re PR c++/58083 (ICE with lambda as default parameter of a template function)
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "except.h"
38 #include "target.h"
39 #include "params.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "dbgcnt.h"
44 #include "pointer-set.h"
45
46 /* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
50
51 It is too complicated to keep track of the different possibilities
52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
56
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
60
61 We use two data structures to record the equivalent expressions:
62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
64
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
73
74 Registers and "quantity numbers":
75
76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
82 `REG_QTY (N)' records what quantity register N is currently thought
83 of as containing.
84
85 All real quantity numbers are greater than or equal to zero.
86 If register N has not been assigned a quantity, `REG_QTY (N)' will
87 equal -N - 1, which is always negative.
88
89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
91
92 We also maintain a bidirectional chain of registers for each
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
95
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
99
100 If two registers have the same quantity number, it must be true that
101 REG expressions with qty_table `mode' must be in the hash table for both
102 registers and must be in the same class.
103
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
108
109 Constants and quantity numbers
110
111 When a quantity has a known constant value, that value is stored
112 in the appropriate qty_table `const_rtx'. This is in addition to
113 putting the constant in the hash table as is usual for non-regs.
114
115 Whether a reg or a constant is preferred is determined by the configuration
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
118
119 When a quantity has a known nearly constant value (such as an address
120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
122
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
128
129 Other expressions:
130
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
136
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
139
140 Register references in an expression are canonicalized before hashing
141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
144
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
148
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
153
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
161
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
165
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
173
174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
184
185 Registers themselves are entered in the hash table as well as in
186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
192
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
196
197 Related expressions:
198
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
205
206 /* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
208
209 static int max_qty;
210
211 /* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
213
214 static int next_qty;
215
216 /* Per-qty information tracking.
217
218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
220
221 `mode' contains the machine mode of this quantity.
222
223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
228
229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
240
241 struct qty_table_elem
242 {
243 rtx const_rtx;
244 rtx const_insn;
245 rtx comparison_const;
246 int comparison_qty;
247 unsigned int first_reg, last_reg;
248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
252 };
253
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
256
257 /* Structure used to pass arguments via for_each_rtx to function
258 cse_change_cc_mode. */
259 struct change_cc_mode_args
260 {
261 rtx insn;
262 rtx newreg;
263 };
264
265 #ifdef HAVE_cc0
266 /* For machines that have a CC0, we do not record its value in the hash
267 table since its use is guaranteed to be the insn immediately following
268 its definition and any other insn is presumed to invalidate it.
269
270 Instead, we store below the current and last value assigned to CC0.
271 If it should happen to be a constant, it is stored in preference
272 to the actual assigned value. In case it is a constant, we store
273 the mode in which the constant should be interpreted. */
274
275 static rtx this_insn_cc0, prev_insn_cc0;
276 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
277 #endif
278
279 /* Insn being scanned. */
280
281 static rtx this_insn;
282 static bool optimize_this_for_speed_p;
283
284 /* Index by register number, gives the number of the next (or
285 previous) register in the chain of registers sharing the same
286 value.
287
288 Or -1 if this register is at the end of the chain.
289
290 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
291
292 /* Per-register equivalence chain. */
293 struct reg_eqv_elem
294 {
295 int next, prev;
296 };
297
298 /* The table of all register equivalence chains. */
299 static struct reg_eqv_elem *reg_eqv_table;
300
301 struct cse_reg_info
302 {
303 /* The timestamp at which this register is initialized. */
304 unsigned int timestamp;
305
306 /* The quantity number of the register's current contents. */
307 int reg_qty;
308
309 /* The number of times the register has been altered in the current
310 basic block. */
311 int reg_tick;
312
313 /* The REG_TICK value at which rtx's containing this register are
314 valid in the hash table. If this does not equal the current
315 reg_tick value, such expressions existing in the hash table are
316 invalid. */
317 int reg_in_table;
318
319 /* The SUBREG that was set when REG_TICK was last incremented. Set
320 to -1 if the last store was to the whole register, not a subreg. */
321 unsigned int subreg_ticked;
322 };
323
324 /* A table of cse_reg_info indexed by register numbers. */
325 static struct cse_reg_info *cse_reg_info_table;
326
327 /* The size of the above table. */
328 static unsigned int cse_reg_info_table_size;
329
330 /* The index of the first entry that has not been initialized. */
331 static unsigned int cse_reg_info_table_first_uninitialized;
332
333 /* The timestamp at the beginning of the current run of
334 cse_extended_basic_block. We increment this variable at the beginning of
335 the current run of cse_extended_basic_block. The timestamp field of a
336 cse_reg_info entry matches the value of this variable if and only
337 if the entry has been initialized during the current run of
338 cse_extended_basic_block. */
339 static unsigned int cse_reg_info_timestamp;
340
341 /* A HARD_REG_SET containing all the hard registers for which there is
342 currently a REG expression in the hash table. Note the difference
343 from the above variables, which indicate if the REG is mentioned in some
344 expression in the table. */
345
346 static HARD_REG_SET hard_regs_in_table;
347
348 /* True if CSE has altered the CFG. */
349 static bool cse_cfg_altered;
350
351 /* True if CSE has altered conditional jump insns in such a way
352 that jump optimization should be redone. */
353 static bool cse_jumps_altered;
354
355 /* True if we put a LABEL_REF into the hash table for an INSN
356 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
357 to put in the note. */
358 static bool recorded_label_ref;
359
360 /* canon_hash stores 1 in do_not_record
361 if it notices a reference to CC0, PC, or some other volatile
362 subexpression. */
363
364 static int do_not_record;
365
366 /* canon_hash stores 1 in hash_arg_in_memory
367 if it notices a reference to memory within the expression being hashed. */
368
369 static int hash_arg_in_memory;
370
371 /* The hash table contains buckets which are chains of `struct table_elt's,
372 each recording one expression's information.
