
1832 rtx exp;
1833 rtx addr;
1834 };
1835
1836 static int
1837 check_dependence (rtx *x, void *data)
1838 {
1839 struct check_dependence_data *d = (struct check_dependence_data *) data;
1840 if (*x && MEM_P (*x))
1841 return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX);
1842 else
1843 return 0;
1844 }
1845 \f
1846 /* Remove from the hash table, or mark as invalid, all expressions whose
1847 values could be altered by storing in X. X is a register, a subreg, or
1848 a memory reference with nonvarying address (because, when a memory
1849 reference with a varying address is stored in, all memory references are
1850 removed by invalidate_memory so specific invalidation is superfluous).
1851 FULL_MODE, if not VOIDmode, indicates that this much should be
1852 invalidated instead of just the amount indicated by the mode of X. This
1853 is only used for bitfield stores into memory.
1854
1855 A nonvarying address may be just a register or just a symbol reference,
1856 or it may be either of those plus a numeric offset. */
1857
1858 static void
1859 invalidate (rtx x, enum machine_mode full_mode)
1860 {
1861 int i;
1862 struct table_elt *p;
1863 rtx addr;
1864
1865 switch (GET_CODE (x))
1866 {
1867 case REG:
1868 {
1869 /* If X is a register, dependencies on its contents are recorded
1870 through the qty number mechanism. Just change the qty number of
1871 the register, mark it as invalid for expressions that refer to it,
1872 and remove it itself. */
1873 unsigned int regno = REGNO (x);
1874 unsigned int hash = HASH (x, GET_MODE (x));
1875
1876 /* Remove REGNO from any quantity list it might be on and indicate
1877 that its value might have changed. If it is a pseudo, remove its
1878 entry from the hash table.
1879
1880 For a hard register, we do the first two actions above for any
1881 additional hard registers corresponding to X. Then, if any of these
1882 registers are in the table, we must remove any REG entries that
1883 overlap these registers. */
1884
1885 delete_reg_equiv (regno);
1886 REG_TICK (regno)++;
1887 SUBREG_TICKED (regno) = -1;
1888
1889 if (regno >= FIRST_PSEUDO_REGISTER)
1890 remove_pseudo_from_table (x, hash);
1891 else
1892 {
1893 HOST_WIDE_INT in_table
1894 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1895 unsigned int endregno = END_HARD_REGNO (x);
1896 unsigned int tregno, tendregno, rn;
1897 struct table_elt *p, *next;
1898
1899 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1900
1901 for (rn = regno + 1; rn < endregno; rn++)
1902 {
1903 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1904 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1905 delete_reg_equiv (rn);
1906 REG_TICK (rn)++;
1907 SUBREG_TICKED (rn) = -1;
1908 }
1909
1910 if (in_table)
1911 for (hash = 0; hash < HASH_SIZE; hash++)
1912 for (p = table[hash]; p; p = next)
1913 {
1914 next = p->next_same_hash;
1915
1916 if (!REG_P (p->exp)
1917 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1918 continue;
1919
1920 tregno = REGNO (p->exp);
1921 tendregno = END_HARD_REGNO (p->exp);
1922 if (tendregno > regno && tregno < endregno)
1923 remove_from_table (p, hash);
1924 }
1925 }
1926 }
1927 return;
1928
1929 case SUBREG:
1930 invalidate (SUBREG_REG (x), VOIDmode);
1931 return;
1932
1933 case PARALLEL:
1934 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1935 invalidate (XVECEXP (x, 0, i), VOIDmode);
1936 return;
1937
1938 case EXPR_LIST:
1939 /* This is part of a disjoint return value; extract the location in
1940 question ignoring the offset. */
1941 invalidate (XEXP (x, 0), VOIDmode);
1942 return;
1943
1944 case MEM:
1945 addr = canon_rtx (get_addr (XEXP (x, 0)));
1946 /* Calculate the canonical version of X here so that
1947 true_dependence doesn't generate new RTL for X on each call. */
1948 x = canon_rtx (x);
1949
1950 /* Remove all hash table elements that refer to overlapping pieces of
1951 memory. */
1952 if (full_mode == VOIDmode)
1953 full_mode = GET_MODE (x);
1954
1955 for (i = 0; i < HASH_SIZE; i++)
1956 {
1957 struct table_elt *next;
1958
1959 for (p = table[i]; p; p = next)
1960 {
1961 next = p->next_same_hash;
1962 if (p->in_memory)
1963 {
1964 struct check_dependence_data d;
1965
1966 /* Just canonicalize the expression once;
1967 otherwise each time we call invalidate
1968 true_dependence will canonicalize the
1969 expression again. */
1970 if (!p->canon_exp)
1971 p->canon_exp = canon_rtx (p->exp);
1972 d.exp = x;
1973 d.addr = addr;
1974 d.mode = full_mode;
1975 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1976 remove_from_table (p, i);
1977 }
1978 }
1979 }
1980 return;
1981
1982 default:
1983 gcc_unreachable ();
1984 }
1985 }
1986 \f
1987 /* Remove all expressions that refer to register REGNO,
1988 since they are already invalid, and we are about to
1989 mark that register valid again and don't want the old
1990 expressions to reappear as valid. */
1991
1992 static void
1993 remove_invalid_refs (unsigned int regno)
1994 {
1995 unsigned int i;
1996 struct table_elt *p, *next;
1997
1998 for (i = 0; i < HASH_SIZE; i++)
1999 for (p = table[i]; p; p = next)
2000 {
2001 next = p->next_same_hash;
2002 if (!REG_P (p->exp)
2003 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2004 remove_from_table (p, i);
2005 }
2006 }
2007
2008 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2009 and mode MODE. */
2010 static void
2011 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2012 enum machine_mode mode)
2013 {
2014 unsigned int i;
2015 struct table_elt *p, *next;
2016 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2017
2018 for (i = 0; i < HASH_SIZE; i++)
2019 for (p = table[i]; p; p = next)
2020 {
2021 rtx exp = p->exp;
2022 next = p->next_same_hash;
2023
2024 if (!REG_P (exp)
2025 && (GET_CODE (exp) != SUBREG
2026 || !REG_P (SUBREG_REG (exp))
2027 || REGNO (SUBREG_REG (exp)) != regno
2028 || (((SUBREG_BYTE (exp)
2029 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2030 && SUBREG_BYTE (exp) <= end))
2031 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2032 remove_from_table (p, i);
2033 }
2034 }
2035 \f
2036 /* Recompute the hash codes of any valid entries in the hash table that
2037 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2038
2039 This is called when we make a jump equivalence. */
2040
2041 static void
2042 rehash_using_reg (rtx x)
2043 {
2044 unsigned int i;
2045 struct table_elt *p, *next;
2046 unsigned hash;
2047
2048 if (GET_CODE (x) == SUBREG)
2049 x = SUBREG_REG (x);
2050
2051 /* If X is not a register or if the register is known not to be in any
2052 valid entries in the table, we have no work to do. */
2053
2054 if (!REG_P (x)
2055 || REG_IN_TABLE (REGNO (x)) < 0
2056 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2057 return;
2058
2059 /* Scan all hash chains looking for valid entries that mention X.
2060 If we find one and it is in the wrong hash chain, move it. */
2061
2062 for (i = 0; i < HASH_SIZE; i++)
2063 for (p = table[i]; p; p = next)
2064 {
2065 next = p->next_same_hash;
2066 if (reg_mentioned_p (x, p->exp)
2067 && exp_equiv_p (p->exp, p->exp, 1, false)
2068 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2069 {
2070 if (p->next_same_hash)
2071 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2072
2073 if (p->prev_same_hash)
2074 p->prev_same_hash->next_same_hash = p->next_same_hash;
2075 else
2076 table[i] = p->next_same_hash;
2077
2078 p->next_same_hash = table[hash];
2079 p->prev_same_hash = 0;
2080 if (table[hash])
2081 table[hash]->prev_same_hash = p;
2082 table[hash] = p;
2083 }
2084 }
2085 }
2086 \f
2087 /* Remove from the hash table any expression that is a call-clobbered
2088 register. Also update their TICK values. */
2089
2090 static void
2091 invalidate_for_call (void)
2092 {
2093 unsigned int regno, endregno;
2094 unsigned int i;
2095 unsigned hash;
2096 struct table_elt *p, *next;
2097 int in_table = 0;
2098
2099 /* Go through all the hard registers. For each that is clobbered in
2100 a CALL_INSN, remove the register from quantity chains and update
2101 reg_tick if defined. Also see if any of these registers is currently
2102 in the table. */
2103
2104 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2105 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2106 {
2107 delete_reg_equiv (regno);
2108 if (REG_TICK (regno) >= 0)
2109 {
2110 REG_TICK (regno)++;
2111 SUBREG_TICKED (regno) = -1;
2112 }
2113
2114 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2115 }
2116
2117 /* In the case where we have no call-clobbered hard registers in the
2118 table, we are done. Otherwise, scan the table and remove any
2119 entry that overlaps a call-clobbered register. */
2120
2121 if (in_table)
2122 for (hash = 0; hash < HASH_SIZE; hash++)
2123 for (p = table[hash]; p; p = next)
2124 {
2125 next = p->next_same_hash;
2126
2127 if (!REG_P (p->exp)
2128 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2129 continue;
2130
2131 regno = REGNO (p->exp);
2132 endregno = END_HARD_REGNO (p->exp);
2133
2134 for (i = regno; i < endregno; i++)
2135 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2136 {
2137 remove_from_table (p, hash);
2138 break;
2139 }
2140 }
2141 }
2142 \f
2143 /* Given an expression X of type CONST,
2144 and ELT which is its table entry (or 0 if it
2145 is not in the hash table),
2146 return an alternate expression for X as a register plus integer.
2147 If none can be found, return 0. */
2148
2149 static rtx
2150 use_related_value (rtx x, struct table_elt *elt)
2151 {
2152 struct table_elt *relt = 0;
2153 struct table_elt *p, *q;
2154 HOST_WIDE_INT offset;
2155
2156 /* First, is there anything related known?
2157 If we have a table element, we can tell from that.
2158 Otherwise, must look it up. */
2159
2160 if (elt != 0 && elt->related_value != 0)
2161 relt = elt;
2162 else if (elt == 0 && GET_CODE (x) == CONST)
2163 {
2164 rtx subexp = get_related_value (x);
2165 if (subexp != 0)
2166 relt = lookup (subexp,
2167 SAFE_HASH (subexp, GET_MODE (subexp)),
2168 GET_MODE (subexp));
2169 }
2170
2171 if (relt == 0)
2172 return 0;
2173
2174 /* Search all related table entries for one that has an
2175 equivalent register. */
2176
2177 p = relt;
2178 while (1)
2179 {
2180 /* This loop is strange in that it is executed in two different cases.
2181 The first is when X is already in the table. Then it is searching
2182 the RELATED_VALUE list of X's class (RELT). The second case is when
2183 X is not in the table. Then RELT points to a class for the related
2184 value.
2185
2186 Ensure that, whatever case we are in, that we ignore classes that have
2187 the same value as X. */
2188
2189 if (rtx_equal_p (x, p->exp))
2190 q = 0;
2191 else
2192 for (q = p->first_same_value; q; q = q->next_same_value)
2193 if (REG_P (q->exp))
2194 break;
2195
2196 if (q)
2197 break;
2198
2199 p = p->related_value;
2200
2201 /* We went all the way around, so there is nothing to be found.
2202 Alternatively, perhaps RELT was in the table for some other reason
2203 and it has no related values recorded. */
2204 if (p == relt || p == 0)
2205 break;
2206 }
2207
2208 if (q == 0)
2209 return 0;
2210
2211 offset = (get_integer_term (x) - get_integer_term (p->exp));
2212 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2213 return plus_constant (q->mode, q->exp, offset);
2214 }
2215 \f
2216
2217 /* Hash a string. Just add its bytes up. */
2218 static inline unsigned
2219 hash_rtx_string (const char *ps)
2220 {
2221 unsigned hash = 0;
2222 const unsigned char *p = (const unsigned char *) ps;
2223
2224 if (p)
2225 while (*p)
2226 hash += *p++;
2227
2228 return hash;
2229 }
2230
2231 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2232 When the callback returns true, we continue with the new rtx. */
2233
2234 unsigned
2235 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2236 int *do_not_record_p, int *hash_arg_in_memory_p,
2237 bool have_reg_qty, hash_rtx_callback_function cb)
2238 {
2239 int i, j;
2240 unsigned hash = 0;
2241 enum rtx_code code;
2242 const char *fmt;
2243 enum machine_mode newmode;
2244 rtx newx;
2245
2246 /* Used to turn recursion into iteration. We can't rely on GCC's
2247 tail-recursion elimination since we need to keep accumulating values
2248 in HASH. */
2249 repeat:
2250 if (x == 0)
2251 return hash;
2252
2253 /* Invoke the callback first. */
2254 if (cb != NULL
2255 && ((*cb) (x, mode, &newx, &newmode)))
2256 {
2257 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2258 hash_arg_in_memory_p, have_reg_qty, cb);
2259 return hash;
2260 }
2261
2262 code = GET_CODE (x);
2263 switch (code)
2264 {
2265 case REG:
2266 {
2267 unsigned int regno = REGNO (x);
2268
2269 if (do_not_record_p && !reload_completed)
2270 {
2271 /* On some machines, we can't record any non-fixed hard register,
2272 because extending its life will cause reload problems. We
2273 consider ap, fp, sp, gp to be fixed for this purpose.
2274
2275 We also consider CCmode registers to be fixed for this purpose;
2276 failure to do so leads to failure to simplify 0<100 type of
2277 conditionals.
2278
2279 On all machines, we can't record any global registers.
2280 Nor should we record any register that is in a small
2281 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2282 bool record;
2283
2284 if (regno >= FIRST_PSEUDO_REGISTER)
2285 record = true;
2286 else if (x == frame_pointer_rtx
2287 || x == hard_frame_pointer_rtx
2288 || x == arg_pointer_rtx
2289 || x == stack_pointer_rtx
2290 || x == pic_offset_table_rtx)
2291 record = true;
2292 else if (global_regs[regno])
2293 record = false;
2294 else if (fixed_regs[regno])
2295 record = true;
2296 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2297 record = true;
2298 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2299 record = false;
2300 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2301 record = false;
2302 else
2303 record = true;
2304
2305 if (!record)
2306 {
2307 *do_not_record_p = 1;
2308 return 0;
2309 }
2310 }
2311
2312 hash += ((unsigned int) REG << 7);
2313 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2314 return hash;
2315 }
2316
2317 /* We handle SUBREG of a REG specially because the underlying
2318 reg changes its hash value with every value change; we don't
2319 want to have to forget unrelated subregs when one subreg changes. */
2320 case SUBREG:
2321 {
2322 if (REG_P (SUBREG_REG (x)))
2323 {
2324 hash += (((unsigned int) SUBREG << 7)
2325 + REGNO (SUBREG_REG (x))
2326 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2327 return hash;
2328 }
2329 break;
2330 }
2331
2332 case CONST_INT:
2333 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2334 + (unsigned int) INTVAL (x));
2335 return hash;
2336
2337 case CONST_DOUBLE:
2338 /* This is like the general case, except that it only counts
2339 the integers representing the constant. */
2340 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2341 if (GET_MODE (x) != VOIDmode)
2342 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2343 else
2344 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2345 + (unsigned int) CONST_DOUBLE_HIGH (x));
2346 return hash;
2347
2348 case CONST_FIXED:
2349 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2350 hash += fixed_hash (CONST_FIXED_VALUE (x));
2351 return hash;
2352
2353 case CONST_VECTOR:
2354 {
2355 int units;
2356 rtx elt;
2357
2358 units = CONST_VECTOR_NUNITS (x);
2359
2360 for (i = 0; i < units; ++i)
2361 {
2362 elt = CONST_VECTOR_ELT (x, i);
2363 hash += hash_rtx_cb (elt, GET_MODE (elt),
2364 do_not_record_p, hash_arg_in_memory_p,
2365 have_reg_qty, cb);
2366 }
2367
2368 return hash;
2369 }
2370
2371 /* Assume there is only one rtx object for any given label. */
2372 case LABEL_REF:
2373 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2374 differences and differences between each stage's debugging dumps. */
2375 hash += (((unsigned int) LABEL_REF << 7)
2376 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2377 return hash;
2378
2379 case SYMBOL_REF:
2380 {
2381 /* Don't hash on the symbol's address to avoid bootstrap differences.
2382 Different hash values may cause expressions to be recorded in
2383 different orders and thus different registers to be used in the
2384 final assembler. This also avoids differences in the dump files
2385 between various stages. */
2386 unsigned int h = 0;
2387 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2388
2389 while (*p)
2390 h += (h << 7) + *p++; /* ??? revisit */
2391
2392 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2393 return hash;
2394 }
2395
2396 case MEM:
2397 /* We don't record if marked volatile or if BLKmode since we don't
2398 know the size of the move. */
2399 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2400 {
2401 *do_not_record_p = 1;
2402 return 0;
2403 }
2404 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2405 *hash_arg_in_memory_p = 1;
2406
2407 /* Now that we have already found this special case,
2408 might as well speed it up as much as possible. */
2409 hash += (unsigned) MEM;
2410 x = XEXP (x, 0);
2411 goto repeat;
2412
2413 case USE:
2414 /* A USE that mentions non-volatile memory needs special
2415 handling since the MEM may be BLKmode which normally
2416 prevents an entry from being made. Pure calls are
2417 marked by a USE which mentions BLKmode memory.
2418 See calls.c:emit_call_1. */
2419 if (MEM_P (XEXP (x, 0))
2420 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2421 {
2422 hash += (unsigned) USE;
2423 x = XEXP (x, 0);
2424
2425 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2426 *hash_arg_in_memory_p = 1;
2427
2428 /* Now that we have already found this special case,
2429 might as well speed it up as much as possible. */
2430 hash += (unsigned) MEM;
2431 x = XEXP (x, 0);
2432 goto repeat;
2433 }
2434 break;
2435
2436 case PRE_DEC:
2437 case PRE_INC:
2438 case POST_DEC:
2439 case POST_INC:
2440 case PRE_MODIFY:
2441 case POST_MODIFY:
2442 case PC:
2443 case CC0:
2444 case CALL:
2445 case UNSPEC_VOLATILE:
2446 if (do_not_record_p) {
2447 *do_not_record_p = 1;
2448 return 0;
2449 }
2450 else
2451 return hash;
2452 break;
2453
2454 case ASM_OPERANDS:
2455 if (do_not_record_p && MEM_VOLATILE_P (x))
2456 {
2457 *do_not_record_p = 1;
2458 return 0;
2459 }
2460 else
2461 {
2462 /* We don't want to take the filename and line into account. */
2463 hash += (unsigned) code + (unsigned) GET_MODE (x)
2464 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2465 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2466 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2467
2468 if (ASM_OPERANDS_INPUT_LENGTH (x))
2469 {
2470 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2471 {
2472 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2473 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2474 do_not_record_p, hash_arg_in_memory_p,
2475 have_reg_qty, cb)
2476 + hash_rtx_string
2477 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2478 }
2479
2480 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2481 x = ASM_OPERANDS_INPUT (x, 0);
2482 mode = GET_MODE (x);
2483 goto repeat;
2484 }
2485
2486 return hash;
2487 }
2488 break;
2489
2490 default:
2491 break;
2492 }
2493
2494 i = GET_RTX_LENGTH (code) - 1;
2495 hash += (unsigned) code + (unsigned) GET_MODE (x);
2496 fmt = GET_RTX_FORMAT (code);
2497 for (; i >= 0; i--)
2498 {
2499 switch (fmt[i])
2500 {
2501 case 'e':
2502 /* If we are about to do the last recursive call
2503 needed at this level, change it into iteration.
2504 This function is called enough to be worth it. */
2505 if (i == 0)
2506 {
2507 x = XEXP (x, i);
2508 goto repeat;
2509 }
2510
2511 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2512 hash_arg_in_memory_p,
2513 have_reg_qty, cb);
2514 break;
2515
2516 case 'E':
2517 for (j = 0; j < XVECLEN (x, i); j++)
2518 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2519 hash_arg_in_memory_p,
2520 have_reg_qty, cb);
2521 break;
2522
2523 case 's':
2524 hash += hash_rtx_string (XSTR (x, i));
2525 break;
2526
2527 case 'i':
2528 hash += (unsigned int) XINT (x, i);
2529 break;
2530
2531 case '0': case 't':
2532 /* Unused. */
2533 break;
2534
2535 default:
2536 gcc_unreachable ();
2537 }
2538 }
2539
2540 return hash;
2541 }
2542
2543 /* Hash an rtx. We are careful to make sure the value is never negative.
2544 Equivalent registers hash identically.
2545 MODE is used in hashing for CONST_INTs only;
2546 otherwise the mode of X is used.
2547
2548 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2549
2550 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2551 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2552
2553 Note that cse_insn knows that the hash code of a MEM expression
2554 is just (int) MEM plus the hash code of the address. */
2555
2556 unsigned
2557 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2558 int *hash_arg_in_memory_p, bool have_reg_qty)
2559 {
2560 return hash_rtx_cb (x, mode, do_not_record_p,
2561 hash_arg_in_memory_p, have_reg_qty, NULL);
2562 }
2563
2564 /* Hash an rtx X for cse via hash_rtx.
2565 Stores 1 in do_not_record if any subexpression is volatile.
2566 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2567 does not have the RTX_UNCHANGING_P bit set. */
2568
2569 static inline unsigned
2570 canon_hash (rtx x, enum machine_mode mode)
2571 {
2572 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2573 }
2574
2575 /* Like canon_hash but with no side effects, i.e. do_not_record
2576 and hash_arg_in_memory are not changed. */
2577
2578 static inline unsigned
2579 safe_hash (rtx x, enum machine_mode mode)
2580 {
2581 int dummy_do_not_record;
2582 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2583 }
2584 \f
2585 /* Return 1 iff X and Y would canonicalize into the same thing,
2586 without actually constructing the canonicalization of either one.
2587 If VALIDATE is nonzero,
2588 we assume X is an expression being processed from the rtl
2589 and Y was found in the hash table. We check register refs
2590 in Y for being marked as valid.
