re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
52
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
58
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
62
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
66
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
75
76 Registers and "quantity numbers":
77
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
85 of as containing.
86
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
90
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
93
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
97
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
101
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
105
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
110
111 Constants and quantity numbers
112
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
116
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
120
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
123 `const_rtx'.
124
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
130
131 Other expressions:
132
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
137 hash codes.
138
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
141
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
146
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
150
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
155
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
163
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
166 must be removed.
167
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
175
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
186
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
193 the register.
194
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
198
199 Related expressions:
200
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
207
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
210
211 static int max_qty;
212
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
215
216 static int next_qty;
217
218 /* Per-qty information tracking.
219
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
222
223 `mode' contains the machine mode of this quantity.
224
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
230
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
242
243 struct qty_table_elem
244 {
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code) comparison_code : 16;
253 ENUM_BITFIELD(machine_mode) mode : 8;
254 };
255
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem *qty_table;
258
259 /* Structure used to pass arguments via for_each_rtx to function
260 cse_change_cc_mode. */
261 struct change_cc_mode_args
262 {
263 rtx insn;
264 rtx newreg;
265 };
266
267 #ifdef HAVE_cc0
268 /* For machines that have a CC0, we do not record its value in the hash
269 table since its use is guaranteed to be the insn immediately following
270 its definition and any other insn is presumed to invalidate it.
271
272 Instead, we store below the value last assigned to CC0. If it should
273 happen to be a constant, it is stored in preference to the actual
274 assigned value. In case it is a constant, we store the mode in which
275 the constant should be interpreted. */
276
277 static rtx prev_insn_cc0;
278 static enum machine_mode prev_insn_cc0_mode;
279
280 /* Previous actual insn. 0 if at first insn of basic block. */
281
282 static rtx prev_insn;
283 #endif
284
285 /* Insn being scanned. */
286
287 static rtx this_insn;
288
289 /* Index by register number, gives the number of the next (or
290 previous) register in the chain of registers sharing the same
291 value.
292
293 Or -1 if this register is at the end of the chain.
294
295 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296
297 /* Per-register equivalence chain. */
298 struct reg_eqv_elem
299 {
300 int next, prev;
301 };
302
303 /* The table of all register equivalence chains. */
304 static struct reg_eqv_elem *reg_eqv_table;
305
306 struct cse_reg_info
307 {
308 /* The timestamp at which this register is initialized. */
309 unsigned int timestamp;
310
311 /* The quantity number of the register's current contents. */
312 int reg_qty;
313
314 /* The number of times the register has been altered in the current
315 basic block. */
316 int reg_tick;
317
318 /* The REG_TICK value at which rtx's containing this register are
319 valid in the hash table. If this does not equal the current
320 reg_tick value, such expressions existing in the hash table are
321 invalid. */
322 int reg_in_table;
323
324 /* The SUBREG that was set when REG_TICK was last incremented. Set
325 to -1 if the last store was to the whole register, not a subreg. */
326 unsigned int subreg_ticked;
327 };
328
329 /* A table of cse_reg_info indexed by register numbers. */
330 static struct cse_reg_info *cse_reg_info_table;
331
332 /* The size of the above table. */
333 static unsigned int cse_reg_info_table_size;
334
335 /* The index of the first entry that has not been initialized. */
336 static unsigned int cse_reg_info_table_first_uninitialized;
337
338 /* The timestamp at the beginning of the current run of
339 cse_basic_block. We increment this variable at the beginning of
340 the current run of cse_basic_block. The timestamp field of a
341 cse_reg_info entry matches the value of this variable if and only
342 if the entry has been initialized during the current run of
343 cse_basic_block. */
344 static unsigned int cse_reg_info_timestamp;
345
346 /* A HARD_REG_SET containing all the hard registers for which there is
347 currently a REG expression in the hash table. Note the difference
348 from the above variables, which indicate if the REG is mentioned in some
349 expression in the table. */
350
351 static HARD_REG_SET hard_regs_in_table;
352
353 /* CUID of insn that starts the basic block currently being cse-processed. */
354
355 static int cse_basic_block_start;
356
357 /* CUID of insn that ends the basic block currently being cse-processed. */
358
359 static int cse_basic_block_end;
360
361 /* Vector mapping INSN_UIDs to cuids.
362 The cuids are like uids but increase monotonically always.
363 We use them to see whether a reg is used outside a given basic block. */
364
365 static int *uid_cuid;
366
367 /* Highest UID in UID_CUID. */
368 static int max_uid;
369
370 /* Get the cuid of an insn. */
371
372 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
373
374 /* Nonzero if this pass has made changes, and therefore it's
375 worthwhile to run the garbage collector. */
376
377 static int cse_altered;
378
379 /* Nonzero if cse has altered conditional jump insns
380 in such a way that jump optimization should be redone. */
381
382 static int cse_jumps_altered;
383
384 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
385 REG_LABEL, we have to rerun jump after CSE to put in the note. */
386 static int recorded_label_ref;
387
388 /* canon_hash stores 1 in do_not_record
389 if it notices a reference to CC0, PC, or some other volatile
390 subexpression. */
391
392 static int do_not_record;
393
394 /* canon_hash stores 1 in hash_arg_in_memory
395 if it notices a reference to memory within the expression being hashed. */
396
397 static int hash_arg_in_memory;
398
399 /* The hash table contains buckets which are chains of `struct table_elt's,
400 each recording one expression's information.
401 That expression is in the `exp' field.
402
403 The canon_exp field contains a canonical (from the point of view of
404 alias analysis) version of the `exp' field.
405
406 Those elements with the same hash code are chained in both directions
407 through the `next_same_hash' and `prev_same_hash' fields.
408
409 Each set of expressions with equivalent values
410 are on a two-way chain through the `next_same_value'
411 and `prev_same_value' fields, and all point with
412 the `first_same_value' field at the first element in
413 that chain. The chain is in order of increasing cost.
414 Each element's cost value is in its `cost' field.
415
416 The `in_memory' field is nonzero for elements that
417 involve any reference to memory. These elements are removed
418 whenever a write is done to an unidentified location in memory.
419 To be safe, we assume that a memory address is unidentified unless
420 the address is either a symbol constant or a constant plus
421 the frame pointer or argument pointer.
422
423 The `related_value' field is used to connect related expressions
424 (that differ by adding an integer).
425 The related expressions are chained in a circular fashion.
426 `related_value' is zero for expressions for which this
427 chain is not useful.
428
429 The `cost' field stores the cost of this element's expression.
430 The `regcost' field stores the value returned by approx_reg_cost for
431 this element's expression.
432
433 The `is_const' flag is set if the element is a constant (including
434 a fixed address).
435
436 The `flag' field is used as a temporary during some search routines.
437
438 The `mode' field is usually the same as GET_MODE (`exp'), but
439 if `exp' is a CONST_INT and has no machine mode then the `mode'
440 field is the mode it was being used as. Each constant is
441 recorded separately for each mode it is used with. */
442
443 struct table_elt
444 {
445 rtx exp;
446 rtx canon_exp;
447 struct table_elt *next_same_hash;
448 struct table_elt *prev_same_hash;
449 struct table_elt *next_same_value;
450 struct table_elt *prev_same_value;
451 struct table_elt *first_same_value;
452 struct table_elt *related_value;
453 int cost;
454 int regcost;
455 /* The size of this field should match the size
456 of the mode field of struct rtx_def (see rtl.h). */
457 ENUM_BITFIELD(machine_mode) mode : 8;
458 char in_memory;
459 char is_const;
460 char flag;
461 };
462
463 /* We don't want a lot of buckets, because we rarely have very many
464 things stored in the hash table, and a lot of buckets slows
465 down a lot of loops that happen frequently. */
466 #define HASH_SHIFT 5
467 #define HASH_SIZE (1 << HASH_SHIFT)
468 #define HASH_MASK (HASH_SIZE - 1)
469
470 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
471 register (hard registers may require `do_not_record' to be set). */
472
473 #define HASH(X, M) \
474 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
475 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
476 : canon_hash (X, M)) & HASH_MASK)
477
478 /* Like HASH, but without side-effects. */
479 #define SAFE_HASH(X, M) \
480 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
481 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
482 : safe_hash (X, M)) & HASH_MASK)
483
484 /* Determine whether register number N is considered a fixed register for the
485 purpose of approximating register costs.
486 It is desirable to replace other regs with fixed regs, to reduce need for
487 non-fixed hard regs.
488 A reg wins if it is either the frame pointer or designated as fixed. */
489 #define FIXED_REGNO_P(N) \
490 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
491 || fixed_regs[N] || global_regs[N])
492
493 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
494 hard registers and pointers into the frame are the cheapest with a cost
495 of 0. Next come pseudos with a cost of one and other hard registers with
496 a cost of 2. Aside from these special cases, call `rtx_cost'. */
497
498 #define CHEAP_REGNO(N) \
499 (REGNO_PTR_FRAME_P(N) \
500 || (HARD_REGISTER_NUM_P (N) \
501 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
502
503 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
504 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
505
506 /* Get the number of times this register has been updated in this
507 basic block. */
508
509 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
510
511 /* Get the point at which REG was recorded in the table. */
512
513 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
514
515 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
516 SUBREG). */
517
518 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
519
520 /* Get the quantity number for REG. */
521
522 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
523
524 /* Determine if the quantity number for register X represents a valid index
525 into the qty_table. */
526
527 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
528
529 static struct table_elt *table[HASH_SIZE];
530
531 /* Chain of `struct table_elt's made so far for this function
532 but currently removed from the table. */
533
534 static struct table_elt *free_element_chain;
535
536 /* Set to the cost of a constant pool reference if one was found for a
537 symbolic constant. If this was found, it means we should try to
538 convert constants into constant pool entries if they don't fit in
539 the insn. */
540
541 static int constant_pool_entries_cost;
542 static int constant_pool_entries_regcost;
543
544 /* This data describes a block that will be processed by cse_basic_block. */
545
546 struct cse_basic_block_data
547 {
548 /* Lowest CUID value of insns in block. */
549 int low_cuid;
550 /* Highest CUID value of insns in block. */
551 int high_cuid;
552 /* Total number of SETs in block. */
553 int nsets;
554 /* Last insn in the block. */
555 rtx last;
556 /* Size of current branch path, if any. */
557 int path_size;
558 /* Current branch path, indicating which branches will be taken. */
559 struct branch_path
560 {
561 /* The branch insn. */
562 rtx branch;
563 /* Whether it should be taken or not. AROUND is the same as taken
564 except that it is used when the destination label is not preceded
565 by a BARRIER. */
566 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
567 } *path;
568 };
569
570 static bool fixed_base_plus_p (rtx x);
571 static int notreg_cost (rtx, enum rtx_code);
572 static int approx_reg_cost_1 (rtx *, void *);
573 static int approx_reg_cost (rtx);
574 static int preferable (int, int, int, int);
575 static void new_basic_block (void);
576 static void make_new_qty (unsigned int, enum machine_mode);
577 static void make_regs_eqv (unsigned int, unsigned int);
578 static void delete_reg_equiv (unsigned int);
579 static int mention_regs (rtx);
580 static int insert_regs (rtx, struct table_elt *, int);
581 static void remove_from_table (struct table_elt *, unsigned);
582 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
583 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
584 static rtx lookup_as_function (rtx, enum rtx_code);
585 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
586 enum machine_mode);
587 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
588 static void invalidate (rtx, enum machine_mode);
589 static int cse_rtx_varies_p (rtx, int);
590 static void remove_invalid_refs (unsigned int);
591 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
592 enum machine_mode);
593 static void rehash_using_reg (rtx);
594 static void invalidate_memory (void);
595 static void invalidate_for_call (void);
596 static rtx use_related_value (rtx, struct table_elt *);
597
598 static inline unsigned canon_hash (rtx, enum machine_mode);
599 static inline unsigned safe_hash (rtx, enum machine_mode);
600 static unsigned hash_rtx_string (const char *);
601
602 static rtx canon_reg (rtx, rtx);
603 static void find_best_addr (rtx, rtx *, enum machine_mode);
604 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
605 enum machine_mode *,
606 enum machine_mode *);
607 static rtx fold_rtx (rtx, rtx);
608 static rtx equiv_constant (rtx);
609 static void record_jump_equiv (rtx, int);
610 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
611 int);
612 static void cse_insn (rtx, rtx);
613 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
614 int, int);
615 static int addr_affects_sp_p (rtx);
616 static void invalidate_from_clobbers (rtx);
617 static rtx cse_process_notes (rtx, rtx);
618 static void invalidate_skipped_set (rtx, rtx, void *);
619 static void invalidate_skipped_block (rtx);
620 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
621 static void count_reg_usage (rtx, int *, rtx, int);
622 static int check_for_label_ref (rtx *, void *);
623 extern void dump_class (struct table_elt*);
624 static void get_cse_reg_info_1 (unsigned int regno);
625 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
626 static int check_dependence (rtx *, void *);
627
628 static void flush_hash_table (void);
629 static bool insn_live_p (rtx, int *);
630 static bool set_live_p (rtx, rtx, int *);
631 static bool dead_libcall_p (rtx, int *);
632 static int cse_change_cc_mode (rtx *, void *);
633 static void cse_change_cc_mode_insn (rtx, rtx);
634 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
635 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
636 \f
637
638 #undef RTL_HOOKS_GEN_LOWPART
639 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
640
641 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
642 \f
643 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
644 virtual regs here because the simplify_*_operation routines are called
645 by integrate.c, which is called before virtual register instantiation. */
646
647 static bool
648 fixed_base_plus_p (rtx x)
649 {
650 switch (GET_CODE (x))
651 {
652 case REG:
653 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
654 return true;
655 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
656 return true;
657 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
658 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
659 return true;
660 return false;
661
662 case PLUS:
663 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
664 return false;
665 return fixed_base_plus_p (XEXP (x, 0));
666
667 default:
668 return false;
669 }
670 }
671
672 /* Dump the expressions in the equivalence class indicated by CLASSP.
673 This function is used only for debugging. */
674 void
675 dump_class (struct table_elt *classp)
676 {
677 struct table_elt *elt;
678
679 fprintf (stderr, "Equivalence chain for ");
680 print_rtl (stderr, classp->exp);
681 fprintf (stderr, ": \n");
682
683 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
684 {
685 print_rtl (stderr, elt->exp);
686 fprintf (stderr, "\n");
687 }
688 }
689
690 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
691
692 static int
693 approx_reg_cost_1 (rtx *xp, void *data)
694 {
695 rtx x = *xp;
696 int *cost_p = data;
697
698 if (x && REG_P (x))
699 {
700 unsigned int regno = REGNO (x);
701
702 if (! CHEAP_REGNO (regno))
703 {
704 if (regno < FIRST_PSEUDO_REGISTER)
705 {
706 if (SMALL_REGISTER_CLASSES)
707 return 1;
708 *cost_p += 2;
709 }
710 else
711 *cost_p += 1;
712 }
713 }
714
715 return 0;
716 }
717
718 /* Return an estimate of the cost of the registers used in an rtx.
719 This is mostly the number of different REG expressions in the rtx;
720 however for some exceptions like fixed registers we use a cost of
721 0. If any other hard register reference occurs, return MAX_COST. */
722
723 static int
724 approx_reg_cost (rtx x)
725 {
726 int cost = 0;
727
728 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
729 return MAX_COST;
730
731 return cost;
732 }
733
734 /* Returns a canonical version of X for the address, from the point of view,
735 that all multiplications are represented as MULT instead of the multiply
736 by a power of 2 being represented as ASHIFT. */
737
738 static rtx
739 canon_for_address (rtx x)
740 {
741 enum rtx_code code;
742 enum machine_mode mode;
743 rtx new = 0;
744 int i;
745 const char *fmt;
746
747 if (!x)
748 return x;
749
750 code = GET_CODE (x);
751 mode = GET_MODE (x);
752
753 switch (code)
754 {
755 case ASHIFT:
756 if (GET_CODE (XEXP (x, 1)) == CONST_INT
757 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
758 && INTVAL (XEXP (x, 1)) >= 0)
759 {
760 new = canon_for_address (XEXP (x, 0));
761 new = gen_rtx_MULT (mode, new,
762 gen_int_mode ((HOST_WIDE_INT) 1
763 << INTVAL (XEXP (x, 1)),
764 mode));
765 }
766 break;
767 default:
768 break;
769
770 }
771 if (new)
772 return new;
773
774 /* Now recursively process each operand of this operation. */
775 fmt = GET_RTX_FORMAT (code);
776 for (i = 0; i < GET_RTX_LENGTH (code); i++)
777 if (fmt[i] == 'e')
778 {
779 new = canon_for_address (XEXP (x, i));
780 XEXP (x, i) = new;
781 }
782 return x;
783 }
784
785 /* Return a negative value if an rtx A, whose costs are given by COST_A
786 and REGCOST_A, is more desirable than an rtx B.
787 Return a positive value if A is less desirable, or 0 if the two are
788 equally good. */
789 static int
790 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
791 {
792 /* First, get rid of cases involving expressions that are entirely
793 unwanted. */
794 if (cost_a != cost_b)
795 {
796 if (cost_a == MAX_COST)
797 return 1;
798 if (cost_b == MAX_COST)
799 return -1;
800 }
801
802 /* Avoid extending lifetimes of hardregs. */
803 if (regcost_a != regcost_b)
804 {
805 if (regcost_a == MAX_COST)
806 return 1;
807 if (regcost_b == MAX_COST)
808 return -1;
809 }
810
811 /* Normal operation costs take precedence. */
812 if (cost_a != cost_b)
813 return cost_a - cost_b;
814 /* Only if these are identical consider effects on register pressure. */
815 if (regcost_a != regcost_b)
816 return regcost_a - regcost_b;
817 return 0;
818 }
819
820 /* Internal function, to compute cost when X is not a register; called
821 from COST macro to keep it simple. */
822
823 static int
824 notreg_cost (rtx x, enum rtx_code outer)
825 {
826 return ((GET_CODE (x) == SUBREG
827 && REG_P (SUBREG_REG (x))
828 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
829 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
830 && (GET_MODE_SIZE (GET_MODE (x))
831 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
832 && subreg_lowpart_p (x)
833 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
834 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
835 ? 0
836 : rtx_cost (x, outer) * 2);
837 }
838
839 \f
840 /* Initialize CSE_REG_INFO_TABLE. */
841
842 static void
843 init_cse_reg_info (unsigned int nregs)
844 {
845 /* Do we need to grow the table? */
846 if (nregs > cse_reg_info_table_size)
847 {
848 unsigned int new_size;
849
850 if (cse_reg_info_table_size < 2048)
851 {
852 /* Compute a new size that is a power of 2 and no smaller
853 than the large of NREGS and 64. */
854 new_size = (cse_reg_info_table_size
855 ? cse_reg_info_table_size : 64);
856
857 while (new_size < nregs)
858 new_size *= 2;
859 }
860 else
861 {
862 /* If we need a big table, allocate just enough to hold
863 NREGS registers. */
864 new_size = nregs;
865 }
866
867 /* Reallocate the table with NEW_SIZE entries. */
868 if (cse_reg_info_table)
869 free (cse_reg_info_table);
870 cse_reg_info_table = xmalloc (sizeof (struct cse_reg_info)
871 * new_size);
872 cse_reg_info_table_size = new_size;
873 cse_reg_info_table_first_uninitialized = 0;
874 }
875
876 /* Do we have all of the first NREGS entries initialized? */
877 if (cse_reg_info_table_first_uninitialized < nregs)
878 {
879 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
880 unsigned int i;
881
882 /* Put the old timestamp on newly allocated entries so that they
883 will all be considered out of date. We do not touch those
884 entries beyond the first NREGS entries to be nice to the
885 virtual memory. */
886 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
887 cse_reg_info_table[i].timestamp = old_timestamp;
888
889 cse_reg_info_table_first_uninitialized = nregs;
890 }
891 }
892
893 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
894
895 static void
896 get_cse_reg_info_1 (unsigned int regno)
897 {
898 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
899 entry will be considered to have been initialized. */
900 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
901
902 /* Initialize the rest of the entry. */
903 cse_reg_info_table[regno].reg_tick = 1;
904 cse_reg_info_table[regno].reg_in_table = -1;
905 cse_reg_info_table[regno].subreg_ticked = -1;
906 cse_reg_info_table[regno].reg_qty = -regno - 1;
907 }
908
909 /* Find a cse_reg_info entry for REGNO. */
910
911 static inline struct cse_reg_info *
912 get_cse_reg_info (unsigned int regno)
913 {
914 struct cse_reg_info *p = &cse_reg_info_table[regno];
915
916 /* If this entry has not been initialized, go ahead and initialize
917 it. */
918 if (p->timestamp != cse_reg_info_timestamp)
919 get_cse_reg_info_1 (regno);
920
921 return p;
922 }
923
924 /* Clear the hash table and initialize each register with its own quantity,
925 for a new basic block. */
926
927 static void
928 new_basic_block (void)
929 {
930 int i;
931
932 next_qty = 0;
933
934 /* Invalidate cse_reg_info_table. */
935 cse_reg_info_timestamp++;
936
937 /* Clear out hash table state for this pass. */
938 CLEAR_HARD_REG_SET (hard_regs_in_table);
939
940 /* The per-quantity values used to be initialized here, but it is
941 much faster to initialize each as it is made in `make_new_qty'. */
942
943 for (i = 0; i < HASH_SIZE; i++)
944 {
945 struct table_elt *first;
946
947 first = table[i];
948 if (first != NULL)
949 {
950 struct table_elt *last = first;
951
952 table[i] = NULL;
953
954 while (last->next_same_hash != NULL)
955 last = last->next_same_hash;
956
957 /* Now relink this hash entire chain into
958 the free element list. */
959
960 last->next_same_hash = free_element_chain;
961 free_element_chain = first;
962 }
963 }
964
965 #ifdef HAVE_cc0
966 prev_insn = 0;
967 prev_insn_cc0 = 0;
968 #endif
969 }
970
971 /* Say that register REG contains a quantity in mode MODE not in any
972 register before and initialize that quantity. */
973
974 static void
975 make_new_qty (unsigned int reg, enum machine_mode mode)
976 {
977 int q;
978 struct qty_table_elem *ent;
979 struct reg_eqv_elem *eqv;
980
981 gcc_assert (next_qty < max_qty);
982
983 q = REG_QTY (reg) = next_qty++;
984 ent = &qty_table[q];
985 ent->first_reg = reg;
986 ent->last_reg = reg;
987 ent->mode = mode;
988 ent->const_rtx = ent->const_insn = NULL_RTX;
989 ent->comparison_code = UNKNOWN;
990
991 eqv = &reg_eqv_table[reg];
992 eqv->next = eqv->prev = -1;
993 }
994
995 /* Make reg NEW equivalent to reg OLD.
996 OLD is not changing; NEW is. */
997
998 static void
999 make_regs_eqv (unsigned int new, unsigned int old)
1000 {
1001 unsigned int lastr, firstr;
1002 int q = REG_QTY (old);
1003 struct qty_table_elem *ent;
1004
1005 ent = &qty_table[q];
1006
1007 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1008 gcc_assert (REGNO_QTY_VALID_P (old));
1009
1010 REG_QTY (new) = q;
1011 firstr = ent->first_reg;
1012 lastr = ent->last_reg;
1013
1014 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1015 hard regs. Among pseudos, if NEW will live longer than any other reg
1016 of the same qty, and that is beyond the current basic block,
1017 make it the new canonical replacement for this qty. */
1018 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1019 /* Certain fixed registers might be of the class NO_REGS. This means
1020 that not only can they not be allocated by the compiler, but
1021 they cannot be used in substitutions or canonicalizations
1022 either. */
1023 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1024 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1025 || (new >= FIRST_PSEUDO_REGISTER
1026 && (firstr < FIRST_PSEUDO_REGISTER
1027 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1028 || (uid_cuid[REGNO_FIRST_UID (new)]
1029 < cse_basic_block_start))
1030 && (uid_cuid[REGNO_LAST_UID (new)]
1031 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1032 {
1033 reg_eqv_table[firstr].prev = new;
1034 reg_eqv_table[new].next = firstr;
1035 reg_eqv_table[new].prev = -1;
1036 ent->first_reg = new;
1037 }
1038 else
1039 {
1040 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1041 Otherwise, insert before any non-fixed hard regs that are at the
1042 end. Registers of class NO_REGS cannot be used as an
1043 equivalent for anything. */
1044 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1045 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1046 && new >= FIRST_PSEUDO_REGISTER)
1047 lastr = reg_eqv_table[lastr].prev;
1048 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1049 if (reg_eqv_table[lastr].next >= 0)
1050 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1051 else
1052 qty_table[q].last_reg = new;
1053 reg_eqv_table[lastr].next = new;
1054 reg_eqv_table[new].prev = lastr;
1055 }
1056 }
1057
1058 /* Remove REG from its equivalence class. */
1059
1060 static void
1061 delete_reg_equiv (unsigned int reg)
1062 {
1063 struct qty_table_elem *ent;
1064 int q = REG_QTY (reg);
1065 int p, n;
1066
1067 /* If invalid, do nothing. */
1068 if (! REGNO_QTY_VALID_P (reg))
1069 return;
1070
1071 ent = &qty_table[q];
1072
1073 p = reg_eqv_table[reg].prev;
1074 n = reg_eqv_table[reg].next;
1075
1076 if (n != -1)
1077 reg_eqv_table[n].prev = p;
1078 else
1079 ent->last_reg = p;
1080 if (p != -1)
1081 reg_eqv_table[p].next = n;
1082 else
1083 ent->first_reg = n;
1084
1085 REG_QTY (reg) = -reg - 1;
1086 }
1087
1088 /* Remove any invalid expressions from the hash table
1089 that refer to any of the registers contained in expression X.
1090
1091 Make sure that newly inserted references to those registers
1092 as subexpressions will be considered valid.
1093
1094 mention_regs is not called when a register itself
1095 is being stored in the table.
1096
1097 Return 1 if we have done something that may have changed the hash code
1098 of X. */
1099
1100 static int
1101 mention_regs (rtx x)
1102 {
1103 enum rtx_code code;
1104 int i, j;
1105 const char *fmt;
1106 int changed = 0;
1107
1108 if (x == 0)
1109 return 0;
1110
1111 code = GET_CODE (x);
1112 if (code == REG)
1113 {
1114 unsigned int regno = REGNO (x);
1115 unsigned int endregno
1116 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1117 : hard_regno_nregs[regno][GET_MODE (x)]);
1118 unsigned int i;
1119
1120 for (i = regno; i < endregno; i++)
1121 {
1122 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1123 remove_invalid_refs (i);
1124
1125 REG_IN_TABLE (i) = REG_TICK (i);
1126 SUBREG_TICKED (i) = -1;
1127 }
1128
1129 return 0;
1130 }
1131
1132 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1133 pseudo if they don't use overlapping words. We handle only pseudos
1134 here for simplicity. */
1135 if (code == SUBREG && REG_P (SUBREG_REG (x))
1136 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1137 {
1138 unsigned int i = REGNO (SUBREG_REG (x));
1139
1140 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1141 {
1142 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1143 the last store to this register really stored into this
1144 subreg, then remove the memory of this subreg.
1145 Otherwise, remove any memory of the entire register and
1146 all its subregs from the table. */
1147 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1148 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1149 remove_invalid_refs (i);
1150 else
1151 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1152 }
1153
1154 REG_IN_TABLE (i) = REG_TICK (i);
1155 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1156 return 0;
1157 }
1158
1159 /* If X is a comparison or a COMPARE and either operand is a register
1160 that does not have a quantity, give it one. This is so that a later
1161 call to record_jump_equiv won't cause X to be assigned a different
1162 hash code and not found in the table after that call.
1163
1164 It is not necessary to do this here, since rehash_using_reg can
1165 fix up the table later, but doing this here eliminates the need to
1166 call that expensive function in the most common case where the only
1167 use of the register is in the comparison. */
1168
1169 if (code == COMPARE || COMPARISON_P (x))
1170 {
1171 if (REG_P (XEXP (x, 0))
1172 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1173 if (insert_regs (XEXP (x, 0), NULL, 0))
1174 {
1175 rehash_using_reg (XEXP (x, 0));
1176 changed = 1;
1177 }
1178
1179 if (REG_P (XEXP (x, 1))
1180 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1181 if (insert_regs (XEXP (x, 1), NULL, 0))
1182 {
1183 rehash_using_reg (XEXP (x, 1));
1184 changed = 1;
1185 }
1186 }
1187
1188 fmt = GET_RTX_FORMAT (code);
1189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1190 if (fmt[i] == 'e')
1191 changed |= mention_regs (XEXP (x, i));
1192 else if (fmt[i] == 'E')
1193 for (j = 0; j < XVECLEN (x, i); j++)
1194 changed |= mention_regs (XVECEXP (x, i, j));
1195
1196 return changed;
1197 }
1198
1199 /* Update the register quantities for inserting X into the hash table
1200 with a value equivalent to CLASSP.
1201 (If the class does not contain a REG, it is irrelevant.)
1202 If MODIFIED is nonzero, X is a destination; it is being modified.
1203 Note that delete_reg_equiv should be called on a register
1204 before insert_regs is done on that register with MODIFIED != 0.