373 That expression is in the `exp' field.
374
375 The canon_exp field contains a canonical (from the point of view of
376 alias analysis) version of the `exp' field.
377
378 Those elements with the same hash code are chained in both directions
379 through the `next_same_hash' and `prev_same_hash' fields.
380
381 Each set of expressions with equivalent values
382 are on a two-way chain through the `next_same_value'
383 and `prev_same_value' fields, and all point with
384 the `first_same_value' field at the first element in
385 that chain. The chain is in order of increasing cost.
386 Each element's cost value is in its `cost' field.
387
388 The `in_memory' field is nonzero for elements that
389 involve any reference to memory. These elements are removed
390 whenever a write is done to an unidentified location in memory.
391 To be safe, we assume that a memory address is unidentified unless
392 the address is either a symbol constant or a constant plus
393 the frame pointer or argument pointer.
394
395 The `related_value' field is used to connect related expressions
396 (that differ by adding an integer).
397 The related expressions are chained in a circular fashion.
398 `related_value' is zero for expressions for which this
399 chain is not useful.
400
401 The `cost' field stores the cost of this element's expression.
402 The `regcost' field stores the value returned by approx_reg_cost for
403 this element's expression.
404
405 The `is_const' flag is set if the element is a constant (including
406 a fixed address).
407
408 The `flag' field is used as a temporary during some search routines.
409
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
414
415 struct table_elt
416 {
417 rtx exp;
418 rtx canon_exp;
419 struct table_elt *next_same_hash;
420 struct table_elt *prev_same_hash;
421 struct table_elt *next_same_value;
422 struct table_elt *prev_same_value;
423 struct table_elt *first_same_value;
424 struct table_elt *related_value;
425 int cost;
426 int regcost;
427 /* The size of this field should match the size
428 of the mode field of struct rtx_def (see rtl.h). */
429 ENUM_BITFIELD(machine_mode) mode : 8;
430 char in_memory;
431 char is_const;
432 char flag;
433 };
434
435 /* We don't want a lot of buckets, because we rarely have very many
436 things stored in the hash table, and a lot of buckets slows
437 down a lot of loops that happen frequently. */
438 #define HASH_SHIFT 5
439 #define HASH_SIZE (1 << HASH_SHIFT)
440 #define HASH_MASK (HASH_SIZE - 1)
441
442 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
443 register (hard registers may require `do_not_record' to be set). */
444
445 #define HASH(X, M) \
446 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
447 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
448 : canon_hash (X, M)) & HASH_MASK)
449
450 /* Like HASH, but without side-effects. */
451 #define SAFE_HASH(X, M) \
452 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
453 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
454 : safe_hash (X, M)) & HASH_MASK)
455
456 /* Determine whether register number N is considered a fixed register for the
457 purpose of approximating register costs.
458 It is desirable to replace other regs with fixed regs, to reduce need for
459 non-fixed hard regs.
460 A reg wins if it is either the frame pointer or designated as fixed. */
461 #define FIXED_REGNO_P(N) \
462 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
463 || fixed_regs[N] || global_regs[N])
464
465 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
466 hard registers and pointers into the frame are the cheapest with a cost
467 of 0. Next come pseudos with a cost of one and other hard registers with
468 a cost of 2. Aside from these special cases, call `rtx_cost'. */
469
470 #define CHEAP_REGNO(N) \
471 (REGNO_PTR_FRAME_P(N) \
472 || (HARD_REGISTER_NUM_P (N) \
473 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
474
475 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
476 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
477
478 /* Get the number of times this register has been updated in this
479 basic block. */
480
481 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
482
483 /* Get the point at which REG was recorded in the table. */
484
485 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
486
487 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488 SUBREG). */
489
490 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
491
492 /* Get the quantity number for REG. */
493
494 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
495
496 /* Determine if the quantity number for register X represents a valid index
497 into the qty_table. */
498
499 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
500
501 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
502
503 #define CHEAPER(X, Y) \
504 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
505
506 static struct table_elt *table[HASH_SIZE];
507
508 /* Chain of `struct table_elt's made so far for this function
509 but currently removed from the table. */
510
511 static struct table_elt *free_element_chain;
512
513 /* Set to the cost of a constant pool reference if one was found for a
514 symbolic constant. If this was found, it means we should try to
515 convert constants into constant pool entries if they don't fit in
516 the insn. */
517
518 static int constant_pool_entries_cost;
519 static int constant_pool_entries_regcost;
520
521 /* Trace a patch through the CFG. */
522
523 struct branch_path
524 {
525 /* The basic block for this path entry. */
526 basic_block bb;
527 };
528
529 /* This data describes a block that will be processed by
530 cse_extended_basic_block. */
531
532 struct cse_basic_block_data
533 {
