(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
49
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
54
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
60
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
64
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
68
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
77
78 Registers and "quantity numbers":
79
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
88
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
92
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
95
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
99
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
103
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
107
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
112
113 Constants and quantity numbers
114
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
118
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
122
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
126
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
132
133 Other expressions:
134
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
140
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
143
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
148
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
152
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
157
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
165
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
169
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
177
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
188
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
196
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
200
201 Related expressions:
202
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
209
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
212
213 static int max_qty;
214
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
217
218 static int next_qty;
219
220 /* Per-qty information tracking.
221
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
224
225 `mode' contains the machine mode of this quantity.
226
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
232
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
244
245 struct qty_table_elem
246 {
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
256 };
257
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
260
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
264 {
265 rtx insn;
266 rtx newreg;
267 };
268
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
273
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
278
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
282
283 /* Insn being scanned. */
284
285 static rtx this_insn;
286 static bool optimize_this_for_speed_p;
287
288 /* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
290 value.
291
292 Or -1 if this register is at the end of the chain.
293
294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
295
296 /* Per-register equivalence chain. */
297 struct reg_eqv_elem
298 {
299 int next, prev;
300 };
301
302 /* The table of all register equivalence chains. */
303 static struct reg_eqv_elem *reg_eqv_table;
304
305 struct cse_reg_info
306 {
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
309
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
312
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
316
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
322
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
325 unsigned int subreg_ticked;
326 };
327
328 /* A table of cse_reg_info indexed by register numbers. */
329 static struct cse_reg_info *cse_reg_info_table;
330
331 /* The size of the above table. */
332 static unsigned int cse_reg_info_table_size;
333
334 /* The index of the first entry that has not been initialized. */
335 static unsigned int cse_reg_info_table_first_uninitialized;
336
337 /* The timestamp at the beginning of the current run of
338 cse_extended_basic_block. We increment this variable at the beginning of
339 the current run of cse_extended_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_extended_basic_block. */
343 static unsigned int cse_reg_info_timestamp;
344
345 /* A HARD_REG_SET containing all the hard registers for which there is
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
349
350 static HARD_REG_SET hard_regs_in_table;
351
352 /* True if CSE has altered the CFG. */
353 static bool cse_cfg_altered;
354
355 /* True if CSE has altered conditional jump insns in such a way
356 that jump optimization should be redone. */
357 static bool cse_jumps_altered;
358
359 /* True if we put a LABEL_REF into the hash table for an INSN
360 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
361 to put in the note. */
362 static bool recorded_label_ref;
363
364 /* canon_hash stores 1 in do_not_record
365 if it notices a reference to CC0, PC, or some other volatile
366 subexpression. */
367
368 static int do_not_record;
369
370 /* canon_hash stores 1 in hash_arg_in_memory
371 if it notices a reference to memory within the expression being hashed. */
372
373 static int hash_arg_in_memory;
374
375 /* The hash table contains buckets which are chains of `struct table_elt's,
376 each recording one expression's information.
377 That expression is in the `exp' field.
378
379 The canon_exp field contains a canonical (from the point of view of
380 alias analysis) version of the `exp' field.
381
382 Those elements with the same hash code are chained in both directions
383 through the `next_same_hash' and `prev_same_hash' fields.
384
385 Each set of expressions with equivalent values
386 are on a two-way chain through the `next_same_value'
387 and `prev_same_value' fields, and all point with
388 the `first_same_value' field at the first element in
389 that chain. The chain is in order of increasing cost.
390 Each element's cost value is in its `cost' field.
391
392 The `in_memory' field is nonzero for elements that
393 involve any reference to memory. These elements are removed
394 whenever a write is done to an unidentified location in memory.
395 To be safe, we assume that a memory address is unidentified unless
396 the address is either a symbol constant or a constant plus
397 the frame pointer or argument pointer.
398
399 The `related_value' field is used to connect related expressions
400 (that differ by adding an integer).
401 The related expressions are chained in a circular fashion.
402 `related_value' is zero for expressions for which this
403 chain is not useful.
404
405 The `cost' field stores the cost of this element's expression.
406 The `regcost' field stores the value returned by approx_reg_cost for
407 this element's expression.
408
409 The `is_const' flag is set if the element is a constant (including
410 a fixed address).
411
412 The `flag' field is used as a temporary during some search routines.
413
414 The `mode' field is usually the same as GET_MODE (`exp'), but
415 if `exp' is a CONST_INT and has no machine mode then the `mode'
416 field is the mode it was being used as. Each constant is
417 recorded separately for each mode it is used with. */
418
419 struct table_elt
420 {
421 rtx exp;
422 rtx canon_exp;
423 struct table_elt *next_same_hash;
424 struct table_elt *prev_same_hash;
425 struct table_elt *next_same_value;
426 struct table_elt *prev_same_value;
427 struct table_elt *first_same_value;
428 struct table_elt *related_value;
429 int cost;
430 int regcost;
431 /* The size of this field should match the size
432 of the mode field of struct rtx_def (see rtl.h). */
433 ENUM_BITFIELD(machine_mode) mode : 8;
434 char in_memory;
435 char is_const;
436 char flag;
437 };
438
439 /* We don't want a lot of buckets, because we rarely have very many
440 things stored in the hash table, and a lot of buckets slows
441 down a lot of loops that happen frequently. */
442 #define HASH_SHIFT 5
443 #define HASH_SIZE (1 << HASH_SHIFT)
444 #define HASH_MASK (HASH_SIZE - 1)
445
446 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
447 register (hard registers may require `do_not_record' to be set). */
448
449 #define HASH(X, M) \
450 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
451 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
452 : canon_hash (X, M)) & HASH_MASK)
453
454 /* Like HASH, but without side-effects. */
455 #define SAFE_HASH(X, M) \
456 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
457 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
458 : safe_hash (X, M)) & HASH_MASK)
459
460 /* Determine whether register number N is considered a fixed register for the
461 purpose of approximating register costs.
462 It is desirable to replace other regs with fixed regs, to reduce need for
463 non-fixed hard regs.
464 A reg wins if it is either the frame pointer or designated as fixed. */
465 #define FIXED_REGNO_P(N) \
466 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
467 || fixed_regs[N] || global_regs[N])
468
469 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
470 hard registers and pointers into the frame are the cheapest with a cost
471 of 0. Next come pseudos with a cost of one and other hard registers with
472 a cost of 2. Aside from these special cases, call `rtx_cost'. */
473
474 #define CHEAP_REGNO(N) \
475 (REGNO_PTR_FRAME_P(N) \
476 || (HARD_REGISTER_NUM_P (N) \
477 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
478
479 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
480 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
481
482 /* Get the number of times this register has been updated in this
483 basic block. */
484
485 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
486
487 /* Get the point at which REG was recorded in the table. */
488
489 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
490
491 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
492 SUBREG). */
493
494 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
495
496 /* Get the quantity number for REG. */
497
498 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
499
500 /* Determine if the quantity number for register X represents a valid index
501 into the qty_table. */
502
503 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
504
505 static struct table_elt *table[HASH_SIZE];
506
507 /* Chain of `struct table_elt's made so far for this function
508 but currently removed from the table. */
509
510 static struct table_elt *free_element_chain;
511
512 /* Set to the cost of a constant pool reference if one was found for a
513 symbolic constant. If this was found, it means we should try to
514 convert constants into constant pool entries if they don't fit in
515 the insn. */
516
517 static int constant_pool_entries_cost;
518 static int constant_pool_entries_regcost;
519
520 /* Trace a patch through the CFG. */
521
522 struct branch_path
523 {
524 /* The basic block for this path entry. */
525 basic_block bb;
526 };
527
528 /* This data describes a block that will be processed by
529 cse_extended_basic_block. */
530
531 struct cse_basic_block_data
532 {
533 /* Total number of SETs in block. */
534 int nsets;
535 /* Size of current branch path, if any. */
536 int path_size;
537 /* Current path, indicating which basic_blocks will be processed. */
538 struct branch_path *path;
539 };
540
541
542 /* Pointers to the live in/live out bitmaps for the boundaries of the
543 current EBB. */
544 static bitmap cse_ebb_live_in, cse_ebb_live_out;
545
546 /* A simple bitmap to track which basic blocks have been visited
547 already as part of an already processed extended basic block. */
548 static sbitmap cse_visited_basic_blocks;
549
550 static bool fixed_base_plus_p (rtx x);
551 static int notreg_cost (rtx, enum rtx_code);
552 static int approx_reg_cost_1 (rtx *, void *);
553 static int approx_reg_cost (rtx);
554 static int preferable (int, int, int, int);
555 static void new_basic_block (void);
556 static void make_new_qty (unsigned int, enum machine_mode);
557 static void make_regs_eqv (unsigned int, unsigned int);
558 static void delete_reg_equiv (unsigned int);
559 static int mention_regs (rtx);
560 static int insert_regs (rtx, struct table_elt *, int);
561 static void remove_from_table (struct table_elt *, unsigned);
562 static void remove_pseudo_from_table (rtx, unsigned);
563 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
564 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
565 static rtx lookup_as_function (rtx, enum rtx_code);
566 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
567 enum machine_mode);
568 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
569 static void invalidate (rtx, enum machine_mode);
570 static bool cse_rtx_varies_p (const_rtx, bool);
571 static void remove_invalid_refs (unsigned int);
572 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
573 enum machine_mode);
574 static void rehash_using_reg (rtx);
575 static void invalidate_memory (void);
576 static void invalidate_for_call (void);
577 static rtx use_related_value (rtx, struct table_elt *);
578
579 static inline unsigned canon_hash (rtx, enum machine_mode);
580 static inline unsigned safe_hash (rtx, enum machine_mode);
581 static inline unsigned hash_rtx_string (const char *);
582
583 static rtx canon_reg (rtx, rtx);
584 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
585 enum machine_mode *,
586 enum machine_mode *);
587 static rtx fold_rtx (rtx, rtx);
588 static rtx equiv_constant (rtx);
589 static void record_jump_equiv (rtx, bool);
590 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
591 int);
592 static void cse_insn (rtx);
593 static void cse_prescan_path (struct cse_basic_block_data *);
594 static void invalidate_from_clobbers (rtx);
595 static rtx cse_process_notes (rtx, rtx, bool *);
596 static void cse_extended_basic_block (struct cse_basic_block_data *);
597 static void count_reg_usage (rtx, int *, rtx, int);
598 static int check_for_label_ref (rtx *, void *);
599 extern void dump_class (struct table_elt*);
600 static void get_cse_reg_info_1 (unsigned int regno);
601 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
602 static int check_dependence (rtx *, void *);
603
604 static void flush_hash_table (void);
605 static bool insn_live_p (rtx, int *);
606 static bool set_live_p (rtx, rtx, int *);
607 static int cse_change_cc_mode (rtx *, void *);
608 static void cse_change_cc_mode_insn (rtx, rtx);
609 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
610 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
611 bool);
612 \f
613
614 #undef RTL_HOOKS_GEN_LOWPART
615 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
616
617 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
618 \f
619 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
620 virtual regs here because the simplify_*_operation routines are called
621 by integrate.c, which is called before virtual register instantiation. */
622
623 static bool
624 fixed_base_plus_p (rtx x)
625 {
626 switch (GET_CODE (x))
627 {
628 case REG:
629 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
630 return true;
631 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
632 return true;
633 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
634 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
635 return true;
636 return false;
637
638 case PLUS:
639 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
640 return false;
641 return fixed_base_plus_p (XEXP (x, 0));
642
643 default:
644 return false;
645 }
646 }
647
648 /* Dump the expressions in the equivalence class indicated by CLASSP.
649 This function is used only for debugging. */
650 void
651 dump_class (struct table_elt *classp)
652 {
653 struct table_elt *elt;
654
655 fprintf (stderr, "Equivalence chain for ");
656 print_rtl (stderr, classp->exp);
657 fprintf (stderr, ": \n");
658
659 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
660 {
661 print_rtl (stderr, elt->exp);
662 fprintf (stderr, "\n");
663 }
664 }
665
666 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
667
668 static int
669 approx_reg_cost_1 (rtx *xp, void *data)
670 {
671 rtx x = *xp;
672 int *cost_p = (int *) data;
673
674 if (x && REG_P (x))
675 {
676 unsigned int regno = REGNO (x);
677
678 if (! CHEAP_REGNO (regno))
679 {
680 if (regno < FIRST_PSEUDO_REGISTER)
681 {
682 if (SMALL_REGISTER_CLASSES)
683 return 1;
684 *cost_p += 2;
685 }
686 else
687 *cost_p += 1;
688 }
689 }
690
691 return 0;
692 }
693
694 /* Return an estimate of the cost of the registers used in an rtx.
695 This is mostly the number of different REG expressions in the rtx;
696 however for some exceptions like fixed registers we use a cost of
697 0. If any other hard register reference occurs, return MAX_COST. */
698
699 static int
700 approx_reg_cost (rtx x)
701 {
702 int cost = 0;
703
704 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
705 return MAX_COST;
706
707 return cost;
708 }
709
710 /* Return a negative value if an rtx A, whose costs are given by COST_A
711 and REGCOST_A, is more desirable than an rtx B.
712 Return a positive value if A is less desirable, or 0 if the two are
713 equally good. */
714 static int
715 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
716 {
717 /* First, get rid of cases involving expressions that are entirely
718 unwanted. */
719 if (cost_a != cost_b)
720 {
721 if (cost_a == MAX_COST)
722 return 1;
723 if (cost_b == MAX_COST)
724 return -1;
725 }
726
727 /* Avoid extending lifetimes of hardregs. */
728 if (regcost_a != regcost_b)
729 {
730 if (regcost_a == MAX_COST)
731 return 1;
732 if (regcost_b == MAX_COST)
733 return -1;
734 }
735
736 /* Normal operation costs take precedence. */
737 if (cost_a != cost_b)
738 return cost_a - cost_b;
739 /* Only if these are identical consider effects on register pressure. */
740 if (regcost_a != regcost_b)
741 return regcost_a - regcost_b;
742 return 0;
743 }
744
745 /* Internal function, to compute cost when X is not a register; called
746 from COST macro to keep it simple. */
747
748 static int
749 notreg_cost (rtx x, enum rtx_code outer)
750 {
751 return ((GET_CODE (x) == SUBREG
752 && REG_P (SUBREG_REG (x))
753 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
754 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
755 && (GET_MODE_SIZE (GET_MODE (x))
756 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
757 && subreg_lowpart_p (x)
758 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
759 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
760 ? 0
761 : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
762 }
763
764 \f
765 /* Initialize CSE_REG_INFO_TABLE. */
766
767 static void
768 init_cse_reg_info (unsigned int nregs)
769 {
770 /* Do we need to grow the table? */
771 if (nregs > cse_reg_info_table_size)
772 {
773 unsigned int new_size;
774
775 if (cse_reg_info_table_size < 2048)
776 {
777 /* Compute a new size that is a power of 2 and no smaller
778 than the large of NREGS and 64. */
779 new_size = (cse_reg_info_table_size
780 ? cse_reg_info_table_size : 64);
781
782 while (new_size < nregs)
783 new_size *= 2;
784 }
785 else
786 {
787 /* If we need a big table, allocate just enough to hold
788 NREGS registers. */
789 new_size = nregs;
790 }
791
792 /* Reallocate the table with NEW_SIZE entries. */
793 if (cse_reg_info_table)
794 free (cse_reg_info_table);
795 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
796 cse_reg_info_table_size = new_size;
797 cse_reg_info_table_first_uninitialized = 0;
798 }
799
800 /* Do we have all of the first NREGS entries initialized? */
801 if (cse_reg_info_table_first_uninitialized < nregs)
802 {
803 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
804 unsigned int i;
805
806 /* Put the old timestamp on newly allocated entries so that they
807 will all be considered out of date. We do not touch those
808 entries beyond the first NREGS entries to be nice to the
809 virtual memory. */
810 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
811 cse_reg_info_table[i].timestamp = old_timestamp;
812
813 cse_reg_info_table_first_uninitialized = nregs;
814 }
815 }
816
817 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
818
819 static void
820 get_cse_reg_info_1 (unsigned int regno)
821 {
822 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
823 entry will be considered to have been initialized. */
824 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
825
826 /* Initialize the rest of the entry. */
827 cse_reg_info_table[regno].reg_tick = 1;
828 cse_reg_info_table[regno].reg_in_table = -1;
829 cse_reg_info_table[regno].subreg_ticked = -1;
830 cse_reg_info_table[regno].reg_qty = -regno - 1;
831 }
832
833 /* Find a cse_reg_info entry for REGNO. */
834
835 static inline struct cse_reg_info *
836 get_cse_reg_info (unsigned int regno)
837 {
838 struct cse_reg_info *p = &cse_reg_info_table[regno];
839
840 /* If this entry has not been initialized, go ahead and initialize
841 it. */
842 if (p->timestamp != cse_reg_info_timestamp)
843 get_cse_reg_info_1 (regno);
844
845 return p;
846 }
847
848 /* Clear the hash table and initialize each register with its own quantity,
849 for a new basic block. */
850
851 static void
852 new_basic_block (void)
853 {
854 int i;
855
856 next_qty = 0;
857
858 /* Invalidate cse_reg_info_table. */
859 cse_reg_info_timestamp++;
860
861 /* Clear out hash table state for this pass. */
862 CLEAR_HARD_REG_SET (hard_regs_in_table);
863
864 /* The per-quantity values used to be initialized here, but it is
865 much faster to initialize each as it is made in `make_new_qty'. */
866
867 for (i = 0; i < HASH_SIZE; i++)
868 {
869 struct table_elt *first;
870
871 first = table[i];
872 if (first != NULL)
873 {
874 struct table_elt *last = first;
875
876 table[i] = NULL;
877
878 while (last->next_same_hash != NULL)
879 last = last->next_same_hash;
880
881 /* Now relink this hash entire chain into
882 the free element list. */
883
884 last->next_same_hash = free_element_chain;
885 free_element_chain = first;
886 }
887 }
888
889 #ifdef HAVE_cc0
890 prev_insn_cc0 = 0;
891 #endif
892 }
893
894 /* Say that register REG contains a quantity in mode MODE not in any
895 register before and initialize that quantity. */
896
897 static void
898 make_new_qty (unsigned int reg, enum machine_mode mode)
899 {
900 int q;
901 struct qty_table_elem *ent;
902 struct reg_eqv_elem *eqv;
903
904 gcc_assert (next_qty < max_qty);
905
906 q = REG_QTY (reg) = next_qty++;
907 ent = &qty_table[q];
908 ent->first_reg = reg;
909 ent->last_reg = reg;
910 ent->mode = mode;
911 ent->const_rtx = ent->const_insn = NULL_RTX;
912 ent->comparison_code = UNKNOWN;
913
914 eqv = &reg_eqv_table[reg];
915 eqv->next = eqv->prev = -1;
916 }
917
918 /* Make reg NEW equivalent to reg OLD.
919 OLD is not changing; NEW is. */
920
921 static void
922 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
923 {
924 unsigned int lastr, firstr;
925 int q = REG_QTY (old_reg);
926 struct qty_table_elem *ent;
927
928 ent = &qty_table[q];
929
930 /* Nothing should become eqv until it has a "non-invalid" qty number. */
931 gcc_assert (REGNO_QTY_VALID_P (old_reg));
932
933 REG_QTY (new_reg) = q;
934 firstr = ent->first_reg;
935 lastr = ent->last_reg;
936
937 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
938 hard regs. Among pseudos, if NEW will live longer than any other reg
939 of the same qty, and that is beyond the current basic block,
940 make it the new canonical replacement for this qty. */
941 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
942 /* Certain fixed registers might be of the class NO_REGS. This means
943 that not only can they not be allocated by the compiler, but
944 they cannot be used in substitutions or canonicalizations
945 either. */
946 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
947 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
948 || (new_reg >= FIRST_PSEUDO_REGISTER
949 && (firstr < FIRST_PSEUDO_REGISTER
950 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
951 && !bitmap_bit_p (cse_ebb_live_out, firstr))
952 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
953 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
954 {
955 reg_eqv_table[firstr].prev = new_reg;
956 reg_eqv_table[new_reg].next = firstr;
957 reg_eqv_table[new_reg].prev = -1;
958 ent->first_reg = new_reg;
959 }
960 else
961 {
962 /* If NEW is a hard reg (known to be non-fixed), insert at end.
963 Otherwise, insert before any non-fixed hard regs that are at the
964 end. Registers of class NO_REGS cannot be used as an
965 equivalent for anything. */
966 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
967 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
968 && new_reg >= FIRST_PSEUDO_REGISTER)
969 lastr = reg_eqv_table[lastr].prev;
970 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
971 if (reg_eqv_table[lastr].next >= 0)
972 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
973 else
974 qty_table[q].last_reg = new_reg;
975 reg_eqv_table[lastr].next = new_reg;
976 reg_eqv_table[new_reg].prev = lastr;
977 }
978 }
979
980 /* Remove REG from its equivalence class. */
981
982 static void
983 delete_reg_equiv (unsigned int reg)
984 {
985 struct qty_table_elem *ent;
986 int q = REG_QTY (reg);
987 int p, n;
988
989 /* If invalid, do nothing. */
990 if (! REGNO_QTY_VALID_P (reg))
991 return;
992
993 ent = &qty_table[q];
994
995 p = reg_eqv_table[reg].prev;
996 n = reg_eqv_table[reg].next;
997
998 if (n != -1)
999 reg_eqv_table[n].prev = p;
1000 else
1001 ent->last_reg = p;
1002 if (p != -1)
1003 reg_eqv_table[p].next = n;
1004 else
1005 ent->first_reg = n;
1006
1007 REG_QTY (reg) = -reg - 1;
1008 }
1009
1010 /* Remove any invalid expressions from the hash table
1011 that refer to any of the registers contained in expression X.
1012
1013 Make sure that newly inserted references to those registers
1014 as subexpressions will be considered valid.
1015
1016 mention_regs is not called when a register itself
1017 is being stored in the table.
1018
1019 Return 1 if we have done something that may have changed the hash code
1020 of X. */
1021
1022 static int
1023 mention_regs (rtx x)
1024 {
1025 enum rtx_code code;
1026 int i, j;
1027 const char *fmt;
1028 int changed = 0;
1029
1030 if (x == 0)
1031 return 0;
1032
1033 code = GET_CODE (x);
1034 if (code == REG)
1035 {
1036 unsigned int regno = REGNO (x);
1037 unsigned int endregno = END_REGNO (x);
1038 unsigned int i;
1039
1040 for (i = regno; i < endregno; i++)
1041 {
1042 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1043 remove_invalid_refs (i);
1044
1045 REG_IN_TABLE (i) = REG_TICK (i);
1046 SUBREG_TICKED (i) = -1;
1047 }
1048
1049 return 0;
1050 }
1051
1052 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1053 pseudo if they don't use overlapping words. We handle only pseudos
1054 here for simplicity. */
1055 if (code == SUBREG && REG_P (SUBREG_REG (x))
1056 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1057 {
1058 unsigned int i = REGNO (SUBREG_REG (x));
1059
1060 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1061 {
1062 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1063 the last store to this register really stored into this
1064 subreg, then remove the memory of this subreg.
1065 Otherwise, remove any memory of the entire register and
1066 all its subregs from the table. */
1067 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1068 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1069 remove_invalid_refs (i);
1070 else
1071 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1072 }
1073
1074 REG_IN_TABLE (i) = REG_TICK (i);
1075 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1076 return 0;
1077 }
1078
1079 /* If X is a comparison or a COMPARE and either operand is a register
1080 that does not have a quantity, give it one. This is so that a later
1081 call to record_jump_equiv won't cause X to be assigned a different
1082 hash code and not found in the table after that call.
1083
1084 It is not necessary to do this here, since rehash_using_reg can
1085 fix up the table later, but doing this here eliminates the need to
1086 call that expensive function in the most common case where the only
1087 use of the register is in the comparison. */
1088
1089 if (code == COMPARE || COMPARISON_P (x))
1090 {
1091 if (REG_P (XEXP (x, 0))
1092 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1093 if (insert_regs (XEXP (x, 0), NULL, 0))
1094 {
1095 rehash_using_reg (XEXP (x, 0));
1096 changed = 1;
1097 }
1098
1099 if (REG_P (XEXP (x, 1))
1100 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1101 if (insert_regs (XEXP (x, 1), NULL, 0))
1102 {
1103 rehash_using_reg (XEXP (x, 1));
1104 changed = 1;
1105 }
1106 }
1107
1108 fmt = GET_RTX_FORMAT (code);
1109 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1110 if (fmt[i] == 'e')
1111 changed |= mention_regs (XEXP (x, i));
1112 else if (fmt[i] == 'E')
1113 for (j = 0; j < XVECLEN (x, i); j++)
1114 changed |= mention_regs (XVECEXP (x, i, j));
1115
1116 return changed;
1117 }
1118
1119 /* Update the register quantities for inserting X into the hash table
1120 with a value equivalent to CLASSP.
1121 (If the class does not contain a REG, it is irrelevant.)
1122 If MODIFIED is nonzero, X is a destination; it is being modified.
1123 Note that delete_reg_equiv should be called on a register
1124 before insert_regs is done on that register with MODIFIED != 0.