2591
2592 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2593
2594 int
2595 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2596 {
2597 int i, j;
2598 enum rtx_code code;
2599 const char *fmt;
2600
2601 /* Note: it is incorrect to assume an expression is equivalent to itself
2602 if VALIDATE is nonzero. */
2603 if (x == y && !validate)
2604 return 1;
2605
2606 if (x == 0 || y == 0)
2607 return x == y;
2608
2609 code = GET_CODE (x);
2610 if (code != GET_CODE (y))
2611 return 0;
2612
2613 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2614 if (GET_MODE (x) != GET_MODE (y))
2615 return 0;
2616
2617 /* MEMs referring to different address space are not equivalent. */
2618 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2619 return 0;
2620
2621 switch (code)
2622 {
2623 case PC:
2624 case CC0:
2625 case CONST_INT:
2626 case CONST_DOUBLE:
2627 case CONST_FIXED:
2628 return x == y;
2629
2630 case LABEL_REF:
2631 return XEXP (x, 0) == XEXP (y, 0);
2632
2633 case SYMBOL_REF:
2634 return XSTR (x, 0) == XSTR (y, 0);
2635
2636 case REG:
2637 if (for_gcse)
2638 return REGNO (x) == REGNO (y);
2639 else
2640 {
2641 unsigned int regno = REGNO (y);
2642 unsigned int i;
2643 unsigned int endregno = END_REGNO (y);
2644
2645 /* If the quantities are not the same, the expressions are not
2646 equivalent. If there are and we are not to validate, they
2647 are equivalent. Otherwise, ensure all regs are up-to-date. */
2648
2649 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2650 return 0;
2651
2652 if (! validate)
2653 return 1;
2654
2655 for (i = regno; i < endregno; i++)
2656 if (REG_IN_TABLE (i) != REG_TICK (i))
2657 return 0;
2658
2659 return 1;
2660 }
2661
2662 case MEM:
2663 if (for_gcse)
2664 {
2665 /* A volatile mem should not be considered equivalent to any
2666 other. */
2667 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2668 return 0;
2669
2670 /* Can't merge two expressions in different alias sets, since we
2671 can decide that the expression is transparent in a block when
2672 it isn't, due to it being set with the different alias set.
2673
2674 Also, can't merge two expressions with different MEM_ATTRS.
2675 They could e.g. be two different entities allocated into the
2676 same space on the stack (see e.g. PR25130). In that case, the
2677 MEM addresses can be the same, even though the two MEMs are
2678 absolutely not equivalent.
2679
2680 But because really all MEM attributes should be the same for
2681 equivalent MEMs, we just use the invariant that MEMs that have
2682 the same attributes share the same mem_attrs data structure. */
2683 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2684 return 0;
2685 }
2686 break;
2687
2688 /* For commutative operations, check both orders. */
2689 case PLUS:
2690 case MULT:
2691 case AND:
2692 case IOR:
2693 case XOR:
2694 case NE:
2695 case EQ:
2696 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2697 validate, for_gcse)
2698 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2699 validate, for_gcse))
2700 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2701 validate, for_gcse)
2702 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2703 validate, for_gcse)));
2704
2705 case ASM_OPERANDS:
2706 /* We don't use the generic code below because we want to
2707 disregard filename and line numbers. */
2708
2709 /* A volatile asm isn't equivalent to any other. */
2710 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2711 return 0;
2712
2713 if (GET_MODE (x) != GET_MODE (y)
2714 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2715 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2716 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2717 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2718 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2719 return 0;
2720
2721 if (ASM_OPERANDS_INPUT_LENGTH (x))
2722 {
2723 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2724 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2725 ASM_OPERANDS_INPUT (y, i),
2726 validate, for_gcse)
2727 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2728 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2729 return 0;
2730 }
2731
2732 return 1;
2733
2734 default:
2735 break;
2736 }
2737
2738 /* Compare the elements. If any pair of corresponding elements
2739 fail to match, return 0 for the whole thing. */
2740
2741 fmt = GET_RTX_FORMAT (code);
2742 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2743 {
2744 switch (fmt[i])
2745 {
2746 case 'e':
2747 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2748 validate, for_gcse))
2749 return 0;
2750 break;
2751
2752 case 'E':
2753 if (XVECLEN (x, i) != XVECLEN (y, i))
2754 return 0;
2755 for (j = 0; j < XVECLEN (x, i); j++)
2756 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2757 validate, for_gcse))
2758 return 0;
2759 break;
2760
2761 case 's':
2762 if (strcmp (XSTR (x, i), XSTR (y, i)))
2763 return 0;
2764 break;
2765
2766 case 'i':
2767 if (XINT (x, i) != XINT (y, i))
2768 return 0;
2769 break;
2770
2771 case 'w':
2772 if (XWINT (x, i) != XWINT (y, i))
2773 return 0;
2774 break;
2775
2776 case '0':
2777 case 't':
2778 break;
2779
2780 default:
2781 gcc_unreachable ();
2782 }
2783 }
2784
2785 return 1;
2786 }
2787 \f
2788 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2789 the result if necessary. INSN is as for canon_reg. */
2790
2791 static void
2792 validate_canon_reg (rtx *xloc, rtx insn)
2793 {
2794 if (*xloc)
2795 {
2796 rtx new_rtx = canon_reg (*xloc, insn);
2797
2798 /* If replacing pseudo with hard reg or vice versa, ensure the
2799 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2800 gcc_assert (insn && new_rtx);
2801 validate_change (insn, xloc, new_rtx, 1);
2802 }
2803 }
2804
2805 /* Canonicalize an expression:
2806 replace each register reference inside it
2807 with the "oldest" equivalent register.
2808
2809 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2810 after we make our substitution. The calls are made with IN_GROUP nonzero
2811 so apply_change_group must be called upon the outermost return from this
2812 function (unless INSN is zero). The result of apply_change_group can
2813 generally be discarded since the changes we are making are optional. */
2814
2815 static rtx
2816 canon_reg (rtx x, rtx insn)
2817 {
2818 int i;
2819 enum rtx_code code;
2820 const char *fmt;
2821
2822 if (x == 0)
2823 return x;
2824
2825 code = GET_CODE (x);
2826 switch (code)
2827 {
2828 case PC:
2829 case CC0:
2830 case CONST:
2831 case CONST_INT:
2832 case CONST_DOUBLE:
2833 case CONST_FIXED:
2834 case CONST_VECTOR:
2835 case SYMBOL_REF:
2836 case LABEL_REF:
2837 case ADDR_VEC:
2838 case ADDR_DIFF_VEC:
2839 return x;
2840
2841 case REG:
2842 {
2843 int first;
2844 int q;
2845 struct qty_table_elem *ent;
2846
2847 /* Never replace a hard reg, because hard regs can appear
2848 in more than one machine mode, and we must preserve the mode
2849 of each occurrence. Also, some hard regs appear in
2850 MEMs that are shared and mustn't be altered. Don't try to
2851 replace any reg that maps to a reg of class NO_REGS. */
2852 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2853 || ! REGNO_QTY_VALID_P (REGNO (x)))
2854 return x;
2855
2856 q = REG_QTY (REGNO (x));
2857 ent = &qty_table[q];
2858 first = ent->first_reg;
2859 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2860 : REGNO_REG_CLASS (first) == NO_REGS ? x
2861 : gen_rtx_REG (ent->mode, first));
2862 }
2863
2864 default:
2865 break;
2866 }
2867
2868 fmt = GET_RTX_FORMAT (code);
2869 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2870 {
2871 int j;
2872
2873 if (fmt[i] == 'e')
2874 validate_canon_reg (&XEXP (x, i), insn);
2875 else if (fmt[i] == 'E')
2876 for (j = 0; j < XVECLEN (x, i); j++)
2877 validate_canon_reg (&XVECEXP (x, i, j), insn);
2878 }
2879
2880 return x;
2881 }
2882 \f
2883 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2884 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2885 what values are being compared.
2886
2887 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2888 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2889 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2890 compared to produce cc0.
2891
2892 The return value is the comparison operator and is either the code of
2893 A or the code corresponding to the inverse of the comparison. */
2894
2895 static enum rtx_code
2896 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2897 enum machine_mode *pmode1, enum machine_mode *pmode2)
2898 {
2899 rtx arg1, arg2;
2900
2901 arg1 = *parg1, arg2 = *parg2;
2902
2903 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2904
2905 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2906 {
2907 /* Set nonzero when we find something of interest. */
2908 rtx x = 0;
2909 int reverse_code = 0;
2910 struct table_elt *p = 0;
2911
2912 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2913 On machines with CC0, this is the only case that can occur, since
2914 fold_rtx will return the COMPARE or item being compared with zero
2915 when given CC0. */
2916
2917 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2918 x = arg1;
2919
2920 /* If ARG1 is a comparison operator and CODE is testing for
2921 STORE_FLAG_VALUE, get the inner arguments. */
2922
2923 else if (COMPARISON_P (arg1))
2924 {
2925 #ifdef FLOAT_STORE_FLAG_VALUE
2926 REAL_VALUE_TYPE fsfv;
2927 #endif
2928
2929 if (code == NE
2930 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2931 && code == LT && STORE_FLAG_VALUE == -1)
2932 #ifdef FLOAT_STORE_FLAG_VALUE
2933 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2934 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2935 REAL_VALUE_NEGATIVE (fsfv)))
2936 #endif
2937 )
2938 x = arg1;
2939 else if (code == EQ
2940 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2941 && code == GE && STORE_FLAG_VALUE == -1)
2942 #ifdef FLOAT_STORE_FLAG_VALUE
2943 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2944 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2945 REAL_VALUE_NEGATIVE (fsfv)))
2946 #endif
2947 )
2948 x = arg1, reverse_code = 1;
2949 }
2950
2951 /* ??? We could also check for
2952
2953 (ne (and (eq (...) (const_int 1))) (const_int 0))
2954
2955 and related forms, but let's wait until we see them occurring. */
2956
2957 if (x == 0)
2958 /* Look up ARG1 in the hash table and see if it has an equivalence
2959 that lets us see what is being compared. */
2960 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2961 if (p)
2962 {
2963 p = p->first_same_value;
2964
2965 /* If what we compare is already known to be constant, that is as
2966 good as it gets.
2967 We need to break the loop in this case, because otherwise we
2968 can have an infinite loop when looking at a reg that is known
2969 to be a constant which is the same as a comparison of a reg
2970 against zero which appears later in the insn stream, which in
2971 turn is constant and the same as the comparison of the first reg
2972 against zero... */
2973 if (p->is_const)
2974 break;
2975 }
2976
2977 for (; p; p = p->next_same_value)
2978 {
2979 enum machine_mode inner_mode = GET_MODE (p->exp);
2980 #ifdef FLOAT_STORE_FLAG_VALUE
2981 REAL_VALUE_TYPE fsfv;
2982 #endif
2983
2984 /* If the entry isn't valid, skip it. */
2985 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2986 continue;
2987
2988 /* If it's the same comparison we're already looking at, skip it. */
2989 if (COMPARISON_P (p->exp)
2990 && XEXP (p->exp, 0) == arg1
2991 && XEXP (p->exp, 1) == arg2)
2992 continue;
2993
2994 if (GET_CODE (p->exp) == COMPARE
2995 /* Another possibility is that this machine has a compare insn
2996 that includes the comparison code. In that case, ARG1 would
2997 be equivalent to a comparison operation that would set ARG1 to
2998 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2999 ORIG_CODE is the actual comparison being done; if it is an EQ,
3000 we must reverse ORIG_CODE. On machine with a negative value
3001 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3002 || ((code == NE
3003 || (code == LT
3004 && val_signbit_known_set_p (inner_mode,
3005 STORE_FLAG_VALUE))
3006 #ifdef FLOAT_STORE_FLAG_VALUE
3007 || (code == LT
3008 && SCALAR_FLOAT_MODE_P (inner_mode)
3009 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3010 REAL_VALUE_NEGATIVE (fsfv)))
3011 #endif
3012 )
3013 && COMPARISON_P (p->exp)))
3014 {
3015 x = p->exp;
3016 break;
3017 }
3018 else if ((code == EQ
3019 || (code == GE
3020 && val_signbit_known_set_p (inner_mode,
3021 STORE_FLAG_VALUE))
3022 #ifdef FLOAT_STORE_FLAG_VALUE
3023 || (code == GE
3024 && SCALAR_FLOAT_MODE_P (inner_mode)
3025 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3026 REAL_VALUE_NEGATIVE (fsfv)))
3027 #endif
3028 )
3029 && COMPARISON_P (p->exp))
3030 {
3031 reverse_code = 1;
3032 x = p->exp;
3033 break;
3034 }
3035
3036 /* If this non-trapping address, e.g. fp + constant, the
3037 equivalent is a better operand since it may let us predict
3038 the value of the comparison. */
3039 else if (!rtx_addr_can_trap_p (p->exp))
3040 {
3041 arg1 = p->exp;
3042 continue;
3043 }
3044 }
3045
3046 /* If we didn't find a useful equivalence for ARG1, we are done.
3047 Otherwise, set up for the next iteration. */
3048 if (x == 0)
3049 break;
3050
3051 /* If we need to reverse the comparison, make sure that that is
3052 possible -- we can't necessarily infer the value of GE from LT
3053 with floating-point operands. */
3054 if (reverse_code)
3055 {
3056 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3057 if (reversed == UNKNOWN)
3058 break;
3059 else
3060 code = reversed;
3061 }
3062 else if (COMPARISON_P (x))
3063 code = GET_CODE (x);
3064 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3065 }
3066
3067 /* Return our results. Return the modes from before fold_rtx
3068 because fold_rtx might produce const_int, and then it's too late. */
3069 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3070 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3071
3072 return code;
3073 }
3074 \f
3075 /* If X is a nontrivial arithmetic operation on an argument for which
3076 a constant value can be determined, return the result of operating
3077 on that value, as a constant. Otherwise, return X, possibly with
3078 one or more operands changed to a forward-propagated constant.
3079
3080 If X is a register whose contents are known, we do NOT return
3081 those contents here; equiv_constant is called to perform that task.
3082 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3083
3084 INSN is the insn that we may be modifying. If it is 0, make a copy
3085 of X before modifying it. */
3086
3087 static rtx
3088 fold_rtx (rtx x, rtx insn)
3089 {
3090 enum rtx_code code;
3091 enum machine_mode mode;
3092 const char *fmt;
3093 int i;
3094 rtx new_rtx = 0;
3095 int changed = 0;
3096
3097 /* Operands of X. */
3098 rtx folded_arg0;
3099 rtx folded_arg1;
3100
3101 /* Constant equivalents of first three operands of X;
3102 0 when no such equivalent is known. */
3103 rtx const_arg0;
3104 rtx const_arg1;
3105 rtx const_arg2;
3106
3107 /* The mode of the first operand of X. We need this for sign and zero
3108 extends. */
3109 enum machine_mode mode_arg0;
3110
3111 if (x == 0)
3112 return x;
3113
3114 /* Try to perform some initial simplifications on X. */
3115 code = GET_CODE (x);
3116 switch (code)
3117 {
3118 case MEM:
3119 case SUBREG:
3120 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3121 return new_rtx;
3122 return x;
3123
3124 case CONST:
3125 case CONST_INT:
3126 case CONST_DOUBLE:
3127 case CONST_FIXED:
3128 case CONST_VECTOR:
3129 case SYMBOL_REF:
3130 case LABEL_REF:
3131 case REG:
3132 case PC:
3133 /* No use simplifying an EXPR_LIST
3134 since they are used only for lists of args
3135 in a function call's REG_EQUAL note. */
3136 case EXPR_LIST:
3137 return x;
3138
3139 #ifdef HAVE_cc0
3140 case CC0:
3141 return prev_insn_cc0;
3142 #endif
3143
3144 case ASM_OPERANDS:
3145 if (insn)
3146 {
3147 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3148 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3149 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3150 }
3151 return x;
3152
3153 #ifdef NO_FUNCTION_CSE
3154 case CALL:
3155 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3156 return x;
3157 break;
3158 #endif
3159
3160 /* Anything else goes through the loop below. */
3161 default:
3162 break;
3163 }
3164
3165 mode = GET_MODE (x);
3166 const_arg0 = 0;
3167 const_arg1 = 0;
3168 const_arg2 = 0;
3169 mode_arg0 = VOIDmode;
3170
3171 /* Try folding our operands.
