errors.h (warning, [...]): Mark as cold.
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
52
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
58
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
62
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
66
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
75
76 Registers and "quantity numbers":
77
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
85 of as containing.
86
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
90
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
93
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
97
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
101
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
105
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
110
111 Constants and quantity numbers
112
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
116
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
120
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
123 `const_rtx'.
124
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
130
131 Other expressions:
132
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
137 hash codes.
138
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
141
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
146
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
150
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
155
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
163
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
166 must be removed.
167
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
175
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
186
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
193 the register.
194
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
198
199 Related expressions:
200
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
207
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
210
211 static int max_qty;
212
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
215
216 static int next_qty;
217
218 /* Per-qty information tracking.
219
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
222
223 `mode' contains the machine mode of this quantity.
224
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
230
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
242
243 struct qty_table_elem
244 {
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code) comparison_code : 16;
253 ENUM_BITFIELD(machine_mode) mode : 8;
254 };
255
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem *qty_table;
258
259 /* Structure used to pass arguments via for_each_rtx to function
260 cse_change_cc_mode. */
261 struct change_cc_mode_args
262 {
263 rtx insn;
264 rtx newreg;
265 };
266
267 #ifdef HAVE_cc0
268 /* For machines that have a CC0, we do not record its value in the hash
269 table since its use is guaranteed to be the insn immediately following
270 its definition and any other insn is presumed to invalidate it.
271
272 Instead, we store below the current and last value assigned to CC0.
273 If it should happen to be a constant, it is stored in preference
274 to the actual assigned value. In case it is a constant, we store
275 the mode in which the constant should be interpreted. */
276
277 static rtx this_insn_cc0, prev_insn_cc0;
278 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
279 #endif
280
281 /* Insn being scanned. */
282
283 static rtx this_insn;
284
285 /* Index by register number, gives the number of the next (or
286 previous) register in the chain of registers sharing the same
287 value.
288
289 Or -1 if this register is at the end of the chain.
290
291 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
292
293 /* Per-register equivalence chain. */
294 struct reg_eqv_elem
295 {
296 int next, prev;
297 };
298
299 /* The table of all register equivalence chains. */
300 static struct reg_eqv_elem *reg_eqv_table;
301
302 struct cse_reg_info
303 {
304 /* The timestamp at which this register is initialized. */
305 unsigned int timestamp;
306
307 /* The quantity number of the register's current contents. */
308 int reg_qty;
309
310 /* The number of times the register has been altered in the current
311 basic block. */
312 int reg_tick;
313
314 /* The REG_TICK value at which rtx's containing this register are
315 valid in the hash table. If this does not equal the current
316 reg_tick value, such expressions existing in the hash table are
317 invalid. */
318 int reg_in_table;
319
320 /* The SUBREG that was set when REG_TICK was last incremented. Set
321 to -1 if the last store was to the whole register, not a subreg. */
322 unsigned int subreg_ticked;
323 };
324
325 /* A table of cse_reg_info indexed by register numbers. */
326 static struct cse_reg_info *cse_reg_info_table;
327
328 /* The size of the above table. */
329 static unsigned int cse_reg_info_table_size;
330
331 /* The index of the first entry that has not been initialized. */
332 static unsigned int cse_reg_info_table_first_uninitialized;
333
334 /* The timestamp at the beginning of the current run of
335 cse_extended_basic_block. We increment this variable at the beginning of
336 the current run of cse_extended_basic_block. The timestamp field of a
337 cse_reg_info entry matches the value of this variable if and only
338 if the entry has been initialized during the current run of
339 cse_extended_basic_block. */
340 static unsigned int cse_reg_info_timestamp;
341
342 /* A HARD_REG_SET containing all the hard registers for which there is
343 currently a REG expression in the hash table. Note the difference
344 from the above variables, which indicate if the REG is mentioned in some
345 expression in the table. */
346
347 static HARD_REG_SET hard_regs_in_table;
348
349 /* CUID of insn that starts the basic block currently being cse-processed. */
350
351 static int cse_basic_block_start;
352
353 /* CUID of insn that ends the basic block currently being cse-processed. */
354
355 static int cse_basic_block_end;
356
357 /* Vector mapping INSN_UIDs to cuids.
358 The cuids are like uids but increase monotonically always.
359 We use them to see whether a reg is used outside a given basic block. */
360
361 static int *uid_cuid;
362
363 /* Highest UID in UID_CUID. */
364 static int max_uid;
365
366 /* Get the cuid of an insn. */
367
368 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
369
370 /* Nonzero if cse has altered conditional jump insns
371 in such a way that jump optimization should be redone. */
372
373 static int cse_jumps_altered;
374
375 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
376 REG_LABEL, we have to rerun jump after CSE to put in the note. */
377 static int recorded_label_ref;
378
379 /* canon_hash stores 1 in do_not_record
380 if it notices a reference to CC0, PC, or some other volatile
381 subexpression. */
382
383 static int do_not_record;
384
385 /* canon_hash stores 1 in hash_arg_in_memory
386 if it notices a reference to memory within the expression being hashed. */
387
388 static int hash_arg_in_memory;
389
390 /* The hash table contains buckets which are chains of `struct table_elt's,
391 each recording one expression's information.
392 That expression is in the `exp' field.
393
394 The canon_exp field contains a canonical (from the point of view of
395 alias analysis) version of the `exp' field.
396
397 Those elements with the same hash code are chained in both directions
398 through the `next_same_hash' and `prev_same_hash' fields.
399
400 Each set of expressions with equivalent values
401 are on a two-way chain through the `next_same_value'
402 and `prev_same_value' fields, and all point with
403 the `first_same_value' field at the first element in
404 that chain. The chain is in order of increasing cost.
405 Each element's cost value is in its `cost' field.
406
407 The `in_memory' field is nonzero for elements that
408 involve any reference to memory. These elements are removed
409 whenever a write is done to an unidentified location in memory.
410 To be safe, we assume that a memory address is unidentified unless
411 the address is either a symbol constant or a constant plus
412 the frame pointer or argument pointer.
413
414 The `related_value' field is used to connect related expressions
415 (that differ by adding an integer).
416 The related expressions are chained in a circular fashion.
417 `related_value' is zero for expressions for which this
418 chain is not useful.
419
420 The `cost' field stores the cost of this element's expression.
421 The `regcost' field stores the value returned by approx_reg_cost for
422 this element's expression.
423
424 The `is_const' flag is set if the element is a constant (including
425 a fixed address).
426
427 The `flag' field is used as a temporary during some search routines.
428
429 The `mode' field is usually the same as GET_MODE (`exp'), but
430 if `exp' is a CONST_INT and has no machine mode then the `mode'
431 field is the mode it was being used as. Each constant is
432 recorded separately for each mode it is used with. */
433
434 struct table_elt
435 {
436 rtx exp;
437 rtx canon_exp;
438 struct table_elt *next_same_hash;
439 struct table_elt *prev_same_hash;
440 struct table_elt *next_same_value;
441 struct table_elt *prev_same_value;
442 struct table_elt *first_same_value;
443 struct table_elt *related_value;
444 int cost;
445 int regcost;
446 /* The size of this field should match the size
447 of the mode field of struct rtx_def (see rtl.h). */
448 ENUM_BITFIELD(machine_mode) mode : 8;
449 char in_memory;
450 char is_const;
451 char flag;
452 };
453
454 /* We don't want a lot of buckets, because we rarely have very many
455 things stored in the hash table, and a lot of buckets slows
456 down a lot of loops that happen frequently. */
457 #define HASH_SHIFT 5
458 #define HASH_SIZE (1 << HASH_SHIFT)
459 #define HASH_MASK (HASH_SIZE - 1)
460
461 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
462 register (hard registers may require `do_not_record' to be set). */
463
464 #define HASH(X, M) \
465 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
466 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
467 : canon_hash (X, M)) & HASH_MASK)
468
469 /* Like HASH, but without side-effects. */
470 #define SAFE_HASH(X, M) \
471 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
472 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
473 : safe_hash (X, M)) & HASH_MASK)
474
475 /* Determine whether register number N is considered a fixed register for the
476 purpose of approximating register costs.
477 It is desirable to replace other regs with fixed regs, to reduce need for
478 non-fixed hard regs.
479 A reg wins if it is either the frame pointer or designated as fixed. */
480 #define FIXED_REGNO_P(N) \
481 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
482 || fixed_regs[N] || global_regs[N])
483
484 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
485 hard registers and pointers into the frame are the cheapest with a cost
486 of 0. Next come pseudos with a cost of one and other hard registers with
487 a cost of 2. Aside from these special cases, call `rtx_cost'. */
488
489 #define CHEAP_REGNO(N) \
490 (REGNO_PTR_FRAME_P(N) \
491 || (HARD_REGISTER_NUM_P (N) \
492 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
493
494 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
495 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
496
497 /* Get the number of times this register has been updated in this
498 basic block. */
499
500 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
501
502 /* Get the point at which REG was recorded in the table. */
503
504 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
505
506 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
507 SUBREG). */
508
509 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
510
511 /* Get the quantity number for REG. */
512
513 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
514
515 /* Determine if the quantity number for register X represents a valid index
516 into the qty_table. */
517
518 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
519
520 static struct table_elt *table[HASH_SIZE];
521
522 /* Chain of `struct table_elt's made so far for this function
523 but currently removed from the table. */
524
525 static struct table_elt *free_element_chain;
526
527 /* Set to the cost of a constant pool reference if one was found for a
528 symbolic constant. If this was found, it means we should try to
529 convert constants into constant pool entries if they don't fit in
530 the insn. */
531
532 static int constant_pool_entries_cost;
533 static int constant_pool_entries_regcost;
534
535 /* This data describes a block that will be processed by
536 cse_extended_basic_block. */
537
538 struct cse_basic_block_data
539 {
540 /* Lowest CUID value of insns in block. */
541 int low_cuid;
542 /* Highest CUID value of insns in block. */
543 int high_cuid;
544 /* Total number of SETs in block. */
545 int nsets;
546 /* Size of current branch path, if any. */
547 int path_size;
548 /* Current path, indicating which basic_blocks will be processed. */
549 struct branch_path
550 {
551 /* The basic block for this path entry. */
552 basic_block bb;
553 } *path;
554 };
555
556 /* A simple bitmap to track which basic blocks have been visited
557 already as part of an already processed extended basic block. */
558 static sbitmap cse_visited_basic_blocks;
559
560 static bool fixed_base_plus_p (rtx x);
561 static int notreg_cost (rtx, enum rtx_code);
562 static int approx_reg_cost_1 (rtx *, void *);
563 static int approx_reg_cost (rtx);
564 static int preferable (int, int, int, int);
565 static void new_basic_block (void);
566 static void make_new_qty (unsigned int, enum machine_mode);
567 static void make_regs_eqv (unsigned int, unsigned int);
568 static void delete_reg_equiv (unsigned int);
569 static int mention_regs (rtx);
570 static int insert_regs (rtx, struct table_elt *, int);
571 static void remove_from_table (struct table_elt *, unsigned);
572 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
573 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
574 static rtx lookup_as_function (rtx, enum rtx_code);
575 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
576 enum machine_mode);
577 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
578 static void invalidate (rtx, enum machine_mode);
579 static int cse_rtx_varies_p (rtx, int);
580 static void remove_invalid_refs (unsigned int);
581 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
582 enum machine_mode);
583 static void rehash_using_reg (rtx);
584 static void invalidate_memory (void);
585 static void invalidate_for_call (void);
586 static rtx use_related_value (rtx, struct table_elt *);
587
588 static inline unsigned canon_hash (rtx, enum machine_mode);
589 static inline unsigned safe_hash (rtx, enum machine_mode);
590 static unsigned hash_rtx_string (const char *);
591
592 static rtx canon_reg (rtx, rtx);
593 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
594 enum machine_mode *,
595 enum machine_mode *);
596 static rtx fold_rtx (rtx, rtx);
597 static rtx equiv_constant (rtx);
598 static void record_jump_equiv (rtx, bool);
599 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
600 int);
601 static void cse_insn (rtx, rtx);
602 static void cse_prescan_path (struct cse_basic_block_data *);
603 static void invalidate_from_clobbers (rtx);
604 static rtx cse_process_notes (rtx, rtx);
605 static void cse_extended_basic_block (struct cse_basic_block_data *);
606 static void count_reg_usage (rtx, int *, rtx, int);
607 static int check_for_label_ref (rtx *, void *);
608 extern void dump_class (struct table_elt*);
609 static void get_cse_reg_info_1 (unsigned int regno);
610 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
611 static int check_dependence (rtx *, void *);
612
613 static void flush_hash_table (void);
614 static bool insn_live_p (rtx, int *);
615 static bool set_live_p (rtx, rtx, int *);
616 static bool dead_libcall_p (rtx, int *);
617 static int cse_change_cc_mode (rtx *, void *);
618 static void cse_change_cc_mode_insn (rtx, rtx);
619 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
620 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
621 \f
622
623 #undef RTL_HOOKS_GEN_LOWPART
624 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
625
626 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
627 \f
628 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
629 virtual regs here because the simplify_*_operation routines are called
630 by integrate.c, which is called before virtual register instantiation. */
631
632 static bool
633 fixed_base_plus_p (rtx x)
634 {
635 switch (GET_CODE (x))
636 {
637 case REG:
638 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
639 return true;
640 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
641 return true;
642 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
643 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
644 return true;
645 return false;
646
647 case PLUS:
648 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
649 return false;
650 return fixed_base_plus_p (XEXP (x, 0));
651
652 default:
653 return false;
654 }
655 }
656
657 /* Dump the expressions in the equivalence class indicated by CLASSP.
658 This function is used only for debugging. */
659 void
660 dump_class (struct table_elt *classp)
661 {
662 struct table_elt *elt;
663
664 fprintf (stderr, "Equivalence chain for ");
665 print_rtl (stderr, classp->exp);
666 fprintf (stderr, ": \n");
667
668 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
669 {
670 print_rtl (stderr, elt->exp);
671 fprintf (stderr, "\n");
672 }
673 }
674
675 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
676
677 static int
678 approx_reg_cost_1 (rtx *xp, void *data)
679 {
680 rtx x = *xp;
681 int *cost_p = data;
682
683 if (x && REG_P (x))
684 {
685 unsigned int regno = REGNO (x);
686
687 if (! CHEAP_REGNO (regno))
688 {
689 if (regno < FIRST_PSEUDO_REGISTER)
690 {
691 if (SMALL_REGISTER_CLASSES)
692 return 1;
693 *cost_p += 2;
694 }
695 else
696 *cost_p += 1;
697 }
698 }
699
700 return 0;
701 }
702
703 /* Return an estimate of the cost of the registers used in an rtx.
704 This is mostly the number of different REG expressions in the rtx;
705 however for some exceptions like fixed registers we use a cost of
706 0. If any other hard register reference occurs, return MAX_COST. */
707
708 static int
709 approx_reg_cost (rtx x)
710 {
711 int cost = 0;
712
713 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
714 return MAX_COST;
715
716 return cost;
717 }
718
719 /* Return a negative value if an rtx A, whose costs are given by COST_A
720 and REGCOST_A, is more desirable than an rtx B.
721 Return a positive value if A is less desirable, or 0 if the two are
722 equally good. */
723 static int
724 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
725 {
726 /* First, get rid of cases involving expressions that are entirely
727 unwanted. */
728 if (cost_a != cost_b)
729 {
730 if (cost_a == MAX_COST)
731 return 1;
732 if (cost_b == MAX_COST)
733 return -1;
734 }
735
736 /* Avoid extending lifetimes of hardregs. */
737 if (regcost_a != regcost_b)
738 {
739 if (regcost_a == MAX_COST)
740 return 1;
741 if (regcost_b == MAX_COST)
742 return -1;
743 }
744
745 /* Normal operation costs take precedence. */
746 if (cost_a != cost_b)
747 return cost_a - cost_b;
748 /* Only if these are identical consider effects on register pressure. */
749 if (regcost_a != regcost_b)
750 return regcost_a - regcost_b;
751 return 0;
752 }
753
754 /* Internal function, to compute cost when X is not a register; called
755 from COST macro to keep it simple. */
756
757 static int
758 notreg_cost (rtx x, enum rtx_code outer)
759 {
760 return ((GET_CODE (x) == SUBREG
761 && REG_P (SUBREG_REG (x))
762 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
763 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
764 && (GET_MODE_SIZE (GET_MODE (x))
765 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
766 && subreg_lowpart_p (x)
767 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
768 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
769 ? 0
770 : rtx_cost (x, outer) * 2);
771 }
772
773 \f
774 /* Initialize CSE_REG_INFO_TABLE. */
775
776 static void
777 init_cse_reg_info (unsigned int nregs)
778 {
779 /* Do we need to grow the table? */
780 if (nregs > cse_reg_info_table_size)
781 {
782 unsigned int new_size;
783
784 if (cse_reg_info_table_size < 2048)
785 {
786 /* Compute a new size that is a power of 2 and no smaller
787 than the large of NREGS and 64. */
788 new_size = (cse_reg_info_table_size
789 ? cse_reg_info_table_size : 64);
790
791 while (new_size < nregs)
792 new_size *= 2;
793 }
794 else
795 {
796 /* If we need a big table, allocate just enough to hold
797 NREGS registers. */
798 new_size = nregs;
799 }
800
801 /* Reallocate the table with NEW_SIZE entries. */
802 if (cse_reg_info_table)
803 free (cse_reg_info_table);
804 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
805 cse_reg_info_table_size = new_size;
806 cse_reg_info_table_first_uninitialized = 0;
807 }
808
809 /* Do we have all of the first NREGS entries initialized? */
810 if (cse_reg_info_table_first_uninitialized < nregs)
811 {
812 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
813 unsigned int i;
814
815 /* Put the old timestamp on newly allocated entries so that they
816 will all be considered out of date. We do not touch those
817 entries beyond the first NREGS entries to be nice to the
818 virtual memory. */
819 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
820 cse_reg_info_table[i].timestamp = old_timestamp;
821
822 cse_reg_info_table_first_uninitialized = nregs;
823 }
824 }
825
826 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
827
828 static void
829 get_cse_reg_info_1 (unsigned int regno)
830 {
831 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
832 entry will be considered to have been initialized. */
833 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
834
835 /* Initialize the rest of the entry. */
836 cse_reg_info_table[regno].reg_tick = 1;
837 cse_reg_info_table[regno].reg_in_table = -1;
838 cse_reg_info_table[regno].subreg_ticked = -1;
839 cse_reg_info_table[regno].reg_qty = -regno - 1;
840 }
841
842 /* Find a cse_reg_info entry for REGNO. */
843
844 static inline struct cse_reg_info *
845 get_cse_reg_info (unsigned int regno)
846 {
847 struct cse_reg_info *p = &cse_reg_info_table[regno];
848
849 /* If this entry has not been initialized, go ahead and initialize
850 it. */
851 if (p->timestamp != cse_reg_info_timestamp)
852 get_cse_reg_info_1 (regno);
853
854 return p;
855 }
856
857 /* Clear the hash table and initialize each register with its own quantity,
858 for a new basic block. */
859
860 static void
861 new_basic_block (void)
862 {
863 int i;
864
865 next_qty = 0;
866
867 /* Invalidate cse_reg_info_table. */
868 cse_reg_info_timestamp++;
869
870 /* Clear out hash table state for this pass. */
871 CLEAR_HARD_REG_SET (hard_regs_in_table);
872
873 /* The per-quantity values used to be initialized here, but it is
874 much faster to initialize each as it is made in `make_new_qty'. */
875
876 for (i = 0; i < HASH_SIZE; i++)
877 {
878 struct table_elt *first;
879
880 first = table[i];
881 if (first != NULL)
882 {
883 struct table_elt *last = first;
884
885 table[i] = NULL;
886
887 while (last->next_same_hash != NULL)
888 last = last->next_same_hash;
889
890 /* Now relink this hash entire chain into
891 the free element list. */
892
893 last->next_same_hash = free_element_chain;
894 free_element_chain = first;
895 }
896 }
897
898 #ifdef HAVE_cc0
899 prev_insn_cc0 = 0;
900 #endif
901 }
902
903 /* Say that register REG contains a quantity in mode MODE not in any
904 register before and initialize that quantity. */
905
906 static void
907 make_new_qty (unsigned int reg, enum machine_mode mode)
908 {
909 int q;
910 struct qty_table_elem *ent;
911 struct reg_eqv_elem *eqv;
912
913 gcc_assert (next_qty < max_qty);
914
915 q = REG_QTY (reg) = next_qty++;
916 ent = &qty_table[q];
917 ent->first_reg = reg;
918 ent->last_reg = reg;
919 ent->mode = mode;
920 ent->const_rtx = ent->const_insn = NULL_RTX;
921 ent->comparison_code = UNKNOWN;
922
923 eqv = &reg_eqv_table[reg];
924 eqv->next = eqv->prev = -1;
925 }
926
927 /* Make reg NEW equivalent to reg OLD.
928 OLD is not changing; NEW is. */
929
930 static void
931 make_regs_eqv (unsigned int new, unsigned int old)
932 {
933 unsigned int lastr, firstr;
934 int q = REG_QTY (old);
935 struct qty_table_elem *ent;
936
937 ent = &qty_table[q];
938
939 /* Nothing should become eqv until it has a "non-invalid" qty number. */
940 gcc_assert (REGNO_QTY_VALID_P (old));
941
942 REG_QTY (new) = q;
943 firstr = ent->first_reg;
944 lastr = ent->last_reg;
945
946 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
947 hard regs. Among pseudos, if NEW will live longer than any other reg
948 of the same qty, and that is beyond the current basic block,
949 make it the new canonical replacement for this qty. */
950 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
951 /* Certain fixed registers might be of the class NO_REGS. This means
952 that not only can they not be allocated by the compiler, but
953 they cannot be used in substitutions or canonicalizations
954 either. */
955 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
956 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
957 || (new >= FIRST_PSEUDO_REGISTER
958 && (firstr < FIRST_PSEUDO_REGISTER
959 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
960 || (uid_cuid[REGNO_FIRST_UID (new)]
961 < cse_basic_block_start))
962 && (uid_cuid[REGNO_LAST_UID (new)]
963 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
964 {
965 reg_eqv_table[firstr].prev = new;
966 reg_eqv_table[new].next = firstr;
967 reg_eqv_table[new].prev = -1;
968 ent->first_reg = new;
969 }
970 else
971 {
972 /* If NEW is a hard reg (known to be non-fixed), insert at end.
973 Otherwise, insert before any non-fixed hard regs that are at the
974 end. Registers of class NO_REGS cannot be used as an
975 equivalent for anything. */
976 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
977 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
978 && new >= FIRST_PSEUDO_REGISTER)
979 lastr = reg_eqv_table[lastr].prev;
980 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
981 if (reg_eqv_table[lastr].next >= 0)
982 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
983 else
984 qty_table[q].last_reg = new;
985 reg_eqv_table[lastr].next = new;
986 reg_eqv_table[new].prev = lastr;
987 }
988 }
989
990 /* Remove REG from its equivalence class. */
991
992 static void
993 delete_reg_equiv (unsigned int reg)
994 {
995 struct qty_table_elem *ent;
996 int q = REG_QTY (reg);
997 int p, n;
998
999 /* If invalid, do nothing. */
1000 if (! REGNO_QTY_VALID_P (reg))
1001 return;
1002
1003 ent = &qty_table[q];
1004
1005 p = reg_eqv_table[reg].prev;
1006 n = reg_eqv_table[reg].next;
1007
1008 if (n != -1)
1009 reg_eqv_table[n].prev = p;
1010 else
1011 ent->last_reg = p;
1012 if (p != -1)
1013 reg_eqv_table[p].next = n;
1014 else
1015 ent->first_reg = n;
1016
1017 REG_QTY (reg) = -reg - 1;
1018 }
1019
1020 /* Remove any invalid expressions from the hash table
1021 that refer to any of the registers contained in expression X.
1022
1023 Make sure that newly inserted references to those registers
1024 as subexpressions will be considered valid.
1025
1026 mention_regs is not called when a register itself
1027 is being stored in the table.
1028
1029 Return 1 if we have done something that may have changed the hash code
1030 of X. */
1031
1032 static int
1033 mention_regs (rtx x)
1034 {
1035 enum rtx_code code;
1036 int i, j;
1037 const char *fmt;
1038 int changed = 0;
1039
1040 if (x == 0)
1041 return 0;
1042
1043 code = GET_CODE (x);
1044 if (code == REG)
1045 {
1046 unsigned int regno = REGNO (x);
1047 unsigned int endregno
1048 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1049 : hard_regno_nregs[regno][GET_MODE (x)]);
1050 unsigned int i;
1051
1052 for (i = regno; i < endregno; i++)
1053 {
1054 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1055 remove_invalid_refs (i);
1056
1057 REG_IN_TABLE (i) = REG_TICK (i);
1058 SUBREG_TICKED (i) = -1;
1059 }
1060
1061 return 0;
1062 }
1063
1064 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1065 pseudo if they don't use overlapping words. We handle only pseudos
1066 here for simplicity. */
1067 if (code == SUBREG && REG_P (SUBREG_REG (x))
1068 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1069 {
1070 unsigned int i = REGNO (SUBREG_REG (x));
1071
1072 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1073 {
1074 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1075 the last store to this register really stored into this
1076 subreg, then remove the memory of this subreg.
1077 Otherwise, remove any memory of the entire register and
1078 all its subregs from the table. */
1079 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1080 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1081 remove_invalid_refs (i);
1082 else
1083 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1084 }
1085
1086 REG_IN_TABLE (i) = REG_TICK (i);
1087 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1088 return 0;
1089 }
1090
1091 /* If X is a comparison or a COMPARE and either operand is a register
1092 that does not have a quantity, give it one. This is so that a later
1093 call to record_jump_equiv won't cause X to be assigned a different
1094 hash code and not found in the table after that call.