1125
1126 Nonzero value means that elements of reg_qty have changed
1127 so X's hash code may be different. */
1128
1129 static int
1130 insert_regs (rtx x, struct table_elt *classp, int modified)
1131 {
1132 if (REG_P (x))
1133 {
1134 unsigned int regno = REGNO (x);
1135 int qty_valid;
1136
1137 /* If REGNO is in the equivalence table already but is of the
1138 wrong mode for that equivalence, don't do anything here. */
1139
1140 qty_valid = REGNO_QTY_VALID_P (regno);
1141 if (qty_valid)
1142 {
1143 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1144
1145 if (ent->mode != GET_MODE (x))
1146 return 0;
1147 }
1148
1149 if (modified || ! qty_valid)
1150 {
1151 if (classp)
1152 for (classp = classp->first_same_value;
1153 classp != 0;
1154 classp = classp->next_same_value)
1155 if (REG_P (classp->exp)
1156 && GET_MODE (classp->exp) == GET_MODE (x))
1157 {
1158 unsigned c_regno = REGNO (classp->exp);
1159
1160 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1161
1162 /* Suppose that 5 is hard reg and 100 and 101 are
1163 pseudos. Consider
1164
1165 (set (reg:si 100) (reg:si 5))
1166 (set (reg:si 5) (reg:si 100))
1167 (set (reg:di 101) (reg:di 5))
1168
1169 We would now set REG_QTY (101) = REG_QTY (5), but the
1170 entry for 5 is in SImode. When we use this later in
1171 copy propagation, we get the register in wrong mode. */
1172 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1173 continue;
1174
1175 make_regs_eqv (regno, c_regno);
1176 return 1;
1177 }
1178
1179 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1180 than REG_IN_TABLE to find out if there was only a single preceding
1181 invalidation - for the SUBREG - or another one, which would be
1182 for the full register. However, if we find here that REG_TICK
1183 indicates that the register is invalid, it means that it has
1184 been invalidated in a separate operation. The SUBREG might be used
1185 now (then this is a recursive call), or we might use the full REG
1186 now and a SUBREG of it later. So bump up REG_TICK so that
1187 mention_regs will do the right thing. */
1188 if (! modified
1189 && REG_IN_TABLE (regno) >= 0
1190 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1191 REG_TICK (regno)++;
1192 make_new_qty (regno, GET_MODE (x));
1193 return 1;
1194 }
1195
1196 return 0;
1197 }
1198
1199 /* If X is a SUBREG, we will likely be inserting the inner register in the
1200 table. If that register doesn't have an assigned quantity number at
1201 this point but does later, the insertion that we will be doing now will
1202 not be accessible because its hash code will have changed. So assign
1203 a quantity number now. */
1204
1205 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1206 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1207 {
1208 insert_regs (SUBREG_REG (x), NULL, 0);
1209 mention_regs (x);
1210 return 1;
1211 }
1212 else
1213 return mention_regs (x);
1214 }
1215 \f
1216 /* Look in or update the hash table. */
1217
1218 /* Remove table element ELT from use in the table.
1219 HASH is its hash code, made using the HASH macro.
1220 It's an argument because often that is known in advance
1221 and we save much time not recomputing it. */
1222
1223 static void
1224 remove_from_table (struct table_elt *elt, unsigned int hash)
1225 {
1226 if (elt == 0)
1227 return;
1228
1229 /* Mark this element as removed. See cse_insn. */
1230 elt->first_same_value = 0;
1231
1232 /* Remove the table element from its equivalence class. */
1233
1234 {
1235 struct table_elt *prev = elt->prev_same_value;
1236 struct table_elt *next = elt->next_same_value;
1237
1238 if (next)
1239 next->prev_same_value = prev;
1240
1241 if (prev)
1242 prev->next_same_value = next;
1243 else
1244 {
1245 struct table_elt *newfirst = next;
1246 while (next)
1247 {
1248 next->first_same_value = newfirst;
1249 next = next->next_same_value;
1250 }
1251 }
1252 }
1253
1254 /* Remove the table element from its hash bucket. */
1255
1256 {
1257 struct table_elt *prev = elt->prev_same_hash;
1258 struct table_elt *next = elt->next_same_hash;
1259
1260 if (next)
1261 next->prev_same_hash = prev;
1262
1263 if (prev)
1264 prev->next_same_hash = next;
1265 else if (table[hash] == elt)
1266 table[hash] = next;
1267 else
1268 {
1269 /* This entry is not in the proper hash bucket. This can happen
1270 when two classes were merged by `merge_equiv_classes'. Search
1271 for the hash bucket that it heads. This happens only very
1272 rarely, so the cost is acceptable. */
1273 for (hash = 0; hash < HASH_SIZE; hash++)
1274 if (table[hash] == elt)
1275 table[hash] = next;
1276 }
1277 }
1278
1279 /* Remove the table element from its related-value circular chain. */
1280
1281 if (elt->related_value != 0 && elt->related_value != elt)
1282 {
1283 struct table_elt *p = elt->related_value;
1284
1285 while (p->related_value != elt)
1286 p = p->related_value;
1287 p->related_value = elt->related_value;
1288 if (p->related_value == p)
1289 p->related_value = 0;
1290 }
1291
1292 /* Now add it to the free element chain. */
1293 elt->next_same_hash = free_element_chain;
1294 free_element_chain = elt;
1295 }
1296
1297 /* Same as above, but X is a pseudo-register. */
1298
1299 static void
1300 remove_pseudo_from_table (rtx x, unsigned int hash)
1301 {
1302 struct table_elt *elt;
1303
1304 /* Because a pseudo-register can be referenced in more than one
1305 mode, we might have to remove more than one table entry. */
1306 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1307 remove_from_table (elt, hash);
1308 }
1309
1310 /* Look up X in the hash table and return its table element,
1311 or 0 if X is not in the table.
1312
1313 MODE is the machine-mode of X, or if X is an integer constant
1314 with VOIDmode then MODE is the mode with which X will be used.
1315
1316 Here we are satisfied to find an expression whose tree structure
1317 looks like X. */
1318
1319 static struct table_elt *
1320 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1321 {
1322 struct table_elt *p;
1323
1324 for (p = table[hash]; p; p = p->next_same_hash)
1325 if (mode == p->mode && ((x == p->exp && REG_P (x))
1326 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1327 return p;
1328
1329 return 0;
1330 }
1331
1332 /* Like `lookup' but don't care whether the table element uses invalid regs.
1333 Also ignore discrepancies in the machine mode of a register. */
1334
1335 static struct table_elt *
1336 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1337 {
1338 struct table_elt *p;
1339
1340 if (REG_P (x))
1341 {
1342 unsigned int regno = REGNO (x);
1343
1344 /* Don't check the machine mode when comparing registers;
1345 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1346 for (p = table[hash]; p; p = p->next_same_hash)
1347 if (REG_P (p->exp)
1348 && REGNO (p->exp) == regno)
1349 return p;
1350 }
1351 else
1352 {
1353 for (p = table[hash]; p; p = p->next_same_hash)
1354 if (mode == p->mode
1355 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1356 return p;
1357 }
1358
1359 return 0;
1360 }
1361
1362 /* Look for an expression equivalent to X and with code CODE.
1363 If one is found, return that expression. */
1364
1365 static rtx
1366 lookup_as_function (rtx x, enum rtx_code code)
1367 {
1368 struct table_elt *p
1369 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1370
1371 if (p == 0)
1372 return 0;
1373
1374 for (p = p->first_same_value; p; p = p->next_same_value)
1375 if (GET_CODE (p->exp) == code
1376 /* Make sure this is a valid entry in the table. */
1377 && exp_equiv_p (p->exp, p->exp, 1, false))
1378 return p->exp;
1379
1380 return 0;
1381 }
1382
1383 /* Insert X in the hash table, assuming HASH is its hash code
1384 and CLASSP is an element of the class it should go in
1385 (or 0 if a new class should be made).
1386 It is inserted at the proper position to keep the class in
1387 the order cheapest first.
1388
1389 MODE is the machine-mode of X, or if X is an integer constant
1390 with VOIDmode then MODE is the mode with which X will be used.
1391
1392 For elements of equal cheapness, the most recent one
1393 goes in front, except that the first element in the list
1394 remains first unless a cheaper element is added. The order of
1395 pseudo-registers does not matter, as canon_reg will be called to
1396 find the cheapest when a register is retrieved from the table.
1397
1398 The in_memory field in the hash table element is set to 0.
1399 The caller must set it nonzero if appropriate.
1400
1401 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1402 and if insert_regs returns a nonzero value
1403 you must then recompute its hash code before calling here.
1404
1405 If necessary, update table showing constant values of quantities. */
1406
1407 #define CHEAPER(X, Y) \
1408 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1409
1410 static struct table_elt *
1411 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1412 {
1413 struct table_elt *elt;
1414
1415 /* If X is a register and we haven't made a quantity for it,
1416 something is wrong. */
1417 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1418
1419 /* If X is a hard register, show it is being put in the table. */
1420 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1421 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1422
1423 /* Put an element for X into the right hash bucket. */
1424
1425 elt = free_element_chain;
1426 if (elt)
1427 free_element_chain = elt->next_same_hash;
1428 else
1429 elt = XNEW (struct table_elt);
1430
1431 elt->exp = x;
1432 elt->canon_exp = NULL_RTX;
1433 elt->cost = COST (x);
1434 elt->regcost = approx_reg_cost (x);
1435 elt->next_same_value = 0;
1436 elt->prev_same_value = 0;
1437 elt->next_same_hash = table[hash];
1438 elt->prev_same_hash = 0;
1439 elt->related_value = 0;
1440 elt->in_memory = 0;
1441 elt->mode = mode;
1442 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1443
1444 if (table[hash])
1445 table[hash]->prev_same_hash = elt;
1446 table[hash] = elt;
1447
1448 /* Put it into the proper value-class. */
1449 if (classp)
1450 {
1451 classp = classp->first_same_value;
1452 if (CHEAPER (elt, classp))
1453 /* Insert at the head of the class. */
1454 {
1455 struct table_elt *p;
1456 elt->next_same_value = classp;
1457 classp->prev_same_value = elt;
1458 elt->first_same_value = elt;
1459
1460 for (p = classp; p; p = p->next_same_value)
1461 p->first_same_value = elt;
1462 }
1463 else
1464 {
1465 /* Insert not at head of the class. */
1466 /* Put it after the last element cheaper than X. */
1467 struct table_elt *p, *next;
1468
1469 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1470 p = next);
1471
1472 /* Put it after P and before NEXT. */
1473 elt->next_same_value = next;
1474 if (next)
1475 next->prev_same_value = elt;
1476
1477 elt->prev_same_value = p;
1478 p->next_same_value = elt;
1479 elt->first_same_value = classp;
1480 }
1481 }
1482 else
1483 elt->first_same_value = elt;
1484
1485 /* If this is a constant being set equivalent to a register or a register
1486 being set equivalent to a constant, note the constant equivalence.
1487
1488 If this is a constant, it cannot be equivalent to a different constant,
1489 and a constant is the only thing that can be cheaper than a register. So
1490 we know the register is the head of the class (before the constant was
1491 inserted).
1492
1493 If this is a register that is not already known equivalent to a
1494 constant, we must check the entire class.
1495
1496 If this is a register that is already known equivalent to an insn,
1497 update the qtys `const_insn' to show that `this_insn' is the latest
1498 insn making that quantity equivalent to the constant. */
1499
1500 if (elt->is_const && classp && REG_P (classp->exp)
1501 && !REG_P (x))
1502 {
1503 int exp_q = REG_QTY (REGNO (classp->exp));
1504 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1505
1506 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1507 exp_ent->const_insn = this_insn;
1508 }
1509
1510 else if (REG_P (x)
1511 && classp
1512 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1513 && ! elt->is_const)
1514 {
1515 struct table_elt *p;
1516
1517 for (p = classp; p != 0; p = p->next_same_value)
1518 {
1519 if (p->is_const && !REG_P (p->exp))
1520 {
1521 int x_q = REG_QTY (REGNO (x));
1522 struct qty_table_elem *x_ent = &qty_table[x_q];
1523
1524 x_ent->const_rtx
1525 = gen_lowpart (GET_MODE (x), p->exp);
1526 x_ent->const_insn = this_insn;
1527 break;
1528 }
1529 }
1530 }
1531
1532 else if (REG_P (x)
1533 && qty_table[REG_QTY (REGNO (x))].const_rtx
1534 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1535 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1536
1537 /* If this is a constant with symbolic value,
1538 and it has a term with an explicit integer value,
1539 link it up with related expressions. */
1540 if (GET_CODE (x) == CONST)
1541 {
1542 rtx subexp = get_related_value (x);
1543 unsigned subhash;
1544 struct table_elt *subelt, *subelt_prev;
1545
1546 if (subexp != 0)
1547 {
1548 /* Get the integer-free subexpression in the hash table. */
1549 subhash = SAFE_HASH (subexp, mode);
1550 subelt = lookup (subexp, subhash, mode);
1551 if (subelt == 0)
1552 subelt = insert (subexp, NULL, subhash, mode);
1553 /* Initialize SUBELT's circular chain if it has none. */
1554 if (subelt->related_value == 0)
1555 subelt->related_value = subelt;
1556 /* Find the element in the circular chain that precedes SUBELT. */
1557 subelt_prev = subelt;
1558 while (subelt_prev->related_value != subelt)
1559 subelt_prev = subelt_prev->related_value;
1560 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1561 This way the element that follows SUBELT is the oldest one. */
1562 elt->related_value = subelt_prev->related_value;
1563 subelt_prev->related_value = elt;
1564 }
1565 }
1566
1567 return elt;
1568 }
1569 \f
1570 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1571 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1572 the two classes equivalent.
1573
1574 CLASS1 will be the surviving class; CLASS2 should not be used after this
1575 call.
1576
1577 Any invalid entries in CLASS2 will not be copied. */
1578
1579 static void
1580 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1581 {
1582 struct table_elt *elt, *next, *new_elt;
1583
1584 /* Ensure we start with the head of the classes. */
1585 class1 = class1->first_same_value;
1586 class2 = class2->first_same_value;
1587
1588 /* If they were already equal, forget it. */
1589 if (class1 == class2)
1590 return;
1591
1592 for (elt = class2; elt; elt = next)
1593 {
1594 unsigned int hash;
1595 rtx exp = elt->exp;
1596 enum machine_mode mode = elt->mode;
1597
1598 next = elt->next_same_value;
1599
1600 /* Remove old entry, make a new one in CLASS1's class.
1601 Don't do this for invalid entries as we cannot find their
1602 hash code (it also isn't necessary). */
1603 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1604 {
1605 bool need_rehash = false;
1606
1607 hash_arg_in_memory = 0;
1608 hash = HASH (exp, mode);
1609
1610 if (REG_P (exp))
1611 {
1612 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1613 delete_reg_equiv (REGNO (exp));
1614 }
1615
1616 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1617 remove_pseudo_from_table (exp, hash);
1618 else
1619 remove_from_table (elt, hash);
1620
1621 if (insert_regs (exp, class1, 0) || need_rehash)
1622 {
1623 rehash_using_reg (exp);
1624 hash = HASH (exp, mode);
1625 }
1626 new_elt = insert (exp, class1, hash, mode);
1627 new_elt->in_memory = hash_arg_in_memory;
1628 }
1629 }
1630 }
1631 \f
1632 /* Flush the entire hash table. */
1633
1634 static void
1635 flush_hash_table (void)
1636 {
1637 int i;
1638 struct table_elt *p;
1639
1640 for (i = 0; i < HASH_SIZE; i++)
1641 for (p = table[i]; p; p = table[i])
1642 {
1643 /* Note that invalidate can remove elements
1644 after P in the current hash chain. */
1645 if (REG_P (p->exp))
1646 invalidate (p->exp, VOIDmode);
1647 else
1648 remove_from_table (p, i);
1649 }
1650 }
1651 \f
1652 /* Function called for each rtx to check whether true dependence exist. */
1653 struct check_dependence_data
1654 {
1655 enum machine_mode mode;
1656 rtx exp;
1657 rtx addr;
1658 };
1659
1660 static int
1661 check_dependence (rtx *x, void *data)
1662 {
1663 struct check_dependence_data *d = (struct check_dependence_data *) data;
1664 if (*x && MEM_P (*x))
1665 return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX,
1666 cse_rtx_varies_p);
1667 else
1668 return 0;
1669 }
1670 \f
1671 /* Remove from the hash table, or mark as invalid, all expressions whose
1672 values could be altered by storing in X. X is a register, a subreg, or
1673 a memory reference with nonvarying address (because, when a memory
1674 reference with a varying address is stored in, all memory references are
1675 removed by invalidate_memory so specific invalidation is superfluous).
1676 FULL_MODE, if not VOIDmode, indicates that this much should be
1677 invalidated instead of just the amount indicated by the mode of X. This
1678 is only used for bitfield stores into memory.
1679
1680 A nonvarying address may be just a register or just a symbol reference,
1681 or it may be either of those plus a numeric offset. */
1682
1683 static void
1684 invalidate (rtx x, enum machine_mode full_mode)
1685 {
1686 int i;
1687 struct table_elt *p;
1688 rtx addr;
1689
1690 switch (GET_CODE (x))
1691 {
1692 case REG:
1693 {
1694 /* If X is a register, dependencies on its contents are recorded
1695 through the qty number mechanism. Just change the qty number of
1696 the register, mark it as invalid for expressions that refer to it,
1697 and remove it itself. */
1698 unsigned int regno = REGNO (x);
1699 unsigned int hash = HASH (x, GET_MODE (x));
1700
1701 /* Remove REGNO from any quantity list it might be on and indicate
1702 that its value might have changed. If it is a pseudo, remove its
1703 entry from the hash table.
1704
1705 For a hard register, we do the first two actions above for any
1706 additional hard registers corresponding to X. Then, if any of these
1707 registers are in the table, we must remove any REG entries that
1708 overlap these registers. */
1709
1710 delete_reg_equiv (regno);
1711 REG_TICK (regno)++;
1712 SUBREG_TICKED (regno) = -1;
1713
1714 if (regno >= FIRST_PSEUDO_REGISTER)
1715 remove_pseudo_from_table (x, hash);
1716 else
1717 {
1718 HOST_WIDE_INT in_table
1719 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1720 unsigned int endregno = END_HARD_REGNO (x);
1721 unsigned int tregno, tendregno, rn;
1722 struct table_elt *p, *next;
1723
1724 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1725
1726 for (rn = regno + 1; rn < endregno; rn++)
1727 {
1728 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1729 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1730 delete_reg_equiv (rn);
1731 REG_TICK (rn)++;
1732 SUBREG_TICKED (rn) = -1;
1733 }
1734
1735 if (in_table)
1736 for (hash = 0; hash < HASH_SIZE; hash++)
1737 for (p = table[hash]; p; p = next)
1738 {
1739 next = p->next_same_hash;
1740
1741 if (!REG_P (p->exp)
1742 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1743 continue;
1744
1745 tregno = REGNO (p->exp);
1746 tendregno = END_HARD_REGNO (p->exp);
1747 if (tendregno > regno && tregno < endregno)
1748 remove_from_table (p, hash);
1749 }
1750 }
1751 }
1752 return;
1753
1754 case SUBREG:
1755 invalidate (SUBREG_REG (x), VOIDmode);
1756 return;
1757
1758 case PARALLEL:
1759 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1760 invalidate (XVECEXP (x, 0, i), VOIDmode);
1761 return;
1762
1763 case EXPR_LIST:
1764 /* This is part of a disjoint return value; extract the location in
1765 question ignoring the offset. */
1766 invalidate (XEXP (x, 0), VOIDmode);
1767 return;
1768
1769 case MEM:
1770 addr = canon_rtx (get_addr (XEXP (x, 0)));
1771 /* Calculate the canonical version of X here so that
1772 true_dependence doesn't generate new RTL for X on each call. */
1773 x = canon_rtx (x);
1774
1775 /* Remove all hash table elements that refer to overlapping pieces of
1776 memory. */
1777 if (full_mode == VOIDmode)
1778 full_mode = GET_MODE (x);
1779
1780 for (i = 0; i < HASH_SIZE; i++)
1781 {
1782 struct table_elt *next;
1783
1784 for (p = table[i]; p; p = next)
1785 {
1786 next = p->next_same_hash;
1787 if (p->in_memory)
1788 {
1789 struct check_dependence_data d;
1790
1791 /* Just canonicalize the expression once;
1792 otherwise each time we call invalidate
1793 true_dependence will canonicalize the
1794 expression again. */
1795 if (!p->canon_exp)
1796 p->canon_exp = canon_rtx (p->exp);
1797 d.exp = x;
1798 d.addr = addr;
1799 d.mode = full_mode;
1800 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1801 remove_from_table (p, i);
1802 }
1803 }
1804 }
1805 return;
1806
1807 default:
1808 gcc_unreachable ();
1809 }
1810 }
1811 \f
1812 /* Remove all expressions that refer to register REGNO,
1813 since they are already invalid, and we are about to
1814 mark that register valid again and don't want the old
1815 expressions to reappear as valid. */
1816
1817 static void
1818 remove_invalid_refs (unsigned int regno)
1819 {
1820 unsigned int i;
1821 struct table_elt *p, *next;
1822
1823 for (i = 0; i < HASH_SIZE; i++)
1824 for (p = table[i]; p; p = next)
1825 {
1826 next = p->next_same_hash;
1827 if (!REG_P (p->exp)
1828 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1829 remove_from_table (p, i);
1830 }
1831 }
1832
1833 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1834 and mode MODE. */
1835 static void
1836 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1837 enum machine_mode mode)
1838 {
1839 unsigned int i;
1840 struct table_elt *p, *next;
1841 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1842
1843 for (i = 0; i < HASH_SIZE; i++)
1844 for (p = table[i]; p; p = next)
1845 {
1846 rtx exp = p->exp;
1847 next = p->next_same_hash;
1848
1849 if (!REG_P (exp)
1850 && (GET_CODE (exp) != SUBREG
1851 || !REG_P (SUBREG_REG (exp))
1852 || REGNO (SUBREG_REG (exp)) != regno
1853 || (((SUBREG_BYTE (exp)
1854 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1855 && SUBREG_BYTE (exp) <= end))
1856 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1857 remove_from_table (p, i);
1858 }
1859 }
1860 \f
1861 /* Recompute the hash codes of any valid entries in the hash table that
1862 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1863
1864 This is called when we make a jump equivalence. */
1865
1866 static void
1867 rehash_using_reg (rtx x)
1868 {
1869 unsigned int i;
1870 struct table_elt *p, *next;
1871 unsigned hash;
1872
1873 if (GET_CODE (x) == SUBREG)
1874 x = SUBREG_REG (x);
1875
1876 /* If X is not a register or if the register is known not to be in any
1877 valid entries in the table, we have no work to do. */
1878
1879 if (!REG_P (x)
1880 || REG_IN_TABLE (REGNO (x)) < 0
1881 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1882 return;
1883
1884 /* Scan all hash chains looking for valid entries that mention X.
1885 If we find one and it is in the wrong hash chain, move it. */
1886
1887 for (i = 0; i < HASH_SIZE; i++)
1888 for (p = table[i]; p; p = next)
1889 {
1890 next = p->next_same_hash;
1891 if (reg_mentioned_p (x, p->exp)
1892 && exp_equiv_p (p->exp, p->exp, 1, false)
1893 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1894 {
1895 if (p->next_same_hash)
1896 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1897
1898 if (p->prev_same_hash)
1899 p->prev_same_hash->next_same_hash = p->next_same_hash;
1900 else
1901 table[i] = p->next_same_hash;
1902
1903 p->next_same_hash = table[hash];
1904 p->prev_same_hash = 0;
1905 if (table[hash])
1906 table[hash]->prev_same_hash = p;
1907 table[hash] = p;
1908 }
1909 }
1910 }
1911 \f
1912 /* Remove from the hash table any expression that is a call-clobbered
1913 register. Also update their TICK values. */
1914
1915 static void
1916 invalidate_for_call (void)
1917 {
1918 unsigned int regno, endregno;
1919 unsigned int i;
1920 unsigned hash;
1921 struct table_elt *p, *next;
1922 int in_table = 0;
1923
1924 /* Go through all the hard registers. For each that is clobbered in
1925 a CALL_INSN, remove the register from quantity chains and update
1926 reg_tick if defined. Also see if any of these registers is currently
1927 in the table. */
1928
1929 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1930 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1931 {
1932 delete_reg_equiv (regno);
1933 if (REG_TICK (regno) >= 0)
1934 {
1935 REG_TICK (regno)++;
1936 SUBREG_TICKED (regno) = -1;
1937 }
1938
1939 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1940 }
1941
1942 /* In the case where we have no call-clobbered hard registers in the
1943 table, we are done. Otherwise, scan the table and remove any
1944 entry that overlaps a call-clobbered register. */
1945
1946 if (in_table)
1947 for (hash = 0; hash < HASH_SIZE; hash++)
1948 for (p = table[hash]; p; p = next)
1949 {
1950 next = p->next_same_hash;
1951
1952 if (!REG_P (p->exp)
1953 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1954 continue;
1955
1956 regno = REGNO (p->exp);
1957 endregno = END_HARD_REGNO (p->exp);
1958
1959 for (i = regno; i < endregno; i++)
1960 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1961 {
1962 remove_from_table (p, hash);
1963 break;
1964 }
1965 }
1966 }
1967 \f
1968 /* Given an expression X of type CONST,
1969 and ELT which is its table entry (or 0 if it
1970 is not in the hash table),
1971 return an alternate expression for X as a register plus integer.
1972 If none can be found, return 0. */
1973
1974 static rtx
1975 use_related_value (rtx x, struct table_elt *elt)
1976 {
1977 struct table_elt *relt = 0;
1978 struct table_elt *p, *q;
1979 HOST_WIDE_INT offset;
1980
1981 /* First, is there anything related known?
1982 If we have a table element, we can tell from that.
1983 Otherwise, must look it up. */
1984
1985 if (elt != 0 && elt->related_value != 0)
1986 relt = elt;
1987 else if (elt == 0 && GET_CODE (x) == CONST)
1988 {
1989 rtx subexp = get_related_value (x);
1990 if (subexp != 0)
1991 relt = lookup (subexp,
1992 SAFE_HASH (subexp, GET_MODE (subexp)),
1993 GET_MODE (subexp));
1994 }
1995
1996 if (relt == 0)
1997 return 0;
1998
1999 /* Search all related table entries for one that has an
2000 equivalent register. */
2001
2002 p = relt;
2003 while (1)
2004 {
2005 /* This loop is strange in that it is executed in two different cases.
2006 The first is when X is already in the table. Then it is searching
2007 the RELATED_VALUE list of X's class (RELT). The second case is when
2008 X is not in the table. Then RELT points to a class for the related
2009 value.