3172 Then see which ones have constant values known. */
3173
3174 fmt = GET_RTX_FORMAT (code);
3175 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3176 if (fmt[i] == 'e')
3177 {
3178 rtx folded_arg = XEXP (x, i), const_arg;
3179 enum machine_mode mode_arg = GET_MODE (folded_arg);
3180
3181 switch (GET_CODE (folded_arg))
3182 {
3183 case MEM:
3184 case REG:
3185 case SUBREG:
3186 const_arg = equiv_constant (folded_arg);
3187 break;
3188
3189 case CONST:
3190 case CONST_INT:
3191 case SYMBOL_REF:
3192 case LABEL_REF:
3193 case CONST_DOUBLE:
3194 case CONST_FIXED:
3195 case CONST_VECTOR:
3196 const_arg = folded_arg;
3197 break;
3198
3199 #ifdef HAVE_cc0
3200 case CC0:
3201 folded_arg = prev_insn_cc0;
3202 mode_arg = prev_insn_cc0_mode;
3203 const_arg = equiv_constant (folded_arg);
3204 break;
3205 #endif
3206
3207 default:
3208 folded_arg = fold_rtx (folded_arg, insn);
3209 const_arg = equiv_constant (folded_arg);
3210 break;
3211 }
3212
3213 /* For the first three operands, see if the operand
3214 is constant or equivalent to a constant. */
3215 switch (i)
3216 {
3217 case 0:
3218 folded_arg0 = folded_arg;
3219 const_arg0 = const_arg;
3220 mode_arg0 = mode_arg;
3221 break;
3222 case 1:
3223 folded_arg1 = folded_arg;
3224 const_arg1 = const_arg;
3225 break;
3226 case 2:
3227 const_arg2 = const_arg;
3228 break;
3229 }
3230
3231 /* Pick the least expensive of the argument and an equivalent constant
3232 argument. */
3233 if (const_arg != 0
3234 && const_arg != folded_arg
3235 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3236
3237 /* It's not safe to substitute the operand of a conversion
3238 operator with a constant, as the conversion's identity
3239 depends upon the mode of its operand. This optimization
3240 is handled by the call to simplify_unary_operation. */
3241 && (GET_RTX_CLASS (code) != RTX_UNARY
3242 || GET_MODE (const_arg) == mode_arg0
3243 || (code != ZERO_EXTEND
3244 && code != SIGN_EXTEND
3245 && code != TRUNCATE
3246 && code != FLOAT_TRUNCATE
3247 && code != FLOAT_EXTEND
3248 && code != FLOAT
3249 && code != FIX
3250 && code != UNSIGNED_FLOAT
3251 && code != UNSIGNED_FIX)))
3252 folded_arg = const_arg;
3253
3254 if (folded_arg == XEXP (x, i))
3255 continue;
3256
3257 if (insn == NULL_RTX && !changed)
3258 x = copy_rtx (x);
3259 changed = 1;
3260 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3261 }
3262
3263 if (changed)
3264 {
3265 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3266 consistent with the order in X. */
3267 if (canonicalize_change_group (insn, x))
3268 {
3269 rtx tem;
3270 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3271 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3272 }
3273
3274 apply_change_group ();
3275 }
3276
3277 /* If X is an arithmetic operation, see if we can simplify it. */
3278
3279 switch (GET_RTX_CLASS (code))
3280 {
3281 case RTX_UNARY:
3282 {
3283 /* We can't simplify extension ops unless we know the
3284 original mode. */
3285 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3286 && mode_arg0 == VOIDmode)
3287 break;
3288
3289 new_rtx = simplify_unary_operation (code, mode,
3290 const_arg0 ? const_arg0 : folded_arg0,
3291 mode_arg0);
3292 }
3293 break;
3294
3295 case RTX_COMPARE:
3296 case RTX_COMM_COMPARE:
3297 /* See what items are actually being compared and set FOLDED_ARG[01]
3298 to those values and CODE to the actual comparison code. If any are
3299 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3300 do anything if both operands are already known to be constant. */
3301
3302 /* ??? Vector mode comparisons are not supported yet. */
3303 if (VECTOR_MODE_P (mode))
3304 break;
3305
3306 if (const_arg0 == 0 || const_arg1 == 0)
3307 {
3308 struct table_elt *p0, *p1;
3309 rtx true_rtx, false_rtx;
3310 enum machine_mode mode_arg1;
3311
3312 if (SCALAR_FLOAT_MODE_P (mode))
3313 {
3314 #ifdef FLOAT_STORE_FLAG_VALUE
3315 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3316 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3317 #else
3318 true_rtx = NULL_RTX;
3319 #endif
3320 false_rtx = CONST0_RTX (mode);
3321 }
3322 else
3323 {
3324 true_rtx = const_true_rtx;
3325 false_rtx = const0_rtx;
3326 }
3327
3328 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3329 &mode_arg0, &mode_arg1);
3330
3331 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3332 what kinds of things are being compared, so we can't do
3333 anything with this comparison. */
3334
3335 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3336 break;
3337
3338 const_arg0 = equiv_constant (folded_arg0);
3339 const_arg1 = equiv_constant (folded_arg1);
3340
3341 /* If we do not now have two constants being compared, see
3342 if we can nevertheless deduce some things about the
3343 comparison. */
3344 if (const_arg0 == 0 || const_arg1 == 0)
3345 {
3346 if (const_arg1 != NULL)
3347 {
3348 rtx cheapest_simplification;
3349 int cheapest_cost;
3350 rtx simp_result;
3351 struct table_elt *p;
3352
3353 /* See if we can find an equivalent of folded_arg0
3354 that gets us a cheaper expression, possibly a
3355 constant through simplifications. */
3356 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3357 mode_arg0);
3358
3359 if (p != NULL)
3360 {
3361 cheapest_simplification = x;
3362 cheapest_cost = COST (x);
3363
3364 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3365 {
3366 int cost;
3367
3368 /* If the entry isn't valid, skip it. */
3369 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3370 continue;
3371
3372 /* Try to simplify using this equivalence. */
3373 simp_result
3374 = simplify_relational_operation (code, mode,
3375 mode_arg0,
3376 p->exp,
3377 const_arg1);
3378
3379 if (simp_result == NULL)
3380 continue;
3381
3382 cost = COST (simp_result);
3383 if (cost < cheapest_cost)
3384 {
3385 cheapest_cost = cost;
3386 cheapest_simplification = simp_result;
3387 }
3388 }
3389
3390 /* If we have a cheaper expression now, use that
3391 and try folding it further, from the top. */
3392 if (cheapest_simplification != x)
3393 return fold_rtx (copy_rtx (cheapest_simplification),
3394 insn);
3395 }
3396 }
3397
3398 /* See if the two operands are the same. */
3399
3400 if ((REG_P (folded_arg0)
3401 && REG_P (folded_arg1)
3402 && (REG_QTY (REGNO (folded_arg0))
3403 == REG_QTY (REGNO (folded_arg1))))
3404 || ((p0 = lookup (folded_arg0,
3405 SAFE_HASH (folded_arg0, mode_arg0),
3406 mode_arg0))
3407 && (p1 = lookup (folded_arg1,
3408 SAFE_HASH (folded_arg1, mode_arg0),
3409 mode_arg0))
3410 && p0->first_same_value == p1->first_same_value))
3411 folded_arg1 = folded_arg0;
3412
3413 /* If FOLDED_ARG0 is a register, see if the comparison we are
3414 doing now is either the same as we did before or the reverse
3415 (we only check the reverse if not floating-point). */
3416 else if (REG_P (folded_arg0))
3417 {
3418 int qty = REG_QTY (REGNO (folded_arg0));
3419
3420 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3421 {
3422 struct qty_table_elem *ent = &qty_table[qty];
3423
3424 if ((comparison_dominates_p (ent->comparison_code, code)
3425 || (! FLOAT_MODE_P (mode_arg0)
3426 && comparison_dominates_p (ent->comparison_code,
3427 reverse_condition (code))))
3428 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3429 || (const_arg1
3430 && rtx_equal_p (ent->comparison_const,
3431 const_arg1))
3432 || (REG_P (folded_arg1)
3433 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3434 {
3435 if (comparison_dominates_p (ent->comparison_code, code))
3436 {
3437 if (true_rtx)
3438 return true_rtx;
3439 else
3440 break;
3441 }
3442 else
3443 return false_rtx;
3444 }
3445 }
3446 }
3447 }
3448 }
3449
3450 /* If we are comparing against zero, see if the first operand is
3451 equivalent to an IOR with a constant. If so, we may be able to
3452 determine the result of this comparison. */
3453 if (const_arg1 == const0_rtx && !const_arg0)
3454 {
3455 rtx y = lookup_as_function (folded_arg0, IOR);
3456 rtx inner_const;
3457
3458 if (y != 0
3459 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3460 && CONST_INT_P (inner_const)
3461 && INTVAL (inner_const) != 0)
3462 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3463 }
3464
3465 {
3466 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3467 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3468 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3469 }
3470 break;
3471
3472 case RTX_BIN_ARITH:
3473 case RTX_COMM_ARITH:
3474 switch (code)
3475 {
3476 case PLUS:
3477 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3478 with that LABEL_REF as its second operand. If so, the result is
3479 the first operand of that MINUS. This handles switches with an
3480 ADDR_DIFF_VEC table. */
3481 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3482 {
3483 rtx y
3484 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3485 : lookup_as_function (folded_arg0, MINUS);
3486
3487 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3488 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3489 return XEXP (y, 0);
3490
3491 /* Now try for a CONST of a MINUS like the above. */
3492 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3493 : lookup_as_function (folded_arg0, CONST))) != 0
3494 && GET_CODE (XEXP (y, 0)) == MINUS
3495 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3496 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3497 return XEXP (XEXP (y, 0), 0);
3498 }
3499
3500 /* Likewise if the operands are in the other order. */
3501 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3502 {
3503 rtx y
3504 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3505 : lookup_as_function (folded_arg1, MINUS);
3506
3507 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3508 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3509 return XEXP (y, 0);
3510
3511 /* Now try for a CONST of a MINUS like the above. */
3512 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3513 : lookup_as_function (folded_arg1, CONST))) != 0
3514 && GET_CODE (XEXP (y, 0)) == MINUS
3515 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3516 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3517 return XEXP (XEXP (y, 0), 0);
3518 }
3519
3520 /* If second operand is a register equivalent to a negative
3521 CONST_INT, see if we can find a register equivalent to the
3522 positive constant. Make a MINUS if so. Don't do this for
3523 a non-negative constant since we might then alternate between
3524 choosing positive and negative constants. Having the positive
3525 constant previously-used is the more common case. Be sure
3526 the resulting constant is non-negative; if const_arg1 were
3527 the smallest negative number this would overflow: depending
3528 on the mode, this would either just be the same value (and
3529 hence not save anything) or be incorrect. */
3530 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3531 && INTVAL (const_arg1) < 0
3532 /* This used to test
3533
3534 -INTVAL (const_arg1) >= 0
3535
3536 But The Sun V5.0 compilers mis-compiled that test. So
3537 instead we test for the problematic value in a more direct
3538 manner and hope the Sun compilers get it correct. */
3539 && INTVAL (const_arg1) !=
3540 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3541 && REG_P (folded_arg1))
3542 {
3543 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3544 struct table_elt *p
3545 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3546
3547 if (p)
3548 for (p = p->first_same_value; p; p = p->next_same_value)
3549 if (REG_P (p->exp))
3550 return simplify_gen_binary (MINUS, mode, folded_arg0,
3551 canon_reg (p->exp, NULL_RTX));
3552 }
3553 goto from_plus;
3554
3555 case MINUS:
3556 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3557 If so, produce (PLUS Z C2-C). */
3558 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3559 {
3560 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3561 if (y && CONST_INT_P (XEXP (y, 1)))
3562 return fold_rtx (plus_constant (mode, copy_rtx (y),
3563 -INTVAL (const_arg1)),
3564 NULL_RTX);
3565 }
3566
3567 /* Fall through. */
3568
3569 from_plus:
3570 case SMIN: case SMAX: case UMIN: case UMAX:
3571 case IOR: case AND: case XOR:
3572 case MULT:
3573 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3574 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3575 is known to be of similar form, we may be able to replace the
3576 operation with a combined operation. This may eliminate the
3577 intermediate operation if every use is simplified in this way.
3578 Note that the similar optimization done by combine.c only works
3579 if the intermediate operation's result has only one reference. */
3580
3581 if (REG_P (folded_arg0)
3582 && const_arg1 && CONST_INT_P (const_arg1))
3583 {
3584 int is_shift
3585 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3586 rtx y, inner_const, new_const;
3587 rtx canon_const_arg1 = const_arg1;
3588 enum rtx_code associate_code;
3589
3590 if (is_shift
3591 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3592 || INTVAL (const_arg1) < 0))
3593 {
3594 if (SHIFT_COUNT_TRUNCATED)
3595 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3596 & (GET_MODE_BITSIZE (mode)
3597 - 1));
3598 else
3599 break;
3600 }
3601
3602 y = lookup_as_function (folded_arg0, code);
3603 if (y == 0)
3604 break;
3605
3606 /* If we have compiled a statement like
3607 "if (x == (x & mask1))", and now are looking at
3608 "x & mask2", we will have a case where the first operand
3609 of Y is the same as our first operand. Unless we detect
3610 this case, an infinite loop will result. */
3611 if (XEXP (y, 0) == folded_arg0)
3612 break;
3613
3614 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3615 if (!inner_const || !CONST_INT_P (inner_const))
3616 break;
3617
3618 /* Don't associate these operations if they are a PLUS with the
3619 same constant and it is a power of two. These might be doable
3620 with a pre- or post-increment. Similarly for two subtracts of
3621 identical powers of two with post decrement. */
3622
3623 if (code == PLUS && const_arg1 == inner_const
3624 && ((HAVE_PRE_INCREMENT
3625 && exact_log2 (INTVAL (const_arg1)) >= 0)
3626 || (HAVE_POST_INCREMENT
3627 && exact_log2 (INTVAL (const_arg1)) >= 0)
3628 || (HAVE_PRE_DECREMENT
3629 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3630 || (HAVE_POST_DECREMENT
3631 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3632 break;
3633
3634 /* ??? Vector mode shifts by scalar
3635 shift operand are not supported yet. */
3636 if (is_shift && VECTOR_MODE_P (mode))
3637 break;
3638
3639 if (is_shift
3640 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3641 || INTVAL (inner_const) < 0))
3642 {
3643 if (SHIFT_COUNT_TRUNCATED)
3644 inner_const = GEN_INT (INTVAL (inner_const)
3645 & (GET_MODE_BITSIZE (mode) - 1));
3646 else
3647 break;
3648 }
3649
3650 /* Compute the code used to compose the constants. For example,
3651 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3652
3653 associate_code = (is_shift || code == MINUS ? PLUS : code);
3654
3655 new_const = simplify_binary_operation (associate_code, mode,
3656 canon_const_arg1,
3657 inner_const);
3658
3659 if (new_const == 0)
3660 break;
3661
3662 /* If we are associating shift operations, don't let this
3663 produce a shift of the size of the object or larger.
3664 This could occur when we follow a sign-extend by a right
3665 shift on a machine that does a sign-extend as a pair
3666 of shifts. */
3667
3668 if (is_shift
3669 && CONST_INT_P (new_const)
3670 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3671 {
3672 /* As an exception, we can turn an ASHIFTRT of this
3673 form into a shift of the number of bits - 1. */
3674 if (code == ASHIFTRT)
3675 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3676 else if (!side_effects_p (XEXP (y, 0)))
3677 return CONST0_RTX (mode);
3678 else
3679 break;
3680 }
3681
3682 y = copy_rtx (XEXP (y, 0));
3683
3684 /* If Y contains our first operand (the most common way this
3685 can happen is if Y is a MEM), we would do into an infinite
3686 loop if we tried to fold it. So don't in that case. */
3687
3688 if (! reg_mentioned_p (folded_arg0, y))
3689 y = fold_rtx (y, insn);
3690
3691 return simplify_gen_binary (code, mode, y, new_const);
3692 }
3693 break;
3694
3695 case DIV: case UDIV:
3696 /* ??? The associative optimization performed immediately above is
3697 also possible for DIV and UDIV using associate_code of MULT.
3698 However, we would need extra code to verify that the
3699 multiplication does not overflow, that is, there is no overflow
3700 in the calculation of new_const. */
3701 break;
3702
3703 default:
3704 break;
3705 }
3706
3707 new_rtx = simplify_binary_operation (code, mode,
3708 const_arg0 ? const_arg0 : folded_arg0,
3709 const_arg1 ? const_arg1 : folded_arg1);
3710 break;
3711
3712 case RTX_OBJ:
3713 /* (lo_sum (high X) X) is simply X. */
3714 if (code == LO_SUM && const_arg0 != 0
3715 && GET_CODE (const_arg0) == HIGH
3716 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3717 return const_arg1;
3718 break;
3719
3720 case RTX_TERNARY:
3721 case RTX_BITFIELD_OPS:
3722 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3723 const_arg0 ? const_arg0 : folded_arg0,
3724 const_arg1 ? const_arg1 : folded_arg1,
3725 const_arg2 ? const_arg2 : XEXP (x, 2));
3726 break;
3727
3728 default:
3729 break;
3730 }
3731
3732 return new_rtx ? new_rtx : x;
3733 }
3734 \f
3735 /* Return a constant value currently equivalent to X.
3736 Return 0 if we don't know one. */
3737
3738 static rtx
3739 equiv_constant (rtx x)
3740 {
3741 if (REG_P (x)
3742 && REGNO_QTY_VALID_P (REGNO (x)))
3743 {
3744 int x_q = REG_QTY (REGNO (x));
3745 struct qty_table_elem *x_ent = &qty_table[x_q];
3746
3747 if (x_ent->const_rtx)
3748 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3749 }
3750
3751 if (x == 0 || CONSTANT_P (x))
3752 return x;
3753
3754 if (GET_CODE (x) == SUBREG)
3755 {
3756 enum machine_mode mode = GET_MODE (x);
3757 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3758 rtx new_rtx;
3759
3760 /* See if we previously assigned a constant value to this SUBREG. */
3761 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3762 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3763 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3764 return new_rtx;
3765
3766 /* If we didn't and if doing so makes sense, see if we previously
3767 assigned a constant value to the enclosing word mode SUBREG. */
3768 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3769 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3770 {
3771 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3772 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3773 {
3774 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3775 new_rtx = lookup_as_function (y, CONST_INT);
3776 if (new_rtx)
3777 return gen_lowpart (mode, new_rtx);
3778 }
3779 }
3780
3781 /* Otherwise see if we already have a constant for the inner REG,
3782 and if that is enough to calculate an equivalent constant for
3783 the subreg. Note that the upper bits of paradoxical subregs
3784 are undefined, so they cannot be said to equal anything. */
3785 if (REG_P (SUBREG_REG (x))
3786 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3787 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3788 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3789
3790 return 0;
3791 }
3792
3793 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3794 the hash table in case its value was seen before. */
3795
3796 if (MEM_P (x))
3797 {
3798 struct table_elt *elt;
3799
3800 x = avoid_constant_pool_reference (x);
3801 if (CONSTANT_P (x))
3802 return x;
3803
3804 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3805 if (elt == 0)
3806 return 0;
3807
3808 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3809 if (elt->is_const && CONSTANT_P (elt->exp))
3810 return elt->exp;
3811 }
3812
3813 return 0;
3814 }
3815 \f
3816 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3817 "taken" branch.
3818
3819 In certain cases, this can cause us to add an equivalence. For example,
3820 if we are following the taken case of
3821 if (i == 2)
3822 we can add the fact that `i' and '2' are now equivalent.
3823
3824 In any case, we can record that this comparison was passed. If the same
3825 comparison is seen later, we will know its value. */
3826
3827 static void
3828 record_jump_equiv (rtx insn, bool taken)
3829 {
3830 int cond_known_true;
3831 rtx op0, op1;
3832 rtx set;
3833 enum machine_mode mode, mode0, mode1;
3834 int reversed_nonequality = 0;
3835 enum rtx_code code;
3836
3837 /* Ensure this is the right kind of insn. */
3838 gcc_assert (any_condjump_p (insn));
3839
3840 set = pc_set (insn);
3841
3842 /* See if this jump condition is known true or false. */
3843 if (taken)
3844 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3845 else
3846 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3847
3848 /* Get the type of comparison being done and the operands being compared.
3849 If we had to reverse a non-equality condition, record that fact so we
3850 know that it isn't valid for floating-point. */
3851 code = GET_CODE (XEXP (SET_SRC (set), 0));
3852 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3853 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3854
3855 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3856 if (! cond_known_true)
3857 {
3858 code = reversed_comparison_code_parts (code, op0, op1, insn);
3859
3860 /* Don't remember if we can't find the inverse. */
3861 if (code == UNKNOWN)
3862 return;
3863 }
3864
3865 /* The mode is the mode of the non-constant. */
3866 mode = mode0;
3867 if (mode1 != VOIDmode)
3868 mode = mode1;
3869
3870 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3871 }
3872
3873 /* Yet another form of subreg creation. In this case, we want something in
3874 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3875
3876 static rtx
3877 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3878 {
3879 enum machine_mode op_mode = GET_MODE (op);
3880 if (op_mode == mode || op_mode == VOIDmode)
3881 return op;
3882 return lowpart_subreg (mode, op, op_mode);
3883 }
3884
3885 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3886 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3887 Make any useful entries we can with that information. Called from
3888 above function and called recursively. */
3889
3890 static void
3891 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3892 rtx op1, int reversed_nonequality)
3893 {
3894 unsigned op0_hash, op1_hash;
3895 int op0_in_memory, op1_in_memory;
3896 struct table_elt *op0_elt, *op1_elt;
3897
3898 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3899 we know that they are also equal in the smaller mode (this is also
3900 true for all smaller modes whether or not there is a SUBREG, but
3901 is not worth testing for with no SUBREG). */
3902
3903 /* Note that GET_MODE (op0) may not equal MODE. */
3904 if (code == EQ && paradoxical_subreg_p (op0))
3905 {
3906 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3907 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3908 if (tem)
3909 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3910 reversed_nonequality);
3911 }
3912
3913 if (code == EQ && paradoxical_subreg_p (op1))
3914 {
3915 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3916 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3917 if (tem)
3918 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3919 reversed_nonequality);
3920 }
3921
3922 /* Similarly, if this is an NE comparison, and either is a SUBREG
3923 making a smaller mode, we know the whole thing is also NE. */
3924
3925 /* Note that GET_MODE (op0) may not equal MODE;
3926 if we test MODE instead, we can get an infinite recursion
3927 alternating between two modes each wider than MODE. */
3928
3929 if (code == NE && GET_CODE (op0) == SUBREG
3930 && subreg_lowpart_p (op0)
3931 && (GET_MODE_SIZE (GET_MODE (op0))
3932 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3933 {
3934 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3935 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3936 if (tem)
3937 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3938 reversed_nonequality);
3939 }
3940
3941 if (code == NE && GET_CODE (op1) == SUBREG
3942 && subreg_lowpart_p (op1)
3943 && (GET_MODE_SIZE (GET_MODE (op1))
3944 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3945 {
3946 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3947 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3948 if (tem)
3949 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3950 reversed_nonequality);
3951 }
3952
3953 /* Hash both operands. */
3954
3955 do_not_record = 0;
3956 hash_arg_in_memory = 0;
3957 op0_hash = HASH (op0, mode);
3958 op0_in_memory = hash_arg_in_memory;
3959
3960 if (do_not_record)
3961 return;
3962
3963 do_not_record = 0;
3964 hash_arg_in_memory = 0;
3965 op1_hash = HASH (op1, mode);
3966 op1_in_memory = hash_arg_in_memory;
3967
3968 if (do_not_record)
3969 return;
3970
3971 /* Look up both operands. */
3972 op0_elt = lookup (op0, op0_hash, mode);
3973 op1_elt = lookup (op1, op1_hash, mode);
3974
3975 /* If both operands are already equivalent or if they are not in the
3976 table but are identical, do nothing. */
3977 if ((op0_elt != 0 && op1_elt != 0
3978 && op0_elt->first_same_value == op1_elt->first_same_value)
3979 || op0 == op1 || rtx_equal_p (op0, op1))
3980 return;
3981
3982 /* If we aren't setting two things equal all we can do is save this
3983 comparison. Similarly if this is floating-point. In the latter
3984 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3985 If we record the equality, we might inadvertently delete code
3986 whose intent was to change -0 to +0. */
3987
3988 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3989 {
3990 struct qty_table_elem *ent;
3991 int qty;
3992
3993 /* If we reversed a floating-point comparison, if OP0 is not a
3994 register, or if OP1 is neither a register or constant, we can't
3995 do anything. */
3996
3997 if (!REG_P (op1))
3998 op1 = equiv_constant (op1);
3999
4000 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4001 || !REG_P (op0) || op1 == 0)
4002 return;
4003
4004 /* Put OP0 in the hash table if it isn't already. This gives it a
4005 new quantity number. */
4006 if (op0_elt == 0)
4007 {
4008 if (insert_regs (op0, NULL, 0))
4009 {
4010 rehash_using_reg (op0);
4011 op0_hash = HASH (op0, mode);
4012
4013 /* If OP0 is contained in OP1, this changes its hash code
4014 as well. Faster to rehash than to check, except
4015 for the simple case of a constant. */
4016 if (! CONSTANT_P (op1))
4017 op1_hash = HASH (op1,mode);
4018 }
4019
4020 op0_elt = insert (op0, NULL, op0_hash, mode);
4021 op0_elt->in_memory = op0_in_memory;
4022 }
4023
4024 qty = REG_QTY (REGNO (op0));
4025 ent = &qty_table[qty];
4026
4027 ent->comparison_code = code;
4028 if (REG_P (op1))
4029 {
4030 /* Look it up again--in case op0 and op1 are the same. */
4031 op1_elt = lookup (op1, op1_hash, mode);
4032
4033 /* Put OP1 in the hash table so it gets a new quantity number. */
4034 if (op1_elt == 0)
4035 {
4036 if (insert_regs (op1, NULL, 0))
4037 {
4038 rehash_using_reg (op1);
4039 op1_hash = HASH (op1, mode);
4040 }
4041
4042 op1_elt = insert (op1, NULL, op1_hash, mode);
4043 op1_elt->in_memory = op1_in_memory;
4044 }
4045
4046 ent->comparison_const = NULL_RTX;
4047 ent->comparison_qty = REG_QTY (REGNO (op1));
4048 }
4049 else
4050 {
4051 ent->comparison_const = op1;
4052 ent->comparison_qty = -1;
4053 }
4054
4055 return;
4056 }
4057
4058 /* If either side is still missing an equivalence, make it now,
4059 then merge the equivalences. */
4060
4061 if (op0_elt == 0)
4062 {
4063 if (insert_regs (op0, NULL, 0))
4064 {
4065 rehash_using_reg (op0);
4066 op0_hash = HASH (op0, mode);
4067 }
4068
4069 op0_elt = insert (op0, NULL, op0_hash, mode);
4070 op0_elt->in_memory = op0_in_memory;
4071 }
4072
4073 if (op1_elt == 0)
4074 {
4075 if (insert_regs (op1, NULL, 0))
4076 {
4077 rehash_using_reg (op1);
4078 op1_hash = HASH (op1, mode);
4079 }
4080
4081 op1_elt = insert (op1, NULL, op1_hash, mode);
4082 op1_elt->in_memory = op1_in_memory;
4083 }
4084
4085 merge_equiv_classes (op0_elt, op1_elt);
4086 }
4087 \f
4088 /* CSE processing for one instruction.
4089
4090 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4091 but the few that "leak through" are cleaned up by cse_insn, and complex
4092 addressing modes are often formed here.
4093
4094 The main function is cse_insn, and between here and that function
4095 a couple of helper functions is defined to keep the size of cse_insn
4096 within reasonable proportions.
4097
4098 Data is shared between the main and helper functions via STRUCT SET,
4099 that contains all data related for every set in the instruction that
4100 is being processed.