1095
1096 It is not necessary to do this here, since rehash_using_reg can
1097 fix up the table later, but doing this here eliminates the need to
1098 call that expensive function in the most common case where the only
1099 use of the register is in the comparison. */
1100
1101 if (code == COMPARE || COMPARISON_P (x))
1102 {
1103 if (REG_P (XEXP (x, 0))
1104 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1105 if (insert_regs (XEXP (x, 0), NULL, 0))
1106 {
1107 rehash_using_reg (XEXP (x, 0));
1108 changed = 1;
1109 }
1110
1111 if (REG_P (XEXP (x, 1))
1112 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1113 if (insert_regs (XEXP (x, 1), NULL, 0))
1114 {
1115 rehash_using_reg (XEXP (x, 1));
1116 changed = 1;
1117 }
1118 }
1119
1120 fmt = GET_RTX_FORMAT (code);
1121 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1122 if (fmt[i] == 'e')
1123 changed |= mention_regs (XEXP (x, i));
1124 else if (fmt[i] == 'E')
1125 for (j = 0; j < XVECLEN (x, i); j++)
1126 changed |= mention_regs (XVECEXP (x, i, j));
1127
1128 return changed;
1129 }
1130
1131 /* Update the register quantities for inserting X into the hash table
1132 with a value equivalent to CLASSP.
1133 (If the class does not contain a REG, it is irrelevant.)
1134 If MODIFIED is nonzero, X is a destination; it is being modified.
1135 Note that delete_reg_equiv should be called on a register
1136 before insert_regs is done on that register with MODIFIED != 0.
1137
1138 Nonzero value means that elements of reg_qty have changed
1139 so X's hash code may be different. */
1140
1141 static int
1142 insert_regs (rtx x, struct table_elt *classp, int modified)
1143 {
1144 if (REG_P (x))
1145 {
1146 unsigned int regno = REGNO (x);
1147 int qty_valid;
1148
1149 /* If REGNO is in the equivalence table already but is of the
1150 wrong mode for that equivalence, don't do anything here. */
1151
1152 qty_valid = REGNO_QTY_VALID_P (regno);
1153 if (qty_valid)
1154 {
1155 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1156
1157 if (ent->mode != GET_MODE (x))
1158 return 0;
1159 }
1160
1161 if (modified || ! qty_valid)
1162 {
1163 if (classp)
1164 for (classp = classp->first_same_value;
1165 classp != 0;
1166 classp = classp->next_same_value)
1167 if (REG_P (classp->exp)
1168 && GET_MODE (classp->exp) == GET_MODE (x))
1169 {
1170 unsigned c_regno = REGNO (classp->exp);
1171
1172 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1173
1174 /* Suppose that 5 is hard reg and 100 and 101 are
1175 pseudos. Consider
1176
1177 (set (reg:si 100) (reg:si 5))
1178 (set (reg:si 5) (reg:si 100))
1179 (set (reg:di 101) (reg:di 5))
1180
1181 We would now set REG_QTY (101) = REG_QTY (5), but the
1182 entry for 5 is in SImode. When we use this later in
1183 copy propagation, we get the register in wrong mode. */
1184 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1185 continue;
1186
1187 make_regs_eqv (regno, c_regno);
1188 return 1;
1189 }
1190
1191 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1192 than REG_IN_TABLE to find out if there was only a single preceding
1193 invalidation - for the SUBREG - or another one, which would be
1194 for the full register. However, if we find here that REG_TICK
1195 indicates that the register is invalid, it means that it has
1196 been invalidated in a separate operation. The SUBREG might be used
1197 now (then this is a recursive call), or we might use the full REG
1198 now and a SUBREG of it later. So bump up REG_TICK so that
1199 mention_regs will do the right thing. */
1200 if (! modified
1201 && REG_IN_TABLE (regno) >= 0
1202 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1203 REG_TICK (regno)++;
1204 make_new_qty (regno, GET_MODE (x));
1205 return 1;
1206 }
1207
1208 return 0;
1209 }
1210
1211 /* If X is a SUBREG, we will likely be inserting the inner register in the
1212 table. If that register doesn't have an assigned quantity number at
1213 this point but does later, the insertion that we will be doing now will
1214 not be accessible because its hash code will have changed. So assign
1215 a quantity number now. */
1216
1217 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1218 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1219 {
1220 insert_regs (SUBREG_REG (x), NULL, 0);
1221 mention_regs (x);
1222 return 1;
1223 }
1224 else
1225 return mention_regs (x);
1226 }
1227 \f
1228 /* Look in or update the hash table. */
1229
1230 /* Remove table element ELT from use in the table.
1231 HASH is its hash code, made using the HASH macro.
1232 It's an argument because often that is known in advance
1233 and we save much time not recomputing it. */
1234
1235 static void
1236 remove_from_table (struct table_elt *elt, unsigned int hash)
1237 {
1238 if (elt == 0)
1239 return;
1240
1241 /* Mark this element as removed. See cse_insn. */
1242 elt->first_same_value = 0;
1243
1244 /* Remove the table element from its equivalence class. */
1245
1246 {
1247 struct table_elt *prev = elt->prev_same_value;
1248 struct table_elt *next = elt->next_same_value;
1249
1250 if (next)
1251 next->prev_same_value = prev;
1252
1253 if (prev)
1254 prev->next_same_value = next;
1255 else
1256 {
1257 struct table_elt *newfirst = next;
1258 while (next)
1259 {
1260 next->first_same_value = newfirst;
1261 next = next->next_same_value;
1262 }
1263 }
1264 }
1265
1266 /* Remove the table element from its hash bucket. */
1267
1268 {
1269 struct table_elt *prev = elt->prev_same_hash;
1270 struct table_elt *next = elt->next_same_hash;
1271
1272 if (next)
1273 next->prev_same_hash = prev;
1274
1275 if (prev)
1276 prev->next_same_hash = next;
1277 else if (table[hash] == elt)
1278 table[hash] = next;
1279 else
1280 {
1281 /* This entry is not in the proper hash bucket. This can happen
1282 when two classes were merged by `merge_equiv_classes'. Search
1283 for the hash bucket that it heads. This happens only very
1284 rarely, so the cost is acceptable. */
1285 for (hash = 0; hash < HASH_SIZE; hash++)
1286 if (table[hash] == elt)
1287 table[hash] = next;
1288 }
1289 }
1290
1291 /* Remove the table element from its related-value circular chain. */
1292
1293 if (elt->related_value != 0 && elt->related_value != elt)
1294 {
1295 struct table_elt *p = elt->related_value;
1296
1297 while (p->related_value != elt)
1298 p = p->related_value;
1299 p->related_value = elt->related_value;
1300 if (p->related_value == p)
1301 p->related_value = 0;
1302 }
1303
1304 /* Now add it to the free element chain. */
1305 elt->next_same_hash = free_element_chain;
1306 free_element_chain = elt;
1307 }
1308
1309 /* Look up X in the hash table and return its table element,
1310 or 0 if X is not in the table.
1311
1312 MODE is the machine-mode of X, or if X is an integer constant
1313 with VOIDmode then MODE is the mode with which X will be used.
1314
1315 Here we are satisfied to find an expression whose tree structure
1316 looks like X. */
1317
1318 static struct table_elt *
1319 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1320 {
1321 struct table_elt *p;
1322
1323 for (p = table[hash]; p; p = p->next_same_hash)
1324 if (mode == p->mode && ((x == p->exp && REG_P (x))
1325 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1326 return p;
1327
1328 return 0;
1329 }
1330
1331 /* Like `lookup' but don't care whether the table element uses invalid regs.
1332 Also ignore discrepancies in the machine mode of a register. */
1333
1334 static struct table_elt *
1335 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1336 {
1337 struct table_elt *p;
1338
1339 if (REG_P (x))
1340 {
1341 unsigned int regno = REGNO (x);
1342
1343 /* Don't check the machine mode when comparing registers;
1344 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1345 for (p = table[hash]; p; p = p->next_same_hash)
1346 if (REG_P (p->exp)
1347 && REGNO (p->exp) == regno)
1348 return p;
1349 }
1350 else
1351 {
1352 for (p = table[hash]; p; p = p->next_same_hash)
1353 if (mode == p->mode
1354 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1355 return p;
1356 }
1357
1358 return 0;
1359 }
1360
1361 /* Look for an expression equivalent to X and with code CODE.
1362 If one is found, return that expression. */
1363
1364 static rtx
1365 lookup_as_function (rtx x, enum rtx_code code)
1366 {
1367 struct table_elt *p
1368 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1369
1370 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1371 long as we are narrowing. So if we looked in vain for a mode narrower
1372 than word_mode before, look for word_mode now. */
1373 if (p == 0 && code == CONST_INT
1374 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1375 {
1376 x = copy_rtx (x);
1377 PUT_MODE (x, word_mode);
1378 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1379 }
1380
1381 if (p == 0)
1382 return 0;
1383
1384 for (p = p->first_same_value; p; p = p->next_same_value)
1385 if (GET_CODE (p->exp) == code
1386 /* Make sure this is a valid entry in the table. */
1387 && exp_equiv_p (p->exp, p->exp, 1, false))
1388 return p->exp;
1389
1390 return 0;
1391 }
1392
1393 /* Insert X in the hash table, assuming HASH is its hash code
1394 and CLASSP is an element of the class it should go in
1395 (or 0 if a new class should be made).
1396 It is inserted at the proper position to keep the class in
1397 the order cheapest first.
1398
1399 MODE is the machine-mode of X, or if X is an integer constant
1400 with VOIDmode then MODE is the mode with which X will be used.
1401
1402 For elements of equal cheapness, the most recent one
1403 goes in front, except that the first element in the list
1404 remains first unless a cheaper element is added. The order of
1405 pseudo-registers does not matter, as canon_reg will be called to
1406 find the cheapest when a register is retrieved from the table.
1407
1408 The in_memory field in the hash table element is set to 0.
1409 The caller must set it nonzero if appropriate.
1410
1411 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1412 and if insert_regs returns a nonzero value
1413 you must then recompute its hash code before calling here.
1414
1415 If necessary, update table showing constant values of quantities. */
1416
1417 #define CHEAPER(X, Y) \
1418 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1419
1420 static struct table_elt *
1421 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1422 {
1423 struct table_elt *elt;
1424
1425 /* If X is a register and we haven't made a quantity for it,
1426 something is wrong. */
1427 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1428
1429 /* If X is a hard register, show it is being put in the table. */
1430 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1431 {
1432 unsigned int regno = REGNO (x);
1433 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1434 unsigned int i;
1435
1436 for (i = regno; i < endregno; i++)
1437 SET_HARD_REG_BIT (hard_regs_in_table, i);
1438 }
1439
1440 /* Put an element for X into the right hash bucket. */
1441
1442 elt = free_element_chain;
1443 if (elt)
1444 free_element_chain = elt->next_same_hash;
1445 else
1446 elt = XNEW (struct table_elt);
1447
1448 elt->exp = x;
1449 elt->canon_exp = NULL_RTX;
1450 elt->cost = COST (x);
1451 elt->regcost = approx_reg_cost (x);
1452 elt->next_same_value = 0;
1453 elt->prev_same_value = 0;
1454 elt->next_same_hash = table[hash];
1455 elt->prev_same_hash = 0;
1456 elt->related_value = 0;
1457 elt->in_memory = 0;
1458 elt->mode = mode;
1459 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1460
1461 if (table[hash])
1462 table[hash]->prev_same_hash = elt;
1463 table[hash] = elt;
1464
1465 /* Put it into the proper value-class. */
1466 if (classp)
1467 {
1468 classp = classp->first_same_value;
1469 if (CHEAPER (elt, classp))
1470 /* Insert at the head of the class. */
1471 {
1472 struct table_elt *p;
1473 elt->next_same_value = classp;
1474 classp->prev_same_value = elt;
1475 elt->first_same_value = elt;
1476
1477 for (p = classp; p; p = p->next_same_value)
1478 p->first_same_value = elt;
1479 }
1480 else
1481 {
1482 /* Insert not at head of the class. */
1483 /* Put it after the last element cheaper than X. */
1484 struct table_elt *p, *next;
1485
1486 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1487 p = next);
1488
1489 /* Put it after P and before NEXT. */
1490 elt->next_same_value = next;
1491 if (next)
1492 next->prev_same_value = elt;
1493
1494 elt->prev_same_value = p;
1495 p->next_same_value = elt;
1496 elt->first_same_value = classp;
1497 }
1498 }
1499 else
1500 elt->first_same_value = elt;
1501
1502 /* If this is a constant being set equivalent to a register or a register
1503 being set equivalent to a constant, note the constant equivalence.
1504
1505 If this is a constant, it cannot be equivalent to a different constant,
1506 and a constant is the only thing that can be cheaper than a register. So
1507 we know the register is the head of the class (before the constant was
1508 inserted).
1509
1510 If this is a register that is not already known equivalent to a
1511 constant, we must check the entire class.
1512
1513 If this is a register that is already known equivalent to an insn,
1514 update the qtys `const_insn' to show that `this_insn' is the latest
1515 insn making that quantity equivalent to the constant. */
1516
1517 if (elt->is_const && classp && REG_P (classp->exp)
1518 && !REG_P (x))
1519 {
1520 int exp_q = REG_QTY (REGNO (classp->exp));
1521 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1522
1523 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1524 exp_ent->const_insn = this_insn;
1525 }
1526
1527 else if (REG_P (x)
1528 && classp
1529 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1530 && ! elt->is_const)
1531 {
1532 struct table_elt *p;
1533
1534 for (p = classp; p != 0; p = p->next_same_value)
1535 {
1536 if (p->is_const && !REG_P (p->exp))
1537 {
1538 int x_q = REG_QTY (REGNO (x));
1539 struct qty_table_elem *x_ent = &qty_table[x_q];
1540
1541 x_ent->const_rtx
1542 = gen_lowpart (GET_MODE (x), p->exp);
1543 x_ent->const_insn = this_insn;
1544 break;
1545 }
1546 }
1547 }
1548
1549 else if (REG_P (x)
1550 && qty_table[REG_QTY (REGNO (x))].const_rtx
1551 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1552 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1553
1554 /* If this is a constant with symbolic value,
1555 and it has a term with an explicit integer value,
1556 link it up with related expressions. */
1557 if (GET_CODE (x) == CONST)
1558 {
1559 rtx subexp = get_related_value (x);
1560 unsigned subhash;
1561 struct table_elt *subelt, *subelt_prev;
1562
1563 if (subexp != 0)
1564 {
1565 /* Get the integer-free subexpression in the hash table. */
1566 subhash = SAFE_HASH (subexp, mode);
1567 subelt = lookup (subexp, subhash, mode);
1568 if (subelt == 0)
1569 subelt = insert (subexp, NULL, subhash, mode);
1570 /* Initialize SUBELT's circular chain if it has none. */
1571 if (subelt->related_value == 0)
1572 subelt->related_value = subelt;
1573 /* Find the element in the circular chain that precedes SUBELT. */
1574 subelt_prev = subelt;
1575 while (subelt_prev->related_value != subelt)
1576 subelt_prev = subelt_prev->related_value;
1577 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1578 This way the element that follows SUBELT is the oldest one. */
1579 elt->related_value = subelt_prev->related_value;
1580 subelt_prev->related_value = elt;
1581 }
1582 }
1583
1584 return elt;
1585 }
1586 \f
1587 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1588 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1589 the two classes equivalent.
1590
1591 CLASS1 will be the surviving class; CLASS2 should not be used after this
1592 call.
1593
1594 Any invalid entries in CLASS2 will not be copied. */
1595
1596 static void
1597 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1598 {
1599 struct table_elt *elt, *next, *new;
1600
1601 /* Ensure we start with the head of the classes. */
1602 class1 = class1->first_same_value;
1603 class2 = class2->first_same_value;
1604
1605 /* If they were already equal, forget it. */
1606 if (class1 == class2)
1607 return;
1608
1609 for (elt = class2; elt; elt = next)
1610 {
1611 unsigned int hash;
1612 rtx exp = elt->exp;
1613 enum machine_mode mode = elt->mode;
1614
1615 next = elt->next_same_value;
1616
1617 /* Remove old entry, make a new one in CLASS1's class.
1618 Don't do this for invalid entries as we cannot find their
1619 hash code (it also isn't necessary). */
1620 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1621 {
1622 bool need_rehash = false;
1623
1624 hash_arg_in_memory = 0;
1625 hash = HASH (exp, mode);
1626
1627 if (REG_P (exp))
1628 {
1629 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1630 delete_reg_equiv (REGNO (exp));
1631 }
1632
1633 remove_from_table (elt, hash);
1634
1635 if (insert_regs (exp, class1, 0) || need_rehash)
1636 {
1637 rehash_using_reg (exp);
1638 hash = HASH (exp, mode);
1639 }
1640 new = insert (exp, class1, hash, mode);
1641 new->in_memory = hash_arg_in_memory;
1642 }
1643 }
1644 }
1645 \f
1646 /* Flush the entire hash table. */
1647
1648 static void
1649 flush_hash_table (void)
1650 {
1651 int i;
1652 struct table_elt *p;
1653
1654 for (i = 0; i < HASH_SIZE; i++)
1655 for (p = table[i]; p; p = table[i])
1656 {
1657 /* Note that invalidate can remove elements
1658 after P in the current hash chain. */
1659 if (REG_P (p->exp))
1660 invalidate (p->exp, VOIDmode);
1661 else
1662 remove_from_table (p, i);
1663 }
1664 }
1665 \f
1666 /* Function called for each rtx to check whether true dependence exist. */
1667 struct check_dependence_data
1668 {
1669 enum machine_mode mode;
1670 rtx exp;
1671 rtx addr;
1672 };
1673
1674 static int
1675 check_dependence (rtx *x, void *data)
1676 {
1677 struct check_dependence_data *d = (struct check_dependence_data *) data;
1678 if (*x && MEM_P (*x))
1679 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1680 cse_rtx_varies_p);
1681 else
1682 return 0;
1683 }
1684 \f
1685 /* Remove from the hash table, or mark as invalid, all expressions whose
1686 values could be altered by storing in X. X is a register, a subreg, or
1687 a memory reference with nonvarying address (because, when a memory
1688 reference with a varying address is stored in, all memory references are
1689 removed by invalidate_memory so specific invalidation is superfluous).
1690 FULL_MODE, if not VOIDmode, indicates that this much should be
1691 invalidated instead of just the amount indicated by the mode of X. This
1692 is only used for bitfield stores into memory.
1693
1694 A nonvarying address may be just a register or just a symbol reference,
1695 or it may be either of those plus a numeric offset. */
1696
1697 static void
1698 invalidate (rtx x, enum machine_mode full_mode)
1699 {
1700 int i;
1701 struct table_elt *p;
1702 rtx addr;
1703
1704 switch (GET_CODE (x))
1705 {
1706 case REG:
1707 {
1708 /* If X is a register, dependencies on its contents are recorded
1709 through the qty number mechanism. Just change the qty number of
1710 the register, mark it as invalid for expressions that refer to it,
1711 and remove it itself. */
1712 unsigned int regno = REGNO (x);
1713 unsigned int hash = HASH (x, GET_MODE (x));
1714
1715 /* Remove REGNO from any quantity list it might be on and indicate
1716 that its value might have changed. If it is a pseudo, remove its
1717 entry from the hash table.
1718
1719 For a hard register, we do the first two actions above for any
1720 additional hard registers corresponding to X. Then, if any of these
1721 registers are in the table, we must remove any REG entries that
1722 overlap these registers. */
1723
1724 delete_reg_equiv (regno);
1725 REG_TICK (regno)++;
1726 SUBREG_TICKED (regno) = -1;
1727
1728 if (regno >= FIRST_PSEUDO_REGISTER)
1729 {
1730 /* Because a register can be referenced in more than one mode,
1731 we might have to remove more than one table entry. */
1732 struct table_elt *elt;
1733
1734 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1735 remove_from_table (elt, hash);
1736 }
1737 else
1738 {
1739 HOST_WIDE_INT in_table
1740 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1741 unsigned int endregno
1742 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1743 unsigned int tregno, tendregno, rn;
1744 struct table_elt *p, *next;
1745
1746 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1747
1748 for (rn = regno + 1; rn < endregno; rn++)
1749 {
1750 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1751 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1752 delete_reg_equiv (rn);
1753 REG_TICK (rn)++;
1754 SUBREG_TICKED (rn) = -1;
1755 }
1756
1757 if (in_table)
1758 for (hash = 0; hash < HASH_SIZE; hash++)
1759 for (p = table[hash]; p; p = next)
1760 {
1761 next = p->next_same_hash;
1762
1763 if (!REG_P (p->exp)
1764 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1765 continue;
1766
1767 tregno = REGNO (p->exp);
1768 tendregno
1769 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1770 if (tendregno > regno && tregno < endregno)
1771 remove_from_table (p, hash);
1772 }
1773 }
1774 }
1775 return;
1776
1777 case SUBREG:
1778 invalidate (SUBREG_REG (x), VOIDmode);
1779 return;
1780
1781 case PARALLEL:
1782 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1783 invalidate (XVECEXP (x, 0, i), VOIDmode);
1784 return;
1785
1786 case EXPR_LIST:
1787 /* This is part of a disjoint return value; extract the location in
1788 question ignoring the offset. */
1789 invalidate (XEXP (x, 0), VOIDmode);
1790 return;
1791
1792 case MEM:
1793 addr = canon_rtx (get_addr (XEXP (x, 0)));
1794 /* Calculate the canonical version of X here so that
1795 true_dependence doesn't generate new RTL for X on each call. */
1796 x = canon_rtx (x);
1797
1798 /* Remove all hash table elements that refer to overlapping pieces of
1799 memory. */
1800 if (full_mode == VOIDmode)
1801 full_mode = GET_MODE (x);
1802
1803 for (i = 0; i < HASH_SIZE; i++)
1804 {
1805 struct table_elt *next;
1806
1807 for (p = table[i]; p; p = next)
1808 {
1809 next = p->next_same_hash;
1810 if (p->in_memory)
1811 {
1812 struct check_dependence_data d;
1813
1814 /* Just canonicalize the expression once;
1815 otherwise each time we call invalidate
1816 true_dependence will canonicalize the
1817 expression again. */
1818 if (!p->canon_exp)
1819 p->canon_exp = canon_rtx (p->exp);
1820 d.exp = x;
1821 d.addr = addr;
1822 d.mode = full_mode;
1823 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1824 remove_from_table (p, i);
1825 }
1826 }
1827 }
1828 return;
1829
1830 default:
1831 gcc_unreachable ();
1832 }
1833 }
1834 \f
1835 /* Remove all expressions that refer to register REGNO,
1836 since they are already invalid, and we are about to
1837 mark that register valid again and don't want the old
1838 expressions to reappear as valid. */
1839
1840 static void
1841 remove_invalid_refs (unsigned int regno)
1842 {
1843 unsigned int i;
1844 struct table_elt *p, *next;
1845
1846 for (i = 0; i < HASH_SIZE; i++)
1847 for (p = table[i]; p; p = next)
1848 {
1849 next = p->next_same_hash;
1850 if (!REG_P (p->exp)
1851 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1852 remove_from_table (p, i);
1853 }
1854 }
1855
1856 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1857 and mode MODE. */
1858 static void
1859 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1860 enum machine_mode mode)
1861 {
1862 unsigned int i;
1863 struct table_elt *p, *next;
1864 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1865
1866 for (i = 0; i < HASH_SIZE; i++)
1867 for (p = table[i]; p; p = next)
1868 {
1869 rtx exp = p->exp;
1870 next = p->next_same_hash;
1871
1872 if (!REG_P (exp)
1873 && (GET_CODE (exp) != SUBREG
1874 || !REG_P (SUBREG_REG (exp))
1875 || REGNO (SUBREG_REG (exp)) != regno
1876 || (((SUBREG_BYTE (exp)
1877 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1878 && SUBREG_BYTE (exp) <= end))
1879 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1880 remove_from_table (p, i);
1881 }
1882 }
1883 \f
1884 /* Recompute the hash codes of any valid entries in the hash table that
1885 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1886
1887 This is called when we make a jump equivalence. */
1888
1889 static void
1890 rehash_using_reg (rtx x)
1891 {
1892 unsigned int i;
1893 struct table_elt *p, *next;
1894 unsigned hash;
1895
1896 if (GET_CODE (x) == SUBREG)
1897 x = SUBREG_REG (x);
1898
1899 /* If X is not a register or if the register is known not to be in any
1900 valid entries in the table, we have no work to do. */
1901
1902 if (!REG_P (x)
1903 || REG_IN_TABLE (REGNO (x)) < 0
1904 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1905 return;
1906
1907 /* Scan all hash chains looking for valid entries that mention X.
1908 If we find one and it is in the wrong hash chain, move it. */
1909
1910 for (i = 0; i < HASH_SIZE; i++)
1911 for (p = table[i]; p; p = next)
1912 {
1913 next = p->next_same_hash;
1914 if (reg_mentioned_p (x, p->exp)
1915 && exp_equiv_p (p->exp, p->exp, 1, false)
1916 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1917 {
1918 if (p->next_same_hash)
1919 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1920
1921 if (p->prev_same_hash)
1922 p->prev_same_hash->next_same_hash = p->next_same_hash;
1923 else
1924 table[i] = p->next_same_hash;
1925
1926 p->next_same_hash = table[hash];
1927 p->prev_same_hash = 0;
1928 if (table[hash])
1929 table[hash]->prev_same_hash = p;
1930 table[hash] = p;
1931 }
1932 }
1933 }
1934 \f
1935 /* Remove from the hash table any expression that is a call-clobbered
1936 register. Also update their TICK values. */
1937
1938 static void
1939 invalidate_for_call (void)
1940 {
1941 unsigned int regno, endregno;
1942 unsigned int i;
1943 unsigned hash;
1944 struct table_elt *p, *next;
1945 int in_table = 0;
1946
1947 /* Go through all the hard registers. For each that is clobbered in
1948 a CALL_INSN, remove the register from quantity chains and update
1949 reg_tick if defined. Also see if any of these registers is currently
1950 in the table. */
1951
1952 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1953 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1954 {
1955 delete_reg_equiv (regno);
1956 if (REG_TICK (regno) >= 0)
1957 {
1958 REG_TICK (regno)++;
1959 SUBREG_TICKED (regno) = -1;
1960 }
1961
1962 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1963 }
1964
1965 /* In the case where we have no call-clobbered hard registers in the
1966 table, we are done. Otherwise, scan the table and remove any
1967 entry that overlaps a call-clobbered register. */
1968
1969 if (in_table)
1970 for (hash = 0; hash < HASH_SIZE; hash++)
1971 for (p = table[hash]; p; p = next)
1972 {
1973 next = p->next_same_hash;
1974
1975 if (!REG_P (p->exp)
1976 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1977 continue;
1978
1979 regno = REGNO (p->exp);
1980 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
1981
1982 for (i = regno; i < endregno; i++)
1983 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1984 {
1985 remove_from_table (p, hash);
1986 break;
1987 }
1988 }
1989 }
1990 \f
1991 /* Given an expression X of type CONST,
1992 and ELT which is its table entry (or 0 if it
1993 is not in the hash table),
1994 return an alternate expression for X as a register plus integer.