2010
2011 Ensure that, whatever case we are in, that we ignore classes that have
2012 the same value as X. */
2013
2014 if (rtx_equal_p (x, p->exp))
2015 q = 0;
2016 else
2017 for (q = p->first_same_value; q; q = q->next_same_value)
2018 if (REG_P (q->exp))
2019 break;
2020
2021 if (q)
2022 break;
2023
2024 p = p->related_value;
2025
2026 /* We went all the way around, so there is nothing to be found.
2027 Alternatively, perhaps RELT was in the table for some other reason
2028 and it has no related values recorded. */
2029 if (p == relt || p == 0)
2030 break;
2031 }
2032
2033 if (q == 0)
2034 return 0;
2035
2036 offset = (get_integer_term (x) - get_integer_term (p->exp));
2037 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2038 return plus_constant (q->exp, offset);
2039 }
2040 \f
2041
2042 /* Hash a string. Just add its bytes up. */
2043 static inline unsigned
2044 hash_rtx_string (const char *ps)
2045 {
2046 unsigned hash = 0;
2047 const unsigned char *p = (const unsigned char *) ps;
2048
2049 if (p)
2050 while (*p)
2051 hash += *p++;
2052
2053 return hash;
2054 }
2055
2056 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2057 When the callback returns true, we continue with the new rtx. */
2058
2059 unsigned
2060 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2061 int *do_not_record_p, int *hash_arg_in_memory_p,
2062 bool have_reg_qty, hash_rtx_callback_function cb)
2063 {
2064 int i, j;
2065 unsigned hash = 0;
2066 enum rtx_code code;
2067 const char *fmt;
2068 enum machine_mode newmode;
2069 rtx newx;
2070
2071 /* Used to turn recursion into iteration. We can't rely on GCC's
2072 tail-recursion elimination since we need to keep accumulating values
2073 in HASH. */
2074 repeat:
2075 if (x == 0)
2076 return hash;
2077
2078 /* Invoke the callback first. */
2079 if (cb != NULL
2080 && ((*cb) (x, mode, &newx, &newmode)))
2081 {
2082 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2083 hash_arg_in_memory_p, have_reg_qty, cb);
2084 return hash;
2085 }
2086
2087 code = GET_CODE (x);
2088 switch (code)
2089 {
2090 case REG:
2091 {
2092 unsigned int regno = REGNO (x);
2093
2094 if (do_not_record_p && !reload_completed)
2095 {
2096 /* On some machines, we can't record any non-fixed hard register,
2097 because extending its life will cause reload problems. We
2098 consider ap, fp, sp, gp to be fixed for this purpose.
2099
2100 We also consider CCmode registers to be fixed for this purpose;
2101 failure to do so leads to failure to simplify 0<100 type of
2102 conditionals.
2103
2104 On all machines, we can't record any global registers.
2105 Nor should we record any register that is in a small
2106 class, as defined by CLASS_LIKELY_SPILLED_P. */
2107 bool record;
2108
2109 if (regno >= FIRST_PSEUDO_REGISTER)
2110 record = true;
2111 else if (x == frame_pointer_rtx
2112 || x == hard_frame_pointer_rtx
2113 || x == arg_pointer_rtx
2114 || x == stack_pointer_rtx
2115 || x == pic_offset_table_rtx)
2116 record = true;
2117 else if (global_regs[regno])
2118 record = false;
2119 else if (fixed_regs[regno])
2120 record = true;
2121 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2122 record = true;
2123 else if (SMALL_REGISTER_CLASSES)
2124 record = false;
2125 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2126 record = false;
2127 else
2128 record = true;
2129
2130 if (!record)
2131 {
2132 *do_not_record_p = 1;
2133 return 0;
2134 }
2135 }
2136
2137 hash += ((unsigned int) REG << 7);
2138 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2139 return hash;
2140 }
2141
2142 /* We handle SUBREG of a REG specially because the underlying
2143 reg changes its hash value with every value change; we don't
2144 want to have to forget unrelated subregs when one subreg changes. */
2145 case SUBREG:
2146 {
2147 if (REG_P (SUBREG_REG (x)))
2148 {
2149 hash += (((unsigned int) SUBREG << 7)
2150 + REGNO (SUBREG_REG (x))
2151 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2152 return hash;
2153 }
2154 break;
2155 }
2156
2157 case CONST_INT:
2158 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2159 + (unsigned int) INTVAL (x));
2160 return hash;
2161
2162 case CONST_DOUBLE:
2163 /* This is like the general case, except that it only counts
2164 the integers representing the constant. */
2165 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2166 if (GET_MODE (x) != VOIDmode)
2167 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2168 else
2169 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2170 + (unsigned int) CONST_DOUBLE_HIGH (x));
2171 return hash;
2172
2173 case CONST_FIXED:
2174 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2175 hash += fixed_hash (CONST_FIXED_VALUE (x));
2176 return hash;
2177
2178 case CONST_VECTOR:
2179 {
2180 int units;
2181 rtx elt;
2182
2183 units = CONST_VECTOR_NUNITS (x);
2184
2185 for (i = 0; i < units; ++i)
2186 {
2187 elt = CONST_VECTOR_ELT (x, i);
2188 hash += hash_rtx_cb (elt, GET_MODE (elt),
2189 do_not_record_p, hash_arg_in_memory_p,
2190 have_reg_qty, cb);
2191 }
2192
2193 return hash;
2194 }
2195
2196 /* Assume there is only one rtx object for any given label. */
2197 case LABEL_REF:
2198 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2199 differences and differences between each stage's debugging dumps. */
2200 hash += (((unsigned int) LABEL_REF << 7)
2201 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2202 return hash;
2203
2204 case SYMBOL_REF:
2205 {
2206 /* Don't hash on the symbol's address to avoid bootstrap differences.
2207 Different hash values may cause expressions to be recorded in
2208 different orders and thus different registers to be used in the
2209 final assembler. This also avoids differences in the dump files
2210 between various stages. */
2211 unsigned int h = 0;
2212 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2213
2214 while (*p)
2215 h += (h << 7) + *p++; /* ??? revisit */
2216
2217 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2218 return hash;
2219 }
2220
2221 case MEM:
2222 /* We don't record if marked volatile or if BLKmode since we don't
2223 know the size of the move. */
2224 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2225 {
2226 *do_not_record_p = 1;
2227 return 0;
2228 }
2229 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2230 *hash_arg_in_memory_p = 1;
2231
2232 /* Now that we have already found this special case,
2233 might as well speed it up as much as possible. */
2234 hash += (unsigned) MEM;
2235 x = XEXP (x, 0);
2236 goto repeat;
2237
2238 case USE:
2239 /* A USE that mentions non-volatile memory needs special
2240 handling since the MEM may be BLKmode which normally
2241 prevents an entry from being made. Pure calls are
2242 marked by a USE which mentions BLKmode memory.
2243 See calls.c:emit_call_1. */
2244 if (MEM_P (XEXP (x, 0))
2245 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2246 {
2247 hash += (unsigned) USE;
2248 x = XEXP (x, 0);
2249
2250 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2251 *hash_arg_in_memory_p = 1;
2252
2253 /* Now that we have already found this special case,
2254 might as well speed it up as much as possible. */
2255 hash += (unsigned) MEM;
2256 x = XEXP (x, 0);
2257 goto repeat;
2258 }
2259 break;
2260
2261 case PRE_DEC:
2262 case PRE_INC:
2263 case POST_DEC:
2264 case POST_INC:
2265 case PRE_MODIFY:
2266 case POST_MODIFY:
2267 case PC:
2268 case CC0:
2269 case CALL:
2270 case UNSPEC_VOLATILE:
2271 if (do_not_record_p) {
2272 *do_not_record_p = 1;
2273 return 0;
2274 }
2275 else
2276 return hash;
2277 break;
2278
2279 case ASM_OPERANDS:
2280 if (do_not_record_p && MEM_VOLATILE_P (x))
2281 {
2282 *do_not_record_p = 1;
2283 return 0;
2284 }
2285 else
2286 {
2287 /* We don't want to take the filename and line into account. */
2288 hash += (unsigned) code + (unsigned) GET_MODE (x)
2289 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2290 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2291 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2292
2293 if (ASM_OPERANDS_INPUT_LENGTH (x))
2294 {
2295 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2296 {
2297 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2298 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2299 do_not_record_p, hash_arg_in_memory_p,
2300 have_reg_qty, cb)
2301 + hash_rtx_string
2302 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2303 }
2304
2305 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2306 x = ASM_OPERANDS_INPUT (x, 0);
2307 mode = GET_MODE (x);
2308 goto repeat;
2309 }
2310
2311 return hash;
2312 }
2313 break;
2314
2315 default:
2316 break;
2317 }
2318
2319 i = GET_RTX_LENGTH (code) - 1;
2320 hash += (unsigned) code + (unsigned) GET_MODE (x);
2321 fmt = GET_RTX_FORMAT (code);
2322 for (; i >= 0; i--)
2323 {
2324 switch (fmt[i])
2325 {
2326 case 'e':
2327 /* If we are about to do the last recursive call
2328 needed at this level, change it into iteration.
2329 This function is called enough to be worth it. */
2330 if (i == 0)
2331 {
2332 x = XEXP (x, i);
2333 goto repeat;
2334 }
2335
2336 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2337 hash_arg_in_memory_p,
2338 have_reg_qty, cb);
2339 break;
2340
2341 case 'E':
2342 for (j = 0; j < XVECLEN (x, i); j++)
2343 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2344 hash_arg_in_memory_p,
2345 have_reg_qty, cb);
2346 break;
2347
2348 case 's':
2349 hash += hash_rtx_string (XSTR (x, i));
2350 break;
2351
2352 case 'i':
2353 hash += (unsigned int) XINT (x, i);
2354 break;
2355
2356 case '0': case 't':
2357 /* Unused. */
2358 break;
2359
2360 default:
2361 gcc_unreachable ();
2362 }
2363 }
2364
2365 return hash;
2366 }
2367
2368 /* Hash an rtx. We are careful to make sure the value is never negative.
2369 Equivalent registers hash identically.
2370 MODE is used in hashing for CONST_INTs only;
2371 otherwise the mode of X is used.
2372
2373 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2374
2375 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2376 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2377
2378 Note that cse_insn knows that the hash code of a MEM expression
2379 is just (int) MEM plus the hash code of the address. */
2380
2381 unsigned
2382 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2383 int *hash_arg_in_memory_p, bool have_reg_qty)
2384 {
2385 return hash_rtx_cb (x, mode, do_not_record_p,
2386 hash_arg_in_memory_p, have_reg_qty, NULL);
2387 }
2388
2389 /* Hash an rtx X for cse via hash_rtx.
2390 Stores 1 in do_not_record if any subexpression is volatile.
2391 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2392 does not have the RTX_UNCHANGING_P bit set. */
2393
2394 static inline unsigned
2395 canon_hash (rtx x, enum machine_mode mode)
2396 {
2397 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2398 }
2399
2400 /* Like canon_hash but with no side effects, i.e. do_not_record
2401 and hash_arg_in_memory are not changed. */
2402
2403 static inline unsigned
2404 safe_hash (rtx x, enum machine_mode mode)
2405 {
2406 int dummy_do_not_record;
2407 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2408 }
2409 \f
2410 /* Return 1 iff X and Y would canonicalize into the same thing,
2411 without actually constructing the canonicalization of either one.
2412 If VALIDATE is nonzero,
2413 we assume X is an expression being processed from the rtl
2414 and Y was found in the hash table. We check register refs
2415 in Y for being marked as valid.
2416
2417 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2418
2419 int
2420 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2421 {
2422 int i, j;
2423 enum rtx_code code;
2424 const char *fmt;
2425
2426 /* Note: it is incorrect to assume an expression is equivalent to itself
2427 if VALIDATE is nonzero. */
2428 if (x == y && !validate)
2429 return 1;
2430
2431 if (x == 0 || y == 0)
2432 return x == y;
2433
2434 code = GET_CODE (x);
2435 if (code != GET_CODE (y))
2436 return 0;
2437
2438 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2439 if (GET_MODE (x) != GET_MODE (y))
2440 return 0;
2441
2442 switch (code)
2443 {
2444 case PC:
2445 case CC0:
2446 case CONST_INT:
2447 case CONST_DOUBLE:
2448 case CONST_FIXED:
2449 return x == y;
2450
2451 case LABEL_REF:
2452 return XEXP (x, 0) == XEXP (y, 0);
2453
2454 case SYMBOL_REF:
2455 return XSTR (x, 0) == XSTR (y, 0);
2456
2457 case REG:
2458 if (for_gcse)
2459 return REGNO (x) == REGNO (y);
2460 else
2461 {
2462 unsigned int regno = REGNO (y);
2463 unsigned int i;
2464 unsigned int endregno = END_REGNO (y);
2465
2466 /* If the quantities are not the same, the expressions are not
2467 equivalent. If there are and we are not to validate, they
2468 are equivalent. Otherwise, ensure all regs are up-to-date. */
2469
2470 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2471 return 0;
2472
2473 if (! validate)
2474 return 1;
2475
2476 for (i = regno; i < endregno; i++)
2477 if (REG_IN_TABLE (i) != REG_TICK (i))
2478 return 0;
2479
2480 return 1;
2481 }
2482
2483 case MEM:
2484 if (for_gcse)
2485 {
2486 /* A volatile mem should not be considered equivalent to any
2487 other. */
2488 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2489 return 0;
2490
2491 /* Can't merge two expressions in different alias sets, since we
2492 can decide that the expression is transparent in a block when
2493 it isn't, due to it being set with the different alias set.
2494
2495 Also, can't merge two expressions with different MEM_ATTRS.
2496 They could e.g. be two different entities allocated into the
2497 same space on the stack (see e.g. PR25130). In that case, the
2498 MEM addresses can be the same, even though the two MEMs are
2499 absolutely not equivalent.
2500
2501 But because really all MEM attributes should be the same for
2502 equivalent MEMs, we just use the invariant that MEMs that have
2503 the same attributes share the same mem_attrs data structure. */
2504 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2505 return 0;
2506 }
2507 break;
2508
2509 /* For commutative operations, check both orders. */
2510 case PLUS:
2511 case MULT:
2512 case AND:
2513 case IOR:
2514 case XOR:
2515 case NE:
2516 case EQ:
2517 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2518 validate, for_gcse)
2519 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2520 validate, for_gcse))
2521 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2522 validate, for_gcse)
2523 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2524 validate, for_gcse)));
2525
2526 case ASM_OPERANDS:
2527 /* We don't use the generic code below because we want to
2528 disregard filename and line numbers. */
2529
2530 /* A volatile asm isn't equivalent to any other. */
2531 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2532 return 0;
2533
2534 if (GET_MODE (x) != GET_MODE (y)
2535 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2536 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2537 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2538 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2539 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2540 return 0;
2541
2542 if (ASM_OPERANDS_INPUT_LENGTH (x))
2543 {
2544 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2545 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2546 ASM_OPERANDS_INPUT (y, i),
2547 validate, for_gcse)
2548 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2549 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2550 return 0;
2551 }
2552
2553 return 1;
2554
2555 default:
2556 break;
2557 }
2558
2559 /* Compare the elements. If any pair of corresponding elements
2560 fail to match, return 0 for the whole thing. */
2561
2562 fmt = GET_RTX_FORMAT (code);
2563 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2564 {
2565 switch (fmt[i])
2566 {
2567 case 'e':
2568 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2569 validate, for_gcse))
2570 return 0;
2571 break;
2572
2573 case 'E':
2574 if (XVECLEN (x, i) != XVECLEN (y, i))
2575 return 0;
2576 for (j = 0; j < XVECLEN (x, i); j++)
2577 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2578 validate, for_gcse))
2579 return 0;
2580 break;
2581
2582 case 's':
2583 if (strcmp (XSTR (x, i), XSTR (y, i)))
2584 return 0;
2585 break;
2586
2587 case 'i':
2588 if (XINT (x, i) != XINT (y, i))
2589 return 0;
2590 break;
2591
2592 case 'w':
2593 if (XWINT (x, i) != XWINT (y, i))
2594 return 0;
2595 break;
2596
2597 case '0':
2598 case 't':
2599 break;
2600
2601 default:
2602 gcc_unreachable ();
2603 }
2604 }
2605
2606 return 1;
2607 }
2608 \f
2609 /* Return 1 if X has a value that can vary even between two
2610 executions of the program. 0 means X can be compared reliably
2611 against certain constants or near-constants. */
2612
2613 static bool
2614 cse_rtx_varies_p (const_rtx x, bool from_alias)
2615 {
2616 /* We need not check for X and the equivalence class being of the same
2617 mode because if X is equivalent to a constant in some mode, it
2618 doesn't vary in any mode. */
2619
2620 if (REG_P (x)
2621 && REGNO_QTY_VALID_P (REGNO (x)))
2622 {
2623 int x_q = REG_QTY (REGNO (x));
2624 struct qty_table_elem *x_ent = &qty_table[x_q];
2625
2626 if (GET_MODE (x) == x_ent->mode
2627 && x_ent->const_rtx != NULL_RTX)
2628 return 0;
2629 }
2630
2631 if (GET_CODE (x) == PLUS
2632 && GET_CODE (XEXP (x, 1)) == CONST_INT
2633 && REG_P (XEXP (x, 0))
2634 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2635 {
2636 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2637 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2638
2639 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2640 && x0_ent->const_rtx != NULL_RTX)
2641 return 0;
2642 }
2643
2644 /* This can happen as the result of virtual register instantiation, if
2645 the initial constant is too large to be a valid address. This gives
2646 us a three instruction sequence, load large offset into a register,
2647 load fp minus a constant into a register, then a MEM which is the
2648 sum of the two `constant' registers. */
2649 if (GET_CODE (x) == PLUS
2650 && REG_P (XEXP (x, 0))
2651 && REG_P (XEXP (x, 1))
2652 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2653 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2654 {
2655 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2656 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2657 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2658 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2659
2660 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2661 && x0_ent->const_rtx != NULL_RTX
2662 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2663 && x1_ent->const_rtx != NULL_RTX)
2664 return 0;
2665 }
2666
2667 return rtx_varies_p (x, from_alias);
2668 }
2669 \f
2670 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2671 the result if necessary. INSN is as for canon_reg. */
2672
2673 static void
2674 validate_canon_reg (rtx *xloc, rtx insn)
2675 {
2676 if (*xloc)
2677 {
2678 rtx new_rtx = canon_reg (*xloc, insn);
2679
2680 /* If replacing pseudo with hard reg or vice versa, ensure the
2681 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2682 gcc_assert (insn && new_rtx);
2683 validate_change (insn, xloc, new_rtx, 1);
2684 }
2685 }
2686
2687 /* Canonicalize an expression:
2688 replace each register reference inside it
2689 with the "oldest" equivalent register.
2690
2691 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2692 after we make our substitution. The calls are made with IN_GROUP nonzero
2693 so apply_change_group must be called upon the outermost return from this
2694 function (unless INSN is zero). The result of apply_change_group can
2695 generally be discarded since the changes we are making are optional. */
2696
2697 static rtx
2698 canon_reg (rtx x, rtx insn)
2699 {
2700 int i;
2701 enum rtx_code code;
2702 const char *fmt;
2703
2704 if (x == 0)
2705 return x;
2706
2707 code = GET_CODE (x);
2708 switch (code)
2709 {
2710 case PC:
2711 case CC0:
2712 case CONST:
2713 case CONST_INT:
2714 case CONST_DOUBLE:
2715 case CONST_FIXED:
2716 case CONST_VECTOR:
2717 case SYMBOL_REF:
2718 case LABEL_REF:
2719 case ADDR_VEC:
2720 case ADDR_DIFF_VEC:
2721 return x;
2722
2723 case REG:
2724 {
2725 int first;
2726 int q;
2727 struct qty_table_elem *ent;
2728
2729 /* Never replace a hard reg, because hard regs can appear
2730 in more than one machine mode, and we must preserve the mode
2731 of each occurrence. Also, some hard regs appear in
2732 MEMs that are shared and mustn't be altered. Don't try to
2733 replace any reg that maps to a reg of class NO_REGS. */
2734 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2735 || ! REGNO_QTY_VALID_P (REGNO (x)))
2736 return x;
2737
2738 q = REG_QTY (REGNO (x));
2739 ent = &qty_table[q];
2740 first = ent->first_reg;
2741 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2742 : REGNO_REG_CLASS (first) == NO_REGS ? x
2743 : gen_rtx_REG (ent->mode, first));
2744 }
2745
2746 default:
2747 break;
2748 }
2749
2750 fmt = GET_RTX_FORMAT (code);
2751 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2752 {
2753 int j;
2754
2755 if (fmt[i] == 'e')
2756 validate_canon_reg (&XEXP (x, i), insn);
2757 else if (fmt[i] == 'E')
2758 for (j = 0; j < XVECLEN (x, i); j++)
2759 validate_canon_reg (&XVECEXP (x, i, j), insn);
2760 }
2761
2762 return x;
2763 }
2764 \f
2765 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2766 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2767 what values are being compared.
2768
2769 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2770 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2771 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2772 compared to produce cc0.
2773
2774 The return value is the comparison operator and is either the code of
2775 A or the code corresponding to the inverse of the comparison. */
2776
2777 static enum rtx_code
2778 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2779 enum machine_mode *pmode1, enum machine_mode *pmode2)
2780 {
2781 rtx arg1, arg2;
2782
2783 arg1 = *parg1, arg2 = *parg2;
2784
2785 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2786
2787 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2788 {
2789 /* Set nonzero when we find something of interest. */
2790 rtx x = 0;
2791 int reverse_code = 0;
2792 struct table_elt *p = 0;
2793
2794 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2795 On machines with CC0, this is the only case that can occur, since
2796 fold_rtx will return the COMPARE or item being compared with zero
2797 when given CC0. */
2798
2799 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2800 x = arg1;
2801
2802 /* If ARG1 is a comparison operator and CODE is testing for
2803 STORE_FLAG_VALUE, get the inner arguments. */
2804
2805 else if (COMPARISON_P (arg1))
2806 {
2807 #ifdef FLOAT_STORE_FLAG_VALUE
2808 REAL_VALUE_TYPE fsfv;
2809 #endif
2810
2811 if (code == NE
2812 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2813 && code == LT && STORE_FLAG_VALUE == -1)
2814 #ifdef FLOAT_STORE_FLAG_VALUE
2815 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2816 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2817 REAL_VALUE_NEGATIVE (fsfv)))
2818 #endif
2819 )
2820 x = arg1;
2821 else if (code == EQ
2822 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2823 && code == GE && STORE_FLAG_VALUE == -1)
2824 #ifdef FLOAT_STORE_FLAG_VALUE
2825 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2826 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2827 REAL_VALUE_NEGATIVE (fsfv)))
2828 #endif
2829 )
2830 x = arg1, reverse_code = 1;
2831 }
2832
2833 /* ??? We could also check for
2834
2835 (ne (and (eq (...) (const_int 1))) (const_int 0))
2836
2837 and related forms, but let's wait until we see them occurring. */
2838
2839 if (x == 0)
2840 /* Look up ARG1 in the hash table and see if it has an equivalence
2841 that lets us see what is being compared. */
2842 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2843 if (p)
2844 {
2845 p = p->first_same_value;
2846
2847 /* If what we compare is already known to be constant, that is as
2848 good as it gets.
2849 We need to break the loop in this case, because otherwise we
2850 can have an infinite loop when looking at a reg that is known
2851 to be a constant which is the same as a comparison of a reg
2852 against zero which appears later in the insn stream, which in
2853 turn is constant and the same as the comparison of the first reg
2854 against zero... */
2855 if (p->is_const)
2856 break;
2857 }
2858
2859 for (; p; p = p->next_same_value)
2860 {
2861 enum machine_mode inner_mode = GET_MODE (p->exp);
2862 #ifdef FLOAT_STORE_FLAG_VALUE
2863 REAL_VALUE_TYPE fsfv;
2864 #endif
2865
2866 /* If the entry isn't valid, skip it. */
2867 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2868 continue;
2869
2870 if (GET_CODE (p->exp) == COMPARE
2871 /* Another possibility is that this machine has a compare insn
2872 that includes the comparison code. In that case, ARG1 would
2873 be equivalent to a comparison operation that would set ARG1 to
2874 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2875 ORIG_CODE is the actual comparison being done; if it is an EQ,
2876 we must reverse ORIG_CODE. On machine with a negative value
2877 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2878 || ((code == NE
2879 || (code == LT
2880 && GET_MODE_CLASS (inner_mode) == MODE_INT
2881 && (GET_MODE_BITSIZE (inner_mode)
2882 <= HOST_BITS_PER_WIDE_INT)
2883 && (STORE_FLAG_VALUE
2884 & ((HOST_WIDE_INT) 1
2885 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2886 #ifdef FLOAT_STORE_FLAG_VALUE
2887 || (code == LT
2888 && SCALAR_FLOAT_MODE_P (inner_mode)
2889 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2890 REAL_VALUE_NEGATIVE (fsfv)))
2891 #endif
2892 )
2893 && COMPARISON_P (p->exp)))
2894 {
2895 x = p->exp;
2896 break;
2897 }
2898 else if ((code == EQ
2899 || (code == GE
2900 && GET_MODE_CLASS (inner_mode) == MODE_INT
2901 && (GET_MODE_BITSIZE (inner_mode)
2902 <= HOST_BITS_PER_WIDE_INT)
2903 && (STORE_FLAG_VALUE
2904 & ((HOST_WIDE_INT) 1
2905 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2906 #ifdef FLOAT_STORE_FLAG_VALUE
2907 || (code == GE
2908 && SCALAR_FLOAT_MODE_P (inner_mode)
2909 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2910 REAL_VALUE_NEGATIVE (fsfv)))
2911 #endif
2912 )
2913 && COMPARISON_P (p->exp))
2914 {
2915 reverse_code = 1;
2916 x = p->exp;
2917 break;
2918 }
2919
2920 /* If this non-trapping address, e.g. fp + constant, the
2921 equivalent is a better operand since it may let us predict
2922 the value of the comparison. */
2923 else if (!rtx_addr_can_trap_p (p->exp))
2924 {
2925 arg1 = p->exp;
2926 continue;
2927 }
2928 }
2929
2930 /* If we didn't find a useful equivalence for ARG1, we are done.