4101
4102 Note that cse_main processes all sets in the instruction. Most
4103 passes in GCC only process simple SET insns or single_set insns, but
4104 CSE processes insns with multiple sets as well. */
4105
4106 /* Data on one SET contained in the instruction. */
4107
4108 struct set
4109 {
4110 /* The SET rtx itself. */
4111 rtx rtl;
4112 /* The SET_SRC of the rtx (the original value, if it is changing). */
4113 rtx src;
4114 /* The hash-table element for the SET_SRC of the SET. */
4115 struct table_elt *src_elt;
4116 /* Hash value for the SET_SRC. */
4117 unsigned src_hash;
4118 /* Hash value for the SET_DEST. */
4119 unsigned dest_hash;
4120 /* The SET_DEST, with SUBREG, etc., stripped. */
4121 rtx inner_dest;
4122 /* Nonzero if the SET_SRC is in memory. */
4123 char src_in_memory;
4124 /* Nonzero if the SET_SRC contains something
4125 whose value cannot be predicted and understood. */
4126 char src_volatile;
4127 /* Original machine mode, in case it becomes a CONST_INT.
4128 The size of this field should match the size of the mode
4129 field of struct rtx_def (see rtl.h). */
4130 ENUM_BITFIELD(machine_mode) mode : 8;
4131 /* A constant equivalent for SET_SRC, if any. */
4132 rtx src_const;
4133 /* Hash value of constant equivalent for SET_SRC. */
4134 unsigned src_const_hash;
4135 /* Table entry for constant equivalent for SET_SRC, if any. */
4136 struct table_elt *src_const_elt;
4137 /* Table entry for the destination address. */
4138 struct table_elt *dest_addr_elt;
4139 };
4140 \f
4141 /* Special handling for (set REG0 REG1) where REG0 is the
4142 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4143 be used in the sequel, so (if easily done) change this insn to
4144 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4145 that computed their value. Then REG1 will become a dead store
4146 and won't cloud the situation for later optimizations.
4147
4148 Do not make this change if REG1 is a hard register, because it will
4149 then be used in the sequel and we may be changing a two-operand insn
4150 into a three-operand insn.
4151
4152 This is the last transformation that cse_insn will try to do. */
4153
4154 static void
4155 try_back_substitute_reg (rtx set, rtx insn)
4156 {
4157 rtx dest = SET_DEST (set);
4158 rtx src = SET_SRC (set);
4159
4160 if (REG_P (dest)
4161 && REG_P (src) && ! HARD_REGISTER_P (src)
4162 && REGNO_QTY_VALID_P (REGNO (src)))
4163 {
4164 int src_q = REG_QTY (REGNO (src));
4165 struct qty_table_elem *src_ent = &qty_table[src_q];
4166
4167 if (src_ent->first_reg == REGNO (dest))
4168 {
4169 /* Scan for the previous nonnote insn, but stop at a basic
4170 block boundary. */
4171 rtx prev = insn;
4172 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4173 do
4174 {
4175 prev = PREV_INSN (prev);
4176 }
4177 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4178
4179 /* Do not swap the registers around if the previous instruction
4180 attaches a REG_EQUIV note to REG1.
4181
4182 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4183 from the pseudo that originally shadowed an incoming argument
4184 to another register. Some uses of REG_EQUIV might rely on it
4185 being attached to REG1 rather than REG2.
4186
4187 This section previously turned the REG_EQUIV into a REG_EQUAL
4188 note. We cannot do that because REG_EQUIV may provide an
4189 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4190 if (NONJUMP_INSN_P (prev)
4191 && GET_CODE (PATTERN (prev)) == SET
4192 && SET_DEST (PATTERN (prev)) == src
4193 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4194 {
4195 rtx note;
4196
4197 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4198 validate_change (insn, &SET_DEST (set), src, 1);
4199 validate_change (insn, &SET_SRC (set), dest, 1);
4200 apply_change_group ();
4201
4202 /* If INSN has a REG_EQUAL note, and this note mentions
4203 REG0, then we must delete it, because the value in
4204 REG0 has changed. If the note's value is REG1, we must
4205 also delete it because that is now this insn's dest. */
4206 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4207 if (note != 0
4208 && (reg_mentioned_p (dest, XEXP (note, 0))
4209 || rtx_equal_p (src, XEXP (note, 0))))
4210 remove_note (insn, note);
4211 }
4212 }
4213 }
4214 }
4215 \f
4216 /* Record all the SETs in this instruction into SETS_PTR,
4217 and return the number of recorded sets. */
4218 static int
4219 find_sets_in_insn (rtx insn, struct set **psets)
4220 {
4221 struct set *sets = *psets;
4222 int n_sets = 0;
4223 rtx x = PATTERN (insn);
4224
4225 if (GET_CODE (x) == SET)
4226 {
4227 /* Ignore SETs that are unconditional jumps.
4228 They never need cse processing, so this does not hurt.
4229 The reason is not efficiency but rather
4230 so that we can test at the end for instructions
4231 that have been simplified to unconditional jumps
4232 and not be misled by unchanged instructions
4233 that were unconditional jumps to begin with. */
4234 if (SET_DEST (x) == pc_rtx
4235 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4236 ;
4237 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4238 The hard function value register is used only once, to copy to
4239 someplace else, so it isn't worth cse'ing. */
4240 else if (GET_CODE (SET_SRC (x)) == CALL)
4241 ;
4242 else
4243 sets[n_sets++].rtl = x;
4244 }
4245 else if (GET_CODE (x) == PARALLEL)
4246 {
4247 int i, lim = XVECLEN (x, 0);
4248
4249 /* Go over the epressions of the PARALLEL in forward order, to
4250 put them in the same order in the SETS array. */
4251 for (i = 0; i < lim; i++)
4252 {
4253 rtx y = XVECEXP (x, 0, i);
4254 if (GET_CODE (y) == SET)
4255 {
4256 /* As above, we ignore unconditional jumps and call-insns and
4257 ignore the result of apply_change_group. */
4258 if (SET_DEST (y) == pc_rtx
4259 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4260 ;
4261 else if (GET_CODE (SET_SRC (y)) == CALL)
4262 ;
4263 else
4264 sets[n_sets++].rtl = y;
4265 }
4266 }
4267 }
4268
4269 return n_sets;
4270 }
4271 \f
4272 /* Where possible, substitute every register reference in the N_SETS
4273 number of SETS in INSN with the the canonical register.
4274
4275 Register canonicalization propagatest the earliest register (i.e.
4276 one that is set before INSN) with the same value. This is a very
4277 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4278 to RTL. For instance, a CONST for an address is usually expanded
4279 multiple times to loads into different registers, thus creating many
4280 subexpressions of the form:
4281
4282 (set (reg1) (some_const))
4283 (set (mem (... reg1 ...) (thing)))
4284 (set (reg2) (some_const))
4285 (set (mem (... reg2 ...) (thing)))
4286
4287 After canonicalizing, the code takes the following form:
4288
4289 (set (reg1) (some_const))
4290 (set (mem (... reg1 ...) (thing)))
4291 (set (reg2) (some_const))
4292 (set (mem (... reg1 ...) (thing)))
4293
4294 The set to reg2 is now trivially dead, and the memory reference (or
4295 address, or whatever) may be a candidate for further CSEing.
4296
4297 In this function, the result of apply_change_group can be ignored;
4298 see canon_reg. */
4299
4300 static void
4301 canonicalize_insn (rtx insn, struct set **psets, int n_sets)
4302 {
4303 struct set *sets = *psets;
4304 rtx tem;
4305 rtx x = PATTERN (insn);
4306 int i;
4307
4308 if (CALL_P (insn))
4309 {
4310 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4311 if (GET_CODE (XEXP (tem, 0)) != SET)
4312 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4313 }
4314
4315 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4316 {
4317 canon_reg (SET_SRC (x), insn);
4318 apply_change_group ();
4319 fold_rtx (SET_SRC (x), insn);
4320 }
4321 else if (GET_CODE (x) == CLOBBER)
4322 {
4323 /* If we clobber memory, canon the address.
4324 This does nothing when a register is clobbered
4325 because we have already invalidated the reg. */
4326 if (MEM_P (XEXP (x, 0)))
4327 canon_reg (XEXP (x, 0), insn);
4328 }
4329 else if (GET_CODE (x) == USE
4330 && ! (REG_P (XEXP (x, 0))
4331 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4332 /* Canonicalize a USE of a pseudo register or memory location. */
4333 canon_reg (x, insn);
4334 else if (GET_CODE (x) == ASM_OPERANDS)
4335 {
4336 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4337 {
4338 rtx input = ASM_OPERANDS_INPUT (x, i);
4339 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4340 {
4341 input = canon_reg (input, insn);
4342 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4343 }
4344 }
4345 }
4346 else if (GET_CODE (x) == CALL)
4347 {
4348 canon_reg (x, insn);
4349 apply_change_group ();
4350 fold_rtx (x, insn);
4351 }
4352 else if (DEBUG_INSN_P (insn))
4353 canon_reg (PATTERN (insn), insn);
4354 else if (GET_CODE (x) == PARALLEL)
4355 {
4356 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4357 {
4358 rtx y = XVECEXP (x, 0, i);
4359 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4360 {
4361 canon_reg (SET_SRC (y), insn);
4362 apply_change_group ();
4363 fold_rtx (SET_SRC (y), insn);
4364 }
4365 else if (GET_CODE (y) == CLOBBER)
4366 {
4367 if (MEM_P (XEXP (y, 0)))
4368 canon_reg (XEXP (y, 0), insn);
4369 }
4370 else if (GET_CODE (y) == USE
4371 && ! (REG_P (XEXP (y, 0))
4372 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4373 canon_reg (y, insn);
4374 else if (GET_CODE (y) == CALL)
4375 {
4376 canon_reg (y, insn);
4377 apply_change_group ();
4378 fold_rtx (y, insn);
4379 }
4380 }
4381 }
4382
4383 if (n_sets == 1 && REG_NOTES (insn) != 0
4384 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4385 {
4386 /* We potentially will process this insn many times. Therefore,
4387 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4388 unique set in INSN.
4389
4390 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4391 because cse_insn handles those specially. */
4392 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4393 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4394 remove_note (insn, tem);
4395 else
4396 {
4397 canon_reg (XEXP (tem, 0), insn);
4398 apply_change_group ();
4399 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4400 df_notes_rescan (insn);
4401 }
4402 }
4403
4404 /* Canonicalize sources and addresses of destinations.
4405 We do this in a separate pass to avoid problems when a MATCH_DUP is
4406 present in the insn pattern. In that case, we want to ensure that
4407 we don't break the duplicate nature of the pattern. So we will replace
4408 both operands at the same time. Otherwise, we would fail to find an
4409 equivalent substitution in the loop calling validate_change below.
4410
4411 We used to suppress canonicalization of DEST if it appears in SRC,
4412 but we don't do this any more. */
4413
4414 for (i = 0; i < n_sets; i++)
4415 {
4416 rtx dest = SET_DEST (sets[i].rtl);
4417 rtx src = SET_SRC (sets[i].rtl);
4418 rtx new_rtx = canon_reg (src, insn);
4419
4420 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4421
4422 if (GET_CODE (dest) == ZERO_EXTRACT)
4423 {
4424 validate_change (insn, &XEXP (dest, 1),
4425 canon_reg (XEXP (dest, 1), insn), 1);
4426 validate_change (insn, &XEXP (dest, 2),
4427 canon_reg (XEXP (dest, 2), insn), 1);
4428 }
4429
4430 while (GET_CODE (dest) == SUBREG
4431 || GET_CODE (dest) == ZERO_EXTRACT
4432 || GET_CODE (dest) == STRICT_LOW_PART)
4433 dest = XEXP (dest, 0);
4434
4435 if (MEM_P (dest))
4436 canon_reg (dest, insn);
4437 }
4438
4439 /* Now that we have done all the replacements, we can apply the change
4440 group and see if they all work. Note that this will cause some
4441 canonicalizations that would have worked individually not to be applied
4442 because some other canonicalization didn't work, but this should not
4443 occur often.
4444
4445 The result of apply_change_group can be ignored; see canon_reg. */
4446
4447 apply_change_group ();
4448 }
4449 \f
4450 /* Main function of CSE.
4451 First simplify sources and addresses of all assignments
4452 in the instruction, using previously-computed equivalents values.
4453 Then install the new sources and destinations in the table
4454 of available values. */
4455
4456 static void
4457 cse_insn (rtx insn)
4458 {
4459 rtx x = PATTERN (insn);
4460 int i;
4461 rtx tem;
4462 int n_sets = 0;
4463
4464 rtx src_eqv = 0;
4465 struct table_elt *src_eqv_elt = 0;
4466 int src_eqv_volatile = 0;
4467 int src_eqv_in_memory = 0;
4468 unsigned src_eqv_hash = 0;
4469
4470 struct set *sets = (struct set *) 0;
4471
4472 if (GET_CODE (x) == SET)
4473 sets = XALLOCA (struct set);
4474 else if (GET_CODE (x) == PARALLEL)
4475 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4476
4477 this_insn = insn;
4478 #ifdef HAVE_cc0
4479 /* Records what this insn does to set CC0. */
4480 this_insn_cc0 = 0;
4481 this_insn_cc0_mode = VOIDmode;
4482 #endif
4483
4484 /* Find all regs explicitly clobbered in this insn,
4485 to ensure they are not replaced with any other regs
4486 elsewhere in this insn. */
4487 invalidate_from_sets_and_clobbers (insn);
4488
4489 /* Record all the SETs in this instruction. */
4490 n_sets = find_sets_in_insn (insn, &sets);
4491
4492 /* Substitute the canonical register where possible. */
4493 canonicalize_insn (insn, &sets, n_sets);
4494
4495 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4496 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4497 is necessary because SRC_EQV is handled specially for this case, and if
4498 it isn't set, then there will be no equivalence for the destination. */
4499 if (n_sets == 1 && REG_NOTES (insn) != 0
4500 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4501 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4502 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4503 src_eqv = copy_rtx (XEXP (tem, 0));
4504
4505 /* Set sets[i].src_elt to the class each source belongs to.
4506 Detect assignments from or to volatile things
4507 and set set[i] to zero so they will be ignored
4508 in the rest of this function.
4509
4510 Nothing in this loop changes the hash table or the register chains. */
4511
4512 for (i = 0; i < n_sets; i++)
4513 {
4514 bool repeat = false;
4515 rtx src, dest;
4516 rtx src_folded;
4517 struct table_elt *elt = 0, *p;
4518 enum machine_mode mode;
4519 rtx src_eqv_here;
4520 rtx src_const = 0;
4521 rtx src_related = 0;
4522 bool src_related_is_const_anchor = false;
4523 struct table_elt *src_const_elt = 0;
4524 int src_cost = MAX_COST;
4525 int src_eqv_cost = MAX_COST;
4526 int src_folded_cost = MAX_COST;
4527 int src_related_cost = MAX_COST;
4528 int src_elt_cost = MAX_COST;
4529 int src_regcost = MAX_COST;
4530 int src_eqv_regcost = MAX_COST;
4531 int src_folded_regcost = MAX_COST;
4532 int src_related_regcost = MAX_COST;
4533 int src_elt_regcost = MAX_COST;
4534 /* Set nonzero if we need to call force_const_mem on with the
4535 contents of src_folded before using it. */
4536 int src_folded_force_flag = 0;
4537
4538 dest = SET_DEST (sets[i].rtl);
4539 src = SET_SRC (sets[i].rtl);
4540
4541 /* If SRC is a constant that has no machine mode,
4542 hash it with the destination's machine mode.
4543 This way we can keep different modes separate. */
4544
4545 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4546 sets[i].mode = mode;
4547
4548 if (src_eqv)
4549 {
4550 enum machine_mode eqvmode = mode;
4551 if (GET_CODE (dest) == STRICT_LOW_PART)
4552 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4553 do_not_record = 0;
4554 hash_arg_in_memory = 0;
4555 src_eqv_hash = HASH (src_eqv, eqvmode);
4556
4557 /* Find the equivalence class for the equivalent expression. */
4558
4559 if (!do_not_record)
4560 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4561
4562 src_eqv_volatile = do_not_record;
4563 src_eqv_in_memory = hash_arg_in_memory;
4564 }
4565
4566 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4567 value of the INNER register, not the destination. So it is not
4568 a valid substitution for the source. But save it for later. */
4569 if (GET_CODE (dest) == STRICT_LOW_PART)
4570 src_eqv_here = 0;
4571 else
4572 src_eqv_here = src_eqv;
4573
4574 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4575 simplified result, which may not necessarily be valid. */
4576 src_folded = fold_rtx (src, insn);
4577
4578 #if 0
4579 /* ??? This caused bad code to be generated for the m68k port with -O2.
4580 Suppose src is (CONST_INT -1), and that after truncation src_folded
4581 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4582 At the end we will add src and src_const to the same equivalence
4583 class. We now have 3 and -1 on the same equivalence class. This
4584 causes later instructions to be mis-optimized. */
4585 /* If storing a constant in a bitfield, pre-truncate the constant
4586 so we will be able to record it later. */
4587 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4588 {
4589 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4590
4591 if (CONST_INT_P (src)
4592 && CONST_INT_P (width)
4593 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4594 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4595 src_folded
4596 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4597 << INTVAL (width)) - 1));
4598 }
4599 #endif
4600
4601 /* Compute SRC's hash code, and also notice if it
4602 should not be recorded at all. In that case,
4603 prevent any further processing of this assignment. */
4604 do_not_record = 0;
4605 hash_arg_in_memory = 0;
4606
4607 sets[i].src = src;
4608 sets[i].src_hash = HASH (src, mode);
4609 sets[i].src_volatile = do_not_record;
4610 sets[i].src_in_memory = hash_arg_in_memory;
4611
4612 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4613 a pseudo, do not record SRC. Using SRC as a replacement for
4614 anything else will be incorrect in that situation. Note that
4615 this usually occurs only for stack slots, in which case all the
4616 RTL would be referring to SRC, so we don't lose any optimization
4617 opportunities by not having SRC in the hash table. */
4618
4619 if (MEM_P (src)
4620 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4621 && REG_P (dest)
4622 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4623 sets[i].src_volatile = 1;
4624
4625 #if 0
4626 /* It is no longer clear why we used to do this, but it doesn't
4627 appear to still be needed. So let's try without it since this
4628 code hurts cse'ing widened ops. */
4629 /* If source is a paradoxical subreg (such as QI treated as an SI),
4630 treat it as volatile. It may do the work of an SI in one context
4631 where the extra bits are not being used, but cannot replace an SI
4632 in general. */
4633 if (paradoxical_subreg_p (src))
4634 sets[i].src_volatile = 1;
4635 #endif
4636
4637 /* Locate all possible equivalent forms for SRC. Try to replace
4638 SRC in the insn with each cheaper equivalent.
4639
4640 We have the following types of equivalents: SRC itself, a folded
4641 version, a value given in a REG_EQUAL note, or a value related
4642 to a constant.
4643
4644 Each of these equivalents may be part of an additional class
4645 of equivalents (if more than one is in the table, they must be in
4646 the same class; we check for this).
4647
4648 If the source is volatile, we don't do any table lookups.
4649
4650 We note any constant equivalent for possible later use in a
4651 REG_NOTE. */
4652
4653 if (!sets[i].src_volatile)
4654 elt = lookup (src, sets[i].src_hash, mode);
4655
4656 sets[i].src_elt = elt;
4657
4658 if (elt && src_eqv_here && src_eqv_elt)
4659 {
4660 if (elt->first_same_value != src_eqv_elt->first_same_value)
4661 {
4662 /* The REG_EQUAL is indicating that two formerly distinct
4663 classes are now equivalent. So merge them. */
4664 merge_equiv_classes (elt, src_eqv_elt);
4665 src_eqv_hash = HASH (src_eqv, elt->mode);
4666 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4667 }
4668
4669 src_eqv_here = 0;
4670 }
4671
4672 else if (src_eqv_elt)
4673 elt = src_eqv_elt;
4674
4675 /* Try to find a constant somewhere and record it in `src_const'.