1995 If none can be found, return 0. */
1996
1997 static rtx
1998 use_related_value (rtx x, struct table_elt *elt)
1999 {
2000 struct table_elt *relt = 0;
2001 struct table_elt *p, *q;
2002 HOST_WIDE_INT offset;
2003
2004 /* First, is there anything related known?
2005 If we have a table element, we can tell from that.
2006 Otherwise, must look it up. */
2007
2008 if (elt != 0 && elt->related_value != 0)
2009 relt = elt;
2010 else if (elt == 0 && GET_CODE (x) == CONST)
2011 {
2012 rtx subexp = get_related_value (x);
2013 if (subexp != 0)
2014 relt = lookup (subexp,
2015 SAFE_HASH (subexp, GET_MODE (subexp)),
2016 GET_MODE (subexp));
2017 }
2018
2019 if (relt == 0)
2020 return 0;
2021
2022 /* Search all related table entries for one that has an
2023 equivalent register. */
2024
2025 p = relt;
2026 while (1)
2027 {
2028 /* This loop is strange in that it is executed in two different cases.
2029 The first is when X is already in the table. Then it is searching
2030 the RELATED_VALUE list of X's class (RELT). The second case is when
2031 X is not in the table. Then RELT points to a class for the related
2032 value.
2033
2034 Ensure that, whatever case we are in, that we ignore classes that have
2035 the same value as X. */
2036
2037 if (rtx_equal_p (x, p->exp))
2038 q = 0;
2039 else
2040 for (q = p->first_same_value; q; q = q->next_same_value)
2041 if (REG_P (q->exp))
2042 break;
2043
2044 if (q)
2045 break;
2046
2047 p = p->related_value;
2048
2049 /* We went all the way around, so there is nothing to be found.
2050 Alternatively, perhaps RELT was in the table for some other reason
2051 and it has no related values recorded. */
2052 if (p == relt || p == 0)
2053 break;
2054 }
2055
2056 if (q == 0)
2057 return 0;
2058
2059 offset = (get_integer_term (x) - get_integer_term (p->exp));
2060 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2061 return plus_constant (q->exp, offset);
2062 }
2063 \f
2064 /* Hash a string. Just add its bytes up. */
2065 static inline unsigned
2066 hash_rtx_string (const char *ps)
2067 {
2068 unsigned hash = 0;
2069 const unsigned char *p = (const unsigned char *) ps;
2070
2071 if (p)
2072 while (*p)
2073 hash += *p++;
2074
2075 return hash;
2076 }
2077
2078 /* Hash an rtx. We are careful to make sure the value is never negative.
2079 Equivalent registers hash identically.
2080 MODE is used in hashing for CONST_INTs only;
2081 otherwise the mode of X is used.
2082
2083 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2084
2085 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2086 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2087
2088 Note that cse_insn knows that the hash code of a MEM expression
2089 is just (int) MEM plus the hash code of the address. */
2090
2091 unsigned
2092 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2093 int *hash_arg_in_memory_p, bool have_reg_qty)
2094 {
2095 int i, j;
2096 unsigned hash = 0;
2097 enum rtx_code code;
2098 const char *fmt;
2099
2100 /* Used to turn recursion into iteration. We can't rely on GCC's
2101 tail-recursion elimination since we need to keep accumulating values
2102 in HASH. */
2103 repeat:
2104 if (x == 0)
2105 return hash;
2106
2107 code = GET_CODE (x);
2108 switch (code)
2109 {
2110 case REG:
2111 {
2112 unsigned int regno = REGNO (x);
2113
2114 if (!reload_completed)
2115 {
2116 /* On some machines, we can't record any non-fixed hard register,
2117 because extending its life will cause reload problems. We
2118 consider ap, fp, sp, gp to be fixed for this purpose.
2119
2120 We also consider CCmode registers to be fixed for this purpose;
2121 failure to do so leads to failure to simplify 0<100 type of
2122 conditionals.
2123
2124 On all machines, we can't record any global registers.
2125 Nor should we record any register that is in a small
2126 class, as defined by CLASS_LIKELY_SPILLED_P. */
2127 bool record;
2128
2129 if (regno >= FIRST_PSEUDO_REGISTER)
2130 record = true;
2131 else if (x == frame_pointer_rtx
2132 || x == hard_frame_pointer_rtx
2133 || x == arg_pointer_rtx
2134 || x == stack_pointer_rtx
2135 || x == pic_offset_table_rtx)
2136 record = true;
2137 else if (global_regs[regno])
2138 record = false;
2139 else if (fixed_regs[regno])
2140 record = true;
2141 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2142 record = true;
2143 else if (SMALL_REGISTER_CLASSES)
2144 record = false;
2145 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2146 record = false;
2147 else
2148 record = true;
2149
2150 if (!record)
2151 {
2152 *do_not_record_p = 1;
2153 return 0;
2154 }
2155 }
2156
2157 hash += ((unsigned int) REG << 7);
2158 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2159 return hash;
2160 }
2161
2162 /* We handle SUBREG of a REG specially because the underlying
2163 reg changes its hash value with every value change; we don't
2164 want to have to forget unrelated subregs when one subreg changes. */
2165 case SUBREG:
2166 {
2167 if (REG_P (SUBREG_REG (x)))
2168 {
2169 hash += (((unsigned int) SUBREG << 7)
2170 + REGNO (SUBREG_REG (x))
2171 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2172 return hash;
2173 }
2174 break;
2175 }
2176
2177 case CONST_INT:
2178 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2179 + (unsigned int) INTVAL (x));
2180 return hash;
2181
2182 case CONST_DOUBLE:
2183 /* This is like the general case, except that it only counts
2184 the integers representing the constant. */
2185 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2186 if (GET_MODE (x) != VOIDmode)
2187 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2188 else
2189 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2190 + (unsigned int) CONST_DOUBLE_HIGH (x));
2191 return hash;
2192
2193 case CONST_VECTOR:
2194 {
2195 int units;
2196 rtx elt;
2197
2198 units = CONST_VECTOR_NUNITS (x);
2199
2200 for (i = 0; i < units; ++i)
2201 {
2202 elt = CONST_VECTOR_ELT (x, i);
2203 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2204 hash_arg_in_memory_p, have_reg_qty);
2205 }
2206
2207 return hash;
2208 }
2209
2210 /* Assume there is only one rtx object for any given label. */
2211 case LABEL_REF:
2212 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2213 differences and differences between each stage's debugging dumps. */
2214 hash += (((unsigned int) LABEL_REF << 7)
2215 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2216 return hash;
2217
2218 case SYMBOL_REF:
2219 {
2220 /* Don't hash on the symbol's address to avoid bootstrap differences.
2221 Different hash values may cause expressions to be recorded in
2222 different orders and thus different registers to be used in the
2223 final assembler. This also avoids differences in the dump files
2224 between various stages. */
2225 unsigned int h = 0;
2226 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2227
2228 while (*p)
2229 h += (h << 7) + *p++; /* ??? revisit */
2230
2231 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2232 return hash;
2233 }
2234
2235 case MEM:
2236 /* We don't record if marked volatile or if BLKmode since we don't
2237 know the size of the move. */
2238 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2239 {
2240 *do_not_record_p = 1;
2241 return 0;
2242 }
2243 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2244 *hash_arg_in_memory_p = 1;
2245
2246 /* Now that we have already found this special case,
2247 might as well speed it up as much as possible. */
2248 hash += (unsigned) MEM;
2249 x = XEXP (x, 0);
2250 goto repeat;
2251
2252 case USE:
2253 /* A USE that mentions non-volatile memory needs special
2254 handling since the MEM may be BLKmode which normally
2255 prevents an entry from being made. Pure calls are
2256 marked by a USE which mentions BLKmode memory.
2257 See calls.c:emit_call_1. */
2258 if (MEM_P (XEXP (x, 0))
2259 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2260 {
2261 hash += (unsigned) USE;
2262 x = XEXP (x, 0);
2263
2264 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2265 *hash_arg_in_memory_p = 1;
2266
2267 /* Now that we have already found this special case,
2268 might as well speed it up as much as possible. */
2269 hash += (unsigned) MEM;
2270 x = XEXP (x, 0);
2271 goto repeat;
2272 }
2273 break;
2274
2275 case PRE_DEC:
2276 case PRE_INC:
2277 case POST_DEC:
2278 case POST_INC:
2279 case PRE_MODIFY:
2280 case POST_MODIFY:
2281 case PC:
2282 case CC0:
2283 case CALL:
2284 case UNSPEC_VOLATILE:
2285 *do_not_record_p = 1;
2286 return 0;
2287
2288 case ASM_OPERANDS:
2289 if (MEM_VOLATILE_P (x))
2290 {
2291 *do_not_record_p = 1;
2292 return 0;
2293 }
2294 else
2295 {
2296 /* We don't want to take the filename and line into account. */
2297 hash += (unsigned) code + (unsigned) GET_MODE (x)
2298 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2299 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2300 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2301
2302 if (ASM_OPERANDS_INPUT_LENGTH (x))
2303 {
2304 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2305 {
2306 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2307 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2308 do_not_record_p, hash_arg_in_memory_p,
2309 have_reg_qty)
2310 + hash_rtx_string
2311 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2312 }
2313
2314 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2315 x = ASM_OPERANDS_INPUT (x, 0);
2316 mode = GET_MODE (x);
2317 goto repeat;
2318 }
2319
2320 return hash;
2321 }
2322 break;
2323
2324 default:
2325 break;
2326 }
2327
2328 i = GET_RTX_LENGTH (code) - 1;
2329 hash += (unsigned) code + (unsigned) GET_MODE (x);
2330 fmt = GET_RTX_FORMAT (code);
2331 for (; i >= 0; i--)
2332 {
2333 switch (fmt[i])
2334 {
2335 case 'e':
2336 /* If we are about to do the last recursive call
2337 needed at this level, change it into iteration.
2338 This function is called enough to be worth it. */
2339 if (i == 0)
2340 {
2341 x = XEXP (x, i);
2342 goto repeat;
2343 }
2344
2345 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2346 hash_arg_in_memory_p, have_reg_qty);
2347 break;
2348
2349 case 'E':
2350 for (j = 0; j < XVECLEN (x, i); j++)
2351 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2352 hash_arg_in_memory_p, have_reg_qty);
2353 break;
2354
2355 case 's':
2356 hash += hash_rtx_string (XSTR (x, i));
2357 break;
2358
2359 case 'i':
2360 hash += (unsigned int) XINT (x, i);
2361 break;
2362
2363 case '0': case 't':
2364 /* Unused. */
2365 break;
2366
2367 default:
2368 gcc_unreachable ();
2369 }
2370 }
2371
2372 return hash;
2373 }
2374
2375 /* Hash an rtx X for cse via hash_rtx.
2376 Stores 1 in do_not_record if any subexpression is volatile.
2377 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2378 does not have the RTX_UNCHANGING_P bit set. */
2379
2380 static inline unsigned
2381 canon_hash (rtx x, enum machine_mode mode)
2382 {
2383 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2384 }
2385
2386 /* Like canon_hash but with no side effects, i.e. do_not_record
2387 and hash_arg_in_memory are not changed. */
2388
2389 static inline unsigned
2390 safe_hash (rtx x, enum machine_mode mode)
2391 {
2392 int dummy_do_not_record;
2393 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2394 }
2395 \f
2396 /* Return 1 iff X and Y would canonicalize into the same thing,
2397 without actually constructing the canonicalization of either one.
2398 If VALIDATE is nonzero,
2399 we assume X is an expression being processed from the rtl
2400 and Y was found in the hash table. We check register refs
2401 in Y for being marked as valid.
2402
2403 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2404
2405 int
2406 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2407 {
2408 int i, j;
2409 enum rtx_code code;
2410 const char *fmt;
2411
2412 /* Note: it is incorrect to assume an expression is equivalent to itself
2413 if VALIDATE is nonzero. */
2414 if (x == y && !validate)
2415 return 1;
2416
2417 if (x == 0 || y == 0)
2418 return x == y;
2419
2420 code = GET_CODE (x);
2421 if (code != GET_CODE (y))
2422 return 0;
2423
2424 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2425 if (GET_MODE (x) != GET_MODE (y))
2426 return 0;
2427
2428 switch (code)
2429 {
2430 case PC:
2431 case CC0:
2432 case CONST_INT:
2433 case CONST_DOUBLE:
2434 return x == y;
2435
2436 case LABEL_REF:
2437 return XEXP (x, 0) == XEXP (y, 0);
2438
2439 case SYMBOL_REF:
2440 return XSTR (x, 0) == XSTR (y, 0);
2441
2442 case REG:
2443 if (for_gcse)
2444 return REGNO (x) == REGNO (y);
2445 else
2446 {
2447 unsigned int regno = REGNO (y);
2448 unsigned int i;
2449 unsigned int endregno
2450 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2451 : hard_regno_nregs[regno][GET_MODE (y)]);
2452
2453 /* If the quantities are not the same, the expressions are not
2454 equivalent. If there are and we are not to validate, they
2455 are equivalent. Otherwise, ensure all regs are up-to-date. */
2456
2457 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2458 return 0;
2459
2460 if (! validate)
2461 return 1;
2462
2463 for (i = regno; i < endregno; i++)
2464 if (REG_IN_TABLE (i) != REG_TICK (i))
2465 return 0;
2466
2467 return 1;
2468 }
2469
2470 case MEM:
2471 if (for_gcse)
2472 {
2473 /* A volatile mem should not be considered equivalent to any
2474 other. */
2475 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2476 return 0;
2477
2478 /* Can't merge two expressions in different alias sets, since we
2479 can decide that the expression is transparent in a block when
2480 it isn't, due to it being set with the different alias set.
2481
2482 Also, can't merge two expressions with different MEM_ATTRS.
2483 They could e.g. be two different entities allocated into the
2484 same space on the stack (see e.g. PR25130). In that case, the
2485 MEM addresses can be the same, even though the two MEMs are
2486 absolutely not equivalent.
2487
2488 But because really all MEM attributes should be the same for
2489 equivalent MEMs, we just use the invariant that MEMs that have
2490 the same attributes share the same mem_attrs data structure. */
2491 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2492 return 0;
2493 }
2494 break;
2495
2496 /* For commutative operations, check both orders. */
2497 case PLUS:
2498 case MULT:
2499 case AND:
2500 case IOR:
2501 case XOR:
2502 case NE:
2503 case EQ:
2504 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2505 validate, for_gcse)
2506 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2507 validate, for_gcse))
2508 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2509 validate, for_gcse)
2510 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2511 validate, for_gcse)));
2512
2513 case ASM_OPERANDS:
2514 /* We don't use the generic code below because we want to
2515 disregard filename and line numbers. */
2516
2517 /* A volatile asm isn't equivalent to any other. */
2518 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2519 return 0;
2520
2521 if (GET_MODE (x) != GET_MODE (y)
2522 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2523 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2524 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2525 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2526 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2527 return 0;
2528
2529 if (ASM_OPERANDS_INPUT_LENGTH (x))
2530 {
2531 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2532 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2533 ASM_OPERANDS_INPUT (y, i),
2534 validate, for_gcse)
2535 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2536 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2537 return 0;
2538 }
2539
2540 return 1;
2541
2542 default:
2543 break;
2544 }
2545
2546 /* Compare the elements. If any pair of corresponding elements
2547 fail to match, return 0 for the whole thing. */
2548
2549 fmt = GET_RTX_FORMAT (code);
2550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2551 {
2552 switch (fmt[i])
2553 {
2554 case 'e':
2555 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2556 validate, for_gcse))
2557 return 0;
2558 break;
2559
2560 case 'E':
2561 if (XVECLEN (x, i) != XVECLEN (y, i))
2562 return 0;
2563 for (j = 0; j < XVECLEN (x, i); j++)
2564 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2565 validate, for_gcse))
2566 return 0;
2567 break;
2568
2569 case 's':
2570 if (strcmp (XSTR (x, i), XSTR (y, i)))
2571 return 0;
2572 break;
2573
2574 case 'i':
2575 if (XINT (x, i) != XINT (y, i))
2576 return 0;
2577 break;
2578
2579 case 'w':
2580 if (XWINT (x, i) != XWINT (y, i))
2581 return 0;
2582 break;
2583
2584 case '0':
2585 case 't':
2586 break;
2587
2588 default:
2589 gcc_unreachable ();
2590 }
2591 }
2592
2593 return 1;
2594 }
2595 \f
2596 /* Return 1 if X has a value that can vary even between two
2597 executions of the program. 0 means X can be compared reliably
2598 against certain constants or near-constants. */
2599
2600 static int
2601 cse_rtx_varies_p (rtx x, int from_alias)
2602 {
2603 /* We need not check for X and the equivalence class being of the same
2604 mode because if X is equivalent to a constant in some mode, it
2605 doesn't vary in any mode. */
2606
2607 if (REG_P (x)
2608 && REGNO_QTY_VALID_P (REGNO (x)))
2609 {
2610 int x_q = REG_QTY (REGNO (x));
2611 struct qty_table_elem *x_ent = &qty_table[x_q];
2612
2613 if (GET_MODE (x) == x_ent->mode
2614 && x_ent->const_rtx != NULL_RTX)
2615 return 0;
2616 }
2617
2618 if (GET_CODE (x) == PLUS
2619 && GET_CODE (XEXP (x, 1)) == CONST_INT
2620 && REG_P (XEXP (x, 0))
2621 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2622 {
2623 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2624 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2625
2626 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2627 && x0_ent->const_rtx != NULL_RTX)
2628 return 0;
2629 }
2630
2631 /* This can happen as the result of virtual register instantiation, if
2632 the initial constant is too large to be a valid address. This gives
2633 us a three instruction sequence, load large offset into a register,
2634 load fp minus a constant into a register, then a MEM which is the
2635 sum of the two `constant' registers. */
2636 if (GET_CODE (x) == PLUS
2637 && REG_P (XEXP (x, 0))
2638 && REG_P (XEXP (x, 1))
2639 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2640 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2641 {
2642 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2643 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2644 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2645 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2646
2647 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2648 && x0_ent->const_rtx != NULL_RTX
2649 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2650 && x1_ent->const_rtx != NULL_RTX)
2651 return 0;
2652 }
2653
2654 return rtx_varies_p (x, from_alias);
2655 }
2656 \f
2657 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2658 the result if necessary. INSN is as for canon_reg. */
2659
2660 static void
2661 validate_canon_reg (rtx *xloc, rtx insn)
2662 {
2663 rtx new = canon_reg (*xloc, insn);
2664
2665 /* If replacing pseudo with hard reg or vice versa, ensure the
2666 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2667 if (insn != 0 && new != 0)
2668 validate_change (insn, xloc, new, 1);
2669 else
2670 *xloc = new;
2671 }
2672
2673 /* Canonicalize an expression:
2674 replace each register reference inside it
2675 with the "oldest" equivalent register.
2676
2677 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2678 after we make our substitution. The calls are made with IN_GROUP nonzero
2679 so apply_change_group must be called upon the outermost return from this
2680 function (unless INSN is zero). The result of apply_change_group can
2681 generally be discarded since the changes we are making are optional. */
2682
2683 static rtx
2684 canon_reg (rtx x, rtx insn)
2685 {
2686 int i;
2687 enum rtx_code code;
2688 const char *fmt;
2689
2690 if (x == 0)
2691 return x;
2692
2693 code = GET_CODE (x);
2694 switch (code)
2695 {
2696 case PC:
2697 case CC0:
2698 case CONST:
2699 case CONST_INT:
2700 case CONST_DOUBLE:
2701 case CONST_VECTOR:
2702 case SYMBOL_REF:
2703 case LABEL_REF:
2704 case ADDR_VEC:
2705 case ADDR_DIFF_VEC:
2706 return x;
2707
2708 case REG:
2709 {
2710 int first;
2711 int q;
2712 struct qty_table_elem *ent;
2713
2714 /* Never replace a hard reg, because hard regs can appear
2715 in more than one machine mode, and we must preserve the mode
2716 of each occurrence. Also, some hard regs appear in
2717 MEMs that are shared and mustn't be altered. Don't try to
2718 replace any reg that maps to a reg of class NO_REGS. */
2719 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2720 || ! REGNO_QTY_VALID_P (REGNO (x)))
2721 return x;
2722
2723 q = REG_QTY (REGNO (x));
2724 ent = &qty_table[q];
2725 first = ent->first_reg;
2726 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2727 : REGNO_REG_CLASS (first) == NO_REGS ? x
2728 : gen_rtx_REG (ent->mode, first));
2729 }
2730
2731 default:
2732 break;
2733 }
2734
2735 fmt = GET_RTX_FORMAT (code);
2736 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2737 {
2738 int j;
2739
2740 if (fmt[i] == 'e')
2741 validate_canon_reg (&XEXP (x, i), insn);
2742 else if (fmt[i] == 'E')
2743 for (j = 0; j < XVECLEN (x, i); j++)
2744 validate_canon_reg (&XVECEXP (x, i, j), insn);
2745 }
2746
2747 return x;
2748 }
2749 \f
2750 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2751 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2752 what values are being compared.
2753
2754 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2755 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2756 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2757 compared to produce cc0.
2758
2759 The return value is the comparison operator and is either the code of
2760 A or the code corresponding to the inverse of the comparison. */
2761
2762 static enum rtx_code
2763 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2764 enum machine_mode *pmode1, enum machine_mode *pmode2)
2765 {
2766 rtx arg1, arg2;
2767
2768 arg1 = *parg1, arg2 = *parg2;
2769
2770 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2771
2772 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2773 {
2774 /* Set nonzero when we find something of interest. */
2775 rtx x = 0;
2776 int reverse_code = 0;
2777 struct table_elt *p = 0;
2778
2779 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2780 On machines with CC0, this is the only case that can occur, since
2781 fold_rtx will return the COMPARE or item being compared with zero
2782 when given CC0. */
2783
2784 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2785 x = arg1;
2786
2787 /* If ARG1 is a comparison operator and CODE is testing for
2788 STORE_FLAG_VALUE, get the inner arguments. */
2789
2790 else if (COMPARISON_P (arg1))
2791 {
2792 #ifdef FLOAT_STORE_FLAG_VALUE
2793 REAL_VALUE_TYPE fsfv;
2794 #endif
2795
2796 if (code == NE
2797 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2798 && code == LT && STORE_FLAG_VALUE == -1)
2799 #ifdef FLOAT_STORE_FLAG_VALUE
2800 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2801 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2802 REAL_VALUE_NEGATIVE (fsfv)))
2803 #endif
2804 )
2805 x = arg1;
2806 else if (code == EQ
2807 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2808 && code == GE && STORE_FLAG_VALUE == -1)
2809 #ifdef FLOAT_STORE_FLAG_VALUE
2810 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2811 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2812 REAL_VALUE_NEGATIVE (fsfv)))
2813 #endif
2814 )
2815 x = arg1, reverse_code = 1;
2816 }
2817
2818 /* ??? We could also check for
2819
2820 (ne (and (eq (...) (const_int 1))) (const_int 0))
2821
2822 and related forms, but let's wait until we see them occurring. */
2823
2824 if (x == 0)
2825 /* Look up ARG1 in the hash table and see if it has an equivalence
2826 that lets us see what is being compared. */
2827 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2828 if (p)
2829 {
2830 p = p->first_same_value;
2831
2832 /* If what we compare is already known to be constant, that is as
2833 good as it gets.
2834 We need to break the loop in this case, because otherwise we
2835 can have an infinite loop when looking at a reg that is known
2836 to be a constant which is the same as a comparison of a reg
2837 against zero which appears later in the insn stream, which in
2838 turn is constant and the same as the comparison of the first reg
2839 against zero... */
2840 if (p->is_const)
2841 break;
2842 }
2843
2844 for (; p; p = p->next_same_value)
2845 {
2846 enum machine_mode inner_mode = GET_MODE (p->exp);
2847 #ifdef FLOAT_STORE_FLAG_VALUE
2848 REAL_VALUE_TYPE fsfv;
2849 #endif
2850
2851 /* If the entry isn't valid, skip it. */
2852 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2853 continue;
2854
2855 if (GET_CODE (p->exp) == COMPARE
2856 /* Another possibility is that this machine has a compare insn
2857 that includes the comparison code. In that case, ARG1 would
2858 be equivalent to a comparison operation that would set ARG1 to
2859 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2860 ORIG_CODE is the actual comparison being done; if it is an EQ,
2861 we must reverse ORIG_CODE. On machine with a negative value
2862 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2863 || ((code == NE
2864 || (code == LT
2865 && GET_MODE_CLASS (inner_mode) == MODE_INT
2866 && (GET_MODE_BITSIZE (inner_mode)
2867 <= HOST_BITS_PER_WIDE_INT)
2868 && (STORE_FLAG_VALUE
2869 & ((HOST_WIDE_INT) 1
2870 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2871 #ifdef FLOAT_STORE_FLAG_VALUE
2872 || (code == LT
2873 && SCALAR_FLOAT_MODE_P (inner_mode)
2874 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2875 REAL_VALUE_NEGATIVE (fsfv)))
2876 #endif
2877 )
2878 && COMPARISON_P (p->exp)))
2879 {
2880 x = p->exp;
2881 break;
2882 }
2883 else if ((code == EQ
2884 || (code == GE
2885 && GET_MODE_CLASS (inner_mode) == MODE_INT
2886 && (GET_MODE_BITSIZE (inner_mode)
2887 <= HOST_BITS_PER_WIDE_INT)
2888 && (STORE_FLAG_VALUE
2889 & ((HOST_WIDE_INT) 1
2890 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2891 #ifdef FLOAT_STORE_FLAG_VALUE
2892 || (code == GE
2893 && SCALAR_FLOAT_MODE_P (inner_mode)
2894 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2895 REAL_VALUE_NEGATIVE (fsfv)))
2896 #endif
2897 )
2898 && COMPARISON_P (p->exp))
2899 {
2900 reverse_code = 1;
2901 x = p->exp;
2902 break;
2903 }
2904
2905 /* If this non-trapping address, e.g. fp + constant, the
2906 equivalent is a better operand since it may let us predict
2907 the value of the comparison. */
2908 else if (!rtx_addr_can_trap_p (p->exp))
2909 {
2910 arg1 = p->exp;
2911 continue;
2912 }
2913 }
2914
2915 /* If we didn't find a useful equivalence for ARG1, we are done.