534 /* Total number of SETs in block. */
535 int nsets;
536 /* Size of current branch path, if any. */
537 int path_size;
538 /* Current path, indicating which basic_blocks will be processed. */
539 struct branch_path *path;
540 };
541
542
543 /* Pointers to the live in/live out bitmaps for the boundaries of the
544 current EBB. */
545 static bitmap cse_ebb_live_in, cse_ebb_live_out;
546
547 /* A simple bitmap to track which basic blocks have been visited
548 already as part of an already processed extended basic block. */
549 static sbitmap cse_visited_basic_blocks;
550
551 static bool fixed_base_plus_p (rtx x);
552 static int notreg_cost (rtx, enum rtx_code, int);
553 static int approx_reg_cost_1 (rtx *, void *);
554 static int approx_reg_cost (rtx);
555 static int preferable (int, int, int, int);
556 static void new_basic_block (void);
557 static void make_new_qty (unsigned int, enum machine_mode);
558 static void make_regs_eqv (unsigned int, unsigned int);
559 static void delete_reg_equiv (unsigned int);
560 static int mention_regs (rtx);
561 static int insert_regs (rtx, struct table_elt *, int);
562 static void remove_from_table (struct table_elt *, unsigned);
563 static void remove_pseudo_from_table (rtx, unsigned);
564 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
565 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
566 static rtx lookup_as_function (rtx, enum rtx_code);
567 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
568 enum machine_mode, int, int);
569 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
570 enum machine_mode);
571 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
572 static void invalidate (rtx, enum machine_mode);
573 static void remove_invalid_refs (unsigned int);
574 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
575 enum machine_mode);
576 static void rehash_using_reg (rtx);
577 static void invalidate_memory (void);
578 static void invalidate_for_call (void);
579 static rtx use_related_value (rtx, struct table_elt *);
580
581 static inline unsigned canon_hash (rtx, enum machine_mode);
582 static inline unsigned safe_hash (rtx, enum machine_mode);
583 static inline unsigned hash_rtx_string (const char *);
584
585 static rtx canon_reg (rtx, rtx);
586 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
587 enum machine_mode *,
588 enum machine_mode *);
589 static rtx fold_rtx (rtx, rtx);
590 static rtx equiv_constant (rtx);
591 static void record_jump_equiv (rtx, bool);
592 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
593 int);
594 static void cse_insn (rtx);
595 static void cse_prescan_path (struct cse_basic_block_data *);
596 static void invalidate_from_clobbers (rtx);
597 static void invalidate_from_sets_and_clobbers (rtx);
598 static rtx cse_process_notes (rtx, rtx, bool *);
599 static void cse_extended_basic_block (struct cse_basic_block_data *);
600 static int check_for_label_ref (rtx *, void *);
601 extern void dump_class (struct table_elt*);
602 static void get_cse_reg_info_1 (unsigned int regno);
603 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
604 static int check_dependence (rtx *, void *);
605
606 static void flush_hash_table (void);
607 static bool insn_live_p (rtx, int *);
608 static bool set_live_p (rtx, rtx, int *);
609 static int cse_change_cc_mode (rtx *, void *);
610 static void cse_change_cc_mode_insn (rtx, rtx);
611 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
612 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
613 bool);
614 \f
615
616 #undef RTL_HOOKS_GEN_LOWPART
617 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
618
619 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
620 \f
621 /* Nonzero if X has the form (PLUS frame-pointer integer). */
622
623 static bool
624 fixed_base_plus_p (rtx x)
625 {
626 switch (GET_CODE (x))
627 {
628 case REG:
629 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
630 return true;
631 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
632 return true;
633 return false;
634
635 case PLUS:
636 if (!CONST_INT_P (XEXP (x, 1)))
637 return false;
638 return fixed_base_plus_p (XEXP (x, 0));
639
640 default:
641 return false;
642 }
643 }
644
645 /* Dump the expressions in the equivalence class indicated by CLASSP.
646 This function is used only for debugging. */
647 DEBUG_FUNCTION void
648 dump_class (struct table_elt *classp)
649 {
650 struct table_elt *elt;
651
652 fprintf (stderr, "Equivalence chain for ");
653 print_rtl (stderr, classp->exp);
654 fprintf (stderr, ": \n");
655
656 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
657 {
658 print_rtl (stderr, elt->exp);
659 fprintf (stderr, "\n");
660 }
661 }
662
663 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
664
665 static int
666 approx_reg_cost_1 (rtx *xp, void *data)
667 {
668 rtx x = *xp;
669 int *cost_p = (int *) data;
670
671 if (x && REG_P (x))
672 {
673 unsigned int regno = REGNO (x);
674
675 if (! CHEAP_REGNO (regno))
676 {
677 if (regno < FIRST_PSEUDO_REGISTER)
678 {
679 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
680 return 1;
681 *cost_p += 2;
682 }
683 else
684 *cost_p += 1;
685 }
686 }
687
688 return 0;
689 }
690
691 /* Return an estimate of the cost of the registers used in an rtx.
692 This is mostly the number of different REG expressions in the rtx;
693 however for some exceptions like fixed registers we use a cost of
694 0. If any other hard register reference occurs, return MAX_COST. */
695
696 static int
697 approx_reg_cost (rtx x)
698 {
699 int cost = 0;
700
701 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
702 return MAX_COST;
703
704 return cost;
705 }
706
707 /* Return a negative value if an rtx A, whose costs are given by COST_A
708 and REGCOST_A, is more desirable than an rtx B.