4676 Record its table element, if any, in `src_const_elt'. Look in
4677 any known equivalences first. (If the constant is not in the
4678 table, also set `sets[i].src_const_hash'). */
4679 if (elt)
4680 for (p = elt->first_same_value; p; p = p->next_same_value)
4681 if (p->is_const)
4682 {
4683 src_const = p->exp;
4684 src_const_elt = elt;
4685 break;
4686 }
4687
4688 if (src_const == 0
4689 && (CONSTANT_P (src_folded)
4690 /* Consider (minus (label_ref L1) (label_ref L2)) as
4691 "constant" here so we will record it. This allows us
4692 to fold switch statements when an ADDR_DIFF_VEC is used. */
4693 || (GET_CODE (src_folded) == MINUS
4694 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4695 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4696 src_const = src_folded, src_const_elt = elt;
4697 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4698 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4699
4700 /* If we don't know if the constant is in the table, get its
4701 hash code and look it up. */
4702 if (src_const && src_const_elt == 0)
4703 {
4704 sets[i].src_const_hash = HASH (src_const, mode);
4705 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4706 }
4707
4708 sets[i].src_const = src_const;
4709 sets[i].src_const_elt = src_const_elt;
4710
4711 /* If the constant and our source are both in the table, mark them as
4712 equivalent. Otherwise, if a constant is in the table but the source
4713 isn't, set ELT to it. */
4714 if (src_const_elt && elt
4715 && src_const_elt->first_same_value != elt->first_same_value)
4716 merge_equiv_classes (elt, src_const_elt);
4717 else if (src_const_elt && elt == 0)
4718 elt = src_const_elt;
4719
4720 /* See if there is a register linearly related to a constant
4721 equivalent of SRC. */
4722 if (src_const
4723 && (GET_CODE (src_const) == CONST
4724 || (src_const_elt && src_const_elt->related_value != 0)))
4725 {
4726 src_related = use_related_value (src_const, src_const_elt);
4727 if (src_related)
4728 {
4729 struct table_elt *src_related_elt
4730 = lookup (src_related, HASH (src_related, mode), mode);
4731 if (src_related_elt && elt)
4732 {
4733 if (elt->first_same_value
4734 != src_related_elt->first_same_value)
4735 /* This can occur when we previously saw a CONST
4736 involving a SYMBOL_REF and then see the SYMBOL_REF
4737 twice. Merge the involved classes. */
4738 merge_equiv_classes (elt, src_related_elt);
4739
4740 src_related = 0;
4741 src_related_elt = 0;
4742 }
4743 else if (src_related_elt && elt == 0)
4744 elt = src_related_elt;
4745 }
4746 }
4747
4748 /* See if we have a CONST_INT that is already in a register in a
4749 wider mode. */
4750
4751 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4752 && GET_MODE_CLASS (mode) == MODE_INT
4753 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4754 {
4755 enum machine_mode wider_mode;
4756
4757 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4758 wider_mode != VOIDmode
4759 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4760 && src_related == 0;
4761 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4762 {
4763 struct table_elt *const_elt
4764 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4765
4766 if (const_elt == 0)
4767 continue;
4768
4769 for (const_elt = const_elt->first_same_value;
4770 const_elt; const_elt = const_elt->next_same_value)
4771 if (REG_P (const_elt->exp))
4772 {
4773 src_related = gen_lowpart (mode, const_elt->exp);
4774 break;
4775 }
4776 }
4777 }
4778
4779 /* Another possibility is that we have an AND with a constant in
4780 a mode narrower than a word. If so, it might have been generated
4781 as part of an "if" which would narrow the AND. If we already
4782 have done the AND in a wider mode, we can use a SUBREG of that
4783 value. */
4784
4785 if (flag_expensive_optimizations && ! src_related
4786 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4787 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4788 {
4789 enum machine_mode tmode;
4790 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4791
4792 for (tmode = GET_MODE_WIDER_MODE (mode);
4793 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4794 tmode = GET_MODE_WIDER_MODE (tmode))
4795 {
4796 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4797 struct table_elt *larger_elt;
4798
4799 if (inner)
4800 {
4801 PUT_MODE (new_and, tmode);
4802 XEXP (new_and, 0) = inner;
4803 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4804 if (larger_elt == 0)
4805 continue;
4806
4807 for (larger_elt = larger_elt->first_same_value;
4808 larger_elt; larger_elt = larger_elt->next_same_value)
4809 if (REG_P (larger_elt->exp))
4810 {
4811 src_related
4812 = gen_lowpart (mode, larger_elt->exp);
4813 break;
4814 }
4815
4816 if (src_related)
4817 break;
4818 }
4819 }
4820 }
4821
4822 #ifdef LOAD_EXTEND_OP
4823 /* See if a MEM has already been loaded with a widening operation;
4824 if it has, we can use a subreg of that. Many CISC machines
4825 also have such operations, but this is only likely to be
4826 beneficial on these machines. */
4827
4828 if (flag_expensive_optimizations && src_related == 0
4829 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4830 && GET_MODE_CLASS (mode) == MODE_INT
4831 && MEM_P (src) && ! do_not_record
4832 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4833 {
4834 struct rtx_def memory_extend_buf;
4835 rtx memory_extend_rtx = &memory_extend_buf;
4836 enum machine_mode tmode;
4837
4838 /* Set what we are trying to extend and the operation it might
4839 have been extended with. */
4840 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4841 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4842 XEXP (memory_extend_rtx, 0) = src;
4843
4844 for (tmode = GET_MODE_WIDER_MODE (mode);
4845 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4846 tmode = GET_MODE_WIDER_MODE (tmode))
4847 {
4848 struct table_elt *larger_elt;
4849
4850 PUT_MODE (memory_extend_rtx, tmode);
4851 larger_elt = lookup (memory_extend_rtx,
4852 HASH (memory_extend_rtx, tmode), tmode);
4853 if (larger_elt == 0)
4854 continue;
4855
4856 for (larger_elt = larger_elt->first_same_value;
4857 larger_elt; larger_elt = larger_elt->next_same_value)
4858 if (REG_P (larger_elt->exp))
4859 {
4860 src_related = gen_lowpart (mode, larger_elt->exp);
4861 break;
4862 }
4863
4864 if (src_related)
4865 break;
4866 }
4867 }
4868 #endif /* LOAD_EXTEND_OP */
4869
4870 /* Try to express the constant using a register+offset expression
4871 derived from a constant anchor. */
4872
4873 if (targetm.const_anchor
4874 && !src_related
4875 && src_const
4876 && GET_CODE (src_const) == CONST_INT)
4877 {
4878 src_related = try_const_anchors (src_const, mode);
4879 src_related_is_const_anchor = src_related != NULL_RTX;
4880 }
4881
4882
4883 if (src == src_folded)
4884 src_folded = 0;
4885
4886 /* At this point, ELT, if nonzero, points to a class of expressions
4887 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4888 and SRC_RELATED, if nonzero, each contain additional equivalent
4889 expressions. Prune these latter expressions by deleting expressions
4890 already in the equivalence class.
4891
4892 Check for an equivalent identical to the destination. If found,
4893 this is the preferred equivalent since it will likely lead to
4894 elimination of the insn. Indicate this by placing it in
4895 `src_related'. */
4896
4897 if (elt)
4898 elt = elt->first_same_value;
4899 for (p = elt; p; p = p->next_same_value)
4900 {
4901 enum rtx_code code = GET_CODE (p->exp);
4902
4903 /* If the expression is not valid, ignore it. Then we do not
4904 have to check for validity below. In most cases, we can use
4905 `rtx_equal_p', since canonicalization has already been done. */
4906 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4907 continue;
4908
4909 /* Also skip paradoxical subregs, unless that's what we're
4910 looking for. */
4911 if (paradoxical_subreg_p (p->exp)
4912 && ! (src != 0
4913 && GET_CODE (src) == SUBREG
4914 && GET_MODE (src) == GET_MODE (p->exp)
4915 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4916 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4917 continue;
4918
4919 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4920 src = 0;
4921 else if (src_folded && GET_CODE (src_folded) == code
4922 && rtx_equal_p (src_folded, p->exp))
4923 src_folded = 0;
4924 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4925 && rtx_equal_p (src_eqv_here, p->exp))
4926 src_eqv_here = 0;
4927 else if (src_related && GET_CODE (src_related) == code
4928 && rtx_equal_p (src_related, p->exp))
4929 src_related = 0;
4930
4931 /* This is the same as the destination of the insns, we want
4932 to prefer it. Copy it to src_related. The code below will
4933 then give it a negative cost. */
4934 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4935 src_related = dest;
4936 }
4937
4938 /* Find the cheapest valid equivalent, trying all the available
4939 possibilities. Prefer items not in the hash table to ones
4940 that are when they are equal cost. Note that we can never
4941 worsen an insn as the current contents will also succeed.
4942 If we find an equivalent identical to the destination, use it as best,
4943 since this insn will probably be eliminated in that case. */
4944 if (src)
4945 {
4946 if (rtx_equal_p (src, dest))
4947 src_cost = src_regcost = -1;
4948 else
4949 {
4950 src_cost = COST (src);
4951 src_regcost = approx_reg_cost (src);
4952 }
4953 }
4954
4955 if (src_eqv_here)
4956 {
4957 if (rtx_equal_p (src_eqv_here, dest))
4958 src_eqv_cost = src_eqv_regcost = -1;
4959 else
4960 {
4961 src_eqv_cost = COST (src_eqv_here);
4962 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4963 }
4964 }
4965
4966 if (src_folded)
4967 {
4968 if (rtx_equal_p (src_folded, dest))
4969 src_folded_cost = src_folded_regcost = -1;
4970 else
4971 {
4972 src_folded_cost = COST (src_folded);
4973 src_folded_regcost = approx_reg_cost (src_folded);
4974 }
4975 }
4976
4977 if (src_related)
4978 {
4979 if (rtx_equal_p (src_related, dest))
4980 src_related_cost = src_related_regcost = -1;
4981 else
4982 {
4983 src_related_cost = COST (src_related);
4984 src_related_regcost = approx_reg_cost (src_related);
4985
4986 /* If a const-anchor is used to synthesize a constant that
4987 normally requires multiple instructions then slightly prefer
4988 it over the original sequence. These instructions are likely
4989 to become redundant now. We can't compare against the cost
4990 of src_eqv_here because, on MIPS for example, multi-insn
4991 constants have zero cost; they are assumed to be hoisted from
4992 loops. */
4993 if (src_related_is_const_anchor
4994 && src_related_cost == src_cost
4995 && src_eqv_here)
4996 src_related_cost--;
4997 }
4998 }
4999
5000 /* If this was an indirect jump insn, a known label will really be
5001 cheaper even though it looks more expensive. */
5002 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5003 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5004
5005 /* Terminate loop when replacement made. This must terminate since
5006 the current contents will be tested and will always be valid. */
5007 while (1)
5008 {
5009 rtx trial;
5010
5011 /* Skip invalid entries. */
5012 while (elt && !REG_P (elt->exp)
5013 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5014 elt = elt->next_same_value;
5015
5016 /* A paradoxical subreg would be bad here: it'll be the right
5017 size, but later may be adjusted so that the upper bits aren't
5018 what we want. So reject it. */
5019 if (elt != 0
5020 && paradoxical_subreg_p (elt->exp)
5021 /* It is okay, though, if the rtx we're trying to match
5022 will ignore any of the bits we can't predict. */
5023 && ! (src != 0
5024 && GET_CODE (src) == SUBREG
5025 && GET_MODE (src) == GET_MODE (elt->exp)
5026 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5027 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5028 {
5029 elt = elt->next_same_value;
5030 continue;
5031 }
5032
5033 if (elt)
5034 {
5035 src_elt_cost = elt->cost;
5036 src_elt_regcost = elt->regcost;
5037 }
5038
5039 /* Find cheapest and skip it for the next time. For items
5040 of equal cost, use this order:
5041 src_folded, src, src_eqv, src_related and hash table entry. */
5042 if (src_folded
5043 && preferable (src_folded_cost, src_folded_regcost,
5044 src_cost, src_regcost) <= 0
5045 && preferable (src_folded_cost, src_folded_regcost,
5046 src_eqv_cost, src_eqv_regcost) <= 0
5047 && preferable (src_folded_cost, src_folded_regcost,
5048 src_related_cost, src_related_regcost) <= 0
5049 && preferable (src_folded_cost, src_folded_regcost,
5050 src_elt_cost, src_elt_regcost) <= 0)
5051 {
5052 trial = src_folded, src_folded_cost = MAX_COST;
5053 if (src_folded_force_flag)
5054 {
5055 rtx forced = force_const_mem (mode, trial);
5056 if (forced)
5057 trial = forced;
5058 }
5059 }
5060 else if (src
5061 && preferable (src_cost, src_regcost,
5062 src_eqv_cost, src_eqv_regcost) <= 0
5063 && preferable (src_cost, src_regcost,
5064 src_related_cost, src_related_regcost) <= 0
5065 && preferable (src_cost, src_regcost,
5066 src_elt_cost, src_elt_regcost) <= 0)
5067 trial = src, src_cost = MAX_COST;
5068 else if (src_eqv_here
5069 && preferable (src_eqv_cost, src_eqv_regcost,
5070 src_related_cost, src_related_regcost) <= 0
5071 && preferable (src_eqv_cost, src_eqv_regcost,
5072 src_elt_cost, src_elt_regcost) <= 0)
5073 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5074 else if (src_related
5075 && preferable (src_related_cost, src_related_regcost,
5076 src_elt_cost, src_elt_regcost) <= 0)
5077 trial = src_related, src_related_cost = MAX_COST;
5078 else
5079 {
5080 trial = elt->exp;
5081 elt = elt->next_same_value;
5082 src_elt_cost = MAX_COST;
5083 }
5084
5085 /* Avoid creation of overlapping memory moves. */
5086 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5087 {
5088 rtx src, dest;
5089
5090 /* BLKmode moves are not handled by cse anyway. */
5091 if (GET_MODE (trial) == BLKmode)
5092 break;
5093
5094 src = canon_rtx (trial);
5095 dest = canon_rtx (SET_DEST (sets[i].rtl));
5096
5097 if (!MEM_P (src) || !MEM_P (dest)
5098 || !nonoverlapping_memrefs_p (src, dest, false))
5099 break;
5100 }
5101
5102 /* Try to optimize
5103 (set (reg:M N) (const_int A))
5104 (set (reg:M2 O) (const_int B))
5105 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5106 (reg:M2 O)). */
5107 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5108 && CONST_INT_P (trial)
5109 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5110 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5111 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5112 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5113 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5114 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5115 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5116 <= HOST_BITS_PER_WIDE_INT))
5117 {
5118 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5119 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5120 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5121 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5122 struct table_elt *dest_elt
5123 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5124 rtx dest_cst = NULL;
5125
5126 if (dest_elt)
5127 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5128 if (p->is_const && CONST_INT_P (p->exp))
5129 {
5130 dest_cst = p->exp;
5131 break;
5132 }
5133 if (dest_cst)
5134 {
5135 HOST_WIDE_INT val = INTVAL (dest_cst);
5136 HOST_WIDE_INT mask;
5137 unsigned int shift;
5138 if (BITS_BIG_ENDIAN)
5139 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5140 - INTVAL (pos) - INTVAL (width);
5141 else
5142 shift = INTVAL (pos);
5143 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5144 mask = ~(HOST_WIDE_INT) 0;
5145 else
5146 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5147 val &= ~(mask << shift);
5148 val |= (INTVAL (trial) & mask) << shift;
5149 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5150 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5151 dest_reg, 1);
5152 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5153 GEN_INT (val), 1);
5154 if (apply_change_group ())
5155 {
5156 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5157 if (note)
5158 {
5159 remove_note (insn, note);
5160 df_notes_rescan (insn);
5161 }
5162 src_eqv = NULL_RTX;
5163 src_eqv_elt = NULL;
5164 src_eqv_volatile = 0;
5165 src_eqv_in_memory = 0;
5166 src_eqv_hash = 0;
5167 repeat = true;
5168 break;
5169 }
5170 }
5171 }
5172
5173 /* We don't normally have an insn matching (set (pc) (pc)), so
5174 check for this separately here. We will delete such an
5175 insn below.
5176
5177 For other cases such as a table jump or conditional jump
5178 where we know the ultimate target, go ahead and replace the
5179 operand. While that may not make a valid insn, we will
5180 reemit the jump below (and also insert any necessary
5181 barriers). */
5182 if (n_sets == 1 && dest == pc_rtx
5183 && (trial == pc_rtx
5184 || (GET_CODE (trial) == LABEL_REF
5185 && ! condjump_p (insn))))
5186 {
5187 /* Don't substitute non-local labels, this confuses CFG. */
5188 if (GET_CODE (trial) == LABEL_REF
5189 && LABEL_REF_NONLOCAL_P (trial))
5190 continue;
5191
5192 SET_SRC (sets[i].rtl) = trial;
5193 cse_jumps_altered = true;
5194 break;
5195 }
5196
5197 /* Reject certain invalid forms of CONST that we create. */
5198 else if (CONSTANT_P (trial)
5199 && GET_CODE (trial) == CONST
5200 /* Reject cases that will cause decode_rtx_const to
5201 die. On the alpha when simplifying a switch, we
5202 get (const (truncate (minus (label_ref)
5203 (label_ref)))). */
5204 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5205 /* Likewise on IA-64, except without the
5206 truncate. */
5207 || (GET_CODE (XEXP (trial, 0)) == MINUS
5208 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5209 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5210 /* Do nothing for this case. */
5211 ;
5212
5213 /* Look for a substitution that makes a valid insn. */
5214 else if (validate_unshare_change
5215 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5216 {
5217 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5218
5219 /* The result of apply_change_group can be ignored; see
5220 canon_reg. */
5221
5222 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5223 apply_change_group ();
5224
5225 break;
5226 }
5227
5228 /* If we previously found constant pool entries for
5229 constants and this is a constant, try making a
5230 pool entry. Put it in src_folded unless we already have done
5231 this since that is where it likely came from. */
5232
5233 else if (constant_pool_entries_cost
5234 && CONSTANT_P (trial)
5235 && (src_folded == 0
5236 || (!MEM_P (src_folded)
5237 && ! src_folded_force_flag))
5238 && GET_MODE_CLASS (mode) != MODE_CC
5239 && mode != VOIDmode)
5240 {
5241 src_folded_force_flag = 1;
5242 src_folded = trial;
5243 src_folded_cost = constant_pool_entries_cost;
5244 src_folded_regcost = constant_pool_entries_regcost;
5245 }
5246 }
5247
5248 /* If we changed the insn too much, handle this set from scratch. */
5249 if (repeat)
5250 {
5251 i--;
5252 continue;
5253 }
5254
5255 src = SET_SRC (sets[i].rtl);
5256
5257 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5258 However, there is an important exception: If both are registers
5259 that are not the head of their equivalence class, replace SET_SRC
5260 with the head of the class. If we do not do this, we will have
5261 both registers live over a portion of the basic block. This way,
5262 their lifetimes will likely abut instead of overlapping. */
5263 if (REG_P (dest)
5264 && REGNO_QTY_VALID_P (REGNO (dest)))
5265 {
5266 int dest_q = REG_QTY (REGNO (dest));
5267 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5268
5269 if (dest_ent->mode == GET_MODE (dest)
5270 && dest_ent->first_reg != REGNO (dest)
5271 && REG_P (src) && REGNO (src) == REGNO (dest)
5272 /* Don't do this if the original insn had a hard reg as
5273 SET_SRC or SET_DEST. */
5274 && (!REG_P (sets[i].src)
5275 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5276 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5277 /* We can't call canon_reg here because it won't do anything if
5278 SRC is a hard register. */
5279 {
5280 int src_q = REG_QTY (REGNO (src));
5281 struct qty_table_elem *src_ent = &qty_table[src_q];
5282 int first = src_ent->first_reg;
5283 rtx new_src
5284 = (first >= FIRST_PSEUDO_REGISTER
5285 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5286
5287 /* We must use validate-change even for this, because this
5288 might be a special no-op instruction, suitable only to
5289 tag notes onto. */
5290 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5291 {
5292 src = new_src;
5293 /* If we had a constant that is cheaper than what we are now
5294 setting SRC to, use that constant. We ignored it when we
5295 thought we could make this into a no-op. */
5296 if (src_const && COST (src_const) < COST (src)
5297 && validate_change (insn, &SET_SRC (sets[i].rtl),
5298 src_const, 0))
5299 src = src_const;
5300 }
5301 }
5302 }
5303
5304 /* If we made a change, recompute SRC values. */
5305 if (src != sets[i].src)
5306 {
5307 do_not_record = 0;
5308 hash_arg_in_memory = 0;
5309 sets[i].src = src;
5310 sets[i].src_hash = HASH (src, mode);
5311 sets[i].src_volatile = do_not_record;
5312 sets[i].src_in_memory = hash_arg_in_memory;
5313 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5314 }
5315
5316 /* If this is a single SET, we are setting a register, and we have an
5317 equivalent constant, we want to add a REG_NOTE. We don't want
5318 to write a REG_EQUAL note for a constant pseudo since verifying that
5319 that pseudo hasn't been eliminated is a pain. Such a note also
5320 won't help anything.
5321
5322 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5323 which can be created for a reference to a compile time computable
5324 entry in a jump table. */
5325
5326 if (n_sets == 1 && src_const && REG_P (dest)
5327 && !REG_P (src_const)
5328 && ! (GET_CODE (src_const) == CONST
5329 && GET_CODE (XEXP (src_const, 0)) == MINUS
5330 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5331 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5332 {
5333 /* We only want a REG_EQUAL note if src_const != src. */
5334 if (! rtx_equal_p (src, src_const))
5335 {
5336 /* Make sure that the rtx is not shared. */
5337 src_const = copy_rtx (src_const);
5338
5339 /* Record the actual constant value in a REG_EQUAL note,
5340 making a new one if one does not already exist. */
5341 set_unique_reg_note (insn, REG_EQUAL, src_const);
5342 df_notes_rescan (insn);
5343 }
5344 }
5345
5346 /* Now deal with the destination. */
5347 do_not_record = 0;
5348
5349 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5350 while (GET_CODE (dest) == SUBREG
5351 || GET_CODE (dest) == ZERO_EXTRACT
5352 || GET_CODE (dest) == STRICT_LOW_PART)
5353 dest = XEXP (dest, 0);
5354
5355 sets[i].inner_dest = dest;
5356
5357 if (MEM_P (dest))
5358 {
5359 #ifdef PUSH_ROUNDING
5360 /* Stack pushes invalidate the stack pointer. */
5361 rtx addr = XEXP (dest, 0);
5362 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5363 && XEXP (addr, 0) == stack_pointer_rtx)
5364 invalidate (stack_pointer_rtx, VOIDmode);
5365 #endif
5366 dest = fold_rtx (dest, insn);
5367 }
5368
5369 /* Compute the hash code of the destination now,
5370 before the effects of this instruction are recorded,
5371 since the register values used in the address computation
5372 are those before this instruction. */
5373 sets[i].dest_hash = HASH (dest, mode);
5374
5375 /* Don't enter a bit-field in the hash table
5376 because the value in it after the store
5377 may not equal what was stored, due to truncation. */
5378
5379 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5380 {
5381 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5382
5383 if (src_const != 0 && CONST_INT_P (src_const)
5384 && CONST_INT_P (width)
5385 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5386 && ! (INTVAL (src_const)
5387 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5388 /* Exception: if the value is constant,
5389 and it won't be truncated, record it. */
5390 ;
5391 else
5392 {
5393 /* This is chosen so that the destination will be invalidated
5394 but no new value will be recorded.
5395 We must invalidate because sometimes constant
5396 values can be recorded for bitfields. */
5397 sets[i].src_elt = 0;
5398 sets[i].src_volatile = 1;
5399 src_eqv = 0;
5400 src_eqv_elt = 0;
5401 }
5402 }
5403
5404 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5405 the insn. */
5406 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5407 {
5408 /* One less use of the label this insn used to jump to. */
5409 delete_insn_and_edges (insn);
5410 cse_jumps_altered = true;
5411 /* No more processing for this set. */
5412 sets[i].rtl = 0;
5413 }
5414
5415 /* If this SET is now setting PC to a label, we know it used to
5416 be a conditional or computed branch. */
5417 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5418 && !LABEL_REF_NONLOCAL_P (src))
5419 {
5420 /* We reemit the jump in as many cases as possible just in
5421 case the form of an unconditional jump is significantly
5422 different than a computed jump or conditional jump.