1205
1206 Nonzero value means that elements of reg_qty have changed
1207 so X's hash code may be different. */
1208
1209 static int
1210 insert_regs (rtx x, struct table_elt *classp, int modified)
1211 {
1212 if (REG_P (x))
1213 {
1214 unsigned int regno = REGNO (x);
1215 int qty_valid;
1216
1217 /* If REGNO is in the equivalence table already but is of the
1218 wrong mode for that equivalence, don't do anything here. */
1219
1220 qty_valid = REGNO_QTY_VALID_P (regno);
1221 if (qty_valid)
1222 {
1223 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1224
1225 if (ent->mode != GET_MODE (x))
1226 return 0;
1227 }
1228
1229 if (modified || ! qty_valid)
1230 {
1231 if (classp)
1232 for (classp = classp->first_same_value;
1233 classp != 0;
1234 classp = classp->next_same_value)
1235 if (REG_P (classp->exp)
1236 && GET_MODE (classp->exp) == GET_MODE (x))
1237 {
1238 unsigned c_regno = REGNO (classp->exp);
1239
1240 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1241
1242 /* Suppose that 5 is hard reg and 100 and 101 are
1243 pseudos. Consider
1244
1245 (set (reg:si 100) (reg:si 5))
1246 (set (reg:si 5) (reg:si 100))
1247 (set (reg:di 101) (reg:di 5))
1248
1249 We would now set REG_QTY (101) = REG_QTY (5), but the
1250 entry for 5 is in SImode. When we use this later in
1251 copy propagation, we get the register in wrong mode. */
1252 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1253 continue;
1254
1255 make_regs_eqv (regno, c_regno);
1256 return 1;
1257 }
1258
1259 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1260 than REG_IN_TABLE to find out if there was only a single preceding
1261 invalidation - for the SUBREG - or another one, which would be
1262 for the full register. However, if we find here that REG_TICK
1263 indicates that the register is invalid, it means that it has
1264 been invalidated in a separate operation. The SUBREG might be used
1265 now (then this is a recursive call), or we might use the full REG
1266 now and a SUBREG of it later. So bump up REG_TICK so that
1267 mention_regs will do the right thing. */
1268 if (! modified
1269 && REG_IN_TABLE (regno) >= 0
1270 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1271 REG_TICK (regno)++;
1272 make_new_qty (regno, GET_MODE (x));
1273 return 1;
1274 }
1275
1276 return 0;
1277 }
1278
1279 /* If X is a SUBREG, we will likely be inserting the inner register in the
1280 table. If that register doesn't have an assigned quantity number at
1281 this point but does later, the insertion that we will be doing now will
1282 not be accessible because its hash code will have changed. So assign
1283 a quantity number now. */
1284
1285 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1286 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1287 {
1288 insert_regs (SUBREG_REG (x), NULL, 0);
1289 mention_regs (x);
1290 return 1;
1291 }
1292 else
1293 return mention_regs (x);
1294 }
1295 \f
1296 /* Look in or update the hash table. */
1297
1298 /* Remove table element ELT from use in the table.
1299 HASH is its hash code, made using the HASH macro.
1300 It's an argument because often that is known in advance
1301 and we save much time not recomputing it. */
1302
1303 static void
1304 remove_from_table (struct table_elt *elt, unsigned int hash)
1305 {
1306 if (elt == 0)
1307 return;
1308
1309 /* Mark this element as removed. See cse_insn. */
1310 elt->first_same_value = 0;
1311
1312 /* Remove the table element from its equivalence class. */
1313
1314 {
1315 struct table_elt *prev = elt->prev_same_value;
1316 struct table_elt *next = elt->next_same_value;
1317
1318 if (next)
1319 next->prev_same_value = prev;
1320
1321 if (prev)
1322 prev->next_same_value = next;
1323 else
1324 {
1325 struct table_elt *newfirst = next;
1326 while (next)
1327 {
1328 next->first_same_value = newfirst;
1329 next = next->next_same_value;
1330 }
1331 }
1332 }
1333
1334 /* Remove the table element from its hash bucket. */
1335
1336 {
1337 struct table_elt *prev = elt->prev_same_hash;
1338 struct table_elt *next = elt->next_same_hash;
1339
1340 if (next)
1341 next->prev_same_hash = prev;
1342
1343 if (prev)
1344 prev->next_same_hash = next;
1345 else if (table[hash] == elt)
1346 table[hash] = next;
1347 else
1348 {
1349 /* This entry is not in the proper hash bucket. This can happen
1350 when two classes were merged by `merge_equiv_classes'. Search
1351 for the hash bucket that it heads. This happens only very
1352 rarely, so the cost is acceptable. */
1353 for (hash = 0; hash < HASH_SIZE; hash++)
1354 if (table[hash] == elt)
1355 table[hash] = next;
1356 }
1357 }
1358
1359 /* Remove the table element from its related-value circular chain. */
1360
1361 if (elt->related_value != 0 && elt->related_value != elt)
1362 {
1363 struct table_elt *p = elt->related_value;
1364
1365 while (p->related_value != elt)
1366 p = p->related_value;
1367 p->related_value = elt->related_value;
1368 if (p->related_value == p)
1369 p->related_value = 0;
1370 }
1371
1372 /* Now add it to the free element chain. */
1373 elt->next_same_hash = free_element_chain;
1374 free_element_chain = elt;
1375 }
1376
1377 /* Look up X in the hash table and return its table element,
1378 or 0 if X is not in the table.
1379
1380 MODE is the machine-mode of X, or if X is an integer constant
1381 with VOIDmode then MODE is the mode with which X will be used.
1382
1383 Here we are satisfied to find an expression whose tree structure
1384 looks like X. */
1385
1386 static struct table_elt *
1387 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1388 {
1389 struct table_elt *p;
1390
1391 for (p = table[hash]; p; p = p->next_same_hash)
1392 if (mode == p->mode && ((x == p->exp && REG_P (x))
1393 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1394 return p;
1395
1396 return 0;
1397 }
1398
1399 /* Like `lookup' but don't care whether the table element uses invalid regs.
1400 Also ignore discrepancies in the machine mode of a register. */
1401
1402 static struct table_elt *
1403 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1404 {
1405 struct table_elt *p;
1406
1407 if (REG_P (x))
1408 {
1409 unsigned int regno = REGNO (x);
1410
1411 /* Don't check the machine mode when comparing registers;
1412 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1413 for (p = table[hash]; p; p = p->next_same_hash)
1414 if (REG_P (p->exp)
1415 && REGNO (p->exp) == regno)
1416 return p;
1417 }
1418 else
1419 {
1420 for (p = table[hash]; p; p = p->next_same_hash)
1421 if (mode == p->mode
1422 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1423 return p;
1424 }
1425
1426 return 0;
1427 }
1428
1429 /* Look for an expression equivalent to X and with code CODE.
1430 If one is found, return that expression. */
1431
1432 static rtx
1433 lookup_as_function (rtx x, enum rtx_code code)
1434 {
1435 struct table_elt *p
1436 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1437
1438 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1439 long as we are narrowing. So if we looked in vain for a mode narrower
1440 than word_mode before, look for word_mode now. */
1441 if (p == 0 && code == CONST_INT
1442 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1443 {
1444 x = copy_rtx (x);
1445 PUT_MODE (x, word_mode);
1446 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1447 }
1448
1449 if (p == 0)
1450 return 0;
1451
1452 for (p = p->first_same_value; p; p = p->next_same_value)
1453 if (GET_CODE (p->exp) == code
1454 /* Make sure this is a valid entry in the table. */
1455 && exp_equiv_p (p->exp, p->exp, 1, false))
1456 return p->exp;
1457
1458 return 0;
1459 }
1460
1461 /* Insert X in the hash table, assuming HASH is its hash code
1462 and CLASSP is an element of the class it should go in
1463 (or 0 if a new class should be made).
1464 It is inserted at the proper position to keep the class in
1465 the order cheapest first.
1466
1467 MODE is the machine-mode of X, or if X is an integer constant
1468 with VOIDmode then MODE is the mode with which X will be used.
1469
1470 For elements of equal cheapness, the most recent one
1471 goes in front, except that the first element in the list
1472 remains first unless a cheaper element is added. The order of
1473 pseudo-registers does not matter, as canon_reg will be called to
1474 find the cheapest when a register is retrieved from the table.
1475
1476 The in_memory field in the hash table element is set to 0.
1477 The caller must set it nonzero if appropriate.
1478
1479 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1480 and if insert_regs returns a nonzero value
1481 you must then recompute its hash code before calling here.
1482
1483 If necessary, update table showing constant values of quantities. */
1484
1485 #define CHEAPER(X, Y) \
1486 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1487
1488 static struct table_elt *
1489 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1490 {
1491 struct table_elt *elt;
1492
1493 /* If X is a register and we haven't made a quantity for it,
1494 something is wrong. */
1495 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1496
1497 /* If X is a hard register, show it is being put in the table. */
1498 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1499 {
1500 unsigned int regno = REGNO (x);
1501 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1502 unsigned int i;
1503
1504 for (i = regno; i < endregno; i++)
1505 SET_HARD_REG_BIT (hard_regs_in_table, i);
1506 }
1507
1508 /* Put an element for X into the right hash bucket. */
1509
1510 elt = free_element_chain;
1511 if (elt)
1512 free_element_chain = elt->next_same_hash;
1513 else
1514 elt = xmalloc (sizeof (struct table_elt));
1515
1516 elt->exp = x;
1517 elt->canon_exp = NULL_RTX;
1518 elt->cost = COST (x);
1519 elt->regcost = approx_reg_cost (x);
1520 elt->next_same_value = 0;
1521 elt->prev_same_value = 0;
1522 elt->next_same_hash = table[hash];
1523 elt->prev_same_hash = 0;
1524 elt->related_value = 0;
1525 elt->in_memory = 0;
1526 elt->mode = mode;
1527 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1528
1529 if (table[hash])
1530 table[hash]->prev_same_hash = elt;
1531 table[hash] = elt;
1532
1533 /* Put it into the proper value-class. */
1534 if (classp)
1535 {
1536 classp = classp->first_same_value;
1537 if (CHEAPER (elt, classp))
1538 /* Insert at the head of the class. */
1539 {
1540 struct table_elt *p;
1541 elt->next_same_value = classp;
1542 classp->prev_same_value = elt;
1543 elt->first_same_value = elt;
1544
1545 for (p = classp; p; p = p->next_same_value)
1546 p->first_same_value = elt;
1547 }
1548 else
1549 {
1550 /* Insert not at head of the class. */
1551 /* Put it after the last element cheaper than X. */
1552 struct table_elt *p, *next;
1553
1554 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1555 p = next);
1556
1557 /* Put it after P and before NEXT. */
1558 elt->next_same_value = next;
1559 if (next)
1560 next->prev_same_value = elt;
1561
1562 elt->prev_same_value = p;
1563 p->next_same_value = elt;
1564 elt->first_same_value = classp;
1565 }
1566 }
1567 else
1568 elt->first_same_value = elt;
1569
1570 /* If this is a constant being set equivalent to a register or a register
1571 being set equivalent to a constant, note the constant equivalence.
1572
1573 If this is a constant, it cannot be equivalent to a different constant,
1574 and a constant is the only thing that can be cheaper than a register. So
1575 we know the register is the head of the class (before the constant was
1576 inserted).
1577
1578 If this is a register that is not already known equivalent to a
1579 constant, we must check the entire class.
1580
1581 If this is a register that is already known equivalent to an insn,
1582 update the qtys `const_insn' to show that `this_insn' is the latest
1583 insn making that quantity equivalent to the constant. */
1584
1585 if (elt->is_const && classp && REG_P (classp->exp)
1586 && !REG_P (x))
1587 {
1588 int exp_q = REG_QTY (REGNO (classp->exp));
1589 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1590
1591 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1592 exp_ent->const_insn = this_insn;
1593 }
1594
1595 else if (REG_P (x)
1596 && classp
1597 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1598 && ! elt->is_const)
1599 {
1600 struct table_elt *p;
1601
1602 for (p = classp; p != 0; p = p->next_same_value)
1603 {
1604 if (p->is_const && !REG_P (p->exp))
1605 {
1606 int x_q = REG_QTY (REGNO (x));
1607 struct qty_table_elem *x_ent = &qty_table[x_q];
1608
1609 x_ent->const_rtx
1610 = gen_lowpart (GET_MODE (x), p->exp);
1611 x_ent->const_insn = this_insn;
1612 break;
1613 }
1614 }
1615 }
1616
1617 else if (REG_P (x)
1618 && qty_table[REG_QTY (REGNO (x))].const_rtx
1619 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1620 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1621
1622 /* If this is a constant with symbolic value,
1623 and it has a term with an explicit integer value,
1624 link it up with related expressions. */
1625 if (GET_CODE (x) == CONST)
1626 {
1627 rtx subexp = get_related_value (x);
1628 unsigned subhash;
1629 struct table_elt *subelt, *subelt_prev;
1630
1631 if (subexp != 0)
1632 {
1633 /* Get the integer-free subexpression in the hash table. */
1634 subhash = SAFE_HASH (subexp, mode);
1635 subelt = lookup (subexp, subhash, mode);
1636 if (subelt == 0)
1637 subelt = insert (subexp, NULL, subhash, mode);
1638 /* Initialize SUBELT's circular chain if it has none. */
1639 if (subelt->related_value == 0)
1640 subelt->related_value = subelt;
1641 /* Find the element in the circular chain that precedes SUBELT. */
1642 subelt_prev = subelt;
1643 while (subelt_prev->related_value != subelt)
1644 subelt_prev = subelt_prev->related_value;
1645 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1646 This way the element that follows SUBELT is the oldest one. */
1647 elt->related_value = subelt_prev->related_value;
1648 subelt_prev->related_value = elt;
1649 }
1650 }
1651
1652 return elt;
1653 }
1654 \f
1655 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1656 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1657 the two classes equivalent.
1658
1659 CLASS1 will be the surviving class; CLASS2 should not be used after this
1660 call.
1661
1662 Any invalid entries in CLASS2 will not be copied. */
1663
1664 static void
1665 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1666 {
1667 struct table_elt *elt, *next, *new;
1668
1669 /* Ensure we start with the head of the classes. */
1670 class1 = class1->first_same_value;
1671 class2 = class2->first_same_value;
1672
1673 /* If they were already equal, forget it. */
1674 if (class1 == class2)
1675 return;
1676
1677 for (elt = class2; elt; elt = next)
1678 {
1679 unsigned int hash;
1680 rtx exp = elt->exp;
1681 enum machine_mode mode = elt->mode;
1682
1683 next = elt->next_same_value;
1684
1685 /* Remove old entry, make a new one in CLASS1's class.
1686 Don't do this for invalid entries as we cannot find their
1687 hash code (it also isn't necessary). */
1688 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1689 {
1690 bool need_rehash = false;
1691
1692 hash_arg_in_memory = 0;
1693 hash = HASH (exp, mode);
1694
1695 if (REG_P (exp))
1696 {
1697 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1698 delete_reg_equiv (REGNO (exp));
1699 }
1700
1701 remove_from_table (elt, hash);
1702
1703 if (insert_regs (exp, class1, 0) || need_rehash)
1704 {
1705 rehash_using_reg (exp);
1706 hash = HASH (exp, mode);
1707 }
1708 new = insert (exp, class1, hash, mode);
1709 new->in_memory = hash_arg_in_memory;
1710 }
1711 }
1712 }
1713 \f
1714 /* Flush the entire hash table. */
1715
1716 static void
1717 flush_hash_table (void)
1718 {
1719 int i;
1720 struct table_elt *p;
1721
1722 for (i = 0; i < HASH_SIZE; i++)
1723 for (p = table[i]; p; p = table[i])
1724 {
1725 /* Note that invalidate can remove elements
1726 after P in the current hash chain. */
1727 if (REG_P (p->exp))
1728 invalidate (p->exp, p->mode);
1729 else
1730 remove_from_table (p, i);
1731 }
1732 }
1733 \f
1734 /* Function called for each rtx to check whether true dependence exist. */
1735 struct check_dependence_data
1736 {
1737 enum machine_mode mode;
1738 rtx exp;
1739 rtx addr;
1740 };
1741
1742 static int
1743 check_dependence (rtx *x, void *data)
1744 {
1745 struct check_dependence_data *d = (struct check_dependence_data *) data;
1746 if (*x && MEM_P (*x))
1747 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1748 cse_rtx_varies_p);
1749 else
1750 return 0;
1751 }
1752 \f
1753 /* Remove from the hash table, or mark as invalid, all expressions whose
1754 values could be altered by storing in X. X is a register, a subreg, or
1755 a memory reference with nonvarying address (because, when a memory
1756 reference with a varying address is stored in, all memory references are
1757 removed by invalidate_memory so specific invalidation is superfluous).
1758 FULL_MODE, if not VOIDmode, indicates that this much should be
1759 invalidated instead of just the amount indicated by the mode of X. This
1760 is only used for bitfield stores into memory.
1761
1762 A nonvarying address may be just a register or just a symbol reference,
1763 or it may be either of those plus a numeric offset. */
1764
1765 static void
1766 invalidate (rtx x, enum machine_mode full_mode)
1767 {
1768 int i;
1769 struct table_elt *p;
1770 rtx addr;
1771
1772 switch (GET_CODE (x))
1773 {
1774 case REG:
1775 {
1776 /* If X is a register, dependencies on its contents are recorded
1777 through the qty number mechanism. Just change the qty number of
1778 the register, mark it as invalid for expressions that refer to it,
1779 and remove it itself. */
1780 unsigned int regno = REGNO (x);
1781 unsigned int hash = HASH (x, GET_MODE (x));
1782
1783 /* Remove REGNO from any quantity list it might be on and indicate
1784 that its value might have changed. If it is a pseudo, remove its
1785 entry from the hash table.
1786
1787 For a hard register, we do the first two actions above for any
1788 additional hard registers corresponding to X. Then, if any of these
1789 registers are in the table, we must remove any REG entries that
1790 overlap these registers. */
1791
1792 delete_reg_equiv (regno);
1793 REG_TICK (regno)++;
1794 SUBREG_TICKED (regno) = -1;
1795
1796 if (regno >= FIRST_PSEUDO_REGISTER)
1797 {
1798 /* Because a register can be referenced in more than one mode,
1799 we might have to remove more than one table entry. */
1800 struct table_elt *elt;
1801
1802 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1803 remove_from_table (elt, hash);
1804 }
1805 else
1806 {
1807 HOST_WIDE_INT in_table
1808 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1809 unsigned int endregno
1810 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1811 unsigned int tregno, tendregno, rn;
1812 struct table_elt *p, *next;
1813
1814 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1815
1816 for (rn = regno + 1; rn < endregno; rn++)
1817 {
1818 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1819 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1820 delete_reg_equiv (rn);
1821 REG_TICK (rn)++;
1822 SUBREG_TICKED (rn) = -1;
1823 }
1824
1825 if (in_table)
1826 for (hash = 0; hash < HASH_SIZE; hash++)
1827 for (p = table[hash]; p; p = next)
1828 {
1829 next = p->next_same_hash;
1830
1831 if (!REG_P (p->exp)
1832 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1833 continue;
1834
1835 tregno = REGNO (p->exp);
1836 tendregno
1837 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1838 if (tendregno > regno && tregno < endregno)
1839 remove_from_table (p, hash);
1840 }
1841 }
1842 }
1843 return;
1844
1845 case SUBREG:
1846 invalidate (SUBREG_REG (x), VOIDmode);
1847 return;
1848
1849 case PARALLEL:
1850 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1851 invalidate (XVECEXP (x, 0, i), VOIDmode);
1852 return;
1853
1854 case EXPR_LIST:
1855 /* This is part of a disjoint return value; extract the location in
1856 question ignoring the offset. */
1857 invalidate (XEXP (x, 0), VOIDmode);
1858 return;
1859
1860 case MEM:
1861 addr = canon_rtx (get_addr (XEXP (x, 0)));
1862 /* Calculate the canonical version of X here so that
1863 true_dependence doesn't generate new RTL for X on each call. */
1864 x = canon_rtx (x);
1865
1866 /* Remove all hash table elements that refer to overlapping pieces of
1867 memory. */
1868 if (full_mode == VOIDmode)
1869 full_mode = GET_MODE (x);
1870
1871 for (i = 0; i < HASH_SIZE; i++)
1872 {
1873 struct table_elt *next;
1874
1875 for (p = table[i]; p; p = next)
1876 {
1877 next = p->next_same_hash;
1878 if (p->in_memory)
1879 {
1880 struct check_dependence_data d;
1881
1882 /* Just canonicalize the expression once;
1883 otherwise each time we call invalidate
1884 true_dependence will canonicalize the
1885 expression again. */
1886 if (!p->canon_exp)
1887 p->canon_exp = canon_rtx (p->exp);
1888 d.exp = x;
1889 d.addr = addr;
1890 d.mode = full_mode;
1891 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1892 remove_from_table (p, i);
1893 }
1894 }
1895 }
1896 return;
1897
1898 default:
1899 gcc_unreachable ();
1900 }
1901 }
1902 \f
1903 /* Remove all expressions that refer to register REGNO,
1904 since they are already invalid, and we are about to
1905 mark that register valid again and don't want the old
1906 expressions to reappear as valid. */
1907
1908 static void
1909 remove_invalid_refs (unsigned int regno)
1910 {
1911 unsigned int i;
1912 struct table_elt *p, *next;
1913
1914 for (i = 0; i < HASH_SIZE; i++)
1915 for (p = table[i]; p; p = next)
1916 {
1917 next = p->next_same_hash;
1918 if (!REG_P (p->exp)
1919 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1920 remove_from_table (p, i);
1921 }
1922 }
1923
1924 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1925 and mode MODE. */
1926 static void
1927 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1928 enum machine_mode mode)
1929 {
1930 unsigned int i;
1931 struct table_elt *p, *next;
1932 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1933
1934 for (i = 0; i < HASH_SIZE; i++)
1935 for (p = table[i]; p; p = next)
1936 {
1937 rtx exp = p->exp;
1938 next = p->next_same_hash;
1939
1940 if (!REG_P (exp)
1941 && (GET_CODE (exp) != SUBREG
1942 || !REG_P (SUBREG_REG (exp))
1943 || REGNO (SUBREG_REG (exp)) != regno
1944 || (((SUBREG_BYTE (exp)
1945 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1946 && SUBREG_BYTE (exp) <= end))
1947 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1948 remove_from_table (p, i);
1949 }
1950 }
1951 \f
1952 /* Recompute the hash codes of any valid entries in the hash table that
1953 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1954
1955 This is called when we make a jump equivalence. */
1956
1957 static void
1958 rehash_using_reg (rtx x)
1959 {
1960 unsigned int i;
1961 struct table_elt *p, *next;
1962 unsigned hash;
1963
1964 if (GET_CODE (x) == SUBREG)
1965 x = SUBREG_REG (x);
1966
1967 /* If X is not a register or if the register is known not to be in any
1968 valid entries in the table, we have no work to do. */
1969
1970 if (!REG_P (x)
1971 || REG_IN_TABLE (REGNO (x)) < 0
1972 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1973 return;
1974
1975 /* Scan all hash chains looking for valid entries that mention X.
1976 If we find one and it is in the wrong hash chain, move it. */
1977
1978 for (i = 0; i < HASH_SIZE; i++)
1979 for (p = table[i]; p; p = next)
1980 {
1981 next = p->next_same_hash;
1982 if (reg_mentioned_p (x, p->exp)
1983 && exp_equiv_p (p->exp, p->exp, 1, false)
1984 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1985 {
1986 if (p->next_same_hash)
1987 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1988
1989 if (p->prev_same_hash)
1990 p->prev_same_hash->next_same_hash = p->next_same_hash;
1991 else
1992 table[i] = p->next_same_hash;
1993
1994 p->next_same_hash = table[hash];
1995 p->prev_same_hash = 0;
1996 if (table[hash])
1997 table[hash]->prev_same_hash = p;
1998 table[hash] = p;
1999 }
2000 }
2001 }
2002 \f
2003 /* Remove from the hash table any expression that is a call-clobbered
2004 register. Also update their TICK values. */
2005
2006 static void
2007 invalidate_for_call (void)
2008 {
2009 unsigned int regno, endregno;
2010 unsigned int i;
2011 unsigned hash;
2012 struct table_elt *p, *next;
2013 int in_table = 0;
2014
2015 /* Go through all the hard registers. For each that is clobbered in
2016 a CALL_INSN, remove the register from quantity chains and update
2017 reg_tick if defined. Also see if any of these registers is currently
2018 in the table. */
2019
2020 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2021 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2022 {
2023 delete_reg_equiv (regno);
2024 if (REG_TICK (regno) >= 0)
2025 {
2026 REG_TICK (regno)++;
2027 SUBREG_TICKED (regno) = -1;
2028 }
2029
2030 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2031 }
2032
2033 /* In the case where we have no call-clobbered hard registers in the
2034 table, we are done. Otherwise, scan the table and remove any
2035 entry that overlaps a call-clobbered register. */
2036
2037 if (in_table)
2038 for (hash = 0; hash < HASH_SIZE; hash++)
2039 for (p = table[hash]; p; p = next)
2040 {
2041 next = p->next_same_hash;
2042
2043 if (!REG_P (p->exp)
2044 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2045 continue;
2046
2047 regno = REGNO (p->exp);
2048 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
2049
2050 for (i = regno; i < endregno; i++)
2051 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2052 {
2053 remove_from_table (p, hash);
2054 break;
2055 }
2056 }
2057 }
2058 \f
2059 /* Given an expression X of type CONST,
2060 and ELT which is its table entry (or 0 if it
2061 is not in the hash table),
2062 return an alternate expression for X as a register plus integer.
2063 If none can be found, return 0. */
2064
2065 static rtx
2066 use_related_value (rtx x, struct table_elt *elt)
2067 {
2068 struct table_elt *relt = 0;
2069 struct table_elt *p, *q;
2070 HOST_WIDE_INT offset;
2071
2072 /* First, is there anything related known?
2073 If we have a table element, we can tell from that.
2074 Otherwise, must look it up. */
2075
2076 if (elt != 0 && elt->related_value != 0)
2077 relt = elt;
2078 else if (elt == 0 && GET_CODE (x) == CONST)
2079 {
2080 rtx subexp = get_related_value (x);
2081 if (subexp != 0)
2082 relt = lookup (subexp,
2083 SAFE_HASH (subexp, GET_MODE (subexp)),
2084 GET_MODE (subexp));
2085 }
2086
2087 if (relt == 0)
2088 return 0;
2089
2090 /* Search all related table entries for one that has an
2091 equivalent register. */
2092
2093 p = relt;
2094 while (1)
2095 {
2096 /* This loop is strange in that it is executed in two different cases.
2097 The first is when X is already in the table. Then it is searching
2098 the RELATED_VALUE list of X's class (RELT). The second case is when
2099 X is not in the table. Then RELT points to a class for the related
2100 value.
2101
2102 Ensure that, whatever case we are in, that we ignore classes that have
2103 the same value as X. */
2104
2105 if (rtx_equal_p (x, p->exp))
2106 q = 0;
2107 else
2108 for (q = p->first_same_value; q; q = q->next_same_value)
2109 if (REG_P (q->exp))
2110 break;
2111
2112 if (q)
2113 break;
2114
2115 p = p->related_value;
2116
2117 /* We went all the way around, so there is nothing to be found.
2118 Alternatively, perhaps RELT was in the table for some other reason
2119 and it has no related values recorded. */
2120 if (p == relt || p == 0)
2121 break;
2122 }
2123
2124 if (q == 0)
2125 return 0;
2126
2127 offset = (get_integer_term (x) - get_integer_term (p->exp));
2128 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2129 return plus_constant (q->exp, offset);
2130 }
2131 \f
2132 /* Hash a string. Just add its bytes up. */
2133 static inline unsigned
2134 hash_rtx_string (const char *ps)
2135 {
2136 unsigned hash = 0;
2137 const unsigned char *p = (const unsigned char *) ps;
2138
2139 if (p)
2140 while (*p)
2141 hash += *p++;
2142
2143 return hash;
2144 }
2145
2146 /* Hash an rtx. We are careful to make sure the value is never negative.
2147 Equivalent registers hash identically.
2148 MODE is used in hashing for CONST_INTs only;
2149 otherwise the mode of X is used.
2150
2151 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2152
2153 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2154 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2155
2156 Note that cse_insn knows that the hash code of a MEM expression
2157 is just (int) MEM plus the hash code of the address. */
2158
2159 unsigned
2160 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2161 int *hash_arg_in_memory_p, bool have_reg_qty)
2162 {
2163 int i, j;
2164 unsigned hash = 0;
2165 enum rtx_code code;
2166 const char *fmt;
2167
2168 /* Used to turn recursion into iteration. We can't rely on GCC's
2169 tail-recursion elimination since we need to keep accumulating values
2170 in HASH. */
2171 repeat:
2172 if (x == 0)
2173 return hash;
2174
2175 code = GET_CODE (x);
2176 switch (code)
2177 {
2178 case REG:
2179 {
2180 unsigned int regno = REGNO (x);
2181
2182 if (!reload_completed)
2183 {
2184 /* On some machines, we can't record any non-fixed hard register,
2185 because extending its life will cause reload problems. We
2186 consider ap, fp, sp, gp to be fixed for this purpose.
2187
2188 We also consider CCmode registers to be fixed for this purpose;
2189 failure to do so leads to failure to simplify 0<100 type of
2190 conditionals.