709 Return a positive value if A is less desirable, or 0 if the two are
710 equally good. */
711 static int
712 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
713 {
714 /* First, get rid of cases involving expressions that are entirely
715 unwanted. */
716 if (cost_a != cost_b)
717 {
718 if (cost_a == MAX_COST)
719 return 1;
720 if (cost_b == MAX_COST)
721 return -1;
722 }
723
724 /* Avoid extending lifetimes of hardregs. */
725 if (regcost_a != regcost_b)
726 {
727 if (regcost_a == MAX_COST)
728 return 1;
729 if (regcost_b == MAX_COST)
730 return -1;
731 }
732
733 /* Normal operation costs take precedence. */
734 if (cost_a != cost_b)
735 return cost_a - cost_b;
736 /* Only if these are identical consider effects on register pressure. */
737 if (regcost_a != regcost_b)
738 return regcost_a - regcost_b;
739 return 0;
740 }
741
742 /* Internal function, to compute cost when X is not a register; called
743 from COST macro to keep it simple. */
744
745 static int
746 notreg_cost (rtx x, enum rtx_code outer, int opno)
747 {
748 return ((GET_CODE (x) == SUBREG
749 && REG_P (SUBREG_REG (x))
750 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
751 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
752 && (GET_MODE_SIZE (GET_MODE (x))
753 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
754 && subreg_lowpart_p (x)
755 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
756 GET_MODE (SUBREG_REG (x))))
757 ? 0
758 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
759 }
760
761 \f
762 /* Initialize CSE_REG_INFO_TABLE. */
763
764 static void
765 init_cse_reg_info (unsigned int nregs)
766 {
767 /* Do we need to grow the table? */
768 if (nregs > cse_reg_info_table_size)
769 {
770 unsigned int new_size;
771
772 if (cse_reg_info_table_size < 2048)
773 {
774 /* Compute a new size that is a power of 2 and no smaller
775 than the large of NREGS and 64. */
776 new_size = (cse_reg_info_table_size
777 ? cse_reg_info_table_size : 64);
778
779 while (new_size < nregs)
780 new_size *= 2;
781 }
782 else
783 {
784 /* If we need a big table, allocate just enough to hold
785 NREGS registers. */
786 new_size = nregs;
787 }
788
789 /* Reallocate the table with NEW_SIZE entries. */
790 free (cse_reg_info_table);
791 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
792 cse_reg_info_table_size = new_size;
793 cse_reg_info_table_first_uninitialized = 0;
794 }
795
796 /* Do we have all of the first NREGS entries initialized? */
797 if (cse_reg_info_table_first_uninitialized < nregs)
798 {
799 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
800 unsigned int i;
801
802 /* Put the old timestamp on newly allocated entries so that they
803 will all be considered out of date. We do not touch those
804 entries beyond the first NREGS entries to be nice to the
805 virtual memory. */
806 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
807 cse_reg_info_table[i].timestamp = old_timestamp;
808
809 cse_reg_info_table_first_uninitialized = nregs;
810 }
811 }
812
813 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
814
815 static void
816 get_cse_reg_info_1 (unsigned int regno)
817 {
818 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
819 entry will be considered to have been initialized. */
820 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
821
822 /* Initialize the rest of the entry. */
823 cse_reg_info_table[regno].reg_tick = 1;
824 cse_reg_info_table[regno].reg_in_table = -1;
825 cse_reg_info_table[regno].subreg_ticked = -1;
826 cse_reg_info_table[regno].reg_qty = -regno - 1;
827 }
828
829 /* Find a cse_reg_info entry for REGNO. */
830
831 static inline struct cse_reg_info *
832 get_cse_reg_info (unsigned int regno)
833 {
834 struct cse_reg_info *p = &cse_reg_info_table[regno];
835
836 /* If this entry has not been initialized, go ahead and initialize
837 it. */
838 if (p->timestamp != cse_reg_info_timestamp)
839 get_cse_reg_info_1 (regno);
840
841 return p;
842 }
843
844 /* Clear the hash table and initialize each register with its own quantity,
845 for a new basic block. */
846
847 static void
848 new_basic_block (void)
849 {
850 int i;
851
852 next_qty = 0;
853
854 /* Invalidate cse_reg_info_table. */
855 cse_reg_info_timestamp++;
856
857 /* Clear out hash table state for this pass. */
858 CLEAR_HARD_REG_SET (hard_regs_in_table);
859
860 /* The per-quantity values used to be initialized here, but it is
861 much faster to initialize each as it is made in `make_new_qty'. */
862
863 for (i = 0; i < HASH_SIZE; i++)
864 {
865 struct table_elt *first;
866
867 first = table[i];
868 if (first != NULL)
869 {
870 struct table_elt *last = first;
871
872 table[i] = NULL;
873
874 while (last->next_same_hash != NULL)
875 last = last->next_same_hash;
876
877 /* Now relink this hash entire chain into
878 the free element list. */
879
880 last->next_same_hash = free_element_chain;
881 free_element_chain = first;
882 }
883 }
884
885 #ifdef HAVE_cc0
886 prev_insn_cc0 = 0;
887 #endif
888 }
889
890 /* Say that register REG contains a quantity in mode MODE not in any
891 register before and initialize that quantity. */
892
893 static void
894 make_new_qty (unsigned int reg, enum machine_mode mode)
895 {
896 int q;
897 struct qty_table_elem *ent;
898 struct reg_eqv_elem *eqv;
899
900 gcc_assert (next_qty < max_qty);
901
902 q = REG_QTY (reg) = next_qty++;
903 ent = &qty_table[q];
904 ent->first_reg = reg;
905 ent->last_reg = reg;
906 ent->mode = mode;
907 ent->const_rtx = ent->const_insn = NULL_RTX;
908 ent->comparison_code = UNKNOWN;
909
910 eqv = &reg_eqv_table[reg];
911 eqv->next = eqv->prev = -1;
912 }
913
914 /* Make reg NEW equivalent to reg OLD.