2916 Otherwise, set up for the next iteration. */
2917 if (x == 0)
2918 break;
2919
2920 /* If we need to reverse the comparison, make sure that that is
2921 possible -- we can't necessarily infer the value of GE from LT
2922 with floating-point operands. */
2923 if (reverse_code)
2924 {
2925 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2926 if (reversed == UNKNOWN)
2927 break;
2928 else
2929 code = reversed;
2930 }
2931 else if (COMPARISON_P (x))
2932 code = GET_CODE (x);
2933 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2934 }
2935
2936 /* Return our results. Return the modes from before fold_rtx
2937 because fold_rtx might produce const_int, and then it's too late. */
2938 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2939 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2940
2941 return code;
2942 }
2943 \f
2944 /* If X is a nontrivial arithmetic operation on an argument for which
2945 a constant value can be determined, return the result of operating
2946 on that value, as a constant. Otherwise, return X, possibly with
2947 one or more operands changed to a forward-propagated constant.
2948
2949 If X is a register whose contents are known, we do NOT return
2950 those contents here; equiv_constant is called to perform that task.
2951 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2952
2953 INSN is the insn that we may be modifying. If it is 0, make a copy
2954 of X before modifying it. */
2955
2956 static rtx
2957 fold_rtx (rtx x, rtx insn)
2958 {
2959 enum rtx_code code;
2960 enum machine_mode mode;
2961 const char *fmt;
2962 int i;
2963 rtx new = 0;
2964 int changed = 0;
2965
2966 /* Operands of X. */
2967 rtx folded_arg0;
2968 rtx folded_arg1;
2969
2970 /* Constant equivalents of first three operands of X;
2971 0 when no such equivalent is known. */
2972 rtx const_arg0;
2973 rtx const_arg1;
2974 rtx const_arg2;
2975
2976 /* The mode of the first operand of X. We need this for sign and zero
2977 extends. */
2978 enum machine_mode mode_arg0;
2979
2980 if (x == 0)
2981 return x;
2982
2983 /* Try to perform some initial simplifications on X. */
2984 code = GET_CODE (x);
2985 switch (code)
2986 {
2987 case MEM:
2988 case SUBREG:
2989 if ((new = equiv_constant (x)) != NULL_RTX)
2990 return new;
2991 return x;
2992
2993 case CONST:
2994 case CONST_INT:
2995 case CONST_DOUBLE:
2996 case CONST_VECTOR:
2997 case SYMBOL_REF:
2998 case LABEL_REF:
2999 case REG:
3000 case PC:
3001 /* No use simplifying an EXPR_LIST
3002 since they are used only for lists of args
3003 in a function call's REG_EQUAL note. */
3004 case EXPR_LIST:
3005 return x;
3006
3007 #ifdef HAVE_cc0
3008 case CC0:
3009 return prev_insn_cc0;
3010 #endif
3011
3012 case ASM_OPERANDS:
3013 if (insn)
3014 {
3015 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3016 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3017 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3018 }
3019 return x;
3020
3021 #ifdef NO_FUNCTION_CSE
3022 case CALL:
3023 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3024 return x;
3025 break;
3026 #endif
3027
3028 /* Anything else goes through the loop below. */
3029 default:
3030 break;
3031 }
3032
3033 mode = GET_MODE (x);
3034 const_arg0 = 0;
3035 const_arg1 = 0;
3036 const_arg2 = 0;
3037 mode_arg0 = VOIDmode;
3038
3039 /* Try folding our operands.
3040 Then see which ones have constant values known. */
3041
3042 fmt = GET_RTX_FORMAT (code);
3043 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3044 if (fmt[i] == 'e')
3045 {
3046 rtx folded_arg = XEXP (x, i), const_arg;
3047 enum machine_mode mode_arg = GET_MODE (folded_arg);
3048 #ifdef HAVE_cc0
3049 if (CC0_P (folded_arg))
3050 folded_arg = prev_insn_cc0, mode_arg = prev_insn_cc0_mode;
3051 #endif
3052 const_arg = equiv_constant (folded_arg);
3053
3054 /* For the first three operands, see if the operand
3055 is constant or equivalent to a constant. */
3056 switch (i)
3057 {
3058 case 0:
3059 folded_arg0 = folded_arg;
3060 const_arg0 = const_arg;
3061 mode_arg0 = mode_arg;
3062 break;
3063 case 1:
3064 folded_arg1 = folded_arg;
3065 const_arg1 = const_arg;
3066 break;
3067 case 2:
3068 const_arg2 = const_arg;
3069 break;
3070 }
3071
3072 /* Pick the least expensive of the argument and an equivalent constant
3073 argument. */
3074 if (const_arg != 0
3075 && const_arg != folded_arg
3076 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3077
3078 /* It's not safe to substitute the operand of a conversion
3079 operator with a constant, as the conversion's identity
3080 depends upon the mode of its operand. This optimization
3081 is handled by the call to simplify_unary_operation. */
3082 && (GET_RTX_CLASS (code) != RTX_UNARY
3083 || GET_MODE (const_arg) == mode_arg0
3084 || (code != ZERO_EXTEND
3085 && code != SIGN_EXTEND
3086 && code != TRUNCATE
3087 && code != FLOAT_TRUNCATE
3088 && code != FLOAT_EXTEND
3089 && code != FLOAT
3090 && code != FIX
3091 && code != UNSIGNED_FLOAT
3092 && code != UNSIGNED_FIX)))
3093 folded_arg = const_arg;
3094
3095 if (folded_arg == XEXP (x, i))
3096 continue;
3097
3098 if (insn == NULL_RTX && !changed)
3099 x = copy_rtx (x);
3100 changed = 1;
3101 validate_change (insn, &XEXP (x, i), folded_arg, 1);
3102 }
3103
3104 if (changed)
3105 {
3106 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3107 consistent with the order in X. */
3108 if (canonicalize_change_group (insn, x))
3109 {
3110 rtx tem;
3111 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3112 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3113 }
3114
3115 apply_change_group ();
3116 }
3117
3118 /* If X is an arithmetic operation, see if we can simplify it. */
3119
3120 switch (GET_RTX_CLASS (code))
3121 {
3122 case RTX_UNARY:
3123 {
3124 int is_const = 0;
3125
3126 /* We can't simplify extension ops unless we know the
3127 original mode. */
3128 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3129 && mode_arg0 == VOIDmode)
3130 break;
3131
3132 /* If we had a CONST, strip it off and put it back later if we
3133 fold. */
3134 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3135 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3136
3137 new = simplify_unary_operation (code, mode,
3138 const_arg0 ? const_arg0 : folded_arg0,
3139 mode_arg0);
3140 /* NEG of PLUS could be converted into MINUS, but that causes
3141 expressions of the form
3142 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3143 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3144 FIXME: those ports should be fixed. */
3145 if (new != 0 && is_const
3146 && GET_CODE (new) == PLUS
3147 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3148 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3149 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3150 new = gen_rtx_CONST (mode, new);
3151 }
3152 break;
3153
3154 case RTX_COMPARE:
3155 case RTX_COMM_COMPARE:
3156 /* See what items are actually being compared and set FOLDED_ARG[01]
3157 to those values and CODE to the actual comparison code. If any are
3158 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3159 do anything if both operands are already known to be constant. */
3160
3161 /* ??? Vector mode comparisons are not supported yet. */
3162 if (VECTOR_MODE_P (mode))
3163 break;
3164
3165 if (const_arg0 == 0 || const_arg1 == 0)
3166 {
3167 struct table_elt *p0, *p1;
3168 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3169 enum machine_mode mode_arg1;
3170
3171 #ifdef FLOAT_STORE_FLAG_VALUE
3172 if (SCALAR_FLOAT_MODE_P (mode))
3173 {
3174 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3175 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3176 false_rtx = CONST0_RTX (mode);
3177 }
3178 #endif
3179
3180 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3181 &mode_arg0, &mode_arg1);
3182
3183 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3184 what kinds of things are being compared, so we can't do
3185 anything with this comparison. */
3186
3187 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3188 break;
3189
3190 const_arg0 = equiv_constant (folded_arg0);
3191 const_arg1 = equiv_constant (folded_arg1);
3192
3193 /* If we do not now have two constants being compared, see
3194 if we can nevertheless deduce some things about the
3195 comparison. */
3196 if (const_arg0 == 0 || const_arg1 == 0)
3197 {
3198 if (const_arg1 != NULL)
3199 {
3200 rtx cheapest_simplification;
3201 int cheapest_cost;
3202 rtx simp_result;
3203 struct table_elt *p;
3204
3205 /* See if we can find an equivalent of folded_arg0
3206 that gets us a cheaper expression, possibly a
3207 constant through simplifications. */
3208 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3209 mode_arg0);
3210
3211 if (p != NULL)
3212 {
3213 cheapest_simplification = x;
3214 cheapest_cost = COST (x);
3215
3216 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3217 {
3218 int cost;
3219
3220 /* If the entry isn't valid, skip it. */
3221 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3222 continue;
3223
3224 /* Try to simplify using this equivalence. */
3225 simp_result
3226 = simplify_relational_operation (code, mode,
3227 mode_arg0,
3228 p->exp,
3229 const_arg1);
3230
3231 if (simp_result == NULL)
3232 continue;
3233
3234 cost = COST (simp_result);
3235 if (cost < cheapest_cost)
3236 {
3237 cheapest_cost = cost;
3238 cheapest_simplification = simp_result;
3239 }
3240 }
3241
3242 /* If we have a cheaper expression now, use that
3243 and try folding it further, from the top. */
3244 if (cheapest_simplification != x)
3245 return fold_rtx (cheapest_simplification, insn);
3246 }
3247 }
3248
3249 /* Some addresses are known to be nonzero. We don't know
3250 their sign, but equality comparisons are known. */
3251 if (const_arg1 == const0_rtx
3252 && nonzero_address_p (folded_arg0))
3253 {
3254 if (code == EQ)
3255 return false_rtx;
3256 else if (code == NE)
3257 return true_rtx;
3258 }
3259
3260 /* See if the two operands are the same. */
3261
3262 if (folded_arg0 == folded_arg1
3263 || (REG_P (folded_arg0)
3264 && REG_P (folded_arg1)
3265 && (REG_QTY (REGNO (folded_arg0))
3266 == REG_QTY (REGNO (folded_arg1))))
3267 || ((p0 = lookup (folded_arg0,
3268 SAFE_HASH (folded_arg0, mode_arg0),
3269 mode_arg0))
3270 && (p1 = lookup (folded_arg1,
3271 SAFE_HASH (folded_arg1, mode_arg0),
3272 mode_arg0))
3273 && p0->first_same_value == p1->first_same_value))
3274 {
3275 /* Sadly two equal NaNs are not equivalent. */
3276 if (!HONOR_NANS (mode_arg0))
3277 return ((code == EQ || code == LE || code == GE
3278 || code == LEU || code == GEU || code == UNEQ
3279 || code == UNLE || code == UNGE
3280 || code == ORDERED)
3281 ? true_rtx : false_rtx);
3282 /* Take care for the FP compares we can resolve. */
3283 if (code == UNEQ || code == UNLE || code == UNGE)
3284 return true_rtx;
3285 if (code == LTGT || code == LT || code == GT)
3286 return false_rtx;
3287 }
3288
3289 /* If FOLDED_ARG0 is a register, see if the comparison we are
3290 doing now is either the same as we did before or the reverse
3291 (we only check the reverse if not floating-point). */
3292 else if (REG_P (folded_arg0))
3293 {
3294 int qty = REG_QTY (REGNO (folded_arg0));
3295
3296 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3297 {
3298 struct qty_table_elem *ent = &qty_table[qty];
3299
3300 if ((comparison_dominates_p (ent->comparison_code, code)
3301 || (! FLOAT_MODE_P (mode_arg0)
3302 && comparison_dominates_p (ent->comparison_code,
3303 reverse_condition (code))))
3304 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3305 || (const_arg1
3306 && rtx_equal_p (ent->comparison_const,
3307 const_arg1))
3308 || (REG_P (folded_arg1)
3309 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3310 return (comparison_dominates_p (ent->comparison_code, code)
3311 ? true_rtx : false_rtx);
3312 }
3313 }
3314 }
3315 }
3316
3317 /* If we are comparing against zero, see if the first operand is
3318 equivalent to an IOR with a constant. If so, we may be able to
3319 determine the result of this comparison. */
3320
3321 if (const_arg1 == const0_rtx)
3322 {
3323 rtx y = lookup_as_function (folded_arg0, IOR);
3324 rtx inner_const;
3325
3326 if (y != 0
3327 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3328 && GET_CODE (inner_const) == CONST_INT
3329 && INTVAL (inner_const) != 0)
3330 {
3331 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3332 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3333 && (INTVAL (inner_const)
3334 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3335 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3336
3337 #ifdef FLOAT_STORE_FLAG_VALUE
3338 if (SCALAR_FLOAT_MODE_P (mode))
3339 {
3340 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3341 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3342 false_rtx = CONST0_RTX (mode);
3343 }
3344 #endif
3345
3346 switch (code)
3347 {
3348 case EQ:
3349 return false_rtx;
3350 case NE:
3351 return true_rtx;
3352 case LT: case LE:
3353 if (has_sign)
3354 return true_rtx;
3355 break;
3356 case GT: case GE:
3357 if (has_sign)
3358 return false_rtx;
3359 break;
3360 default:
3361 break;
3362 }
3363 }
3364 }
3365
3366 {
3367 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3368 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3369 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3370 }
3371 break;
3372
3373 case RTX_BIN_ARITH:
3374 case RTX_COMM_ARITH:
3375 switch (code)
3376 {
3377 case PLUS:
3378 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3379 with that LABEL_REF as its second operand. If so, the result is
3380 the first operand of that MINUS. This handles switches with an
3381 ADDR_DIFF_VEC table. */
3382 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3383 {
3384 rtx y
3385 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3386 : lookup_as_function (folded_arg0, MINUS);
3387
3388 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3389 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3390 return XEXP (y, 0);
3391
3392 /* Now try for a CONST of a MINUS like the above. */
3393 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3394 : lookup_as_function (folded_arg0, CONST))) != 0
3395 && GET_CODE (XEXP (y, 0)) == MINUS
3396 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3397 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3398 return XEXP (XEXP (y, 0), 0);
3399 }
3400
3401 /* Likewise if the operands are in the other order. */
3402 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3403 {
3404 rtx y
3405 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3406 : lookup_as_function (folded_arg1, MINUS);
3407
3408 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3409 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3410 return XEXP (y, 0);
3411
3412 /* Now try for a CONST of a MINUS like the above. */
3413 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3414 : lookup_as_function (folded_arg1, CONST))) != 0
3415 && GET_CODE (XEXP (y, 0)) == MINUS
3416 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3417 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3418 return XEXP (XEXP (y, 0), 0);
3419 }
3420
3421 /* If second operand is a register equivalent to a negative
3422 CONST_INT, see if we can find a register equivalent to the
3423 positive constant. Make a MINUS if so. Don't do this for
3424 a non-negative constant since we might then alternate between
3425 choosing positive and negative constants. Having the positive
3426 constant previously-used is the more common case. Be sure
3427 the resulting constant is non-negative; if const_arg1 were
3428 the smallest negative number this would overflow: depending
3429 on the mode, this would either just be the same value (and
3430 hence not save anything) or be incorrect. */
3431 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3432 && INTVAL (const_arg1) < 0
3433 /* This used to test
3434
3435 -INTVAL (const_arg1) >= 0
3436
3437 But The Sun V5.0 compilers mis-compiled that test. So
3438 instead we test for the problematic value in a more direct
3439 manner and hope the Sun compilers get it correct. */
3440 && INTVAL (const_arg1) !=
3441 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3442 && REG_P (folded_arg1))
3443 {
3444 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3445 struct table_elt *p
3446 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3447
3448 if (p)
3449 for (p = p->first_same_value; p; p = p->next_same_value)
3450 if (REG_P (p->exp))
3451 return simplify_gen_binary (MINUS, mode, folded_arg0,
3452 canon_reg (p->exp, NULL_RTX));
3453 }
3454 goto from_plus;
3455
3456 case MINUS:
3457 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3458 If so, produce (PLUS Z C2-C). */
3459 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3460 {
3461 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3462 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3463 return fold_rtx (plus_constant (copy_rtx (y),
3464 -INTVAL (const_arg1)),
3465 NULL_RTX);
3466 }
3467
3468 /* Fall through. */
3469
3470 from_plus:
3471 case SMIN: case SMAX: case UMIN: case UMAX:
3472 case IOR: case AND: case XOR:
3473 case MULT:
3474 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3475 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3476 is known to be of similar form, we may be able to replace the
3477 operation with a combined operation. This may eliminate the
3478 intermediate operation if every use is simplified in this way.
3479 Note that the similar optimization done by combine.c only works
3480 if the intermediate operation's result has only one reference. */
3481
3482 if (REG_P (folded_arg0)
3483 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3484 {
3485 int is_shift
3486 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3487 rtx y, inner_const, new_const;
3488 enum rtx_code associate_code;
3489
3490 if (is_shift
3491 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3492 || INTVAL (const_arg1) < 0))
3493 {
3494 if (SHIFT_COUNT_TRUNCATED)
3495 const_arg1 = GEN_INT (INTVAL (const_arg1)
3496 & (GET_MODE_BITSIZE (mode) - 1));
3497 else
3498 break;
3499 }
3500
3501 y = lookup_as_function (folded_arg0, code);
3502 if (y == 0)
3503 break;
3504
3505 /* If we have compiled a statement like
3506 "if (x == (x & mask1))", and now are looking at
3507 "x & mask2", we will have a case where the first operand
3508 of Y is the same as our first operand. Unless we detect
3509 this case, an infinite loop will result. */
3510 if (XEXP (y, 0) == folded_arg0)
3511 break;
3512
3513 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3514 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3515 break;
3516
3517 /* Don't associate these operations if they are a PLUS with the
3518 same constant and it is a power of two. These might be doable
3519 with a pre- or post-increment. Similarly for two subtracts of
3520 identical powers of two with post decrement. */
3521
3522 if (code == PLUS && const_arg1 == inner_const
3523 && ((HAVE_PRE_INCREMENT
3524 && exact_log2 (INTVAL (const_arg1)) >= 0)
3525 || (HAVE_POST_INCREMENT
3526 && exact_log2 (INTVAL (const_arg1)) >= 0)
3527 || (HAVE_PRE_DECREMENT
3528 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3529 || (HAVE_POST_DECREMENT
3530 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3531 break;
3532
3533 if (is_shift
3534 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3535 || INTVAL (inner_const) < 0))
3536 {
3537 if (SHIFT_COUNT_TRUNCATED)
3538 inner_const = GEN_INT (INTVAL (inner_const)
3539 & (GET_MODE_BITSIZE (mode) - 1));
3540 else
3541 break;
3542 }
3543
3544 /* Compute the code used to compose the constants. For example,
3545 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3546
3547 associate_code = (is_shift || code == MINUS ? PLUS : code);
3548
3549 new_const = simplify_binary_operation (associate_code, mode,
3550 const_arg1, inner_const);
3551
3552 if (new_const == 0)
3553 break;
3554
3555 /* If we are associating shift operations, don't let this
3556 produce a shift of the size of the object or larger.
3557 This could occur when we follow a sign-extend by a right
3558 shift on a machine that does a sign-extend as a pair
3559 of shifts. */
3560
3561 if (is_shift
3562 && GET_CODE (new_const) == CONST_INT
3563 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3564 {
3565 /* As an exception, we can turn an ASHIFTRT of this
3566 form into a shift of the number of bits - 1. */
3567 if (code == ASHIFTRT)
3568 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3569 else if (!side_effects_p (XEXP (y, 0)))
3570 return CONST0_RTX (mode);
3571 else
3572 break;
3573 }
3574
3575 y = copy_rtx (XEXP (y, 0));
3576
3577 /* If Y contains our first operand (the most common way this
3578 can happen is if Y is a MEM), we would do into an infinite
3579 loop if we tried to fold it. So don't in that case. */
3580
3581 if (! reg_mentioned_p (folded_arg0, y))
3582 y = fold_rtx (y, insn);
3583
3584 return simplify_gen_binary (code, mode, y, new_const);
3585 }
3586 break;
3587
3588 case DIV: case UDIV:
3589 /* ??? The associative optimization performed immediately above is
3590 also possible for DIV and UDIV using associate_code of MULT.
3591 However, we would need extra code to verify that the
3592 multiplication does not overflow, that is, there is no overflow
3593 in the calculation of new_const. */
3594 break;
3595
3596 default:
3597 break;
3598 }
3599
3600 new = simplify_binary_operation (code, mode,
3601 const_arg0 ? const_arg0 : folded_arg0,
3602 const_arg1 ? const_arg1 : folded_arg1);
3603 break;
3604
3605 case RTX_OBJ:
3606 /* (lo_sum (high X) X) is simply X. */
3607 if (code == LO_SUM && const_arg0 != 0
3608 && GET_CODE (const_arg0) == HIGH
3609 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3610 return const_arg1;
3611 break;
3612
3613 case RTX_TERNARY:
3614 case RTX_BITFIELD_OPS:
3615 new = simplify_ternary_operation (code, mode, mode_arg0,
3616 const_arg0 ? const_arg0 : folded_arg0,
3617 const_arg1 ? const_arg1 : folded_arg1,
3618 const_arg2 ? const_arg2 : XEXP (x, 2));
3619 break;
3620
3621 default:
3622 break;
3623 }
3624
3625 return new ? new : x;
3626 }
3627 \f
3628 /* Return a constant value currently equivalent to X.
3629 Return 0 if we don't know one. */
3630
3631 static rtx
3632 equiv_constant (rtx x)
3633 {
3634 if (REG_P (x)
3635 && REGNO_QTY_VALID_P (REGNO (x)))
3636 {
3637 int x_q = REG_QTY (REGNO (x));
3638 struct qty_table_elem *x_ent = &qty_table[x_q];
3639
3640 if (x_ent->const_rtx)
3641 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3642 }
3643
3644 if (x == 0 || CONSTANT_P (x))
3645 return x;
3646
3647 if (GET_CODE (x) == SUBREG)
3648 {
3649 rtx new;
3650
3651 /* See if we previously assigned a constant value to this SUBREG. */
3652 if ((new = lookup_as_function (x, CONST_INT)) != 0
3653 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3654 return new;
3655
3656 if (REG_P (SUBREG_REG (x))
3657 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3658 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3659 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3660
3661 return 0;
3662 }
3663
3664 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3665 the hash table in case its value was seen before. */
3666
3667 if (MEM_P (x))
3668 {
3669 struct table_elt *elt;
3670
3671 x = avoid_constant_pool_reference (x);
3672 if (CONSTANT_P (x))
3673 return x;
3674
3675 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3676 if (elt == 0)
3677 return 0;
3678
3679 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3680 if (elt->is_const && CONSTANT_P (elt->exp))
3681 return elt->exp;
3682 }
3683
3684 return 0;
3685 }
3686 \f
3687 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3688 "taken" branch.
3689
3690 In certain cases, this can cause us to add an equivalence. For example,
3691 if we are following the taken case of
3692 if (i == 2)
3693 we can add the fact that `i' and '2' are now equivalent.
3694
3695 In any case, we can record that this comparison was passed. If the same
3696 comparison is seen later, we will know its value. */
3697
3698 static void
3699 record_jump_equiv (rtx insn, bool taken)
3700 {
3701 int cond_known_true;
3702 rtx op0, op1;
3703 rtx set;
3704 enum machine_mode mode, mode0, mode1;
3705 int reversed_nonequality = 0;
3706 enum rtx_code code;
3707
3708 /* Ensure this is the right kind of insn. */
3709 gcc_assert (any_condjump_p (insn));
3710
3711 set = pc_set (insn);
3712
3713 /* See if this jump condition is known true or false. */
3714 if (taken)
3715 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3716 else
3717 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3718
3719 /* Get the type of comparison being done and the operands being compared.