2191
2192 On all machines, we can't record any global registers.
2193 Nor should we record any register that is in a small
2194 class, as defined by CLASS_LIKELY_SPILLED_P. */
2195 bool record;
2196
2197 if (regno >= FIRST_PSEUDO_REGISTER)
2198 record = true;
2199 else if (x == frame_pointer_rtx
2200 || x == hard_frame_pointer_rtx
2201 || x == arg_pointer_rtx
2202 || x == stack_pointer_rtx
2203 || x == pic_offset_table_rtx)
2204 record = true;
2205 else if (global_regs[regno])
2206 record = false;
2207 else if (fixed_regs[regno])
2208 record = true;
2209 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2210 record = true;
2211 else if (SMALL_REGISTER_CLASSES)
2212 record = false;
2213 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2214 record = false;
2215 else
2216 record = true;
2217
2218 if (!record)
2219 {
2220 *do_not_record_p = 1;
2221 return 0;
2222 }
2223 }
2224
2225 hash += ((unsigned int) REG << 7);
2226 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2227 return hash;
2228 }
2229
2230 /* We handle SUBREG of a REG specially because the underlying
2231 reg changes its hash value with every value change; we don't
2232 want to have to forget unrelated subregs when one subreg changes. */
2233 case SUBREG:
2234 {
2235 if (REG_P (SUBREG_REG (x)))
2236 {
2237 hash += (((unsigned int) SUBREG << 7)
2238 + REGNO (SUBREG_REG (x))
2239 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2240 return hash;
2241 }
2242 break;
2243 }
2244
2245 case CONST_INT:
2246 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2247 + (unsigned int) INTVAL (x));
2248 return hash;
2249
2250 case CONST_DOUBLE:
2251 /* This is like the general case, except that it only counts
2252 the integers representing the constant. */
2253 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2254 if (GET_MODE (x) != VOIDmode)
2255 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2256 else
2257 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2258 + (unsigned int) CONST_DOUBLE_HIGH (x));
2259 return hash;
2260
2261 case CONST_VECTOR:
2262 {
2263 int units;
2264 rtx elt;
2265
2266 units = CONST_VECTOR_NUNITS (x);
2267
2268 for (i = 0; i < units; ++i)
2269 {
2270 elt = CONST_VECTOR_ELT (x, i);
2271 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2272 hash_arg_in_memory_p, have_reg_qty);
2273 }
2274
2275 return hash;
2276 }
2277
2278 /* Assume there is only one rtx object for any given label. */
2279 case LABEL_REF:
2280 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2281 differences and differences between each stage's debugging dumps. */
2282 hash += (((unsigned int) LABEL_REF << 7)
2283 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2284 return hash;
2285
2286 case SYMBOL_REF:
2287 {
2288 /* Don't hash on the symbol's address to avoid bootstrap differences.
2289 Different hash values may cause expressions to be recorded in
2290 different orders and thus different registers to be used in the
2291 final assembler. This also avoids differences in the dump files
2292 between various stages. */
2293 unsigned int h = 0;
2294 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2295
2296 while (*p)
2297 h += (h << 7) + *p++; /* ??? revisit */
2298
2299 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2300 return hash;
2301 }
2302
2303 case MEM:
2304 /* We don't record if marked volatile or if BLKmode since we don't
2305 know the size of the move. */
2306 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2307 {
2308 *do_not_record_p = 1;
2309 return 0;
2310 }
2311 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2312 *hash_arg_in_memory_p = 1;
2313
2314 /* Now that we have already found this special case,
2315 might as well speed it up as much as possible. */
2316 hash += (unsigned) MEM;
2317 x = XEXP (x, 0);
2318 goto repeat;
2319
2320 case USE:
2321 /* A USE that mentions non-volatile memory needs special
2322 handling since the MEM may be BLKmode which normally
2323 prevents an entry from being made. Pure calls are
2324 marked by a USE which mentions BLKmode memory.
2325 See calls.c:emit_call_1. */
2326 if (MEM_P (XEXP (x, 0))
2327 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2328 {
2329 hash += (unsigned) USE;
2330 x = XEXP (x, 0);
2331
2332 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2333 *hash_arg_in_memory_p = 1;
2334
2335 /* Now that we have already found this special case,
2336 might as well speed it up as much as possible. */
2337 hash += (unsigned) MEM;
2338 x = XEXP (x, 0);
2339 goto repeat;
2340 }
2341 break;
2342
2343 case PRE_DEC:
2344 case PRE_INC:
2345 case POST_DEC:
2346 case POST_INC:
2347 case PRE_MODIFY:
2348 case POST_MODIFY:
2349 case PC:
2350 case CC0:
2351 case CALL:
2352 case UNSPEC_VOLATILE:
2353 *do_not_record_p = 1;
2354 return 0;
2355
2356 case ASM_OPERANDS:
2357 if (MEM_VOLATILE_P (x))
2358 {
2359 *do_not_record_p = 1;
2360 return 0;
2361 }
2362 else
2363 {
2364 /* We don't want to take the filename and line into account. */
2365 hash += (unsigned) code + (unsigned) GET_MODE (x)
2366 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2367 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2368 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2369
2370 if (ASM_OPERANDS_INPUT_LENGTH (x))
2371 {
2372 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2373 {
2374 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2375 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2376 do_not_record_p, hash_arg_in_memory_p,
2377 have_reg_qty)
2378 + hash_rtx_string
2379 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2380 }
2381
2382 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2383 x = ASM_OPERANDS_INPUT (x, 0);
2384 mode = GET_MODE (x);
2385 goto repeat;
2386 }
2387
2388 return hash;
2389 }
2390 break;
2391
2392 default:
2393 break;
2394 }
2395
2396 i = GET_RTX_LENGTH (code) - 1;
2397 hash += (unsigned) code + (unsigned) GET_MODE (x);
2398 fmt = GET_RTX_FORMAT (code);
2399 for (; i >= 0; i--)
2400 {
2401 switch (fmt[i])
2402 {
2403 case 'e':
2404 /* If we are about to do the last recursive call
2405 needed at this level, change it into iteration.
2406 This function is called enough to be worth it. */
2407 if (i == 0)
2408 {
2409 x = XEXP (x, i);
2410 goto repeat;
2411 }
2412
2413 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2414 hash_arg_in_memory_p, have_reg_qty);
2415 break;
2416
2417 case 'E':
2418 for (j = 0; j < XVECLEN (x, i); j++)
2419 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2420 hash_arg_in_memory_p, have_reg_qty);
2421 break;
2422
2423 case 's':
2424 hash += hash_rtx_string (XSTR (x, i));
2425 break;
2426
2427 case 'i':
2428 hash += (unsigned int) XINT (x, i);
2429 break;
2430
2431 case '0': case 't':
2432 /* Unused. */
2433 break;
2434
2435 default:
2436 gcc_unreachable ();
2437 }
2438 }
2439
2440 return hash;
2441 }
2442
2443 /* Hash an rtx X for cse via hash_rtx.
2444 Stores 1 in do_not_record if any subexpression is volatile.
2445 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2446 does not have the RTX_UNCHANGING_P bit set. */
2447
2448 static inline unsigned
2449 canon_hash (rtx x, enum machine_mode mode)
2450 {
2451 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2452 }
2453
2454 /* Like canon_hash but with no side effects, i.e. do_not_record
2455 and hash_arg_in_memory are not changed. */
2456
2457 static inline unsigned
2458 safe_hash (rtx x, enum machine_mode mode)
2459 {
2460 int dummy_do_not_record;
2461 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2462 }
2463 \f
2464 /* Return 1 iff X and Y would canonicalize into the same thing,
2465 without actually constructing the canonicalization of either one.
2466 If VALIDATE is nonzero,
2467 we assume X is an expression being processed from the rtl
2468 and Y was found in the hash table. We check register refs
2469 in Y for being marked as valid.
2470
2471 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2472
2473 int
2474 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2475 {
2476 int i, j;
2477 enum rtx_code code;
2478 const char *fmt;
2479
2480 /* Note: it is incorrect to assume an expression is equivalent to itself
2481 if VALIDATE is nonzero. */
2482 if (x == y && !validate)
2483 return 1;
2484
2485 if (x == 0 || y == 0)
2486 return x == y;
2487
2488 code = GET_CODE (x);
2489 if (code != GET_CODE (y))
2490 return 0;
2491
2492 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2493 if (GET_MODE (x) != GET_MODE (y))
2494 return 0;
2495
2496 switch (code)
2497 {
2498 case PC:
2499 case CC0:
2500 case CONST_INT:
2501 case CONST_DOUBLE:
2502 return x == y;
2503
2504 case LABEL_REF:
2505 return XEXP (x, 0) == XEXP (y, 0);
2506
2507 case SYMBOL_REF:
2508 return XSTR (x, 0) == XSTR (y, 0);
2509
2510 case REG:
2511 if (for_gcse)
2512 return REGNO (x) == REGNO (y);
2513 else
2514 {
2515 unsigned int regno = REGNO (y);
2516 unsigned int i;
2517 unsigned int endregno
2518 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2519 : hard_regno_nregs[regno][GET_MODE (y)]);
2520
2521 /* If the quantities are not the same, the expressions are not
2522 equivalent. If there are and we are not to validate, they
2523 are equivalent. Otherwise, ensure all regs are up-to-date. */
2524
2525 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2526 return 0;
2527
2528 if (! validate)
2529 return 1;
2530
2531 for (i = regno; i < endregno; i++)
2532 if (REG_IN_TABLE (i) != REG_TICK (i))
2533 return 0;
2534
2535 return 1;
2536 }
2537
2538 case MEM:
2539 if (for_gcse)
2540 {
2541 /* Can't merge two expressions in different alias sets, since we
2542 can decide that the expression is transparent in a block when
2543 it isn't, due to it being set with the different alias set. */
2544 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
2545 return 0;
2546
2547 /* A volatile mem should not be considered equivalent to any
2548 other. */
2549 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2550 return 0;
2551 }
2552 break;
2553
2554 /* For commutative operations, check both orders. */
2555 case PLUS:
2556 case MULT:
2557 case AND:
2558 case IOR:
2559 case XOR:
2560 case NE:
2561 case EQ:
2562 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2563 validate, for_gcse)
2564 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2565 validate, for_gcse))
2566 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2567 validate, for_gcse)
2568 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2569 validate, for_gcse)));
2570
2571 case ASM_OPERANDS:
2572 /* We don't use the generic code below because we want to
2573 disregard filename and line numbers. */
2574
2575 /* A volatile asm isn't equivalent to any other. */
2576 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2577 return 0;
2578
2579 if (GET_MODE (x) != GET_MODE (y)
2580 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2581 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2582 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2583 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2584 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2585 return 0;
2586
2587 if (ASM_OPERANDS_INPUT_LENGTH (x))
2588 {
2589 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2590 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2591 ASM_OPERANDS_INPUT (y, i),
2592 validate, for_gcse)
2593 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2594 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2595 return 0;
2596 }
2597
2598 return 1;
2599
2600 default:
2601 break;
2602 }
2603
2604 /* Compare the elements. If any pair of corresponding elements
2605 fail to match, return 0 for the whole thing. */
2606
2607 fmt = GET_RTX_FORMAT (code);
2608 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2609 {
2610 switch (fmt[i])
2611 {
2612 case 'e':
2613 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2614 validate, for_gcse))
2615 return 0;
2616 break;
2617
2618 case 'E':
2619 if (XVECLEN (x, i) != XVECLEN (y, i))
2620 return 0;
2621 for (j = 0; j < XVECLEN (x, i); j++)
2622 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2623 validate, for_gcse))
2624 return 0;
2625 break;
2626
2627 case 's':
2628 if (strcmp (XSTR (x, i), XSTR (y, i)))
2629 return 0;
2630 break;
2631
2632 case 'i':
2633 if (XINT (x, i) != XINT (y, i))
2634 return 0;
2635 break;
2636
2637 case 'w':
2638 if (XWINT (x, i) != XWINT (y, i))
2639 return 0;
2640 break;
2641
2642 case '0':
2643 case 't':
2644 break;
2645
2646 default:
2647 gcc_unreachable ();
2648 }
2649 }
2650
2651 return 1;
2652 }
2653 \f
2654 /* Return 1 if X has a value that can vary even between two
2655 executions of the program. 0 means X can be compared reliably
2656 against certain constants or near-constants. */
2657
2658 static int
2659 cse_rtx_varies_p (rtx x, int from_alias)
2660 {
2661 /* We need not check for X and the equivalence class being of the same
2662 mode because if X is equivalent to a constant in some mode, it
2663 doesn't vary in any mode. */
2664
2665 if (REG_P (x)
2666 && REGNO_QTY_VALID_P (REGNO (x)))
2667 {
2668 int x_q = REG_QTY (REGNO (x));
2669 struct qty_table_elem *x_ent = &qty_table[x_q];
2670
2671 if (GET_MODE (x) == x_ent->mode
2672 && x_ent->const_rtx != NULL_RTX)
2673 return 0;
2674 }
2675
2676 if (GET_CODE (x) == PLUS
2677 && GET_CODE (XEXP (x, 1)) == CONST_INT
2678 && REG_P (XEXP (x, 0))
2679 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2680 {
2681 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2682 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2683
2684 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2685 && x0_ent->const_rtx != NULL_RTX)
2686 return 0;
2687 }
2688
2689 /* This can happen as the result of virtual register instantiation, if
2690 the initial constant is too large to be a valid address. This gives
2691 us a three instruction sequence, load large offset into a register,
2692 load fp minus a constant into a register, then a MEM which is the
2693 sum of the two `constant' registers. */
2694 if (GET_CODE (x) == PLUS
2695 && REG_P (XEXP (x, 0))
2696 && REG_P (XEXP (x, 1))
2697 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2698 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2699 {
2700 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2701 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2702 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2703 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2704
2705 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2706 && x0_ent->const_rtx != NULL_RTX
2707 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2708 && x1_ent->const_rtx != NULL_RTX)
2709 return 0;
2710 }
2711
2712 return rtx_varies_p (x, from_alias);
2713 }
2714 \f
2715 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2716 the result if necessary. INSN is as for canon_reg. */
2717
2718 static void
2719 validate_canon_reg (rtx *xloc, rtx insn)
2720 {
2721 rtx new = canon_reg (*xloc, insn);
2722 int insn_code;
2723
2724 /* If replacing pseudo with hard reg or vice versa, ensure the
2725 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2726 if (insn != 0 && new != 0
2727 && REG_P (new) && REG_P (*xloc)
2728 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2729 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2730 || GET_MODE (new) != GET_MODE (*xloc)
2731 || (insn_code = recog_memoized (insn)) < 0
2732 || insn_data[insn_code].n_dups > 0))
2733 validate_change (insn, xloc, new, 1);
2734 else
2735 *xloc = new;
2736 }
2737
2738 /* Canonicalize an expression:
2739 replace each register reference inside it
2740 with the "oldest" equivalent register.
2741
2742 If INSN is nonzero and we are replacing a pseudo with a hard register
2743 or vice versa, validate_change is used to ensure that INSN remains valid
2744 after we make our substitution. The calls are made with IN_GROUP nonzero
2745 so apply_change_group must be called upon the outermost return from this
2746 function (unless INSN is zero). The result of apply_change_group can
2747 generally be discarded since the changes we are making are optional. */
2748
2749 static rtx
2750 canon_reg (rtx x, rtx insn)
2751 {
2752 int i;
2753 enum rtx_code code;
2754 const char *fmt;
2755
2756 if (x == 0)
2757 return x;
2758
2759 code = GET_CODE (x);
2760 switch (code)
2761 {
2762 case PC:
2763 case CC0:
2764 case CONST:
2765 case CONST_INT:
2766 case CONST_DOUBLE:
2767 case CONST_VECTOR:
2768 case SYMBOL_REF:
2769 case LABEL_REF:
2770 case ADDR_VEC:
2771 case ADDR_DIFF_VEC:
2772 return x;
2773
2774 case REG:
2775 {
2776 int first;
2777 int q;
2778 struct qty_table_elem *ent;
2779
2780 /* Never replace a hard reg, because hard regs can appear
2781 in more than one machine mode, and we must preserve the mode
2782 of each occurrence. Also, some hard regs appear in
2783 MEMs that are shared and mustn't be altered. Don't try to
2784 replace any reg that maps to a reg of class NO_REGS. */
2785 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2786 || ! REGNO_QTY_VALID_P (REGNO (x)))
2787 return x;
2788
2789 q = REG_QTY (REGNO (x));
2790 ent = &qty_table[q];
2791 first = ent->first_reg;
2792 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2793 : REGNO_REG_CLASS (first) == NO_REGS ? x
2794 : gen_rtx_REG (ent->mode, first));
2795 }
2796
2797 default:
2798 break;
2799 }
2800
2801 fmt = GET_RTX_FORMAT (code);
2802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2803 {
2804 int j;
2805
2806 if (fmt[i] == 'e')
2807 validate_canon_reg (&XEXP (x, i), insn);
2808 else if (fmt[i] == 'E')
2809 for (j = 0; j < XVECLEN (x, i); j++)
2810 validate_canon_reg (&XVECEXP (x, i, j), insn);
2811 }
2812
2813 return x;
2814 }
2815 \f
2816 /* LOC is a location within INSN that is an operand address (the contents of
2817 a MEM). Find the best equivalent address to use that is valid for this
2818 insn.
2819
2820 On most CISC machines, complicated address modes are costly, and rtx_cost
2821 is a good approximation for that cost. However, most RISC machines have
2822 only a few (usually only one) memory reference formats. If an address is
2823 valid at all, it is often just as cheap as any other address. Hence, for
2824 RISC machines, we use `address_cost' to compare the costs of various
2825 addresses. For two addresses of equal cost, choose the one with the
2826 highest `rtx_cost' value as that has the potential of eliminating the
2827 most insns. For equal costs, we choose the first in the equivalence
2828 class. Note that we ignore the fact that pseudo registers are cheaper than
2829 hard registers here because we would also prefer the pseudo registers. */
2830
2831 static void
2832 find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
2833 {
2834 struct table_elt *elt;
2835 rtx addr = *loc;
2836 struct table_elt *p;
2837 int found_better = 1;
2838 int save_do_not_record = do_not_record;
2839 int save_hash_arg_in_memory = hash_arg_in_memory;
2840 int addr_volatile;
2841 int regno;
2842 unsigned hash;
2843
2844 /* Do not try to replace constant addresses or addresses of local and
2845 argument slots. These MEM expressions are made only once and inserted
2846 in many instructions, as well as being used to control symbol table
2847 output. It is not safe to clobber them.
2848
2849 There are some uncommon cases where the address is already in a register
2850 for some reason, but we cannot take advantage of that because we have
2851 no easy way to unshare the MEM. In addition, looking up all stack
2852 addresses is costly. */
2853 if ((GET_CODE (addr) == PLUS
2854 && REG_P (XEXP (addr, 0))
2855 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2856 && (regno = REGNO (XEXP (addr, 0)),
2857 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2858 || regno == ARG_POINTER_REGNUM))
2859 || (REG_P (addr)
2860 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2861 || regno == HARD_FRAME_POINTER_REGNUM
2862 || regno == ARG_POINTER_REGNUM))
2863 || CONSTANT_ADDRESS_P (addr))
2864 return;
2865
2866 /* If this address is not simply a register, try to fold it. This will
2867 sometimes simplify the expression. Many simplifications
2868 will not be valid, but some, usually applying the associative rule, will
2869 be valid and produce better code. */
2870 if (!REG_P (addr))
2871 {
2872 rtx folded = canon_for_address (fold_rtx (addr, NULL_RTX));
2873
2874 if (folded != addr)
2875 {
2876 int addr_folded_cost = address_cost (folded, mode);
2877 int addr_cost = address_cost (addr, mode);
2878
2879 if ((addr_folded_cost < addr_cost
2880 || (addr_folded_cost == addr_cost
2881 /* ??? The rtx_cost comparison is left over from an older
2882 version of this code. It is probably no longer helpful.*/
2883 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2884 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2885 && validate_change (insn, loc, folded, 0))
2886 addr = folded;
2887 }
2888 }
2889
2890 /* If this address is not in the hash table, we can't look for equivalences
2891 of the whole address. Also, ignore if volatile. */
2892
2893 do_not_record = 0;
2894 hash = HASH (addr, Pmode);
2895 addr_volatile = do_not_record;
2896 do_not_record = save_do_not_record;
2897 hash_arg_in_memory = save_hash_arg_in_memory;
2898
2899 if (addr_volatile)
2900 return;
2901
2902 elt = lookup (addr, hash, Pmode);
2903
2904 if (elt)
2905 {
2906 /* We need to find the best (under the criteria documented above) entry
2907 in the class that is valid. We use the `flag' field to indicate
2908 choices that were invalid and iterate until we can't find a better
2909 one that hasn't already been tried. */
2910
2911 for (p = elt->first_same_value; p; p = p->next_same_value)
2912 p->flag = 0;
2913
2914 while (found_better)
2915 {
2916 int best_addr_cost = address_cost (*loc, mode);
2917 int best_rtx_cost = (elt->cost + 1) >> 1;
2918 int exp_cost;
2919 struct table_elt *best_elt = elt;
2920
2921 found_better = 0;
2922 for (p = elt->first_same_value; p; p = p->next_same_value)
2923 if (! p->flag)
2924 {
2925 if ((REG_P (p->exp)
2926 || exp_equiv_p (p->exp, p->exp, 1, false))
2927 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2928 || (exp_cost == best_addr_cost
2929 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2930 {
2931 found_better = 1;
2932 best_addr_cost = exp_cost;
2933 best_rtx_cost = (p->cost + 1) >> 1;
2934 best_elt = p;
2935 }
2936 }
2937
2938 if (found_better)
2939 {
2940 if (validate_change (insn, loc,
2941 canon_reg (copy_rtx (best_elt->exp),
2942 NULL_RTX), 0))
2943 return;
2944 else
2945 best_elt->flag = 1;
2946 }
2947 }
2948 }
2949
2950 /* If the address is a binary operation with the first operand a register
2951 and the second a constant, do the same as above, but looking for
2952 equivalences of the register. Then try to simplify before checking for
2953 the best address to use. This catches a few cases: First is when we
2954 have REG+const and the register is another REG+const. We can often merge
2955 the constants and eliminate one insn and one register. It may also be
2956 that a machine has a cheap REG+REG+const. Finally, this improves the
2957 code on the Alpha for unaligned byte stores. */
2958
2959 if (flag_expensive_optimizations
2960 && ARITHMETIC_P (*loc)
2961 && REG_P (XEXP (*loc, 0)))
2962 {
2963 rtx op1 = XEXP (*loc, 1);
2964
2965 do_not_record = 0;
2966 hash = HASH (XEXP (*loc, 0), Pmode);
2967 do_not_record = save_do_not_record;
2968 hash_arg_in_memory = save_hash_arg_in_memory;
2969
2970 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2971 if (elt == 0)
2972 return;
2973
2974 /* We need to find the best (under the criteria documented above) entry
2975 in the class that is valid. We use the `flag' field to indicate
2976 choices that were invalid and iterate until we can't find a better
2977 one that hasn't already been tried. */
2978
2979 for (p = elt->first_same_value; p; p = p->next_same_value)
2980 p->flag = 0;
2981
2982 while (found_better)
2983 {
2984 int best_addr_cost = address_cost (*loc, mode);
2985 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2986 struct table_elt *best_elt = elt;
2987 rtx best_rtx = *loc;
2988 int count;
2989
2990 /* This is at worst case an O(n^2) algorithm, so limit our search
2991 to the first 32 elements on the list. This avoids trouble
2992 compiling code with very long basic blocks that can easily
2993 call simplify_gen_binary so many times that we run out of
2994 memory. */
2995
2996 found_better = 0;
2997 for (p = elt->first_same_value, count = 0;
2998 p && count < 32;
2999 p = p->next_same_value, count++)
3000 if (! p->flag
3001 && (REG_P (p->exp)
3002 || (GET_CODE (p->exp) != EXPR_LIST
3003 && exp_equiv_p (p->exp, p->exp, 1, false))))
3004
3005 {
3006 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
3007 p->exp, op1);
3008 int new_cost;
3009
3010 /* Get the canonical version of the address so we can accept
3011 more. */
3012 new = canon_for_address (new);
3013
3014 new_cost = address_cost (new, mode);
3015
3016 if (new_cost < best_addr_cost
3017 || (new_cost == best_addr_cost
3018 && (COST (new) + 1) >> 1 > best_rtx_cost))
3019 {
3020 found_better = 1;
3021 best_addr_cost = new_cost;
3022 best_rtx_cost = (COST (new) + 1) >> 1;
3023 best_elt = p;
3024 best_rtx = new;
3025 }
3026 }
3027
3028 if (found_better)
3029 {
3030 if (validate_change (insn, loc,
3031 canon_reg (copy_rtx (best_rtx),
3032 NULL_RTX), 0))
3033 return;
3034 else
3035 best_elt->flag = 1;
3036 }
3037 }
3038 }
3039 }
3040 \f
3041 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3042 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3043 what values are being compared.
3044
3045 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3046 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3047 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3048 compared to produce cc0.
3049
3050 The return value is the comparison operator and is either the code of
3051 A or the code corresponding to the inverse of the comparison. */
3052
3053 static enum rtx_code
3054 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3055 enum machine_mode *pmode1, enum machine_mode *pmode2)
3056 {
3057 rtx arg1, arg2;
3058
3059 arg1 = *parg1, arg2 = *parg2;
3060
3061 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3062
3063 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3064 {
3065 /* Set nonzero when we find something of interest. */
3066 rtx x = 0;
3067 int reverse_code = 0;
3068 struct table_elt *p = 0;
3069
3070 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3071 On machines with CC0, this is the only case that can occur, since
3072 fold_rtx will return the COMPARE or item being compared with zero
3073 when given CC0. */
3074
3075 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3076 x = arg1;
3077
3078 /* If ARG1 is a comparison operator and CODE is testing for
3079 STORE_FLAG_VALUE, get the inner arguments. */
3080
3081 else if (COMPARISON_P (arg1))
3082 {
3083 #ifdef FLOAT_STORE_FLAG_VALUE
3084 REAL_VALUE_TYPE fsfv;
3085 #endif
3086
3087 if (code == NE
3088 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3089 && code == LT && STORE_FLAG_VALUE == -1)
3090 #ifdef FLOAT_STORE_FLAG_VALUE
3091 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3092 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3093 REAL_VALUE_NEGATIVE (fsfv)))
3094 #endif
3095 )
3096 x = arg1;
3097 else if (code == EQ
3098 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3099 && code == GE && STORE_FLAG_VALUE == -1)
3100 #ifdef FLOAT_STORE_FLAG_VALUE
3101 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3102 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3103 REAL_VALUE_NEGATIVE (fsfv)))
3104 #endif
3105 )
3106 x = arg1, reverse_code = 1;
3107 }
3108
3109 /* ??? We could also check for
3110
3111 (ne (and (eq (...) (const_int 1))) (const_int 0))
3112
3113 and related forms, but let's wait until we see them occurring. */
3114
3115 if (x == 0)
3116 /* Look up ARG1 in the hash table and see if it has an equivalence
3117 that lets us see what is being compared. */
3118 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3119 if (p)
3120 {
3121 p = p->first_same_value;
3122
3123 /* If what we compare is already known to be constant, that is as
3124 good as it gets.
3125 We need to break the loop in this case, because otherwise we
3126 can have an infinite loop when looking at a reg that is known
3127 to be a constant which is the same as a comparison of a reg
3128 against zero which appears later in the insn stream, which in
3129 turn is constant and the same as the comparison of the first reg
3130 against zero... */
3131 if (p->is_const)
3132 break;
3133 }
3134
3135 for (; p; p = p->next_same_value)
3136 {
3137 enum machine_mode inner_mode = GET_MODE (p->exp);
3138 #ifdef FLOAT_STORE_FLAG_VALUE
3139 REAL_VALUE_TYPE fsfv;
3140 #endif
3141
3142 /* If the entry isn't valid, skip it. */
3143 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3144 continue;
3145
3146 if (GET_CODE (p->exp) == COMPARE
3147 /* Another possibility is that this machine has a compare insn
3148 that includes the comparison code. In that case, ARG1 would
3149 be equivalent to a comparison operation that would set ARG1 to
3150 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3151 ORIG_CODE is the actual comparison being done; if it is an EQ,
3152 we must reverse ORIG_CODE. On machine with a negative value
3153 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3154 || ((code == NE
3155 || (code == LT
3156 && GET_MODE_CLASS (inner_mode) == MODE_INT
3157 && (GET_MODE_BITSIZE (inner_mode)
3158 <= HOST_BITS_PER_WIDE_INT)
3159 && (STORE_FLAG_VALUE
3160 & ((HOST_WIDE_INT) 1
3161 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3162 #ifdef FLOAT_STORE_FLAG_VALUE
3163 || (code == LT
3164 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3165 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3166 REAL_VALUE_NEGATIVE (fsfv)))
3167 #endif
3168 )
3169 && COMPARISON_P (p->exp)))
3170 {
3171 x = p->exp;
3172 break;
3173 }
3174 else if ((code == EQ
3175 || (code == GE
3176 && GET_MODE_CLASS (inner_mode) == MODE_INT
3177 && (GET_MODE_BITSIZE (inner_mode)
3178 <= HOST_BITS_PER_WIDE_INT)
3179 && (STORE_FLAG_VALUE
3180 & ((HOST_WIDE_INT) 1
3181 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3182 #ifdef FLOAT_STORE_FLAG_VALUE
3183 || (code == GE
3184 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3185 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3186 REAL_VALUE_NEGATIVE (fsfv)))
3187 #endif
3188 )
3189 && COMPARISON_P (p->exp))
3190 {
3191 reverse_code = 1;
3192 x = p->exp;
3193 break;
3194 }
3195
3196 /* If this non-trapping address, e.g. fp + constant, the
3197 equivalent is a better operand since it may let us predict
3198 the value of the comparison. */
3199 else if (!rtx_addr_can_trap_p (p->exp))
3200 {
3201 arg1 = p->exp;
3202 continue;
3203 }
3204 }
3205
3206 /* If we didn't find a useful equivalence for ARG1, we are done.