5423
5424 If this insn has multiple sets, then reemitting the
5425 jump is nontrivial. So instead we just force rerecognition
5426 and hope for the best. */
5427 if (n_sets == 1)
5428 {
5429 rtx new_rtx, note;
5430
5431 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5432 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5433 LABEL_NUSES (XEXP (src, 0))++;
5434
5435 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5436 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5437 if (note)
5438 {
5439 XEXP (note, 1) = NULL_RTX;
5440 REG_NOTES (new_rtx) = note;
5441 }
5442
5443 delete_insn_and_edges (insn);
5444 insn = new_rtx;
5445 }
5446 else
5447 INSN_CODE (insn) = -1;
5448
5449 /* Do not bother deleting any unreachable code, let jump do it. */
5450 cse_jumps_altered = true;
5451 sets[i].rtl = 0;
5452 }
5453
5454 /* If destination is volatile, invalidate it and then do no further
5455 processing for this assignment. */
5456
5457 else if (do_not_record)
5458 {
5459 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5460 invalidate (dest, VOIDmode);
5461 else if (MEM_P (dest))
5462 invalidate (dest, VOIDmode);
5463 else if (GET_CODE (dest) == STRICT_LOW_PART
5464 || GET_CODE (dest) == ZERO_EXTRACT)
5465 invalidate (XEXP (dest, 0), GET_MODE (dest));
5466 sets[i].rtl = 0;
5467 }
5468
5469 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5470 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5471
5472 #ifdef HAVE_cc0
5473 /* If setting CC0, record what it was set to, or a constant, if it
5474 is equivalent to a constant. If it is being set to a floating-point
5475 value, make a COMPARE with the appropriate constant of 0. If we
5476 don't do this, later code can interpret this as a test against
5477 const0_rtx, which can cause problems if we try to put it into an
5478 insn as a floating-point operand. */
5479 if (dest == cc0_rtx)
5480 {
5481 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5482 this_insn_cc0_mode = mode;
5483 if (FLOAT_MODE_P (mode))
5484 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5485 CONST0_RTX (mode));
5486 }
5487 #endif
5488 }
5489
5490 /* Now enter all non-volatile source expressions in the hash table
5491 if they are not already present.
5492 Record their equivalence classes in src_elt.
5493 This way we can insert the corresponding destinations into
5494 the same classes even if the actual sources are no longer in them
5495 (having been invalidated). */
5496
5497 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5498 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5499 {
5500 struct table_elt *elt;
5501 struct table_elt *classp = sets[0].src_elt;
5502 rtx dest = SET_DEST (sets[0].rtl);
5503 enum machine_mode eqvmode = GET_MODE (dest);
5504
5505 if (GET_CODE (dest) == STRICT_LOW_PART)
5506 {
5507 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5508 classp = 0;
5509 }
5510 if (insert_regs (src_eqv, classp, 0))
5511 {
5512 rehash_using_reg (src_eqv);
5513 src_eqv_hash = HASH (src_eqv, eqvmode);
5514 }
5515 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5516 elt->in_memory = src_eqv_in_memory;
5517 src_eqv_elt = elt;
5518
5519 /* Check to see if src_eqv_elt is the same as a set source which
5520 does not yet have an elt, and if so set the elt of the set source
5521 to src_eqv_elt. */
5522 for (i = 0; i < n_sets; i++)
5523 if (sets[i].rtl && sets[i].src_elt == 0
5524 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5525 sets[i].src_elt = src_eqv_elt;
5526 }
5527
5528 for (i = 0; i < n_sets; i++)
5529 if (sets[i].rtl && ! sets[i].src_volatile
5530 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5531 {
5532 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5533 {
5534 /* REG_EQUAL in setting a STRICT_LOW_PART
5535 gives an equivalent for the entire destination register,
5536 not just for the subreg being stored in now.
5537 This is a more interesting equivalence, so we arrange later
5538 to treat the entire reg as the destination. */
5539 sets[i].src_elt = src_eqv_elt;
5540 sets[i].src_hash = src_eqv_hash;
5541 }
5542 else
5543 {
5544 /* Insert source and constant equivalent into hash table, if not
5545 already present. */
5546 struct table_elt *classp = src_eqv_elt;
5547 rtx src = sets[i].src;
5548 rtx dest = SET_DEST (sets[i].rtl);
5549 enum machine_mode mode
5550 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5551
5552 /* It's possible that we have a source value known to be
5553 constant but don't have a REG_EQUAL note on the insn.
5554 Lack of a note will mean src_eqv_elt will be NULL. This
5555 can happen where we've generated a SUBREG to access a
5556 CONST_INT that is already in a register in a wider mode.
5557 Ensure that the source expression is put in the proper
5558 constant class. */
5559 if (!classp)
5560 classp = sets[i].src_const_elt;
5561
5562 if (sets[i].src_elt == 0)
5563 {
5564 struct table_elt *elt;
5565
5566 /* Note that these insert_regs calls cannot remove
5567 any of the src_elt's, because they would have failed to
5568 match if not still valid. */
5569 if (insert_regs (src, classp, 0))
5570 {
5571 rehash_using_reg (src);
5572 sets[i].src_hash = HASH (src, mode);
5573 }
5574 elt = insert (src, classp, sets[i].src_hash, mode);
5575 elt->in_memory = sets[i].src_in_memory;
5576 sets[i].src_elt = classp = elt;
5577 }
5578 if (sets[i].src_const && sets[i].src_const_elt == 0
5579 && src != sets[i].src_const
5580 && ! rtx_equal_p (sets[i].src_const, src))
5581 sets[i].src_elt = insert (sets[i].src_const, classp,
5582 sets[i].src_const_hash, mode);
5583 }
5584 }
5585 else if (sets[i].src_elt == 0)
5586 /* If we did not insert the source into the hash table (e.g., it was
5587 volatile), note the equivalence class for the REG_EQUAL value, if any,
5588 so that the destination goes into that class. */
5589 sets[i].src_elt = src_eqv_elt;
5590
5591 /* Record destination addresses in the hash table. This allows us to
5592 check if they are invalidated by other sets. */
5593 for (i = 0; i < n_sets; i++)
5594 {
5595 if (sets[i].rtl)
5596 {
5597 rtx x = sets[i].inner_dest;
5598 struct table_elt *elt;
5599 enum machine_mode mode;
5600 unsigned hash;
5601
5602 if (MEM_P (x))
5603 {
5604 x = XEXP (x, 0);
5605 mode = GET_MODE (x);
5606 hash = HASH (x, mode);
5607 elt = lookup (x, hash, mode);
5608 if (!elt)
5609 {
5610 if (insert_regs (x, NULL, 0))
5611 {
5612 rtx dest = SET_DEST (sets[i].rtl);
5613
5614 rehash_using_reg (x);
5615 hash = HASH (x, mode);
5616 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5617 }
5618 elt = insert (x, NULL, hash, mode);
5619 }
5620
5621 sets[i].dest_addr_elt = elt;
5622 }
5623 else
5624 sets[i].dest_addr_elt = NULL;
5625 }
5626 }
5627
5628 invalidate_from_clobbers (insn);
5629
5630 /* Some registers are invalidated by subroutine calls. Memory is
5631 invalidated by non-constant calls. */
5632
5633 if (CALL_P (insn))
5634 {
5635 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5636 invalidate_memory ();
5637 invalidate_for_call ();
5638 }
5639
5640 /* Now invalidate everything set by this instruction.
5641 If a SUBREG or other funny destination is being set,
5642 sets[i].rtl is still nonzero, so here we invalidate the reg
5643 a part of which is being set. */
5644
5645 for (i = 0; i < n_sets; i++)
5646 if (sets[i].rtl)
5647 {
5648 /* We can't use the inner dest, because the mode associated with
5649 a ZERO_EXTRACT is significant. */
5650 rtx dest = SET_DEST (sets[i].rtl);
5651
5652 /* Needed for registers to remove the register from its
5653 previous quantity's chain.
5654 Needed for memory if this is a nonvarying address, unless
5655 we have just done an invalidate_memory that covers even those. */
5656 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5657 invalidate (dest, VOIDmode);
5658 else if (MEM_P (dest))
5659 invalidate (dest, VOIDmode);
5660 else if (GET_CODE (dest) == STRICT_LOW_PART
5661 || GET_CODE (dest) == ZERO_EXTRACT)
5662 invalidate (XEXP (dest, 0), GET_MODE (dest));
5663 }
5664
5665 /* A volatile ASM invalidates everything. */
5666 if (NONJUMP_INSN_P (insn)
5667 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5668 && MEM_VOLATILE_P (PATTERN (insn)))
5669 flush_hash_table ();
5670
5671 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5672 the regs restored by the longjmp come from a later time
5673 than the setjmp. */
5674 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5675 {
5676 flush_hash_table ();
5677 goto done;
5678 }
5679
5680 /* Make sure registers mentioned in destinations
5681 are safe for use in an expression to be inserted.
5682 This removes from the hash table
5683 any invalid entry that refers to one of these registers.
5684
5685 We don't care about the return value from mention_regs because
5686 we are going to hash the SET_DEST values unconditionally. */
5687
5688 for (i = 0; i < n_sets; i++)
5689 {
5690 if (sets[i].rtl)
5691 {
5692 rtx x = SET_DEST (sets[i].rtl);
5693
5694 if (!REG_P (x))
5695 mention_regs (x);
5696 else
5697 {
5698 /* We used to rely on all references to a register becoming
5699 inaccessible when a register changes to a new quantity,
5700 since that changes the hash code. However, that is not
5701 safe, since after HASH_SIZE new quantities we get a
5702 hash 'collision' of a register with its own invalid
5703 entries. And since SUBREGs have been changed not to
5704 change their hash code with the hash code of the register,
5705 it wouldn't work any longer at all. So we have to check
5706 for any invalid references lying around now.
5707 This code is similar to the REG case in mention_regs,
5708 but it knows that reg_tick has been incremented, and
5709 it leaves reg_in_table as -1 . */
5710 unsigned int regno = REGNO (x);
5711 unsigned int endregno = END_REGNO (x);
5712 unsigned int i;
5713
5714 for (i = regno; i < endregno; i++)
5715 {
5716 if (REG_IN_TABLE (i) >= 0)
5717 {
5718 remove_invalid_refs (i);
5719 REG_IN_TABLE (i) = -1;
5720 }
5721 }
5722 }
5723 }
5724 }
5725
5726 /* We may have just removed some of the src_elt's from the hash table.
5727 So replace each one with the current head of the same class.
5728 Also check if destination addresses have been removed. */
5729
5730 for (i = 0; i < n_sets; i++)
5731 if (sets[i].rtl)
5732 {
5733 if (sets[i].dest_addr_elt
5734 && sets[i].dest_addr_elt->first_same_value == 0)
5735 {
5736 /* The elt was removed, which means this destination is not
5737 valid after this instruction. */
5738 sets[i].rtl = NULL_RTX;
5739 }
5740 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5741 /* If elt was removed, find current head of same class,
5742 or 0 if nothing remains of that class. */
5743 {
5744 struct table_elt *elt = sets[i].src_elt;
5745
5746 while (elt && elt->prev_same_value)
5747 elt = elt->prev_same_value;
5748
5749 while (elt && elt->first_same_value == 0)
5750 elt = elt->next_same_value;
5751 sets[i].src_elt = elt ? elt->first_same_value : 0;
5752 }
5753 }
5754
5755 /* Now insert the destinations into their equivalence classes. */
5756
5757 for (i = 0; i < n_sets; i++)
5758 if (sets[i].rtl)
5759 {
5760 rtx dest = SET_DEST (sets[i].rtl);
5761 struct table_elt *elt;
5762
5763 /* Don't record value if we are not supposed to risk allocating
5764 floating-point values in registers that might be wider than
5765 memory. */
5766 if ((flag_float_store
5767 && MEM_P (dest)
5768 && FLOAT_MODE_P (GET_MODE (dest)))
5769 /* Don't record BLKmode values, because we don't know the
5770 size of it, and can't be sure that other BLKmode values
5771 have the same or smaller size. */
5772 || GET_MODE (dest) == BLKmode
5773 /* If we didn't put a REG_EQUAL value or a source into the hash
5774 table, there is no point is recording DEST. */
5775 || sets[i].src_elt == 0
5776 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5777 or SIGN_EXTEND, don't record DEST since it can cause
5778 some tracking to be wrong.
5779
5780 ??? Think about this more later. */
5781 || (paradoxical_subreg_p (dest)
5782 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5783 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5784 continue;
5785
5786 /* STRICT_LOW_PART isn't part of the value BEING set,
5787 and neither is the SUBREG inside it.
5788 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5789 if (GET_CODE (dest) == STRICT_LOW_PART)
5790 dest = SUBREG_REG (XEXP (dest, 0));
5791
5792 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5793 /* Registers must also be inserted into chains for quantities. */
5794 if (insert_regs (dest, sets[i].src_elt, 1))
5795 {
5796 /* If `insert_regs' changes something, the hash code must be
5797 recalculated. */
5798 rehash_using_reg (dest);
5799 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5800 }
5801
5802 elt = insert (dest, sets[i].src_elt,
5803 sets[i].dest_hash, GET_MODE (dest));
5804
5805 /* If this is a constant, insert the constant anchors with the
5806 equivalent register-offset expressions using register DEST. */
5807 if (targetm.const_anchor
5808 && REG_P (dest)
5809 && SCALAR_INT_MODE_P (GET_MODE (dest))
5810 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5811 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5812
5813 elt->in_memory = (MEM_P (sets[i].inner_dest)
5814 && !MEM_READONLY_P (sets[i].inner_dest));
5815
5816 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5817 narrower than M2, and both M1 and M2 are the same number of words,
5818 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5819 make that equivalence as well.
5820
5821 However, BAR may have equivalences for which gen_lowpart
5822 will produce a simpler value than gen_lowpart applied to
5823 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5824 BAR's equivalences. If we don't get a simplified form, make
5825 the SUBREG. It will not be used in an equivalence, but will
5826 cause two similar assignments to be detected.
5827
5828 Note the loop below will find SUBREG_REG (DEST) since we have
5829 already entered SRC and DEST of the SET in the table. */
5830
5831 if (GET_CODE (dest) == SUBREG
5832 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5833 / UNITS_PER_WORD)
5834 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5835 && (GET_MODE_SIZE (GET_MODE (dest))
5836 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5837 && sets[i].src_elt != 0)
5838 {
5839 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5840 struct table_elt *elt, *classp = 0;
5841
5842 for (elt = sets[i].src_elt->first_same_value; elt;
5843 elt = elt->next_same_value)
5844 {
5845 rtx new_src = 0;
5846 unsigned src_hash;
5847 struct table_elt *src_elt;
5848 int byte = 0;
5849
5850 /* Ignore invalid entries. */
5851 if (!REG_P (elt->exp)
5852 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5853 continue;
5854
5855 /* We may have already been playing subreg games. If the
5856 mode is already correct for the destination, use it. */
5857 if (GET_MODE (elt->exp) == new_mode)
5858 new_src = elt->exp;
5859 else
5860 {
5861 /* Calculate big endian correction for the SUBREG_BYTE.
5862 We have already checked that M1 (GET_MODE (dest))
5863 is not narrower than M2 (new_mode). */
5864 if (BYTES_BIG_ENDIAN)
5865 byte = (GET_MODE_SIZE (GET_MODE (dest))
5866 - GET_MODE_SIZE (new_mode));
5867
5868 new_src = simplify_gen_subreg (new_mode, elt->exp,
5869 GET_MODE (dest), byte);
5870 }
5871
5872 /* The call to simplify_gen_subreg fails if the value
5873 is VOIDmode, yet we can't do any simplification, e.g.
5874 for EXPR_LISTs denoting function call results.
5875 It is invalid to construct a SUBREG with a VOIDmode
5876 SUBREG_REG, hence a zero new_src means we can't do
5877 this substitution. */
5878 if (! new_src)
5879 continue;
5880
5881 src_hash = HASH (new_src, new_mode);
5882 src_elt = lookup (new_src, src_hash, new_mode);
5883
5884 /* Put the new source in the hash table is if isn't
5885 already. */
5886 if (src_elt == 0)
5887 {
5888 if (insert_regs (new_src, classp, 0))
5889 {
5890 rehash_using_reg (new_src);
5891 src_hash = HASH (new_src, new_mode);
5892 }
5893 src_elt = insert (new_src, classp, src_hash, new_mode);
5894 src_elt->in_memory = elt->in_memory;
5895 }
5896 else if (classp && classp != src_elt->first_same_value)
5897 /* Show that two things that we've seen before are
5898 actually the same. */
5899 merge_equiv_classes (src_elt, classp);
5900
5901 classp = src_elt->first_same_value;
5902 /* Ignore invalid entries. */
5903 while (classp
5904 && !REG_P (classp->exp)
5905 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5906 classp = classp->next_same_value;
5907 }
5908 }
5909 }
5910
5911 /* Special handling for (set REG0 REG1) where REG0 is the
5912 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5913 be used in the sequel, so (if easily done) change this insn to
5914 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5915 that computed their value. Then REG1 will become a dead store
5916 and won't cloud the situation for later optimizations.
5917
5918 Do not make this change if REG1 is a hard register, because it will
5919 then be used in the sequel and we may be changing a two-operand insn
5920 into a three-operand insn.
5921
5922 Also do not do this if we are operating on a copy of INSN. */
5923
5924 if (n_sets == 1 && sets[0].rtl)
5925 try_back_substitute_reg (sets[0].rtl, insn);
5926
5927 done:;
5928 }
5929 \f
5930 /* Remove from the hash table all expressions that reference memory. */
5931
5932 static void
5933 invalidate_memory (void)
5934 {
5935 int i;
5936 struct table_elt *p, *next;
5937
5938 for (i = 0; i < HASH_SIZE; i++)
5939 for (p = table[i]; p; p = next)
5940 {
5941 next = p->next_same_hash;
5942 if (p->in_memory)
5943 remove_from_table (p, i);
5944 }
5945 }
5946
5947 /* Perform invalidation on the basis of everything about INSN,
5948 except for invalidating the actual places that are SET in it.
5949 This includes the places CLOBBERed, and anything that might
5950 alias with something that is SET or CLOBBERed. */
5951
5952 static void
5953 invalidate_from_clobbers (rtx insn)
5954 {
5955 rtx x = PATTERN (insn);
5956
5957 if (GET_CODE (x) == CLOBBER)
5958 {
5959 rtx ref = XEXP (x, 0);
5960 if (ref)
5961 {
5962 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5963 || MEM_P (ref))
5964 invalidate (ref, VOIDmode);
5965 else if (GET_CODE (ref) == STRICT_LOW_PART
5966 || GET_CODE (ref) == ZERO_EXTRACT)
5967 invalidate (XEXP (ref, 0), GET_MODE (ref));
5968 }
5969 }
5970 else if (GET_CODE (x) == PARALLEL)
5971 {
5972 int i;
5973 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5974 {
5975 rtx y = XVECEXP (x, 0, i);
5976 if (GET_CODE (y) == CLOBBER)
5977 {
5978 rtx ref = XEXP (y, 0);
5979 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5980 || MEM_P (ref))
5981 invalidate (ref, VOIDmode);
5982 else if (GET_CODE (ref) == STRICT_LOW_PART
5983 || GET_CODE (ref) == ZERO_EXTRACT)
5984 invalidate (XEXP (ref, 0), GET_MODE (ref));
5985 }
5986 }
5987 }
5988 }
5989 \f
5990 /* Perform invalidation on the basis of everything about INSN.
5991 This includes the places CLOBBERed, and anything that might
5992 alias with something that is SET or CLOBBERed. */
5993
5994 static void
5995 invalidate_from_sets_and_clobbers (rtx insn)
5996 {
5997 rtx tem;
5998 rtx x = PATTERN (insn);
5999
6000 if (CALL_P (insn))
6001 {
6002 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6003 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6004 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6005 }
6006
6007 /* Ensure we invalidate the destination register of a CALL insn.
6008 This is necessary for machines where this register is a fixed_reg,
6009 because no other code would invalidate it. */
6010 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6011 invalidate (SET_DEST (x), VOIDmode);
6012
6013 else if (GET_CODE (x) == PARALLEL)
6014 {
6015 int i;
6016
6017 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6018 {
6019 rtx y = XVECEXP (x, 0, i);
6020 if (GET_CODE (y) == CLOBBER)
6021 {
6022 rtx clobbered = XEXP (y, 0);
6023
6024 if (REG_P (clobbered)
6025 || GET_CODE (clobbered) == SUBREG)
6026 invalidate (clobbered, VOIDmode);
6027 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6028 || GET_CODE (clobbered) == ZERO_EXTRACT)
6029 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6030 }
6031 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6032 invalidate (SET_DEST (y), VOIDmode);
6033 }
6034 }
6035 }
6036 \f
6037 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6038 and replace any registers in them with either an equivalent constant
6039 or the canonical form of the register. If we are inside an address,
6040 only do this if the address remains valid.
6041
6042 OBJECT is 0 except when within a MEM in which case it is the MEM.
6043
6044 Return the replacement for X. */
6045
6046 static rtx
6047 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6048 {
6049 enum rtx_code code = GET_CODE (x);
6050 const char *fmt = GET_RTX_FORMAT (code);
6051 int i;
6052
6053 switch (code)
6054 {
6055 case CONST_INT:
6056 case CONST:
6057 case SYMBOL_REF:
6058 case LABEL_REF:
6059 case CONST_DOUBLE:
6060 case CONST_FIXED:
6061 case CONST_VECTOR:
6062 case PC:
6063 case CC0:
6064 case LO_SUM:
6065 return x;
6066
6067 case MEM:
6068 validate_change (x, &XEXP (x, 0),
6069 cse_process_notes (XEXP (x, 0), x, changed), 0);
6070 return x;
6071
6072 case EXPR_LIST:
6073 case INSN_LIST:
6074 if (REG_NOTE_KIND (x) == REG_EQUAL)
6075 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6076 if (XEXP (x, 1))
6077 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6078 return x;
6079
6080 case SIGN_EXTEND:
6081 case ZERO_EXTEND:
6082 case SUBREG:
6083 {
6084 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6085 /* We don't substitute VOIDmode constants into these rtx,
6086 since they would impede folding. */
6087 if (GET_MODE (new_rtx) != VOIDmode)
6088 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6089 return x;
6090 }
6091
6092 case REG:
6093 i = REG_QTY (REGNO (x));
6094
6095 /* Return a constant or a constant register. */
6096 if (REGNO_QTY_VALID_P (REGNO (x)))
6097 {
6098 struct qty_table_elem *ent = &qty_table[i];
6099
6100 if (ent->const_rtx != NULL_RTX
6101 && (CONSTANT_P (ent->const_rtx)
6102 || REG_P (ent->const_rtx)))
6103 {
6104 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6105 if (new_rtx)
6106 return copy_rtx (new_rtx);
6107 }
6108 }
6109
6110 /* Otherwise, canonicalize this register. */
6111 return canon_reg (x, NULL_RTX);
6112
6113 default:
6114 break;
6115 }
6116
6117 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6118 if (fmt[i] == 'e')
6119 validate_change (object, &XEXP (x, i),
6120 cse_process_notes (XEXP (x, i), object, changed), 0);
6121
6122 return x;
6123 }
6124
6125 static rtx
6126 cse_process_notes (rtx x, rtx object, bool *changed)
6127 {
6128 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6129 if (new_rtx != x)
6130 *changed = true;
6131 return new_rtx;
6132 }
6133
6134 \f
6135 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6136
6137 DATA is a pointer to a struct cse_basic_block_data, that is used to
6138 describe the path.