2931 Otherwise, set up for the next iteration. */
2932 if (x == 0)
2933 break;
2934
2935 /* If we need to reverse the comparison, make sure that that is
2936 possible -- we can't necessarily infer the value of GE from LT
2937 with floating-point operands. */
2938 if (reverse_code)
2939 {
2940 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2941 if (reversed == UNKNOWN)
2942 break;
2943 else
2944 code = reversed;
2945 }
2946 else if (COMPARISON_P (x))
2947 code = GET_CODE (x);
2948 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2949 }
2950
2951 /* Return our results. Return the modes from before fold_rtx
2952 because fold_rtx might produce const_int, and then it's too late. */
2953 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2954 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2955
2956 return code;
2957 }
2958 \f
2959 /* If X is a nontrivial arithmetic operation on an argument for which
2960 a constant value can be determined, return the result of operating
2961 on that value, as a constant. Otherwise, return X, possibly with
2962 one or more operands changed to a forward-propagated constant.
2963
2964 If X is a register whose contents are known, we do NOT return
2965 those contents here; equiv_constant is called to perform that task.
2966 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2967
2968 INSN is the insn that we may be modifying. If it is 0, make a copy
2969 of X before modifying it. */
2970
2971 static rtx
2972 fold_rtx (rtx x, rtx insn)
2973 {
2974 enum rtx_code code;
2975 enum machine_mode mode;
2976 const char *fmt;
2977 int i;
2978 rtx new_rtx = 0;
2979 int changed = 0;
2980
2981 /* Operands of X. */
2982 rtx folded_arg0;
2983 rtx folded_arg1;
2984
2985 /* Constant equivalents of first three operands of X;
2986 0 when no such equivalent is known. */
2987 rtx const_arg0;
2988 rtx const_arg1;
2989 rtx const_arg2;
2990
2991 /* The mode of the first operand of X. We need this for sign and zero
2992 extends. */
2993 enum machine_mode mode_arg0;
2994
2995 if (x == 0)
2996 return x;
2997
2998 /* Try to perform some initial simplifications on X. */
2999 code = GET_CODE (x);
3000 switch (code)
3001 {
3002 case MEM:
3003 case SUBREG:
3004 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3005 return new_rtx;
3006 return x;
3007
3008 case CONST:
3009 case CONST_INT:
3010 case CONST_DOUBLE:
3011 case CONST_FIXED:
3012 case CONST_VECTOR:
3013 case SYMBOL_REF:
3014 case LABEL_REF:
3015 case REG:
3016 case PC:
3017 /* No use simplifying an EXPR_LIST
3018 since they are used only for lists of args
3019 in a function call's REG_EQUAL note. */
3020 case EXPR_LIST:
3021 return x;
3022
3023 #ifdef HAVE_cc0
3024 case CC0:
3025 return prev_insn_cc0;
3026 #endif
3027
3028 case ASM_OPERANDS:
3029 if (insn)
3030 {
3031 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3032 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3033 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3034 }
3035 return x;
3036
3037 #ifdef NO_FUNCTION_CSE
3038 case CALL:
3039 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3040 return x;
3041 break;
3042 #endif
3043
3044 /* Anything else goes through the loop below. */
3045 default:
3046 break;
3047 }
3048
3049 mode = GET_MODE (x);
3050 const_arg0 = 0;
3051 const_arg1 = 0;
3052 const_arg2 = 0;
3053 mode_arg0 = VOIDmode;
3054
3055 /* Try folding our operands.
3056 Then see which ones have constant values known. */
3057
3058 fmt = GET_RTX_FORMAT (code);
3059 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3060 if (fmt[i] == 'e')
3061 {
3062 rtx folded_arg = XEXP (x, i), const_arg;
3063 enum machine_mode mode_arg = GET_MODE (folded_arg);
3064
3065 switch (GET_CODE (folded_arg))
3066 {
3067 case MEM:
3068 case REG:
3069 case SUBREG:
3070 const_arg = equiv_constant (folded_arg);
3071 break;
3072
3073 case CONST:
3074 case CONST_INT:
3075 case SYMBOL_REF:
3076 case LABEL_REF:
3077 case CONST_DOUBLE:
3078 case CONST_FIXED:
3079 case CONST_VECTOR:
3080 const_arg = folded_arg;
3081 break;
3082
3083 #ifdef HAVE_cc0
3084 case CC0:
3085 folded_arg = prev_insn_cc0;
3086 mode_arg = prev_insn_cc0_mode;
3087 const_arg = equiv_constant (folded_arg);
3088 break;
3089 #endif
3090
3091 default:
3092 folded_arg = fold_rtx (folded_arg, insn);
3093 const_arg = equiv_constant (folded_arg);
3094 break;
3095 }
3096
3097 /* For the first three operands, see if the operand
3098 is constant or equivalent to a constant. */
3099 switch (i)
3100 {
3101 case 0:
3102 folded_arg0 = folded_arg;
3103 const_arg0 = const_arg;
3104 mode_arg0 = mode_arg;
3105 break;
3106 case 1:
3107 folded_arg1 = folded_arg;
3108 const_arg1 = const_arg;
3109 break;
3110 case 2:
3111 const_arg2 = const_arg;
3112 break;
3113 }
3114
3115 /* Pick the least expensive of the argument and an equivalent constant
3116 argument. */
3117 if (const_arg != 0
3118 && const_arg != folded_arg
3119 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3120
3121 /* It's not safe to substitute the operand of a conversion
3122 operator with a constant, as the conversion's identity
3123 depends upon the mode of its operand. This optimization
3124 is handled by the call to simplify_unary_operation. */
3125 && (GET_RTX_CLASS (code) != RTX_UNARY
3126 || GET_MODE (const_arg) == mode_arg0
3127 || (code != ZERO_EXTEND
3128 && code != SIGN_EXTEND
3129 && code != TRUNCATE
3130 && code != FLOAT_TRUNCATE
3131 && code != FLOAT_EXTEND
3132 && code != FLOAT
3133 && code != FIX
3134 && code != UNSIGNED_FLOAT
3135 && code != UNSIGNED_FIX)))
3136 folded_arg = const_arg;
3137
3138 if (folded_arg == XEXP (x, i))
3139 continue;
3140
3141 if (insn == NULL_RTX && !changed)
3142 x = copy_rtx (x);
3143 changed = 1;
3144 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3145 }
3146
3147 if (changed)
3148 {
3149 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3150 consistent with the order in X. */
3151 if (canonicalize_change_group (insn, x))
3152 {
3153 rtx tem;
3154 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3155 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3156 }
3157
3158 apply_change_group ();
3159 }
3160
3161 /* If X is an arithmetic operation, see if we can simplify it. */
3162
3163 switch (GET_RTX_CLASS (code))
3164 {
3165 case RTX_UNARY:
3166 {
3167 /* We can't simplify extension ops unless we know the
3168 original mode. */
3169 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3170 && mode_arg0 == VOIDmode)
3171 break;
3172
3173 new_rtx = simplify_unary_operation (code, mode,
3174 const_arg0 ? const_arg0 : folded_arg0,
3175 mode_arg0);
3176 }
3177 break;
3178
3179 case RTX_COMPARE:
3180 case RTX_COMM_COMPARE:
3181 /* See what items are actually being compared and set FOLDED_ARG[01]
3182 to those values and CODE to the actual comparison code. If any are
3183 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3184 do anything if both operands are already known to be constant. */
3185
3186 /* ??? Vector mode comparisons are not supported yet. */
3187 if (VECTOR_MODE_P (mode))
3188 break;
3189
3190 if (const_arg0 == 0 || const_arg1 == 0)
3191 {
3192 struct table_elt *p0, *p1;
3193 rtx true_rtx, false_rtx;
3194 enum machine_mode mode_arg1;
3195
3196 if (SCALAR_FLOAT_MODE_P (mode))
3197 {
3198 #ifdef FLOAT_STORE_FLAG_VALUE
3199 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3200 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3201 #else
3202 true_rtx = NULL_RTX;
3203 #endif
3204 false_rtx = CONST0_RTX (mode);
3205 }
3206 else
3207 {
3208 true_rtx = const_true_rtx;
3209 false_rtx = const0_rtx;
3210 }
3211
3212 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3213 &mode_arg0, &mode_arg1);
3214
3215 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3216 what kinds of things are being compared, so we can't do
3217 anything with this comparison. */
3218
3219 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3220 break;
3221
3222 const_arg0 = equiv_constant (folded_arg0);
3223 const_arg1 = equiv_constant (folded_arg1);
3224
3225 /* If we do not now have two constants being compared, see
3226 if we can nevertheless deduce some things about the
3227 comparison. */
3228 if (const_arg0 == 0 || const_arg1 == 0)
3229 {
3230 if (const_arg1 != NULL)
3231 {
3232 rtx cheapest_simplification;
3233 int cheapest_cost;
3234 rtx simp_result;
3235 struct table_elt *p;
3236
3237 /* See if we can find an equivalent of folded_arg0
3238 that gets us a cheaper expression, possibly a
3239 constant through simplifications. */
3240 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3241 mode_arg0);
3242
3243 if (p != NULL)
3244 {
3245 cheapest_simplification = x;
3246 cheapest_cost = COST (x);
3247
3248 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3249 {
3250 int cost;
3251
3252 /* If the entry isn't valid, skip it. */
3253 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3254 continue;
3255
3256 /* Try to simplify using this equivalence. */
3257 simp_result
3258 = simplify_relational_operation (code, mode,
3259 mode_arg0,
3260 p->exp,
3261 const_arg1);
3262
3263 if (simp_result == NULL)
3264 continue;
3265
3266 cost = COST (simp_result);
3267 if (cost < cheapest_cost)
3268 {
3269 cheapest_cost = cost;
3270 cheapest_simplification = simp_result;
3271 }
3272 }
3273
3274 /* If we have a cheaper expression now, use that
3275 and try folding it further, from the top. */
3276 if (cheapest_simplification != x)
3277 return fold_rtx (copy_rtx (cheapest_simplification),
3278 insn);
3279 }
3280 }
3281
3282 /* See if the two operands are the same. */
3283
3284 if ((REG_P (folded_arg0)
3285 && REG_P (folded_arg1)
3286 && (REG_QTY (REGNO (folded_arg0))
3287 == REG_QTY (REGNO (folded_arg1))))
3288 || ((p0 = lookup (folded_arg0,
3289 SAFE_HASH (folded_arg0, mode_arg0),
3290 mode_arg0))
3291 && (p1 = lookup (folded_arg1,
3292 SAFE_HASH (folded_arg1, mode_arg0),
3293 mode_arg0))
3294 && p0->first_same_value == p1->first_same_value))
3295 folded_arg1 = folded_arg0;
3296
3297 /* If FOLDED_ARG0 is a register, see if the comparison we are
3298 doing now is either the same as we did before or the reverse
3299 (we only check the reverse if not floating-point). */
3300 else if (REG_P (folded_arg0))
3301 {
3302 int qty = REG_QTY (REGNO (folded_arg0));
3303
3304 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3305 {
3306 struct qty_table_elem *ent = &qty_table[qty];
3307
3308 if ((comparison_dominates_p (ent->comparison_code, code)
3309 || (! FLOAT_MODE_P (mode_arg0)
3310 && comparison_dominates_p (ent->comparison_code,
3311 reverse_condition (code))))
3312 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3313 || (const_arg1
3314 && rtx_equal_p (ent->comparison_const,
3315 const_arg1))
3316 || (REG_P (folded_arg1)
3317 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3318 {
3319 if (comparison_dominates_p (ent->comparison_code, code))
3320 {
3321 if (true_rtx)
3322 return true_rtx;
3323 else
3324 break;
3325 }
3326 else
3327 return false_rtx;
3328 }
3329 }
3330 }
3331 }
3332 }
3333
3334 /* If we are comparing against zero, see if the first operand is
3335 equivalent to an IOR with a constant. If so, we may be able to
3336 determine the result of this comparison. */
3337 if (const_arg1 == const0_rtx && !const_arg0)
3338 {
3339 rtx y = lookup_as_function (folded_arg0, IOR);
3340 rtx inner_const;
3341
3342 if (y != 0
3343 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3344 && GET_CODE (inner_const) == CONST_INT
3345 && INTVAL (inner_const) != 0)
3346 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3347 }
3348
3349 {
3350 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3351 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3352 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3353 }
3354 break;
3355
3356 case RTX_BIN_ARITH:
3357 case RTX_COMM_ARITH:
3358 switch (code)
3359 {
3360 case PLUS:
3361 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3362 with that LABEL_REF as its second operand. If so, the result is
3363 the first operand of that MINUS. This handles switches with an
3364 ADDR_DIFF_VEC table. */
3365 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3366 {
3367 rtx y
3368 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3369 : lookup_as_function (folded_arg0, MINUS);
3370
3371 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3372 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3373 return XEXP (y, 0);
3374
3375 /* Now try for a CONST of a MINUS like the above. */
3376 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3377 : lookup_as_function (folded_arg0, CONST))) != 0
3378 && GET_CODE (XEXP (y, 0)) == MINUS
3379 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3380 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3381 return XEXP (XEXP (y, 0), 0);
3382 }
3383
3384 /* Likewise if the operands are in the other order. */
3385 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3386 {
3387 rtx y
3388 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3389 : lookup_as_function (folded_arg1, MINUS);
3390
3391 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3392 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3393 return XEXP (y, 0);
3394
3395 /* Now try for a CONST of a MINUS like the above. */
3396 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3397 : lookup_as_function (folded_arg1, CONST))) != 0
3398 && GET_CODE (XEXP (y, 0)) == MINUS
3399 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3400 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3401 return XEXP (XEXP (y, 0), 0);
3402 }
3403
3404 /* If second operand is a register equivalent to a negative
3405 CONST_INT, see if we can find a register equivalent to the
3406 positive constant. Make a MINUS if so. Don't do this for
3407 a non-negative constant since we might then alternate between
3408 choosing positive and negative constants. Having the positive
3409 constant previously-used is the more common case. Be sure
3410 the resulting constant is non-negative; if const_arg1 were
3411 the smallest negative number this would overflow: depending
3412 on the mode, this would either just be the same value (and
3413 hence not save anything) or be incorrect. */
3414 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3415 && INTVAL (const_arg1) < 0
3416 /* This used to test
3417
3418 -INTVAL (const_arg1) >= 0
3419
3420 But The Sun V5.0 compilers mis-compiled that test. So
3421 instead we test for the problematic value in a more direct
3422 manner and hope the Sun compilers get it correct. */
3423 && INTVAL (const_arg1) !=
3424 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3425 && REG_P (folded_arg1))
3426 {
3427 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3428 struct table_elt *p
3429 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3430
3431 if (p)
3432 for (p = p->first_same_value; p; p = p->next_same_value)
3433 if (REG_P (p->exp))
3434 return simplify_gen_binary (MINUS, mode, folded_arg0,
3435 canon_reg (p->exp, NULL_RTX));
3436 }
3437 goto from_plus;
3438
3439 case MINUS:
3440 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3441 If so, produce (PLUS Z C2-C). */
3442 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3443 {
3444 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3445 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3446 return fold_rtx (plus_constant (copy_rtx (y),
3447 -INTVAL (const_arg1)),
3448 NULL_RTX);
3449 }
3450
3451 /* Fall through. */
3452
3453 from_plus:
3454 case SMIN: case SMAX: case UMIN: case UMAX:
3455 case IOR: case AND: case XOR:
3456 case MULT:
3457 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3458 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3459 is known to be of similar form, we may be able to replace the
3460 operation with a combined operation. This may eliminate the
3461 intermediate operation if every use is simplified in this way.
3462 Note that the similar optimization done by combine.c only works
3463 if the intermediate operation's result has only one reference. */
3464
3465 if (REG_P (folded_arg0)
3466 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3467 {
3468 int is_shift
3469 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3470 rtx y, inner_const, new_const;
3471 rtx canon_const_arg1 = const_arg1;
3472 enum rtx_code associate_code;
3473
3474 if (is_shift
3475 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3476 || INTVAL (const_arg1) < 0))
3477 {
3478 if (SHIFT_COUNT_TRUNCATED)
3479 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3480 & (GET_MODE_BITSIZE (mode)
3481 - 1));
3482 else
3483 break;
3484 }
3485
3486 y = lookup_as_function (folded_arg0, code);
3487 if (y == 0)
3488 break;
3489
3490 /* If we have compiled a statement like
3491 "if (x == (x & mask1))", and now are looking at
3492 "x & mask2", we will have a case where the first operand
3493 of Y is the same as our first operand. Unless we detect
3494 this case, an infinite loop will result. */
3495 if (XEXP (y, 0) == folded_arg0)
3496 break;
3497
3498 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3499 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3500 break;
3501
3502 /* Don't associate these operations if they are a PLUS with the
3503 same constant and it is a power of two. These might be doable
3504 with a pre- or post-increment. Similarly for two subtracts of
3505 identical powers of two with post decrement. */
3506
3507 if (code == PLUS && const_arg1 == inner_const
3508 && ((HAVE_PRE_INCREMENT
3509 && exact_log2 (INTVAL (const_arg1)) >= 0)
3510 || (HAVE_POST_INCREMENT
3511 && exact_log2 (INTVAL (const_arg1)) >= 0)
3512 || (HAVE_PRE_DECREMENT
3513 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3514 || (HAVE_POST_DECREMENT
3515 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3516 break;
3517
3518 /* ??? Vector mode shifts by scalar
3519 shift operand are not supported yet. */
3520 if (is_shift && VECTOR_MODE_P (mode))
3521 break;
3522
3523 if (is_shift
3524 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3525 || INTVAL (inner_const) < 0))
3526 {
3527 if (SHIFT_COUNT_TRUNCATED)
3528 inner_const = GEN_INT (INTVAL (inner_const)
3529 & (GET_MODE_BITSIZE (mode) - 1));
3530 else
3531 break;
3532 }
3533
3534 /* Compute the code used to compose the constants. For example,
3535 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3536
3537 associate_code = (is_shift || code == MINUS ? PLUS : code);
3538
3539 new_const = simplify_binary_operation (associate_code, mode,
3540 canon_const_arg1,
3541 inner_const);
3542
3543 if (new_const == 0)
3544 break;
3545
3546 /* If we are associating shift operations, don't let this
3547 produce a shift of the size of the object or larger.
3548 This could occur when we follow a sign-extend by a right
3549 shift on a machine that does a sign-extend as a pair
3550 of shifts. */
3551
3552 if (is_shift
3553 && GET_CODE (new_const) == CONST_INT
3554 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3555 {
3556 /* As an exception, we can turn an ASHIFTRT of this
3557 form into a shift of the number of bits - 1. */
3558 if (code == ASHIFTRT)
3559 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3560 else if (!side_effects_p (XEXP (y, 0)))
3561 return CONST0_RTX (mode);
3562 else
3563 break;
3564 }
3565
3566 y = copy_rtx (XEXP (y, 0));
3567
3568 /* If Y contains our first operand (the most common way this
3569 can happen is if Y is a MEM), we would do into an infinite
3570 loop if we tried to fold it. So don't in that case. */
3571
3572 if (! reg_mentioned_p (folded_arg0, y))
3573 y = fold_rtx (y, insn);
3574
3575 return simplify_gen_binary (code, mode, y, new_const);
3576 }
3577 break;
3578
3579 case DIV: case UDIV:
3580 /* ??? The associative optimization performed immediately above is
3581 also possible for DIV and UDIV using associate_code of MULT.
3582 However, we would need extra code to verify that the
3583 multiplication does not overflow, that is, there is no overflow
3584 in the calculation of new_const. */
3585 break;
3586
3587 default:
3588 break;
3589 }
3590
3591 new_rtx = simplify_binary_operation (code, mode,
3592 const_arg0 ? const_arg0 : folded_arg0,
3593 const_arg1 ? const_arg1 : folded_arg1);
3594 break;
3595
3596 case RTX_OBJ:
3597 /* (lo_sum (high X) X) is simply X. */
3598 if (code == LO_SUM && const_arg0 != 0
3599 && GET_CODE (const_arg0) == HIGH
3600 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3601 return const_arg1;
3602 break;
3603
3604 case RTX_TERNARY:
3605 case RTX_BITFIELD_OPS:
3606 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3607 const_arg0 ? const_arg0 : folded_arg0,
3608 const_arg1 ? const_arg1 : folded_arg1,
3609 const_arg2 ? const_arg2 : XEXP (x, 2));
3610 break;
3611
3612 default:
3613 break;
3614 }
3615
3616 return new_rtx ? new_rtx : x;
3617 }
3618 \f
3619 /* Return a constant value currently equivalent to X.
3620 Return 0 if we don't know one. */
3621
3622 static rtx
3623 equiv_constant (rtx x)
3624 {
3625 if (REG_P (x)
3626 && REGNO_QTY_VALID_P (REGNO (x)))
3627 {
3628 int x_q = REG_QTY (REGNO (x));
3629 struct qty_table_elem *x_ent = &qty_table[x_q];
3630
3631 if (x_ent->const_rtx)
3632 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3633 }
3634
3635 if (x == 0 || CONSTANT_P (x))
3636 return x;
3637
3638 if (GET_CODE (x) == SUBREG)
3639 {
3640 enum machine_mode mode = GET_MODE (x);
3641 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3642 rtx new_rtx;
3643
3644 /* See if we previously assigned a constant value to this SUBREG. */
3645 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3646 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3647 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3648 return new_rtx;
3649
3650 /* If we didn't and if doing so makes sense, see if we previously
3651 assigned a constant value to the enclosing word mode SUBREG. */
3652 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3653 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3654 {
3655 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3656 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3657 {
3658 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3659 new_rtx = lookup_as_function (y, CONST_INT);
3660 if (new_rtx)
3661 return gen_lowpart (mode, new_rtx);
3662 }
3663 }
3664
3665 /* Otherwise see if we already have a constant for the inner REG. */
3666 if (REG_P (SUBREG_REG (x))
3667 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3668 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3669
3670 return 0;
3671 }
3672
3673 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3674 the hash table in case its value was seen before. */
3675
3676 if (MEM_P (x))
3677 {
3678 struct table_elt *elt;
3679
3680 x = avoid_constant_pool_reference (x);
3681 if (CONSTANT_P (x))
3682 return x;
3683
3684 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3685 if (elt == 0)
3686 return 0;
3687
3688 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3689 if (elt->is_const && CONSTANT_P (elt->exp))
3690 return elt->exp;
3691 }
3692
3693 return 0;
3694 }
3695 \f
3696 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3697 "taken" branch.
3698
3699 In certain cases, this can cause us to add an equivalence. For example,
3700 if we are following the taken case of
3701 if (i == 2)
3702 we can add the fact that `i' and '2' are now equivalent.
3703
3704 In any case, we can record that this comparison was passed. If the same
3705 comparison is seen later, we will know its value. */
3706
3707 static void
3708 record_jump_equiv (rtx insn, bool taken)
3709 {
3710 int cond_known_true;
3711 rtx op0, op1;
3712 rtx set;
3713 enum machine_mode mode, mode0, mode1;
3714 int reversed_nonequality = 0;
3715 enum rtx_code code;
3716
3717 /* Ensure this is the right kind of insn. */
3718 gcc_assert (any_condjump_p (insn));
3719
3720 set = pc_set (insn);
3721
3722 /* See if this jump condition is known true or false. */
3723 if (taken)
3724 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3725 else
3726 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3727
3728 /* Get the type of comparison being done and the operands being compared.