3207 Otherwise, set up for the next iteration. */
3208 if (x == 0)
3209 break;
3210
3211 /* If we need to reverse the comparison, make sure that that is
3212 possible -- we can't necessarily infer the value of GE from LT
3213 with floating-point operands. */
3214 if (reverse_code)
3215 {
3216 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3217 if (reversed == UNKNOWN)
3218 break;
3219 else
3220 code = reversed;
3221 }
3222 else if (COMPARISON_P (x))
3223 code = GET_CODE (x);
3224 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3225 }
3226
3227 /* Return our results. Return the modes from before fold_rtx
3228 because fold_rtx might produce const_int, and then it's too late. */
3229 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3230 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3231
3232 return code;
3233 }
3234 \f
3235 /* Fold SUBREG. */
3236
3237 static rtx
3238 fold_rtx_subreg (rtx x, rtx insn)
3239 {
3240 enum machine_mode mode = GET_MODE (x);
3241 rtx folded_arg0;
3242 rtx const_arg0;
3243 rtx new;
3244
3245 /* See if we previously assigned a constant value to this SUBREG. */
3246 if ((new = lookup_as_function (x, CONST_INT)) != 0
3247 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3248 return new;
3249
3250 /* If this is a paradoxical SUBREG, we have no idea what value the
3251 extra bits would have. However, if the operand is equivalent to
3252 a SUBREG whose operand is the same as our mode, and all the modes
3253 are within a word, we can just use the inner operand because
3254 these SUBREGs just say how to treat the register.
3255
3256 Similarly if we find an integer constant. */
3257
3258 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3259 {
3260 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3261 struct table_elt *elt;
3262
3263 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3264 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3265 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3266 imode)) != 0)
3267 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3268 {
3269 if (CONSTANT_P (elt->exp)
3270 && GET_MODE (elt->exp) == VOIDmode)
3271 return elt->exp;
3272
3273 if (GET_CODE (elt->exp) == SUBREG
3274 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3275 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3276 return copy_rtx (SUBREG_REG (elt->exp));
3277 }
3278
3279 return x;
3280 }
3281
3282 /* Fold SUBREG_REG. If it changed, see if we can simplify the
3283 SUBREG. We might be able to if the SUBREG is extracting a single
3284 word in an integral mode or extracting the low part. */
3285
3286 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3287 const_arg0 = equiv_constant (folded_arg0);
3288 if (const_arg0)
3289 folded_arg0 = const_arg0;
3290
3291 if (folded_arg0 != SUBREG_REG (x))
3292 {
3293 new = simplify_subreg (mode, folded_arg0,
3294 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3295 if (new)
3296 return new;
3297 }
3298
3299 if (REG_P (folded_arg0)
3300 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3301 {
3302 struct table_elt *elt;
3303
3304 elt = lookup (folded_arg0,
3305 HASH (folded_arg0, GET_MODE (folded_arg0)),
3306 GET_MODE (folded_arg0));
3307
3308 if (elt)
3309 elt = elt->first_same_value;
3310
3311 if (subreg_lowpart_p (x))
3312 /* If this is a narrowing SUBREG and our operand is a REG, see
3313 if we can find an equivalence for REG that is an arithmetic
3314 operation in a wider mode where both operands are
3315 paradoxical SUBREGs from objects of our result mode. In
3316 that case, we couldn-t report an equivalent value for that
3317 operation, since we don't know what the extra bits will be.
3318 But we can find an equivalence for this SUBREG by folding
3319 that operation in the narrow mode. This allows us to fold
3320 arithmetic in narrow modes when the machine only supports
3321 word-sized arithmetic.
3322
3323 Also look for a case where we have a SUBREG whose operand
3324 is the same as our result. If both modes are smaller than
3325 a word, we are simply interpreting a register in different
3326 modes and we can use the inner value. */
3327
3328 for (; elt; elt = elt->next_same_value)
3329 {
3330 enum rtx_code eltcode = GET_CODE (elt->exp);
3331
3332 /* Just check for unary and binary operations. */
3333 if (UNARY_P (elt->exp)
3334 && eltcode != SIGN_EXTEND
3335 && eltcode != ZERO_EXTEND
3336 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3337 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3338 && (GET_MODE_CLASS (mode)
3339 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3340 {
3341 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3342
3343 if (!REG_P (op0) && ! CONSTANT_P (op0))
3344 op0 = fold_rtx (op0, NULL_RTX);
3345
3346 op0 = equiv_constant (op0);
3347 if (op0)
3348 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3349 op0, mode);
3350 }
3351 else if (ARITHMETIC_P (elt->exp)
3352 && eltcode != DIV && eltcode != MOD
3353 && eltcode != UDIV && eltcode != UMOD
3354 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3355 && eltcode != ROTATE && eltcode != ROTATERT
3356 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3357 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3358 == mode))
3359 || CONSTANT_P (XEXP (elt->exp, 0)))
3360 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3361 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3362 == mode))
3363 || CONSTANT_P (XEXP (elt->exp, 1))))
3364 {
3365 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3366 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3367
3368 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3369 op0 = fold_rtx (op0, NULL_RTX);
3370
3371 if (op0)
3372 op0 = equiv_constant (op0);
3373
3374 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3375 op1 = fold_rtx (op1, NULL_RTX);
3376
3377 if (op1)
3378 op1 = equiv_constant (op1);
3379
3380 /* If we are looking for the low SImode part of
3381 (ashift:DI c (const_int 32)), it doesn't work to
3382 compute that in SImode, because a 32-bit shift in
3383 SImode is unpredictable. We know the value is
3384 0. */
3385 if (op0 && op1
3386 && GET_CODE (elt->exp) == ASHIFT
3387 && GET_CODE (op1) == CONST_INT
3388 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3389 {
3390 if (INTVAL (op1)
3391 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3392 /* If the count fits in the inner mode's width,
3393 but exceeds the outer mode's width, the value
3394 will get truncated to 0 by the subreg. */
3395 new = CONST0_RTX (mode);
3396 else
3397 /* If the count exceeds even the inner mode's width,
3398 don't fold this expression. */
3399 new = 0;
3400 }
3401 else if (op0 && op1)
3402 new = simplify_binary_operation (GET_CODE (elt->exp),
3403 mode, op0, op1);
3404 }
3405
3406 else if (GET_CODE (elt->exp) == SUBREG
3407 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3408 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3409 <= UNITS_PER_WORD)
3410 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3411 new = copy_rtx (SUBREG_REG (elt->exp));
3412
3413 if (new)
3414 return new;
3415 }
3416 else
3417 /* A SUBREG resulting from a zero extension may fold to zero
3418 if it extracts higher bits than the ZERO_EXTEND's source
3419 bits. FIXME: if combine tried to, er, combine these
3420 instructions, this transformation may be moved to
3421 simplify_subreg. */
3422 for (; elt; elt = elt->next_same_value)
3423 {
3424 if (GET_CODE (elt->exp) == ZERO_EXTEND
3425 && subreg_lsb (x)
3426 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3427 return CONST0_RTX (mode);
3428 }
3429 }
3430
3431 return x;
3432 }
3433
3434 /* Fold MEM. */
3435
3436 static rtx
3437 fold_rtx_mem (rtx x, rtx insn)
3438 {
3439 enum machine_mode mode = GET_MODE (x);
3440 rtx new;
3441
3442 /* If we are not actually processing an insn, don't try to find the
3443 best address. Not only don't we care, but we could modify the
3444 MEM in an invalid way since we have no insn to validate
3445 against. */
3446 if (insn != 0)
3447 find_best_addr (insn, &XEXP (x, 0), mode);
3448
3449 {
3450 /* Even if we don't fold in the insn itself, we can safely do so
3451 here, in hopes of getting a constant. */
3452 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3453 rtx base = 0;
3454 HOST_WIDE_INT offset = 0;
3455
3456 if (REG_P (addr)
3457 && REGNO_QTY_VALID_P (REGNO (addr)))
3458 {
3459 int addr_q = REG_QTY (REGNO (addr));
3460 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3461
3462 if (GET_MODE (addr) == addr_ent->mode
3463 && addr_ent->const_rtx != NULL_RTX)
3464 addr = addr_ent->const_rtx;
3465 }
3466
3467 /* Call target hook to avoid the effects of -fpic etc.... */
3468 addr = targetm.delegitimize_address (addr);
3469
3470 /* If address is constant, split it into a base and integer
3471 offset. */
3472 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3473 base = addr;
3474 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3475 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3476 {
3477 base = XEXP (XEXP (addr, 0), 0);
3478 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3479 }
3480 else if (GET_CODE (addr) == LO_SUM
3481 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3482 base = XEXP (addr, 1);
3483
3484 /* If this is a constant pool reference, we can fold it into its
3485 constant to allow better value tracking. */
3486 if (base && GET_CODE (base) == SYMBOL_REF
3487 && CONSTANT_POOL_ADDRESS_P (base))
3488 {
3489 rtx constant = get_pool_constant (base);
3490 enum machine_mode const_mode = get_pool_mode (base);
3491 rtx new;
3492
3493 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3494 {
3495 constant_pool_entries_cost = COST (constant);
3496 constant_pool_entries_regcost = approx_reg_cost (constant);
3497 }
3498
3499 /* If we are loading the full constant, we have an
3500 equivalence. */
3501 if (offset == 0 && mode == const_mode)
3502 return constant;
3503
3504 /* If this actually isn't a constant (weird!), we can't do
3505 anything. Otherwise, handle the two most common cases:
3506 extracting a word from a multi-word constant, and
3507 extracting the low-order bits. Other cases don't seem
3508 common enough to worry about. */
3509 if (! CONSTANT_P (constant))
3510 return x;
3511
3512 if (GET_MODE_CLASS (mode) == MODE_INT
3513 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3514 && offset % UNITS_PER_WORD == 0
3515 && (new = operand_subword (constant,
3516 offset / UNITS_PER_WORD,
3517 0, const_mode)) != 0)
3518 return new;
3519
3520 if (((BYTES_BIG_ENDIAN
3521 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3522 || (! BYTES_BIG_ENDIAN && offset == 0))
3523 && (new = gen_lowpart (mode, constant)) != 0)
3524 return new;
3525 }
3526
3527 /* If this is a reference to a label at a known position in a jump
3528 table, we also know its value. */
3529 if (base && GET_CODE (base) == LABEL_REF)
3530 {
3531 rtx label = XEXP (base, 0);
3532 rtx table_insn = NEXT_INSN (label);
3533
3534 if (table_insn && JUMP_P (table_insn)
3535 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3536 {
3537 rtx table = PATTERN (table_insn);
3538
3539 if (offset >= 0
3540 && (offset / GET_MODE_SIZE (GET_MODE (table))
3541 < XVECLEN (table, 0)))
3542 {
3543 rtx label = XVECEXP
3544 (table, 0, offset / GET_MODE_SIZE (GET_MODE (table)));
3545 rtx set;
3546
3547 /* If we have an insn that loads the label from the
3548 jumptable into a reg, we don't want to set the reg
3549 to the label, because this may cause a reference to
3550 the label to remain after the label is removed in
3551 some very obscure cases (PR middle-end/18628). */
3552 if (!insn)
3553 return label;
3554
3555 set = single_set (insn);
3556
3557 if (! set || SET_SRC (set) != x)
3558 return x;
3559
3560 /* If it's a jump, it's safe to reference the label. */
3561 if (SET_DEST (set) == pc_rtx)
3562 return label;
3563
3564 return x;
3565 }
3566 }
3567 if (table_insn && JUMP_P (table_insn)
3568 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3569 {
3570 rtx table = PATTERN (table_insn);
3571
3572 if (offset >= 0
3573 && (offset / GET_MODE_SIZE (GET_MODE (table))
3574 < XVECLEN (table, 1)))
3575 {
3576 offset /= GET_MODE_SIZE (GET_MODE (table));
3577 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3578 XEXP (table, 0));
3579
3580 if (GET_MODE (table) != Pmode)
3581 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3582
3583 /* Indicate this is a constant. This isn't a valid
3584 form of CONST, but it will only be used to fold the
3585 next insns and then discarded, so it should be
3586 safe.
3587
3588 Note this expression must be explicitly discarded,
3589 by cse_insn, else it may end up in a REG_EQUAL note
3590 and "escape" to cause problems elsewhere. */
3591 return gen_rtx_CONST (GET_MODE (new), new);
3592 }
3593 }
3594 }
3595
3596 return x;
3597 }
3598 }
3599
3600 /* If X is a nontrivial arithmetic operation on an argument
3601 for which a constant value can be determined, return
3602 the result of operating on that value, as a constant.
3603 Otherwise, return X, possibly with one or more operands
3604 modified by recursive calls to this function.
3605
3606 If X is a register whose contents are known, we do NOT
3607 return those contents here. equiv_constant is called to
3608 perform that task.
3609
3610 INSN is the insn that we may be modifying. If it is 0, make a copy
3611 of X before modifying it. */
3612
3613 static rtx
3614 fold_rtx (rtx x, rtx insn)
3615 {
3616 enum rtx_code code;
3617 enum machine_mode mode;
3618 const char *fmt;
3619 int i;
3620 rtx new = 0;
3621 int copied = 0;
3622 int must_swap = 0;
3623
3624 /* Folded equivalents of first two operands of X. */
3625 rtx folded_arg0;
3626 rtx folded_arg1;
3627
3628 /* Constant equivalents of first three operands of X;
3629 0 when no such equivalent is known. */
3630 rtx const_arg0;
3631 rtx const_arg1;
3632 rtx const_arg2;
3633
3634 /* The mode of the first operand of X. We need this for sign and zero
3635 extends. */
3636 enum machine_mode mode_arg0;
3637
3638 if (x == 0)
3639 return x;
3640
3641 mode = GET_MODE (x);
3642 code = GET_CODE (x);
3643 switch (code)
3644 {
3645 case CONST:
3646 case CONST_INT:
3647 case CONST_DOUBLE:
3648 case CONST_VECTOR:
3649 case SYMBOL_REF:
3650 case LABEL_REF:
3651 case REG:
3652 case PC:
3653 /* No use simplifying an EXPR_LIST
3654 since they are used only for lists of args
3655 in a function call's REG_EQUAL note. */
3656 case EXPR_LIST:
3657 return x;
3658
3659 #ifdef HAVE_cc0
3660 case CC0:
3661 return prev_insn_cc0;
3662 #endif
3663
3664 case SUBREG:
3665 return fold_rtx_subreg (x, insn);
3666
3667 case NOT:
3668 case NEG:
3669 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3670 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3671 new = lookup_as_function (XEXP (x, 0), code);
3672 if (new)
3673 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3674 break;
3675
3676 case MEM:
3677 return fold_rtx_mem (x, insn);
3678
3679 #ifdef NO_FUNCTION_CSE
3680 case CALL:
3681 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3682 return x;
3683 break;
3684 #endif
3685
3686 case ASM_OPERANDS:
3687 if (insn)
3688 {
3689 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3690 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3691 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3692 }
3693 break;
3694
3695 default:
3696 break;
3697 }
3698
3699 const_arg0 = 0;
3700 const_arg1 = 0;
3701 const_arg2 = 0;
3702 mode_arg0 = VOIDmode;
3703
3704 /* Try folding our operands.
3705 Then see which ones have constant values known. */
3706
3707 fmt = GET_RTX_FORMAT (code);
3708 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3709 if (fmt[i] == 'e')
3710 {
3711 rtx arg = XEXP (x, i);
3712 rtx folded_arg = arg, const_arg = 0;
3713 enum machine_mode mode_arg = GET_MODE (arg);
3714 rtx cheap_arg, expensive_arg;
3715 rtx replacements[2];
3716 int j;
3717 int old_cost = COST_IN (XEXP (x, i), code);
3718
3719 /* Most arguments are cheap, so handle them specially. */
3720 switch (GET_CODE (arg))
3721 {
3722 case REG:
3723 /* This is the same as calling equiv_constant; it is duplicated
3724 here for speed. */
3725 if (REGNO_QTY_VALID_P (REGNO (arg)))
3726 {
3727 int arg_q = REG_QTY (REGNO (arg));
3728 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3729
3730 if (arg_ent->const_rtx != NULL_RTX
3731 && !REG_P (arg_ent->const_rtx)
3732 && GET_CODE (arg_ent->const_rtx) != PLUS)
3733 const_arg
3734 = gen_lowpart (GET_MODE (arg),
3735 arg_ent->const_rtx);
3736 }
3737 break;
3738
3739 case CONST:
3740 case CONST_INT:
3741 case SYMBOL_REF:
3742 case LABEL_REF:
3743 case CONST_DOUBLE:
3744 case CONST_VECTOR:
3745 const_arg = arg;
3746 break;
3747
3748 #ifdef HAVE_cc0
3749 case CC0:
3750 folded_arg = prev_insn_cc0;
3751 mode_arg = prev_insn_cc0_mode;
3752 const_arg = equiv_constant (folded_arg);
3753 break;
3754 #endif
3755
3756 default:
3757 folded_arg = fold_rtx (arg, insn);
3758 const_arg = equiv_constant (folded_arg);
3759 }
3760
3761 /* For the first three operands, see if the operand
3762 is constant or equivalent to a constant. */
3763 switch (i)
3764 {
3765 case 0:
3766 folded_arg0 = folded_arg;
3767 const_arg0 = const_arg;
3768 mode_arg0 = mode_arg;
3769 break;
3770 case 1:
3771 folded_arg1 = folded_arg;
3772 const_arg1 = const_arg;
3773 break;
3774 case 2:
3775 const_arg2 = const_arg;
3776 break;
3777 }
3778
3779 /* Pick the least expensive of the folded argument and an
3780 equivalent constant argument. */
3781 if (const_arg == 0 || const_arg == folded_arg
3782 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3783 cheap_arg = folded_arg, expensive_arg = const_arg;
3784 else
3785 cheap_arg = const_arg, expensive_arg = folded_arg;
3786
3787 /* Try to replace the operand with the cheapest of the two
3788 possibilities. If it doesn't work and this is either of the first
3789 two operands of a commutative operation, try swapping them.
3790 If THAT fails, try the more expensive, provided it is cheaper
3791 than what is already there. */
3792
3793 if (cheap_arg == XEXP (x, i))
3794 continue;
3795
3796 if (insn == 0 && ! copied)
3797 {
3798 x = copy_rtx (x);
3799 copied = 1;
3800 }
3801
3802 /* Order the replacements from cheapest to most expensive. */
3803 replacements[0] = cheap_arg;
3804 replacements[1] = expensive_arg;
3805
3806 for (j = 0; j < 2 && replacements[j]; j++)
3807 {
3808 int new_cost = COST_IN (replacements[j], code);
3809
3810 /* Stop if what existed before was cheaper. Prefer constants
3811 in the case of a tie. */
3812 if (new_cost > old_cost
3813 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3814 break;
3815
3816 /* It's not safe to substitute the operand of a conversion
3817 operator with a constant, as the conversion's identity
3818 depends upon the mode of its operand. This optimization
3819 is handled by the call to simplify_unary_operation. */
3820 if (GET_RTX_CLASS (code) == RTX_UNARY
3821 && GET_MODE (replacements[j]) != mode_arg0
3822 && (code == ZERO_EXTEND
3823 || code == SIGN_EXTEND
3824 || code == TRUNCATE
3825 || code == FLOAT_TRUNCATE
3826 || code == FLOAT_EXTEND
3827 || code == FLOAT
3828 || code == FIX
3829 || code == UNSIGNED_FLOAT
3830 || code == UNSIGNED_FIX))
3831 continue;
3832
3833 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3834 break;
3835
3836 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3837 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
3838 {
3839 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3840 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3841
3842 if (apply_change_group ())
3843 {
3844 /* Swap them back to be invalid so that this loop can
3845 continue and flag them to be swapped back later. */
3846 rtx tem;
3847
3848 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3849 XEXP (x, 1) = tem;
3850 must_swap = 1;
3851 break;
3852 }
3853 }
3854 }
3855 }
3856
3857 else
3858 {
3859 if (fmt[i] == 'E')
3860 /* Don't try to fold inside of a vector of expressions.
3861 Doing nothing is harmless. */
3862 {;}
3863 }
3864
3865 /* If a commutative operation, place a constant integer as the second
3866 operand unless the first operand is also a constant integer. Otherwise,
3867 place any constant second unless the first operand is also a constant. */
3868
3869 if (COMMUTATIVE_P (x))
3870 {
3871 if (must_swap
3872 || swap_commutative_operands_p (const_arg0 ? const_arg0
3873 : XEXP (x, 0),
3874 const_arg1 ? const_arg1
3875 : XEXP (x, 1)))
3876 {
3877 rtx tem = XEXP (x, 0);
3878
3879 if (insn == 0 && ! copied)
3880 {
3881 x = copy_rtx (x);
3882 copied = 1;
3883 }
3884
3885 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3886 validate_change (insn, &XEXP (x, 1), tem, 1);
3887 if (apply_change_group ())
3888 {
3889 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3890 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3891 }
3892 }
3893 }
3894
3895 /* If X is an arithmetic operation, see if we can simplify it. */
3896
3897 switch (GET_RTX_CLASS (code))
3898 {
3899 case RTX_UNARY:
3900 {
3901 int is_const = 0;
3902
3903 /* We can't simplify extension ops unless we know the
3904 original mode. */
3905 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3906 && mode_arg0 == VOIDmode)
3907 break;
3908
3909 /* If we had a CONST, strip it off and put it back later if we
3910 fold. */
3911 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3912 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3913
3914 new = simplify_unary_operation (code, mode,
3915 const_arg0 ? const_arg0 : folded_arg0,
3916 mode_arg0);
3917 /* NEG of PLUS could be converted into MINUS, but that causes
3918 expressions of the form
3919 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3920 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3921 FIXME: those ports should be fixed. */
3922 if (new != 0 && is_const
3923 && GET_CODE (new) == PLUS
3924 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3925 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3926 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3927 new = gen_rtx_CONST (mode, new);
3928 }
3929 break;
3930
3931 case RTX_COMPARE:
3932 case RTX_COMM_COMPARE:
3933 /* See what items are actually being compared and set FOLDED_ARG[01]
3934 to those values and CODE to the actual comparison code. If any are
3935 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3936 do anything if both operands are already known to be constant. */
3937
3938 /* ??? Vector mode comparisons are not supported yet. */
3939 if (VECTOR_MODE_P (mode))
3940 break;
3941
3942 if (const_arg0 == 0 || const_arg1 == 0)
3943 {
3944 struct table_elt *p0, *p1;
3945 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3946 enum machine_mode mode_arg1;
3947
3948 #ifdef FLOAT_STORE_FLAG_VALUE
3949 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3950 {
3951 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3952 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3953 false_rtx = CONST0_RTX (mode);
3954 }
3955 #endif
3956
3957 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3958 &mode_arg0, &mode_arg1);
3959
3960 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3961 what kinds of things are being compared, so we can't do
3962 anything with this comparison. */
3963
3964 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3965 break;
3966
3967 const_arg0 = equiv_constant (folded_arg0);
3968 const_arg1 = equiv_constant (folded_arg1);
3969
3970 /* If we do not now have two constants being compared, see
3971 if we can nevertheless deduce some things about the
3972 comparison. */
3973 if (const_arg0 == 0 || const_arg1 == 0)
3974 {
3975 /* Some addresses are known to be nonzero. We don't know
3976 their sign, but equality comparisons are known. */
3977 if (const_arg1 == const0_rtx
3978 && nonzero_address_p (folded_arg0))
3979 {
3980 if (code == EQ)
3981 return false_rtx;
3982 else if (code == NE)
3983 return true_rtx;
3984 }
3985
3986 /* See if the two operands are the same. */
3987
3988 if (folded_arg0 == folded_arg1
3989 || (REG_P (folded_arg0)
3990 && REG_P (folded_arg1)
3991 && (REG_QTY (REGNO (folded_arg0))
3992 == REG_QTY (REGNO (folded_arg1))))
3993 || ((p0 = lookup (folded_arg0,
3994 SAFE_HASH (folded_arg0, mode_arg0),
3995 mode_arg0))
3996 && (p1 = lookup (folded_arg1,
3997 SAFE_HASH (folded_arg1, mode_arg0),
3998 mode_arg0))
3999 && p0->first_same_value == p1->first_same_value))
4000 {
4001 /* Sadly two equal NaNs are not equivalent. */
4002 if (!HONOR_NANS (mode_arg0))
4003 return ((code == EQ || code == LE || code == GE
4004 || code == LEU || code == GEU || code == UNEQ
4005 || code == UNLE || code == UNGE
4006 || code == ORDERED)
4007 ? true_rtx : false_rtx);
4008 /* Take care for the FP compares we can resolve. */
4009 if (code == UNEQ || code == UNLE || code == UNGE)
4010 return true_rtx;
4011 if (code == LTGT || code == LT || code == GT)
4012 return false_rtx;
4013 }
4014
4015 /* If FOLDED_ARG0 is a register, see if the comparison we are
4016 doing now is either the same as we did before or the reverse
4017 (we only check the reverse if not floating-point). */
4018 else if (REG_P (folded_arg0))
4019 {
4020 int qty = REG_QTY (REGNO (folded_arg0));
4021
4022 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
4023 {
4024 struct qty_table_elem *ent = &qty_table[qty];
4025
4026 if ((comparison_dominates_p (ent->comparison_code, code)
4027 || (! FLOAT_MODE_P (mode_arg0)
4028 && comparison_dominates_p (ent->comparison_code,
4029 reverse_condition (code))))
4030 && (rtx_equal_p (ent->comparison_const, folded_arg1)
4031 || (const_arg1
4032 && rtx_equal_p (ent->comparison_const,
4033 const_arg1))
4034 || (REG_P (folded_arg1)
4035 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4036 return (comparison_dominates_p (ent->comparison_code, code)
4037 ? true_rtx : false_rtx);
4038 }
4039 }
4040 }
4041 }
4042
4043 /* If we are comparing against zero, see if the first operand is
4044 equivalent to an IOR with a constant. If so, we may be able to
4045 determine the result of this comparison. */
4046
4047 if (const_arg1 == const0_rtx)
4048 {
4049 rtx y = lookup_as_function (folded_arg0, IOR);
4050 rtx inner_const;
4051
4052 if (y != 0
4053 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4054 && GET_CODE (inner_const) == CONST_INT
4055 && INTVAL (inner_const) != 0)
4056 {
4057 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4058 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4059 && (INTVAL (inner_const)
4060 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4061 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4062
4063 #ifdef FLOAT_STORE_FLAG_VALUE
4064 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4065 {
4066 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4067 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4068 false_rtx = CONST0_RTX (mode);
4069 }
4070 #endif
4071
4072 switch (code)
4073 {
4074 case EQ:
4075 return false_rtx;
4076 case NE:
4077 return true_rtx;
4078 case LT: case LE:
4079 if (has_sign)
4080 return true_rtx;
4081 break;
4082 case GT: case GE:
4083 if (has_sign)
4084 return false_rtx;
4085 break;
4086 default:
4087 break;
4088 }
4089 }
4090 }
4091
4092 {
4093 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4094 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4095 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4096 }
4097 break;
4098
4099 case RTX_BIN_ARITH:
4100 case RTX_COMM_ARITH:
4101 switch (code)
4102 {
4103 case PLUS:
4104 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4105 with that LABEL_REF as its second operand. If so, the result is
4106 the first operand of that MINUS. This handles switches with an
4107 ADDR_DIFF_VEC table. */
4108 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4109 {
4110 rtx y
4111 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4112 : lookup_as_function (folded_arg0, MINUS);
4113
4114 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4115 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4116 return XEXP (y, 0);
4117
4118 /* Now try for a CONST of a MINUS like the above. */
4119 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4120 : lookup_as_function (folded_arg0, CONST))) != 0
4121 && GET_CODE (XEXP (y, 0)) == MINUS
4122 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4123 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4124 return XEXP (XEXP (y, 0), 0);
4125 }
4126
4127 /* Likewise if the operands are in the other order. */
4128 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4129 {
4130 rtx y
4131 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4132 : lookup_as_function (folded_arg1, MINUS);
4133
4134 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4135 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4136 return XEXP (y, 0);
4137
4138 /* Now try for a CONST of a MINUS like the above. */
4139 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4140 : lookup_as_function (folded_arg1, CONST))) != 0
4141 && GET_CODE (XEXP (y, 0)) == MINUS
4142 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4143 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4144 return XEXP (XEXP (y, 0), 0);
4145 }
4146
4147 /* If second operand is a register equivalent to a negative
4148 CONST_INT, see if we can find a register equivalent to the
4149 positive constant. Make a MINUS if so. Don't do this for
4150 a non-negative constant since we might then alternate between
4151 choosing positive and negative constants. Having the positive
4152 constant previously-used is the more common case. Be sure
4153 the resulting constant is non-negative; if const_arg1 were
4154 the smallest negative number this would overflow: depending
4155 on the mode, this would either just be the same value (and
4156 hence not save anything) or be incorrect. */
4157 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4158 && INTVAL (const_arg1) < 0
4159 /* This used to test
4160
4161 -INTVAL (const_arg1) >= 0
4162
4163 But The Sun V5.0 compilers mis-compiled that test. So
4164 instead we test for the problematic value in a more direct
4165 manner and hope the Sun compilers get it correct. */
4166 && INTVAL (const_arg1) !=
4167 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4168 && REG_P (folded_arg1))
4169 {
4170 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4171 struct table_elt *p
4172 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
4173
4174 if (p)
4175 for (p = p->first_same_value; p; p = p->next_same_value)
4176 if (REG_P (p->exp))
4177 return simplify_gen_binary (MINUS, mode, folded_arg0,
4178 canon_reg (p->exp, NULL_RTX));
4179 }
4180 goto from_plus;
4181
4182 case MINUS:
4183 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4184 If so, produce (PLUS Z C2-C). */
4185 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4186 {
4187 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4188 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4189 return fold_rtx (plus_constant (copy_rtx (y),
4190 -INTVAL (const_arg1)),
4191 NULL_RTX);
4192 }
4193
4194 /* Fall through. */
4195
4196 from_plus:
4197 case SMIN: case SMAX: case UMIN: case UMAX:
4198 case IOR: case AND: case XOR:
4199 case MULT:
4200 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4201 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4202 is known to be of similar form, we may be able to replace the
4203 operation with a combined operation. This may eliminate the
4204 intermediate operation if every use is simplified in this way.