6139 It is filled with a queue of basic blocks, starting with FIRST_BB
6140 and following a trace through the CFG.
6141
6142 If all paths starting at FIRST_BB have been followed, or no new path
6143 starting at FIRST_BB can be constructed, this function returns FALSE.
6144 Otherwise, DATA->path is filled and the function returns TRUE indicating
6145 that a path to follow was found.
6146
6147 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6148 block in the path will be FIRST_BB. */
6149
6150 static bool
6151 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6152 int follow_jumps)
6153 {
6154 basic_block bb;
6155 edge e;
6156 int path_size;
6157
6158 SET_BIT (cse_visited_basic_blocks, first_bb->index);
6159
6160 /* See if there is a previous path. */
6161 path_size = data->path_size;
6162
6163 /* There is a previous path. Make sure it started with FIRST_BB. */
6164 if (path_size)
6165 gcc_assert (data->path[0].bb == first_bb);
6166
6167 /* There was only one basic block in the last path. Clear the path and
6168 return, so that paths starting at another basic block can be tried. */
6169 if (path_size == 1)
6170 {
6171 path_size = 0;
6172 goto done;
6173 }
6174
6175 /* If the path was empty from the beginning, construct a new path. */
6176 if (path_size == 0)
6177 data->path[path_size++].bb = first_bb;
6178 else
6179 {
6180 /* Otherwise, path_size must be equal to or greater than 2, because
6181 a previous path exists that is at least two basic blocks long.
6182
6183 Update the previous branch path, if any. If the last branch was
6184 previously along the branch edge, take the fallthrough edge now. */
6185 while (path_size >= 2)
6186 {
6187 basic_block last_bb_in_path, previous_bb_in_path;
6188 edge e;
6189
6190 --path_size;
6191 last_bb_in_path = data->path[path_size].bb;
6192 previous_bb_in_path = data->path[path_size - 1].bb;
6193
6194 /* If we previously followed a path along the branch edge, try
6195 the fallthru edge now. */
6196 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6197 && any_condjump_p (BB_END (previous_bb_in_path))
6198 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6199 && e == BRANCH_EDGE (previous_bb_in_path))
6200 {
6201 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6202 if (bb != EXIT_BLOCK_PTR
6203 && single_pred_p (bb)
6204 /* We used to assert here that we would only see blocks
6205 that we have not visited yet. But we may end up
6206 visiting basic blocks twice if the CFG has changed
6207 in this run of cse_main, because when the CFG changes
6208 the topological sort of the CFG also changes. A basic
6209 blocks that previously had more than two predecessors
6210 may now have a single predecessor, and become part of
6211 a path that starts at another basic block.
6212
6213 We still want to visit each basic block only once, so
6214 halt the path here if we have already visited BB. */
6215 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
6216 {
6217 SET_BIT (cse_visited_basic_blocks, bb->index);
6218 data->path[path_size++].bb = bb;
6219 break;
6220 }
6221 }
6222
6223 data->path[path_size].bb = NULL;
6224 }
6225
6226 /* If only one block remains in the path, bail. */
6227 if (path_size == 1)
6228 {
6229 path_size = 0;
6230 goto done;
6231 }
6232 }
6233
6234 /* Extend the path if possible. */
6235 if (follow_jumps)
6236 {
6237 bb = data->path[path_size - 1].bb;
6238 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6239 {
6240 if (single_succ_p (bb))
6241 e = single_succ_edge (bb);
6242 else if (EDGE_COUNT (bb->succs) == 2
6243 && any_condjump_p (BB_END (bb)))
6244 {
6245 /* First try to follow the branch. If that doesn't lead
6246 to a useful path, follow the fallthru edge. */
6247 e = BRANCH_EDGE (bb);
6248 if (!single_pred_p (e->dest))
6249 e = FALLTHRU_EDGE (bb);
6250 }
6251 else
6252 e = NULL;
6253
6254 if (e
6255 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6256 && e->dest != EXIT_BLOCK_PTR
6257 && single_pred_p (e->dest)
6258 /* Avoid visiting basic blocks twice. The large comment
6259 above explains why this can happen. */
6260 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
6261 {
6262 basic_block bb2 = e->dest;
6263 SET_BIT (cse_visited_basic_blocks, bb2->index);
6264 data->path[path_size++].bb = bb2;
6265 bb = bb2;
6266 }
6267 else
6268 bb = NULL;
6269 }
6270 }
6271
6272 done:
6273 data->path_size = path_size;
6274 return path_size != 0;
6275 }
6276 \f
6277 /* Dump the path in DATA to file F. NSETS is the number of sets
6278 in the path. */
6279
6280 static void
6281 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6282 {
6283 int path_entry;
6284
6285 fprintf (f, ";; Following path with %d sets: ", nsets);
6286 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6287 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6288 fputc ('\n', dump_file);
6289 fflush (f);
6290 }
6291
6292 \f
6293 /* Return true if BB has exception handling successor edges. */
6294
6295 static bool
6296 have_eh_succ_edges (basic_block bb)
6297 {
6298 edge e;
6299 edge_iterator ei;
6300
6301 FOR_EACH_EDGE (e, ei, bb->succs)
6302 if (e->flags & EDGE_EH)
6303 return true;
6304
6305 return false;
6306 }
6307
6308 \f
6309 /* Scan to the end of the path described by DATA. Return an estimate of
6310 the total number of SETs of all insns in the path. */
6311
6312 static void
6313 cse_prescan_path (struct cse_basic_block_data *data)
6314 {
6315 int nsets = 0;
6316 int path_size = data->path_size;
6317 int path_entry;
6318
6319 /* Scan to end of each basic block in the path. */
6320 for (path_entry = 0; path_entry < path_size; path_entry++)
6321 {
6322 basic_block bb;
6323 rtx insn;
6324
6325 bb = data->path[path_entry].bb;
6326
6327 FOR_BB_INSNS (bb, insn)
6328 {
6329 if (!INSN_P (insn))
6330 continue;
6331
6332 /* A PARALLEL can have lots of SETs in it,
6333 especially if it is really an ASM_OPERANDS. */
6334 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6335 nsets += XVECLEN (PATTERN (insn), 0);
6336 else
6337 nsets += 1;
6338 }
6339 }
6340
6341 data->nsets = nsets;
6342 }
6343 \f
6344 /* Process a single extended basic block described by EBB_DATA. */
6345
6346 static void
6347 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6348 {
6349 int path_size = ebb_data->path_size;
6350 int path_entry;
6351 int num_insns = 0;
6352
6353 /* Allocate the space needed by qty_table. */
6354 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6355
6356 new_basic_block ();
6357 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6358 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6359 for (path_entry = 0; path_entry < path_size; path_entry++)
6360 {
6361 basic_block bb;
6362 rtx insn;
6363
6364 bb = ebb_data->path[path_entry].bb;
6365
6366 /* Invalidate recorded information for eh regs if there is an EH
6367 edge pointing to that bb. */
6368 if (bb_has_eh_pred (bb))
6369 {
6370 df_ref *def_rec;
6371
6372 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6373 {
6374 df_ref def = *def_rec;
6375 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6376 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6377 }
6378 }
6379
6380 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6381 FOR_BB_INSNS (bb, insn)
6382 {
6383 /* If we have processed 1,000 insns, flush the hash table to
6384 avoid extreme quadratic behavior. We must not include NOTEs
6385 in the count since there may be more of them when generating
6386 debugging information. If we clear the table at different
6387 times, code generated with -g -O might be different than code
6388 generated with -O but not -g.
6389
6390 FIXME: This is a real kludge and needs to be done some other
6391 way. */
6392 if (NONDEBUG_INSN_P (insn)
6393 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6394 {
6395 flush_hash_table ();
6396 num_insns = 0;
6397 }
6398
6399 if (INSN_P (insn))
6400 {
6401 /* Process notes first so we have all notes in canonical forms
6402 when looking for duplicate operations. */
6403 if (REG_NOTES (insn))
6404 {
6405 bool changed = false;
6406 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6407 NULL_RTX, &changed);
6408 if (changed)
6409 df_notes_rescan (insn);
6410 }
6411
6412 cse_insn (insn);
6413
6414 /* If we haven't already found an insn where we added a LABEL_REF,
6415 check this one. */
6416 if (INSN_P (insn) && !recorded_label_ref
6417 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6418 (void *) insn))
6419 recorded_label_ref = true;
6420
6421 #ifdef HAVE_cc0
6422 if (NONDEBUG_INSN_P (insn))
6423 {
6424 /* If the previous insn sets CC0 and this insn no
6425 longer references CC0, delete the previous insn.
6426 Here we use fact that nothing expects CC0 to be
6427 valid over an insn, which is true until the final
6428 pass. */
6429 rtx prev_insn, tem;
6430
6431 prev_insn = prev_nonnote_nondebug_insn (insn);
6432 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6433 && (tem = single_set (prev_insn)) != NULL_RTX
6434 && SET_DEST (tem) == cc0_rtx
6435 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6436 delete_insn (prev_insn);
6437
6438 /* If this insn is not the last insn in the basic
6439 block, it will be PREV_INSN(insn) in the next
6440 iteration. If we recorded any CC0-related
6441 information for this insn, remember it. */
6442 if (insn != BB_END (bb))
6443 {
6444 prev_insn_cc0 = this_insn_cc0;
6445 prev_insn_cc0_mode = this_insn_cc0_mode;
6446 }
6447 }
6448 #endif
6449 }
6450 }
6451
6452 /* With non-call exceptions, we are not always able to update
6453 the CFG properly inside cse_insn. So clean up possibly
6454 redundant EH edges here. */
6455 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6456 cse_cfg_altered |= purge_dead_edges (bb);
6457
6458 /* If we changed a conditional jump, we may have terminated
6459 the path we are following. Check that by verifying that
6460 the edge we would take still exists. If the edge does
6461 not exist anymore, purge the remainder of the path.
6462 Note that this will cause us to return to the caller. */
6463 if (path_entry < path_size - 1)
6464 {
6465 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6466 if (!find_edge (bb, next_bb))
6467 {
6468 do
6469 {
6470 path_size--;
6471
6472 /* If we truncate the path, we must also reset the
6473 visited bit on the remaining blocks in the path,
6474 or we will never visit them at all. */
6475 RESET_BIT (cse_visited_basic_blocks,
6476 ebb_data->path[path_size].bb->index);
6477 ebb_data->path[path_size].bb = NULL;
6478 }
6479 while (path_size - 1 != path_entry);
6480 ebb_data->path_size = path_size;
6481 }
6482 }
6483
6484 /* If this is a conditional jump insn, record any known
6485 equivalences due to the condition being tested. */
6486 insn = BB_END (bb);
6487 if (path_entry < path_size - 1
6488 && JUMP_P (insn)
6489 && single_set (insn)
6490 && any_condjump_p (insn))
6491 {
6492 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6493 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6494 record_jump_equiv (insn, taken);
6495 }
6496
6497 #ifdef HAVE_cc0
6498 /* Clear the CC0-tracking related insns, they can't provide
6499 useful information across basic block boundaries. */
6500 prev_insn_cc0 = 0;
6501 #endif
6502 }
6503
6504 gcc_assert (next_qty <= max_qty);
6505
6506 free (qty_table);
6507 }
6508
6509 \f
6510 /* Perform cse on the instructions of a function.
6511 F is the first instruction.
6512 NREGS is one plus the highest pseudo-reg number used in the instruction.
6513
6514 Return 2 if jump optimizations should be redone due to simplifications
6515 in conditional jump instructions.
6516 Return 1 if the CFG should be cleaned up because it has been modified.
6517 Return 0 otherwise. */
6518
6519 static int
6520 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6521 {
6522 struct cse_basic_block_data ebb_data;
6523 basic_block bb;
6524 int *rc_order = XNEWVEC (int, last_basic_block);
6525 int i, n_blocks;
6526
6527 df_set_flags (DF_LR_RUN_DCE);
6528 df_analyze ();
6529 df_set_flags (DF_DEFER_INSN_RESCAN);
6530
6531 reg_scan (get_insns (), max_reg_num ());
6532 init_cse_reg_info (nregs);
6533
6534 ebb_data.path = XNEWVEC (struct branch_path,
6535 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6536
6537 cse_cfg_altered = false;
6538 cse_jumps_altered = false;
6539 recorded_label_ref = false;
6540 constant_pool_entries_cost = 0;
6541 constant_pool_entries_regcost = 0;
6542 ebb_data.path_size = 0;
6543 ebb_data.nsets = 0;
6544 rtl_hooks = cse_rtl_hooks;
6545
6546 init_recog ();
6547 init_alias_analysis ();
6548
6549 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6550
6551 /* Set up the table of already visited basic blocks. */
6552 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6553 sbitmap_zero (cse_visited_basic_blocks);
6554
6555 /* Loop over basic blocks in reverse completion order (RPO),
6556 excluding the ENTRY and EXIT blocks. */
6557 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6558 i = 0;
6559 while (i < n_blocks)
6560 {
6561 /* Find the first block in the RPO queue that we have not yet
6562 processed before. */
6563 do
6564 {
6565 bb = BASIC_BLOCK (rc_order[i++]);
6566 }
6567 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6568 && i < n_blocks);
6569
6570 /* Find all paths starting with BB, and process them. */
6571 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6572 {
6573 /* Pre-scan the path. */
6574 cse_prescan_path (&ebb_data);
6575
6576 /* If this basic block has no sets, skip it. */
6577 if (ebb_data.nsets == 0)
6578 continue;
6579
6580 /* Get a reasonable estimate for the maximum number of qty's
6581 needed for this path. For this, we take the number of sets
6582 and multiply that by MAX_RECOG_OPERANDS. */
6583 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6584
6585 /* Dump the path we're about to process. */
6586 if (dump_file)
6587 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6588
6589 cse_extended_basic_block (&ebb_data);
6590 }
6591 }
6592
6593 /* Clean up. */
6594 end_alias_analysis ();
6595 free (reg_eqv_table);
6596 free (ebb_data.path);
6597 sbitmap_free (cse_visited_basic_blocks);
6598 free (rc_order);
6599 rtl_hooks = general_rtl_hooks;
6600
6601 if (cse_jumps_altered || recorded_label_ref)
6602 return 2;
6603 else if (cse_cfg_altered)
6604 return 1;
6605 else
6606 return 0;
6607 }
6608 \f
6609 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6610 which there isn't a REG_LABEL_OPERAND note.
6611 Return one if so. DATA is the insn. */
6612
6613 static int
6614 check_for_label_ref (rtx *rtl, void *data)
6615 {
6616 rtx insn = (rtx) data;
6617
6618 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6619 note for it, we must rerun jump since it needs to place the note. If
6620 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6621 don't do this since no REG_LABEL_OPERAND will be added. */
6622 return (GET_CODE (*rtl) == LABEL_REF
6623 && ! LABEL_REF_NONLOCAL_P (*rtl)
6624 && (!JUMP_P (insn)
6625 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6626 && LABEL_P (XEXP (*rtl, 0))
6627 && INSN_UID (XEXP (*rtl, 0)) != 0
6628 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6629 }
6630 \f
6631 /* Count the number of times registers are used (not set) in X.
6632 COUNTS is an array in which we accumulate the count, INCR is how much
6633 we count each register usage.
6634
6635 Don't count a usage of DEST, which is the SET_DEST of a SET which
6636 contains X in its SET_SRC. This is because such a SET does not
6637 modify the liveness of DEST.
6638 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6639 We must then count uses of a SET_DEST regardless, because the insn can't be
6640 deleted here. */
6641
6642 static void
6643 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6644 {
6645 enum rtx_code code;
6646 rtx note;
6647 const char *fmt;
6648 int i, j;
6649
6650 if (x == 0)
6651 return;
6652
6653 switch (code = GET_CODE (x))
6654 {
6655 case REG:
6656 if (x != dest)
6657 counts[REGNO (x)] += incr;
6658 return;
6659
6660 case PC:
6661 case CC0:
6662 case CONST:
6663 case CONST_INT:
6664 case CONST_DOUBLE:
6665 case CONST_FIXED:
6666 case CONST_VECTOR:
6667 case SYMBOL_REF:
6668 case LABEL_REF:
6669 return;
6670
6671 case CLOBBER:
6672 /* If we are clobbering a MEM, mark any registers inside the address
6673 as being used. */
6674 if (MEM_P (XEXP (x, 0)))
6675 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6676 return;
6677
6678 case SET:
6679 /* Unless we are setting a REG, count everything in SET_DEST. */
6680 if (!REG_P (SET_DEST (x)))
6681 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6682 count_reg_usage (SET_SRC (x), counts,
6683 dest ? dest : SET_DEST (x),
6684 incr);
6685 return;
6686
6687 case DEBUG_INSN:
6688 return;
6689
6690 case CALL_INSN:
6691 case INSN:
6692 case JUMP_INSN:
6693 /* We expect dest to be NULL_RTX here. If the insn may throw,
6694 or if it cannot be deleted due to side-effects, mark this fact
6695 by setting DEST to pc_rtx. */
6696 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6697 || side_effects_p (PATTERN (x)))
6698 dest = pc_rtx;
6699 if (code == CALL_INSN)
6700 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6701 count_reg_usage (PATTERN (x), counts, dest, incr);
6702
6703 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6704 use them. */
6705
6706 note = find_reg_equal_equiv_note (x);
6707 if (note)
6708 {
6709 rtx eqv = XEXP (note, 0);
6710
6711 if (GET_CODE (eqv) == EXPR_LIST)
6712 /* This REG_EQUAL note describes the result of a function call.
6713 Process all the arguments. */
6714 do
6715 {
6716 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6717 eqv = XEXP (eqv, 1);
6718 }
6719 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6720 else
6721 count_reg_usage (eqv, counts, dest, incr);
6722 }
6723 return;
6724
6725 case EXPR_LIST:
6726 if (REG_NOTE_KIND (x) == REG_EQUAL
6727 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6728 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6729 involving registers in the address. */
6730 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6731 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6732
6733 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6734 return;
6735
6736 case ASM_OPERANDS:
6737 /* Iterate over just the inputs, not the constraints as well. */
6738 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6739 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6740 return;
6741
6742 case INSN_LIST:
6743 gcc_unreachable ();
6744
6745 default:
6746 break;
6747 }
6748
6749 fmt = GET_RTX_FORMAT (code);
6750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6751 {
6752 if (fmt[i] == 'e')
6753 count_reg_usage (XEXP (x, i), counts, dest, incr);
6754 else if (fmt[i] == 'E')
6755 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6756 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6757 }
6758 }
6759 \f
6760 /* Return true if X is a dead register. */
6761
6762 static inline int
6763 is_dead_reg (rtx x, int *counts)
6764 {
6765 return (REG_P (x)
6766 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6767 && counts[REGNO (x)] == 0);
6768 }
6769
6770 /* Return true if set is live. */
6771 static bool
6772 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6773 int *counts)
6774 {
6775 #ifdef HAVE_cc0
6776 rtx tem;
6777 #endif
6778
6779 if (set_noop_p (set))
6780 ;
6781
6782 #ifdef HAVE_cc0
6783 else if (GET_CODE (SET_DEST (set)) == CC0
6784 && !side_effects_p (SET_SRC (set))
6785 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6786 || !INSN_P (tem)
6787 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6788 return false;
6789 #endif
6790 else if (!is_dead_reg (SET_DEST (set), counts)
6791 || side_effects_p (SET_SRC (set)))
6792 return true;
6793 return false;
6794 }
6795
6796 /* Return true if insn is live. */
6797
6798 static bool
6799 insn_live_p (rtx insn, int *counts)
6800 {
6801 int i;
6802 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6803 return true;
6804 else if (GET_CODE (PATTERN (insn)) == SET)
6805 return set_live_p (PATTERN (insn), insn, counts);
6806 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6807 {
6808 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6809 {
6810 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6811
6812 if (GET_CODE (elt) == SET)
6813 {
6814 if (set_live_p (elt, insn, counts))
6815 return true;
6816 }
6817 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6818 return true;
6819 }
6820 return false;
6821 }
6822 else if (DEBUG_INSN_P (insn))
6823 {
6824 rtx next;
6825
6826 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6827 if (NOTE_P (next))
6828 continue;
6829 else if (!DEBUG_INSN_P (next))
6830 return true;
6831 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6832 return false;
6833
6834 return true;
6835 }
6836 else
6837 return true;
6838 }
6839
6840 /* Count the number of stores into pseudo. Callback for note_stores. */
6841
6842 static void
6843 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6844 {
6845 int *counts = (int *) data;
6846 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6847 counts[REGNO (x)]++;
6848 }
6849
6850 struct dead_debug_insn_data
6851 {
6852 int *counts;
6853 rtx *replacements;
6854 bool seen_repl;
6855 };
6856
6857 /* Return if a DEBUG_INSN needs to be reset because some dead
6858 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6859
6860 static int
6861 is_dead_debug_insn (rtx *loc, void *data)
6862 {
6863 rtx x = *loc;
6864 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6865
6866 if (is_dead_reg (x, ddid->counts))
6867 {
6868 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6869 ddid->seen_repl = true;
6870 else
6871 return 1;
6872 }
6873 return 0;
6874 }
6875
6876 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6877 Callback for simplify_replace_fn_rtx. */
6878
6879 static rtx
6880 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6881 {
6882 rtx *replacements = (rtx *) data;
6883
6884 if (REG_P (x)
6885 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6886 && replacements[REGNO (x)] != NULL_RTX)
6887 {
6888 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6889 return replacements[REGNO (x)];
6890 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6891 GET_MODE (replacements[REGNO (x)]));
6892 }
6893 return NULL_RTX;
6894 }
6895
6896 /* Scan all the insns and delete any that are dead; i.e., they store a register
6897 that is never used or they copy a register to itself.