3720 If we had to reverse a non-equality condition, record that fact so we
3721 know that it isn't valid for floating-point. */
3722 code = GET_CODE (XEXP (SET_SRC (set), 0));
3723 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3724 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3725
3726 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3727 if (! cond_known_true)
3728 {
3729 code = reversed_comparison_code_parts (code, op0, op1, insn);
3730
3731 /* Don't remember if we can't find the inverse. */
3732 if (code == UNKNOWN)
3733 return;
3734 }
3735
3736 /* The mode is the mode of the non-constant. */
3737 mode = mode0;
3738 if (mode1 != VOIDmode)
3739 mode = mode1;
3740
3741 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3742 }
3743
3744 /* Yet another form of subreg creation. In this case, we want something in
3745 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3746
3747 static rtx
3748 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3749 {
3750 enum machine_mode op_mode = GET_MODE (op);
3751 if (op_mode == mode || op_mode == VOIDmode)
3752 return op;
3753 return lowpart_subreg (mode, op, op_mode);
3754 }
3755
3756 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3757 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3758 Make any useful entries we can with that information. Called from
3759 above function and called recursively. */
3760
3761 static void
3762 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3763 rtx op1, int reversed_nonequality)
3764 {
3765 unsigned op0_hash, op1_hash;
3766 int op0_in_memory, op1_in_memory;
3767 struct table_elt *op0_elt, *op1_elt;
3768
3769 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3770 we know that they are also equal in the smaller mode (this is also
3771 true for all smaller modes whether or not there is a SUBREG, but
3772 is not worth testing for with no SUBREG). */
3773
3774 /* Note that GET_MODE (op0) may not equal MODE. */
3775 if (code == EQ && GET_CODE (op0) == SUBREG
3776 && (GET_MODE_SIZE (GET_MODE (op0))
3777 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3778 {
3779 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3780 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3781 if (tem)
3782 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3783 reversed_nonequality);
3784 }
3785
3786 if (code == EQ && GET_CODE (op1) == SUBREG
3787 && (GET_MODE_SIZE (GET_MODE (op1))
3788 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3789 {
3790 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3791 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3792 if (tem)
3793 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3794 reversed_nonequality);
3795 }
3796
3797 /* Similarly, if this is an NE comparison, and either is a SUBREG
3798 making a smaller mode, we know the whole thing is also NE. */
3799
3800 /* Note that GET_MODE (op0) may not equal MODE;
3801 if we test MODE instead, we can get an infinite recursion
3802 alternating between two modes each wider than MODE. */
3803
3804 if (code == NE && GET_CODE (op0) == SUBREG
3805 && subreg_lowpart_p (op0)
3806 && (GET_MODE_SIZE (GET_MODE (op0))
3807 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3808 {
3809 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3810 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3811 if (tem)
3812 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3813 reversed_nonequality);
3814 }
3815
3816 if (code == NE && GET_CODE (op1) == SUBREG
3817 && subreg_lowpart_p (op1)
3818 && (GET_MODE_SIZE (GET_MODE (op1))
3819 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3820 {
3821 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3822 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3823 if (tem)
3824 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3825 reversed_nonequality);
3826 }
3827
3828 /* Hash both operands. */
3829
3830 do_not_record = 0;
3831 hash_arg_in_memory = 0;
3832 op0_hash = HASH (op0, mode);
3833 op0_in_memory = hash_arg_in_memory;
3834
3835 if (do_not_record)
3836 return;
3837
3838 do_not_record = 0;
3839 hash_arg_in_memory = 0;
3840 op1_hash = HASH (op1, mode);
3841 op1_in_memory = hash_arg_in_memory;
3842
3843 if (do_not_record)
3844 return;
3845
3846 /* Look up both operands. */
3847 op0_elt = lookup (op0, op0_hash, mode);
3848 op1_elt = lookup (op1, op1_hash, mode);
3849
3850 /* If both operands are already equivalent or if they are not in the
3851 table but are identical, do nothing. */
3852 if ((op0_elt != 0 && op1_elt != 0
3853 && op0_elt->first_same_value == op1_elt->first_same_value)
3854 || op0 == op1 || rtx_equal_p (op0, op1))
3855 return;
3856
3857 /* If we aren't setting two things equal all we can do is save this
3858 comparison. Similarly if this is floating-point. In the latter
3859 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3860 If we record the equality, we might inadvertently delete code
3861 whose intent was to change -0 to +0. */
3862
3863 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3864 {
3865 struct qty_table_elem *ent;
3866 int qty;
3867
3868 /* If we reversed a floating-point comparison, if OP0 is not a
3869 register, or if OP1 is neither a register or constant, we can't
3870 do anything. */
3871
3872 if (!REG_P (op1))
3873 op1 = equiv_constant (op1);
3874
3875 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3876 || !REG_P (op0) || op1 == 0)
3877 return;
3878
3879 /* Put OP0 in the hash table if it isn't already. This gives it a
3880 new quantity number. */
3881 if (op0_elt == 0)
3882 {
3883 if (insert_regs (op0, NULL, 0))
3884 {
3885 rehash_using_reg (op0);
3886 op0_hash = HASH (op0, mode);
3887
3888 /* If OP0 is contained in OP1, this changes its hash code
3889 as well. Faster to rehash than to check, except
3890 for the simple case of a constant. */
3891 if (! CONSTANT_P (op1))
3892 op1_hash = HASH (op1,mode);
3893 }
3894
3895 op0_elt = insert (op0, NULL, op0_hash, mode);
3896 op0_elt->in_memory = op0_in_memory;
3897 }
3898
3899 qty = REG_QTY (REGNO (op0));
3900 ent = &qty_table[qty];
3901
3902 ent->comparison_code = code;
3903 if (REG_P (op1))
3904 {
3905 /* Look it up again--in case op0 and op1 are the same. */
3906 op1_elt = lookup (op1, op1_hash, mode);
3907
3908 /* Put OP1 in the hash table so it gets a new quantity number. */
3909 if (op1_elt == 0)
3910 {
3911 if (insert_regs (op1, NULL, 0))
3912 {
3913 rehash_using_reg (op1);
3914 op1_hash = HASH (op1, mode);
3915 }
3916
3917 op1_elt = insert (op1, NULL, op1_hash, mode);
3918 op1_elt->in_memory = op1_in_memory;
3919 }
3920
3921 ent->comparison_const = NULL_RTX;
3922 ent->comparison_qty = REG_QTY (REGNO (op1));
3923 }
3924 else
3925 {
3926 ent->comparison_const = op1;
3927 ent->comparison_qty = -1;
3928 }
3929
3930 return;
3931 }
3932
3933 /* If either side is still missing an equivalence, make it now,
3934 then merge the equivalences. */
3935
3936 if (op0_elt == 0)
3937 {
3938 if (insert_regs (op0, NULL, 0))
3939 {
3940 rehash_using_reg (op0);
3941 op0_hash = HASH (op0, mode);
3942 }
3943
3944 op0_elt = insert (op0, NULL, op0_hash, mode);
3945 op0_elt->in_memory = op0_in_memory;
3946 }
3947
3948 if (op1_elt == 0)
3949 {
3950 if (insert_regs (op1, NULL, 0))
3951 {
3952 rehash_using_reg (op1);
3953 op1_hash = HASH (op1, mode);
3954 }
3955
3956 op1_elt = insert (op1, NULL, op1_hash, mode);
3957 op1_elt->in_memory = op1_in_memory;
3958 }
3959
3960 merge_equiv_classes (op0_elt, op1_elt);
3961 }
3962 \f
3963 /* CSE processing for one instruction.
3964 First simplify sources and addresses of all assignments
3965 in the instruction, using previously-computed equivalents values.
3966 Then install the new sources and destinations in the table
3967 of available values.
3968
3969 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3970 the insn. It means that INSN is inside libcall block. In this
3971 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
3972
3973 /* Data on one SET contained in the instruction. */
3974
3975 struct set
3976 {
3977 /* The SET rtx itself. */
3978 rtx rtl;
3979 /* The SET_SRC of the rtx (the original value, if it is changing). */
3980 rtx src;
3981 /* The hash-table element for the SET_SRC of the SET. */
3982 struct table_elt *src_elt;
3983 /* Hash value for the SET_SRC. */
3984 unsigned src_hash;
3985 /* Hash value for the SET_DEST. */
3986 unsigned dest_hash;
3987 /* The SET_DEST, with SUBREG, etc., stripped. */
3988 rtx inner_dest;
3989 /* Nonzero if the SET_SRC is in memory. */
3990 char src_in_memory;
3991 /* Nonzero if the SET_SRC contains something
3992 whose value cannot be predicted and understood. */
3993 char src_volatile;
3994 /* Original machine mode, in case it becomes a CONST_INT.
3995 The size of this field should match the size of the mode
3996 field of struct rtx_def (see rtl.h). */
3997 ENUM_BITFIELD(machine_mode) mode : 8;
3998 /* A constant equivalent for SET_SRC, if any. */
3999 rtx src_const;
4000 /* Original SET_SRC value used for libcall notes. */
4001 rtx orig_src;
4002 /* Hash value of constant equivalent for SET_SRC. */
4003 unsigned src_const_hash;
4004 /* Table entry for constant equivalent for SET_SRC, if any. */
4005 struct table_elt *src_const_elt;
4006 /* Table entry for the destination address. */
4007 struct table_elt *dest_addr_elt;
4008 };
4009
4010 static void
4011 cse_insn (rtx insn, rtx libcall_insn)
4012 {
4013 rtx x = PATTERN (insn);
4014 int i;
4015 rtx tem;
4016 int n_sets = 0;
4017
4018 rtx src_eqv = 0;
4019 struct table_elt *src_eqv_elt = 0;
4020 int src_eqv_volatile = 0;
4021 int src_eqv_in_memory = 0;
4022 unsigned src_eqv_hash = 0;
4023
4024 struct set *sets = (struct set *) 0;
4025
4026 this_insn = insn;
4027 #ifdef HAVE_cc0
4028 /* Records what this insn does to set CC0. */
4029 this_insn_cc0 = 0;
4030 this_insn_cc0_mode = VOIDmode;
4031 #endif
4032
4033 /* Find all the SETs and CLOBBERs in this instruction.
4034 Record all the SETs in the array `set' and count them.
4035 Also determine whether there is a CLOBBER that invalidates
4036 all memory references, or all references at varying addresses. */
4037
4038 if (CALL_P (insn))
4039 {
4040 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4041 {
4042 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4043 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4044 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4045 }
4046 }
4047
4048 if (GET_CODE (x) == SET)
4049 {
4050 sets = alloca (sizeof (struct set));
4051 sets[0].rtl = x;
4052
4053 /* Ignore SETs that are unconditional jumps.
4054 They never need cse processing, so this does not hurt.
4055 The reason is not efficiency but rather
4056 so that we can test at the end for instructions
4057 that have been simplified to unconditional jumps
4058 and not be misled by unchanged instructions
4059 that were unconditional jumps to begin with. */
4060 if (SET_DEST (x) == pc_rtx
4061 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4062 ;
4063
4064 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4065 The hard function value register is used only once, to copy to
4066 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4067 Ensure we invalidate the destination register. On the 80386 no
4068 other code would invalidate it since it is a fixed_reg.
4069 We need not check the return of apply_change_group; see canon_reg. */
4070
4071 else if (GET_CODE (SET_SRC (x)) == CALL)
4072 {
4073 canon_reg (SET_SRC (x), insn);
4074 apply_change_group ();
4075 fold_rtx (SET_SRC (x), insn);
4076 invalidate (SET_DEST (x), VOIDmode);
4077 }
4078 else
4079 n_sets = 1;
4080 }
4081 else if (GET_CODE (x) == PARALLEL)
4082 {
4083 int lim = XVECLEN (x, 0);
4084
4085 sets = alloca (lim * sizeof (struct set));
4086
4087 /* Find all regs explicitly clobbered in this insn,
4088 and ensure they are not replaced with any other regs
4089 elsewhere in this insn.
4090 When a reg that is clobbered is also used for input,
4091 we should presume that that is for a reason,
4092 and we should not substitute some other register
4093 which is not supposed to be clobbered.
4094 Therefore, this loop cannot be merged into the one below
4095 because a CALL may precede a CLOBBER and refer to the
4096 value clobbered. We must not let a canonicalization do
4097 anything in that case. */
4098 for (i = 0; i < lim; i++)
4099 {
4100 rtx y = XVECEXP (x, 0, i);
4101 if (GET_CODE (y) == CLOBBER)
4102 {
4103 rtx clobbered = XEXP (y, 0);
4104
4105 if (REG_P (clobbered)
4106 || GET_CODE (clobbered) == SUBREG)
4107 invalidate (clobbered, VOIDmode);
4108 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4109 || GET_CODE (clobbered) == ZERO_EXTRACT)
4110 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4111 }
4112 }
4113
4114 for (i = 0; i < lim; i++)
4115 {
4116 rtx y = XVECEXP (x, 0, i);
4117 if (GET_CODE (y) == SET)
4118 {
4119 /* As above, we ignore unconditional jumps and call-insns and
4120 ignore the result of apply_change_group. */
4121 if (GET_CODE (SET_SRC (y)) == CALL)
4122 {
4123 canon_reg (SET_SRC (y), insn);
4124 apply_change_group ();
4125 fold_rtx (SET_SRC (y), insn);
4126 invalidate (SET_DEST (y), VOIDmode);
4127 }
4128 else if (SET_DEST (y) == pc_rtx
4129 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4130 ;
4131 else
4132 sets[n_sets++].rtl = y;
4133 }
4134 else if (GET_CODE (y) == CLOBBER)
4135 {
4136 /* If we clobber memory, canon the address.
4137 This does nothing when a register is clobbered
4138 because we have already invalidated the reg. */
4139 if (MEM_P (XEXP (y, 0)))
4140 canon_reg (XEXP (y, 0), NULL_RTX);
4141 }
4142 else if (GET_CODE (y) == USE
4143 && ! (REG_P (XEXP (y, 0))
4144 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4145 canon_reg (y, NULL_RTX);
4146 else if (GET_CODE (y) == CALL)
4147 {
4148 /* The result of apply_change_group can be ignored; see
4149 canon_reg. */
4150 canon_reg (y, insn);
4151 apply_change_group ();
4152 fold_rtx (y, insn);
4153 }
4154 }
4155 }
4156 else if (GET_CODE (x) == CLOBBER)
4157 {
4158 if (MEM_P (XEXP (x, 0)))
4159 canon_reg (XEXP (x, 0), NULL_RTX);
4160 }
4161
4162 /* Canonicalize a USE of a pseudo register or memory location. */
4163 else if (GET_CODE (x) == USE
4164 && ! (REG_P (XEXP (x, 0))
4165 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4166 canon_reg (XEXP (x, 0), NULL_RTX);
4167 else if (GET_CODE (x) == CALL)
4168 {
4169 /* The result of apply_change_group can be ignored; see canon_reg. */
4170 canon_reg (x, insn);
4171 apply_change_group ();
4172 fold_rtx (x, insn);
4173 }
4174
4175 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4176 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4177 is handled specially for this case, and if it isn't set, then there will
4178 be no equivalence for the destination. */
4179 if (n_sets == 1 && REG_NOTES (insn) != 0
4180 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4181 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4182 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4183 {
4184 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4185 XEXP (tem, 0) = src_eqv;
4186 }
4187
4188 /* Canonicalize sources and addresses of destinations.
4189 We do this in a separate pass to avoid problems when a MATCH_DUP is
4190 present in the insn pattern. In that case, we want to ensure that
4191 we don't break the duplicate nature of the pattern. So we will replace
4192 both operands at the same time. Otherwise, we would fail to find an
4193 equivalent substitution in the loop calling validate_change below.
4194
4195 We used to suppress canonicalization of DEST if it appears in SRC,
4196 but we don't do this any more. */
4197
4198 for (i = 0; i < n_sets; i++)
4199 {
4200 rtx dest = SET_DEST (sets[i].rtl);
4201 rtx src = SET_SRC (sets[i].rtl);
4202 rtx new = canon_reg (src, insn);
4203
4204 sets[i].orig_src = src;
4205 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4206
4207 if (GET_CODE (dest) == ZERO_EXTRACT)
4208 {
4209 validate_change (insn, &XEXP (dest, 1),
4210 canon_reg (XEXP (dest, 1), insn), 1);
4211 validate_change (insn, &XEXP (dest, 2),
4212 canon_reg (XEXP (dest, 2), insn), 1);
4213 }
4214
4215 while (GET_CODE (dest) == SUBREG
4216 || GET_CODE (dest) == ZERO_EXTRACT
4217 || GET_CODE (dest) == STRICT_LOW_PART)
4218 dest = XEXP (dest, 0);
4219
4220 if (MEM_P (dest))
4221 canon_reg (dest, insn);
4222 }
4223
4224 /* Now that we have done all the replacements, we can apply the change
4225 group and see if they all work. Note that this will cause some
4226 canonicalizations that would have worked individually not to be applied
4227 because some other canonicalization didn't work, but this should not
4228 occur often.
4229
4230 The result of apply_change_group can be ignored; see canon_reg. */
4231
4232 apply_change_group ();
4233
4234 /* Set sets[i].src_elt to the class each source belongs to.
4235 Detect assignments from or to volatile things
4236 and set set[i] to zero so they will be ignored
4237 in the rest of this function.
4238
4239 Nothing in this loop changes the hash table or the register chains. */
4240
4241 for (i = 0; i < n_sets; i++)
4242 {
4243 rtx src, dest;
4244 rtx src_folded;
4245 struct table_elt *elt = 0, *p;
4246 enum machine_mode mode;
4247 rtx src_eqv_here;
4248 rtx src_const = 0;
4249 rtx src_related = 0;
4250 struct table_elt *src_const_elt = 0;
4251 int src_cost = MAX_COST;
4252 int src_eqv_cost = MAX_COST;
4253 int src_folded_cost = MAX_COST;
4254 int src_related_cost = MAX_COST;
4255 int src_elt_cost = MAX_COST;
4256 int src_regcost = MAX_COST;
4257 int src_eqv_regcost = MAX_COST;
4258 int src_folded_regcost = MAX_COST;
4259 int src_related_regcost = MAX_COST;
4260 int src_elt_regcost = MAX_COST;
4261 /* Set nonzero if we need to call force_const_mem on with the
4262 contents of src_folded before using it. */
4263 int src_folded_force_flag = 0;
4264
4265 dest = SET_DEST (sets[i].rtl);
4266 src = SET_SRC (sets[i].rtl);
4267
4268 /* If SRC is a constant that has no machine mode,
4269 hash it with the destination's machine mode.
4270 This way we can keep different modes separate. */
4271
4272 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4273 sets[i].mode = mode;
4274
4275 if (src_eqv)
4276 {
4277 enum machine_mode eqvmode = mode;
4278 if (GET_CODE (dest) == STRICT_LOW_PART)
4279 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4280 do_not_record = 0;
4281 hash_arg_in_memory = 0;
4282 src_eqv_hash = HASH (src_eqv, eqvmode);
4283
4284 /* Find the equivalence class for the equivalent expression. */
4285
4286 if (!do_not_record)
4287 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4288
4289 src_eqv_volatile = do_not_record;
4290 src_eqv_in_memory = hash_arg_in_memory;
4291 }
4292
4293 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4294 value of the INNER register, not the destination. So it is not
4295 a valid substitution for the source. But save it for later. */
4296 if (GET_CODE (dest) == STRICT_LOW_PART)
4297 src_eqv_here = 0;
4298 else
4299 src_eqv_here = src_eqv;
4300
4301 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4302 simplified result, which may not necessarily be valid. */
4303 src_folded = fold_rtx (src, insn);
4304
4305 #if 0
4306 /* ??? This caused bad code to be generated for the m68k port with -O2.
4307 Suppose src is (CONST_INT -1), and that after truncation src_folded
4308 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4309 At the end we will add src and src_const to the same equivalence
4310 class. We now have 3 and -1 on the same equivalence class. This
4311 causes later instructions to be mis-optimized. */
4312 /* If storing a constant in a bitfield, pre-truncate the constant
4313 so we will be able to record it later. */
4314 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4315 {
4316 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4317
4318 if (GET_CODE (src) == CONST_INT
4319 && GET_CODE (width) == CONST_INT
4320 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4321 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4322 src_folded
4323 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4324 << INTVAL (width)) - 1));
4325 }
4326 #endif
4327
4328 /* Compute SRC's hash code, and also notice if it
4329 should not be recorded at all. In that case,
4330 prevent any further processing of this assignment. */
4331 do_not_record = 0;
4332 hash_arg_in_memory = 0;
4333
4334 sets[i].src = src;
4335 sets[i].src_hash = HASH (src, mode);
4336 sets[i].src_volatile = do_not_record;
4337 sets[i].src_in_memory = hash_arg_in_memory;
4338
4339 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4340 a pseudo, do not record SRC. Using SRC as a replacement for
4341 anything else will be incorrect in that situation. Note that
4342 this usually occurs only for stack slots, in which case all the
4343 RTL would be referring to SRC, so we don't lose any optimization
4344 opportunities by not having SRC in the hash table. */
4345
4346 if (MEM_P (src)
4347 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4348 && REG_P (dest)
4349 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4350 sets[i].src_volatile = 1;
4351
4352 #if 0
4353 /* It is no longer clear why we used to do this, but it doesn't
4354 appear to still be needed. So let's try without it since this
4355 code hurts cse'ing widened ops. */
4356 /* If source is a paradoxical subreg (such as QI treated as an SI),
4357 treat it as volatile. It may do the work of an SI in one context
4358 where the extra bits are not being used, but cannot replace an SI
4359 in general. */
4360 if (GET_CODE (src) == SUBREG
4361 && (GET_MODE_SIZE (GET_MODE (src))
4362 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4363 sets[i].src_volatile = 1;
4364 #endif
4365
4366 /* Locate all possible equivalent forms for SRC. Try to replace
4367 SRC in the insn with each cheaper equivalent.
4368
4369 We have the following types of equivalents: SRC itself, a folded
4370 version, a value given in a REG_EQUAL note, or a value related
4371 to a constant.
4372
4373 Each of these equivalents may be part of an additional class
4374 of equivalents (if more than one is in the table, they must be in
4375 the same class; we check for this).
4376
4377 If the source is volatile, we don't do any table lookups.
4378
4379 We note any constant equivalent for possible later use in a
4380 REG_NOTE. */
4381
4382 if (!sets[i].src_volatile)
4383 elt = lookup (src, sets[i].src_hash, mode);
4384
4385 sets[i].src_elt = elt;
4386
4387 if (elt && src_eqv_here && src_eqv_elt)
4388 {
4389 if (elt->first_same_value != src_eqv_elt->first_same_value)
4390 {
4391 /* The REG_EQUAL is indicating that two formerly distinct
4392 classes are now equivalent. So merge them. */
4393 merge_equiv_classes (elt, src_eqv_elt);
4394 src_eqv_hash = HASH (src_eqv, elt->mode);
4395 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4396 }
4397
4398 src_eqv_here = 0;
4399 }
4400
4401 else if (src_eqv_elt)
4402 elt = src_eqv_elt;
4403
4404 /* Try to find a constant somewhere and record it in `src_const'.
4405 Record its table element, if any, in `src_const_elt'. Look in
4406 any known equivalences first. (If the constant is not in the
4407 table, also set `sets[i].src_const_hash'). */
4408 if (elt)
4409 for (p = elt->first_same_value; p; p = p->next_same_value)
4410 if (p->is_const)
4411 {
4412 src_const = p->exp;
4413 src_const_elt = elt;
4414 break;
4415 }
4416
4417 if (src_const == 0
4418 && (CONSTANT_P (src_folded)
4419 /* Consider (minus (label_ref L1) (label_ref L2)) as
4420 "constant" here so we will record it. This allows us
4421 to fold switch statements when an ADDR_DIFF_VEC is used. */
4422 || (GET_CODE (src_folded) == MINUS
4423 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4424 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4425 src_const = src_folded, src_const_elt = elt;
4426 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4427 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4428
4429 /* If we don't know if the constant is in the table, get its
4430 hash code and look it up. */
4431 if (src_const && src_const_elt == 0)
4432 {
4433 sets[i].src_const_hash = HASH (src_const, mode);
4434 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4435 }
4436
4437 sets[i].src_const = src_const;
4438 sets[i].src_const_elt = src_const_elt;
4439
4440 /* If the constant and our source are both in the table, mark them as
4441 equivalent. Otherwise, if a constant is in the table but the source
4442 isn't, set ELT to it. */
4443 if (src_const_elt && elt
4444 && src_const_elt->first_same_value != elt->first_same_value)
4445 merge_equiv_classes (elt, src_const_elt);
4446 else if (src_const_elt && elt == 0)
4447 elt = src_const_elt;
4448
4449 /* See if there is a register linearly related to a constant
4450 equivalent of SRC. */
4451 if (src_const
4452 && (GET_CODE (src_const) == CONST
4453 || (src_const_elt && src_const_elt->related_value != 0)))
4454 {
4455 src_related = use_related_value (src_const, src_const_elt);
4456 if (src_related)
4457 {
4458 struct table_elt *src_related_elt
4459 = lookup (src_related, HASH (src_related, mode), mode);
4460 if (src_related_elt && elt)
4461 {
4462 if (elt->first_same_value
4463 != src_related_elt->first_same_value)
4464 /* This can occur when we previously saw a CONST
4465 involving a SYMBOL_REF and then see the SYMBOL_REF
4466 twice. Merge the involved classes. */
4467 merge_equiv_classes (elt, src_related_elt);
4468
4469 src_related = 0;
4470 src_related_elt = 0;
4471 }
4472 else if (src_related_elt && elt == 0)
4473 elt = src_related_elt;
4474 }
4475 }
4476
4477 /* See if we have a CONST_INT that is already in a register in a
4478 wider mode. */
4479
4480 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4481 && GET_MODE_CLASS (mode) == MODE_INT
4482 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4483 {
4484 enum machine_mode wider_mode;
4485
4486 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4487 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4488 && src_related == 0;
4489 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4490 {
4491 struct table_elt *const_elt
4492 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4493
4494 if (const_elt == 0)
4495 continue;
4496
4497 for (const_elt = const_elt->first_same_value;
4498 const_elt; const_elt = const_elt->next_same_value)
4499 if (REG_P (const_elt->exp))
4500 {
4501 src_related = gen_lowpart (mode, const_elt->exp);
4502 break;
4503 }
4504 }
4505 }
4506
4507 /* Another possibility is that we have an AND with a constant in
4508 a mode narrower than a word. If so, it might have been generated
4509 as part of an "if" which would narrow the AND. If we already
4510 have done the AND in a wider mode, we can use a SUBREG of that
4511 value. */
4512
4513 if (flag_expensive_optimizations && ! src_related
4514 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4515 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4516 {
4517 enum machine_mode tmode;
4518 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4519
4520 for (tmode = GET_MODE_WIDER_MODE (mode);
4521 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4522 tmode = GET_MODE_WIDER_MODE (tmode))
4523 {
4524 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4525 struct table_elt *larger_elt;
4526
4527 if (inner)
4528 {
4529 PUT_MODE (new_and, tmode);
4530 XEXP (new_and, 0) = inner;
4531 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4532 if (larger_elt == 0)
4533 continue;
4534
4535 for (larger_elt = larger_elt->first_same_value;
4536 larger_elt; larger_elt = larger_elt->next_same_value)
4537 if (REG_P (larger_elt->exp))
4538 {
4539 src_related
4540 = gen_lowpart (mode, larger_elt->exp);
4541 break;
4542 }
4543
4544 if (src_related)
4545 break;
4546 }
4547 }
4548 }
4549
4550 #ifdef LOAD_EXTEND_OP
4551 /* See if a MEM has already been loaded with a widening operation;
4552 if it has, we can use a subreg of that. Many CISC machines
4553 also have such operations, but this is only likely to be
4554 beneficial on these machines. */
4555
4556 if (flag_expensive_optimizations && src_related == 0
4557 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4558 && GET_MODE_CLASS (mode) == MODE_INT
4559 && MEM_P (src) && ! do_not_record
4560 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4561 {
4562 struct rtx_def memory_extend_buf;
4563 rtx memory_extend_rtx = &memory_extend_buf;
4564 enum machine_mode tmode;
4565
4566 /* Set what we are trying to extend and the operation it might
4567 have been extended with. */
4568 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4569 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4570 XEXP (memory_extend_rtx, 0) = src;
4571
4572 for (tmode = GET_MODE_WIDER_MODE (mode);
4573 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4574 tmode = GET_MODE_WIDER_MODE (tmode))
4575 {
4576 struct table_elt *larger_elt;
4577
4578 PUT_MODE (memory_extend_rtx, tmode);
4579 larger_elt = lookup (memory_extend_rtx,
4580 HASH (memory_extend_rtx, tmode), tmode);
4581 if (larger_elt == 0)
4582 continue;
4583
4584 for (larger_elt = larger_elt->first_same_value;
4585 larger_elt; larger_elt = larger_elt->next_same_value)
4586 if (REG_P (larger_elt->exp))
4587 {
4588 src_related = gen_lowpart (mode, larger_elt->exp);
4589 break;
4590 }
4591
4592 if (src_related)
4593 break;
4594 }
4595 }
4596 #endif /* LOAD_EXTEND_OP */
4597
4598 if (src == src_folded)
4599 src_folded = 0;
4600
4601 /* At this point, ELT, if nonzero, points to a class of expressions
4602 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4603 and SRC_RELATED, if nonzero, each contain additional equivalent
4604 expressions. Prune these latter expressions by deleting expressions
4605 already in the equivalence class.