4205 Note that the similar optimization done by combine.c only works
4206 if the intermediate operation's result has only one reference. */
4207
4208 if (REG_P (folded_arg0)
4209 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4210 {
4211 int is_shift
4212 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4213 rtx y = lookup_as_function (folded_arg0, code);
4214 rtx inner_const;
4215 enum rtx_code associate_code;
4216 rtx new_const;
4217
4218 if (y == 0
4219 || 0 == (inner_const
4220 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4221 || GET_CODE (inner_const) != CONST_INT
4222 /* If we have compiled a statement like
4223 "if (x == (x & mask1))", and now are looking at
4224 "x & mask2", we will have a case where the first operand
4225 of Y is the same as our first operand. Unless we detect
4226 this case, an infinite loop will result. */
4227 || XEXP (y, 0) == folded_arg0)
4228 break;
4229
4230 /* Don't associate these operations if they are a PLUS with the
4231 same constant and it is a power of two. These might be doable
4232 with a pre- or post-increment. Similarly for two subtracts of
4233 identical powers of two with post decrement. */
4234
4235 if (code == PLUS && const_arg1 == inner_const
4236 && ((HAVE_PRE_INCREMENT
4237 && exact_log2 (INTVAL (const_arg1)) >= 0)
4238 || (HAVE_POST_INCREMENT
4239 && exact_log2 (INTVAL (const_arg1)) >= 0)
4240 || (HAVE_PRE_DECREMENT
4241 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4242 || (HAVE_POST_DECREMENT
4243 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4244 break;
4245
4246 /* Compute the code used to compose the constants. For example,
4247 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4248
4249 associate_code = (is_shift || code == MINUS ? PLUS : code);
4250
4251 new_const = simplify_binary_operation (associate_code, mode,
4252 const_arg1, inner_const);
4253
4254 if (new_const == 0)
4255 break;
4256
4257 /* If we are associating shift operations, don't let this
4258 produce a shift of the size of the object or larger.
4259 This could occur when we follow a sign-extend by a right
4260 shift on a machine that does a sign-extend as a pair
4261 of shifts. */
4262
4263 if (is_shift && GET_CODE (new_const) == CONST_INT
4264 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4265 {
4266 /* As an exception, we can turn an ASHIFTRT of this
4267 form into a shift of the number of bits - 1. */
4268 if (code == ASHIFTRT)
4269 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4270 else
4271 break;
4272 }
4273
4274 y = copy_rtx (XEXP (y, 0));
4275
4276 /* If Y contains our first operand (the most common way this
4277 can happen is if Y is a MEM), we would do into an infinite
4278 loop if we tried to fold it. So don't in that case. */
4279
4280 if (! reg_mentioned_p (folded_arg0, y))
4281 y = fold_rtx (y, insn);
4282
4283 return simplify_gen_binary (code, mode, y, new_const);
4284 }
4285 break;
4286
4287 case DIV: case UDIV:
4288 /* ??? The associative optimization performed immediately above is
4289 also possible for DIV and UDIV using associate_code of MULT.
4290 However, we would need extra code to verify that the
4291 multiplication does not overflow, that is, there is no overflow
4292 in the calculation of new_const. */
4293 break;
4294
4295 default:
4296 break;
4297 }
4298
4299 new = simplify_binary_operation (code, mode,
4300 const_arg0 ? const_arg0 : folded_arg0,
4301 const_arg1 ? const_arg1 : folded_arg1);
4302 break;
4303
4304 case RTX_OBJ:
4305 /* (lo_sum (high X) X) is simply X. */
4306 if (code == LO_SUM && const_arg0 != 0
4307 && GET_CODE (const_arg0) == HIGH
4308 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4309 return const_arg1;
4310 break;
4311
4312 case RTX_TERNARY:
4313 case RTX_BITFIELD_OPS:
4314 new = simplify_ternary_operation (code, mode, mode_arg0,
4315 const_arg0 ? const_arg0 : folded_arg0,
4316 const_arg1 ? const_arg1 : folded_arg1,
4317 const_arg2 ? const_arg2 : XEXP (x, 2));
4318 break;
4319
4320 default:
4321 break;
4322 }
4323
4324 return new ? new : x;
4325 }
4326 \f
4327 /* Return a constant value currently equivalent to X.
4328 Return 0 if we don't know one. */
4329
4330 static rtx
4331 equiv_constant (rtx x)
4332 {
4333 if (REG_P (x)
4334 && REGNO_QTY_VALID_P (REGNO (x)))
4335 {
4336 int x_q = REG_QTY (REGNO (x));
4337 struct qty_table_elem *x_ent = &qty_table[x_q];
4338
4339 if (x_ent->const_rtx)
4340 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
4341 }
4342
4343 if (x == 0 || CONSTANT_P (x))
4344 return x;
4345
4346 /* If X is a MEM, try to fold it outside the context of any insn to see if
4347 it might be equivalent to a constant. That handles the case where it
4348 is a constant-pool reference. Then try to look it up in the hash table
4349 in case it is something whose value we have seen before. */
4350
4351 if (MEM_P (x))
4352 {
4353 struct table_elt *elt;
4354
4355 x = fold_rtx (x, NULL_RTX);
4356 if (CONSTANT_P (x))
4357 return x;
4358
4359 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
4360 if (elt == 0)
4361 return 0;
4362
4363 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4364 if (elt->is_const && CONSTANT_P (elt->exp))
4365 return elt->exp;
4366 }
4367
4368 return 0;
4369 }
4370 \f
4371 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4372 branch. It will be zero if not.
4373
4374 In certain cases, this can cause us to add an equivalence. For example,
4375 if we are following the taken case of
4376 if (i == 2)
4377 we can add the fact that `i' and '2' are now equivalent.
4378
4379 In any case, we can record that this comparison was passed. If the same
4380 comparison is seen later, we will know its value. */
4381
4382 static void
4383 record_jump_equiv (rtx insn, int taken)
4384 {
4385 int cond_known_true;
4386 rtx op0, op1;
4387 rtx set;
4388 enum machine_mode mode, mode0, mode1;
4389 int reversed_nonequality = 0;
4390 enum rtx_code code;
4391
4392 /* Ensure this is the right kind of insn. */
4393 if (! any_condjump_p (insn))
4394 return;
4395 set = pc_set (insn);
4396
4397 /* See if this jump condition is known true or false. */
4398 if (taken)
4399 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4400 else
4401 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4402
4403 /* Get the type of comparison being done and the operands being compared.
4404 If we had to reverse a non-equality condition, record that fact so we
4405 know that it isn't valid for floating-point. */
4406 code = GET_CODE (XEXP (SET_SRC (set), 0));
4407 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4408 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4409
4410 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4411 if (! cond_known_true)
4412 {
4413 code = reversed_comparison_code_parts (code, op0, op1, insn);
4414
4415 /* Don't remember if we can't find the inverse. */
4416 if (code == UNKNOWN)
4417 return;
4418 }
4419
4420 /* The mode is the mode of the non-constant. */
4421 mode = mode0;
4422 if (mode1 != VOIDmode)
4423 mode = mode1;
4424
4425 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4426 }
4427
4428 /* Yet another form of subreg creation. In this case, we want something in
4429 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4430
4431 static rtx
4432 record_jump_cond_subreg (enum machine_mode mode, rtx op)
4433 {
4434 enum machine_mode op_mode = GET_MODE (op);
4435 if (op_mode == mode || op_mode == VOIDmode)
4436 return op;
4437 return lowpart_subreg (mode, op, op_mode);
4438 }
4439
4440 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4441 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4442 Make any useful entries we can with that information. Called from
4443 above function and called recursively. */
4444
4445 static void
4446 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4447 rtx op1, int reversed_nonequality)
4448 {
4449 unsigned op0_hash, op1_hash;
4450 int op0_in_memory, op1_in_memory;
4451 struct table_elt *op0_elt, *op1_elt;
4452
4453 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4454 we know that they are also equal in the smaller mode (this is also
4455 true for all smaller modes whether or not there is a SUBREG, but
4456 is not worth testing for with no SUBREG). */
4457
4458 /* Note that GET_MODE (op0) may not equal MODE. */
4459 if (code == EQ && GET_CODE (op0) == SUBREG
4460 && (GET_MODE_SIZE (GET_MODE (op0))
4461 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4462 {
4463 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4464 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4465 if (tem)
4466 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4467 reversed_nonequality);
4468 }
4469
4470 if (code == EQ && GET_CODE (op1) == SUBREG
4471 && (GET_MODE_SIZE (GET_MODE (op1))
4472 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4473 {
4474 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4475 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4476 if (tem)
4477 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4478 reversed_nonequality);
4479 }
4480
4481 /* Similarly, if this is an NE comparison, and either is a SUBREG
4482 making a smaller mode, we know the whole thing is also NE. */
4483
4484 /* Note that GET_MODE (op0) may not equal MODE;
4485 if we test MODE instead, we can get an infinite recursion
4486 alternating between two modes each wider than MODE. */
4487
4488 if (code == NE && GET_CODE (op0) == SUBREG
4489 && subreg_lowpart_p (op0)
4490 && (GET_MODE_SIZE (GET_MODE (op0))
4491 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4492 {
4493 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4494 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4495 if (tem)
4496 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4497 reversed_nonequality);
4498 }
4499
4500 if (code == NE && GET_CODE (op1) == SUBREG
4501 && subreg_lowpart_p (op1)
4502 && (GET_MODE_SIZE (GET_MODE (op1))
4503 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4504 {
4505 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4506 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4507 if (tem)
4508 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4509 reversed_nonequality);
4510 }
4511
4512 /* Hash both operands. */
4513
4514 do_not_record = 0;
4515 hash_arg_in_memory = 0;
4516 op0_hash = HASH (op0, mode);
4517 op0_in_memory = hash_arg_in_memory;
4518
4519 if (do_not_record)
4520 return;
4521
4522 do_not_record = 0;
4523 hash_arg_in_memory = 0;
4524 op1_hash = HASH (op1, mode);
4525 op1_in_memory = hash_arg_in_memory;
4526
4527 if (do_not_record)
4528 return;
4529
4530 /* Look up both operands. */
4531 op0_elt = lookup (op0, op0_hash, mode);
4532 op1_elt = lookup (op1, op1_hash, mode);
4533
4534 /* If both operands are already equivalent or if they are not in the
4535 table but are identical, do nothing. */
4536 if ((op0_elt != 0 && op1_elt != 0
4537 && op0_elt->first_same_value == op1_elt->first_same_value)
4538 || op0 == op1 || rtx_equal_p (op0, op1))
4539 return;
4540
4541 /* If we aren't setting two things equal all we can do is save this
4542 comparison. Similarly if this is floating-point. In the latter
4543 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4544 If we record the equality, we might inadvertently delete code
4545 whose intent was to change -0 to +0. */
4546
4547 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4548 {
4549 struct qty_table_elem *ent;
4550 int qty;
4551
4552 /* If we reversed a floating-point comparison, if OP0 is not a
4553 register, or if OP1 is neither a register or constant, we can't
4554 do anything. */
4555
4556 if (!REG_P (op1))
4557 op1 = equiv_constant (op1);
4558
4559 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4560 || !REG_P (op0) || op1 == 0)
4561 return;
4562
4563 /* Put OP0 in the hash table if it isn't already. This gives it a
4564 new quantity number. */
4565 if (op0_elt == 0)
4566 {
4567 if (insert_regs (op0, NULL, 0))
4568 {
4569 rehash_using_reg (op0);
4570 op0_hash = HASH (op0, mode);
4571
4572 /* If OP0 is contained in OP1, this changes its hash code
4573 as well. Faster to rehash than to check, except
4574 for the simple case of a constant. */
4575 if (! CONSTANT_P (op1))
4576 op1_hash = HASH (op1,mode);
4577 }
4578
4579 op0_elt = insert (op0, NULL, op0_hash, mode);
4580 op0_elt->in_memory = op0_in_memory;
4581 }
4582
4583 qty = REG_QTY (REGNO (op0));
4584 ent = &qty_table[qty];
4585
4586 ent->comparison_code = code;
4587 if (REG_P (op1))
4588 {
4589 /* Look it up again--in case op0 and op1 are the same. */
4590 op1_elt = lookup (op1, op1_hash, mode);
4591
4592 /* Put OP1 in the hash table so it gets a new quantity number. */
4593 if (op1_elt == 0)
4594 {
4595 if (insert_regs (op1, NULL, 0))
4596 {
4597 rehash_using_reg (op1);
4598 op1_hash = HASH (op1, mode);
4599 }
4600
4601 op1_elt = insert (op1, NULL, op1_hash, mode);
4602 op1_elt->in_memory = op1_in_memory;
4603 }
4604
4605 ent->comparison_const = NULL_RTX;
4606 ent->comparison_qty = REG_QTY (REGNO (op1));
4607 }
4608 else
4609 {
4610 ent->comparison_const = op1;
4611 ent->comparison_qty = -1;
4612 }
4613
4614 return;
4615 }
4616
4617 /* If either side is still missing an equivalence, make it now,
4618 then merge the equivalences. */
4619
4620 if (op0_elt == 0)
4621 {
4622 if (insert_regs (op0, NULL, 0))
4623 {
4624 rehash_using_reg (op0);
4625 op0_hash = HASH (op0, mode);
4626 }
4627
4628 op0_elt = insert (op0, NULL, op0_hash, mode);
4629 op0_elt->in_memory = op0_in_memory;
4630 }
4631
4632 if (op1_elt == 0)
4633 {
4634 if (insert_regs (op1, NULL, 0))
4635 {
4636 rehash_using_reg (op1);
4637 op1_hash = HASH (op1, mode);
4638 }
4639
4640 op1_elt = insert (op1, NULL, op1_hash, mode);
4641 op1_elt->in_memory = op1_in_memory;
4642 }
4643
4644 merge_equiv_classes (op0_elt, op1_elt);
4645 }
4646 \f
4647 /* CSE processing for one instruction.
4648 First simplify sources and addresses of all assignments
4649 in the instruction, using previously-computed equivalents values.
4650 Then install the new sources and destinations in the table
4651 of available values.
4652
4653 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4654 the insn. It means that INSN is inside libcall block. In this
4655 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4656
4657 /* Data on one SET contained in the instruction. */
4658
4659 struct set
4660 {
4661 /* The SET rtx itself. */
4662 rtx rtl;
4663 /* The SET_SRC of the rtx (the original value, if it is changing). */
4664 rtx src;
4665 /* The hash-table element for the SET_SRC of the SET. */
4666 struct table_elt *src_elt;
4667 /* Hash value for the SET_SRC. */
4668 unsigned src_hash;
4669 /* Hash value for the SET_DEST. */
4670 unsigned dest_hash;
4671 /* The SET_DEST, with SUBREG, etc., stripped. */
4672 rtx inner_dest;
4673 /* Nonzero if the SET_SRC is in memory. */
4674 char src_in_memory;
4675 /* Nonzero if the SET_SRC contains something
4676 whose value cannot be predicted and understood. */
4677 char src_volatile;
4678 /* Original machine mode, in case it becomes a CONST_INT.
4679 The size of this field should match the size of the mode
4680 field of struct rtx_def (see rtl.h). */
4681 ENUM_BITFIELD(machine_mode) mode : 8;
4682 /* A constant equivalent for SET_SRC, if any. */
4683 rtx src_const;
4684 /* Original SET_SRC value used for libcall notes. */
4685 rtx orig_src;
4686 /* Hash value of constant equivalent for SET_SRC. */
4687 unsigned src_const_hash;
4688 /* Table entry for constant equivalent for SET_SRC, if any. */
4689 struct table_elt *src_const_elt;
4690 };
4691
4692 static void
4693 cse_insn (rtx insn, rtx libcall_insn)
4694 {
4695 rtx x = PATTERN (insn);
4696 int i;
4697 rtx tem;
4698 int n_sets = 0;
4699
4700 #ifdef HAVE_cc0
4701 /* Records what this insn does to set CC0. */
4702 rtx this_insn_cc0 = 0;
4703 enum machine_mode this_insn_cc0_mode = VOIDmode;
4704 #endif
4705
4706 rtx src_eqv = 0;
4707 struct table_elt *src_eqv_elt = 0;
4708 int src_eqv_volatile = 0;
4709 int src_eqv_in_memory = 0;
4710 unsigned src_eqv_hash = 0;
4711
4712 struct set *sets = (struct set *) 0;
4713
4714 this_insn = insn;
4715
4716 /* Find all the SETs and CLOBBERs in this instruction.
4717 Record all the SETs in the array `set' and count them.
4718 Also determine whether there is a CLOBBER that invalidates
4719 all memory references, or all references at varying addresses. */
4720
4721 if (CALL_P (insn))
4722 {
4723 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4724 {
4725 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4726 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4727 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4728 }
4729 }
4730
4731 if (GET_CODE (x) == SET)
4732 {
4733 sets = alloca (sizeof (struct set));
4734 sets[0].rtl = x;
4735
4736 /* Ignore SETs that are unconditional jumps.
4737 They never need cse processing, so this does not hurt.
4738 The reason is not efficiency but rather
4739 so that we can test at the end for instructions
4740 that have been simplified to unconditional jumps
4741 and not be misled by unchanged instructions
4742 that were unconditional jumps to begin with. */
4743 if (SET_DEST (x) == pc_rtx
4744 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4745 ;
4746
4747 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4748 The hard function value register is used only once, to copy to
4749 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4750 Ensure we invalidate the destination register. On the 80386 no
4751 other code would invalidate it since it is a fixed_reg.
4752 We need not check the return of apply_change_group; see canon_reg. */
4753
4754 else if (GET_CODE (SET_SRC (x)) == CALL)
4755 {
4756 canon_reg (SET_SRC (x), insn);
4757 apply_change_group ();
4758 fold_rtx (SET_SRC (x), insn);
4759 invalidate (SET_DEST (x), VOIDmode);
4760 }
4761 else
4762 n_sets = 1;
4763 }
4764 else if (GET_CODE (x) == PARALLEL)
4765 {
4766 int lim = XVECLEN (x, 0);
4767
4768 sets = alloca (lim * sizeof (struct set));
4769
4770 /* Find all regs explicitly clobbered in this insn,
4771 and ensure they are not replaced with any other regs
4772 elsewhere in this insn.
4773 When a reg that is clobbered is also used for input,
4774 we should presume that that is for a reason,
4775 and we should not substitute some other register
4776 which is not supposed to be clobbered.
4777 Therefore, this loop cannot be merged into the one below
4778 because a CALL may precede a CLOBBER and refer to the
4779 value clobbered. We must not let a canonicalization do
4780 anything in that case. */
4781 for (i = 0; i < lim; i++)
4782 {
4783 rtx y = XVECEXP (x, 0, i);
4784 if (GET_CODE (y) == CLOBBER)
4785 {
4786 rtx clobbered = XEXP (y, 0);
4787
4788 if (REG_P (clobbered)
4789 || GET_CODE (clobbered) == SUBREG)
4790 invalidate (clobbered, VOIDmode);
4791 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4792 || GET_CODE (clobbered) == ZERO_EXTRACT)
4793 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4794 }
4795 }
4796
4797 for (i = 0; i < lim; i++)
4798 {
4799 rtx y = XVECEXP (x, 0, i);
4800 if (GET_CODE (y) == SET)
4801 {
4802 /* As above, we ignore unconditional jumps and call-insns and
4803 ignore the result of apply_change_group. */
4804 if (GET_CODE (SET_SRC (y)) == CALL)
4805 {
4806 canon_reg (SET_SRC (y), insn);
4807 apply_change_group ();
4808 fold_rtx (SET_SRC (y), insn);
4809 invalidate (SET_DEST (y), VOIDmode);
4810 }
4811 else if (SET_DEST (y) == pc_rtx
4812 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4813 ;
4814 else
4815 sets[n_sets++].rtl = y;
4816 }
4817 else if (GET_CODE (y) == CLOBBER)
4818 {
4819 /* If we clobber memory, canon the address.
4820 This does nothing when a register is clobbered
4821 because we have already invalidated the reg. */
4822 if (MEM_P (XEXP (y, 0)))
4823 canon_reg (XEXP (y, 0), NULL_RTX);
4824 }
4825 else if (GET_CODE (y) == USE
4826 && ! (REG_P (XEXP (y, 0))
4827 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4828 canon_reg (y, NULL_RTX);
4829 else if (GET_CODE (y) == CALL)
4830 {
4831 /* The result of apply_change_group can be ignored; see
4832 canon_reg. */
4833 canon_reg (y, insn);
4834 apply_change_group ();
4835 fold_rtx (y, insn);
4836 }
4837 }
4838 }
4839 else if (GET_CODE (x) == CLOBBER)
4840 {
4841 if (MEM_P (XEXP (x, 0)))
4842 canon_reg (XEXP (x, 0), NULL_RTX);
4843 }
4844
4845 /* Canonicalize a USE of a pseudo register or memory location. */
4846 else if (GET_CODE (x) == USE
4847 && ! (REG_P (XEXP (x, 0))
4848 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4849 canon_reg (XEXP (x, 0), NULL_RTX);
4850 else if (GET_CODE (x) == CALL)
4851 {
4852 /* The result of apply_change_group can be ignored; see canon_reg. */
4853 canon_reg (x, insn);
4854 apply_change_group ();
4855 fold_rtx (x, insn);
4856 }
4857
4858 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4859 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4860 is handled specially for this case, and if it isn't set, then there will
4861 be no equivalence for the destination. */
4862 if (n_sets == 1 && REG_NOTES (insn) != 0
4863 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4864 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4865 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4866 {
4867 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4868 XEXP (tem, 0) = src_eqv;
4869 }
4870
4871 /* Canonicalize sources and addresses of destinations.
4872 We do this in a separate pass to avoid problems when a MATCH_DUP is
4873 present in the insn pattern. In that case, we want to ensure that
4874 we don't break the duplicate nature of the pattern. So we will replace
4875 both operands at the same time. Otherwise, we would fail to find an
4876 equivalent substitution in the loop calling validate_change below.
4877
4878 We used to suppress canonicalization of DEST if it appears in SRC,
4879 but we don't do this any more. */
4880
4881 for (i = 0; i < n_sets; i++)
4882 {
4883 rtx dest = SET_DEST (sets[i].rtl);
4884 rtx src = SET_SRC (sets[i].rtl);
4885 rtx new = canon_reg (src, insn);
4886 int insn_code;
4887
4888 sets[i].orig_src = src;
4889 if ((REG_P (new) && REG_P (src)
4890 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4891 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4892 || (insn_code = recog_memoized (insn)) < 0
4893 || insn_data[insn_code].n_dups > 0)
4894 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4895 else
4896 SET_SRC (sets[i].rtl) = new;
4897
4898 if (GET_CODE (dest) == ZERO_EXTRACT)
4899 {
4900 validate_change (insn, &XEXP (dest, 1),
4901 canon_reg (XEXP (dest, 1), insn), 1);
4902 validate_change (insn, &XEXP (dest, 2),
4903 canon_reg (XEXP (dest, 2), insn), 1);
4904 }
4905
4906 while (GET_CODE (dest) == SUBREG
4907 || GET_CODE (dest) == ZERO_EXTRACT
4908 || GET_CODE (dest) == STRICT_LOW_PART)
4909 dest = XEXP (dest, 0);
4910
4911 if (MEM_P (dest))
4912 canon_reg (dest, insn);
4913 }
4914
4915 /* Now that we have done all the replacements, we can apply the change
4916 group and see if they all work. Note that this will cause some
4917 canonicalizations that would have worked individually not to be applied
4918 because some other canonicalization didn't work, but this should not
4919 occur often.
4920
4921 The result of apply_change_group can be ignored; see canon_reg. */
4922
4923 apply_change_group ();
4924
4925 /* Set sets[i].src_elt to the class each source belongs to.
4926 Detect assignments from or to volatile things
4927 and set set[i] to zero so they will be ignored
4928 in the rest of this function.
4929
4930 Nothing in this loop changes the hash table or the register chains. */
4931
4932 for (i = 0; i < n_sets; i++)
4933 {
4934 rtx src, dest;
4935 rtx src_folded;
4936 struct table_elt *elt = 0, *p;
4937 enum machine_mode mode;
4938 rtx src_eqv_here;
4939 rtx src_const = 0;
4940 rtx src_related = 0;
4941 struct table_elt *src_const_elt = 0;
4942 int src_cost = MAX_COST;
4943 int src_eqv_cost = MAX_COST;
4944 int src_folded_cost = MAX_COST;
4945 int src_related_cost = MAX_COST;
4946 int src_elt_cost = MAX_COST;
4947 int src_regcost = MAX_COST;
4948 int src_eqv_regcost = MAX_COST;
4949 int src_folded_regcost = MAX_COST;
4950 int src_related_regcost = MAX_COST;
4951 int src_elt_regcost = MAX_COST;
4952 /* Set nonzero if we need to call force_const_mem on with the
4953 contents of src_folded before using it. */
4954 int src_folded_force_flag = 0;
4955
4956 dest = SET_DEST (sets[i].rtl);
4957 src = SET_SRC (sets[i].rtl);
4958
4959 /* If SRC is a constant that has no machine mode,
4960 hash it with the destination's machine mode.
4961 This way we can keep different modes separate. */
4962
4963 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4964 sets[i].mode = mode;
4965
4966 if (src_eqv)
4967 {
4968 enum machine_mode eqvmode = mode;
4969 if (GET_CODE (dest) == STRICT_LOW_PART)
4970 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4971 do_not_record = 0;
4972 hash_arg_in_memory = 0;
4973 src_eqv_hash = HASH (src_eqv, eqvmode);
4974
4975 /* Find the equivalence class for the equivalent expression. */
4976
4977 if (!do_not_record)
4978 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4979
4980 src_eqv_volatile = do_not_record;
4981 src_eqv_in_memory = hash_arg_in_memory;
4982 }
4983
4984 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4985 value of the INNER register, not the destination. So it is not
4986 a valid substitution for the source. But save it for later. */
4987 if (GET_CODE (dest) == STRICT_LOW_PART)
4988 src_eqv_here = 0;
4989 else
4990 src_eqv_here = src_eqv;
4991
4992 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4993 simplified result, which may not necessarily be valid. */
4994 src_folded = fold_rtx (src, insn);
4995
4996 #if 0
4997 /* ??? This caused bad code to be generated for the m68k port with -O2.
4998 Suppose src is (CONST_INT -1), and that after truncation src_folded
4999 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5000 At the end we will add src and src_const to the same equivalence
5001 class. We now have 3 and -1 on the same equivalence class. This
5002 causes later instructions to be mis-optimized. */
5003 /* If storing a constant in a bitfield, pre-truncate the constant
5004 so we will be able to record it later. */
5005 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5006 {
5007 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5008
5009 if (GET_CODE (src) == CONST_INT
5010 && GET_CODE (width) == CONST_INT
5011 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5012 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5013 src_folded
5014 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5015 << INTVAL (width)) - 1));
5016 }
5017 #endif
5018
5019 /* Compute SRC's hash code, and also notice if it
5020 should not be recorded at all. In that case,
5021 prevent any further processing of this assignment. */
5022 do_not_record = 0;
5023 hash_arg_in_memory = 0;
5024
5025 sets[i].src = src;
5026 sets[i].src_hash = HASH (src, mode);
5027 sets[i].src_volatile = do_not_record;
5028 sets[i].src_in_memory = hash_arg_in_memory;
5029
5030 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5031 a pseudo, do not record SRC. Using SRC as a replacement for
5032 anything else will be incorrect in that situation. Note that
5033 this usually occurs only for stack slots, in which case all the
5034 RTL would be referring to SRC, so we don't lose any optimization
5035 opportunities by not having SRC in the hash table. */
5036
5037 if (MEM_P (src)
5038 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5039 && REG_P (dest)
5040 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5041 sets[i].src_volatile = 1;
5042
5043 #if 0
5044 /* It is no longer clear why we used to do this, but it doesn't
5045 appear to still be needed. So let's try without it since this
5046 code hurts cse'ing widened ops. */
5047 /* If source is a paradoxical subreg (such as QI treated as an SI),
5048 treat it as volatile. It may do the work of an SI in one context
5049 where the extra bits are not being used, but cannot replace an SI
5050 in general. */
5051 if (GET_CODE (src) == SUBREG
5052 && (GET_MODE_SIZE (GET_MODE (src))
5053 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5054 sets[i].src_volatile = 1;
5055 #endif
5056
5057 /* Locate all possible equivalent forms for SRC. Try to replace
5058 SRC in the insn with each cheaper equivalent.
5059
5060 We have the following types of equivalents: SRC itself, a folded
5061 version, a value given in a REG_EQUAL note, or a value related
5062 to a constant.
5063
5064 Each of these equivalents may be part of an additional class
5065 of equivalents (if more than one is in the table, they must be in
5066 the same class; we check for this).