915 OLD is not changing; NEW is. */
916
917 static void
918 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
919 {
920 unsigned int lastr, firstr;
921 int q = REG_QTY (old_reg);
922 struct qty_table_elem *ent;
923
924 ent = &qty_table[q];
925
926 /* Nothing should become eqv until it has a "non-invalid" qty number. */
927 gcc_assert (REGNO_QTY_VALID_P (old_reg));
928
929 REG_QTY (new_reg) = q;
930 firstr = ent->first_reg;
931 lastr = ent->last_reg;
932
933 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
934 hard regs. Among pseudos, if NEW will live longer than any other reg
935 of the same qty, and that is beyond the current basic block,
936 make it the new canonical replacement for this qty. */
937 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
938 /* Certain fixed registers might be of the class NO_REGS. This means
939 that not only can they not be allocated by the compiler, but
940 they cannot be used in substitutions or canonicalizations
941 either. */
942 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
943 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
944 || (new_reg >= FIRST_PSEUDO_REGISTER
945 && (firstr < FIRST_PSEUDO_REGISTER
946 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
947 && !bitmap_bit_p (cse_ebb_live_out, firstr))
948 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
949 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
950 {
951 reg_eqv_table[firstr].prev = new_reg;
952 reg_eqv_table[new_reg].next = firstr;
953 reg_eqv_table[new_reg].prev = -1;
954 ent->first_reg = new_reg;
955 }
956 else
957 {
958 /* If NEW is a hard reg (known to be non-fixed), insert at end.
959 Otherwise, insert before any non-fixed hard regs that are at the
960 end. Registers of class NO_REGS cannot be used as an
961 equivalent for anything. */
962 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
963 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
964 && new_reg >= FIRST_PSEUDO_REGISTER)
965 lastr = reg_eqv_table[lastr].prev;
966 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
967 if (reg_eqv_table[lastr].next >= 0)
968 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
969 else
970 qty_table[q].last_reg = new_reg;
971 reg_eqv_table[lastr].next = new_reg;
972 reg_eqv_table[new_reg].prev = lastr;
973 }
974 }
975
976 /* Remove REG from its equivalence class. */
977
978 static void
979 delete_reg_equiv (unsigned int reg)
980 {
981 struct qty_table_elem *ent;
982 int q = REG_QTY (reg);
983 int p, n;
984
985 /* If invalid, do nothing. */
986 if (! REGNO_QTY_VALID_P (reg))
987 return;
988
989 ent = &qty_table[q];
990
991 p = reg_eqv_table[reg].prev;
992 n = reg_eqv_table[reg].next;
993
994 if (n != -1)
995 reg_eqv_table[n].prev = p;
996 else
997 ent->last_reg = p;
998 if (p != -1)
999 reg_eqv_table[p].next = n;
1000 else
1001 ent->first_reg = n;
1002
1003 REG_QTY (reg) = -reg - 1;
1004 }
1005
1006 /* Remove any invalid expressions from the hash table
1007 that refer to any of the registers contained in expression X.
1008
1009 Make sure that newly inserted references to those registers
1010 as subexpressions will be considered valid.
1011
1012 mention_regs is not called when a register itself
1013 is being stored in the table.
1014
1015 Return 1 if we have done something that may have changed the hash code
1016 of X. */
1017
1018 static int
1019 mention_regs (rtx x)
1020 {
1021 enum rtx_code code;
1022 int i, j;
1023 const char *fmt;
1024 int changed = 0;
1025
1026 if (x == 0)
1027 return 0;
1028
1029 code = GET_CODE (x);
1030 if (code == REG)
1031 {
1032 unsigned int regno = REGNO (x);
1033 unsigned int endregno = END_REGNO (x);
1034 unsigned int i;
1035
1036 for (i = regno; i < endregno; i++)
1037 {
1038 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1039 remove_invalid_refs (i);
1040
1041 REG_IN_TABLE (i) = REG_TICK (i);
1042 SUBREG_TICKED (i) = -1;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1049 pseudo if they don't use overlapping words. We handle only pseudos
1050 here for simplicity. */
1051 if (code == SUBREG && REG_P (SUBREG_REG (x))
1052 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1053 {
1054 unsigned int i = REGNO (SUBREG_REG (x));
1055
1056 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1057 {
1058 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1059 the last store to this register really stored into this
1060 subreg, then remove the memory of this subreg.
1061 Otherwise, remove any memory of the entire register and
1062 all its subregs from the table. */
1063 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1064 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1065 remove_invalid_refs (i);
1066 else
1067 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1068 }
1069
1070 REG_IN_TABLE (i) = REG_TICK (i);
1071 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1072 return 0;
1073 }
1074
1075 /* If X is a comparison or a COMPARE and either operand is a register
1076 that does not have a quantity, give it one. This is so that a later
1077 call to record_jump_equiv won't cause X to be assigned a different
1078 hash code and not found in the table after that call.
1079
1080 It is not necessary to do this here, since rehash_using_reg can
1081 fix up the table later, but doing this here eliminates the need to
1082 call that expensive function in the most common case where the only
1083 use of the register is in the comparison. */
1084
1085 if (code == COMPARE || COMPARISON_P (x))
1086 {
1087 if (REG_P (XEXP (x, 0))
1088 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1089 if (insert_regs (XEXP (x, 0), NULL, 0))
1090 {
1091 rehash_using_reg (XEXP (x, 0));
1092 changed = 1;
1093 }
1094
1095 if (REG_P (XEXP (x, 1))
1096 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1097 if (insert_regs (XEXP (x, 1), NULL, 0))
1098 {
1099 rehash_using_reg (XEXP (x, 1));
1100 changed = 1;
1101 }
1102 }
1103
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'e')
1107 changed |= mention_regs (XEXP (x, i));
1108 else if (fmt[i] == 'E')
1109 for (j = 0; j < XVECLEN (x, i); j++)
1110 changed |= mention_regs (XVECEXP (x, i, j));
1111
1112 return changed;
1113 }
1114
1115 /* Update the register quantities for inserting X into the hash table
1116 with a value equivalent to CLASSP.