4606
4607 Check for an equivalent identical to the destination. If found,
4608 this is the preferred equivalent since it will likely lead to
4609 elimination of the insn. Indicate this by placing it in
4610 `src_related'. */
4611
4612 if (elt)
4613 elt = elt->first_same_value;
4614 for (p = elt; p; p = p->next_same_value)
4615 {
4616 enum rtx_code code = GET_CODE (p->exp);
4617
4618 /* If the expression is not valid, ignore it. Then we do not
4619 have to check for validity below. In most cases, we can use
4620 `rtx_equal_p', since canonicalization has already been done. */
4621 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4622 continue;
4623
4624 /* Also skip paradoxical subregs, unless that's what we're
4625 looking for. */
4626 if (code == SUBREG
4627 && (GET_MODE_SIZE (GET_MODE (p->exp))
4628 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4629 && ! (src != 0
4630 && GET_CODE (src) == SUBREG
4631 && GET_MODE (src) == GET_MODE (p->exp)
4632 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4633 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4634 continue;
4635
4636 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4637 src = 0;
4638 else if (src_folded && GET_CODE (src_folded) == code
4639 && rtx_equal_p (src_folded, p->exp))
4640 src_folded = 0;
4641 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4642 && rtx_equal_p (src_eqv_here, p->exp))
4643 src_eqv_here = 0;
4644 else if (src_related && GET_CODE (src_related) == code
4645 && rtx_equal_p (src_related, p->exp))
4646 src_related = 0;
4647
4648 /* This is the same as the destination of the insns, we want
4649 to prefer it. Copy it to src_related. The code below will
4650 then give it a negative cost. */
4651 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4652 src_related = dest;
4653 }
4654
4655 /* Find the cheapest valid equivalent, trying all the available
4656 possibilities. Prefer items not in the hash table to ones
4657 that are when they are equal cost. Note that we can never
4658 worsen an insn as the current contents will also succeed.
4659 If we find an equivalent identical to the destination, use it as best,
4660 since this insn will probably be eliminated in that case. */
4661 if (src)
4662 {
4663 if (rtx_equal_p (src, dest))
4664 src_cost = src_regcost = -1;
4665 else
4666 {
4667 src_cost = COST (src);
4668 src_regcost = approx_reg_cost (src);
4669 }
4670 }
4671
4672 if (src_eqv_here)
4673 {
4674 if (rtx_equal_p (src_eqv_here, dest))
4675 src_eqv_cost = src_eqv_regcost = -1;
4676 else
4677 {
4678 src_eqv_cost = COST (src_eqv_here);
4679 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4680 }
4681 }
4682
4683 if (src_folded)
4684 {
4685 if (rtx_equal_p (src_folded, dest))
4686 src_folded_cost = src_folded_regcost = -1;
4687 else
4688 {
4689 src_folded_cost = COST (src_folded);
4690 src_folded_regcost = approx_reg_cost (src_folded);
4691 }
4692 }
4693
4694 if (src_related)
4695 {
4696 if (rtx_equal_p (src_related, dest))
4697 src_related_cost = src_related_regcost = -1;
4698 else
4699 {
4700 src_related_cost = COST (src_related);
4701 src_related_regcost = approx_reg_cost (src_related);
4702 }
4703 }
4704
4705 /* If this was an indirect jump insn, a known label will really be
4706 cheaper even though it looks more expensive. */
4707 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4708 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4709
4710 /* Terminate loop when replacement made. This must terminate since
4711 the current contents will be tested and will always be valid. */
4712 while (1)
4713 {
4714 rtx trial;
4715
4716 /* Skip invalid entries. */
4717 while (elt && !REG_P (elt->exp)
4718 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4719 elt = elt->next_same_value;
4720
4721 /* A paradoxical subreg would be bad here: it'll be the right
4722 size, but later may be adjusted so that the upper bits aren't
4723 what we want. So reject it. */
4724 if (elt != 0
4725 && GET_CODE (elt->exp) == SUBREG
4726 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4727 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4728 /* It is okay, though, if the rtx we're trying to match
4729 will ignore any of the bits we can't predict. */
4730 && ! (src != 0
4731 && GET_CODE (src) == SUBREG
4732 && GET_MODE (src) == GET_MODE (elt->exp)
4733 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4734 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4735 {
4736 elt = elt->next_same_value;
4737 continue;
4738 }
4739
4740 if (elt)
4741 {
4742 src_elt_cost = elt->cost;
4743 src_elt_regcost = elt->regcost;
4744 }
4745
4746 /* Find cheapest and skip it for the next time. For items
4747 of equal cost, use this order:
4748 src_folded, src, src_eqv, src_related and hash table entry. */
4749 if (src_folded
4750 && preferable (src_folded_cost, src_folded_regcost,
4751 src_cost, src_regcost) <= 0
4752 && preferable (src_folded_cost, src_folded_regcost,
4753 src_eqv_cost, src_eqv_regcost) <= 0
4754 && preferable (src_folded_cost, src_folded_regcost,
4755 src_related_cost, src_related_regcost) <= 0
4756 && preferable (src_folded_cost, src_folded_regcost,
4757 src_elt_cost, src_elt_regcost) <= 0)
4758 {
4759 trial = src_folded, src_folded_cost = MAX_COST;
4760 if (src_folded_force_flag)
4761 {
4762 rtx forced = force_const_mem (mode, trial);
4763 if (forced)
4764 trial = forced;
4765 }
4766 }
4767 else if (src
4768 && preferable (src_cost, src_regcost,
4769 src_eqv_cost, src_eqv_regcost) <= 0
4770 && preferable (src_cost, src_regcost,
4771 src_related_cost, src_related_regcost) <= 0
4772 && preferable (src_cost, src_regcost,
4773 src_elt_cost, src_elt_regcost) <= 0)
4774 trial = src, src_cost = MAX_COST;
4775 else if (src_eqv_here
4776 && preferable (src_eqv_cost, src_eqv_regcost,
4777 src_related_cost, src_related_regcost) <= 0
4778 && preferable (src_eqv_cost, src_eqv_regcost,
4779 src_elt_cost, src_elt_regcost) <= 0)
4780 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
4781 else if (src_related
4782 && preferable (src_related_cost, src_related_regcost,
4783 src_elt_cost, src_elt_regcost) <= 0)
4784 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
4785 else
4786 {
4787 trial = copy_rtx (elt->exp);
4788 elt = elt->next_same_value;
4789 src_elt_cost = MAX_COST;
4790 }
4791
4792 /* We don't normally have an insn matching (set (pc) (pc)), so
4793 check for this separately here. We will delete such an
4794 insn below.
4795
4796 For other cases such as a table jump or conditional jump
4797 where we know the ultimate target, go ahead and replace the
4798 operand. While that may not make a valid insn, we will
4799 reemit the jump below (and also insert any necessary
4800 barriers). */
4801 if (n_sets == 1 && dest == pc_rtx
4802 && (trial == pc_rtx
4803 || (GET_CODE (trial) == LABEL_REF
4804 && ! condjump_p (insn))))
4805 {
4806 /* Don't substitute non-local labels, this confuses CFG. */
4807 if (GET_CODE (trial) == LABEL_REF
4808 && LABEL_REF_NONLOCAL_P (trial))
4809 continue;
4810
4811 SET_SRC (sets[i].rtl) = trial;
4812 cse_jumps_altered = 1;
4813 break;
4814 }
4815
4816 /* Reject certain invalid forms of CONST that we create. */
4817 else if (CONSTANT_P (trial)
4818 && GET_CODE (trial) == CONST
4819 /* Reject cases that will cause decode_rtx_const to
4820 die. On the alpha when simplifying a switch, we
4821 get (const (truncate (minus (label_ref)
4822 (label_ref)))). */
4823 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4824 /* Likewise on IA-64, except without the
4825 truncate. */
4826 || (GET_CODE (XEXP (trial, 0)) == MINUS
4827 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4828 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4829 /* Do nothing for this case. */
4830 ;
4831
4832 /* Look for a substitution that makes a valid insn. */
4833 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
4834 {
4835 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4836
4837 /* If we just made a substitution inside a libcall, then we
4838 need to make the same substitution in any notes attached
4839 to the RETVAL insn. */
4840 if (libcall_insn
4841 && (REG_P (sets[i].orig_src)
4842 || GET_CODE (sets[i].orig_src) == SUBREG
4843 || MEM_P (sets[i].orig_src)))
4844 {
4845 rtx note = find_reg_equal_equiv_note (libcall_insn);
4846 if (note != 0)
4847 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4848 sets[i].orig_src,
4849 copy_rtx (new));
4850 }
4851
4852 /* The result of apply_change_group can be ignored; see
4853 canon_reg. */
4854
4855 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4856 apply_change_group ();
4857
4858 break;
4859 }
4860
4861 /* If we previously found constant pool entries for
4862 constants and this is a constant, try making a
4863 pool entry. Put it in src_folded unless we already have done
4864 this since that is where it likely came from. */
4865
4866 else if (constant_pool_entries_cost
4867 && CONSTANT_P (trial)
4868 && (src_folded == 0
4869 || (!MEM_P (src_folded)
4870 && ! src_folded_force_flag))
4871 && GET_MODE_CLASS (mode) != MODE_CC
4872 && mode != VOIDmode)
4873 {
4874 src_folded_force_flag = 1;
4875 src_folded = trial;
4876 src_folded_cost = constant_pool_entries_cost;
4877 src_folded_regcost = constant_pool_entries_regcost;
4878 }
4879 }
4880
4881 src = SET_SRC (sets[i].rtl);
4882
4883 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4884 However, there is an important exception: If both are registers
4885 that are not the head of their equivalence class, replace SET_SRC
4886 with the head of the class. If we do not do this, we will have
4887 both registers live over a portion of the basic block. This way,
4888 their lifetimes will likely abut instead of overlapping. */
4889 if (REG_P (dest)
4890 && REGNO_QTY_VALID_P (REGNO (dest)))
4891 {
4892 int dest_q = REG_QTY (REGNO (dest));
4893 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4894
4895 if (dest_ent->mode == GET_MODE (dest)
4896 && dest_ent->first_reg != REGNO (dest)
4897 && REG_P (src) && REGNO (src) == REGNO (dest)
4898 /* Don't do this if the original insn had a hard reg as
4899 SET_SRC or SET_DEST. */
4900 && (!REG_P (sets[i].src)
4901 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4902 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4903 /* We can't call canon_reg here because it won't do anything if
4904 SRC is a hard register. */
4905 {
4906 int src_q = REG_QTY (REGNO (src));
4907 struct qty_table_elem *src_ent = &qty_table[src_q];
4908 int first = src_ent->first_reg;
4909 rtx new_src
4910 = (first >= FIRST_PSEUDO_REGISTER
4911 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4912
4913 /* We must use validate-change even for this, because this
4914 might be a special no-op instruction, suitable only to
4915 tag notes onto. */
4916 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4917 {
4918 src = new_src;
4919 /* If we had a constant that is cheaper than what we are now
4920 setting SRC to, use that constant. We ignored it when we
4921 thought we could make this into a no-op. */
4922 if (src_const && COST (src_const) < COST (src)
4923 && validate_change (insn, &SET_SRC (sets[i].rtl),
4924 src_const, 0))
4925 src = src_const;
4926 }
4927 }
4928 }
4929
4930 /* If we made a change, recompute SRC values. */
4931 if (src != sets[i].src)
4932 {
4933 do_not_record = 0;
4934 hash_arg_in_memory = 0;
4935 sets[i].src = src;
4936 sets[i].src_hash = HASH (src, mode);
4937 sets[i].src_volatile = do_not_record;
4938 sets[i].src_in_memory = hash_arg_in_memory;
4939 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4940 }
4941
4942 /* If this is a single SET, we are setting a register, and we have an
4943 equivalent constant, we want to add a REG_NOTE. We don't want
4944 to write a REG_EQUAL note for a constant pseudo since verifying that
4945 that pseudo hasn't been eliminated is a pain. Such a note also
4946 won't help anything.
4947
4948 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4949 which can be created for a reference to a compile time computable
4950 entry in a jump table. */
4951
4952 if (n_sets == 1 && src_const && REG_P (dest)
4953 && !REG_P (src_const)
4954 && ! (GET_CODE (src_const) == CONST
4955 && GET_CODE (XEXP (src_const, 0)) == MINUS
4956 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4957 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4958 {
4959 /* We only want a REG_EQUAL note if src_const != src. */
4960 if (! rtx_equal_p (src, src_const))
4961 {
4962 /* Make sure that the rtx is not shared. */
4963 src_const = copy_rtx (src_const);
4964
4965 /* Record the actual constant value in a REG_EQUAL note,
4966 making a new one if one does not already exist. */
4967 set_unique_reg_note (insn, REG_EQUAL, src_const);
4968 }
4969 }
4970
4971 /* Now deal with the destination. */
4972 do_not_record = 0;
4973
4974 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4975 while (GET_CODE (dest) == SUBREG
4976 || GET_CODE (dest) == ZERO_EXTRACT
4977 || GET_CODE (dest) == STRICT_LOW_PART)
4978 dest = XEXP (dest, 0);
4979
4980 sets[i].inner_dest = dest;
4981
4982 if (MEM_P (dest))
4983 {
4984 #ifdef PUSH_ROUNDING
4985 /* Stack pushes invalidate the stack pointer. */
4986 rtx addr = XEXP (dest, 0);
4987 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
4988 && XEXP (addr, 0) == stack_pointer_rtx)
4989 invalidate (stack_pointer_rtx, VOIDmode);
4990 #endif
4991 dest = fold_rtx (dest, insn);
4992 }
4993
4994 /* Compute the hash code of the destination now,
4995 before the effects of this instruction are recorded,
4996 since the register values used in the address computation
4997 are those before this instruction. */
4998 sets[i].dest_hash = HASH (dest, mode);
4999
5000 /* Don't enter a bit-field in the hash table
5001 because the value in it after the store
5002 may not equal what was stored, due to truncation. */
5003
5004 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5005 {
5006 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5007
5008 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5009 && GET_CODE (width) == CONST_INT
5010 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5011 && ! (INTVAL (src_const)
5012 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5013 /* Exception: if the value is constant,
5014 and it won't be truncated, record it. */
5015 ;
5016 else
5017 {
5018 /* This is chosen so that the destination will be invalidated
5019 but no new value will be recorded.
5020 We must invalidate because sometimes constant
5021 values can be recorded for bitfields. */
5022 sets[i].src_elt = 0;
5023 sets[i].src_volatile = 1;
5024 src_eqv = 0;
5025 src_eqv_elt = 0;
5026 }
5027 }
5028
5029 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5030 the insn. */
5031 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5032 {
5033 /* One less use of the label this insn used to jump to. */
5034 delete_insn_and_edges (insn);
5035 cse_jumps_altered = 1;
5036 /* No more processing for this set. */
5037 sets[i].rtl = 0;
5038 }
5039
5040 /* If this SET is now setting PC to a label, we know it used to
5041 be a conditional or computed branch. */
5042 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5043 && !LABEL_REF_NONLOCAL_P (src))
5044 {
5045 /* Now emit a BARRIER after the unconditional jump. */
5046 if (NEXT_INSN (insn) == 0
5047 || !BARRIER_P (NEXT_INSN (insn)))
5048 emit_barrier_after (insn);
5049
5050 /* We reemit the jump in as many cases as possible just in
5051 case the form of an unconditional jump is significantly
5052 different than a computed jump or conditional jump.
5053
5054 If this insn has multiple sets, then reemitting the
5055 jump is nontrivial. So instead we just force rerecognition
5056 and hope for the best. */
5057 if (n_sets == 1)
5058 {
5059 rtx new, note;
5060
5061 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5062 JUMP_LABEL (new) = XEXP (src, 0);
5063 LABEL_NUSES (XEXP (src, 0))++;
5064
5065 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5066 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5067 if (note)
5068 {
5069 XEXP (note, 1) = NULL_RTX;
5070 REG_NOTES (new) = note;
5071 }
5072
5073 delete_insn_and_edges (insn);
5074 insn = new;
5075
5076 /* Now emit a BARRIER after the unconditional jump. */
5077 if (NEXT_INSN (insn) == 0
5078 || !BARRIER_P (NEXT_INSN (insn)))
5079 emit_barrier_after (insn);
5080 }
5081 else
5082 INSN_CODE (insn) = -1;
5083
5084 /* Do not bother deleting any unreachable code,
5085 let jump/flow do that. */
5086
5087 cse_jumps_altered = 1;
5088 sets[i].rtl = 0;
5089 }
5090
5091 /* If destination is volatile, invalidate it and then do no further
5092 processing for this assignment. */
5093
5094 else if (do_not_record)
5095 {
5096 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5097 invalidate (dest, VOIDmode);
5098 else if (MEM_P (dest))
5099 invalidate (dest, VOIDmode);
5100 else if (GET_CODE (dest) == STRICT_LOW_PART
5101 || GET_CODE (dest) == ZERO_EXTRACT)
5102 invalidate (XEXP (dest, 0), GET_MODE (dest));
5103 sets[i].rtl = 0;
5104 }
5105
5106 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5107 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5108
5109 #ifdef HAVE_cc0
5110 /* If setting CC0, record what it was set to, or a constant, if it
5111 is equivalent to a constant. If it is being set to a floating-point
5112 value, make a COMPARE with the appropriate constant of 0. If we
5113 don't do this, later code can interpret this as a test against
5114 const0_rtx, which can cause problems if we try to put it into an
5115 insn as a floating-point operand. */
5116 if (dest == cc0_rtx)
5117 {
5118 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5119 this_insn_cc0_mode = mode;
5120 if (FLOAT_MODE_P (mode))
5121 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5122 CONST0_RTX (mode));
5123 }
5124 #endif
5125 }
5126
5127 /* Now enter all non-volatile source expressions in the hash table
5128 if they are not already present.
5129 Record their equivalence classes in src_elt.
5130 This way we can insert the corresponding destinations into
5131 the same classes even if the actual sources are no longer in them
5132 (having been invalidated). */
5133
5134 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5135 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5136 {
5137 struct table_elt *elt;
5138 struct table_elt *classp = sets[0].src_elt;
5139 rtx dest = SET_DEST (sets[0].rtl);
5140 enum machine_mode eqvmode = GET_MODE (dest);
5141
5142 if (GET_CODE (dest) == STRICT_LOW_PART)
5143 {
5144 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5145 classp = 0;
5146 }
5147 if (insert_regs (src_eqv, classp, 0))
5148 {
5149 rehash_using_reg (src_eqv);
5150 src_eqv_hash = HASH (src_eqv, eqvmode);
5151 }
5152 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5153 elt->in_memory = src_eqv_in_memory;
5154 src_eqv_elt = elt;
5155
5156 /* Check to see if src_eqv_elt is the same as a set source which
5157 does not yet have an elt, and if so set the elt of the set source
5158 to src_eqv_elt. */
5159 for (i = 0; i < n_sets; i++)
5160 if (sets[i].rtl && sets[i].src_elt == 0
5161 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5162 sets[i].src_elt = src_eqv_elt;
5163 }
5164
5165 for (i = 0; i < n_sets; i++)
5166 if (sets[i].rtl && ! sets[i].src_volatile
5167 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5168 {
5169 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5170 {
5171 /* REG_EQUAL in setting a STRICT_LOW_PART
5172 gives an equivalent for the entire destination register,
5173 not just for the subreg being stored in now.
5174 This is a more interesting equivalence, so we arrange later
5175 to treat the entire reg as the destination. */
5176 sets[i].src_elt = src_eqv_elt;
5177 sets[i].src_hash = src_eqv_hash;
5178 }
5179 else
5180 {
5181 /* Insert source and constant equivalent into hash table, if not
5182 already present. */
5183 struct table_elt *classp = src_eqv_elt;
5184 rtx src = sets[i].src;
5185 rtx dest = SET_DEST (sets[i].rtl);
5186 enum machine_mode mode
5187 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5188
5189 /* It's possible that we have a source value known to be
5190 constant but don't have a REG_EQUAL note on the insn.
5191 Lack of a note will mean src_eqv_elt will be NULL. This
5192 can happen where we've generated a SUBREG to access a
5193 CONST_INT that is already in a register in a wider mode.
5194 Ensure that the source expression is put in the proper
5195 constant class. */
5196 if (!classp)
5197 classp = sets[i].src_const_elt;
5198
5199 if (sets[i].src_elt == 0)
5200 {
5201 /* Don't put a hard register source into the table if this is
5202 the last insn of a libcall. In this case, we only need
5203 to put src_eqv_elt in src_elt. */
5204 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5205 {
5206 struct table_elt *elt;
5207
5208 /* Note that these insert_regs calls cannot remove
5209 any of the src_elt's, because they would have failed to
5210 match if not still valid. */
5211 if (insert_regs (src, classp, 0))
5212 {
5213 rehash_using_reg (src);
5214 sets[i].src_hash = HASH (src, mode);
5215 }
5216 elt = insert (src, classp, sets[i].src_hash, mode);
5217 elt->in_memory = sets[i].src_in_memory;
5218 sets[i].src_elt = classp = elt;
5219 }
5220 else
5221 sets[i].src_elt = classp;
5222 }
5223 if (sets[i].src_const && sets[i].src_const_elt == 0
5224 && src != sets[i].src_const
5225 && ! rtx_equal_p (sets[i].src_const, src))
5226 sets[i].src_elt = insert (sets[i].src_const, classp,
5227 sets[i].src_const_hash, mode);
5228 }
5229 }
5230 else if (sets[i].src_elt == 0)
5231 /* If we did not insert the source into the hash table (e.g., it was
5232 volatile), note the equivalence class for the REG_EQUAL value, if any,
5233 so that the destination goes into that class. */
5234 sets[i].src_elt = src_eqv_elt;
5235
5236 /* Record destination addresses in the hash table. This allows us to
5237 check if they are invalidated by other sets. */
5238 for (i = 0; i < n_sets; i++)
5239 {
5240 if (sets[i].rtl)
5241 {
5242 rtx x = sets[i].inner_dest;
5243 struct table_elt *elt;
5244 enum machine_mode mode;
5245 unsigned hash;
5246
5247 if (MEM_P (x))
5248 {
5249 x = XEXP (x, 0);
5250 mode = GET_MODE (x);
5251 hash = HASH (x, mode);
5252 elt = lookup (x, hash, mode);
5253 if (!elt)
5254 {
5255 if (insert_regs (x, NULL, 0))
5256 {
5257 rehash_using_reg (x);
5258 hash = HASH (x, mode);
5259 }
5260 elt = insert (x, NULL, hash, mode);
5261 }
5262
5263 sets[i].dest_addr_elt = elt;
5264 }
5265 else
5266 sets[i].dest_addr_elt = NULL;
5267 }
5268 }
5269
5270 invalidate_from_clobbers (x);
5271
5272 /* Some registers are invalidated by subroutine calls. Memory is
5273 invalidated by non-constant calls. */
5274
5275 if (CALL_P (insn))
5276 {
5277 if (! CONST_OR_PURE_CALL_P (insn))
5278 invalidate_memory ();
5279 invalidate_for_call ();
5280 }
5281
5282 /* Now invalidate everything set by this instruction.
5283 If a SUBREG or other funny destination is being set,
5284 sets[i].rtl is still nonzero, so here we invalidate the reg
5285 a part of which is being set. */
5286
5287 for (i = 0; i < n_sets; i++)
5288 if (sets[i].rtl)
5289 {
5290 /* We can't use the inner dest, because the mode associated with
5291 a ZERO_EXTRACT is significant. */
5292 rtx dest = SET_DEST (sets[i].rtl);
5293
5294 /* Needed for registers to remove the register from its
5295 previous quantity's chain.
5296 Needed for memory if this is a nonvarying address, unless
5297 we have just done an invalidate_memory that covers even those. */
5298 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5299 invalidate (dest, VOIDmode);
5300 else if (MEM_P (dest))
5301 invalidate (dest, VOIDmode);
5302 else if (GET_CODE (dest) == STRICT_LOW_PART
5303 || GET_CODE (dest) == ZERO_EXTRACT)
5304 invalidate (XEXP (dest, 0), GET_MODE (dest));
5305 }
5306
5307 /* A volatile ASM invalidates everything. */
5308 if (NONJUMP_INSN_P (insn)
5309 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5310 && MEM_VOLATILE_P (PATTERN (insn)))
5311 flush_hash_table ();
5312
5313 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5314 the regs restored by the longjmp come from a later time
5315 than the setjmp. */
5316 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5317 {
5318 flush_hash_table ();
5319 goto done;
5320 }
5321
5322 /* Make sure registers mentioned in destinations
5323 are safe for use in an expression to be inserted.
5324 This removes from the hash table
5325 any invalid entry that refers to one of these registers.
5326
5327 We don't care about the return value from mention_regs because
5328 we are going to hash the SET_DEST values unconditionally. */
5329
5330 for (i = 0; i < n_sets; i++)
5331 {
5332 if (sets[i].rtl)
5333 {
5334 rtx x = SET_DEST (sets[i].rtl);
5335
5336 if (!REG_P (x))
5337 mention_regs (x);
5338 else
5339 {
5340 /* We used to rely on all references to a register becoming
5341 inaccessible when a register changes to a new quantity,
5342 since that changes the hash code. However, that is not
5343 safe, since after HASH_SIZE new quantities we get a
5344 hash 'collision' of a register with its own invalid
5345 entries. And since SUBREGs have been changed not to
5346 change their hash code with the hash code of the register,
5347 it wouldn't work any longer at all. So we have to check
5348 for any invalid references lying around now.
5349 This code is similar to the REG case in mention_regs,
5350 but it knows that reg_tick has been incremented, and
5351 it leaves reg_in_table as -1 . */
5352 unsigned int regno = REGNO (x);
5353 unsigned int endregno
5354 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
5355 : hard_regno_nregs[regno][GET_MODE (x)]);
5356 unsigned int i;
5357
5358 for (i = regno; i < endregno; i++)
5359 {
5360 if (REG_IN_TABLE (i) >= 0)
5361 {
5362 remove_invalid_refs (i);
5363 REG_IN_TABLE (i) = -1;
5364 }
5365 }
5366 }
5367 }
5368 }
5369
5370 /* We may have just removed some of the src_elt's from the hash table.