5067
5068 If the source is volatile, we don't do any table lookups.
5069
5070 We note any constant equivalent for possible later use in a
5071 REG_NOTE. */
5072
5073 if (!sets[i].src_volatile)
5074 elt = lookup (src, sets[i].src_hash, mode);
5075
5076 sets[i].src_elt = elt;
5077
5078 if (elt && src_eqv_here && src_eqv_elt)
5079 {
5080 if (elt->first_same_value != src_eqv_elt->first_same_value)
5081 {
5082 /* The REG_EQUAL is indicating that two formerly distinct
5083 classes are now equivalent. So merge them. */
5084 merge_equiv_classes (elt, src_eqv_elt);
5085 src_eqv_hash = HASH (src_eqv, elt->mode);
5086 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5087 }
5088
5089 src_eqv_here = 0;
5090 }
5091
5092 else if (src_eqv_elt)
5093 elt = src_eqv_elt;
5094
5095 /* Try to find a constant somewhere and record it in `src_const'.
5096 Record its table element, if any, in `src_const_elt'. Look in
5097 any known equivalences first. (If the constant is not in the
5098 table, also set `sets[i].src_const_hash'). */
5099 if (elt)
5100 for (p = elt->first_same_value; p; p = p->next_same_value)
5101 if (p->is_const)
5102 {
5103 src_const = p->exp;
5104 src_const_elt = elt;
5105 break;
5106 }
5107
5108 if (src_const == 0
5109 && (CONSTANT_P (src_folded)
5110 /* Consider (minus (label_ref L1) (label_ref L2)) as
5111 "constant" here so we will record it. This allows us
5112 to fold switch statements when an ADDR_DIFF_VEC is used. */
5113 || (GET_CODE (src_folded) == MINUS
5114 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5115 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5116 src_const = src_folded, src_const_elt = elt;
5117 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5118 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5119
5120 /* If we don't know if the constant is in the table, get its
5121 hash code and look it up. */
5122 if (src_const && src_const_elt == 0)
5123 {
5124 sets[i].src_const_hash = HASH (src_const, mode);
5125 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5126 }
5127
5128 sets[i].src_const = src_const;
5129 sets[i].src_const_elt = src_const_elt;
5130
5131 /* If the constant and our source are both in the table, mark them as
5132 equivalent. Otherwise, if a constant is in the table but the source
5133 isn't, set ELT to it. */
5134 if (src_const_elt && elt
5135 && src_const_elt->first_same_value != elt->first_same_value)
5136 merge_equiv_classes (elt, src_const_elt);
5137 else if (src_const_elt && elt == 0)
5138 elt = src_const_elt;
5139
5140 /* See if there is a register linearly related to a constant
5141 equivalent of SRC. */
5142 if (src_const
5143 && (GET_CODE (src_const) == CONST
5144 || (src_const_elt && src_const_elt->related_value != 0)))
5145 {
5146 src_related = use_related_value (src_const, src_const_elt);
5147 if (src_related)
5148 {
5149 struct table_elt *src_related_elt
5150 = lookup (src_related, HASH (src_related, mode), mode);
5151 if (src_related_elt && elt)
5152 {
5153 if (elt->first_same_value
5154 != src_related_elt->first_same_value)
5155 /* This can occur when we previously saw a CONST
5156 involving a SYMBOL_REF and then see the SYMBOL_REF
5157 twice. Merge the involved classes. */
5158 merge_equiv_classes (elt, src_related_elt);
5159
5160 src_related = 0;
5161 src_related_elt = 0;
5162 }
5163 else if (src_related_elt && elt == 0)
5164 elt = src_related_elt;
5165 }
5166 }
5167
5168 /* See if we have a CONST_INT that is already in a register in a
5169 wider mode. */
5170
5171 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5172 && GET_MODE_CLASS (mode) == MODE_INT
5173 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5174 {
5175 enum machine_mode wider_mode;
5176
5177 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5178 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5179 && src_related == 0;
5180 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5181 {
5182 struct table_elt *const_elt
5183 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5184
5185 if (const_elt == 0)
5186 continue;
5187
5188 for (const_elt = const_elt->first_same_value;
5189 const_elt; const_elt = const_elt->next_same_value)
5190 if (REG_P (const_elt->exp))
5191 {
5192 src_related = gen_lowpart (mode,
5193 const_elt->exp);
5194 break;
5195 }
5196 }
5197 }
5198
5199 /* Another possibility is that we have an AND with a constant in
5200 a mode narrower than a word. If so, it might have been generated
5201 as part of an "if" which would narrow the AND. If we already
5202 have done the AND in a wider mode, we can use a SUBREG of that
5203 value. */
5204
5205 if (flag_expensive_optimizations && ! src_related
5206 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5207 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5208 {
5209 enum machine_mode tmode;
5210 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5211
5212 for (tmode = GET_MODE_WIDER_MODE (mode);
5213 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5214 tmode = GET_MODE_WIDER_MODE (tmode))
5215 {
5216 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
5217 struct table_elt *larger_elt;
5218
5219 if (inner)
5220 {
5221 PUT_MODE (new_and, tmode);
5222 XEXP (new_and, 0) = inner;
5223 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5224 if (larger_elt == 0)
5225 continue;
5226
5227 for (larger_elt = larger_elt->first_same_value;
5228 larger_elt; larger_elt = larger_elt->next_same_value)
5229 if (REG_P (larger_elt->exp))
5230 {
5231 src_related
5232 = gen_lowpart (mode, larger_elt->exp);
5233 break;
5234 }
5235
5236 if (src_related)
5237 break;
5238 }
5239 }
5240 }
5241
5242 #ifdef LOAD_EXTEND_OP
5243 /* See if a MEM has already been loaded with a widening operation;
5244 if it has, we can use a subreg of that. Many CISC machines
5245 also have such operations, but this is only likely to be
5246 beneficial on these machines. */
5247
5248 if (flag_expensive_optimizations && src_related == 0
5249 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5250 && GET_MODE_CLASS (mode) == MODE_INT
5251 && MEM_P (src) && ! do_not_record
5252 && LOAD_EXTEND_OP (mode) != UNKNOWN)
5253 {
5254 struct rtx_def memory_extend_buf;
5255 rtx memory_extend_rtx = &memory_extend_buf;
5256 enum machine_mode tmode;
5257
5258 /* Set what we are trying to extend and the operation it might
5259 have been extended with. */
5260 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
5261 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5262 XEXP (memory_extend_rtx, 0) = src;
5263
5264 for (tmode = GET_MODE_WIDER_MODE (mode);
5265 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5266 tmode = GET_MODE_WIDER_MODE (tmode))
5267 {
5268 struct table_elt *larger_elt;
5269
5270 PUT_MODE (memory_extend_rtx, tmode);
5271 larger_elt = lookup (memory_extend_rtx,
5272 HASH (memory_extend_rtx, tmode), tmode);
5273 if (larger_elt == 0)
5274 continue;
5275
5276 for (larger_elt = larger_elt->first_same_value;
5277 larger_elt; larger_elt = larger_elt->next_same_value)
5278 if (REG_P (larger_elt->exp))
5279 {
5280 src_related = gen_lowpart (mode,
5281 larger_elt->exp);
5282 break;
5283 }
5284
5285 if (src_related)
5286 break;
5287 }
5288 }
5289 #endif /* LOAD_EXTEND_OP */
5290
5291 if (src == src_folded)
5292 src_folded = 0;
5293
5294 /* At this point, ELT, if nonzero, points to a class of expressions
5295 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5296 and SRC_RELATED, if nonzero, each contain additional equivalent
5297 expressions. Prune these latter expressions by deleting expressions
5298 already in the equivalence class.
5299
5300 Check for an equivalent identical to the destination. If found,
5301 this is the preferred equivalent since it will likely lead to
5302 elimination of the insn. Indicate this by placing it in
5303 `src_related'. */
5304
5305 if (elt)
5306 elt = elt->first_same_value;
5307 for (p = elt; p; p = p->next_same_value)
5308 {
5309 enum rtx_code code = GET_CODE (p->exp);
5310
5311 /* If the expression is not valid, ignore it. Then we do not
5312 have to check for validity below. In most cases, we can use
5313 `rtx_equal_p', since canonicalization has already been done. */
5314 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5315 continue;
5316
5317 /* Also skip paradoxical subregs, unless that's what we're
5318 looking for. */
5319 if (code == SUBREG
5320 && (GET_MODE_SIZE (GET_MODE (p->exp))
5321 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5322 && ! (src != 0
5323 && GET_CODE (src) == SUBREG
5324 && GET_MODE (src) == GET_MODE (p->exp)
5325 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5326 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5327 continue;
5328
5329 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5330 src = 0;
5331 else if (src_folded && GET_CODE (src_folded) == code
5332 && rtx_equal_p (src_folded, p->exp))
5333 src_folded = 0;
5334 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5335 && rtx_equal_p (src_eqv_here, p->exp))
5336 src_eqv_here = 0;
5337 else if (src_related && GET_CODE (src_related) == code
5338 && rtx_equal_p (src_related, p->exp))
5339 src_related = 0;
5340
5341 /* This is the same as the destination of the insns, we want
5342 to prefer it. Copy it to src_related. The code below will
5343 then give it a negative cost. */
5344 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5345 src_related = dest;
5346 }
5347
5348 /* Find the cheapest valid equivalent, trying all the available
5349 possibilities. Prefer items not in the hash table to ones
5350 that are when they are equal cost. Note that we can never
5351 worsen an insn as the current contents will also succeed.
5352 If we find an equivalent identical to the destination, use it as best,
5353 since this insn will probably be eliminated in that case. */
5354 if (src)
5355 {
5356 if (rtx_equal_p (src, dest))
5357 src_cost = src_regcost = -1;
5358 else
5359 {
5360 src_cost = COST (src);
5361 src_regcost = approx_reg_cost (src);
5362 }
5363 }
5364
5365 if (src_eqv_here)
5366 {
5367 if (rtx_equal_p (src_eqv_here, dest))
5368 src_eqv_cost = src_eqv_regcost = -1;
5369 else
5370 {
5371 src_eqv_cost = COST (src_eqv_here);
5372 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5373 }
5374 }
5375
5376 if (src_folded)
5377 {
5378 if (rtx_equal_p (src_folded, dest))
5379 src_folded_cost = src_folded_regcost = -1;
5380 else
5381 {
5382 src_folded_cost = COST (src_folded);
5383 src_folded_regcost = approx_reg_cost (src_folded);
5384 }
5385 }
5386
5387 if (src_related)
5388 {
5389 if (rtx_equal_p (src_related, dest))
5390 src_related_cost = src_related_regcost = -1;
5391 else
5392 {
5393 src_related_cost = COST (src_related);
5394 src_related_regcost = approx_reg_cost (src_related);
5395 }
5396 }
5397
5398 /* If this was an indirect jump insn, a known label will really be
5399 cheaper even though it looks more expensive. */
5400 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5401 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5402
5403 /* Terminate loop when replacement made. This must terminate since
5404 the current contents will be tested and will always be valid. */
5405 while (1)
5406 {
5407 rtx trial;
5408
5409 /* Skip invalid entries. */
5410 while (elt && !REG_P (elt->exp)
5411 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5412 elt = elt->next_same_value;
5413
5414 /* A paradoxical subreg would be bad here: it'll be the right
5415 size, but later may be adjusted so that the upper bits aren't
5416 what we want. So reject it. */
5417 if (elt != 0
5418 && GET_CODE (elt->exp) == SUBREG
5419 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5420 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5421 /* It is okay, though, if the rtx we're trying to match
5422 will ignore any of the bits we can't predict. */
5423 && ! (src != 0
5424 && GET_CODE (src) == SUBREG
5425 && GET_MODE (src) == GET_MODE (elt->exp)
5426 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5427 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5428 {
5429 elt = elt->next_same_value;
5430 continue;
5431 }
5432
5433 if (elt)
5434 {
5435 src_elt_cost = elt->cost;
5436 src_elt_regcost = elt->regcost;
5437 }
5438
5439 /* Find cheapest and skip it for the next time. For items
5440 of equal cost, use this order:
5441 src_folded, src, src_eqv, src_related and hash table entry. */
5442 if (src_folded
5443 && preferable (src_folded_cost, src_folded_regcost,
5444 src_cost, src_regcost) <= 0
5445 && preferable (src_folded_cost, src_folded_regcost,
5446 src_eqv_cost, src_eqv_regcost) <= 0
5447 && preferable (src_folded_cost, src_folded_regcost,
5448 src_related_cost, src_related_regcost) <= 0
5449 && preferable (src_folded_cost, src_folded_regcost,
5450 src_elt_cost, src_elt_regcost) <= 0)
5451 {
5452 trial = src_folded, src_folded_cost = MAX_COST;
5453 if (src_folded_force_flag)
5454 {
5455 rtx forced = force_const_mem (mode, trial);
5456 if (forced)
5457 trial = forced;
5458 }
5459 }
5460 else if (src
5461 && preferable (src_cost, src_regcost,
5462 src_eqv_cost, src_eqv_regcost) <= 0
5463 && preferable (src_cost, src_regcost,
5464 src_related_cost, src_related_regcost) <= 0
5465 && preferable (src_cost, src_regcost,
5466 src_elt_cost, src_elt_regcost) <= 0)
5467 trial = src, src_cost = MAX_COST;
5468 else if (src_eqv_here
5469 && preferable (src_eqv_cost, src_eqv_regcost,
5470 src_related_cost, src_related_regcost) <= 0
5471 && preferable (src_eqv_cost, src_eqv_regcost,
5472 src_elt_cost, src_elt_regcost) <= 0)
5473 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5474 else if (src_related
5475 && preferable (src_related_cost, src_related_regcost,
5476 src_elt_cost, src_elt_regcost) <= 0)
5477 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5478 else
5479 {
5480 trial = copy_rtx (elt->exp);
5481 elt = elt->next_same_value;
5482 src_elt_cost = MAX_COST;
5483 }
5484
5485 /* We don't normally have an insn matching (set (pc) (pc)), so
5486 check for this separately here. We will delete such an
5487 insn below.
5488
5489 For other cases such as a table jump or conditional jump
5490 where we know the ultimate target, go ahead and replace the
5491 operand. While that may not make a valid insn, we will
5492 reemit the jump below (and also insert any necessary
5493 barriers). */
5494 if (n_sets == 1 && dest == pc_rtx
5495 && (trial == pc_rtx
5496 || (GET_CODE (trial) == LABEL_REF
5497 && ! condjump_p (insn))))
5498 {
5499 /* Don't substitute non-local labels, this confuses CFG. */
5500 if (GET_CODE (trial) == LABEL_REF
5501 && LABEL_REF_NONLOCAL_P (trial))
5502 continue;
5503
5504 SET_SRC (sets[i].rtl) = trial;
5505 cse_jumps_altered = 1;
5506 break;
5507 }
5508
5509 /* Look for a substitution that makes a valid insn. */
5510 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5511 {
5512 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5513
5514 /* If we just made a substitution inside a libcall, then we
5515 need to make the same substitution in any notes attached
5516 to the RETVAL insn. */
5517 if (libcall_insn
5518 && (REG_P (sets[i].orig_src)
5519 || GET_CODE (sets[i].orig_src) == SUBREG
5520 || MEM_P (sets[i].orig_src)))
5521 {
5522 rtx note = find_reg_equal_equiv_note (libcall_insn);
5523 if (note != 0)
5524 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5525 sets[i].orig_src,
5526 copy_rtx (new));
5527 }
5528
5529 /* The result of apply_change_group can be ignored; see
5530 canon_reg. */
5531
5532 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5533 apply_change_group ();
5534 break;
5535 }
5536
5537 /* If we previously found constant pool entries for
5538 constants and this is a constant, try making a
5539 pool entry. Put it in src_folded unless we already have done
5540 this since that is where it likely came from. */
5541
5542 else if (constant_pool_entries_cost
5543 && CONSTANT_P (trial)
5544 /* Reject cases that will cause decode_rtx_const to
5545 die. On the alpha when simplifying a switch, we
5546 get (const (truncate (minus (label_ref)
5547 (label_ref)))). */
5548 && ! (GET_CODE (trial) == CONST
5549 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5550 /* Likewise on IA-64, except without the truncate. */
5551 && ! (GET_CODE (trial) == CONST
5552 && GET_CODE (XEXP (trial, 0)) == MINUS
5553 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5554 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5555 && (src_folded == 0
5556 || (!MEM_P (src_folded)
5557 && ! src_folded_force_flag))
5558 && GET_MODE_CLASS (mode) != MODE_CC
5559 && mode != VOIDmode)
5560 {
5561 src_folded_force_flag = 1;
5562 src_folded = trial;
5563 src_folded_cost = constant_pool_entries_cost;
5564 src_folded_regcost = constant_pool_entries_regcost;
5565 }
5566 }
5567
5568 src = SET_SRC (sets[i].rtl);
5569
5570 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5571 However, there is an important exception: If both are registers
5572 that are not the head of their equivalence class, replace SET_SRC
5573 with the head of the class. If we do not do this, we will have
5574 both registers live over a portion of the basic block. This way,
5575 their lifetimes will likely abut instead of overlapping. */
5576 if (REG_P (dest)
5577 && REGNO_QTY_VALID_P (REGNO (dest)))
5578 {
5579 int dest_q = REG_QTY (REGNO (dest));
5580 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5581
5582 if (dest_ent->mode == GET_MODE (dest)
5583 && dest_ent->first_reg != REGNO (dest)
5584 && REG_P (src) && REGNO (src) == REGNO (dest)
5585 /* Don't do this if the original insn had a hard reg as
5586 SET_SRC or SET_DEST. */
5587 && (!REG_P (sets[i].src)
5588 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5589 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5590 /* We can't call canon_reg here because it won't do anything if
5591 SRC is a hard register. */
5592 {
5593 int src_q = REG_QTY (REGNO (src));
5594 struct qty_table_elem *src_ent = &qty_table[src_q];
5595 int first = src_ent->first_reg;
5596 rtx new_src
5597 = (first >= FIRST_PSEUDO_REGISTER
5598 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5599
5600 /* We must use validate-change even for this, because this
5601 might be a special no-op instruction, suitable only to
5602 tag notes onto. */
5603 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5604 {
5605 src = new_src;
5606 /* If we had a constant that is cheaper than what we are now
5607 setting SRC to, use that constant. We ignored it when we
5608 thought we could make this into a no-op. */
5609 if (src_const && COST (src_const) < COST (src)
5610 && validate_change (insn, &SET_SRC (sets[i].rtl),
5611 src_const, 0))
5612 src = src_const;
5613 }
5614 }
5615 }
5616
5617 /* If we made a change, recompute SRC values. */
5618 if (src != sets[i].src)
5619 {
5620 cse_altered = 1;
5621 do_not_record = 0;
5622 hash_arg_in_memory = 0;
5623 sets[i].src = src;
5624 sets[i].src_hash = HASH (src, mode);
5625 sets[i].src_volatile = do_not_record;
5626 sets[i].src_in_memory = hash_arg_in_memory;
5627 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5628 }
5629
5630 /* If this is a single SET, we are setting a register, and we have an
5631 equivalent constant, we want to add a REG_NOTE. We don't want
5632 to write a REG_EQUAL note for a constant pseudo since verifying that
5633 that pseudo hasn't been eliminated is a pain. Such a note also
5634 won't help anything.
5635
5636 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5637 which can be created for a reference to a compile time computable
5638 entry in a jump table. */
5639
5640 if (n_sets == 1 && src_const && REG_P (dest)
5641 && !REG_P (src_const)
5642 && ! (GET_CODE (src_const) == CONST
5643 && GET_CODE (XEXP (src_const, 0)) == MINUS
5644 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5645 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5646 {
5647 /* We only want a REG_EQUAL note if src_const != src. */
5648 if (! rtx_equal_p (src, src_const))
5649 {
5650 /* Make sure that the rtx is not shared. */
5651 src_const = copy_rtx (src_const);
5652
5653 /* Record the actual constant value in a REG_EQUAL note,
5654 making a new one if one does not already exist. */
5655 set_unique_reg_note (insn, REG_EQUAL, src_const);
5656 }
5657 }
5658
5659 /* Now deal with the destination. */
5660 do_not_record = 0;
5661
5662 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5663 while (GET_CODE (dest) == SUBREG
5664 || GET_CODE (dest) == ZERO_EXTRACT
5665 || GET_CODE (dest) == STRICT_LOW_PART)
5666 dest = XEXP (dest, 0);
5667
5668 sets[i].inner_dest = dest;
5669
5670 if (MEM_P (dest))
5671 {
5672 #ifdef PUSH_ROUNDING
5673 /* Stack pushes invalidate the stack pointer. */
5674 rtx addr = XEXP (dest, 0);
5675 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5676 && XEXP (addr, 0) == stack_pointer_rtx)
5677 invalidate (stack_pointer_rtx, Pmode);
5678 #endif
5679 dest = fold_rtx (dest, insn);
5680 }
5681
5682 /* Compute the hash code of the destination now,
5683 before the effects of this instruction are recorded,
5684 since the register values used in the address computation
5685 are those before this instruction. */
5686 sets[i].dest_hash = HASH (dest, mode);
5687
5688 /* Don't enter a bit-field in the hash table
5689 because the value in it after the store
5690 may not equal what was stored, due to truncation. */
5691
5692 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5693 {
5694 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5695
5696 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5697 && GET_CODE (width) == CONST_INT
5698 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5699 && ! (INTVAL (src_const)
5700 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5701 /* Exception: if the value is constant,
5702 and it won't be truncated, record it. */
5703 ;
5704 else
5705 {
5706 /* This is chosen so that the destination will be invalidated
5707 but no new value will be recorded.
5708 We must invalidate because sometimes constant
5709 values can be recorded for bitfields. */
5710 sets[i].src_elt = 0;
5711 sets[i].src_volatile = 1;
5712 src_eqv = 0;
5713 src_eqv_elt = 0;
5714 }
5715 }
5716
5717 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5718 the insn. */
5719 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5720 {
5721 /* One less use of the label this insn used to jump to. */
5722 delete_insn (insn);
5723 cse_jumps_altered = 1;
5724 /* No more processing for this set. */
5725 sets[i].rtl = 0;
5726 }
5727
5728 /* If this SET is now setting PC to a label, we know it used to
5729 be a conditional or computed branch. */
5730 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5731 && !LABEL_REF_NONLOCAL_P (src))
5732 {
5733 /* Now emit a BARRIER after the unconditional jump. */
5734 if (NEXT_INSN (insn) == 0
5735 || !BARRIER_P (NEXT_INSN (insn)))
5736 emit_barrier_after (insn);
5737
5738 /* We reemit the jump in as many cases as possible just in
5739 case the form of an unconditional jump is significantly
5740 different than a computed jump or conditional jump.
5741
5742 If this insn has multiple sets, then reemitting the
5743 jump is nontrivial. So instead we just force rerecognition
5744 and hope for the best. */
5745 if (n_sets == 1)
5746 {
5747 rtx new, note;
5748
5749 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5750 JUMP_LABEL (new) = XEXP (src, 0);
5751 LABEL_NUSES (XEXP (src, 0))++;
5752
5753 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5754 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5755 if (note)
5756 {
5757 XEXP (note, 1) = NULL_RTX;
5758 REG_NOTES (new) = note;
5759 }
5760
5761 delete_insn (insn);
5762 insn = new;
5763
5764 /* Now emit a BARRIER after the unconditional jump. */
5765 if (NEXT_INSN (insn) == 0
5766 || !BARRIER_P (NEXT_INSN (insn)))
5767 emit_barrier_after (insn);
5768 }
5769 else
5770 INSN_CODE (insn) = -1;
5771
5772 /* Do not bother deleting any unreachable code,
5773 let jump/flow do that. */
5774
5775 cse_jumps_altered = 1;
5776 sets[i].rtl = 0;
5777 }
5778
5779 /* If destination is volatile, invalidate it and then do no further
5780 processing for this assignment. */
5781
5782 else if (do_not_record)
5783 {
5784 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5785 invalidate (dest, VOIDmode);
5786 else if (MEM_P (dest))
5787 invalidate (dest, VOIDmode);
5788 else if (GET_CODE (dest) == STRICT_LOW_PART
5789 || GET_CODE (dest) == ZERO_EXTRACT)
5790 invalidate (XEXP (dest, 0), GET_MODE (dest));
5791 sets[i].rtl = 0;
5792 }
5793
5794 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5795 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5796
5797 #ifdef HAVE_cc0
5798 /* If setting CC0, record what it was set to, or a constant, if it
5799 is equivalent to a constant. If it is being set to a floating-point
5800 value, make a COMPARE with the appropriate constant of 0. If we
5801 don't do this, later code can interpret this as a test against
5802 const0_rtx, which can cause problems if we try to put it into an
5803 insn as a floating-point operand. */
5804 if (dest == cc0_rtx)
5805 {
5806 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5807 this_insn_cc0_mode = mode;
5808 if (FLOAT_MODE_P (mode))
5809 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5810 CONST0_RTX (mode));
5811 }
5812 #endif
5813 }
5814
5815 /* Now enter all non-volatile source expressions in the hash table
5816 if they are not already present.
5817 Record their equivalence classes in src_elt.
5818 This way we can insert the corresponding destinations into
5819 the same classes even if the actual sources are no longer in them
5820 (having been invalidated). */
5821
5822 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5823 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5824 {
5825 struct table_elt *elt;
5826 struct table_elt *classp = sets[0].src_elt;
5827 rtx dest = SET_DEST (sets[0].rtl);
5828 enum machine_mode eqvmode = GET_MODE (dest);
5829
5830 if (GET_CODE (dest) == STRICT_LOW_PART)
5831 {
5832 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5833 classp = 0;
5834 }
5835 if (insert_regs (src_eqv, classp, 0))
5836 {
5837 rehash_using_reg (src_eqv);
5838 src_eqv_hash = HASH (src_eqv, eqvmode);
5839 }
5840 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5841 elt->in_memory = src_eqv_in_memory;
5842 src_eqv_elt = elt;
5843
5844 /* Check to see if src_eqv_elt is the same as a set source which
5845 does not yet have an elt, and if so set the elt of the set source
5846 to src_eqv_elt. */
5847 for (i = 0; i < n_sets; i++)
5848 if (sets[i].rtl && sets[i].src_elt == 0
5849 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5850 sets[i].src_elt = src_eqv_elt;
5851 }
5852
5853 for (i = 0; i < n_sets; i++)
5854 if (sets[i].rtl && ! sets[i].src_volatile
5855 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5856 {
5857 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5858 {
5859 /* REG_EQUAL in setting a STRICT_LOW_PART
5860 gives an equivalent for the entire destination register,
5861 not just for the subreg being stored in now.
5862 This is a more interesting equivalence, so we arrange later
5863 to treat the entire reg as the destination. */
5864 sets[i].src_elt = src_eqv_elt;
5865 sets[i].src_hash = src_eqv_hash;
5866 }
5867 else
5868 {
5869 /* Insert source and constant equivalent into hash table, if not
5870 already present. */
5871 struct table_elt *classp = src_eqv_elt;
5872 rtx src = sets[i].src;
5873 rtx dest = SET_DEST (sets[i].rtl);
5874 enum machine_mode mode
5875 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5876
5877 /* It's possible that we have a source value known to be
5878 constant but don't have a REG_EQUAL note on the insn.
5879 Lack of a note will mean src_eqv_elt will be NULL. This
5880 can happen where we've generated a SUBREG to access a
5881 CONST_INT that is already in a register in a wider mode.
5882 Ensure that the source expression is put in the proper
5883 constant class. */
5884 if (!classp)
5885 classp = sets[i].src_const_elt;
5886
5887 if (sets[i].src_elt == 0)
5888 {
5889 /* Don't put a hard register source into the table if this is
5890 the last insn of a libcall. In this case, we only need
5891 to put src_eqv_elt in src_elt. */
5892 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5893 {
5894 struct table_elt *elt;
5895
5896 /* Note that these insert_regs calls cannot remove
5897 any of the src_elt's, because they would have failed to
5898 match if not still valid. */
5899 if (insert_regs (src, classp, 0))
5900 {
5901 rehash_using_reg (src);
5902 sets[i].src_hash = HASH (src, mode);
5903 }
5904 elt = insert (src, classp, sets[i].src_hash, mode);
5905 elt->in_memory = sets[i].src_in_memory;
5906 sets[i].src_elt = classp = elt;
5907 }
5908 else
5909 sets[i].src_elt = classp;
5910 }
5911 if (sets[i].src_const && sets[i].src_const_elt == 0
5912 && src != sets[i].src_const
5913 && ! rtx_equal_p (sets[i].src_const, src))
5914 sets[i].src_elt = insert (sets[i].src_const, classp,
5915 sets[i].src_const_hash, mode);
5916 }
5917 }
5918 else if (sets[i].src_elt == 0)
5919 /* If we did not insert the source into the hash table (e.g., it was
5920 volatile), note the equivalence class for the REG_EQUAL value, if any,
5921 so that the destination goes into that class. */
5922 sets[i].src_elt = src_eqv_elt;
5923
5924 invalidate_from_clobbers (x);
5925
5926 /* Some registers are invalidated by subroutine calls. Memory is
5927 invalidated by non-constant calls. */
5928
5929 if (CALL_P (insn))
5930 {
5931 if (! CONST_OR_PURE_CALL_P (insn))
5932 invalidate_memory ();
5933 invalidate_for_call ();
5934 }
5935
5936 /* Now invalidate everything set by this instruction.
5937 If a SUBREG or other funny destination is being set,
5938 sets[i].rtl is still nonzero, so here we invalidate the reg
5939 a part of which is being set. */
5940
5941 for (i = 0; i < n_sets; i++)
5942 if (sets[i].rtl)
5943 {
5944 /* We can't use the inner dest, because the mode associated with
5945 a ZERO_EXTRACT is significant. */
5946 rtx dest = SET_DEST (sets[i].rtl);
5947
5948 /* Needed for registers to remove the register from its
5949 previous quantity's chain.