3729 If we had to reverse a non-equality condition, record that fact so we
3730 know that it isn't valid for floating-point. */
3731 code = GET_CODE (XEXP (SET_SRC (set), 0));
3732 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3733 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3734
3735 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3736 if (! cond_known_true)
3737 {
3738 code = reversed_comparison_code_parts (code, op0, op1, insn);
3739
3740 /* Don't remember if we can't find the inverse. */
3741 if (code == UNKNOWN)
3742 return;
3743 }
3744
3745 /* The mode is the mode of the non-constant. */
3746 mode = mode0;
3747 if (mode1 != VOIDmode)
3748 mode = mode1;
3749
3750 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3751 }
3752
3753 /* Yet another form of subreg creation. In this case, we want something in
3754 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3755
3756 static rtx
3757 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3758 {
3759 enum machine_mode op_mode = GET_MODE (op);
3760 if (op_mode == mode || op_mode == VOIDmode)
3761 return op;
3762 return lowpart_subreg (mode, op, op_mode);
3763 }
3764
3765 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3766 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3767 Make any useful entries we can with that information. Called from
3768 above function and called recursively. */
3769
3770 static void
3771 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3772 rtx op1, int reversed_nonequality)
3773 {
3774 unsigned op0_hash, op1_hash;
3775 int op0_in_memory, op1_in_memory;
3776 struct table_elt *op0_elt, *op1_elt;
3777
3778 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3779 we know that they are also equal in the smaller mode (this is also
3780 true for all smaller modes whether or not there is a SUBREG, but
3781 is not worth testing for with no SUBREG). */
3782
3783 /* Note that GET_MODE (op0) may not equal MODE. */
3784 if (code == EQ && GET_CODE (op0) == SUBREG
3785 && (GET_MODE_SIZE (GET_MODE (op0))
3786 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3787 {
3788 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3789 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3790 if (tem)
3791 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3792 reversed_nonequality);
3793 }
3794
3795 if (code == EQ && GET_CODE (op1) == SUBREG
3796 && (GET_MODE_SIZE (GET_MODE (op1))
3797 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3798 {
3799 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3800 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3801 if (tem)
3802 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3803 reversed_nonequality);
3804 }
3805
3806 /* Similarly, if this is an NE comparison, and either is a SUBREG
3807 making a smaller mode, we know the whole thing is also NE. */
3808
3809 /* Note that GET_MODE (op0) may not equal MODE;
3810 if we test MODE instead, we can get an infinite recursion
3811 alternating between two modes each wider than MODE. */
3812
3813 if (code == NE && GET_CODE (op0) == SUBREG
3814 && subreg_lowpart_p (op0)
3815 && (GET_MODE_SIZE (GET_MODE (op0))
3816 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3817 {
3818 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3819 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3820 if (tem)
3821 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3822 reversed_nonequality);
3823 }
3824
3825 if (code == NE && GET_CODE (op1) == SUBREG
3826 && subreg_lowpart_p (op1)
3827 && (GET_MODE_SIZE (GET_MODE (op1))
3828 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3829 {
3830 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3831 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3832 if (tem)
3833 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3834 reversed_nonequality);
3835 }
3836
3837 /* Hash both operands. */
3838
3839 do_not_record = 0;
3840 hash_arg_in_memory = 0;
3841 op0_hash = HASH (op0, mode);
3842 op0_in_memory = hash_arg_in_memory;
3843
3844 if (do_not_record)
3845 return;
3846
3847 do_not_record = 0;
3848 hash_arg_in_memory = 0;
3849 op1_hash = HASH (op1, mode);
3850 op1_in_memory = hash_arg_in_memory;
3851
3852 if (do_not_record)
3853 return;
3854
3855 /* Look up both operands. */
3856 op0_elt = lookup (op0, op0_hash, mode);
3857 op1_elt = lookup (op1, op1_hash, mode);
3858
3859 /* If both operands are already equivalent or if they are not in the
3860 table but are identical, do nothing. */
3861 if ((op0_elt != 0 && op1_elt != 0
3862 && op0_elt->first_same_value == op1_elt->first_same_value)
3863 || op0 == op1 || rtx_equal_p (op0, op1))
3864 return;
3865
3866 /* If we aren't setting two things equal all we can do is save this
3867 comparison. Similarly if this is floating-point. In the latter
3868 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3869 If we record the equality, we might inadvertently delete code
3870 whose intent was to change -0 to +0. */
3871
3872 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3873 {
3874 struct qty_table_elem *ent;
3875 int qty;
3876
3877 /* If we reversed a floating-point comparison, if OP0 is not a
3878 register, or if OP1 is neither a register or constant, we can't
3879 do anything. */
3880
3881 if (!REG_P (op1))
3882 op1 = equiv_constant (op1);
3883
3884 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3885 || !REG_P (op0) || op1 == 0)
3886 return;
3887
3888 /* Put OP0 in the hash table if it isn't already. This gives it a
3889 new quantity number. */
3890 if (op0_elt == 0)
3891 {
3892 if (insert_regs (op0, NULL, 0))
3893 {
3894 rehash_using_reg (op0);
3895 op0_hash = HASH (op0, mode);
3896
3897 /* If OP0 is contained in OP1, this changes its hash code
3898 as well. Faster to rehash than to check, except
3899 for the simple case of a constant. */
3900 if (! CONSTANT_P (op1))
3901 op1_hash = HASH (op1,mode);
3902 }
3903
3904 op0_elt = insert (op0, NULL, op0_hash, mode);
3905 op0_elt->in_memory = op0_in_memory;
3906 }
3907
3908 qty = REG_QTY (REGNO (op0));
3909 ent = &qty_table[qty];
3910
3911 ent->comparison_code = code;
3912 if (REG_P (op1))
3913 {
3914 /* Look it up again--in case op0 and op1 are the same. */
3915 op1_elt = lookup (op1, op1_hash, mode);
3916
3917 /* Put OP1 in the hash table so it gets a new quantity number. */
3918 if (op1_elt == 0)
3919 {
3920 if (insert_regs (op1, NULL, 0))
3921 {
3922 rehash_using_reg (op1);
3923 op1_hash = HASH (op1, mode);
3924 }
3925
3926 op1_elt = insert (op1, NULL, op1_hash, mode);
3927 op1_elt->in_memory = op1_in_memory;
3928 }
3929
3930 ent->comparison_const = NULL_RTX;
3931 ent->comparison_qty = REG_QTY (REGNO (op1));
3932 }
3933 else
3934 {
3935 ent->comparison_const = op1;
3936 ent->comparison_qty = -1;
3937 }
3938
3939 return;
3940 }
3941
3942 /* If either side is still missing an equivalence, make it now,
3943 then merge the equivalences. */
3944
3945 if (op0_elt == 0)
3946 {
3947 if (insert_regs (op0, NULL, 0))
3948 {
3949 rehash_using_reg (op0);
3950 op0_hash = HASH (op0, mode);
3951 }
3952
3953 op0_elt = insert (op0, NULL, op0_hash, mode);
3954 op0_elt->in_memory = op0_in_memory;
3955 }
3956
3957 if (op1_elt == 0)
3958 {
3959 if (insert_regs (op1, NULL, 0))
3960 {
3961 rehash_using_reg (op1);
3962 op1_hash = HASH (op1, mode);
3963 }
3964
3965 op1_elt = insert (op1, NULL, op1_hash, mode);
3966 op1_elt->in_memory = op1_in_memory;
3967 }
3968
3969 merge_equiv_classes (op0_elt, op1_elt);
3970 }
3971 \f
3972 /* CSE processing for one instruction.
3973 First simplify sources and addresses of all assignments
3974 in the instruction, using previously-computed equivalents values.
3975 Then install the new sources and destinations in the table
3976 of available values. */
3977
3978 /* Data on one SET contained in the instruction. */
3979
3980 struct set
3981 {
3982 /* The SET rtx itself. */
3983 rtx rtl;
3984 /* The SET_SRC of the rtx (the original value, if it is changing). */
3985 rtx src;
3986 /* The hash-table element for the SET_SRC of the SET. */
3987 struct table_elt *src_elt;
3988 /* Hash value for the SET_SRC. */
3989 unsigned src_hash;
3990 /* Hash value for the SET_DEST. */
3991 unsigned dest_hash;
3992 /* The SET_DEST, with SUBREG, etc., stripped. */
3993 rtx inner_dest;
3994 /* Nonzero if the SET_SRC is in memory. */
3995 char src_in_memory;
3996 /* Nonzero if the SET_SRC contains something
3997 whose value cannot be predicted and understood. */
3998 char src_volatile;
3999 /* Original machine mode, in case it becomes a CONST_INT.
4000 The size of this field should match the size of the mode
4001 field of struct rtx_def (see rtl.h). */
4002 ENUM_BITFIELD(machine_mode) mode : 8;
4003 /* A constant equivalent for SET_SRC, if any. */
4004 rtx src_const;
4005 /* Hash value of constant equivalent for SET_SRC. */
4006 unsigned src_const_hash;
4007 /* Table entry for constant equivalent for SET_SRC, if any. */
4008 struct table_elt *src_const_elt;
4009 /* Table entry for the destination address. */
4010 struct table_elt *dest_addr_elt;
4011 };
4012
4013 static void
4014 cse_insn (rtx insn)
4015 {
4016 rtx x = PATTERN (insn);
4017 int i;
4018 rtx tem;
4019 int n_sets = 0;
4020
4021 rtx src_eqv = 0;
4022 struct table_elt *src_eqv_elt = 0;
4023 int src_eqv_volatile = 0;
4024 int src_eqv_in_memory = 0;
4025 unsigned src_eqv_hash = 0;
4026
4027 struct set *sets = (struct set *) 0;
4028
4029 this_insn = insn;
4030 #ifdef HAVE_cc0
4031 /* Records what this insn does to set CC0. */
4032 this_insn_cc0 = 0;
4033 this_insn_cc0_mode = VOIDmode;
4034 #endif
4035
4036 /* Find all the SETs and CLOBBERs in this instruction.
4037 Record all the SETs in the array `set' and count them.
4038 Also determine whether there is a CLOBBER that invalidates
4039 all memory references, or all references at varying addresses. */
4040
4041 if (CALL_P (insn))
4042 {
4043 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4044 {
4045 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4046 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4047 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4048 }
4049 }
4050
4051 if (GET_CODE (x) == SET)
4052 {
4053 sets = XALLOCA (struct set);
4054 sets[0].rtl = x;
4055
4056 /* Ignore SETs that are unconditional jumps.
4057 They never need cse processing, so this does not hurt.
4058 The reason is not efficiency but rather
4059 so that we can test at the end for instructions
4060 that have been simplified to unconditional jumps
4061 and not be misled by unchanged instructions
4062 that were unconditional jumps to begin with. */
4063 if (SET_DEST (x) == pc_rtx
4064 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4065 ;
4066
4067 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4068 The hard function value register is used only once, to copy to
4069 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4070 Ensure we invalidate the destination register. On the 80386 no
4071 other code would invalidate it since it is a fixed_reg.
4072 We need not check the return of apply_change_group; see canon_reg. */
4073
4074 else if (GET_CODE (SET_SRC (x)) == CALL)
4075 {
4076 canon_reg (SET_SRC (x), insn);
4077 apply_change_group ();
4078 fold_rtx (SET_SRC (x), insn);
4079 invalidate (SET_DEST (x), VOIDmode);
4080 }
4081 else
4082 n_sets = 1;
4083 }
4084 else if (GET_CODE (x) == PARALLEL)
4085 {
4086 int lim = XVECLEN (x, 0);
4087
4088 sets = XALLOCAVEC (struct set, lim);
4089
4090 /* Find all regs explicitly clobbered in this insn,
4091 and ensure they are not replaced with any other regs
4092 elsewhere in this insn.
4093 When a reg that is clobbered is also used for input,
4094 we should presume that that is for a reason,
4095 and we should not substitute some other register
4096 which is not supposed to be clobbered.
4097 Therefore, this loop cannot be merged into the one below
4098 because a CALL may precede a CLOBBER and refer to the
4099 value clobbered. We must not let a canonicalization do
4100 anything in that case. */
4101 for (i = 0; i < lim; i++)
4102 {
4103 rtx y = XVECEXP (x, 0, i);
4104 if (GET_CODE (y) == CLOBBER)
4105 {
4106 rtx clobbered = XEXP (y, 0);
4107
4108 if (REG_P (clobbered)
4109 || GET_CODE (clobbered) == SUBREG)
4110 invalidate (clobbered, VOIDmode);
4111 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4112 || GET_CODE (clobbered) == ZERO_EXTRACT)
4113 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4114 }
4115 }
4116
4117 for (i = 0; i < lim; i++)
4118 {
4119 rtx y = XVECEXP (x, 0, i);
4120 if (GET_CODE (y) == SET)
4121 {
4122 /* As above, we ignore unconditional jumps and call-insns and
4123 ignore the result of apply_change_group. */
4124 if (GET_CODE (SET_SRC (y)) == CALL)
4125 {
4126 canon_reg (SET_SRC (y), insn);
4127 apply_change_group ();
4128 fold_rtx (SET_SRC (y), insn);
4129 invalidate (SET_DEST (y), VOIDmode);
4130 }
4131 else if (SET_DEST (y) == pc_rtx
4132 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4133 ;
4134 else
4135 sets[n_sets++].rtl = y;
4136 }
4137 else if (GET_CODE (y) == CLOBBER)
4138 {
4139 /* If we clobber memory, canon the address.
4140 This does nothing when a register is clobbered
4141 because we have already invalidated the reg. */
4142 if (MEM_P (XEXP (y, 0)))
4143 canon_reg (XEXP (y, 0), insn);
4144 }
4145 else if (GET_CODE (y) == USE
4146 && ! (REG_P (XEXP (y, 0))
4147 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4148 canon_reg (y, insn);
4149 else if (GET_CODE (y) == CALL)
4150 {
4151 /* The result of apply_change_group can be ignored; see
4152 canon_reg. */
4153 canon_reg (y, insn);
4154 apply_change_group ();
4155 fold_rtx (y, insn);
4156 }
4157 }
4158 }
4159 else if (GET_CODE (x) == CLOBBER)
4160 {
4161 if (MEM_P (XEXP (x, 0)))
4162 canon_reg (XEXP (x, 0), insn);
4163 }
4164
4165 /* Canonicalize a USE of a pseudo register or memory location. */
4166 else if (GET_CODE (x) == USE
4167 && ! (REG_P (XEXP (x, 0))
4168 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4169 canon_reg (XEXP (x, 0), insn);
4170 else if (GET_CODE (x) == CALL)
4171 {
4172 /* The result of apply_change_group can be ignored; see canon_reg. */
4173 canon_reg (x, insn);
4174 apply_change_group ();
4175 fold_rtx (x, insn);
4176 }
4177
4178 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4179 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4180 is handled specially for this case, and if it isn't set, then there will
4181 be no equivalence for the destination. */
4182 if (n_sets == 1 && REG_NOTES (insn) != 0
4183 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4184 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4185 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4186 {
4187 /* The result of apply_change_group can be ignored; see canon_reg. */
4188 canon_reg (XEXP (tem, 0), insn);
4189 apply_change_group ();
4190 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4191 XEXP (tem, 0) = copy_rtx (src_eqv);
4192 df_notes_rescan (insn);
4193 }
4194
4195 /* Canonicalize sources and addresses of destinations.
4196 We do this in a separate pass to avoid problems when a MATCH_DUP is
4197 present in the insn pattern. In that case, we want to ensure that
4198 we don't break the duplicate nature of the pattern. So we will replace
4199 both operands at the same time. Otherwise, we would fail to find an
4200 equivalent substitution in the loop calling validate_change below.
4201
4202 We used to suppress canonicalization of DEST if it appears in SRC,
4203 but we don't do this any more. */
4204
4205 for (i = 0; i < n_sets; i++)
4206 {
4207 rtx dest = SET_DEST (sets[i].rtl);
4208 rtx src = SET_SRC (sets[i].rtl);
4209 rtx new_rtx = canon_reg (src, insn);
4210
4211 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4212
4213 if (GET_CODE (dest) == ZERO_EXTRACT)
4214 {
4215 validate_change (insn, &XEXP (dest, 1),
4216 canon_reg (XEXP (dest, 1), insn), 1);
4217 validate_change (insn, &XEXP (dest, 2),
4218 canon_reg (XEXP (dest, 2), insn), 1);
4219 }
4220
4221 while (GET_CODE (dest) == SUBREG
4222 || GET_CODE (dest) == ZERO_EXTRACT
4223 || GET_CODE (dest) == STRICT_LOW_PART)
4224 dest = XEXP (dest, 0);
4225
4226 if (MEM_P (dest))
4227 canon_reg (dest, insn);
4228 }
4229
4230 /* Now that we have done all the replacements, we can apply the change
4231 group and see if they all work. Note that this will cause some
4232 canonicalizations that would have worked individually not to be applied
4233 because some other canonicalization didn't work, but this should not
4234 occur often.
4235
4236 The result of apply_change_group can be ignored; see canon_reg. */
4237
4238 apply_change_group ();
4239
4240 /* Set sets[i].src_elt to the class each source belongs to.
4241 Detect assignments from or to volatile things
4242 and set set[i] to zero so they will be ignored
4243 in the rest of this function.
4244
4245 Nothing in this loop changes the hash table or the register chains. */
4246
4247 for (i = 0; i < n_sets; i++)
4248 {
4249 rtx src, dest;
4250 rtx src_folded;
4251 struct table_elt *elt = 0, *p;
4252 enum machine_mode mode;
4253 rtx src_eqv_here;
4254 rtx src_const = 0;
4255 rtx src_related = 0;
4256 struct table_elt *src_const_elt = 0;
4257 int src_cost = MAX_COST;
4258 int src_eqv_cost = MAX_COST;
4259 int src_folded_cost = MAX_COST;
4260 int src_related_cost = MAX_COST;
4261 int src_elt_cost = MAX_COST;
4262 int src_regcost = MAX_COST;
4263 int src_eqv_regcost = MAX_COST;
4264 int src_folded_regcost = MAX_COST;
4265 int src_related_regcost = MAX_COST;
4266 int src_elt_regcost = MAX_COST;
4267 /* Set nonzero if we need to call force_const_mem on with the
4268 contents of src_folded before using it. */
4269 int src_folded_force_flag = 0;
4270
4271 dest = SET_DEST (sets[i].rtl);
4272 src = SET_SRC (sets[i].rtl);
4273
4274 /* If SRC is a constant that has no machine mode,
4275 hash it with the destination's machine mode.
4276 This way we can keep different modes separate. */
4277
4278 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4279 sets[i].mode = mode;
4280
4281 if (src_eqv)
4282 {
4283 enum machine_mode eqvmode = mode;
4284 if (GET_CODE (dest) == STRICT_LOW_PART)
4285 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4286 do_not_record = 0;
4287 hash_arg_in_memory = 0;
4288 src_eqv_hash = HASH (src_eqv, eqvmode);
4289
4290 /* Find the equivalence class for the equivalent expression. */
4291
4292 if (!do_not_record)
4293 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4294
4295 src_eqv_volatile = do_not_record;
4296 src_eqv_in_memory = hash_arg_in_memory;
4297 }
4298
4299 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4300 value of the INNER register, not the destination. So it is not
4301 a valid substitution for the source. But save it for later. */
4302 if (GET_CODE (dest) == STRICT_LOW_PART)
4303 src_eqv_here = 0;
4304 else
4305 src_eqv_here = src_eqv;
4306
4307 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4308 simplified result, which may not necessarily be valid. */
4309 src_folded = fold_rtx (src, insn);
4310
4311 #if 0
4312 /* ??? This caused bad code to be generated for the m68k port with -O2.
4313 Suppose src is (CONST_INT -1), and that after truncation src_folded
4314 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4315 At the end we will add src and src_const to the same equivalence
4316 class. We now have 3 and -1 on the same equivalence class. This
4317 causes later instructions to be mis-optimized. */
4318 /* If storing a constant in a bitfield, pre-truncate the constant
4319 so we will be able to record it later. */
4320 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4321 {
4322 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4323
4324 if (GET_CODE (src) == CONST_INT
4325 && GET_CODE (width) == CONST_INT
4326 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4327 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4328 src_folded
4329 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4330 << INTVAL (width)) - 1));
4331 }
4332 #endif
4333
4334 /* Compute SRC's hash code, and also notice if it
4335 should not be recorded at all. In that case,
4336 prevent any further processing of this assignment. */
4337 do_not_record = 0;
4338 hash_arg_in_memory = 0;
4339
4340 sets[i].src = src;
4341 sets[i].src_hash = HASH (src, mode);
4342 sets[i].src_volatile = do_not_record;
4343 sets[i].src_in_memory = hash_arg_in_memory;
4344
4345 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4346 a pseudo, do not record SRC. Using SRC as a replacement for
4347 anything else will be incorrect in that situation. Note that
4348 this usually occurs only for stack slots, in which case all the
4349 RTL would be referring to SRC, so we don't lose any optimization
4350 opportunities by not having SRC in the hash table. */
4351
4352 if (MEM_P (src)
4353 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4354 && REG_P (dest)
4355 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4356 sets[i].src_volatile = 1;
4357
4358 #if 0
4359 /* It is no longer clear why we used to do this, but it doesn't
4360 appear to still be needed. So let's try without it since this
4361 code hurts cse'ing widened ops. */
4362 /* If source is a paradoxical subreg (such as QI treated as an SI),
4363 treat it as volatile. It may do the work of an SI in one context
4364 where the extra bits are not being used, but cannot replace an SI
4365 in general. */
4366 if (GET_CODE (src) == SUBREG
4367 && (GET_MODE_SIZE (GET_MODE (src))
4368 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4369 sets[i].src_volatile = 1;
4370 #endif
4371
4372 /* Locate all possible equivalent forms for SRC. Try to replace
4373 SRC in the insn with each cheaper equivalent.
4374
4375 We have the following types of equivalents: SRC itself, a folded
4376 version, a value given in a REG_EQUAL note, or a value related
4377 to a constant.
4378
4379 Each of these equivalents may be part of an additional class
4380 of equivalents (if more than one is in the table, they must be in
4381 the same class; we check for this).
4382
4383 If the source is volatile, we don't do any table lookups.
4384
4385 We note any constant equivalent for possible later use in a
4386 REG_NOTE. */
4387
4388 if (!sets[i].src_volatile)
4389 elt = lookup (src, sets[i].src_hash, mode);
4390
4391 sets[i].src_elt = elt;
4392
4393 if (elt && src_eqv_here && src_eqv_elt)
4394 {
4395 if (elt->first_same_value != src_eqv_elt->first_same_value)
4396 {
4397 /* The REG_EQUAL is indicating that two formerly distinct
4398 classes are now equivalent. So merge them. */
4399 merge_equiv_classes (elt, src_eqv_elt);
4400 src_eqv_hash = HASH (src_eqv, elt->mode);
4401 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4402 }
4403
4404 src_eqv_here = 0;
4405 }
4406
4407 else if (src_eqv_elt)
4408 elt = src_eqv_elt;
4409
4410 /* Try to find a constant somewhere and record it in `src_const'.
4411 Record its table element, if any, in `src_const_elt'. Look in
4412 any known equivalences first. (If the constant is not in the
4413 table, also set `sets[i].src_const_hash'). */
4414 if (elt)
4415 for (p = elt->first_same_value; p; p = p->next_same_value)
4416 if (p->is_const)
4417 {
4418 src_const = p->exp;
4419 src_const_elt = elt;
4420 break;
4421 }
4422
4423 if (src_const == 0
4424 && (CONSTANT_P (src_folded)
4425 /* Consider (minus (label_ref L1) (label_ref L2)) as
4426 "constant" here so we will record it. This allows us
4427 to fold switch statements when an ADDR_DIFF_VEC is used. */
4428 || (GET_CODE (src_folded) == MINUS
4429 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4430 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4431 src_const = src_folded, src_const_elt = elt;
4432 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4433 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4434
4435 /* If we don't know if the constant is in the table, get its
4436 hash code and look it up. */
4437 if (src_const && src_const_elt == 0)
4438 {
4439 sets[i].src_const_hash = HASH (src_const, mode);
4440 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4441 }
4442
4443 sets[i].src_const = src_const;
4444 sets[i].src_const_elt = src_const_elt;
4445
4446 /* If the constant and our source are both in the table, mark them as
4447 equivalent. Otherwise, if a constant is in the table but the source
4448 isn't, set ELT to it. */
4449 if (src_const_elt && elt
4450 && src_const_elt->first_same_value != elt->first_same_value)
4451 merge_equiv_classes (elt, src_const_elt);
4452 else if (src_const_elt && elt == 0)
4453 elt = src_const_elt;
4454
4455 /* See if there is a register linearly related to a constant
4456 equivalent of SRC. */
4457 if (src_const
4458 && (GET_CODE (src_const) == CONST
4459 || (src_const_elt && src_const_elt->related_value != 0)))
4460 {
4461 src_related = use_related_value (src_const, src_const_elt);
4462 if (src_related)
4463 {
4464 struct table_elt *src_related_elt
4465 = lookup (src_related, HASH (src_related, mode), mode);
4466 if (src_related_elt && elt)
4467 {
4468 if (elt->first_same_value
4469 != src_related_elt->first_same_value)
4470 /* This can occur when we previously saw a CONST
4471 involving a SYMBOL_REF and then see the SYMBOL_REF
4472 twice. Merge the involved classes. */
4473 merge_equiv_classes (elt, src_related_elt);
4474
4475 src_related = 0;
4476 src_related_elt = 0;
4477 }
4478 else if (src_related_elt && elt == 0)
4479 elt = src_related_elt;
4480 }
4481 }
4482
4483 /* See if we have a CONST_INT that is already in a register in a
4484 wider mode. */
4485
4486 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4487 && GET_MODE_CLASS (mode) == MODE_INT
4488 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4489 {
4490 enum machine_mode wider_mode;
4491
4492 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4493 wider_mode != VOIDmode
4494 && GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4495 && src_related == 0;
4496 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4497 {
4498 struct table_elt *const_elt
4499 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4500
4501 if (const_elt == 0)
4502 continue;
4503
4504 for (const_elt = const_elt->first_same_value;
4505 const_elt; const_elt = const_elt->next_same_value)
4506 if (REG_P (const_elt->exp))
4507 {
4508 src_related = gen_lowpart (mode, const_elt->exp);
4509 break;
4510 }
4511 }
4512 }
4513
4514 /* Another possibility is that we have an AND with a constant in
4515 a mode narrower than a word. If so, it might have been generated
4516 as part of an "if" which would narrow the AND. If we already
4517 have done the AND in a wider mode, we can use a SUBREG of that
4518 value. */
4519
4520 if (flag_expensive_optimizations && ! src_related
4521 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4522 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4523 {
4524 enum machine_mode tmode;
4525 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4526
4527 for (tmode = GET_MODE_WIDER_MODE (mode);
4528 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4529 tmode = GET_MODE_WIDER_MODE (tmode))
4530 {
4531 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4532 struct table_elt *larger_elt;
4533
4534 if (inner)
4535 {
4536 PUT_MODE (new_and, tmode);
4537 XEXP (new_and, 0) = inner;
4538 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4539 if (larger_elt == 0)
4540 continue;
4541
4542 for (larger_elt = larger_elt->first_same_value;
4543 larger_elt; larger_elt = larger_elt->next_same_value)
4544 if (REG_P (larger_elt->exp))
4545 {
4546 src_related
4547 = gen_lowpart (mode, larger_elt->exp);
4548 break;
4549 }
4550
4551 if (src_related)
4552 break;
4553 }
4554 }
4555 }
4556
4557 #ifdef LOAD_EXTEND_OP
4558 /* See if a MEM has already been loaded with a widening operation;
4559 if it has, we can use a subreg of that. Many CISC machines
4560 also have such operations, but this is only likely to be
4561 beneficial on these machines. */
4562
4563 if (flag_expensive_optimizations && src_related == 0
4564 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4565 && GET_MODE_CLASS (mode) == MODE_INT
4566 && MEM_P (src) && ! do_not_record
4567 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4568 {
4569 struct rtx_def memory_extend_buf;
4570 rtx memory_extend_rtx = &memory_extend_buf;
4571 enum machine_mode tmode;
4572
4573 /* Set what we are trying to extend and the operation it might
4574 have been extended with. */
4575 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4576 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4577 XEXP (memory_extend_rtx, 0) = src;
4578
4579 for (tmode = GET_MODE_WIDER_MODE (mode);
4580 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4581 tmode = GET_MODE_WIDER_MODE (tmode))
4582 {
4583 struct table_elt *larger_elt;
4584
4585 PUT_MODE (memory_extend_rtx, tmode);
4586 larger_elt = lookup (memory_extend_rtx,
4587 HASH (memory_extend_rtx, tmode), tmode);
4588 if (larger_elt == 0)
4589 continue;
4590
4591 for (larger_elt = larger_elt->first_same_value;
4592 larger_elt; larger_elt = larger_elt->next_same_value)
4593 if (REG_P (larger_elt->exp))
4594 {
4595 src_related = gen_lowpart (mode, larger_elt->exp);
4596 break;
4597 }
4598
4599 if (src_related)
4600 break;
4601 }
4602 }
4603 #endif /* LOAD_EXTEND_OP */
4604
4605 if (src == src_folded)
4606 src_folded = 0;
4607
4608 /* At this point, ELT, if nonzero, points to a class of expressions
4609 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4610 and SRC_RELATED, if nonzero, each contain additional equivalent
4611 expressions. Prune these latter expressions by deleting expressions
4612 already in the equivalence class.