1117 (If the class does not contain a REG, it is irrelevant.)
1118 If MODIFIED is nonzero, X is a destination; it is being modified.
1119 Note that delete_reg_equiv should be called on a register
1120 before insert_regs is done on that register with MODIFIED != 0.
1121
1122 Nonzero value means that elements of reg_qty have changed
1123 so X's hash code may be different. */
1124
1125 static int
1126 insert_regs (rtx x, struct table_elt *classp, int modified)
1127 {
1128 if (REG_P (x))
1129 {
1130 unsigned int regno = REGNO (x);
1131 int qty_valid;
1132
1133 /* If REGNO is in the equivalence table already but is of the
1134 wrong mode for that equivalence, don't do anything here. */
1135
1136 qty_valid = REGNO_QTY_VALID_P (regno);
1137 if (qty_valid)
1138 {
1139 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1140
1141 if (ent->mode != GET_MODE (x))
1142 return 0;
1143 }
1144
1145 if (modified || ! qty_valid)
1146 {
1147 if (classp)
1148 for (classp = classp->first_same_value;
1149 classp != 0;
1150 classp = classp->next_same_value)
1151 if (REG_P (classp->exp)
1152 && GET_MODE (classp->exp) == GET_MODE (x))
1153 {
1154 unsigned c_regno = REGNO (classp->exp);
1155
1156 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1157
1158 /* Suppose that 5 is hard reg and 100 and 101 are
1159 pseudos. Consider
1160
1161 (set (reg:si 100) (reg:si 5))
1162 (set (reg:si 5) (reg:si 100))
1163 (set (reg:di 101) (reg:di 5))
1164
1165 We would now set REG_QTY (101) = REG_QTY (5), but the
1166 entry for 5 is in SImode. When we use this later in
1167 copy propagation, we get the register in wrong mode. */
1168 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1169 continue;
1170
1171 make_regs_eqv (regno, c_regno);
1172 return 1;
1173 }
1174
1175 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1176 than REG_IN_TABLE to find out if there was only a single preceding
1177 invalidation - for the SUBREG - or another one, which would be
1178 for the full register. However, if we find here that REG_TICK
1179 indicates that the register is invalid, it means that it has
1180 been invalidated in a separate operation. The SUBREG might be used
1181 now (then this is a recursive call), or we might use the full REG
1182 now and a SUBREG of it later. So bump up REG_TICK so that
1183 mention_regs will do the right thing. */
1184 if (! modified
1185 && REG_IN_TABLE (regno) >= 0
1186 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1187 REG_TICK (regno)++;
1188 make_new_qty (regno, GET_MODE (x));
1189 return 1;
1190 }
1191
1192 return 0;
1193 }
1194
1195 /* If X is a SUBREG, we will likely be inserting the inner register in the
1196 table. If that register doesn't have an assigned quantity number at
1197 this point but does later, the insertion that we will be doing now will
1198 not be accessible because its hash code will have changed. So assign
1199 a quantity number now. */
1200
1201 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1202 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1203 {
1204 insert_regs (SUBREG_REG (x), NULL, 0);
1205 mention_regs (x);
1206 return 1;
1207 }
1208 else
1209 return mention_regs (x);
1210 }
1211 \f
1212
1213 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1214 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1215 CST is equal to an anchor. */
1216
1217 static bool
1218 compute_const_anchors (rtx cst,
1219 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1220 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1221 {
1222 HOST_WIDE_INT n = INTVAL (cst);
1223
1224 *lower_base = n & ~(targetm.const_anchor - 1);
1225 if (*lower_base == n)
1226 return false;
1227
1228 *upper_base =
1229 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1230 *upper_offs = n - *upper_base;
1231 *lower_offs = n - *lower_base;
1232 return true;
1233 }
1234
1235 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1236
1237 static void
1238 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1239 enum machine_mode mode)
1240 {
1241 struct table_elt *elt;
1242 unsigned hash;
1243 rtx anchor_exp;
1244 rtx exp;
1245
1246 anchor_exp = GEN_INT (anchor);
1247 hash = HASH (anchor_exp, mode);
1248 elt = lookup (anchor_exp, hash, mode);
1249 if (!elt)
1250 elt = insert (anchor_exp, NULL, hash, mode);
1251
1252 exp = plus_constant (mode, reg, offs);
1253 /* REG has just been inserted and the hash codes recomputed. */
1254 mention_regs (exp);
1255 hash = HASH (exp, mode);
1256
1257 /* Use the cost of the register rather than the whole expression. When
1258 looking up constant anchors we will further offset the corresponding
1259 expression therefore it does not make sense to prefer REGs over
1260 reg-immediate additions. Prefer instead the oldest expression. Also
1261 don't prefer pseudos over hard regs so that we derive constants in
1262 argument registers from other argument registers rather than from the
1263 original pseudo that was used to synthesize the constant. */
1264 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1265 }
1266
1267 /* The constant CST is equivalent to the register REG. Create
1268 equivalences between the two anchors of CST and the corresponding
1269 register-offset expressions using REG. */
1270
1271 static void
1272 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1273 {
1274 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1275
1276 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1277 &upper_base, &upper_offs))
1278 return;
1279
1280 /* Ignore anchors of value 0. Constants accessible from zero are
1281 simple. */
1282 if (lower_base != 0)
1283 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1284