5950 Needed for memory if this is a nonvarying address, unless
5951 we have just done an invalidate_memory that covers even those. */
5952 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5953 invalidate (dest, VOIDmode);
5954 else if (MEM_P (dest))
5955 invalidate (dest, VOIDmode);
5956 else if (GET_CODE (dest) == STRICT_LOW_PART
5957 || GET_CODE (dest) == ZERO_EXTRACT)
5958 invalidate (XEXP (dest, 0), GET_MODE (dest));
5959 }
5960
5961 /* A volatile ASM invalidates everything. */
5962 if (NONJUMP_INSN_P (insn)
5963 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5964 && MEM_VOLATILE_P (PATTERN (insn)))
5965 flush_hash_table ();
5966
5967 /* Make sure registers mentioned in destinations
5968 are safe for use in an expression to be inserted.
5969 This removes from the hash table
5970 any invalid entry that refers to one of these registers.
5971
5972 We don't care about the return value from mention_regs because
5973 we are going to hash the SET_DEST values unconditionally. */
5974
5975 for (i = 0; i < n_sets; i++)
5976 {
5977 if (sets[i].rtl)
5978 {
5979 rtx x = SET_DEST (sets[i].rtl);
5980
5981 if (!REG_P (x))
5982 mention_regs (x);
5983 else
5984 {
5985 /* We used to rely on all references to a register becoming
5986 inaccessible when a register changes to a new quantity,
5987 since that changes the hash code. However, that is not
5988 safe, since after HASH_SIZE new quantities we get a
5989 hash 'collision' of a register with its own invalid
5990 entries. And since SUBREGs have been changed not to
5991 change their hash code with the hash code of the register,
5992 it wouldn't work any longer at all. So we have to check
5993 for any invalid references lying around now.
5994 This code is similar to the REG case in mention_regs,
5995 but it knows that reg_tick has been incremented, and
5996 it leaves reg_in_table as -1 . */
5997 unsigned int regno = REGNO (x);
5998 unsigned int endregno
5999 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
6000 : hard_regno_nregs[regno][GET_MODE (x)]);
6001 unsigned int i;
6002
6003 for (i = regno; i < endregno; i++)
6004 {
6005 if (REG_IN_TABLE (i) >= 0)
6006 {
6007 remove_invalid_refs (i);
6008 REG_IN_TABLE (i) = -1;
6009 }
6010 }
6011 }
6012 }
6013 }
6014
6015 /* We may have just removed some of the src_elt's from the hash table.
6016 So replace each one with the current head of the same class. */
6017
6018 for (i = 0; i < n_sets; i++)
6019 if (sets[i].rtl)
6020 {
6021 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6022 /* If elt was removed, find current head of same class,
6023 or 0 if nothing remains of that class. */
6024 {
6025 struct table_elt *elt = sets[i].src_elt;
6026
6027 while (elt && elt->prev_same_value)
6028 elt = elt->prev_same_value;
6029
6030 while (elt && elt->first_same_value == 0)
6031 elt = elt->next_same_value;
6032 sets[i].src_elt = elt ? elt->first_same_value : 0;
6033 }
6034 }
6035
6036 /* Now insert the destinations into their equivalence classes. */
6037
6038 for (i = 0; i < n_sets; i++)
6039 if (sets[i].rtl)
6040 {
6041 rtx dest = SET_DEST (sets[i].rtl);
6042 struct table_elt *elt;
6043
6044 /* Don't record value if we are not supposed to risk allocating
6045 floating-point values in registers that might be wider than
6046 memory. */
6047 if ((flag_float_store
6048 && MEM_P (dest)
6049 && FLOAT_MODE_P (GET_MODE (dest)))
6050 /* Don't record BLKmode values, because we don't know the
6051 size of it, and can't be sure that other BLKmode values
6052 have the same or smaller size. */
6053 || GET_MODE (dest) == BLKmode
6054 /* Don't record values of destinations set inside a libcall block
6055 since we might delete the libcall. Things should have been set
6056 up so we won't want to reuse such a value, but we play it safe
6057 here. */
6058 || libcall_insn
6059 /* If we didn't put a REG_EQUAL value or a source into the hash
6060 table, there is no point is recording DEST. */
6061 || sets[i].src_elt == 0
6062 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6063 or SIGN_EXTEND, don't record DEST since it can cause
6064 some tracking to be wrong.
6065
6066 ??? Think about this more later. */
6067 || (GET_CODE (dest) == SUBREG
6068 && (GET_MODE_SIZE (GET_MODE (dest))
6069 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6070 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6071 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6072 continue;
6073
6074 /* STRICT_LOW_PART isn't part of the value BEING set,
6075 and neither is the SUBREG inside it.
6076 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6077 if (GET_CODE (dest) == STRICT_LOW_PART)
6078 dest = SUBREG_REG (XEXP (dest, 0));
6079
6080 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6081 /* Registers must also be inserted into chains for quantities. */
6082 if (insert_regs (dest, sets[i].src_elt, 1))
6083 {
6084 /* If `insert_regs' changes something, the hash code must be
6085 recalculated. */
6086 rehash_using_reg (dest);
6087 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6088 }
6089
6090 elt = insert (dest, sets[i].src_elt,
6091 sets[i].dest_hash, GET_MODE (dest));
6092
6093 elt->in_memory = (MEM_P (sets[i].inner_dest)
6094 && !MEM_READONLY_P (sets[i].inner_dest));
6095
6096 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6097 narrower than M2, and both M1 and M2 are the same number of words,
6098 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6099 make that equivalence as well.
6100
6101 However, BAR may have equivalences for which gen_lowpart
6102 will produce a simpler value than gen_lowpart applied to
6103 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6104 BAR's equivalences. If we don't get a simplified form, make
6105 the SUBREG. It will not be used in an equivalence, but will
6106 cause two similar assignments to be detected.
6107
6108 Note the loop below will find SUBREG_REG (DEST) since we have
6109 already entered SRC and DEST of the SET in the table. */
6110
6111 if (GET_CODE (dest) == SUBREG
6112 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6113 / UNITS_PER_WORD)
6114 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6115 && (GET_MODE_SIZE (GET_MODE (dest))
6116 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6117 && sets[i].src_elt != 0)
6118 {
6119 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6120 struct table_elt *elt, *classp = 0;
6121
6122 for (elt = sets[i].src_elt->first_same_value; elt;
6123 elt = elt->next_same_value)
6124 {
6125 rtx new_src = 0;
6126 unsigned src_hash;
6127 struct table_elt *src_elt;
6128 int byte = 0;
6129
6130 /* Ignore invalid entries. */
6131 if (!REG_P (elt->exp)
6132 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6133 continue;
6134
6135 /* We may have already been playing subreg games. If the
6136 mode is already correct for the destination, use it. */
6137 if (GET_MODE (elt->exp) == new_mode)
6138 new_src = elt->exp;
6139 else
6140 {
6141 /* Calculate big endian correction for the SUBREG_BYTE.
6142 We have already checked that M1 (GET_MODE (dest))
6143 is not narrower than M2 (new_mode). */
6144 if (BYTES_BIG_ENDIAN)
6145 byte = (GET_MODE_SIZE (GET_MODE (dest))
6146 - GET_MODE_SIZE (new_mode));
6147
6148 new_src = simplify_gen_subreg (new_mode, elt->exp,
6149 GET_MODE (dest), byte);
6150 }
6151
6152 /* The call to simplify_gen_subreg fails if the value
6153 is VOIDmode, yet we can't do any simplification, e.g.
6154 for EXPR_LISTs denoting function call results.
6155 It is invalid to construct a SUBREG with a VOIDmode
6156 SUBREG_REG, hence a zero new_src means we can't do
6157 this substitution. */
6158 if (! new_src)
6159 continue;
6160
6161 src_hash = HASH (new_src, new_mode);
6162 src_elt = lookup (new_src, src_hash, new_mode);
6163
6164 /* Put the new source in the hash table is if isn't
6165 already. */
6166 if (src_elt == 0)
6167 {
6168 if (insert_regs (new_src, classp, 0))
6169 {
6170 rehash_using_reg (new_src);
6171 src_hash = HASH (new_src, new_mode);
6172 }
6173 src_elt = insert (new_src, classp, src_hash, new_mode);
6174 src_elt->in_memory = elt->in_memory;
6175 }
6176 else if (classp && classp != src_elt->first_same_value)
6177 /* Show that two things that we've seen before are
6178 actually the same. */
6179 merge_equiv_classes (src_elt, classp);
6180
6181 classp = src_elt->first_same_value;
6182 /* Ignore invalid entries. */
6183 while (classp
6184 && !REG_P (classp->exp)
6185 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6186 classp = classp->next_same_value;
6187 }
6188 }
6189 }
6190
6191 /* Special handling for (set REG0 REG1) where REG0 is the
6192 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6193 be used in the sequel, so (if easily done) change this insn to
6194 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6195 that computed their value. Then REG1 will become a dead store
6196 and won't cloud the situation for later optimizations.
6197
6198 Do not make this change if REG1 is a hard register, because it will
6199 then be used in the sequel and we may be changing a two-operand insn
6200 into a three-operand insn.
6201
6202 Also do not do this if we are operating on a copy of INSN.
6203
6204 Also don't do this if INSN ends a libcall; this would cause an unrelated
6205 register to be set in the middle of a libcall, and we then get bad code
6206 if the libcall is deleted. */
6207
6208 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
6209 && NEXT_INSN (PREV_INSN (insn)) == insn
6210 && REG_P (SET_SRC (sets[0].rtl))
6211 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6212 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6213 {
6214 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6215 struct qty_table_elem *src_ent = &qty_table[src_q];
6216
6217 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6218 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6219 {
6220 rtx prev = insn;
6221 /* Scan for the previous nonnote insn, but stop at a basic
6222 block boundary. */
6223 do
6224 {
6225 prev = PREV_INSN (prev);
6226 }
6227 while (prev && NOTE_P (prev)
6228 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
6229
6230 /* Do not swap the registers around if the previous instruction
6231 attaches a REG_EQUIV note to REG1.
6232
6233 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6234 from the pseudo that originally shadowed an incoming argument
6235 to another register. Some uses of REG_EQUIV might rely on it
6236 being attached to REG1 rather than REG2.
6237
6238 This section previously turned the REG_EQUIV into a REG_EQUAL
6239 note. We cannot do that because REG_EQUIV may provide an
6240 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6241
6242 if (prev != 0 && NONJUMP_INSN_P (prev)
6243 && GET_CODE (PATTERN (prev)) == SET
6244 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6245 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6246 {
6247 rtx dest = SET_DEST (sets[0].rtl);
6248 rtx src = SET_SRC (sets[0].rtl);
6249 rtx note;
6250
6251 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6252 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6253 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6254 apply_change_group ();
6255
6256 /* If INSN has a REG_EQUAL note, and this note mentions
6257 REG0, then we must delete it, because the value in
6258 REG0 has changed. If the note's value is REG1, we must
6259 also delete it because that is now this insn's dest. */
6260 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6261 if (note != 0
6262 && (reg_mentioned_p (dest, XEXP (note, 0))
6263 || rtx_equal_p (src, XEXP (note, 0))))
6264 remove_note (insn, note);
6265 }
6266 }
6267 }
6268
6269 /* If this is a conditional jump insn, record any known equivalences due to
6270 the condition being tested. */
6271
6272 if (JUMP_P (insn)
6273 && n_sets == 1 && GET_CODE (x) == SET
6274 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6275 record_jump_equiv (insn, 0);
6276
6277 #ifdef HAVE_cc0
6278 /* If the previous insn set CC0 and this insn no longer references CC0,
6279 delete the previous insn. Here we use the fact that nothing expects CC0
6280 to be valid over an insn, which is true until the final pass. */
6281 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6282 && (tem = single_set (prev_insn)) != 0
6283 && SET_DEST (tem) == cc0_rtx
6284 && ! reg_mentioned_p (cc0_rtx, x))
6285 delete_insn (prev_insn);
6286
6287 prev_insn_cc0 = this_insn_cc0;
6288 prev_insn_cc0_mode = this_insn_cc0_mode;
6289 prev_insn = insn;
6290 #endif
6291 }
6292 \f
6293 /* Remove from the hash table all expressions that reference memory. */
6294
6295 static void
6296 invalidate_memory (void)
6297 {
6298 int i;
6299 struct table_elt *p, *next;
6300
6301 for (i = 0; i < HASH_SIZE; i++)
6302 for (p = table[i]; p; p = next)
6303 {
6304 next = p->next_same_hash;
6305 if (p->in_memory)
6306 remove_from_table (p, i);
6307 }
6308 }
6309
6310 /* If ADDR is an address that implicitly affects the stack pointer, return
6311 1 and update the register tables to show the effect. Else, return 0. */
6312
6313 static int
6314 addr_affects_sp_p (rtx addr)
6315 {
6316 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
6317 && REG_P (XEXP (addr, 0))
6318 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6319 {
6320 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6321 {
6322 REG_TICK (STACK_POINTER_REGNUM)++;
6323 /* Is it possible to use a subreg of SP? */
6324 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6325 }
6326
6327 /* This should be *very* rare. */
6328 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6329 invalidate (stack_pointer_rtx, VOIDmode);
6330
6331 return 1;
6332 }
6333
6334 return 0;
6335 }
6336
6337 /* Perform invalidation on the basis of everything about an insn
6338 except for invalidating the actual places that are SET in it.
6339 This includes the places CLOBBERed, and anything that might
6340 alias with something that is SET or CLOBBERed.
6341
6342 X is the pattern of the insn. */
6343
6344 static void
6345 invalidate_from_clobbers (rtx x)
6346 {
6347 if (GET_CODE (x) == CLOBBER)
6348 {
6349 rtx ref = XEXP (x, 0);
6350 if (ref)
6351 {
6352 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6353 || MEM_P (ref))
6354 invalidate (ref, VOIDmode);
6355 else if (GET_CODE (ref) == STRICT_LOW_PART
6356 || GET_CODE (ref) == ZERO_EXTRACT)
6357 invalidate (XEXP (ref, 0), GET_MODE (ref));
6358 }
6359 }
6360 else if (GET_CODE (x) == PARALLEL)
6361 {
6362 int i;
6363 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6364 {
6365 rtx y = XVECEXP (x, 0, i);
6366 if (GET_CODE (y) == CLOBBER)
6367 {
6368 rtx ref = XEXP (y, 0);
6369 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6370 || MEM_P (ref))
6371 invalidate (ref, VOIDmode);
6372 else if (GET_CODE (ref) == STRICT_LOW_PART
6373 || GET_CODE (ref) == ZERO_EXTRACT)
6374 invalidate (XEXP (ref, 0), GET_MODE (ref));
6375 }
6376 }
6377 }
6378 }
6379 \f
6380 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6381 and replace any registers in them with either an equivalent constant
6382 or the canonical form of the register. If we are inside an address,
6383 only do this if the address remains valid.
6384
6385 OBJECT is 0 except when within a MEM in which case it is the MEM.
6386
6387 Return the replacement for X. */
6388
6389 static rtx
6390 cse_process_notes (rtx x, rtx object)
6391 {
6392 enum rtx_code code = GET_CODE (x);
6393 const char *fmt = GET_RTX_FORMAT (code);
6394 int i;
6395
6396 switch (code)
6397 {
6398 case CONST_INT:
6399 case CONST:
6400 case SYMBOL_REF:
6401 case LABEL_REF:
6402 case CONST_DOUBLE:
6403 case CONST_VECTOR:
6404 case PC:
6405 case CC0:
6406 case LO_SUM:
6407 return x;
6408
6409 case MEM:
6410 validate_change (x, &XEXP (x, 0),
6411 cse_process_notes (XEXP (x, 0), x), 0);
6412 return x;
6413
6414 case EXPR_LIST:
6415 case INSN_LIST:
6416 if (REG_NOTE_KIND (x) == REG_EQUAL)
6417 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6418 if (XEXP (x, 1))
6419 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6420 return x;
6421
6422 case SIGN_EXTEND:
6423 case ZERO_EXTEND:
6424 case SUBREG:
6425 {
6426 rtx new = cse_process_notes (XEXP (x, 0), object);
6427 /* We don't substitute VOIDmode constants into these rtx,
6428 since they would impede folding. */
6429 if (GET_MODE (new) != VOIDmode)
6430 validate_change (object, &XEXP (x, 0), new, 0);
6431 return x;
6432 }
6433
6434 case REG:
6435 i = REG_QTY (REGNO (x));
6436
6437 /* Return a constant or a constant register. */
6438 if (REGNO_QTY_VALID_P (REGNO (x)))
6439 {
6440 struct qty_table_elem *ent = &qty_table[i];
6441
6442 if (ent->const_rtx != NULL_RTX
6443 && (CONSTANT_P (ent->const_rtx)
6444 || REG_P (ent->const_rtx)))
6445 {
6446 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
6447 if (new)
6448 return new;
6449 }
6450 }
6451
6452 /* Otherwise, canonicalize this register. */
6453 return canon_reg (x, NULL_RTX);
6454
6455 default:
6456 break;
6457 }
6458
6459 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6460 if (fmt[i] == 'e')
6461 validate_change (object, &XEXP (x, i),
6462 cse_process_notes (XEXP (x, i), object), 0);
6463
6464 return x;
6465 }
6466 \f
6467 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6468 since they are done elsewhere. This function is called via note_stores. */
6469
6470 static void
6471 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
6472 {
6473 enum rtx_code code = GET_CODE (dest);
6474
6475 if (code == MEM
6476 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6477 /* There are times when an address can appear varying and be a PLUS
6478 during this scan when it would be a fixed address were we to know
6479 the proper equivalences. So invalidate all memory if there is
6480 a BLKmode or nonscalar memory reference or a reference to a
6481 variable address. */
6482 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6483 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6484 {
6485 invalidate_memory ();
6486 return;
6487 }
6488
6489 if (GET_CODE (set) == CLOBBER
6490 || CC0_P (dest)
6491 || dest == pc_rtx)
6492 return;
6493
6494 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6495 invalidate (XEXP (dest, 0), GET_MODE (dest));
6496 else if (code == REG || code == SUBREG || code == MEM)
6497 invalidate (dest, VOIDmode);
6498 }
6499
6500 /* Invalidate all insns from START up to the end of the function or the
6501 next label. This called when we wish to CSE around a block that is
6502 conditionally executed. */
6503
6504 static void
6505 invalidate_skipped_block (rtx start)
6506 {
6507 rtx insn;
6508
6509 for (insn = start; insn && !LABEL_P (insn);
6510 insn = NEXT_INSN (insn))
6511 {
6512 if (! INSN_P (insn))
6513 continue;
6514
6515 if (CALL_P (insn))
6516 {
6517 if (! CONST_OR_PURE_CALL_P (insn))
6518 invalidate_memory ();
6519 invalidate_for_call ();
6520 }
6521
6522 invalidate_from_clobbers (PATTERN (insn));
6523 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6524 }
6525 }
6526 \f
6527 /* Find the end of INSN's basic block and return its range,
6528 the total number of SETs in all the insns of the block, the last insn of the
6529 block, and the branch path.
6530
6531 The branch path indicates which branches should be followed. If a nonzero
6532 path size is specified, the block should be rescanned and a different set
6533 of branches will be taken. The branch path is only used if
6534 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6535
6536 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6537 used to describe the block. It is filled in with the information about
6538 the current block. The incoming structure's branch path, if any, is used
6539 to construct the output branch path. */
6540
6541 static void
6542 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
6543 int follow_jumps, int skip_blocks)
6544 {
6545 rtx p = insn, q;
6546 int nsets = 0;
6547 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6548 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6549 int path_size = data->path_size;
6550 int path_entry = 0;
6551 int i;
6552
6553 /* Update the previous branch path, if any. If the last branch was
6554 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6555 If it was previously PATH_NOT_TAKEN,
6556 shorten the path by one and look at the previous branch. We know that
6557 at least one branch must have been taken if PATH_SIZE is nonzero. */
6558 while (path_size > 0)
6559 {
6560 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
6561 {
6562 data->path[path_size - 1].status = PATH_NOT_TAKEN;
6563 break;
6564 }
6565 else
6566 path_size--;
6567 }
6568
6569 /* If the first instruction is marked with QImode, that means we've
6570 already processed this block. Our caller will look at DATA->LAST
6571 to figure out where to go next. We want to return the next block
6572 in the instruction stream, not some branched-to block somewhere
6573 else. We accomplish this by pretending our called forbid us to
6574 follow jumps, or skip blocks. */
6575 if (GET_MODE (insn) == QImode)
6576 follow_jumps = skip_blocks = 0;
6577
6578 /* Scan to end of this basic block. */
6579 while (p && !LABEL_P (p))
6580 {
6581 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6582 the regs restored by the longjmp come from
6583 a later time than the setjmp. */
6584 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
6585 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6586 break;
6587
6588 /* A PARALLEL can have lots of SETs in it,
6589 especially if it is really an ASM_OPERANDS. */
6590 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6591 nsets += XVECLEN (PATTERN (p), 0);
6592 else if (!NOTE_P (p))
6593 nsets += 1;
6594
6595 /* Ignore insns made by CSE; they cannot affect the boundaries of
6596 the basic block. */
6597
6598 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6599 high_cuid = INSN_CUID (p);
6600 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6601 low_cuid = INSN_CUID (p);
6602
6603 /* See if this insn is in our branch path. If it is and we are to
6604 take it, do so. */
6605 if (path_entry < path_size && data->path[path_entry].branch == p)
6606 {
6607 if (data->path[path_entry].status != PATH_NOT_TAKEN)
6608 p = JUMP_LABEL (p);
6609
6610 /* Point to next entry in path, if any. */
6611 path_entry++;
6612 }
6613
6614 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6615 was specified, we haven't reached our maximum path length, there are
6616 insns following the target of the jump, this is the only use of the
6617 jump label, and the target label is preceded by a BARRIER.
6618
6619 Alternatively, we can follow the jump if it branches around a
6620 block of code and there are no other branches into the block.
6621 In this case invalidate_skipped_block will be called to invalidate any
6622 registers set in the block when following the jump. */
6623
6624 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
6625 && JUMP_P (p)
6626 && GET_CODE (PATTERN (p)) == SET
6627 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6628 && JUMP_LABEL (p) != 0
6629 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6630 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6631 {
6632 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6633 if ((!NOTE_P (q)
6634 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6635 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6636 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6637 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6638 break;
6639
6640 /* If we ran into a BARRIER, this code is an extension of the
6641 basic block when the branch is taken. */
6642 if (follow_jumps && q != 0 && BARRIER_P (q))
6643 {
6644 /* Don't allow ourself to keep walking around an
6645 always-executed loop. */
6646 if (next_real_insn (q) == next)
6647 {
6648 p = NEXT_INSN (p);
6649 continue;
6650 }
6651
6652 /* Similarly, don't put a branch in our path more than once. */
6653 for (i = 0; i < path_entry; i++)
6654 if (data->path[i].branch == p)
6655 break;
6656
6657 if (i != path_entry)
6658 break;
6659
6660 data->path[path_entry].branch = p;
6661 data->path[path_entry++].status = PATH_TAKEN;
6662
6663 /* This branch now ends our path. It was possible that we
6664 didn't see this branch the last time around (when the
6665 insn in front of the target was a JUMP_INSN that was
6666 turned into a no-op). */
6667 path_size = path_entry;
6668
6669 p = JUMP_LABEL (p);
6670 /* Mark block so we won't scan it again later. */
6671 PUT_MODE (NEXT_INSN (p), QImode);
6672 }
6673 /* Detect a branch around a block of code. */
6674 else if (skip_blocks && q != 0 && !LABEL_P (q))
6675 {
6676 rtx tmp;
6677
6678 if (next_real_insn (q) == next)
6679 {
6680 p = NEXT_INSN (p);
6681 continue;
6682 }
6683
6684 for (i = 0; i < path_entry; i++)
6685 if (data->path[i].branch == p)
6686 break;
6687
6688 if (i != path_entry)
6689 break;
6690
6691 /* This is no_labels_between_p (p, q) with an added check for
6692 reaching the end of a function (in case Q precedes P). */
6693 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6694 if (LABEL_P (tmp))
6695 break;
6696
6697 if (tmp == q)
6698 {
6699 data->path[path_entry].branch = p;
6700 data->path[path_entry++].status = PATH_AROUND;
6701
6702 path_size = path_entry;
6703
6704 p = JUMP_LABEL (p);
6705 /* Mark block so we won't scan it again later. */
6706 PUT_MODE (NEXT_INSN (p), QImode);
6707 }
6708 }
6709 }
6710 p = NEXT_INSN (p);
6711 }
6712
6713 data->low_cuid = low_cuid;
6714 data->high_cuid = high_cuid;
6715 data->nsets = nsets;
6716 data->last = p;
6717
6718 /* If all jumps in the path are not taken, set our path length to zero
6719 so a rescan won't be done. */
6720 for (i = path_size - 1; i >= 0; i--)
6721 if (data->path[i].status != PATH_NOT_TAKEN)
6722 break;
6723
6724 if (i == -1)
6725 data->path_size = 0;
6726 else
6727 data->path_size = path_size;
6728
6729 /* End the current branch path. */
6730 data->path[path_size].branch = 0;
6731 }
6732 \f
6733 /* Perform cse on the instructions of a function.
6734 F is the first instruction.
6735 NREGS is one plus the highest pseudo-reg number used in the instruction.
6736
6737 Returns 1 if jump_optimize should be redone due to simplifications
6738 in conditional jump instructions. */
6739
6740 int
6741 cse_main (rtx f, int nregs, FILE *file)
6742 {
6743 struct cse_basic_block_data val;
6744 rtx insn = f;
6745 int i;
6746
6747 init_cse_reg_info (nregs);
6748
6749 val.path = xmalloc (sizeof (struct branch_path)
6750 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6751
6752 cse_jumps_altered = 0;
6753 recorded_label_ref = 0;
6754 constant_pool_entries_cost = 0;
6755 constant_pool_entries_regcost = 0;
6756 val.path_size = 0;
6757 rtl_hooks = cse_rtl_hooks;
6758
6759 init_recog ();
6760 init_alias_analysis ();
6761
6762 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
6763
6764 /* Find the largest uid. */
6765
6766 max_uid = get_max_uid ();
6767 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
6768
6769 /* Compute the mapping from uids to cuids.
6770 CUIDs are numbers assigned to insns, like uids,
6771 except that cuids increase monotonically through the code.
6772 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6773 between two insns is not affected by -g. */
6774
6775 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6776 {
6777 if (!NOTE_P (insn)
6778 || NOTE_LINE_NUMBER (insn) < 0)
6779 INSN_CUID (insn) = ++i;
6780 else
6781 /* Give a line number note the same cuid as preceding insn. */
6782 INSN_CUID (insn) = i;
6783 }
6784
6785 /* Loop over basic blocks.
6786 Compute the maximum number of qty's needed for each basic block
6787 (which is 2 for each SET). */
6788 insn = f;
6789 while (insn)
6790 {
6791 cse_altered = 0;
6792 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6793 flag_cse_skip_blocks);
6794
6795 /* If this basic block was already processed or has no sets, skip it. */
6796 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6797 {
6798 PUT_MODE (insn, VOIDmode);
6799 insn = (val.last ? NEXT_INSN (val.last) : 0);
6800 val.path_size = 0;
6801 continue;
6802 }
6803
6804 cse_basic_block_start = val.low_cuid;
6805 cse_basic_block_end = val.high_cuid;
6806 max_qty = val.nsets * 2;
6807
6808 if (file)
6809 fprintf (file, ";; Processing block from %d to %d, %d sets.\n",
6810 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6811 val.nsets);
6812
6813 /* Make MAX_QTY bigger to give us room to optimize
6814 past the end of this basic block, if that should prove useful. */
6815 if (max_qty < 500)
6816 max_qty = 500;
6817
6818 /* If this basic block is being extended by following certain jumps,
6819 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6820 Otherwise, we start after this basic block. */
6821 if (val.path_size > 0)
6822 cse_basic_block (insn, val.last, val.path);
6823 else
6824 {
6825 int old_cse_jumps_altered = cse_jumps_altered;
6826 rtx temp;
6827
6828 /* When cse changes a conditional jump to an unconditional
6829 jump, we want to reprocess the block, since it will give
6830 us a new branch path to investigate. */
6831 cse_jumps_altered = 0;
6832 temp = cse_basic_block (insn, val.last, val.path);
6833 if (cse_jumps_altered == 0
6834 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6835 insn = temp;
6836
6837 cse_jumps_altered |= old_cse_jumps_altered;
6838 }
6839
6840 if (cse_altered)
6841 ggc_collect ();
6842
6843 #ifdef USE_C_ALLOCA
6844 alloca (0);
6845 #endif
6846 }
6847
6848 /* Clean up. */
6849 end_alias_analysis ();
6850 free (uid_cuid);
6851 free (reg_eqv_table);
6852 free (val.path);
6853 rtl_hooks = general_rtl_hooks;
6854
6855 return cse_jumps_altered || recorded_label_ref;
6856 }
6857
6858 /* Process a single basic block. FROM and TO and the limits of the basic
6859 block. NEXT_BRANCH points to the branch path when following jumps or
6860 a null path when not following jumps. */
6861
6862 static rtx
6863 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
6864 {
6865 rtx insn;
6866 int to_usage = 0;
6867 rtx libcall_insn = NULL_RTX;
6868 int num_insns = 0;
6869 int no_conflict = 0;
6870
6871 /* Allocate the space needed by qty_table. */
6872 qty_table = xmalloc (max_qty * sizeof (struct qty_table_elem));
6873
6874 new_basic_block ();
6875
6876 /* TO might be a label. If so, protect it from being deleted. */
6877 if (to != 0 && LABEL_P (to))
6878 ++LABEL_NUSES (to);
6879
6880 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6881 {
6882 enum rtx_code code = GET_CODE (insn);
6883
6884 /* If we have processed 1,000 insns, flush the hash table to
6885 avoid extreme quadratic behavior. We must not include NOTEs
6886 in the count since there may be more of them when generating
6887 debugging information. If we clear the table at different
6888 times, code generated with -g -O might be different than code
6889 generated with -O but not -g.