4613
4614 Check for an equivalent identical to the destination. If found,
4615 this is the preferred equivalent since it will likely lead to
4616 elimination of the insn. Indicate this by placing it in
4617 `src_related'. */
4618
4619 if (elt)
4620 elt = elt->first_same_value;
4621 for (p = elt; p; p = p->next_same_value)
4622 {
4623 enum rtx_code code = GET_CODE (p->exp);
4624
4625 /* If the expression is not valid, ignore it. Then we do not
4626 have to check for validity below. In most cases, we can use
4627 `rtx_equal_p', since canonicalization has already been done. */
4628 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4629 continue;
4630
4631 /* Also skip paradoxical subregs, unless that's what we're
4632 looking for. */
4633 if (code == SUBREG
4634 && (GET_MODE_SIZE (GET_MODE (p->exp))
4635 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4636 && ! (src != 0
4637 && GET_CODE (src) == SUBREG
4638 && GET_MODE (src) == GET_MODE (p->exp)
4639 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4640 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4641 continue;
4642
4643 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4644 src = 0;
4645 else if (src_folded && GET_CODE (src_folded) == code
4646 && rtx_equal_p (src_folded, p->exp))
4647 src_folded = 0;
4648 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4649 && rtx_equal_p (src_eqv_here, p->exp))
4650 src_eqv_here = 0;
4651 else if (src_related && GET_CODE (src_related) == code
4652 && rtx_equal_p (src_related, p->exp))
4653 src_related = 0;
4654
4655 /* This is the same as the destination of the insns, we want
4656 to prefer it. Copy it to src_related. The code below will
4657 then give it a negative cost. */
4658 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4659 src_related = dest;
4660 }
4661
4662 /* Find the cheapest valid equivalent, trying all the available
4663 possibilities. Prefer items not in the hash table to ones
4664 that are when they are equal cost. Note that we can never
4665 worsen an insn as the current contents will also succeed.
4666 If we find an equivalent identical to the destination, use it as best,
4667 since this insn will probably be eliminated in that case. */
4668 if (src)
4669 {
4670 if (rtx_equal_p (src, dest))
4671 src_cost = src_regcost = -1;
4672 else
4673 {
4674 src_cost = COST (src);
4675 src_regcost = approx_reg_cost (src);
4676 }
4677 }
4678
4679 if (src_eqv_here)
4680 {
4681 if (rtx_equal_p (src_eqv_here, dest))
4682 src_eqv_cost = src_eqv_regcost = -1;
4683 else
4684 {
4685 src_eqv_cost = COST (src_eqv_here);
4686 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4687 }
4688 }
4689
4690 if (src_folded)
4691 {
4692 if (rtx_equal_p (src_folded, dest))
4693 src_folded_cost = src_folded_regcost = -1;
4694 else
4695 {
4696 src_folded_cost = COST (src_folded);
4697 src_folded_regcost = approx_reg_cost (src_folded);
4698 }
4699 }
4700
4701 if (src_related)
4702 {
4703 if (rtx_equal_p (src_related, dest))
4704 src_related_cost = src_related_regcost = -1;
4705 else
4706 {
4707 src_related_cost = COST (src_related);
4708 src_related_regcost = approx_reg_cost (src_related);
4709 }
4710 }
4711
4712 /* If this was an indirect jump insn, a known label will really be
4713 cheaper even though it looks more expensive. */
4714 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4715 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4716
4717 /* Terminate loop when replacement made. This must terminate since
4718 the current contents will be tested and will always be valid. */
4719 while (1)
4720 {
4721 rtx trial;
4722
4723 /* Skip invalid entries. */
4724 while (elt && !REG_P (elt->exp)
4725 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4726 elt = elt->next_same_value;
4727
4728 /* A paradoxical subreg would be bad here: it'll be the right
4729 size, but later may be adjusted so that the upper bits aren't
4730 what we want. So reject it. */
4731 if (elt != 0
4732 && GET_CODE (elt->exp) == SUBREG
4733 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4734 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4735 /* It is okay, though, if the rtx we're trying to match
4736 will ignore any of the bits we can't predict. */
4737 && ! (src != 0
4738 && GET_CODE (src) == SUBREG
4739 && GET_MODE (src) == GET_MODE (elt->exp)
4740 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4741 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4742 {
4743 elt = elt->next_same_value;
4744 continue;
4745 }
4746
4747 if (elt)
4748 {
4749 src_elt_cost = elt->cost;
4750 src_elt_regcost = elt->regcost;
4751 }
4752
4753 /* Find cheapest and skip it for the next time. For items
4754 of equal cost, use this order:
4755 src_folded, src, src_eqv, src_related and hash table entry. */
4756 if (src_folded
4757 && preferable (src_folded_cost, src_folded_regcost,
4758 src_cost, src_regcost) <= 0
4759 && preferable (src_folded_cost, src_folded_regcost,
4760 src_eqv_cost, src_eqv_regcost) <= 0
4761 && preferable (src_folded_cost, src_folded_regcost,
4762 src_related_cost, src_related_regcost) <= 0
4763 && preferable (src_folded_cost, src_folded_regcost,
4764 src_elt_cost, src_elt_regcost) <= 0)
4765 {
4766 trial = src_folded, src_folded_cost = MAX_COST;
4767 if (src_folded_force_flag)
4768 {
4769 rtx forced = force_const_mem (mode, trial);
4770 if (forced)
4771 trial = forced;
4772 }
4773 }
4774 else if (src
4775 && preferable (src_cost, src_regcost,
4776 src_eqv_cost, src_eqv_regcost) <= 0
4777 && preferable (src_cost, src_regcost,
4778 src_related_cost, src_related_regcost) <= 0
4779 && preferable (src_cost, src_regcost,
4780 src_elt_cost, src_elt_regcost) <= 0)
4781 trial = src, src_cost = MAX_COST;
4782 else if (src_eqv_here
4783 && preferable (src_eqv_cost, src_eqv_regcost,
4784 src_related_cost, src_related_regcost) <= 0
4785 && preferable (src_eqv_cost, src_eqv_regcost,
4786 src_elt_cost, src_elt_regcost) <= 0)
4787 trial = src_eqv_here, src_eqv_cost = MAX_COST;
4788 else if (src_related
4789 && preferable (src_related_cost, src_related_regcost,
4790 src_elt_cost, src_elt_regcost) <= 0)
4791 trial = src_related, src_related_cost = MAX_COST;
4792 else
4793 {
4794 trial = elt->exp;
4795 elt = elt->next_same_value;
4796 src_elt_cost = MAX_COST;
4797 }
4798
4799 /* Avoid creation of overlapping memory moves. */
4800 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
4801 {
4802 rtx src, dest;
4803
4804 /* BLKmode moves are not handled by cse anyway. */
4805 if (GET_MODE (trial) == BLKmode)
4806 break;
4807
4808 src = canon_rtx (trial);
4809 dest = canon_rtx (SET_DEST (sets[i].rtl));
4810
4811 if (!MEM_P (src) || !MEM_P (dest)
4812 || !nonoverlapping_memrefs_p (src, dest))
4813 break;
4814 }
4815
4816 /* We don't normally have an insn matching (set (pc) (pc)), so
4817 check for this separately here. We will delete such an
4818 insn below.
4819
4820 For other cases such as a table jump or conditional jump
4821 where we know the ultimate target, go ahead and replace the
4822 operand. While that may not make a valid insn, we will
4823 reemit the jump below (and also insert any necessary
4824 barriers). */
4825 if (n_sets == 1 && dest == pc_rtx
4826 && (trial == pc_rtx
4827 || (GET_CODE (trial) == LABEL_REF
4828 && ! condjump_p (insn))))
4829 {
4830 /* Don't substitute non-local labels, this confuses CFG. */
4831 if (GET_CODE (trial) == LABEL_REF
4832 && LABEL_REF_NONLOCAL_P (trial))
4833 continue;
4834
4835 SET_SRC (sets[i].rtl) = trial;
4836 cse_jumps_altered = true;
4837 break;
4838 }
4839
4840 /* Reject certain invalid forms of CONST that we create. */
4841 else if (CONSTANT_P (trial)
4842 && GET_CODE (trial) == CONST
4843 /* Reject cases that will cause decode_rtx_const to
4844 die. On the alpha when simplifying a switch, we
4845 get (const (truncate (minus (label_ref)
4846 (label_ref)))). */
4847 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4848 /* Likewise on IA-64, except without the
4849 truncate. */
4850 || (GET_CODE (XEXP (trial, 0)) == MINUS
4851 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4852 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4853 /* Do nothing for this case. */
4854 ;
4855
4856 /* Look for a substitution that makes a valid insn. */
4857 else if (validate_unshare_change
4858 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4859 {
4860 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
4861
4862 /* The result of apply_change_group can be ignored; see
4863 canon_reg. */
4864
4865 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4866 apply_change_group ();
4867
4868 break;
4869 }
4870
4871 /* If we previously found constant pool entries for
4872 constants and this is a constant, try making a
4873 pool entry. Put it in src_folded unless we already have done
4874 this since that is where it likely came from. */
4875
4876 else if (constant_pool_entries_cost
4877 && CONSTANT_P (trial)
4878 && (src_folded == 0
4879 || (!MEM_P (src_folded)
4880 && ! src_folded_force_flag))
4881 && GET_MODE_CLASS (mode) != MODE_CC
4882 && mode != VOIDmode)
4883 {
4884 src_folded_force_flag = 1;
4885 src_folded = trial;
4886 src_folded_cost = constant_pool_entries_cost;
4887 src_folded_regcost = constant_pool_entries_regcost;
4888 }
4889 }
4890
4891 src = SET_SRC (sets[i].rtl);
4892
4893 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4894 However, there is an important exception: If both are registers
4895 that are not the head of their equivalence class, replace SET_SRC
4896 with the head of the class. If we do not do this, we will have
4897 both registers live over a portion of the basic block. This way,
4898 their lifetimes will likely abut instead of overlapping. */
4899 if (REG_P (dest)
4900 && REGNO_QTY_VALID_P (REGNO (dest)))
4901 {
4902 int dest_q = REG_QTY (REGNO (dest));
4903 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4904
4905 if (dest_ent->mode == GET_MODE (dest)
4906 && dest_ent->first_reg != REGNO (dest)
4907 && REG_P (src) && REGNO (src) == REGNO (dest)
4908 /* Don't do this if the original insn had a hard reg as
4909 SET_SRC or SET_DEST. */
4910 && (!REG_P (sets[i].src)
4911 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4912 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4913 /* We can't call canon_reg here because it won't do anything if
4914 SRC is a hard register. */
4915 {
4916 int src_q = REG_QTY (REGNO (src));
4917 struct qty_table_elem *src_ent = &qty_table[src_q];
4918 int first = src_ent->first_reg;
4919 rtx new_src
4920 = (first >= FIRST_PSEUDO_REGISTER
4921 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4922
4923 /* We must use validate-change even for this, because this
4924 might be a special no-op instruction, suitable only to
4925 tag notes onto. */
4926 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4927 {
4928 src = new_src;
4929 /* If we had a constant that is cheaper than what we are now
4930 setting SRC to, use that constant. We ignored it when we
4931 thought we could make this into a no-op. */
4932 if (src_const && COST (src_const) < COST (src)
4933 && validate_change (insn, &SET_SRC (sets[i].rtl),
4934 src_const, 0))
4935 src = src_const;
4936 }
4937 }
4938 }
4939
4940 /* If we made a change, recompute SRC values. */
4941 if (src != sets[i].src)
4942 {
4943 do_not_record = 0;
4944 hash_arg_in_memory = 0;
4945 sets[i].src = src;
4946 sets[i].src_hash = HASH (src, mode);
4947 sets[i].src_volatile = do_not_record;
4948 sets[i].src_in_memory = hash_arg_in_memory;
4949 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4950 }
4951
4952 /* If this is a single SET, we are setting a register, and we have an
4953 equivalent constant, we want to add a REG_NOTE. We don't want
4954 to write a REG_EQUAL note for a constant pseudo since verifying that
4955 that pseudo hasn't been eliminated is a pain. Such a note also
4956 won't help anything.
4957
4958 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4959 which can be created for a reference to a compile time computable
4960 entry in a jump table. */
4961
4962 if (n_sets == 1 && src_const && REG_P (dest)
4963 && !REG_P (src_const)
4964 && ! (GET_CODE (src_const) == CONST
4965 && GET_CODE (XEXP (src_const, 0)) == MINUS
4966 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4967 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4968 {
4969 /* We only want a REG_EQUAL note if src_const != src. */
4970 if (! rtx_equal_p (src, src_const))
4971 {
4972 /* Make sure that the rtx is not shared. */
4973 src_const = copy_rtx (src_const);
4974
4975 /* Record the actual constant value in a REG_EQUAL note,
4976 making a new one if one does not already exist. */
4977 set_unique_reg_note (insn, REG_EQUAL, src_const);
4978 df_notes_rescan (insn);
4979 }
4980 }
4981
4982 /* Now deal with the destination. */
4983 do_not_record = 0;
4984
4985 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4986 while (GET_CODE (dest) == SUBREG
4987 || GET_CODE (dest) == ZERO_EXTRACT
4988 || GET_CODE (dest) == STRICT_LOW_PART)
4989 dest = XEXP (dest, 0);
4990
4991 sets[i].inner_dest = dest;
4992
4993 if (MEM_P (dest))
4994 {
4995 #ifdef PUSH_ROUNDING
4996 /* Stack pushes invalidate the stack pointer. */
4997 rtx addr = XEXP (dest, 0);
4998 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
4999 && XEXP (addr, 0) == stack_pointer_rtx)
5000 invalidate (stack_pointer_rtx, VOIDmode);
5001 #endif
5002 dest = fold_rtx (dest, insn);
5003 }
5004
5005 /* Compute the hash code of the destination now,
5006 before the effects of this instruction are recorded,
5007 since the register values used in the address computation
5008 are those before this instruction. */
5009 sets[i].dest_hash = HASH (dest, mode);
5010
5011 /* Don't enter a bit-field in the hash table
5012 because the value in it after the store
5013 may not equal what was stored, due to truncation. */
5014
5015 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5016 {
5017 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5018
5019 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5020 && GET_CODE (width) == CONST_INT
5021 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5022 && ! (INTVAL (src_const)
5023 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5024 /* Exception: if the value is constant,
5025 and it won't be truncated, record it. */
5026 ;
5027 else
5028 {
5029 /* This is chosen so that the destination will be invalidated
5030 but no new value will be recorded.
5031 We must invalidate because sometimes constant
5032 values can be recorded for bitfields. */
5033 sets[i].src_elt = 0;
5034 sets[i].src_volatile = 1;
5035 src_eqv = 0;
5036 src_eqv_elt = 0;
5037 }
5038 }
5039
5040 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5041 the insn. */
5042 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5043 {
5044 /* One less use of the label this insn used to jump to. */
5045 delete_insn_and_edges (insn);
5046 cse_jumps_altered = true;
5047 /* No more processing for this set. */
5048 sets[i].rtl = 0;
5049 }
5050
5051 /* If this SET is now setting PC to a label, we know it used to
5052 be a conditional or computed branch. */
5053 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5054 && !LABEL_REF_NONLOCAL_P (src))
5055 {
5056 /* We reemit the jump in as many cases as possible just in
5057 case the form of an unconditional jump is significantly
5058 different than a computed jump or conditional jump.
5059
5060 If this insn has multiple sets, then reemitting the
5061 jump is nontrivial. So instead we just force rerecognition
5062 and hope for the best. */
5063 if (n_sets == 1)
5064 {
5065 rtx new_rtx, note;
5066
5067 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5068 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5069 LABEL_NUSES (XEXP (src, 0))++;
5070
5071 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5072 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5073 if (note)
5074 {
5075 XEXP (note, 1) = NULL_RTX;
5076 REG_NOTES (new_rtx) = note;
5077 }
5078
5079 delete_insn_and_edges (insn);
5080 insn = new_rtx;
5081 }
5082 else
5083 INSN_CODE (insn) = -1;
5084
5085 /* Do not bother deleting any unreachable code, let jump do it. */
5086 cse_jumps_altered = true;
5087 sets[i].rtl = 0;
5088 }
5089
5090 /* If destination is volatile, invalidate it and then do no further
5091 processing for this assignment. */
5092
5093 else if (do_not_record)
5094 {
5095 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5096 invalidate (dest, VOIDmode);
5097 else if (MEM_P (dest))
5098 invalidate (dest, VOIDmode);
5099 else if (GET_CODE (dest) == STRICT_LOW_PART
5100 || GET_CODE (dest) == ZERO_EXTRACT)
5101 invalidate (XEXP (dest, 0), GET_MODE (dest));
5102 sets[i].rtl = 0;
5103 }
5104
5105 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5106 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5107
5108 #ifdef HAVE_cc0
5109 /* If setting CC0, record what it was set to, or a constant, if it
5110 is equivalent to a constant. If it is being set to a floating-point
5111 value, make a COMPARE with the appropriate constant of 0. If we
5112 don't do this, later code can interpret this as a test against
5113 const0_rtx, which can cause problems if we try to put it into an
5114 insn as a floating-point operand. */
5115 if (dest == cc0_rtx)
5116 {
5117 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5118 this_insn_cc0_mode = mode;
5119 if (FLOAT_MODE_P (mode))
5120 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5121 CONST0_RTX (mode));
5122 }
5123 #endif
5124 }
5125
5126 /* Now enter all non-volatile source expressions in the hash table
5127 if they are not already present.
5128 Record their equivalence classes in src_elt.
5129 This way we can insert the corresponding destinations into
5130 the same classes even if the actual sources are no longer in them
5131 (having been invalidated). */
5132
5133 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5134 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5135 {
5136 struct table_elt *elt;
5137 struct table_elt *classp = sets[0].src_elt;
5138 rtx dest = SET_DEST (sets[0].rtl);
5139 enum machine_mode eqvmode = GET_MODE (dest);
5140
5141 if (GET_CODE (dest) == STRICT_LOW_PART)
5142 {
5143 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5144 classp = 0;
5145 }
5146 if (insert_regs (src_eqv, classp, 0))
5147 {
5148 rehash_using_reg (src_eqv);
5149 src_eqv_hash = HASH (src_eqv, eqvmode);
5150 }
5151 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5152 elt->in_memory = src_eqv_in_memory;
5153 src_eqv_elt = elt;
5154
5155 /* Check to see if src_eqv_elt is the same as a set source which
5156 does not yet have an elt, and if so set the elt of the set source
5157 to src_eqv_elt. */
5158 for (i = 0; i < n_sets; i++)
5159 if (sets[i].rtl && sets[i].src_elt == 0
5160 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5161 sets[i].src_elt = src_eqv_elt;
5162 }
5163
5164 for (i = 0; i < n_sets; i++)
5165 if (sets[i].rtl && ! sets[i].src_volatile
5166 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5167 {
5168 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5169 {
5170 /* REG_EQUAL in setting a STRICT_LOW_PART
5171 gives an equivalent for the entire destination register,
5172 not just for the subreg being stored in now.
5173 This is a more interesting equivalence, so we arrange later
5174 to treat the entire reg as the destination. */
5175 sets[i].src_elt = src_eqv_elt;
5176 sets[i].src_hash = src_eqv_hash;
5177 }
5178 else
5179 {
5180 /* Insert source and constant equivalent into hash table, if not
5181 already present. */
5182 struct table_elt *classp = src_eqv_elt;
5183 rtx src = sets[i].src;
5184 rtx dest = SET_DEST (sets[i].rtl);
5185 enum machine_mode mode
5186 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5187
5188 /* It's possible that we have a source value known to be
5189 constant but don't have a REG_EQUAL note on the insn.
5190 Lack of a note will mean src_eqv_elt will be NULL. This
5191 can happen where we've generated a SUBREG to access a
5192 CONST_INT that is already in a register in a wider mode.
5193 Ensure that the source expression is put in the proper
5194 constant class. */
5195 if (!classp)
5196 classp = sets[i].src_const_elt;
5197
5198 if (sets[i].src_elt == 0)
5199 {
5200 struct table_elt *elt;
5201
5202 /* Note that these insert_regs calls cannot remove
5203 any of the src_elt's, because they would have failed to
5204 match if not still valid. */
5205 if (insert_regs (src, classp, 0))
5206 {
5207 rehash_using_reg (src);
5208 sets[i].src_hash = HASH (src, mode);
5209 }
5210 elt = insert (src, classp, sets[i].src_hash, mode);
5211 elt->in_memory = sets[i].src_in_memory;
5212 sets[i].src_elt = classp = elt;
5213 }
5214 if (sets[i].src_const && sets[i].src_const_elt == 0
5215 && src != sets[i].src_const
5216 && ! rtx_equal_p (sets[i].src_const, src))
5217 sets[i].src_elt = insert (sets[i].src_const, classp,
5218 sets[i].src_const_hash, mode);
5219 }
5220 }
5221 else if (sets[i].src_elt == 0)
5222 /* If we did not insert the source into the hash table (e.g., it was
5223 volatile), note the equivalence class for the REG_EQUAL value, if any,
5224 so that the destination goes into that class. */
5225 sets[i].src_elt = src_eqv_elt;
5226
5227 /* Record destination addresses in the hash table. This allows us to
5228 check if they are invalidated by other sets. */
5229 for (i = 0; i < n_sets; i++)
5230 {
5231 if (sets[i].rtl)
5232 {
5233 rtx x = sets[i].inner_dest;
5234 struct table_elt *elt;
5235 enum machine_mode mode;
5236 unsigned hash;
5237
5238 if (MEM_P (x))
5239 {
5240 x = XEXP (x, 0);
5241 mode = GET_MODE (x);
5242 hash = HASH (x, mode);
5243 elt = lookup (x, hash, mode);
5244 if (!elt)
5245 {
5246 if (insert_regs (x, NULL, 0))
5247 {
5248 rtx dest = SET_DEST (sets[i].rtl);
5249
5250 rehash_using_reg (x);
5251 hash = HASH (x, mode);
5252 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5253 }
5254 elt = insert (x, NULL, hash, mode);
5255 }
5256
5257 sets[i].dest_addr_elt = elt;
5258 }
5259 else
5260 sets[i].dest_addr_elt = NULL;
5261 }
5262 }
5263
5264 invalidate_from_clobbers (x);
5265
5266 /* Some registers are invalidated by subroutine calls. Memory is
5267 invalidated by non-constant calls. */
5268
5269 if (CALL_P (insn))
5270 {
5271 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5272 invalidate_memory ();
5273 invalidate_for_call ();
5274 }
5275
5276 /* Now invalidate everything set by this instruction.
5277 If a SUBREG or other funny destination is being set,
5278 sets[i].rtl is still nonzero, so here we invalidate the reg
5279 a part of which is being set. */
5280
5281 for (i = 0; i < n_sets; i++)
5282 if (sets[i].rtl)
5283 {
5284 /* We can't use the inner dest, because the mode associated with
5285 a ZERO_EXTRACT is significant. */
5286 rtx dest = SET_DEST (sets[i].rtl);
5287
5288 /* Needed for registers to remove the register from its
5289 previous quantity's chain.
5290 Needed for memory if this is a nonvarying address, unless
5291 we have just done an invalidate_memory that covers even those. */
5292 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5293 invalidate (dest, VOIDmode);
5294 else if (MEM_P (dest))
5295 invalidate (dest, VOIDmode);
5296 else if (GET_CODE (dest) == STRICT_LOW_PART
5297 || GET_CODE (dest) == ZERO_EXTRACT)
5298 invalidate (XEXP (dest, 0), GET_MODE (dest));
5299 }
5300
5301 /* A volatile ASM invalidates everything. */
5302 if (NONJUMP_INSN_P (insn)
5303 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5304 && MEM_VOLATILE_P (PATTERN (insn)))
5305 flush_hash_table ();
5306
5307 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5308 the regs restored by the longjmp come from a later time
5309 than the setjmp. */
5310 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5311 {
5312 flush_hash_table ();
5313 goto done;
5314 }
5315
5316 /* Make sure registers mentioned in destinations
5317 are safe for use in an expression to be inserted.
5318 This removes from the hash table
5319 any invalid entry that refers to one of these registers.
5320
5321 We don't care about the return value from mention_regs because
5322 we are going to hash the SET_DEST values unconditionally. */
5323
5324 for (i = 0; i < n_sets; i++)
5325 {
5326 if (sets[i].rtl)
5327 {
5328 rtx x = SET_DEST (sets[i].rtl);
5329
5330 if (!REG_P (x))
5331 mention_regs (x);
5332 else
5333 {
5334 /* We used to rely on all references to a register becoming
5335 inaccessible when a register changes to a new quantity,
5336 since that changes the hash code. However, that is not
5337 safe, since after HASH_SIZE new quantities we get a
5338 hash 'collision' of a register with its own invalid
5339 entries. And since SUBREGs have been changed not to
5340 change their hash code with the hash code of the register,
5341 it wouldn't work any longer at all. So we have to check
5342 for any invalid references lying around now.