6898
6899 This is used to remove insns made obviously dead by cse, loop or other
6900 optimizations. It improves the heuristics in loop since it won't try to
6901 move dead invariants out of loops or make givs for dead quantities. The
6902 remaining passes of the compilation are also sped up. */
6903
6904 int
6905 delete_trivially_dead_insns (rtx insns, int nreg)
6906 {
6907 int *counts;
6908 rtx insn, prev;
6909 rtx *replacements = NULL;
6910 int ndead = 0;
6911
6912 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6913 /* First count the number of times each register is used. */
6914 if (MAY_HAVE_DEBUG_INSNS)
6915 {
6916 counts = XCNEWVEC (int, nreg * 3);
6917 for (insn = insns; insn; insn = NEXT_INSN (insn))
6918 if (DEBUG_INSN_P (insn))
6919 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6920 NULL_RTX, 1);
6921 else if (INSN_P (insn))
6922 {
6923 count_reg_usage (insn, counts, NULL_RTX, 1);
6924 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6925 }
6926 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6927 First one counts how many times each pseudo is used outside
6928 of debug insns, second counts how many times each pseudo is
6929 used in debug insns and third counts how many times a pseudo
6930 is stored. */
6931 }
6932 else
6933 {
6934 counts = XCNEWVEC (int, nreg);
6935 for (insn = insns; insn; insn = NEXT_INSN (insn))
6936 if (INSN_P (insn))
6937 count_reg_usage (insn, counts, NULL_RTX, 1);
6938 /* If no debug insns can be present, COUNTS is just an array
6939 which counts how many times each pseudo is used. */
6940 }
6941 /* Go from the last insn to the first and delete insns that only set unused
6942 registers or copy a register to itself. As we delete an insn, remove
6943 usage counts for registers it uses.
6944
6945 The first jump optimization pass may leave a real insn as the last
6946 insn in the function. We must not skip that insn or we may end
6947 up deleting code that is not really dead.
6948
6949 If some otherwise unused register is only used in DEBUG_INSNs,
6950 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6951 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6952 has been created for the unused register, replace it with
6953 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6954 for (insn = get_last_insn (); insn; insn = prev)
6955 {
6956 int live_insn = 0;
6957
6958 prev = PREV_INSN (insn);
6959 if (!INSN_P (insn))
6960 continue;
6961
6962 live_insn = insn_live_p (insn, counts);
6963
6964 /* If this is a dead insn, delete it and show registers in it aren't
6965 being used. */
6966
6967 if (! live_insn && dbg_cnt (delete_trivial_dead))
6968 {
6969 if (DEBUG_INSN_P (insn))
6970 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6971 NULL_RTX, -1);
6972 else
6973 {
6974 rtx set;
6975 if (MAY_HAVE_DEBUG_INSNS
6976 && (set = single_set (insn)) != NULL_RTX
6977 && is_dead_reg (SET_DEST (set), counts)
6978 /* Used at least once in some DEBUG_INSN. */
6979 && counts[REGNO (SET_DEST (set)) + nreg] > 0
6980 /* And set exactly once. */
6981 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6982 && !side_effects_p (SET_SRC (set))
6983 && asm_noperands (PATTERN (insn)) < 0)
6984 {
6985 rtx dval, bind;
6986
6987 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
6988 dval = make_debug_expr_from_rtl (SET_DEST (set));
6989
6990 /* Emit a debug bind insn before the insn in which
6991 reg dies. */
6992 bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
6993 DEBUG_EXPR_TREE_DECL (dval),
6994 SET_SRC (set),
6995 VAR_INIT_STATUS_INITIALIZED);
6996 count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
6997
6998 bind = emit_debug_insn_before (bind, insn);
6999 df_insn_rescan (bind);
7000
7001 if (replacements == NULL)
7002 replacements = XCNEWVEC (rtx, nreg);
7003 replacements[REGNO (SET_DEST (set))] = dval;
7004 }
7005
7006 count_reg_usage (insn, counts, NULL_RTX, -1);
7007 ndead++;
7008 }
7009 delete_insn_and_edges (insn);
7010 }
7011 }
7012
7013 if (MAY_HAVE_DEBUG_INSNS)
7014 {
7015 struct dead_debug_insn_data ddid;
7016 ddid.counts = counts;
7017 ddid.replacements = replacements;
7018 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7019 if (DEBUG_INSN_P (insn))
7020 {
7021 /* If this debug insn references a dead register that wasn't replaced
7022 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7023 ddid.seen_repl = false;
7024 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7025 is_dead_debug_insn, &ddid))
7026 {
7027 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7028 df_insn_rescan (insn);
7029 }
7030 else if (ddid.seen_repl)
7031 {
7032 INSN_VAR_LOCATION_LOC (insn)
7033 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7034 NULL_RTX, replace_dead_reg,
7035 replacements);
7036 df_insn_rescan (insn);
7037 }
7038 }
7039 free (replacements);
7040 }
7041
7042 if (dump_file && ndead)
7043 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7044 ndead);
7045 /* Clean up. */
7046 free (counts);
7047 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7048 return ndead;
7049 }
7050
7051 /* This function is called via for_each_rtx. The argument, NEWREG, is
7052 a condition code register with the desired mode. If we are looking
7053 at the same register in a different mode, replace it with
7054 NEWREG. */
7055
7056 static int
7057 cse_change_cc_mode (rtx *loc, void *data)
7058 {
7059 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7060
7061 if (*loc
7062 && REG_P (*loc)
7063 && REGNO (*loc) == REGNO (args->newreg)
7064 && GET_MODE (*loc) != GET_MODE (args->newreg))
7065 {
7066 validate_change (args->insn, loc, args->newreg, 1);
7067
7068 return -1;
7069 }
7070 return 0;
7071 }
7072
7073 /* Change the mode of any reference to the register REGNO (NEWREG) to
7074 GET_MODE (NEWREG) in INSN. */
7075
7076 static void
7077 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7078 {
7079 struct change_cc_mode_args args;
7080 int success;
7081
7082 if (!INSN_P (insn))
7083 return;
7084
7085 args.insn = insn;
7086 args.newreg = newreg;
7087
7088 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7089 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7090
7091 /* If the following assertion was triggered, there is most probably
7092 something wrong with the cc_modes_compatible back end function.
7093 CC modes only can be considered compatible if the insn - with the mode
7094 replaced by any of the compatible modes - can still be recognized. */
7095 success = apply_change_group ();
7096 gcc_assert (success);
7097 }
7098
7099 /* Change the mode of any reference to the register REGNO (NEWREG) to
7100 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7101 any instruction which modifies NEWREG. */
7102
7103 static void
7104 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7105 {
7106 rtx insn;
7107
7108 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7109 {
7110 if (! INSN_P (insn))
7111 continue;
7112
7113 if (reg_set_p (newreg, insn))
7114 return;
7115
7116 cse_change_cc_mode_insn (insn, newreg);
7117 }
7118 }
7119
7120 /* BB is a basic block which finishes with CC_REG as a condition code
7121 register which is set to CC_SRC. Look through the successors of BB
7122 to find blocks which have a single predecessor (i.e., this one),
7123 and look through those blocks for an assignment to CC_REG which is
7124 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7125 permitted to change the mode of CC_SRC to a compatible mode. This
7126 returns VOIDmode if no equivalent assignments were found.
7127 Otherwise it returns the mode which CC_SRC should wind up with.
7128 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7129 but is passed unmodified down to recursive calls in order to prevent
7130 endless recursion.
7131
7132 The main complexity in this function is handling the mode issues.
7133 We may have more than one duplicate which we can eliminate, and we
7134 try to find a mode which will work for multiple duplicates. */
7135
7136 static enum machine_mode
7137 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7138 bool can_change_mode)
7139 {
7140 bool found_equiv;
7141 enum machine_mode mode;
7142 unsigned int insn_count;
7143 edge e;
7144 rtx insns[2];
7145 enum machine_mode modes[2];
7146 rtx last_insns[2];
7147 unsigned int i;
7148 rtx newreg;
7149 edge_iterator ei;
7150
7151 /* We expect to have two successors. Look at both before picking
7152 the final mode for the comparison. If we have more successors
7153 (i.e., some sort of table jump, although that seems unlikely),
7154 then we require all beyond the first two to use the same
7155 mode. */
7156
7157 found_equiv = false;
7158 mode = GET_MODE (cc_src);
7159 insn_count = 0;
7160 FOR_EACH_EDGE (e, ei, bb->succs)
7161 {
7162 rtx insn;
7163 rtx end;
7164
7165 if (e->flags & EDGE_COMPLEX)
7166 continue;
7167
7168 if (EDGE_COUNT (e->dest->preds) != 1
7169 || e->dest == EXIT_BLOCK_PTR
7170 /* Avoid endless recursion on unreachable blocks. */
7171 || e->dest == orig_bb)
7172 continue;
7173
7174 end = NEXT_INSN (BB_END (e->dest));
7175 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7176 {
7177 rtx set;
7178
7179 if (! INSN_P (insn))
7180 continue;
7181
7182 /* If CC_SRC is modified, we have to stop looking for
7183 something which uses it. */
7184 if (modified_in_p (cc_src, insn))
7185 break;
7186
7187 /* Check whether INSN sets CC_REG to CC_SRC. */
7188 set = single_set (insn);
7189 if (set
7190 && REG_P (SET_DEST (set))
7191 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7192 {
7193 bool found;
7194 enum machine_mode set_mode;
7195 enum machine_mode comp_mode;
7196
7197 found = false;
7198 set_mode = GET_MODE (SET_SRC (set));
7199 comp_mode = set_mode;
7200 if (rtx_equal_p (cc_src, SET_SRC (set)))
7201 found = true;
7202 else if (GET_CODE (cc_src) == COMPARE
7203 && GET_CODE (SET_SRC (set)) == COMPARE
7204 && mode != set_mode
7205 && rtx_equal_p (XEXP (cc_src, 0),
7206 XEXP (SET_SRC (set), 0))
7207 && rtx_equal_p (XEXP (cc_src, 1),
7208 XEXP (SET_SRC (set), 1)))
7209
7210 {
7211 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7212 if (comp_mode != VOIDmode
7213 && (can_change_mode || comp_mode == mode))
7214 found = true;
7215 }
7216
7217 if (found)
7218 {
7219 found_equiv = true;
7220 if (insn_count < ARRAY_SIZE (insns))
7221 {
7222 insns[insn_count] = insn;
7223 modes[insn_count] = set_mode;
7224 last_insns[insn_count] = end;
7225 ++insn_count;
7226
7227 if (mode != comp_mode)
7228 {
7229 gcc_assert (can_change_mode);
7230 mode = comp_mode;
7231
7232 /* The modified insn will be re-recognized later. */
7233 PUT_MODE (cc_src, mode);
7234 }
7235 }
7236 else
7237 {
7238 if (set_mode != mode)
7239 {
7240 /* We found a matching expression in the
7241 wrong mode, but we don't have room to
7242 store it in the array. Punt. This case
7243 should be rare. */
7244 break;
7245 }
7246 /* INSN sets CC_REG to a value equal to CC_SRC
7247 with the right mode. We can simply delete
7248 it. */
7249 delete_insn (insn);
7250 }
7251
7252 /* We found an instruction to delete. Keep looking,
7253 in the hopes of finding a three-way jump. */
7254 continue;
7255 }
7256
7257 /* We found an instruction which sets the condition
7258 code, so don't look any farther. */
7259 break;
7260 }
7261
7262 /* If INSN sets CC_REG in some other way, don't look any
7263 farther. */
7264 if (reg_set_p (cc_reg, insn))
7265 break;
7266 }
7267
7268 /* If we fell off the bottom of the block, we can keep looking
7269 through successors. We pass CAN_CHANGE_MODE as false because
7270 we aren't prepared to handle compatibility between the
7271 further blocks and this block. */
7272 if (insn == end)
7273 {
7274 enum machine_mode submode;
7275
7276 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7277 if (submode != VOIDmode)
7278 {
7279 gcc_assert (submode == mode);
7280 found_equiv = true;
7281 can_change_mode = false;
7282 }
7283 }
7284 }
7285
7286 if (! found_equiv)
7287 return VOIDmode;
7288
7289 /* Now INSN_COUNT is the number of instructions we found which set
7290 CC_REG to a value equivalent to CC_SRC. The instructions are in
7291 INSNS. The modes used by those instructions are in MODES. */
7292
7293 newreg = NULL_RTX;
7294 for (i = 0; i < insn_count; ++i)
7295 {
7296 if (modes[i] != mode)
7297 {
7298 /* We need to change the mode of CC_REG in INSNS[i] and
7299 subsequent instructions. */
7300 if (! newreg)
7301 {
7302 if (GET_MODE (cc_reg) == mode)
7303 newreg = cc_reg;
7304 else
7305 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7306 }
7307 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7308 newreg);
7309 }
7310
7311 delete_insn_and_edges (insns[i]);
7312 }
7313
7314 return mode;
7315 }
7316
7317 /* If we have a fixed condition code register (or two), walk through
7318 the instructions and try to eliminate duplicate assignments. */
7319
7320 static void
7321 cse_condition_code_reg (void)
7322 {
7323 unsigned int cc_regno_1;
7324 unsigned int cc_regno_2;
7325 rtx cc_reg_1;
7326 rtx cc_reg_2;
7327 basic_block bb;
7328
7329 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7330 return;
7331
7332 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7333 if (cc_regno_2 != INVALID_REGNUM)
7334 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7335 else
7336 cc_reg_2 = NULL_RTX;
7337
7338 FOR_EACH_BB (bb)
7339 {
7340 rtx last_insn;
7341 rtx cc_reg;
7342 rtx insn;
7343 rtx cc_src_insn;
7344 rtx cc_src;
7345 enum machine_mode mode;
7346 enum machine_mode orig_mode;
7347
7348 /* Look for blocks which end with a conditional jump based on a
7349 condition code register. Then look for the instruction which
7350 sets the condition code register. Then look through the
7351 successor blocks for instructions which set the condition
7352 code register to the same value. There are other possible
7353 uses of the condition code register, but these are by far the
7354 most common and the ones which we are most likely to be able
7355 to optimize. */
7356
7357 last_insn = BB_END (bb);
7358 if (!JUMP_P (last_insn))
7359 continue;
7360
7361 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7362 cc_reg = cc_reg_1;
7363 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7364 cc_reg = cc_reg_2;
7365 else
7366 continue;
7367
7368 cc_src_insn = NULL_RTX;
7369 cc_src = NULL_RTX;
7370 for (insn = PREV_INSN (last_insn);
7371 insn && insn != PREV_INSN (BB_HEAD (bb));
7372 insn = PREV_INSN (insn))
7373 {
7374 rtx set;
7375
7376 if (! INSN_P (insn))
7377 continue;
7378 set = single_set (insn);
7379 if (set
7380 && REG_P (SET_DEST (set))
7381 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7382 {
7383 cc_src_insn = insn;
7384 cc_src = SET_SRC (set);
7385 break;
7386 }
7387 else if (reg_set_p (cc_reg, insn))
7388 break;
7389 }
7390
7391 if (! cc_src_insn)
7392 continue;
7393
7394 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7395 continue;
7396
7397 /* Now CC_REG is a condition code register used for a
7398 conditional jump at the end of the block, and CC_SRC, in
7399 CC_SRC_INSN, is the value to which that condition code
7400 register is set, and CC_SRC is still meaningful at the end of
7401 the basic block. */
7402
7403 orig_mode = GET_MODE (cc_src);
7404 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7405 if (mode != VOIDmode)
7406 {
7407 gcc_assert (mode == GET_MODE (cc_src));
7408 if (mode != orig_mode)
7409 {
7410 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7411
7412 cse_change_cc_mode_insn (cc_src_insn, newreg);
7413
7414 /* Do the same in the following insns that use the
7415 current value of CC_REG within BB. */
7416 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7417 NEXT_INSN (last_insn),
7418 newreg);
7419 }
7420 }
7421 }
7422 }
7423 \f
7424
7425 /* Perform common subexpression elimination. Nonzero value from
7426 `cse_main' means that jumps were simplified and some code may now
7427 be unreachable, so do jump optimization again. */
7428 static bool
7429 gate_handle_cse (void)
7430 {
7431 return optimize > 0;
7432 }
7433
7434 static unsigned int
7435 rest_of_handle_cse (void)
7436 {
7437 int tem;
7438
7439 if (dump_file)
7440 dump_flow_info (dump_file, dump_flags);
7441
7442 tem = cse_main (get_insns (), max_reg_num ());
7443
7444 /* If we are not running more CSE passes, then we are no longer
7445 expecting CSE to be run. But always rerun it in a cheap mode. */
7446 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7447
7448 if (tem == 2)
7449 {
7450 timevar_push (TV_JUMP);
7451 rebuild_jump_labels (get_insns ());
7452 cleanup_cfg (CLEANUP_CFG_CHANGED);
7453 timevar_pop (TV_JUMP);
7454 }
7455 else if (tem == 1 || optimize > 1)
7456 cleanup_cfg (0);
7457
7458 return 0;
7459 }
7460
7461 struct rtl_opt_pass pass_cse =
7462 {
7463 {
7464 RTL_PASS,
7465 "cse1", /* name */
7466 gate_handle_cse, /* gate */
7467 rest_of_handle_cse, /* execute */
7468 NULL, /* sub */
7469 NULL, /* next */
7470 0, /* static_pass_number */
7471 TV_CSE, /* tv_id */
7472 0, /* properties_required */
7473 0, /* properties_provided */
7474 0, /* properties_destroyed */
7475 0, /* todo_flags_start */
7476 TODO_df_finish | TODO_verify_rtl_sharing |
7477 TODO_ggc_collect |
7478 TODO_verify_flow, /* todo_flags_finish */
7479 }
7480 };
7481
7482
7483 static bool
7484 gate_handle_cse2 (void)
7485 {
7486 return optimize > 0 && flag_rerun_cse_after_loop;
7487 }
7488
7489 /* Run second CSE pass after loop optimizations. */
7490 static unsigned int
7491 rest_of_handle_cse2 (void)
7492 {
7493 int tem;
7494
7495 if (dump_file)
7496 dump_flow_info (dump_file, dump_flags);
7497
7498 tem = cse_main (get_insns (), max_reg_num ());
7499
7500 /* Run a pass to eliminate duplicated assignments to condition code
7501 registers. We have to run this after bypass_jumps, because it
7502 makes it harder for that pass to determine whether a jump can be
7503 bypassed safely. */
7504 cse_condition_code_reg ();
7505
7506 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7507
7508 if (tem == 2)
7509 {
7510 timevar_push (TV_JUMP);
7511 rebuild_jump_labels (get_insns ());
7512 cleanup_cfg (CLEANUP_CFG_CHANGED);
7513 timevar_pop (TV_JUMP);
7514 }
7515 else if (tem == 1)
7516 cleanup_cfg (0);
7517
7518 cse_not_expected = 1;
7519 return 0;
7520 }
7521
7522
7523 struct rtl_opt_pass pass_cse2 =
7524 {
7525 {
7526 RTL_PASS,
7527 "cse2", /* name */
7528 gate_handle_cse2, /* gate */
7529 rest_of_handle_cse2, /* execute */
7530 NULL, /* sub */
7531 NULL, /* next */
7532 0, /* static_pass_number */
7533 TV_CSE2, /* tv_id */
7534 0, /* properties_required */
7535 0, /* properties_provided */
7536 0, /* properties_destroyed */
7537 0, /* todo_flags_start */
7538 TODO_df_finish | TODO_verify_rtl_sharing |
7539 TODO_ggc_collect |
7540 TODO_verify_flow /* todo_flags_finish */
7541 }
7542 };
7543
7544 static bool
7545 gate_handle_cse_after_global_opts (void)
7546 {
7547 return optimize > 0 && flag_rerun_cse_after_global_opts;
7548 }
7549
7550 /* Run second CSE pass after loop optimizations. */
7551 static unsigned int
7552 rest_of_handle_cse_after_global_opts (void)
7553 {
7554 int save_cfj;
7555 int tem;
7556
7557 /* We only want to do local CSE, so don't follow jumps. */
7558 save_cfj = flag_cse_follow_jumps;
7559 flag_cse_follow_jumps = 0;
7560
7561 rebuild_jump_labels (get_insns ());
7562 tem = cse_main (get_insns (), max_reg_num ());
7563 purge_all_dead_edges ();
7564 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7565
7566 cse_not_expected = !flag_rerun_cse_after_loop;
7567
7568 /* If cse altered any jumps, rerun jump opts to clean things up. */
7569 if (tem == 2)
7570 {
7571 timevar_push (TV_JUMP);
7572 rebuild_jump_labels (get_insns ());
7573 cleanup_cfg (CLEANUP_CFG_CHANGED);
7574 timevar_pop (TV_JUMP);
7575 }
7576 else if (tem == 1)
7577 cleanup_cfg (0);
7578
7579 flag_cse_follow_jumps = save_cfj;
7580 return 0;
7581 }
7582
7583 struct rtl_opt_pass pass_cse_after_global_opts =
7584 {
7585 {
7586 RTL_PASS,
7587 "cse_local", /* name */
7588 gate_handle_cse_after_global_opts, /* gate */
7589 rest_of_handle_cse_after_global_opts, /* execute */
7590 NULL, /* sub */
7591 NULL, /* next */
7592 0, /* static_pass_number */
7593 TV_CSE, /* tv_id */
7594 0, /* properties_required */
7595 0, /* properties_provided */
7596 0, /* properties_destroyed */
7597 0, /* todo_flags_start */
7598 TODO_df_finish | TODO_verify_rtl_sharing |
7599 TODO_ggc_collect |
7600 TODO_verify_flow /* todo_flags_finish */
7601 }
7602 };