6890
6891 ??? This is a real kludge and needs to be done some other way.
6892 Perhaps for 2.9. */
6893 if (code != NOTE && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6894 {
6895 flush_hash_table ();
6896 num_insns = 0;
6897 }
6898
6899 /* See if this is a branch that is part of the path. If so, and it is
6900 to be taken, do so. */
6901 if (next_branch->branch == insn)
6902 {
6903 enum taken status = next_branch++->status;
6904 if (status != PATH_NOT_TAKEN)
6905 {
6906 if (status == PATH_TAKEN)
6907 record_jump_equiv (insn, 1);
6908 else
6909 invalidate_skipped_block (NEXT_INSN (insn));
6910
6911 /* Set the last insn as the jump insn; it doesn't affect cc0.
6912 Then follow this branch. */
6913 #ifdef HAVE_cc0
6914 prev_insn_cc0 = 0;
6915 prev_insn = insn;
6916 #endif
6917 insn = JUMP_LABEL (insn);
6918 continue;
6919 }
6920 }
6921
6922 if (GET_MODE (insn) == QImode)
6923 PUT_MODE (insn, VOIDmode);
6924
6925 if (GET_RTX_CLASS (code) == RTX_INSN)
6926 {
6927 rtx p;
6928
6929 /* Process notes first so we have all notes in canonical forms when
6930 looking for duplicate operations. */
6931
6932 if (REG_NOTES (insn))
6933 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6934
6935 /* Track when we are inside in LIBCALL block. Inside such a block,
6936 we do not want to record destinations. The last insn of a
6937 LIBCALL block is not considered to be part of the block, since
6938 its destination is the result of the block and hence should be
6939 recorded. */
6940
6941 if (REG_NOTES (insn) != 0)
6942 {
6943 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6944 libcall_insn = XEXP (p, 0);
6945 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6946 {
6947 /* Keep libcall_insn for the last SET insn of a no-conflict
6948 block to prevent changing the destination. */
6949 if (! no_conflict)
6950 libcall_insn = 0;
6951 else
6952 no_conflict = -1;
6953 }
6954 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6955 no_conflict = 1;
6956 }
6957
6958 cse_insn (insn, libcall_insn);
6959
6960 if (no_conflict == -1)
6961 {
6962 libcall_insn = 0;
6963 no_conflict = 0;
6964 }
6965
6966 /* If we haven't already found an insn where we added a LABEL_REF,
6967 check this one. */
6968 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6969 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6970 (void *) insn))
6971 recorded_label_ref = 1;
6972 }
6973
6974 /* If INSN is now an unconditional jump, skip to the end of our
6975 basic block by pretending that we just did the last insn in the
6976 basic block. If we are jumping to the end of our block, show
6977 that we can have one usage of TO. */
6978
6979 if (any_uncondjump_p (insn))
6980 {
6981 if (to == 0)
6982 {
6983 free (qty_table);
6984 return 0;
6985 }
6986
6987 if (JUMP_LABEL (insn) == to)
6988 to_usage = 1;
6989
6990 /* Maybe TO was deleted because the jump is unconditional.
6991 If so, there is nothing left in this basic block. */
6992 /* ??? Perhaps it would be smarter to set TO
6993 to whatever follows this insn,
6994 and pretend the basic block had always ended here. */
6995 if (INSN_DELETED_P (to))
6996 break;
6997
6998 insn = PREV_INSN (to);
6999 }
7000
7001 /* See if it is ok to keep on going past the label
7002 which used to end our basic block. Remember that we incremented
7003 the count of that label, so we decrement it here. If we made
7004 a jump unconditional, TO_USAGE will be one; in that case, we don't
7005 want to count the use in that jump. */
7006
7007 if (to != 0 && NEXT_INSN (insn) == to
7008 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
7009 {
7010 struct cse_basic_block_data val;
7011 rtx prev;
7012
7013 insn = NEXT_INSN (to);
7014
7015 /* If TO was the last insn in the function, we are done. */
7016 if (insn == 0)
7017 {
7018 free (qty_table);
7019 return 0;
7020 }
7021
7022 /* If TO was preceded by a BARRIER we are done with this block
7023 because it has no continuation. */
7024 prev = prev_nonnote_insn (to);
7025 if (prev && BARRIER_P (prev))
7026 {
7027 free (qty_table);
7028 return insn;
7029 }
7030
7031 /* Find the end of the following block. Note that we won't be
7032 following branches in this case. */
7033 to_usage = 0;
7034 val.path_size = 0;
7035 val.path = xmalloc (sizeof (struct branch_path)
7036 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
7037 cse_end_of_basic_block (insn, &val, 0, 0);
7038 free (val.path);
7039
7040 /* If the tables we allocated have enough space left
7041 to handle all the SETs in the next basic block,
7042 continue through it. Otherwise, return,
7043 and that block will be scanned individually. */
7044 if (val.nsets * 2 + next_qty > max_qty)
7045 break;
7046
7047 cse_basic_block_start = val.low_cuid;
7048 cse_basic_block_end = val.high_cuid;
7049 to = val.last;
7050
7051 /* Prevent TO from being deleted if it is a label. */
7052 if (to != 0 && LABEL_P (to))
7053 ++LABEL_NUSES (to);
7054
7055 /* Back up so we process the first insn in the extension. */
7056 insn = PREV_INSN (insn);
7057 }
7058 }
7059
7060 gcc_assert (next_qty <= max_qty);
7061
7062 free (qty_table);
7063
7064 return to ? NEXT_INSN (to) : 0;
7065 }
7066 \f
7067 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7068 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7069
7070 static int
7071 check_for_label_ref (rtx *rtl, void *data)
7072 {
7073 rtx insn = (rtx) data;
7074
7075 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7076 we must rerun jump since it needs to place the note. If this is a
7077 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7078 since no REG_LABEL will be added. */
7079 return (GET_CODE (*rtl) == LABEL_REF
7080 && ! LABEL_REF_NONLOCAL_P (*rtl)
7081 && LABEL_P (XEXP (*rtl, 0))
7082 && INSN_UID (XEXP (*rtl, 0)) != 0
7083 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7084 }
7085 \f
7086 /* Count the number of times registers are used (not set) in X.
7087 COUNTS is an array in which we accumulate the count, INCR is how much
7088 we count each register usage.
7089
7090 Don't count a usage of DEST, which is the SET_DEST of a SET which
7091 contains X in its SET_SRC. This is because such a SET does not
7092 modify the liveness of DEST.
7093 DEST is set to pc_rtx for a trapping insn, which means that we must count
7094 uses of a SET_DEST regardless because the insn can't be deleted here. */
7095
7096 static void
7097 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
7098 {
7099 enum rtx_code code;
7100 rtx note;
7101 const char *fmt;
7102 int i, j;
7103
7104 if (x == 0)
7105 return;
7106
7107 switch (code = GET_CODE (x))
7108 {
7109 case REG:
7110 if (x != dest)
7111 counts[REGNO (x)] += incr;
7112 return;
7113
7114 case PC:
7115 case CC0:
7116 case CONST:
7117 case CONST_INT:
7118 case CONST_DOUBLE:
7119 case CONST_VECTOR:
7120 case SYMBOL_REF:
7121 case LABEL_REF:
7122 return;
7123
7124 case CLOBBER:
7125 /* If we are clobbering a MEM, mark any registers inside the address
7126 as being used. */
7127 if (MEM_P (XEXP (x, 0)))
7128 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7129 return;
7130
7131 case SET:
7132 /* Unless we are setting a REG, count everything in SET_DEST. */
7133 if (!REG_P (SET_DEST (x)))
7134 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7135 count_reg_usage (SET_SRC (x), counts,
7136 dest ? dest : SET_DEST (x),
7137 incr);
7138 return;
7139
7140 case CALL_INSN:
7141 case INSN:
7142 case JUMP_INSN:
7143 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
7144 this fact by setting DEST to pc_rtx. */
7145 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
7146 dest = pc_rtx;
7147 if (code == CALL_INSN)
7148 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
7149 count_reg_usage (PATTERN (x), counts, dest, incr);
7150
7151 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7152 use them. */
7153
7154 note = find_reg_equal_equiv_note (x);
7155 if (note)
7156 {
7157 rtx eqv = XEXP (note, 0);
7158
7159 if (GET_CODE (eqv) == EXPR_LIST)
7160 /* This REG_EQUAL note describes the result of a function call.
7161 Process all the arguments. */
7162 do
7163 {
7164 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
7165 eqv = XEXP (eqv, 1);
7166 }
7167 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7168 else
7169 count_reg_usage (eqv, counts, dest, incr);
7170 }
7171 return;
7172
7173 case EXPR_LIST:
7174 if (REG_NOTE_KIND (x) == REG_EQUAL
7175 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7176 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7177 involving registers in the address. */
7178 || GET_CODE (XEXP (x, 0)) == CLOBBER)
7179 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7180
7181 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7182 return;
7183
7184 case ASM_OPERANDS:
7185 /* If the asm is volatile, then this insn cannot be deleted,
7186 and so the inputs *must* be live. */
7187 if (MEM_VOLATILE_P (x))
7188 dest = NULL_RTX;
7189 /* Iterate over just the inputs, not the constraints as well. */
7190 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
7191 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
7192 return;
7193
7194 case INSN_LIST:
7195 gcc_unreachable ();
7196
7197 default:
7198 break;
7199 }
7200
7201 fmt = GET_RTX_FORMAT (code);
7202 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7203 {
7204 if (fmt[i] == 'e')
7205 count_reg_usage (XEXP (x, i), counts, dest, incr);
7206 else if (fmt[i] == 'E')
7207 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7208 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7209 }
7210 }
7211 \f
7212 /* Return true if set is live. */
7213 static bool
7214 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7215 int *counts)
7216 {
7217 #ifdef HAVE_cc0
7218 rtx tem;
7219 #endif
7220
7221 if (set_noop_p (set))
7222 ;
7223
7224 #ifdef HAVE_cc0
7225 else if (GET_CODE (SET_DEST (set)) == CC0
7226 && !side_effects_p (SET_SRC (set))
7227 && ((tem = next_nonnote_insn (insn)) == 0
7228 || !INSN_P (tem)
7229 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7230 return false;
7231 #endif
7232 else if (!REG_P (SET_DEST (set))
7233 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7234 || counts[REGNO (SET_DEST (set))] != 0
7235 || side_effects_p (SET_SRC (set)))
7236 return true;
7237 return false;
7238 }
7239
7240 /* Return true if insn is live. */
7241
7242 static bool
7243 insn_live_p (rtx insn, int *counts)
7244 {
7245 int i;
7246 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7247 return true;
7248 else if (GET_CODE (PATTERN (insn)) == SET)
7249 return set_live_p (PATTERN (insn), insn, counts);
7250 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7251 {
7252 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7253 {
7254 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7255
7256 if (GET_CODE (elt) == SET)
7257 {
7258 if (set_live_p (elt, insn, counts))
7259 return true;
7260 }
7261 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7262 return true;
7263 }
7264 return false;
7265 }
7266 else
7267 return true;
7268 }
7269
7270 /* Return true if libcall is dead as a whole. */
7271
7272 static bool
7273 dead_libcall_p (rtx insn, int *counts)
7274 {
7275 rtx note, set, new;
7276
7277 /* See if there's a REG_EQUAL note on this insn and try to
7278 replace the source with the REG_EQUAL expression.
7279
7280 We assume that insns with REG_RETVALs can only be reg->reg
7281 copies at this point. */
7282 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7283 if (!note)
7284 return false;
7285
7286 set = single_set (insn);
7287 if (!set)
7288 return false;
7289
7290 new = simplify_rtx (XEXP (note, 0));
7291 if (!new)
7292 new = XEXP (note, 0);
7293
7294 /* While changing insn, we must update the counts accordingly. */
7295 count_reg_usage (insn, counts, NULL_RTX, -1);
7296
7297 if (validate_change (insn, &SET_SRC (set), new, 0))
7298 {
7299 count_reg_usage (insn, counts, NULL_RTX, 1);
7300 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7301 remove_note (insn, note);
7302 return true;
7303 }
7304
7305 if (CONSTANT_P (new))
7306 {
7307 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7308 if (new && validate_change (insn, &SET_SRC (set), new, 0))
7309 {
7310 count_reg_usage (insn, counts, NULL_RTX, 1);
7311 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7312 remove_note (insn, note);
7313 return true;
7314 }
7315 }
7316
7317 count_reg_usage (insn, counts, NULL_RTX, 1);
7318 return false;
7319 }
7320
7321 /* Scan all the insns and delete any that are dead; i.e., they store a register
7322 that is never used or they copy a register to itself.
7323
7324 This is used to remove insns made obviously dead by cse, loop or other
7325 optimizations. It improves the heuristics in loop since it won't try to
7326 move dead invariants out of loops or make givs for dead quantities. The
7327 remaining passes of the compilation are also sped up. */
7328
7329 int
7330 delete_trivially_dead_insns (rtx insns, int nreg)
7331 {
7332 int *counts;
7333 rtx insn, prev;
7334 int in_libcall = 0, dead_libcall = 0;
7335 int ndead = 0;
7336
7337 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7338 /* First count the number of times each register is used. */
7339 counts = xcalloc (nreg, sizeof (int));
7340 for (insn = insns; insn; insn = NEXT_INSN (insn))
7341 if (INSN_P (insn))
7342 count_reg_usage (insn, counts, NULL_RTX, 1);
7343
7344 /* Go from the last insn to the first and delete insns that only set unused
7345 registers or copy a register to itself. As we delete an insn, remove
7346 usage counts for registers it uses.
7347
7348 The first jump optimization pass may leave a real insn as the last
7349 insn in the function. We must not skip that insn or we may end
7350 up deleting code that is not really dead. */
7351 for (insn = get_last_insn (); insn; insn = prev)
7352 {
7353 int live_insn = 0;
7354
7355 prev = PREV_INSN (insn);
7356 if (!INSN_P (insn))
7357 continue;
7358
7359 /* Don't delete any insns that are part of a libcall block unless
7360 we can delete the whole libcall block.
7361
7362 Flow or loop might get confused if we did that. Remember
7363 that we are scanning backwards. */
7364 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7365 {
7366 in_libcall = 1;
7367 live_insn = 1;
7368 dead_libcall = dead_libcall_p (insn, counts);
7369 }
7370 else if (in_libcall)
7371 live_insn = ! dead_libcall;
7372 else
7373 live_insn = insn_live_p (insn, counts);
7374
7375 /* If this is a dead insn, delete it and show registers in it aren't
7376 being used. */
7377
7378 if (! live_insn)
7379 {
7380 count_reg_usage (insn, counts, NULL_RTX, -1);
7381 delete_insn_and_edges (insn);
7382 ndead++;
7383 }
7384
7385 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7386 {
7387 in_libcall = 0;
7388 dead_libcall = 0;
7389 }
7390 }
7391
7392 if (dump_file && ndead)
7393 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7394 ndead);
7395 /* Clean up. */
7396 free (counts);
7397 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7398 return ndead;
7399 }
7400
7401 /* This function is called via for_each_rtx. The argument, NEWREG, is
7402 a condition code register with the desired mode. If we are looking
7403 at the same register in a different mode, replace it with
7404 NEWREG. */
7405
7406 static int
7407 cse_change_cc_mode (rtx *loc, void *data)
7408 {
7409 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7410
7411 if (*loc
7412 && REG_P (*loc)
7413 && REGNO (*loc) == REGNO (args->newreg)
7414 && GET_MODE (*loc) != GET_MODE (args->newreg))
7415 {
7416 validate_change (args->insn, loc, args->newreg, 1);
7417
7418 return -1;
7419 }
7420 return 0;
7421 }
7422
7423 /* Change the mode of any reference to the register REGNO (NEWREG) to
7424 GET_MODE (NEWREG) in INSN. */
7425
7426 static void
7427 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7428 {
7429 struct change_cc_mode_args args;
7430 int success;
7431
7432 if (!INSN_P (insn))
7433 return;
7434
7435 args.insn = insn;
7436 args.newreg = newreg;
7437
7438 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7439 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7440
7441 /* If the following assertion was triggered, there is most probably
7442 something wrong with the cc_modes_compatible back end function.
7443 CC modes only can be considered compatible if the insn - with the mode
7444 replaced by any of the compatible modes - can still be recognized. */
7445 success = apply_change_group ();
7446 gcc_assert (success);
7447 }
7448
7449 /* Change the mode of any reference to the register REGNO (NEWREG) to
7450 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7451 any instruction which modifies NEWREG. */
7452
7453 static void
7454 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7455 {
7456 rtx insn;
7457
7458 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7459 {
7460 if (! INSN_P (insn))
7461 continue;
7462
7463 if (reg_set_p (newreg, insn))
7464 return;
7465
7466 cse_change_cc_mode_insn (insn, newreg);
7467 }
7468 }
7469
7470 /* BB is a basic block which finishes with CC_REG as a condition code
7471 register which is set to CC_SRC. Look through the successors of BB
7472 to find blocks which have a single predecessor (i.e., this one),
7473 and look through those blocks for an assignment to CC_REG which is
7474 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7475 permitted to change the mode of CC_SRC to a compatible mode. This
7476 returns VOIDmode if no equivalent assignments were found.
7477 Otherwise it returns the mode which CC_SRC should wind up with.
7478
7479 The main complexity in this function is handling the mode issues.
7480 We may have more than one duplicate which we can eliminate, and we
7481 try to find a mode which will work for multiple duplicates. */
7482
7483 static enum machine_mode
7484 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7485 {
7486 bool found_equiv;
7487 enum machine_mode mode;
7488 unsigned int insn_count;
7489 edge e;
7490 rtx insns[2];
7491 enum machine_mode modes[2];
7492 rtx last_insns[2];
7493 unsigned int i;
7494 rtx newreg;
7495 edge_iterator ei;
7496
7497 /* We expect to have two successors. Look at both before picking
7498 the final mode for the comparison. If we have more successors
7499 (i.e., some sort of table jump, although that seems unlikely),
7500 then we require all beyond the first two to use the same
7501 mode. */
7502
7503 found_equiv = false;
7504 mode = GET_MODE (cc_src);
7505 insn_count = 0;
7506 FOR_EACH_EDGE (e, ei, bb->succs)
7507 {
7508 rtx insn;
7509 rtx end;
7510
7511 if (e->flags & EDGE_COMPLEX)
7512 continue;
7513
7514 if (EDGE_COUNT (e->dest->preds) != 1
7515 || e->dest == EXIT_BLOCK_PTR)
7516 continue;
7517
7518 end = NEXT_INSN (BB_END (e->dest));
7519 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7520 {
7521 rtx set;
7522
7523 if (! INSN_P (insn))
7524 continue;
7525
7526 /* If CC_SRC is modified, we have to stop looking for
7527 something which uses it. */
7528 if (modified_in_p (cc_src, insn))
7529 break;
7530
7531 /* Check whether INSN sets CC_REG to CC_SRC. */
7532 set = single_set (insn);
7533 if (set
7534 && REG_P (SET_DEST (set))
7535 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7536 {
7537 bool found;
7538 enum machine_mode set_mode;
7539 enum machine_mode comp_mode;
7540
7541 found = false;
7542 set_mode = GET_MODE (SET_SRC (set));
7543 comp_mode = set_mode;
7544 if (rtx_equal_p (cc_src, SET_SRC (set)))
7545 found = true;
7546 else if (GET_CODE (cc_src) == COMPARE
7547 && GET_CODE (SET_SRC (set)) == COMPARE
7548 && mode != set_mode
7549 && rtx_equal_p (XEXP (cc_src, 0),
7550 XEXP (SET_SRC (set), 0))
7551 && rtx_equal_p (XEXP (cc_src, 1),
7552 XEXP (SET_SRC (set), 1)))
7553
7554 {
7555 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7556 if (comp_mode != VOIDmode
7557 && (can_change_mode || comp_mode == mode))
7558 found = true;
7559 }
7560
7561 if (found)
7562 {
7563 found_equiv = true;
7564 if (insn_count < ARRAY_SIZE (insns))
7565 {
7566 insns[insn_count] = insn;
7567 modes[insn_count] = set_mode;
7568 last_insns[insn_count] = end;
7569 ++insn_count;
7570
7571 if (mode != comp_mode)
7572 {
7573 gcc_assert (can_change_mode);
7574 mode = comp_mode;
7575
7576 /* The modified insn will be re-recognized later. */
7577 PUT_MODE (cc_src, mode);
7578 }
7579 }
7580 else
7581 {
7582 if (set_mode != mode)
7583 {
7584 /* We found a matching expression in the
7585 wrong mode, but we don't have room to
7586 store it in the array. Punt. This case
7587 should be rare. */
7588 break;
7589 }
7590 /* INSN sets CC_REG to a value equal to CC_SRC
7591 with the right mode. We can simply delete
7592 it. */
7593 delete_insn (insn);
7594 }
7595
7596 /* We found an instruction to delete. Keep looking,
7597 in the hopes of finding a three-way jump. */
7598 continue;
7599 }
7600
7601 /* We found an instruction which sets the condition
7602 code, so don't look any farther. */
7603 break;
7604 }
7605
7606 /* If INSN sets CC_REG in some other way, don't look any
7607 farther. */
7608 if (reg_set_p (cc_reg, insn))
7609 break;
7610 }
7611
7612 /* If we fell off the bottom of the block, we can keep looking
7613 through successors. We pass CAN_CHANGE_MODE as false because
7614 we aren't prepared to handle compatibility between the
7615 further blocks and this block. */
7616 if (insn == end)
7617 {
7618 enum machine_mode submode;
7619
7620 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7621 if (submode != VOIDmode)
7622 {
7623 gcc_assert (submode == mode);
7624 found_equiv = true;
7625 can_change_mode = false;
7626 }
7627 }
7628 }
7629
7630 if (! found_equiv)
7631 return VOIDmode;
7632
7633 /* Now INSN_COUNT is the number of instructions we found which set
7634 CC_REG to a value equivalent to CC_SRC. The instructions are in
7635 INSNS. The modes used by those instructions are in MODES. */
7636
7637 newreg = NULL_RTX;
7638 for (i = 0; i < insn_count; ++i)
7639 {
7640 if (modes[i] != mode)
7641 {
7642 /* We need to change the mode of CC_REG in INSNS[i] and
7643 subsequent instructions. */
7644 if (! newreg)
7645 {
7646 if (GET_MODE (cc_reg) == mode)
7647 newreg = cc_reg;
7648 else
7649 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7650 }
7651 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7652 newreg);
7653 }
7654
7655 delete_insn (insns[i]);
7656 }
7657
7658 return mode;
7659 }
7660
7661 /* If we have a fixed condition code register (or two), walk through
7662 the instructions and try to eliminate duplicate assignments. */
7663
7664 void
7665 cse_condition_code_reg (void)
7666 {
7667 unsigned int cc_regno_1;
7668 unsigned int cc_regno_2;
7669 rtx cc_reg_1;
7670 rtx cc_reg_2;
7671 basic_block bb;
7672
7673 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7674 return;
7675
7676 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7677 if (cc_regno_2 != INVALID_REGNUM)
7678 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7679 else
7680 cc_reg_2 = NULL_RTX;
7681
7682 FOR_EACH_BB (bb)
7683 {
7684 rtx last_insn;
7685 rtx cc_reg;
7686 rtx insn;
7687 rtx cc_src_insn;
7688 rtx cc_src;
7689 enum machine_mode mode;
7690 enum machine_mode orig_mode;
7691
7692 /* Look for blocks which end with a conditional jump based on a
7693 condition code register. Then look for the instruction which
7694 sets the condition code register. Then look through the
7695 successor blocks for instructions which set the condition
7696 code register to the same value. There are other possible
7697 uses of the condition code register, but these are by far the
7698 most common and the ones which we are most likely to be able
7699 to optimize. */
7700
7701 last_insn = BB_END (bb);
7702 if (!JUMP_P (last_insn))
7703 continue;
7704
7705 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7706 cc_reg = cc_reg_1;
7707 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7708 cc_reg = cc_reg_2;
7709 else
7710 continue;
7711
7712 cc_src_insn = NULL_RTX;
7713 cc_src = NULL_RTX;
7714 for (insn = PREV_INSN (last_insn);
7715 insn && insn != PREV_INSN (BB_HEAD (bb));
7716 insn = PREV_INSN (insn))
7717 {
7718 rtx set;
7719
7720 if (! INSN_P (insn))
7721 continue;
7722 set = single_set (insn);
7723 if (set
7724 && REG_P (SET_DEST (set))
7725 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7726 {
7727 cc_src_insn = insn;
7728 cc_src = SET_SRC (set);
7729 break;
7730 }
7731 else if (reg_set_p (cc_reg, insn))
7732 break;
7733 }
7734
7735 if (! cc_src_insn)
7736 continue;
7737
7738 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7739 continue;
7740
7741 /* Now CC_REG is a condition code register used for a
7742 conditional jump at the end of the block, and CC_SRC, in
7743 CC_SRC_INSN, is the value to which that condition code
7744 register is set, and CC_SRC is still meaningful at the end of
7745 the basic block. */
7746
7747 orig_mode = GET_MODE (cc_src);
7748 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7749 if (mode != VOIDmode)
7750 {
7751 gcc_assert (mode == GET_MODE (cc_src));
7752 if (mode != orig_mode)
7753 {
7754 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7755
7756 cse_change_cc_mode_insn (cc_src_insn, newreg);
7757
7758 /* Do the same in the following insns that use the
7759 current value of CC_REG within BB. */
7760 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7761 NEXT_INSN (last_insn),
7762 newreg);
7763 }
7764 }
7765 }
7766 }
7767 \f
7768
7769 /* Perform common subexpression elimination. Nonzero value from
7770 `cse_main' means that jumps were simplified and some code may now
7771 be unreachable, so do jump optimization again. */
7772 static bool
7773 gate_handle_cse (void)
7774 {
7775 return optimize > 0;
7776 }
7777
7778 static void
7779 rest_of_handle_cse (void)
7780 {
7781 int tem;
7782
7783 if (dump_file)
7784 dump_flow_info (dump_file);
7785
7786 reg_scan (get_insns (), max_reg_num ());
7787
7788 tem = cse_main (get_insns (), max_reg_num (), dump_file);
7789 if (tem)
7790 rebuild_jump_labels (get_insns ());
7791 if (purge_all_dead_edges ())
7792 delete_unreachable_blocks ();
7793
7794 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7795
7796 /* If we are not running more CSE passes, then we are no longer
7797 expecting CSE to be run. But always rerun it in a cheap mode. */
7798 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7799
7800 if (tem)
7801 delete_dead_jumptables ();
7802
7803 if (tem || optimize > 1)
7804 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_PRE_LOOP);
7805 }
7806
7807 struct tree_opt_pass pass_cse =
7808 {
7809 "cse1", /* name */
7810 gate_handle_cse, /* gate */
7811 rest_of_handle_cse, /* execute */
7812 NULL, /* sub */
7813 NULL, /* next */
7814 0, /* static_pass_number */
7815 TV_CSE, /* tv_id */
7816 0, /* properties_required */
7817 0, /* properties_provided */
7818 0, /* properties_destroyed */
7819 0, /* todo_flags_start */
7820 TODO_dump_func |
7821 TODO_ggc_collect, /* todo_flags_finish */
7822 's' /* letter */
7823 };
7824
7825
7826 static bool
7827 gate_handle_cse2 (void)
7828 {
7829 return optimize > 0 && flag_rerun_cse_after_loop;
7830 }
7831
7832 /* Run second CSE pass after loop optimizations. */
7833 static void
7834 rest_of_handle_cse2 (void)
7835 {
7836 int tem;
7837
7838 if (dump_file)
7839 dump_flow_info (dump_file);
7840
7841 tem = cse_main (get_insns (), max_reg_num (), dump_file);
7842
7843 /* Run a pass to eliminate duplicated assignments to condition code
7844 registers. We have to run this after bypass_jumps, because it
7845 makes it harder for that pass to determine whether a jump can be
7846 bypassed safely. */
7847 cse_condition_code_reg ();
7848
7849 purge_all_dead_edges ();
7850 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7851
7852 if (tem)
7853 {
7854 timevar_push (TV_JUMP);
7855 rebuild_jump_labels (get_insns ());
7856 delete_dead_jumptables ();
7857 cleanup_cfg (CLEANUP_EXPENSIVE);
7858 timevar_pop (TV_JUMP);
7859 }
7860 reg_scan (get_insns (), max_reg_num ());
7861 cse_not_expected = 1;
7862 }
7863
7864
7865 struct tree_opt_pass pass_cse2 =
7866 {
7867 "cse2", /* name */
7868 gate_handle_cse2, /* gate */
7869 rest_of_handle_cse2, /* execute */
7870 NULL, /* sub */
7871 NULL, /* next */
7872 0, /* static_pass_number */
7873 TV_CSE2, /* tv_id */
7874 0, /* properties_required */
7875 0, /* properties_provided */
7876 0, /* properties_destroyed */
7877 0, /* todo_flags_start */
7878 TODO_dump_func |
7879 TODO_ggc_collect, /* todo_flags_finish */
7880 't' /* letter */
7881 };
7882