5343 This code is similar to the REG case in mention_regs,
5344 but it knows that reg_tick has been incremented, and
5345 it leaves reg_in_table as -1 . */
5346 unsigned int regno = REGNO (x);
5347 unsigned int endregno = END_REGNO (x);
5348 unsigned int i;
5349
5350 for (i = regno; i < endregno; i++)
5351 {
5352 if (REG_IN_TABLE (i) >= 0)
5353 {
5354 remove_invalid_refs (i);
5355 REG_IN_TABLE (i) = -1;
5356 }
5357 }
5358 }
5359 }
5360 }
5361
5362 /* We may have just removed some of the src_elt's from the hash table.
5363 So replace each one with the current head of the same class.
5364 Also check if destination addresses have been removed. */
5365
5366 for (i = 0; i < n_sets; i++)
5367 if (sets[i].rtl)
5368 {
5369 if (sets[i].dest_addr_elt
5370 && sets[i].dest_addr_elt->first_same_value == 0)
5371 {
5372 /* The elt was removed, which means this destination is not
5373 valid after this instruction. */
5374 sets[i].rtl = NULL_RTX;
5375 }
5376 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5377 /* If elt was removed, find current head of same class,
5378 or 0 if nothing remains of that class. */
5379 {
5380 struct table_elt *elt = sets[i].src_elt;
5381
5382 while (elt && elt->prev_same_value)
5383 elt = elt->prev_same_value;
5384
5385 while (elt && elt->first_same_value == 0)
5386 elt = elt->next_same_value;
5387 sets[i].src_elt = elt ? elt->first_same_value : 0;
5388 }
5389 }
5390
5391 /* Now insert the destinations into their equivalence classes. */
5392
5393 for (i = 0; i < n_sets; i++)
5394 if (sets[i].rtl)
5395 {
5396 rtx dest = SET_DEST (sets[i].rtl);
5397 struct table_elt *elt;
5398
5399 /* Don't record value if we are not supposed to risk allocating
5400 floating-point values in registers that might be wider than
5401 memory. */
5402 if ((flag_float_store
5403 && MEM_P (dest)
5404 && FLOAT_MODE_P (GET_MODE (dest)))
5405 /* Don't record BLKmode values, because we don't know the
5406 size of it, and can't be sure that other BLKmode values
5407 have the same or smaller size. */
5408 || GET_MODE (dest) == BLKmode
5409 /* If we didn't put a REG_EQUAL value or a source into the hash
5410 table, there is no point is recording DEST. */
5411 || sets[i].src_elt == 0
5412 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5413 or SIGN_EXTEND, don't record DEST since it can cause
5414 some tracking to be wrong.
5415
5416 ??? Think about this more later. */
5417 || (GET_CODE (dest) == SUBREG
5418 && (GET_MODE_SIZE (GET_MODE (dest))
5419 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5420 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5421 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5422 continue;
5423
5424 /* STRICT_LOW_PART isn't part of the value BEING set,
5425 and neither is the SUBREG inside it.
5426 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5427 if (GET_CODE (dest) == STRICT_LOW_PART)
5428 dest = SUBREG_REG (XEXP (dest, 0));
5429
5430 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5431 /* Registers must also be inserted into chains for quantities. */
5432 if (insert_regs (dest, sets[i].src_elt, 1))
5433 {
5434 /* If `insert_regs' changes something, the hash code must be
5435 recalculated. */
5436 rehash_using_reg (dest);
5437 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5438 }
5439
5440 elt = insert (dest, sets[i].src_elt,
5441 sets[i].dest_hash, GET_MODE (dest));
5442
5443 elt->in_memory = (MEM_P (sets[i].inner_dest)
5444 && !MEM_READONLY_P (sets[i].inner_dest));
5445
5446 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5447 narrower than M2, and both M1 and M2 are the same number of words,
5448 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5449 make that equivalence as well.
5450
5451 However, BAR may have equivalences for which gen_lowpart
5452 will produce a simpler value than gen_lowpart applied to
5453 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5454 BAR's equivalences. If we don't get a simplified form, make
5455 the SUBREG. It will not be used in an equivalence, but will
5456 cause two similar assignments to be detected.
5457
5458 Note the loop below will find SUBREG_REG (DEST) since we have
5459 already entered SRC and DEST of the SET in the table. */
5460
5461 if (GET_CODE (dest) == SUBREG
5462 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5463 / UNITS_PER_WORD)
5464 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5465 && (GET_MODE_SIZE (GET_MODE (dest))
5466 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5467 && sets[i].src_elt != 0)
5468 {
5469 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5470 struct table_elt *elt, *classp = 0;
5471
5472 for (elt = sets[i].src_elt->first_same_value; elt;
5473 elt = elt->next_same_value)
5474 {
5475 rtx new_src = 0;
5476 unsigned src_hash;
5477 struct table_elt *src_elt;
5478 int byte = 0;
5479
5480 /* Ignore invalid entries. */
5481 if (!REG_P (elt->exp)
5482 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5483 continue;
5484
5485 /* We may have already been playing subreg games. If the
5486 mode is already correct for the destination, use it. */
5487 if (GET_MODE (elt->exp) == new_mode)
5488 new_src = elt->exp;
5489 else
5490 {
5491 /* Calculate big endian correction for the SUBREG_BYTE.
5492 We have already checked that M1 (GET_MODE (dest))
5493 is not narrower than M2 (new_mode). */
5494 if (BYTES_BIG_ENDIAN)
5495 byte = (GET_MODE_SIZE (GET_MODE (dest))
5496 - GET_MODE_SIZE (new_mode));
5497
5498 new_src = simplify_gen_subreg (new_mode, elt->exp,
5499 GET_MODE (dest), byte);
5500 }
5501
5502 /* The call to simplify_gen_subreg fails if the value
5503 is VOIDmode, yet we can't do any simplification, e.g.
5504 for EXPR_LISTs denoting function call results.
5505 It is invalid to construct a SUBREG with a VOIDmode
5506 SUBREG_REG, hence a zero new_src means we can't do
5507 this substitution. */
5508 if (! new_src)
5509 continue;
5510
5511 src_hash = HASH (new_src, new_mode);
5512 src_elt = lookup (new_src, src_hash, new_mode);
5513
5514 /* Put the new source in the hash table is if isn't
5515 already. */
5516 if (src_elt == 0)
5517 {
5518 if (insert_regs (new_src, classp, 0))
5519 {
5520 rehash_using_reg (new_src);
5521 src_hash = HASH (new_src, new_mode);
5522 }
5523 src_elt = insert (new_src, classp, src_hash, new_mode);
5524 src_elt->in_memory = elt->in_memory;
5525 }
5526 else if (classp && classp != src_elt->first_same_value)
5527 /* Show that two things that we've seen before are
5528 actually the same. */
5529 merge_equiv_classes (src_elt, classp);
5530
5531 classp = src_elt->first_same_value;
5532 /* Ignore invalid entries. */
5533 while (classp
5534 && !REG_P (classp->exp)
5535 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5536 classp = classp->next_same_value;
5537 }
5538 }
5539 }
5540
5541 /* Special handling for (set REG0 REG1) where REG0 is the
5542 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5543 be used in the sequel, so (if easily done) change this insn to
5544 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5545 that computed their value. Then REG1 will become a dead store
5546 and won't cloud the situation for later optimizations.
5547
5548 Do not make this change if REG1 is a hard register, because it will
5549 then be used in the sequel and we may be changing a two-operand insn
5550 into a three-operand insn.
5551
5552 Also do not do this if we are operating on a copy of INSN. */
5553
5554 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5555 && NEXT_INSN (PREV_INSN (insn)) == insn
5556 && REG_P (SET_SRC (sets[0].rtl))
5557 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5558 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5559 {
5560 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5561 struct qty_table_elem *src_ent = &qty_table[src_q];
5562
5563 if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5564 {
5565 /* Scan for the previous nonnote insn, but stop at a basic
5566 block boundary. */
5567 rtx prev = insn;
5568 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5569 do
5570 {
5571 prev = PREV_INSN (prev);
5572 }
5573 while (prev != bb_head && NOTE_P (prev));
5574
5575 /* Do not swap the registers around if the previous instruction
5576 attaches a REG_EQUIV note to REG1.
5577
5578 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5579 from the pseudo that originally shadowed an incoming argument
5580 to another register. Some uses of REG_EQUIV might rely on it
5581 being attached to REG1 rather than REG2.
5582
5583 This section previously turned the REG_EQUIV into a REG_EQUAL
5584 note. We cannot do that because REG_EQUIV may provide an
5585 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5586 if (NONJUMP_INSN_P (prev)
5587 && GET_CODE (PATTERN (prev)) == SET
5588 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5589 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5590 {
5591 rtx dest = SET_DEST (sets[0].rtl);
5592 rtx src = SET_SRC (sets[0].rtl);
5593 rtx note;
5594
5595 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5596 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5597 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5598 apply_change_group ();
5599
5600 /* If INSN has a REG_EQUAL note, and this note mentions
5601 REG0, then we must delete it, because the value in
5602 REG0 has changed. If the note's value is REG1, we must
5603 also delete it because that is now this insn's dest. */
5604 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5605 if (note != 0
5606 && (reg_mentioned_p (dest, XEXP (note, 0))
5607 || rtx_equal_p (src, XEXP (note, 0))))
5608 remove_note (insn, note);
5609 }
5610 }
5611 }
5612
5613 done:;
5614 }
5615 \f
5616 /* Remove from the hash table all expressions that reference memory. */
5617
5618 static void
5619 invalidate_memory (void)
5620 {
5621 int i;
5622 struct table_elt *p, *next;
5623
5624 for (i = 0; i < HASH_SIZE; i++)
5625 for (p = table[i]; p; p = next)
5626 {
5627 next = p->next_same_hash;
5628 if (p->in_memory)
5629 remove_from_table (p, i);
5630 }
5631 }
5632
5633 /* Perform invalidation on the basis of everything about an insn
5634 except for invalidating the actual places that are SET in it.
5635 This includes the places CLOBBERed, and anything that might
5636 alias with something that is SET or CLOBBERed.
5637
5638 X is the pattern of the insn. */
5639
5640 static void
5641 invalidate_from_clobbers (rtx x)
5642 {
5643 if (GET_CODE (x) == CLOBBER)
5644 {
5645 rtx ref = XEXP (x, 0);
5646 if (ref)
5647 {
5648 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5649 || MEM_P (ref))
5650 invalidate (ref, VOIDmode);
5651 else if (GET_CODE (ref) == STRICT_LOW_PART
5652 || GET_CODE (ref) == ZERO_EXTRACT)
5653 invalidate (XEXP (ref, 0), GET_MODE (ref));
5654 }
5655 }
5656 else if (GET_CODE (x) == PARALLEL)
5657 {
5658 int i;
5659 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5660 {
5661 rtx y = XVECEXP (x, 0, i);
5662 if (GET_CODE (y) == CLOBBER)
5663 {
5664 rtx ref = XEXP (y, 0);
5665 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5666 || MEM_P (ref))
5667 invalidate (ref, VOIDmode);
5668 else if (GET_CODE (ref) == STRICT_LOW_PART
5669 || GET_CODE (ref) == ZERO_EXTRACT)
5670 invalidate (XEXP (ref, 0), GET_MODE (ref));
5671 }
5672 }
5673 }
5674 }
5675 \f
5676 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5677 and replace any registers in them with either an equivalent constant
5678 or the canonical form of the register. If we are inside an address,
5679 only do this if the address remains valid.
5680
5681 OBJECT is 0 except when within a MEM in which case it is the MEM.
5682
5683 Return the replacement for X. */
5684
5685 static rtx
5686 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5687 {
5688 enum rtx_code code = GET_CODE (x);
5689 const char *fmt = GET_RTX_FORMAT (code);
5690 int i;
5691
5692 switch (code)
5693 {
5694 case CONST_INT:
5695 case CONST:
5696 case SYMBOL_REF:
5697 case LABEL_REF:
5698 case CONST_DOUBLE:
5699 case CONST_FIXED:
5700 case CONST_VECTOR:
5701 case PC:
5702 case CC0:
5703 case LO_SUM:
5704 return x;
5705
5706 case MEM:
5707 validate_change (x, &XEXP (x, 0),
5708 cse_process_notes (XEXP (x, 0), x, changed), 0);
5709 return x;
5710
5711 case EXPR_LIST:
5712 case INSN_LIST:
5713 if (REG_NOTE_KIND (x) == REG_EQUAL)
5714 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5715 if (XEXP (x, 1))
5716 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5717 return x;
5718
5719 case SIGN_EXTEND:
5720 case ZERO_EXTEND:
5721 case SUBREG:
5722 {
5723 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
5724 /* We don't substitute VOIDmode constants into these rtx,
5725 since they would impede folding. */
5726 if (GET_MODE (new_rtx) != VOIDmode)
5727 validate_change (object, &XEXP (x, 0), new_rtx, 0);
5728 return x;
5729 }
5730
5731 case REG:
5732 i = REG_QTY (REGNO (x));
5733
5734 /* Return a constant or a constant register. */
5735 if (REGNO_QTY_VALID_P (REGNO (x)))
5736 {
5737 struct qty_table_elem *ent = &qty_table[i];
5738
5739 if (ent->const_rtx != NULL_RTX
5740 && (CONSTANT_P (ent->const_rtx)
5741 || REG_P (ent->const_rtx)))
5742 {
5743 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
5744 if (new_rtx)
5745 return copy_rtx (new_rtx);
5746 }
5747 }
5748
5749 /* Otherwise, canonicalize this register. */
5750 return canon_reg (x, NULL_RTX);
5751
5752 default:
5753 break;
5754 }
5755
5756 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5757 if (fmt[i] == 'e')
5758 validate_change (object, &XEXP (x, i),
5759 cse_process_notes (XEXP (x, i), object, changed), 0);
5760
5761 return x;
5762 }
5763
5764 static rtx
5765 cse_process_notes (rtx x, rtx object, bool *changed)
5766 {
5767 rtx new_rtx = cse_process_notes_1 (x, object, changed);
5768 if (new_rtx != x)
5769 *changed = true;
5770 return new_rtx;
5771 }
5772
5773 \f
5774 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5775
5776 DATA is a pointer to a struct cse_basic_block_data, that is used to
5777 describe the path.
5778 It is filled with a queue of basic blocks, starting with FIRST_BB
5779 and following a trace through the CFG.
5780
5781 If all paths starting at FIRST_BB have been followed, or no new path
5782 starting at FIRST_BB can be constructed, this function returns FALSE.
5783 Otherwise, DATA->path is filled and the function returns TRUE indicating
5784 that a path to follow was found.
5785
5786 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5787 block in the path will be FIRST_BB. */
5788
5789 static bool
5790 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5791 int follow_jumps)
5792 {
5793 basic_block bb;
5794 edge e;
5795 int path_size;
5796
5797 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5798
5799 /* See if there is a previous path. */
5800 path_size = data->path_size;
5801
5802 /* There is a previous path. Make sure it started with FIRST_BB. */
5803 if (path_size)
5804 gcc_assert (data->path[0].bb == first_bb);
5805
5806 /* There was only one basic block in the last path. Clear the path and
5807 return, so that paths starting at another basic block can be tried. */
5808 if (path_size == 1)
5809 {
5810 path_size = 0;
5811 goto done;
5812 }
5813
5814 /* If the path was empty from the beginning, construct a new path. */
5815 if (path_size == 0)
5816 data->path[path_size++].bb = first_bb;
5817 else
5818 {
5819 /* Otherwise, path_size must be equal to or greater than 2, because
5820 a previous path exists that is at least two basic blocks long.
5821
5822 Update the previous branch path, if any. If the last branch was
5823 previously along the branch edge, take the fallthrough edge now. */
5824 while (path_size >= 2)
5825 {
5826 basic_block last_bb_in_path, previous_bb_in_path;
5827 edge e;
5828
5829 --path_size;
5830 last_bb_in_path = data->path[path_size].bb;
5831 previous_bb_in_path = data->path[path_size - 1].bb;
5832
5833 /* If we previously followed a path along the branch edge, try
5834 the fallthru edge now. */
5835 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5836 && any_condjump_p (BB_END (previous_bb_in_path))
5837 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5838 && e == BRANCH_EDGE (previous_bb_in_path))
5839 {
5840 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5841 if (bb != EXIT_BLOCK_PTR
5842 && single_pred_p (bb)
5843 /* We used to assert here that we would only see blocks
5844 that we have not visited yet. But we may end up
5845 visiting basic blocks twice if the CFG has changed
5846 in this run of cse_main, because when the CFG changes
5847 the topological sort of the CFG also changes. A basic
5848 blocks that previously had more than two predecessors
5849 may now have a single predecessor, and become part of
5850 a path that starts at another basic block.
5851
5852 We still want to visit each basic block only once, so
5853 halt the path here if we have already visited BB. */
5854 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5855 {
5856 SET_BIT (cse_visited_basic_blocks, bb->index);
5857 data->path[path_size++].bb = bb;
5858 break;
5859 }
5860 }
5861
5862 data->path[path_size].bb = NULL;
5863 }
5864
5865 /* If only one block remains in the path, bail. */
5866 if (path_size == 1)
5867 {
5868 path_size = 0;
5869 goto done;
5870 }
5871 }
5872
5873 /* Extend the path if possible. */
5874 if (follow_jumps)
5875 {
5876 bb = data->path[path_size - 1].bb;
5877 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5878 {
5879 if (single_succ_p (bb))
5880 e = single_succ_edge (bb);
5881 else if (EDGE_COUNT (bb->succs) == 2
5882 && any_condjump_p (BB_END (bb)))
5883 {
5884 /* First try to follow the branch. If that doesn't lead
5885 to a useful path, follow the fallthru edge. */
5886 e = BRANCH_EDGE (bb);
5887 if (!single_pred_p (e->dest))
5888 e = FALLTHRU_EDGE (bb);
5889 }
5890 else
5891 e = NULL;
5892
5893 if (e && e->dest != EXIT_BLOCK_PTR
5894 && single_pred_p (e->dest)
5895 /* Avoid visiting basic blocks twice. The large comment
5896 above explains why this can happen. */
5897 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5898 {
5899 basic_block bb2 = e->dest;
5900 SET_BIT (cse_visited_basic_blocks, bb2->index);
5901 data->path[path_size++].bb = bb2;
5902 bb = bb2;
5903 }
5904 else
5905 bb = NULL;
5906 }
5907 }
5908
5909 done:
5910 data->path_size = path_size;
5911 return path_size != 0;
5912 }
5913 \f
5914 /* Dump the path in DATA to file F. NSETS is the number of sets
5915 in the path. */
5916
5917 static void
5918 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5919 {
5920 int path_entry;
5921
5922 fprintf (f, ";; Following path with %d sets: ", nsets);
5923 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5924 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5925 fputc ('\n', dump_file);
5926 fflush (f);
5927 }
5928
5929 \f
5930 /* Return true if BB has exception handling successor edges. */
5931
5932 static bool
5933 have_eh_succ_edges (basic_block bb)
5934 {
5935 edge e;
5936 edge_iterator ei;
5937
5938 FOR_EACH_EDGE (e, ei, bb->succs)
5939 if (e->flags & EDGE_EH)
5940 return true;
5941
5942 return false;
5943 }
5944
5945 \f
5946 /* Scan to the end of the path described by DATA. Return an estimate of
5947 the total number of SETs of all insns in the path. */
5948
5949 static void
5950 cse_prescan_path (struct cse_basic_block_data *data)
5951 {
5952 int nsets = 0;
5953 int path_size = data->path_size;
5954 int path_entry;
5955
5956 /* Scan to end of each basic block in the path. */
5957 for (path_entry = 0; path_entry < path_size; path_entry++)
5958 {
5959 basic_block bb;
5960 rtx insn;
5961
5962 bb = data->path[path_entry].bb;
5963
5964 FOR_BB_INSNS (bb, insn)
5965 {
5966 if (!INSN_P (insn))
5967 continue;
5968
5969 /* A PARALLEL can have lots of SETs in it,
5970 especially if it is really an ASM_OPERANDS. */
5971 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5972 nsets += XVECLEN (PATTERN (insn), 0);
5973 else
5974 nsets += 1;
5975 }
5976 }
5977
5978 data->nsets = nsets;
5979 }
5980 \f
5981 /* Process a single extended basic block described by EBB_DATA. */
5982
5983 static void
5984 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5985 {
5986 int path_size = ebb_data->path_size;
5987 int path_entry;
5988 int num_insns = 0;
5989
5990 /* Allocate the space needed by qty_table. */
5991 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
5992
5993 new_basic_block ();
5994 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
5995 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
5996 for (path_entry = 0; path_entry < path_size; path_entry++)
5997 {
5998 basic_block bb;
5999 rtx insn;
6000
6001 bb = ebb_data->path[path_entry].bb;
6002
6003 /* Invalidate recorded information for eh regs if there is an EH
6004 edge pointing to that bb. */
6005 if (bb_has_eh_pred (bb))
6006 {
6007 df_ref *def_rec;
6008
6009 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6010 {
6011 df_ref def = *def_rec;
6012 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6013 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6014 }
6015 }
6016
6017 FOR_BB_INSNS (bb, insn)
6018 {
6019 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6020 /* If we have processed 1,000 insns, flush the hash table to
6021 avoid extreme quadratic behavior. We must not include NOTEs
6022 in the count since there may be more of them when generating
6023 debugging information. If we clear the table at different
6024 times, code generated with -g -O might be different than code
6025 generated with -O but not -g.
6026
6027 FIXME: This is a real kludge and needs to be done some other
6028 way. */
6029 if (INSN_P (insn)
6030 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6031 {
6032 flush_hash_table ();
6033 num_insns = 0;
6034 }
6035
6036 if (INSN_P (insn))
6037 {
6038 /* Process notes first so we have all notes in canonical forms
6039 when looking for duplicate operations. */
6040 if (REG_NOTES (insn))
6041 {
6042 bool changed = false;
6043 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6044 NULL_RTX, &changed);
6045 if (changed)
6046 df_notes_rescan (insn);
6047 }
6048
6049 cse_insn (insn);
6050
6051 /* If we haven't already found an insn where we added a LABEL_REF,
6052 check this one. */
6053 if (INSN_P (insn) && !recorded_label_ref
6054 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6055 (void *) insn))
6056 recorded_label_ref = true;
6057
6058 #ifdef HAVE_cc0
6059 /* If the previous insn set CC0 and this insn no longer
6060 references CC0, delete the previous insn. Here we use
6061 fact that nothing expects CC0 to be valid over an insn,
6062 which is true until the final pass. */
6063 {
6064 rtx prev_insn, tem;
6065
6066 prev_insn = PREV_INSN (insn);
6067 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6068 && (tem = single_set (prev_insn)) != 0
6069 && SET_DEST (tem) == cc0_rtx
6070 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6071 delete_insn (prev_insn);
6072 }
6073
6074 /* If this insn is not the last insn in the basic block,
6075 it will be PREV_INSN(insn) in the next iteration. If
6076 we recorded any CC0-related information for this insn,
6077 remember it. */
6078 if (insn != BB_END (bb))
6079 {
6080 prev_insn_cc0 = this_insn_cc0;
6081 prev_insn_cc0_mode = this_insn_cc0_mode;
6082 }
6083 #endif
6084 }
6085 }
6086
6087 /* With non-call exceptions, we are not always able to update
6088 the CFG properly inside cse_insn. So clean up possibly
6089 redundant EH edges here. */
6090 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6091 cse_cfg_altered |= purge_dead_edges (bb);
6092
6093 /* If we changed a conditional jump, we may have terminated
6094 the path we are following. Check that by verifying that
6095 the edge we would take still exists. If the edge does
6096 not exist anymore, purge the remainder of the path.
6097 Note that this will cause us to return to the caller. */
6098 if (path_entry < path_size - 1)
6099 {
6100 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6101 if (!find_edge (bb, next_bb))
6102 {
6103 do
6104 {
6105 path_size--;
6106
6107 /* If we truncate the path, we must also reset the
6108 visited bit on the remaining blocks in the path,
6109 or we will never visit them at all. */
6110 RESET_BIT (cse_visited_basic_blocks,
6111 ebb_data->path[path_size].bb->index);
6112 ebb_data->path[path_size].bb = NULL;
6113 }
6114 while (path_size - 1 != path_entry);
6115 ebb_data->path_size = path_size;
6116 }
6117 }
6118
6119 /* If this is a conditional jump insn, record any known
6120 equivalences due to the condition being tested. */
6121 insn = BB_END (bb);
6122 if (path_entry < path_size - 1
6123 && JUMP_P (insn)
6124 && single_set (insn)
6125 && any_condjump_p (insn))
6126 {
6127 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6128 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6129 record_jump_equiv (insn, taken);
6130 }
6131
6132 #ifdef HAVE_cc0
6133 /* Clear the CC0-tracking related insns, they can't provide
6134 useful information across basic block boundaries. */
6135 prev_insn_cc0 = 0;
6136 #endif
6137 }
6138
6139 gcc_assert (next_qty <= max_qty);
6140
6141 free (qty_table);
6142 }
6143
6144 \f
6145 /* Perform cse on the instructions of a function.
6146 F is the first instruction.
6147 NREGS is one plus the highest pseudo-reg number used in the instruction.
6148
6149 Return 2 if jump optimizations should be redone due to simplifications
6150 in conditional jump instructions.