5371 So replace each one with the current head of the same class.
5372 Also check if destination addresses have been removed. */
5373
5374 for (i = 0; i < n_sets; i++)
5375 if (sets[i].rtl)
5376 {
5377 if (sets[i].dest_addr_elt
5378 && sets[i].dest_addr_elt->first_same_value == 0)
5379 {
5380 /* The elt was removed, which means this destination is not
5381 valid after this instruction. */
5382 sets[i].rtl = NULL_RTX;
5383 }
5384 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5385 /* If elt was removed, find current head of same class,
5386 or 0 if nothing remains of that class. */
5387 {
5388 struct table_elt *elt = sets[i].src_elt;
5389
5390 while (elt && elt->prev_same_value)
5391 elt = elt->prev_same_value;
5392
5393 while (elt && elt->first_same_value == 0)
5394 elt = elt->next_same_value;
5395 sets[i].src_elt = elt ? elt->first_same_value : 0;
5396 }
5397 }
5398
5399 /* Now insert the destinations into their equivalence classes. */
5400
5401 for (i = 0; i < n_sets; i++)
5402 if (sets[i].rtl)
5403 {
5404 rtx dest = SET_DEST (sets[i].rtl);
5405 struct table_elt *elt;
5406
5407 /* Don't record value if we are not supposed to risk allocating
5408 floating-point values in registers that might be wider than
5409 memory. */
5410 if ((flag_float_store
5411 && MEM_P (dest)
5412 && FLOAT_MODE_P (GET_MODE (dest)))
5413 /* Don't record BLKmode values, because we don't know the
5414 size of it, and can't be sure that other BLKmode values
5415 have the same or smaller size. */
5416 || GET_MODE (dest) == BLKmode
5417 /* Don't record values of destinations set inside a libcall block
5418 since we might delete the libcall. Things should have been set
5419 up so we won't want to reuse such a value, but we play it safe
5420 here. */
5421 || libcall_insn
5422 /* If we didn't put a REG_EQUAL value or a source into the hash
5423 table, there is no point is recording DEST. */
5424 || sets[i].src_elt == 0
5425 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5426 or SIGN_EXTEND, don't record DEST since it can cause
5427 some tracking to be wrong.
5428
5429 ??? Think about this more later. */
5430 || (GET_CODE (dest) == SUBREG
5431 && (GET_MODE_SIZE (GET_MODE (dest))
5432 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5433 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5434 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5435 continue;
5436
5437 /* STRICT_LOW_PART isn't part of the value BEING set,
5438 and neither is the SUBREG inside it.
5439 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5440 if (GET_CODE (dest) == STRICT_LOW_PART)
5441 dest = SUBREG_REG (XEXP (dest, 0));
5442
5443 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5444 /* Registers must also be inserted into chains for quantities. */
5445 if (insert_regs (dest, sets[i].src_elt, 1))
5446 {
5447 /* If `insert_regs' changes something, the hash code must be
5448 recalculated. */
5449 rehash_using_reg (dest);
5450 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5451 }
5452
5453 elt = insert (dest, sets[i].src_elt,
5454 sets[i].dest_hash, GET_MODE (dest));
5455
5456 elt->in_memory = (MEM_P (sets[i].inner_dest)
5457 && !MEM_READONLY_P (sets[i].inner_dest));
5458
5459 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5460 narrower than M2, and both M1 and M2 are the same number of words,
5461 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5462 make that equivalence as well.
5463
5464 However, BAR may have equivalences for which gen_lowpart
5465 will produce a simpler value than gen_lowpart applied to
5466 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5467 BAR's equivalences. If we don't get a simplified form, make
5468 the SUBREG. It will not be used in an equivalence, but will
5469 cause two similar assignments to be detected.
5470
5471 Note the loop below will find SUBREG_REG (DEST) since we have
5472 already entered SRC and DEST of the SET in the table. */
5473
5474 if (GET_CODE (dest) == SUBREG
5475 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5476 / UNITS_PER_WORD)
5477 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5478 && (GET_MODE_SIZE (GET_MODE (dest))
5479 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5480 && sets[i].src_elt != 0)
5481 {
5482 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5483 struct table_elt *elt, *classp = 0;
5484
5485 for (elt = sets[i].src_elt->first_same_value; elt;
5486 elt = elt->next_same_value)
5487 {
5488 rtx new_src = 0;
5489 unsigned src_hash;
5490 struct table_elt *src_elt;
5491 int byte = 0;
5492
5493 /* Ignore invalid entries. */
5494 if (!REG_P (elt->exp)
5495 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5496 continue;
5497
5498 /* We may have already been playing subreg games. If the
5499 mode is already correct for the destination, use it. */
5500 if (GET_MODE (elt->exp) == new_mode)
5501 new_src = elt->exp;
5502 else
5503 {
5504 /* Calculate big endian correction for the SUBREG_BYTE.
5505 We have already checked that M1 (GET_MODE (dest))
5506 is not narrower than M2 (new_mode). */
5507 if (BYTES_BIG_ENDIAN)
5508 byte = (GET_MODE_SIZE (GET_MODE (dest))
5509 - GET_MODE_SIZE (new_mode));
5510
5511 new_src = simplify_gen_subreg (new_mode, elt->exp,
5512 GET_MODE (dest), byte);
5513 }
5514
5515 /* The call to simplify_gen_subreg fails if the value
5516 is VOIDmode, yet we can't do any simplification, e.g.
5517 for EXPR_LISTs denoting function call results.
5518 It is invalid to construct a SUBREG with a VOIDmode
5519 SUBREG_REG, hence a zero new_src means we can't do
5520 this substitution. */
5521 if (! new_src)
5522 continue;
5523
5524 src_hash = HASH (new_src, new_mode);
5525 src_elt = lookup (new_src, src_hash, new_mode);
5526
5527 /* Put the new source in the hash table is if isn't
5528 already. */
5529 if (src_elt == 0)
5530 {
5531 if (insert_regs (new_src, classp, 0))
5532 {
5533 rehash_using_reg (new_src);
5534 src_hash = HASH (new_src, new_mode);
5535 }
5536 src_elt = insert (new_src, classp, src_hash, new_mode);
5537 src_elt->in_memory = elt->in_memory;
5538 }
5539 else if (classp && classp != src_elt->first_same_value)
5540 /* Show that two things that we've seen before are
5541 actually the same. */
5542 merge_equiv_classes (src_elt, classp);
5543
5544 classp = src_elt->first_same_value;
5545 /* Ignore invalid entries. */
5546 while (classp
5547 && !REG_P (classp->exp)
5548 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5549 classp = classp->next_same_value;
5550 }
5551 }
5552 }
5553
5554 /* Special handling for (set REG0 REG1) where REG0 is the
5555 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5556 be used in the sequel, so (if easily done) change this insn to
5557 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5558 that computed their value. Then REG1 will become a dead store
5559 and won't cloud the situation for later optimizations.
5560
5561 Do not make this change if REG1 is a hard register, because it will
5562 then be used in the sequel and we may be changing a two-operand insn
5563 into a three-operand insn.
5564
5565 Also do not do this if we are operating on a copy of INSN.
5566
5567 Also don't do this if INSN ends a libcall; this would cause an unrelated
5568 register to be set in the middle of a libcall, and we then get bad code
5569 if the libcall is deleted. */
5570
5571 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5572 && NEXT_INSN (PREV_INSN (insn)) == insn
5573 && REG_P (SET_SRC (sets[0].rtl))
5574 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5575 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5576 {
5577 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5578 struct qty_table_elem *src_ent = &qty_table[src_q];
5579
5580 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5581 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5582 {
5583 /* Scan for the previous nonnote insn, but stop at a basic
5584 block boundary. */
5585 rtx prev = insn;
5586 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5587 do
5588 {
5589 prev = PREV_INSN (prev);
5590 }
5591 while (prev != bb_head && NOTE_P (prev));
5592
5593 /* Do not swap the registers around if the previous instruction
5594 attaches a REG_EQUIV note to REG1.
5595
5596 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5597 from the pseudo that originally shadowed an incoming argument
5598 to another register. Some uses of REG_EQUIV might rely on it
5599 being attached to REG1 rather than REG2.
5600
5601 This section previously turned the REG_EQUIV into a REG_EQUAL
5602 note. We cannot do that because REG_EQUIV may provide an
5603 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5604 if (NONJUMP_INSN_P (prev)
5605 && GET_CODE (PATTERN (prev)) == SET
5606 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5607 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5608 {
5609 rtx dest = SET_DEST (sets[0].rtl);
5610 rtx src = SET_SRC (sets[0].rtl);
5611 rtx note;
5612
5613 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5614 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5615 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5616 apply_change_group ();
5617
5618 /* If INSN has a REG_EQUAL note, and this note mentions
5619 REG0, then we must delete it, because the value in
5620 REG0 has changed. If the note's value is REG1, we must
5621 also delete it because that is now this insn's dest. */
5622 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5623 if (note != 0
5624 && (reg_mentioned_p (dest, XEXP (note, 0))
5625 || rtx_equal_p (src, XEXP (note, 0))))
5626 remove_note (insn, note);
5627 }
5628 }
5629 }
5630
5631 done:;
5632 }
5633 \f
5634 /* Remove from the hash table all expressions that reference memory. */
5635
5636 static void
5637 invalidate_memory (void)
5638 {
5639 int i;
5640 struct table_elt *p, *next;
5641
5642 for (i = 0; i < HASH_SIZE; i++)
5643 for (p = table[i]; p; p = next)
5644 {
5645 next = p->next_same_hash;
5646 if (p->in_memory)
5647 remove_from_table (p, i);
5648 }
5649 }
5650
5651 /* Perform invalidation on the basis of everything about an insn
5652 except for invalidating the actual places that are SET in it.
5653 This includes the places CLOBBERed, and anything that might
5654 alias with something that is SET or CLOBBERed.
5655
5656 X is the pattern of the insn. */
5657
5658 static void
5659 invalidate_from_clobbers (rtx x)
5660 {
5661 if (GET_CODE (x) == CLOBBER)
5662 {
5663 rtx ref = XEXP (x, 0);
5664 if (ref)
5665 {
5666 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5667 || MEM_P (ref))
5668 invalidate (ref, VOIDmode);
5669 else if (GET_CODE (ref) == STRICT_LOW_PART
5670 || GET_CODE (ref) == ZERO_EXTRACT)
5671 invalidate (XEXP (ref, 0), GET_MODE (ref));
5672 }
5673 }
5674 else if (GET_CODE (x) == PARALLEL)
5675 {
5676 int i;
5677 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5678 {
5679 rtx y = XVECEXP (x, 0, i);
5680 if (GET_CODE (y) == CLOBBER)
5681 {
5682 rtx ref = XEXP (y, 0);
5683 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5684 || MEM_P (ref))
5685 invalidate (ref, VOIDmode);
5686 else if (GET_CODE (ref) == STRICT_LOW_PART
5687 || GET_CODE (ref) == ZERO_EXTRACT)
5688 invalidate (XEXP (ref, 0), GET_MODE (ref));
5689 }
5690 }
5691 }
5692 }
5693 \f
5694 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5695 and replace any registers in them with either an equivalent constant
5696 or the canonical form of the register. If we are inside an address,
5697 only do this if the address remains valid.
5698
5699 OBJECT is 0 except when within a MEM in which case it is the MEM.
5700
5701 Return the replacement for X. */
5702
5703 static rtx
5704 cse_process_notes (rtx x, rtx object)
5705 {
5706 enum rtx_code code = GET_CODE (x);
5707 const char *fmt = GET_RTX_FORMAT (code);
5708 int i;
5709
5710 switch (code)
5711 {
5712 case CONST_INT:
5713 case CONST:
5714 case SYMBOL_REF:
5715 case LABEL_REF:
5716 case CONST_DOUBLE:
5717 case CONST_VECTOR:
5718 case PC:
5719 case CC0:
5720 case LO_SUM:
5721 return x;
5722
5723 case MEM:
5724 validate_change (x, &XEXP (x, 0),
5725 cse_process_notes (XEXP (x, 0), x), 0);
5726 return x;
5727
5728 case EXPR_LIST:
5729 case INSN_LIST:
5730 if (REG_NOTE_KIND (x) == REG_EQUAL)
5731 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
5732 if (XEXP (x, 1))
5733 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
5734 return x;
5735
5736 case SIGN_EXTEND:
5737 case ZERO_EXTEND:
5738 case SUBREG:
5739 {
5740 rtx new = cse_process_notes (XEXP (x, 0), object);
5741 /* We don't substitute VOIDmode constants into these rtx,
5742 since they would impede folding. */
5743 if (GET_MODE (new) != VOIDmode)
5744 validate_change (object, &XEXP (x, 0), new, 0);
5745 return x;
5746 }
5747
5748 case REG:
5749 i = REG_QTY (REGNO (x));
5750
5751 /* Return a constant or a constant register. */
5752 if (REGNO_QTY_VALID_P (REGNO (x)))
5753 {
5754 struct qty_table_elem *ent = &qty_table[i];
5755
5756 if (ent->const_rtx != NULL_RTX
5757 && (CONSTANT_P (ent->const_rtx)
5758 || REG_P (ent->const_rtx)))
5759 {
5760 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5761 if (new)
5762 return copy_rtx (new);
5763 }
5764 }
5765
5766 /* Otherwise, canonicalize this register. */
5767 return canon_reg (x, NULL_RTX);
5768
5769 default:
5770 break;
5771 }
5772
5773 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5774 if (fmt[i] == 'e')
5775 validate_change (object, &XEXP (x, i),
5776 cse_process_notes (XEXP (x, i), object), 0);
5777
5778 return x;
5779 }
5780 \f
5781 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5782
5783 DATA is a pointer to a struct cse_basic_block_data, that is used to
5784 describe the path.
5785 It is filled with a queue of basic blocks, starting with FIRST_BB
5786 and following a trace through the CFG.
5787
5788 If all paths starting at FIRST_BB have been followed, or no new path
5789 starting at FIRST_BB can be constructed, this function returns FALSE.
5790 Otherwise, DATA->path is filled and the function returns TRUE indicating
5791 that a path to follow was found.
5792
5793 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5794 block in the path will be FIRST_BB. */
5795
5796 static bool
5797 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5798 int follow_jumps)
5799 {
5800 basic_block bb;
5801 edge e;
5802 int path_size;
5803
5804 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5805
5806 /* See if there is a previous path. */
5807 path_size = data->path_size;
5808
5809 /* There is a previous path. Make sure it started with FIRST_BB. */
5810 if (path_size)
5811 gcc_assert (data->path[0].bb == first_bb);
5812
5813 /* There was only one basic block in the last path. Clear the path and
5814 return, so that paths starting at another basic block can be tried. */
5815 if (path_size == 1)
5816 {
5817 path_size = 0;
5818 goto done;
5819 }
5820
5821 /* If the path was empty from the beginning, construct a new path. */
5822 if (path_size == 0)
5823 data->path[path_size++].bb = first_bb;
5824 else
5825 {
5826 /* Otherwise, path_size must be equal to or greater than 2, because
5827 a previous path exists that is at least two basic blocks long.
5828
5829 Update the previous branch path, if any. If the last branch was
5830 previously along the branch edge, take the fallthrough edge now. */
5831 while (path_size >= 2)
5832 {
5833 basic_block last_bb_in_path, previous_bb_in_path;
5834 edge e;
5835
5836 --path_size;
5837 last_bb_in_path = data->path[path_size].bb;
5838 previous_bb_in_path = data->path[path_size - 1].bb;
5839
5840 /* If we previously followed a path along the branch edge, try
5841 the fallthru edge now. */
5842 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5843 && any_condjump_p (BB_END (previous_bb_in_path))
5844 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5845 && e == BRANCH_EDGE (previous_bb_in_path))
5846 {
5847 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5848 if (bb != EXIT_BLOCK_PTR
5849 && single_pred_p (bb))
5850 {
5851 #if ENABLE_CHECKING
5852 /* We should only see blocks here that we have not
5853 visited yet. */
5854 gcc_assert (!TEST_BIT (cse_visited_basic_blocks, bb->index));
5855 #endif
5856 SET_BIT (cse_visited_basic_blocks, bb->index);
5857 data->path[path_size++].bb = bb;
5858 break;
5859 }
5860 }
5861
5862 data->path[path_size].bb = NULL;
5863 }
5864
5865 /* If only one block remains in the path, bail. */
5866 if (path_size == 1)
5867 {
5868 path_size = 0;
5869 goto done;
5870 }
5871 }
5872
5873 /* Extend the path if possible. */
5874 if (follow_jumps)
5875 {
5876 bb = data->path[path_size - 1].bb;
5877 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5878 {
5879 if (single_succ_p (bb))
5880 e = single_succ_edge (bb);
5881 else if (EDGE_COUNT (bb->succs) == 2
5882 && any_condjump_p (BB_END (bb)))
5883 {
5884 /* First try to follow the branch. If that doesn't lead
5885 to a useful path, follow the fallthru edge. */
5886 e = BRANCH_EDGE (bb);
5887 if (!single_pred_p (e->dest))
5888 e = FALLTHRU_EDGE (bb);
5889 }
5890 else
5891 e = NULL;
5892
5893 if (e && e->dest != EXIT_BLOCK_PTR
5894 && single_pred_p (e->dest))
5895 {
5896 basic_block bb2 = e->dest;
5897
5898 /* We should only see blocks here that we have not
5899 visited yet. */
5900 gcc_assert (!TEST_BIT (cse_visited_basic_blocks, bb2->index));
5901
5902 SET_BIT (cse_visited_basic_blocks, bb2->index);
5903 data->path[path_size++].bb = bb2;
5904 bb = bb2;
5905 }
5906 else
5907 bb = NULL;
5908 }
5909 }
5910
5911 done:
5912 data->path_size = path_size;
5913 return path_size != 0;
5914 }
5915 \f
5916 /* Dump the path in DATA to file F. NSETS is the number of sets
5917 in the path. */
5918
5919 static void
5920 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5921 {
5922 int path_entry;
5923
5924 fprintf (f, ";; Following path with %d sets: ", nsets);
5925 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5926 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5927 fputc ('\n', dump_file);
5928 fflush (f);
5929 }
5930
5931 \f
5932 /* Return true if BB has exception handling successor edges. */
5933
5934 static bool
5935 have_eh_succ_edges (basic_block bb)
5936 {
5937 edge e;
5938 edge_iterator ei;
5939
5940 FOR_EACH_EDGE (e, ei, bb->succs)
5941 if (e->flags & EDGE_EH)
5942 return true;
5943
5944 return false;
5945 }
5946
5947 \f
5948 /* Scan to the end of the path described by DATA. Return an estimate of
5949 the total number of SETs, and the lowest and highest insn CUID, of all
5950 insns in the path. */
5951
5952 static void
5953 cse_prescan_path (struct cse_basic_block_data *data)
5954 {
5955 int nsets = 0;
5956 int low_cuid = -1, high_cuid = -1; /* FIXME low_cuid not computed correctly */
5957 int path_size = data->path_size;
5958 int path_entry;
5959
5960 /* Scan to end of each basic block in the path. */
5961 for (path_entry = 0; path_entry < path_size; path_entry++)
5962 {
5963 basic_block bb;
5964 rtx insn;
5965
5966 bb = data->path[path_entry].bb;
5967
5968 FOR_BB_INSNS (bb, insn)
5969 {
5970 if (!INSN_P (insn))
5971 continue;
5972
5973 /* A PARALLEL can have lots of SETs in it,
5974 especially if it is really an ASM_OPERANDS. */
5975 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5976 nsets += XVECLEN (PATTERN (insn), 0);
5977 else
5978 nsets += 1;
5979
5980 /* Ignore insns made by CSE in a previous traversal of this
5981 basic block. They cannot affect the boundaries of the
5982 basic block.
5983 FIXME: When we only visit each basic block at most once,
5984 this can go away. */
5985 if (INSN_UID (insn) <= max_uid && INSN_CUID (insn) > high_cuid)
5986 high_cuid = INSN_CUID (insn);
5987 if (INSN_UID (insn) <= max_uid && INSN_CUID (insn) < low_cuid)
5988 low_cuid = INSN_CUID (insn);
5989 }
5990 }
5991
5992 data->low_cuid = low_cuid;
5993 data->high_cuid = high_cuid;
5994 data->nsets = nsets;
5995 }
5996 \f
5997 /* Process a single extended basic block described by EBB_DATA. */
5998
5999 static void
6000 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6001 {
6002 int path_size = ebb_data->path_size;
6003 int path_entry;
6004 int num_insns = 0;
6005
6006 /* Allocate the space needed by qty_table. */
6007 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6008
6009 new_basic_block ();
6010 for (path_entry = 0; path_entry < path_size; path_entry++)
6011 {
6012 basic_block bb;
6013 rtx insn;
6014 rtx libcall_insn = NULL_RTX;
6015 int no_conflict = 0;
6016
6017 bb = ebb_data->path[path_entry].bb;
6018 FOR_BB_INSNS (bb, insn)
6019 {
6020 /* If we have processed 1,000 insns, flush the hash table to
6021 avoid extreme quadratic behavior. We must not include NOTEs
6022 in the count since there may be more of them when generating
6023 debugging information. If we clear the table at different
6024 times, code generated with -g -O might be different than code
6025 generated with -O but not -g.
6026
6027 FIXME: This is a real kludge and needs to be done some other
6028 way. */
6029 if (INSN_P (insn)
6030 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6031 {
6032 flush_hash_table ();
6033 num_insns = 0;
6034 }
6035
6036 if (INSN_P (insn))
6037 {
6038 /* Process notes first so we have all notes in canonical forms
6039 when looking for duplicate operations. */
6040 if (REG_NOTES (insn))
6041 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6042 NULL_RTX);
6043
6044 /* Track when we are inside in LIBCALL block. Inside such
6045 a block we do not want to record destinations. The last
6046 insn of a LIBCALL block is not considered to be part of
6047 the block, since its destination is the result of the
6048 block and hence should be recorded. */
6049 if (REG_NOTES (insn) != 0)
6050 {
6051 rtx p;
6052
6053 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6054 libcall_insn = XEXP (p, 0);
6055 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6056 {
6057 /* Keep libcall_insn for the last SET insn of
6058 a no-conflict block to prevent changing the
6059 destination. */
6060 if (!no_conflict)
6061 libcall_insn = NULL_RTX;
6062 else
6063 no_conflict = -1;
6064 }
6065 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6066 no_conflict = 1;
6067 }
6068
6069 cse_insn (insn, libcall_insn);
6070
6071 /* If we kept libcall_insn for a no-conflict bock,
6072 clear it here. */
6073 if (no_conflict == -1)
6074 {
6075 libcall_insn = NULL_RTX;
6076 no_conflict = 0;
6077 }
6078
6079 /* If we haven't already found an insn where we added a LABEL_REF,
6080 check this one. */
6081 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6082 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6083 (void *) insn))
6084 recorded_label_ref = 1;
6085
6086 #ifdef HAVE_cc0
6087 /* If the previous insn set CC0 and this insn no longer
6088 references CC0, delete the previous insn. Here we use
6089 fact that nothing expects CC0 to be valid over an insn,
6090 which is true until the final pass. */
6091 {
6092 rtx prev_insn, tem;
6093
6094 prev_insn = PREV_INSN (insn);
6095 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6096 && (tem = single_set (prev_insn)) != 0
6097 && SET_DEST (tem) == cc0_rtx
6098 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6099 delete_insn (prev_insn);
6100 }
6101
6102 /* If this insn is not the last insn in the basic block,
6103 it will be PREV_INSN(insn) in the next iteration. If
6104 we recorded any CC0-related information for this insn,
6105 remember it. */
6106 if (insn != BB_END (bb))
6107 {
6108 prev_insn_cc0 = this_insn_cc0;
6109 prev_insn_cc0_mode = this_insn_cc0_mode;
6110 }
6111 #endif
6112 }
6113 }
6114
6115 /* Make sure that libcalls don't span multiple basic blocks. */
6116 gcc_assert (libcall_insn == NULL_RTX);
6117
6118 /* With non-call exceptions, we are not always able to update
6119 the CFG properly inside cse_insn. So clean up possibly
6120 redundant EH edges here. */
6121 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6122 purge_dead_edges (bb);
6123
6124 /* If we changed a conditional jump, we may have terminated
6125 the path we are following. Check that by verifying that
6126 the edge we would take still exists. If the edge does
6127 not exist anymore, purge the remainder of the path.
6128 Note that this will cause us to return to the caller. */
6129 if (path_entry < path_size - 1)
6130 {
6131 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6132 if (!find_edge (bb, next_bb))
6133 {
6134 do
6135 {
6136 path_size--;
6137
6138 /* If we truncate the path, we must also reset the
6139 visited bit on the remaining blocks in the path,
6140 or we will never visit them at all. */
6141 RESET_BIT (cse_visited_basic_blocks,
6142 ebb_data->path[path_size].bb->index);
6143 ebb_data->path[path_size].bb = NULL;
6144 }
6145 while (path_size - 1 != path_entry);
6146 ebb_data->path_size = path_size;
6147 }
6148 }
6149
6150 /* If this is a conditional jump insn, record any known
6151 equivalences due to the condition being tested. */
6152 insn = BB_END (bb);
6153 if (path_entry < path_size - 1
6154 && JUMP_P (insn)
6155 && single_set (insn)
6156 && any_condjump_p (insn))
6157 {
6158 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6159 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6160 record_jump_equiv (insn, taken);
6161 }
6162
6163 #ifdef HAVE_cc0
6164 /* Clear the CC0-tracking related insns, they can't provide
6165 useful information across basic block boundaries. */
6166 prev_insn_cc0 = 0;
6167 #endif
6168 }
6169
6170 gcc_assert (next_qty <= max_qty);
6171
6172 free (qty_table);
6173 }
6174 \f
6175 /* Perform cse on the instructions of a function.