1285 if (upper_base != 0)
1286 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1287 }
1288
1289 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1290 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1291 valid expression. Return the cheapest and oldest of such expressions. In
1292 *OLD, return how old the resulting expression is compared to the other
1293 equivalent expressions. */
1294
1295 static rtx
1296 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1297 unsigned *old)
1298 {
1299 struct table_elt *elt;
1300 unsigned idx;
1301 struct table_elt *match_elt;
1302 rtx match;
1303
1304 /* Find the cheapest and *oldest* expression to maximize the chance of
1305 reusing the same pseudo. */
1306
1307 match_elt = NULL;
1308 match = NULL_RTX;
1309 for (elt = anchor_elt->first_same_value, idx = 0;
1310 elt;
1311 elt = elt->next_same_value, idx++)
1312 {
1313 if (match_elt && CHEAPER (match_elt, elt))
1314 return match;
1315
1316 if (REG_P (elt->exp)
1317 || (GET_CODE (elt->exp) == PLUS
1318 && REG_P (XEXP (elt->exp, 0))
1319 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1320 {
1321 rtx x;
1322
1323 /* Ignore expressions that are no longer valid. */
1324 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1325 continue;
1326
1327 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1328 if (REG_P (x)
1329 || (GET_CODE (x) == PLUS
1330 && IN_RANGE (INTVAL (XEXP (x, 1)),
1331 -targetm.const_anchor,
1332 targetm.const_anchor - 1)))
1333 {
1334 match = x;
1335 match_elt = elt;
1336 *old = idx;
1337 }
1338 }
1339 }
1340
1341 return match;
1342 }
1343
1344 /* Try to express the constant SRC_CONST using a register+offset expression
1345 derived from a constant anchor. Return it if successful or NULL_RTX,
1346 otherwise. */
1347
1348 static rtx
1349 try_const_anchors (rtx src_const, enum machine_mode mode)
1350 {
1351 struct table_elt *lower_elt, *upper_elt;
1352 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1353 rtx lower_anchor_rtx, upper_anchor_rtx;
1354 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1355 unsigned lower_old, upper_old;
1356
1357 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1358 &upper_base, &upper_offs))
1359 return NULL_RTX;
1360
1361 lower_anchor_rtx = GEN_INT (lower_base);
1362 upper_anchor_rtx = GEN_INT (upper_base);
1363 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1364 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1365
1366 if (lower_elt)
1367 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1368 if (upper_elt)
1369 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1370
1371 if (!lower_exp)
1372 return upper_exp;
1373 if (!upper_exp)
1374 return lower_exp;
1375
1376 /* Return the older expression. */
1377 return (upper_old > lower_old ? upper_exp : lower_exp);
1378 }
1379 \f
1380 /* Look in or update the hash table. */
1381
1382 /* Remove table element ELT from use in the table.
1383 HASH is its hash code, made using the HASH macro.
1384 It's an argument because often that is known in advance
1385 and we save much time not recomputing it. */
1386
1387 static void
1388 remove_from_table (struct table_elt *elt, unsigned int hash)
1389 {
1390 if (elt == 0)
1391 return;
1392
1393 /* Mark this element as removed. See cse_insn. */
1394 elt->first_same_value = 0;
1395
1396 /* Remove the table element from its equivalence class. */
1397
1398 {
1399 struct table_elt *prev = elt->prev_same_value;
1400 struct table_elt *next = elt->next_same_value;
1401
1402 if (next)
1403 next->prev_same_value = prev;
1404
1405 if (prev)
1406 prev->next_same_value = next;
1407 else
1408 {
1409 struct table_elt *newfirst = next;
1410 while (next)
1411 {
1412 next->first_same_value = newfirst;
1413 next = next->next_same_value;
1414 }
1415 }
1416 }
1417
1418 /* Remove the table element from its hash bucket. */
1419
1420 {
1421 struct table_elt *prev = elt->prev_same_hash;
1422 struct table_elt *next = elt->next_same_hash;
1423
1424 if (next)
1425 next->prev_same_hash = prev;
1426
1427 if (prev)
1428 prev->next_same_hash = next;
1429 else if (table[hash] == elt)
1430 table[hash] = next;
1431 else
1432 {
1433 /* This entry is not in the proper hash bucket. This can happen
1434 when two classes were merged by `merge_equiv_classes'. Search
1435 for the hash bucket that it heads. This happens only very
1436 rarely, so the cost is acceptable. */
1437 for (hash = 0; hash < HASH_SIZE; hash++)
1438 if (table[hash] == elt)
1439 table[hash] = next;
1440 }
1441 }
1442
1443 /* Remove the table element from its related-value circular chain. */
1444
1445 if (elt->related_value != 0 && elt->related_value != elt)
1446 {
1447 struct table_elt *p = elt->related_value;
1448
1449 while (p->related_value != elt)
1450 p = p->related_value;
1451 p->related_value = elt->related_value;
1452 if (p->related_value == p)
1453 p->related_value = 0;
1454 }
1455
1456 /* Now add it to the free element chain. */
1457 elt->next_same_hash = free_element_chain;
1458 free_element_chain = elt;
1459 }
1460
1461 /* Same as above, but X is a pseudo-register. */
1462
1463 static void
1464 remove_pseudo_from_table (rtx x, unsigned int hash)
1465 {
1466 struct table_elt *elt;
1467
1468 /* Because a pseudo-register can be referenced in more than one
1469 mode, we might have to remove more than one table entry. */
1470 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1471 remove_from_table (elt, hash);
1472 }
1473
1474 /* Look up X in the hash table and return its table element,
1475 or 0 if X is not in the table.
1476
1477 MODE is the machine-mode of X, or if X is an integer constant
1478 with VOIDmode then MODE is the mode with which X will be used.