6151 Return 1 if the CFG should be cleaned up because it has been modified.
6152 Return 0 otherwise. */
6153
6154 int
6155 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6156 {
6157 struct cse_basic_block_data ebb_data;
6158 basic_block bb;
6159 int *rc_order = XNEWVEC (int, last_basic_block);
6160 int i, n_blocks;
6161
6162 df_set_flags (DF_LR_RUN_DCE);
6163 df_analyze ();
6164 df_set_flags (DF_DEFER_INSN_RESCAN);
6165
6166 reg_scan (get_insns (), max_reg_num ());
6167 init_cse_reg_info (nregs);
6168
6169 ebb_data.path = XNEWVEC (struct branch_path,
6170 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6171
6172 cse_cfg_altered = false;
6173 cse_jumps_altered = false;
6174 recorded_label_ref = false;
6175 constant_pool_entries_cost = 0;
6176 constant_pool_entries_regcost = 0;
6177 ebb_data.path_size = 0;
6178 ebb_data.nsets = 0;
6179 rtl_hooks = cse_rtl_hooks;
6180
6181 init_recog ();
6182 init_alias_analysis ();
6183
6184 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6185
6186 /* Set up the table of already visited basic blocks. */
6187 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6188 sbitmap_zero (cse_visited_basic_blocks);
6189
6190 /* Loop over basic blocks in reverse completion order (RPO),
6191 excluding the ENTRY and EXIT blocks. */
6192 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6193 i = 0;
6194 while (i < n_blocks)
6195 {
6196 /* Find the first block in the RPO queue that we have not yet
6197 processed before. */
6198 do
6199 {
6200 bb = BASIC_BLOCK (rc_order[i++]);
6201 }
6202 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6203 && i < n_blocks);
6204
6205 /* Find all paths starting with BB, and process them. */
6206 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6207 {
6208 /* Pre-scan the path. */
6209 cse_prescan_path (&ebb_data);
6210
6211 /* If this basic block has no sets, skip it. */
6212 if (ebb_data.nsets == 0)
6213 continue;
6214
6215 /* Get a reasonable estimate for the maximum number of qty's
6216 needed for this path. For this, we take the number of sets
6217 and multiply that by MAX_RECOG_OPERANDS. */
6218 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6219
6220 /* Dump the path we're about to process. */
6221 if (dump_file)
6222 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6223
6224 cse_extended_basic_block (&ebb_data);
6225 }
6226 }
6227
6228 /* Clean up. */
6229 end_alias_analysis ();
6230 free (reg_eqv_table);
6231 free (ebb_data.path);
6232 sbitmap_free (cse_visited_basic_blocks);
6233 free (rc_order);
6234 rtl_hooks = general_rtl_hooks;
6235
6236 if (cse_jumps_altered || recorded_label_ref)
6237 return 2;
6238 else if (cse_cfg_altered)
6239 return 1;
6240 else
6241 return 0;
6242 }
6243 \f
6244 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6245 which there isn't a REG_LABEL_OPERAND note.
6246 Return one if so. DATA is the insn. */
6247
6248 static int
6249 check_for_label_ref (rtx *rtl, void *data)
6250 {
6251 rtx insn = (rtx) data;
6252
6253 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6254 note for it, we must rerun jump since it needs to place the note. If
6255 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6256 don't do this since no REG_LABEL_OPERAND will be added. */
6257 return (GET_CODE (*rtl) == LABEL_REF
6258 && ! LABEL_REF_NONLOCAL_P (*rtl)
6259 && (!JUMP_P (insn)
6260 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6261 && LABEL_P (XEXP (*rtl, 0))
6262 && INSN_UID (XEXP (*rtl, 0)) != 0
6263 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6264 }
6265 \f
6266 /* Count the number of times registers are used (not set) in X.
6267 COUNTS is an array in which we accumulate the count, INCR is how much
6268 we count each register usage.
6269
6270 Don't count a usage of DEST, which is the SET_DEST of a SET which
6271 contains X in its SET_SRC. This is because such a SET does not
6272 modify the liveness of DEST.
6273 DEST is set to pc_rtx for a trapping insn, which means that we must count
6274 uses of a SET_DEST regardless because the insn can't be deleted here. */
6275
6276 static void
6277 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6278 {
6279 enum rtx_code code;
6280 rtx note;
6281 const char *fmt;
6282 int i, j;
6283
6284 if (x == 0)
6285 return;
6286
6287 switch (code = GET_CODE (x))
6288 {
6289 case REG:
6290 if (x != dest)
6291 counts[REGNO (x)] += incr;
6292 return;
6293
6294 case PC:
6295 case CC0:
6296 case CONST:
6297 case CONST_INT:
6298 case CONST_DOUBLE:
6299 case CONST_FIXED:
6300 case CONST_VECTOR:
6301 case SYMBOL_REF:
6302 case LABEL_REF:
6303 return;
6304
6305 case CLOBBER:
6306 /* If we are clobbering a MEM, mark any registers inside the address
6307 as being used. */
6308 if (MEM_P (XEXP (x, 0)))
6309 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6310 return;
6311
6312 case SET:
6313 /* Unless we are setting a REG, count everything in SET_DEST. */
6314 if (!REG_P (SET_DEST (x)))
6315 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6316 count_reg_usage (SET_SRC (x), counts,
6317 dest ? dest : SET_DEST (x),
6318 incr);
6319 return;
6320
6321 case CALL_INSN:
6322 case INSN:
6323 case JUMP_INSN:
6324 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6325 this fact by setting DEST to pc_rtx. */
6326 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6327 dest = pc_rtx;
6328 if (code == CALL_INSN)
6329 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6330 count_reg_usage (PATTERN (x), counts, dest, incr);
6331
6332 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6333 use them. */
6334
6335 note = find_reg_equal_equiv_note (x);
6336 if (note)
6337 {
6338 rtx eqv = XEXP (note, 0);
6339
6340 if (GET_CODE (eqv) == EXPR_LIST)
6341 /* This REG_EQUAL note describes the result of a function call.
6342 Process all the arguments. */
6343 do
6344 {
6345 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6346 eqv = XEXP (eqv, 1);
6347 }
6348 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6349 else
6350 count_reg_usage (eqv, counts, dest, incr);
6351 }
6352 return;
6353
6354 case EXPR_LIST:
6355 if (REG_NOTE_KIND (x) == REG_EQUAL
6356 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6357 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6358 involving registers in the address. */
6359 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6360 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6361
6362 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6363 return;
6364
6365 case ASM_OPERANDS:
6366 /* If the asm is volatile, then this insn cannot be deleted,
6367 and so the inputs *must* be live. */
6368 if (MEM_VOLATILE_P (x))
6369 dest = NULL_RTX;
6370 /* Iterate over just the inputs, not the constraints as well. */
6371 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6372 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6373 return;
6374
6375 case INSN_LIST:
6376 gcc_unreachable ();
6377
6378 default:
6379 break;
6380 }
6381
6382 fmt = GET_RTX_FORMAT (code);
6383 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6384 {
6385 if (fmt[i] == 'e')
6386 count_reg_usage (XEXP (x, i), counts, dest, incr);
6387 else if (fmt[i] == 'E')
6388 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6389 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6390 }
6391 }
6392 \f
6393 /* Return true if set is live. */
6394 static bool
6395 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6396 int *counts)
6397 {
6398 #ifdef HAVE_cc0
6399 rtx tem;
6400 #endif
6401
6402 if (set_noop_p (set))
6403 ;
6404
6405 #ifdef HAVE_cc0
6406 else if (GET_CODE (SET_DEST (set)) == CC0
6407 && !side_effects_p (SET_SRC (set))
6408 && ((tem = next_nonnote_insn (insn)) == 0
6409 || !INSN_P (tem)
6410 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6411 return false;
6412 #endif
6413 else if (!REG_P (SET_DEST (set))
6414 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6415 || counts[REGNO (SET_DEST (set))] != 0
6416 || side_effects_p (SET_SRC (set)))
6417 return true;
6418 return false;
6419 }
6420
6421 /* Return true if insn is live. */
6422
6423 static bool
6424 insn_live_p (rtx insn, int *counts)
6425 {
6426 int i;
6427 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6428 return true;
6429 else if (GET_CODE (PATTERN (insn)) == SET)
6430 return set_live_p (PATTERN (insn), insn, counts);
6431 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6432 {
6433 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6434 {
6435 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6436
6437 if (GET_CODE (elt) == SET)
6438 {
6439 if (set_live_p (elt, insn, counts))
6440 return true;
6441 }
6442 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6443 return true;
6444 }
6445 return false;
6446 }
6447 else
6448 return true;
6449 }
6450
6451 /* Scan all the insns and delete any that are dead; i.e., they store a register
6452 that is never used or they copy a register to itself.
6453
6454 This is used to remove insns made obviously dead by cse, loop or other
6455 optimizations. It improves the heuristics in loop since it won't try to
6456 move dead invariants out of loops or make givs for dead quantities. The
6457 remaining passes of the compilation are also sped up. */
6458
6459 int
6460 delete_trivially_dead_insns (rtx insns, int nreg)
6461 {
6462 int *counts;
6463 rtx insn, prev;
6464 int ndead = 0;
6465
6466 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6467 /* First count the number of times each register is used. */
6468 counts = XCNEWVEC (int, nreg);
6469 for (insn = insns; insn; insn = NEXT_INSN (insn))
6470 if (INSN_P (insn))
6471 count_reg_usage (insn, counts, NULL_RTX, 1);
6472
6473 /* Go from the last insn to the first and delete insns that only set unused
6474 registers or copy a register to itself. As we delete an insn, remove
6475 usage counts for registers it uses.
6476
6477 The first jump optimization pass may leave a real insn as the last
6478 insn in the function. We must not skip that insn or we may end
6479 up deleting code that is not really dead. */
6480 for (insn = get_last_insn (); insn; insn = prev)
6481 {
6482 int live_insn = 0;
6483
6484 prev = PREV_INSN (insn);
6485 if (!INSN_P (insn))
6486 continue;
6487
6488 live_insn = insn_live_p (insn, counts);
6489
6490 /* If this is a dead insn, delete it and show registers in it aren't
6491 being used. */
6492
6493 if (! live_insn && dbg_cnt (delete_trivial_dead))
6494 {
6495 count_reg_usage (insn, counts, NULL_RTX, -1);
6496 delete_insn_and_edges (insn);
6497 ndead++;
6498 }
6499 }
6500
6501 if (dump_file && ndead)
6502 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6503 ndead);
6504 /* Clean up. */
6505 free (counts);
6506 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6507 return ndead;
6508 }
6509
6510 /* This function is called via for_each_rtx. The argument, NEWREG, is
6511 a condition code register with the desired mode. If we are looking
6512 at the same register in a different mode, replace it with
6513 NEWREG. */
6514
6515 static int
6516 cse_change_cc_mode (rtx *loc, void *data)
6517 {
6518 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6519
6520 if (*loc
6521 && REG_P (*loc)
6522 && REGNO (*loc) == REGNO (args->newreg)
6523 && GET_MODE (*loc) != GET_MODE (args->newreg))
6524 {
6525 validate_change (args->insn, loc, args->newreg, 1);
6526
6527 return -1;
6528 }
6529 return 0;
6530 }
6531
6532 /* Change the mode of any reference to the register REGNO (NEWREG) to
6533 GET_MODE (NEWREG) in INSN. */
6534
6535 static void
6536 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6537 {
6538 struct change_cc_mode_args args;
6539 int success;
6540
6541 if (!INSN_P (insn))
6542 return;
6543
6544 args.insn = insn;
6545 args.newreg = newreg;
6546
6547 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6548 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6549
6550 /* If the following assertion was triggered, there is most probably
6551 something wrong with the cc_modes_compatible back end function.
6552 CC modes only can be considered compatible if the insn - with the mode
6553 replaced by any of the compatible modes - can still be recognized. */
6554 success = apply_change_group ();
6555 gcc_assert (success);
6556 }
6557
6558 /* Change the mode of any reference to the register REGNO (NEWREG) to
6559 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6560 any instruction which modifies NEWREG. */
6561
6562 static void
6563 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6564 {
6565 rtx insn;
6566
6567 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6568 {
6569 if (! INSN_P (insn))
6570 continue;
6571
6572 if (reg_set_p (newreg, insn))
6573 return;
6574
6575 cse_change_cc_mode_insn (insn, newreg);
6576 }
6577 }
6578
6579 /* BB is a basic block which finishes with CC_REG as a condition code
6580 register which is set to CC_SRC. Look through the successors of BB
6581 to find blocks which have a single predecessor (i.e., this one),
6582 and look through those blocks for an assignment to CC_REG which is
6583 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6584 permitted to change the mode of CC_SRC to a compatible mode. This
6585 returns VOIDmode if no equivalent assignments were found.
6586 Otherwise it returns the mode which CC_SRC should wind up with.
6587 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
6588 but is passed unmodified down to recursive calls in order to prevent
6589 endless recursion.
6590
6591 The main complexity in this function is handling the mode issues.
6592 We may have more than one duplicate which we can eliminate, and we
6593 try to find a mode which will work for multiple duplicates. */
6594
6595 static enum machine_mode
6596 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
6597 bool can_change_mode)
6598 {
6599 bool found_equiv;
6600 enum machine_mode mode;
6601 unsigned int insn_count;
6602 edge e;
6603 rtx insns[2];
6604 enum machine_mode modes[2];
6605 rtx last_insns[2];
6606 unsigned int i;
6607 rtx newreg;
6608 edge_iterator ei;
6609
6610 /* We expect to have two successors. Look at both before picking
6611 the final mode for the comparison. If we have more successors
6612 (i.e., some sort of table jump, although that seems unlikely),
6613 then we require all beyond the first two to use the same
6614 mode. */
6615
6616 found_equiv = false;
6617 mode = GET_MODE (cc_src);
6618 insn_count = 0;
6619 FOR_EACH_EDGE (e, ei, bb->succs)
6620 {
6621 rtx insn;
6622 rtx end;
6623
6624 if (e->flags & EDGE_COMPLEX)
6625 continue;
6626
6627 if (EDGE_COUNT (e->dest->preds) != 1
6628 || e->dest == EXIT_BLOCK_PTR
6629 /* Avoid endless recursion on unreachable blocks. */
6630 || e->dest == orig_bb)
6631 continue;
6632
6633 end = NEXT_INSN (BB_END (e->dest));
6634 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6635 {
6636 rtx set;
6637
6638 if (! INSN_P (insn))
6639 continue;
6640
6641 /* If CC_SRC is modified, we have to stop looking for
6642 something which uses it. */
6643 if (modified_in_p (cc_src, insn))
6644 break;
6645
6646 /* Check whether INSN sets CC_REG to CC_SRC. */
6647 set = single_set (insn);
6648 if (set
6649 && REG_P (SET_DEST (set))
6650 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6651 {
6652 bool found;
6653 enum machine_mode set_mode;
6654 enum machine_mode comp_mode;
6655
6656 found = false;
6657 set_mode = GET_MODE (SET_SRC (set));
6658 comp_mode = set_mode;
6659 if (rtx_equal_p (cc_src, SET_SRC (set)))
6660 found = true;
6661 else if (GET_CODE (cc_src) == COMPARE
6662 && GET_CODE (SET_SRC (set)) == COMPARE
6663 && mode != set_mode
6664 && rtx_equal_p (XEXP (cc_src, 0),
6665 XEXP (SET_SRC (set), 0))
6666 && rtx_equal_p (XEXP (cc_src, 1),
6667 XEXP (SET_SRC (set), 1)))
6668
6669 {
6670 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6671 if (comp_mode != VOIDmode
6672 && (can_change_mode || comp_mode == mode))
6673 found = true;
6674 }
6675
6676 if (found)
6677 {
6678 found_equiv = true;
6679 if (insn_count < ARRAY_SIZE (insns))
6680 {
6681 insns[insn_count] = insn;
6682 modes[insn_count] = set_mode;
6683 last_insns[insn_count] = end;
6684 ++insn_count;
6685
6686 if (mode != comp_mode)
6687 {
6688 gcc_assert (can_change_mode);
6689 mode = comp_mode;
6690
6691 /* The modified insn will be re-recognized later. */
6692 PUT_MODE (cc_src, mode);
6693 }
6694 }
6695 else
6696 {
6697 if (set_mode != mode)
6698 {
6699 /* We found a matching expression in the
6700 wrong mode, but we don't have room to
6701 store it in the array. Punt. This case
6702 should be rare. */
6703 break;
6704 }
6705 /* INSN sets CC_REG to a value equal to CC_SRC
6706 with the right mode. We can simply delete
6707 it. */
6708 delete_insn (insn);
6709 }
6710
6711 /* We found an instruction to delete. Keep looking,
6712 in the hopes of finding a three-way jump. */
6713 continue;
6714 }
6715
6716 /* We found an instruction which sets the condition
6717 code, so don't look any farther. */
6718 break;
6719 }
6720
6721 /* If INSN sets CC_REG in some other way, don't look any
6722 farther. */
6723 if (reg_set_p (cc_reg, insn))
6724 break;
6725 }
6726
6727 /* If we fell off the bottom of the block, we can keep looking
6728 through successors. We pass CAN_CHANGE_MODE as false because
6729 we aren't prepared to handle compatibility between the
6730 further blocks and this block. */
6731 if (insn == end)
6732 {
6733 enum machine_mode submode;
6734
6735 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
6736 if (submode != VOIDmode)
6737 {
6738 gcc_assert (submode == mode);
6739 found_equiv = true;
6740 can_change_mode = false;
6741 }
6742 }
6743 }
6744
6745 if (! found_equiv)
6746 return VOIDmode;
6747
6748 /* Now INSN_COUNT is the number of instructions we found which set
6749 CC_REG to a value equivalent to CC_SRC. The instructions are in
6750 INSNS. The modes used by those instructions are in MODES. */
6751
6752 newreg = NULL_RTX;
6753 for (i = 0; i < insn_count; ++i)
6754 {
6755 if (modes[i] != mode)
6756 {
6757 /* We need to change the mode of CC_REG in INSNS[i] and
6758 subsequent instructions. */
6759 if (! newreg)
6760 {
6761 if (GET_MODE (cc_reg) == mode)
6762 newreg = cc_reg;
6763 else
6764 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6765 }
6766 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6767 newreg);
6768 }
6769
6770 delete_insn_and_edges (insns[i]);
6771 }
6772
6773 return mode;
6774 }
6775
6776 /* If we have a fixed condition code register (or two), walk through
6777 the instructions and try to eliminate duplicate assignments. */
6778
6779 static void
6780 cse_condition_code_reg (void)
6781 {
6782 unsigned int cc_regno_1;
6783 unsigned int cc_regno_2;
6784 rtx cc_reg_1;
6785 rtx cc_reg_2;
6786 basic_block bb;
6787
6788 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6789 return;
6790
6791 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6792 if (cc_regno_2 != INVALID_REGNUM)
6793 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6794 else
6795 cc_reg_2 = NULL_RTX;
6796
6797 FOR_EACH_BB (bb)
6798 {
6799 rtx last_insn;
6800 rtx cc_reg;
6801 rtx insn;
6802 rtx cc_src_insn;
6803 rtx cc_src;
6804 enum machine_mode mode;
6805 enum machine_mode orig_mode;
6806
6807 /* Look for blocks which end with a conditional jump based on a
6808 condition code register. Then look for the instruction which
6809 sets the condition code register. Then look through the
6810 successor blocks for instructions which set the condition
6811 code register to the same value. There are other possible
6812 uses of the condition code register, but these are by far the
6813 most common and the ones which we are most likely to be able
6814 to optimize. */
6815
6816 last_insn = BB_END (bb);
6817 if (!JUMP_P (last_insn))
6818 continue;
6819
6820 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6821 cc_reg = cc_reg_1;
6822 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6823 cc_reg = cc_reg_2;
6824 else
6825 continue;
6826
6827 cc_src_insn = NULL_RTX;
6828 cc_src = NULL_RTX;
6829 for (insn = PREV_INSN (last_insn);
6830 insn && insn != PREV_INSN (BB_HEAD (bb));
6831 insn = PREV_INSN (insn))
6832 {
6833 rtx set;
6834
6835 if (! INSN_P (insn))
6836 continue;
6837 set = single_set (insn);
6838 if (set
6839 && REG_P (SET_DEST (set))
6840 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6841 {
6842 cc_src_insn = insn;
6843 cc_src = SET_SRC (set);
6844 break;
6845 }
6846 else if (reg_set_p (cc_reg, insn))
6847 break;
6848 }
6849
6850 if (! cc_src_insn)
6851 continue;
6852
6853 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6854 continue;
6855
6856 /* Now CC_REG is a condition code register used for a
6857 conditional jump at the end of the block, and CC_SRC, in
6858 CC_SRC_INSN, is the value to which that condition code
6859 register is set, and CC_SRC is still meaningful at the end of
6860 the basic block. */
6861
6862 orig_mode = GET_MODE (cc_src);
6863 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
6864 if (mode != VOIDmode)
6865 {
6866 gcc_assert (mode == GET_MODE (cc_src));
6867 if (mode != orig_mode)
6868 {
6869 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6870
6871 cse_change_cc_mode_insn (cc_src_insn, newreg);
6872
6873 /* Do the same in the following insns that use the
6874 current value of CC_REG within BB. */
6875 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6876 NEXT_INSN (last_insn),
6877 newreg);
6878 }
6879 }
6880 }
6881 }
6882 \f
6883
6884 /* Perform common subexpression elimination. Nonzero value from
6885 `cse_main' means that jumps were simplified and some code may now
6886 be unreachable, so do jump optimization again. */
6887 static bool
6888 gate_handle_cse (void)
6889 {
6890 return optimize > 0;
6891 }
6892
6893 static unsigned int
6894 rest_of_handle_cse (void)
6895 {
6896 int tem;
6897
6898 if (dump_file)
6899 dump_flow_info (dump_file, dump_flags);
6900
6901 tem = cse_main (get_insns (), max_reg_num ());
6902
6903 /* If we are not running more CSE passes, then we are no longer
6904 expecting CSE to be run. But always rerun it in a cheap mode. */
6905 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6906
6907 if (tem == 2)
6908 {
6909 timevar_push (TV_JUMP);
6910 rebuild_jump_labels (get_insns ());
6911 cleanup_cfg (0);
6912 timevar_pop (TV_JUMP);
6913 }
6914 else if (tem == 1 || optimize > 1)
6915 cleanup_cfg (0);
6916
6917 return 0;
6918 }
6919
6920 struct rtl_opt_pass pass_cse =
6921 {
6922 {
6923 RTL_PASS,
6924 "cse1", /* name */
6925 gate_handle_cse, /* gate */
6926 rest_of_handle_cse, /* execute */
6927 NULL, /* sub */
6928 NULL, /* next */
6929 0, /* static_pass_number */
6930 TV_CSE, /* tv_id */
6931 0, /* properties_required */
6932 0, /* properties_provided */
6933 0, /* properties_destroyed */
6934 0, /* todo_flags_start */
6935 TODO_df_finish | TODO_verify_rtl_sharing |
6936 TODO_dump_func |
6937 TODO_ggc_collect |
6938 TODO_verify_flow, /* todo_flags_finish */
6939 }
6940 };
6941
6942
6943 static bool
6944 gate_handle_cse2 (void)
6945 {
6946 return optimize > 0 && flag_rerun_cse_after_loop;
6947 }
6948
6949 /* Run second CSE pass after loop optimizations. */
6950 static unsigned int
6951 rest_of_handle_cse2 (void)
6952 {
6953 int tem;
6954
6955 if (dump_file)
6956 dump_flow_info (dump_file, dump_flags);
6957
6958 tem = cse_main (get_insns (), max_reg_num ());
6959
6960 /* Run a pass to eliminate duplicated assignments to condition code
6961 registers. We have to run this after bypass_jumps, because it
6962 makes it harder for that pass to determine whether a jump can be
6963 bypassed safely. */
6964 cse_condition_code_reg ();
6965
6966 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6967
6968 if (tem == 2)
6969 {
6970 timevar_push (TV_JUMP);
6971 rebuild_jump_labels (get_insns ());
6972 cleanup_cfg (0);
6973 timevar_pop (TV_JUMP);
6974 }
6975 else if (tem == 1)
6976 cleanup_cfg (0);
6977
6978 cse_not_expected = 1;
6979 return 0;
6980 }
6981
6982
6983 struct rtl_opt_pass pass_cse2 =
6984 {
6985 {
6986 RTL_PASS,
6987 "cse2", /* name */
6988 gate_handle_cse2, /* gate */
6989 rest_of_handle_cse2, /* execute */
6990 NULL, /* sub */
6991 NULL, /* next */
6992 0, /* static_pass_number */
6993 TV_CSE2, /* tv_id */
6994 0, /* properties_required */
6995 0, /* properties_provided */
6996 0, /* properties_destroyed */
6997 0, /* todo_flags_start */
6998 TODO_df_finish | TODO_verify_rtl_sharing |
6999 TODO_dump_func |
7000 TODO_ggc_collect |
7001 TODO_verify_flow /* todo_flags_finish */
7002 }
7003 };
7004
7005 static bool
7006 gate_handle_cse_after_global_opts (void)
7007 {
7008 return optimize > 0 && flag_rerun_cse_after_global_opts;
7009 }
7010
7011 /* Run second CSE pass after loop optimizations. */
7012 static unsigned int
7013 rest_of_handle_cse_after_global_opts (void)
7014 {
7015 int save_cfj;
7016 int tem;
7017
7018 /* We only want to do local CSE, so don't follow jumps. */
7019 save_cfj = flag_cse_follow_jumps;
7020 flag_cse_follow_jumps = 0;
7021
7022 rebuild_jump_labels (get_insns ());
7023 tem = cse_main (get_insns (), max_reg_num ());
7024 purge_all_dead_edges ();
7025 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7026
7027 cse_not_expected = !flag_rerun_cse_after_loop;
7028
7029 /* If cse altered any jumps, rerun jump opts to clean things up. */
7030 if (tem == 2)
7031 {
7032 timevar_push (TV_JUMP);
7033 rebuild_jump_labels (get_insns ());
7034 cleanup_cfg (0);
7035 timevar_pop (TV_JUMP);
7036 }
7037 else if (tem == 1)
7038 cleanup_cfg (0);
7039
7040 flag_cse_follow_jumps = save_cfj;
7041 return 0;
7042 }
7043
7044 struct rtl_opt_pass pass_cse_after_global_opts =
7045 {
7046 {
7047 RTL_PASS,
7048 "cse_local", /* name */
7049 gate_handle_cse_after_global_opts, /* gate */
7050 rest_of_handle_cse_after_global_opts, /* execute */
7051 NULL, /* sub */
7052 NULL, /* next */
7053 0, /* static_pass_number */
7054 TV_CSE, /* tv_id */
7055 0, /* properties_required */
7056 0, /* properties_provided */
7057 0, /* properties_destroyed */
7058 0, /* todo_flags_start */
7059 TODO_df_finish | TODO_verify_rtl_sharing |
7060 TODO_dump_func |
7061 TODO_ggc_collect |
7062 TODO_verify_flow /* todo_flags_finish */
7063 }
7064 };