6176 F is the first instruction.
6177 NREGS is one plus the highest pseudo-reg number used in the instruction.
6178
6179 Returns 1 if jump_optimize should be redone due to simplifications
6180 in conditional jump instructions. */
6181
6182 int
6183 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6184 {
6185 struct cse_basic_block_data ebb_data;
6186 basic_block bb;
6187 int *rc_order = XNEWVEC (int, last_basic_block);
6188 int i, n_blocks;
6189
6190 init_cse_reg_info (nregs);
6191
6192 ebb_data.path = XNEWVEC (struct branch_path,
6193 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6194
6195 cse_jumps_altered = 0;
6196 recorded_label_ref = 0;
6197 constant_pool_entries_cost = 0;
6198 constant_pool_entries_regcost = 0;
6199 ebb_data.path_size = 0;
6200 ebb_data.nsets = 0;
6201 rtl_hooks = cse_rtl_hooks;
6202
6203 init_recog ();
6204 init_alias_analysis ();
6205
6206 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6207
6208 /* Set up the table of already visited basic blocks. */
6209 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6210 sbitmap_zero (cse_visited_basic_blocks);
6211
6212 /* Compute the mapping from uids to cuids.
6213 CUIDs are numbers assigned to insns, like uids, except that
6214 that cuids increase monotonically through the code. */
6215 max_uid = get_max_uid ();
6216 uid_cuid = XCNEWVEC (int, max_uid + 1);
6217 i = 0;
6218 FOR_EACH_BB (bb)
6219 {
6220 rtx insn;
6221 FOR_BB_INSNS (bb, insn)
6222 INSN_CUID (insn) = ++i;
6223 }
6224
6225 /* Loop over basic blocks in reverse completion order (RPO),
6226 excluding the ENTRY and EXIT blocks. */
6227 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6228 i = 0;
6229 while (i < n_blocks)
6230 {
6231 /* Find the first block in the RPO queue that we have not yet
6232 processed before. */
6233 do
6234 {
6235 bb = BASIC_BLOCK (rc_order[i++]);
6236 }
6237 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6238 && i < n_blocks);
6239
6240 /* Find all paths starting with BB, and process them. */
6241 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6242 {
6243 /* Pre-scan the path. */
6244 cse_prescan_path (&ebb_data);
6245
6246 /* If this basic block has no sets, skip it. */
6247 if (ebb_data.nsets == 0)
6248 continue;
6249
6250 /* Get a reasonable estimate for the maximum number of qty's
6251 needed for this path. For this, we take the number of sets
6252 and multiply that by MAX_RECOG_OPERANDS. */
6253 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6254 cse_basic_block_start = ebb_data.low_cuid;
6255 cse_basic_block_end = ebb_data.high_cuid;
6256
6257 /* Dump the path we're about to process. */
6258 if (dump_file)
6259 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6260
6261 cse_extended_basic_block (&ebb_data);
6262 }
6263 }
6264
6265 /* Clean up. */
6266 end_alias_analysis ();
6267 free (uid_cuid);
6268 free (reg_eqv_table);
6269 free (ebb_data.path);
6270 sbitmap_free (cse_visited_basic_blocks);
6271 free (rc_order);
6272 rtl_hooks = general_rtl_hooks;
6273
6274 return cse_jumps_altered || recorded_label_ref;
6275 }
6276 \f
6277 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
6278 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
6279
6280 static int
6281 check_for_label_ref (rtx *rtl, void *data)
6282 {
6283 rtx insn = (rtx) data;
6284
6285 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
6286 we must rerun jump since it needs to place the note. If this is a
6287 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
6288 since no REG_LABEL will be added. */
6289 return (GET_CODE (*rtl) == LABEL_REF
6290 && ! LABEL_REF_NONLOCAL_P (*rtl)
6291 && LABEL_P (XEXP (*rtl, 0))
6292 && INSN_UID (XEXP (*rtl, 0)) != 0
6293 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
6294 }
6295 \f
6296 /* Count the number of times registers are used (not set) in X.
6297 COUNTS is an array in which we accumulate the count, INCR is how much
6298 we count each register usage.
6299
6300 Don't count a usage of DEST, which is the SET_DEST of a SET which
6301 contains X in its SET_SRC. This is because such a SET does not
6302 modify the liveness of DEST.
6303 DEST is set to pc_rtx for a trapping insn, which means that we must count
6304 uses of a SET_DEST regardless because the insn can't be deleted here. */
6305
6306 static void
6307 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6308 {
6309 enum rtx_code code;
6310 rtx note;
6311 const char *fmt;
6312 int i, j;
6313
6314 if (x == 0)
6315 return;
6316
6317 switch (code = GET_CODE (x))
6318 {
6319 case REG:
6320 if (x != dest)
6321 counts[REGNO (x)] += incr;
6322 return;
6323
6324 case PC:
6325 case CC0:
6326 case CONST:
6327 case CONST_INT:
6328 case CONST_DOUBLE:
6329 case CONST_VECTOR:
6330 case SYMBOL_REF:
6331 case LABEL_REF:
6332 return;
6333
6334 case CLOBBER:
6335 /* If we are clobbering a MEM, mark any registers inside the address
6336 as being used. */
6337 if (MEM_P (XEXP (x, 0)))
6338 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6339 return;
6340
6341 case SET:
6342 /* Unless we are setting a REG, count everything in SET_DEST. */
6343 if (!REG_P (SET_DEST (x)))
6344 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6345 count_reg_usage (SET_SRC (x), counts,
6346 dest ? dest : SET_DEST (x),
6347 incr);
6348 return;
6349
6350 case CALL_INSN:
6351 case INSN:
6352 case JUMP_INSN:
6353 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6354 this fact by setting DEST to pc_rtx. */
6355 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6356 dest = pc_rtx;
6357 if (code == CALL_INSN)
6358 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6359 count_reg_usage (PATTERN (x), counts, dest, incr);
6360
6361 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6362 use them. */
6363
6364 note = find_reg_equal_equiv_note (x);
6365 if (note)
6366 {
6367 rtx eqv = XEXP (note, 0);
6368
6369 if (GET_CODE (eqv) == EXPR_LIST)
6370 /* This REG_EQUAL note describes the result of a function call.
6371 Process all the arguments. */
6372 do
6373 {
6374 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6375 eqv = XEXP (eqv, 1);
6376 }
6377 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6378 else
6379 count_reg_usage (eqv, counts, dest, incr);
6380 }
6381 return;
6382
6383 case EXPR_LIST:
6384 if (REG_NOTE_KIND (x) == REG_EQUAL
6385 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6386 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6387 involving registers in the address. */
6388 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6389 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6390
6391 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6392 return;
6393
6394 case ASM_OPERANDS:
6395 /* If the asm is volatile, then this insn cannot be deleted,
6396 and so the inputs *must* be live. */
6397 if (MEM_VOLATILE_P (x))
6398 dest = NULL_RTX;
6399 /* Iterate over just the inputs, not the constraints as well. */
6400 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6401 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6402 return;
6403
6404 case INSN_LIST:
6405 gcc_unreachable ();
6406
6407 default:
6408 break;
6409 }
6410
6411 fmt = GET_RTX_FORMAT (code);
6412 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6413 {
6414 if (fmt[i] == 'e')
6415 count_reg_usage (XEXP (x, i), counts, dest, incr);
6416 else if (fmt[i] == 'E')
6417 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6418 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6419 }
6420 }
6421 \f
6422 /* Return true if set is live. */
6423 static bool
6424 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6425 int *counts)
6426 {
6427 #ifdef HAVE_cc0
6428 rtx tem;
6429 #endif
6430
6431 if (set_noop_p (set))
6432 ;
6433
6434 #ifdef HAVE_cc0
6435 else if (GET_CODE (SET_DEST (set)) == CC0
6436 && !side_effects_p (SET_SRC (set))
6437 && ((tem = next_nonnote_insn (insn)) == 0
6438 || !INSN_P (tem)
6439 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6440 return false;
6441 #endif
6442 else if (!REG_P (SET_DEST (set))
6443 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6444 || counts[REGNO (SET_DEST (set))] != 0
6445 || side_effects_p (SET_SRC (set)))
6446 return true;
6447 return false;
6448 }
6449
6450 /* Return true if insn is live. */
6451
6452 static bool
6453 insn_live_p (rtx insn, int *counts)
6454 {
6455 int i;
6456 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6457 return true;
6458 else if (GET_CODE (PATTERN (insn)) == SET)
6459 return set_live_p (PATTERN (insn), insn, counts);
6460 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6461 {
6462 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6463 {
6464 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6465
6466 if (GET_CODE (elt) == SET)
6467 {
6468 if (set_live_p (elt, insn, counts))
6469 return true;
6470 }
6471 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6472 return true;
6473 }
6474 return false;
6475 }
6476 else
6477 return true;
6478 }
6479
6480 /* Return true if libcall is dead as a whole. */
6481
6482 static bool
6483 dead_libcall_p (rtx insn, int *counts)
6484 {
6485 rtx note, set, new;
6486
6487 /* See if there's a REG_EQUAL note on this insn and try to
6488 replace the source with the REG_EQUAL expression.
6489
6490 We assume that insns with REG_RETVALs can only be reg->reg
6491 copies at this point. */
6492 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6493 if (!note)
6494 return false;
6495
6496 set = single_set (insn);
6497 if (!set)
6498 return false;
6499
6500 new = simplify_rtx (XEXP (note, 0));
6501 if (!new)
6502 new = XEXP (note, 0);
6503
6504 /* While changing insn, we must update the counts accordingly. */
6505 count_reg_usage (insn, counts, NULL_RTX, -1);
6506
6507 if (validate_change (insn, &SET_SRC (set), new, 0))
6508 {
6509 count_reg_usage (insn, counts, NULL_RTX, 1);
6510 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6511 remove_note (insn, note);
6512 return true;
6513 }
6514
6515 if (CONSTANT_P (new))
6516 {
6517 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6518 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6519 {
6520 count_reg_usage (insn, counts, NULL_RTX, 1);
6521 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6522 remove_note (insn, note);
6523 return true;
6524 }
6525 }
6526
6527 count_reg_usage (insn, counts, NULL_RTX, 1);
6528 return false;
6529 }
6530
6531 /* Scan all the insns and delete any that are dead; i.e., they store a register
6532 that is never used or they copy a register to itself.
6533
6534 This is used to remove insns made obviously dead by cse, loop or other
6535 optimizations. It improves the heuristics in loop since it won't try to
6536 move dead invariants out of loops or make givs for dead quantities. The
6537 remaining passes of the compilation are also sped up. */
6538
6539 int
6540 delete_trivially_dead_insns (rtx insns, int nreg)
6541 {
6542 int *counts;
6543 rtx insn, prev;
6544 int in_libcall = 0, dead_libcall = 0;
6545 int ndead = 0;
6546
6547 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6548 /* First count the number of times each register is used. */
6549 counts = XCNEWVEC (int, nreg);
6550 for (insn = insns; insn; insn = NEXT_INSN (insn))
6551 if (INSN_P (insn))
6552 count_reg_usage (insn, counts, NULL_RTX, 1);
6553
6554 /* Go from the last insn to the first and delete insns that only set unused
6555 registers or copy a register to itself. As we delete an insn, remove
6556 usage counts for registers it uses.
6557
6558 The first jump optimization pass may leave a real insn as the last
6559 insn in the function. We must not skip that insn or we may end
6560 up deleting code that is not really dead. */
6561 for (insn = get_last_insn (); insn; insn = prev)
6562 {
6563 int live_insn = 0;
6564
6565 prev = PREV_INSN (insn);
6566 if (!INSN_P (insn))
6567 continue;
6568
6569 /* Don't delete any insns that are part of a libcall block unless
6570 we can delete the whole libcall block.
6571
6572 Flow or loop might get confused if we did that. Remember
6573 that we are scanning backwards. */
6574 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6575 {
6576 in_libcall = 1;
6577 live_insn = 1;
6578 dead_libcall = dead_libcall_p (insn, counts);
6579 }
6580 else if (in_libcall)
6581 live_insn = ! dead_libcall;
6582 else
6583 live_insn = insn_live_p (insn, counts);
6584
6585 /* If this is a dead insn, delete it and show registers in it aren't
6586 being used. */
6587
6588 if (! live_insn)
6589 {
6590 count_reg_usage (insn, counts, NULL_RTX, -1);
6591 delete_insn_and_edges (insn);
6592 ndead++;
6593 }
6594
6595 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6596 {
6597 in_libcall = 0;
6598 dead_libcall = 0;
6599 }
6600 }
6601
6602 if (dump_file && ndead)
6603 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6604 ndead);
6605 /* Clean up. */
6606 free (counts);
6607 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6608 return ndead;
6609 }
6610
6611 /* This function is called via for_each_rtx. The argument, NEWREG, is
6612 a condition code register with the desired mode. If we are looking
6613 at the same register in a different mode, replace it with
6614 NEWREG. */
6615
6616 static int
6617 cse_change_cc_mode (rtx *loc, void *data)
6618 {
6619 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6620
6621 if (*loc
6622 && REG_P (*loc)
6623 && REGNO (*loc) == REGNO (args->newreg)
6624 && GET_MODE (*loc) != GET_MODE (args->newreg))
6625 {
6626 validate_change (args->insn, loc, args->newreg, 1);
6627
6628 return -1;
6629 }
6630 return 0;
6631 }
6632
6633 /* Change the mode of any reference to the register REGNO (NEWREG) to
6634 GET_MODE (NEWREG) in INSN. */
6635
6636 static void
6637 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6638 {
6639 struct change_cc_mode_args args;
6640 int success;
6641
6642 if (!INSN_P (insn))
6643 return;
6644
6645 args.insn = insn;
6646 args.newreg = newreg;
6647
6648 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6649 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6650
6651 /* If the following assertion was triggered, there is most probably
6652 something wrong with the cc_modes_compatible back end function.
6653 CC modes only can be considered compatible if the insn - with the mode
6654 replaced by any of the compatible modes - can still be recognized. */
6655 success = apply_change_group ();
6656 gcc_assert (success);
6657 }
6658
6659 /* Change the mode of any reference to the register REGNO (NEWREG) to
6660 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6661 any instruction which modifies NEWREG. */
6662
6663 static void
6664 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6665 {
6666 rtx insn;
6667
6668 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6669 {
6670 if (! INSN_P (insn))
6671 continue;
6672
6673 if (reg_set_p (newreg, insn))
6674 return;
6675
6676 cse_change_cc_mode_insn (insn, newreg);
6677 }
6678 }
6679
6680 /* BB is a basic block which finishes with CC_REG as a condition code
6681 register which is set to CC_SRC. Look through the successors of BB
6682 to find blocks which have a single predecessor (i.e., this one),
6683 and look through those blocks for an assignment to CC_REG which is
6684 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6685 permitted to change the mode of CC_SRC to a compatible mode. This
6686 returns VOIDmode if no equivalent assignments were found.
6687 Otherwise it returns the mode which CC_SRC should wind up with.
6688
6689 The main complexity in this function is handling the mode issues.
6690 We may have more than one duplicate which we can eliminate, and we
6691 try to find a mode which will work for multiple duplicates. */
6692
6693 static enum machine_mode
6694 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6695 {
6696 bool found_equiv;
6697 enum machine_mode mode;
6698 unsigned int insn_count;
6699 edge e;
6700 rtx insns[2];
6701 enum machine_mode modes[2];
6702 rtx last_insns[2];
6703 unsigned int i;
6704 rtx newreg;
6705 edge_iterator ei;
6706
6707 /* We expect to have two successors. Look at both before picking
6708 the final mode for the comparison. If we have more successors
6709 (i.e., some sort of table jump, although that seems unlikely),
6710 then we require all beyond the first two to use the same
6711 mode. */
6712
6713 found_equiv = false;
6714 mode = GET_MODE (cc_src);
6715 insn_count = 0;
6716 FOR_EACH_EDGE (e, ei, bb->succs)
6717 {
6718 rtx insn;
6719 rtx end;
6720
6721 if (e->flags & EDGE_COMPLEX)
6722 continue;
6723
6724 if (EDGE_COUNT (e->dest->preds) != 1
6725 || e->dest == EXIT_BLOCK_PTR)
6726 continue;
6727
6728 end = NEXT_INSN (BB_END (e->dest));
6729 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6730 {
6731 rtx set;
6732
6733 if (! INSN_P (insn))
6734 continue;
6735
6736 /* If CC_SRC is modified, we have to stop looking for
6737 something which uses it. */
6738 if (modified_in_p (cc_src, insn))
6739 break;
6740
6741 /* Check whether INSN sets CC_REG to CC_SRC. */
6742 set = single_set (insn);
6743 if (set
6744 && REG_P (SET_DEST (set))
6745 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6746 {
6747 bool found;
6748 enum machine_mode set_mode;
6749 enum machine_mode comp_mode;
6750
6751 found = false;
6752 set_mode = GET_MODE (SET_SRC (set));
6753 comp_mode = set_mode;
6754 if (rtx_equal_p (cc_src, SET_SRC (set)))
6755 found = true;
6756 else if (GET_CODE (cc_src) == COMPARE
6757 && GET_CODE (SET_SRC (set)) == COMPARE
6758 && mode != set_mode
6759 && rtx_equal_p (XEXP (cc_src, 0),
6760 XEXP (SET_SRC (set), 0))
6761 && rtx_equal_p (XEXP (cc_src, 1),
6762 XEXP (SET_SRC (set), 1)))
6763
6764 {
6765 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6766 if (comp_mode != VOIDmode
6767 && (can_change_mode || comp_mode == mode))
6768 found = true;
6769 }
6770
6771 if (found)
6772 {
6773 found_equiv = true;
6774 if (insn_count < ARRAY_SIZE (insns))
6775 {
6776 insns[insn_count] = insn;
6777 modes[insn_count] = set_mode;
6778 last_insns[insn_count] = end;
6779 ++insn_count;
6780
6781 if (mode != comp_mode)
6782 {
6783 gcc_assert (can_change_mode);
6784 mode = comp_mode;
6785
6786 /* The modified insn will be re-recognized later. */
6787 PUT_MODE (cc_src, mode);
6788 }
6789 }
6790 else
6791 {
6792 if (set_mode != mode)
6793 {
6794 /* We found a matching expression in the
6795 wrong mode, but we don't have room to
6796 store it in the array. Punt. This case
6797 should be rare. */
6798 break;
6799 }
6800 /* INSN sets CC_REG to a value equal to CC_SRC
6801 with the right mode. We can simply delete
6802 it. */
6803 delete_insn (insn);
6804 }
6805
6806 /* We found an instruction to delete. Keep looking,
6807 in the hopes of finding a three-way jump. */
6808 continue;
6809 }
6810
6811 /* We found an instruction which sets the condition
6812 code, so don't look any farther. */
6813 break;
6814 }
6815
6816 /* If INSN sets CC_REG in some other way, don't look any
6817 farther. */
6818 if (reg_set_p (cc_reg, insn))
6819 break;
6820 }
6821
6822 /* If we fell off the bottom of the block, we can keep looking
6823 through successors. We pass CAN_CHANGE_MODE as false because
6824 we aren't prepared to handle compatibility between the
6825 further blocks and this block. */
6826 if (insn == end)
6827 {
6828 enum machine_mode submode;
6829
6830 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6831 if (submode != VOIDmode)
6832 {
6833 gcc_assert (submode == mode);
6834 found_equiv = true;
6835 can_change_mode = false;
6836 }
6837 }
6838 }
6839
6840 if (! found_equiv)
6841 return VOIDmode;
6842
6843 /* Now INSN_COUNT is the number of instructions we found which set
6844 CC_REG to a value equivalent to CC_SRC. The instructions are in
6845 INSNS. The modes used by those instructions are in MODES. */
6846
6847 newreg = NULL_RTX;
6848 for (i = 0; i < insn_count; ++i)
6849 {
6850 if (modes[i] != mode)
6851 {
6852 /* We need to change the mode of CC_REG in INSNS[i] and
6853 subsequent instructions. */
6854 if (! newreg)
6855 {
6856 if (GET_MODE (cc_reg) == mode)
6857 newreg = cc_reg;
6858 else
6859 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6860 }
6861 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6862 newreg);
6863 }
6864
6865 delete_insn (insns[i]);
6866 }
6867
6868 return mode;
6869 }
6870
6871 /* If we have a fixed condition code register (or two), walk through
6872 the instructions and try to eliminate duplicate assignments. */
6873
6874 static void
6875 cse_condition_code_reg (void)
6876 {
6877 unsigned int cc_regno_1;
6878 unsigned int cc_regno_2;
6879 rtx cc_reg_1;
6880 rtx cc_reg_2;
6881 basic_block bb;
6882
6883 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6884 return;
6885
6886 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6887 if (cc_regno_2 != INVALID_REGNUM)
6888 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6889 else
6890 cc_reg_2 = NULL_RTX;
6891
6892 FOR_EACH_BB (bb)
6893 {
6894 rtx last_insn;
6895 rtx cc_reg;
6896 rtx insn;
6897 rtx cc_src_insn;
6898 rtx cc_src;
6899 enum machine_mode mode;
6900 enum machine_mode orig_mode;
6901
6902 /* Look for blocks which end with a conditional jump based on a
6903 condition code register. Then look for the instruction which
6904 sets the condition code register. Then look through the
6905 successor blocks for instructions which set the condition
6906 code register to the same value. There are other possible
6907 uses of the condition code register, but these are by far the
6908 most common and the ones which we are most likely to be able
6909 to optimize. */
6910
6911 last_insn = BB_END (bb);
6912 if (!JUMP_P (last_insn))
6913 continue;
6914
6915 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6916 cc_reg = cc_reg_1;
6917 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6918 cc_reg = cc_reg_2;
6919 else
6920 continue;
6921
6922 cc_src_insn = NULL_RTX;
6923 cc_src = NULL_RTX;
6924 for (insn = PREV_INSN (last_insn);
6925 insn && insn != PREV_INSN (BB_HEAD (bb));
6926 insn = PREV_INSN (insn))
6927 {
6928 rtx set;
6929
6930 if (! INSN_P (insn))
6931 continue;
6932 set = single_set (insn);
6933 if (set
6934 && REG_P (SET_DEST (set))
6935 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6936 {
6937 cc_src_insn = insn;
6938 cc_src = SET_SRC (set);
6939 break;
6940 }
6941 else if (reg_set_p (cc_reg, insn))
6942 break;
6943 }
6944
6945 if (! cc_src_insn)
6946 continue;
6947
6948 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6949 continue;
6950
6951 /* Now CC_REG is a condition code register used for a
6952 conditional jump at the end of the block, and CC_SRC, in
6953 CC_SRC_INSN, is the value to which that condition code
6954 register is set, and CC_SRC is still meaningful at the end of
6955 the basic block. */
6956
6957 orig_mode = GET_MODE (cc_src);
6958 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
6959 if (mode != VOIDmode)
6960 {
6961 gcc_assert (mode == GET_MODE (cc_src));
6962 if (mode != orig_mode)
6963 {
6964 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6965
6966 cse_change_cc_mode_insn (cc_src_insn, newreg);
6967
6968 /* Do the same in the following insns that use the
6969 current value of CC_REG within BB. */
6970 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6971 NEXT_INSN (last_insn),
6972 newreg);
6973 }
6974 }
6975 }
6976 }
6977 \f
6978
6979 /* Perform common subexpression elimination. Nonzero value from
6980 `cse_main' means that jumps were simplified and some code may now
6981 be unreachable, so do jump optimization again. */
6982 static bool
6983 gate_handle_cse (void)
6984 {
6985 return optimize > 0;
6986 }
6987
6988 static unsigned int
6989 rest_of_handle_cse (void)
6990 {
6991 int tem;
6992 if (dump_file)
6993 dump_flow_info (dump_file, dump_flags);
6994
6995 reg_scan (get_insns (), max_reg_num ());
6996
6997 tem = cse_main (get_insns (), max_reg_num ());
6998
6999 /* If we are not running more CSE passes, then we are no longer
7000 expecting CSE to be run. But always rerun it in a cheap mode. */
7001 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7002
7003 if (tem)
7004 rebuild_jump_labels (get_insns ());
7005
7006 if (tem || optimize > 1)
7007 cleanup_cfg (CLEANUP_EXPENSIVE);
7008
7009 return 0;
7010 }
7011
7012 struct tree_opt_pass pass_cse =
7013 {
7014 "cse1", /* name */
7015 gate_handle_cse, /* gate */
7016 rest_of_handle_cse, /* execute */
7017 NULL, /* sub */
7018 NULL, /* next */
7019 0, /* static_pass_number */
7020 TV_CSE, /* tv_id */
7021 0, /* properties_required */
7022 0, /* properties_provided */
7023 0, /* properties_destroyed */
7024 0, /* todo_flags_start */
7025 TODO_dump_func |
7026 TODO_ggc_collect |
7027 TODO_verify_flow, /* todo_flags_finish */
7028 's' /* letter */
7029 };
7030
7031
7032 static bool
7033 gate_handle_cse2 (void)
7034 {
7035 return optimize > 0 && flag_rerun_cse_after_loop;
7036 }
7037
7038 /* Run second CSE pass after loop optimizations. */
7039 static unsigned int
7040 rest_of_handle_cse2 (void)
7041 {
7042 int tem;
7043
7044 if (dump_file)
7045 dump_flow_info (dump_file, dump_flags);
7046
7047 tem = cse_main (get_insns (), max_reg_num ());
7048
7049 /* Run a pass to eliminate duplicated assignments to condition code
7050 registers. We have to run this after bypass_jumps, because it
7051 makes it harder for that pass to determine whether a jump can be
7052 bypassed safely. */
7053 cse_condition_code_reg ();
7054
7055 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7056
7057 if (tem)
7058 {
7059 timevar_push (TV_JUMP);
7060 rebuild_jump_labels (get_insns ());
7061 delete_dead_jumptables ();
7062 cleanup_cfg (CLEANUP_EXPENSIVE);
7063 timevar_pop (TV_JUMP);
7064 }
7065 reg_scan (get_insns (), max_reg_num ());
7066 cse_not_expected = 1;
7067 return 0;
7068 }
7069
7070
7071 struct tree_opt_pass pass_cse2 =
7072 {
7073 "cse2", /* name */
7074 gate_handle_cse2, /* gate */
7075 rest_of_handle_cse2, /* execute */
7076 NULL, /* sub */
7077 NULL, /* next */
7078 0, /* static_pass_number */
7079 TV_CSE2, /* tv_id */
7080 0, /* properties_required */
7081 0, /* properties_provided */
7082 0, /* properties_destroyed */
7083 0, /* todo_flags_start */
7084 TODO_dump_func |
7085 TODO_ggc_collect |
7086 TODO_verify_flow, /* todo_flags_finish */
7087 't' /* letter */
7088 };
7089