1479
1480 Here we are satisfied to find an expression whose tree structure
1481 looks like X. */
1482
1483 static struct table_elt *
1484 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1485 {
1486 struct table_elt *p;
1487
1488 for (p = table[hash]; p; p = p->next_same_hash)
1489 if (mode == p->mode && ((x == p->exp && REG_P (x))
1490 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1491 return p;
1492
1493 return 0;
1494 }
1495
1496 /* Like `lookup' but don't care whether the table element uses invalid regs.
1497 Also ignore discrepancies in the machine mode of a register. */
1498
1499 static struct table_elt *
1500 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1501 {
1502 struct table_elt *p;
1503
1504 if (REG_P (x))
1505 {
1506 unsigned int regno = REGNO (x);
1507
1508 /* Don't check the machine mode when comparing registers;
1509 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1510 for (p = table[hash]; p; p = p->next_same_hash)
1511 if (REG_P (p->exp)
1512 && REGNO (p->exp) == regno)
1513 return p;
1514 }
1515 else
1516 {
1517 for (p = table[hash]; p; p = p->next_same_hash)
1518 if (mode == p->mode
1519 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1520 return p;
1521 }
1522
1523 return 0;
1524 }
1525
1526 /* Look for an expression equivalent to X and with code CODE.
1527 If one is found, return that expression. */
1528
1529 static rtx
1530 lookup_as_function (rtx x, enum rtx_code code)
1531 {
1532 struct table_elt *p
1533 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1534
1535 if (p == 0)
1536 return 0;
1537
1538 for (p = p->first_same_value; p; p = p->next_same_value)
1539 if (GET_CODE (p->exp) == code
1540 /* Make sure this is a valid entry in the table. */
1541 && exp_equiv_p (p->exp, p->exp, 1, false))
1542 return p->exp;
1543
1544 return 0;
1545 }
1546
1547 /* Insert X in the hash table, assuming HASH is its hash code and
1548 CLASSP is an element of the class it should go in (or 0 if a new
1549 class should be made). COST is the code of X and reg_cost is the
1550 cost of registers in X. It is inserted at the proper position to
1551 keep the class in the order cheapest first.
1552
1553 MODE is the machine-mode of X, or if X is an integer constant
1554 with VOIDmode then MODE is the mode with which X will be used.
1555
1556 For elements of equal cheapness, the most recent one
1557 goes in front, except that the first element in the list
1558 remains first unless a cheaper element is added. The order of
1559 pseudo-registers does not matter, as canon_reg will be called to
1560 find the cheapest when a register is retrieved from the table.
1561
1562 The in_memory field in the hash table element is set to 0.
1563 The caller must set it nonzero if appropriate.
1564
1565 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1566 and if insert_regs returns a nonzero value
1567 you must then recompute its hash code before calling here.
1568
1569 If necessary, update table showing constant values of quantities. */
1570
1571 static struct table_elt *
1572 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1573 enum machine_mode mode, int cost, int reg_cost)
1574 {
1575 struct table_elt *elt;
1576
1577 /* If X is a register and we haven't made a quantity for it,
1578 something is wrong. */
1579 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1580
1581 /* If X is a hard register, show it is being put in the table. */
1582 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1583 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1584
1585 /* Put an element for X into the right hash bucket. */
1586
1587 elt = free_element_chain;
1588 if (elt)
1589 free_element_chain = elt->next_same_hash;
1590 else
1591 elt = XNEW (struct table_elt);
1592
1593 elt->exp = x;
1594 elt->canon_exp = NULL_RTX;
1595 elt->cost = cost;
1596 elt->regcost = reg_cost;
1597 elt->next_same_value = 0;
1598 elt->prev_same_value = 0;
1599 elt->next_same_hash = table[hash];
1600 elt->prev_same_hash = 0;
1601 elt->related_value = 0;
1602 elt->in_memory = 0;
1603 elt->mode = mode;
1604 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1605
1606 if (table[hash])
1607 table[hash]->prev_same_hash = elt;
1608 table[hash] = elt;
1609
1610 /* Put it into the proper value-class. */
1611 if (classp)
1612 {
1613 classp = classp->first_same_value;
1614 if (CHEAPER (elt, classp))
1615 /* Insert at the head of the class. */
1616 {
1617 struct table_elt *p;
1618 elt->next_same_value = classp;
1619 classp->prev_same_value = elt;
1620 elt->first_same_value = elt;
1621
1622 for (p = classp; p; p = p->next_same_value)
1623 p->first_same_value = elt;
1624 }
1625 else
1626 {
1627 /* Insert not at head of the class. */
1628 /* Put it after the last element cheaper than X. */
1629 struct table_elt *p, *next;
1630
1631 for (p = classp;
1632 (next = p->next_same_value) && CHEAPER (next, elt);
1633 p = next)
1634 ;
1635
1636 /* Put it after P and before NEXT. */
1637 elt->next_same_value = next;
1638 if (next)
1639 next->prev_same_value = elt;
1640
1641 elt->prev_same_value = p;
1642 p->next_same_value = elt;
1643 elt->first_same_value = classp;
1644 }
1645 }
1646 else
1647 elt->first_same_value = elt;
1648
1649 /* If this is a constant being set equivalent to a register or a register
1650 being set equivalent to a constant, note the constant equivalence.
1651
1652 If this is a constant, it cannot be equivalent to a different constant,
1653 and a constant is the only thing that can be cheaper than a register. So
1654 we know the register is the head of the class (before the constant was
1655 inserted).
1656
1657 If this is a register that is not already known equivalent to a
1658 constant, we must check the entire class.
1659
1660 If this is a register that is already known equivalent to an insn,
1661 update the qtys `const_insn' to show that `this_insn' is the latest
1662 insn making that quantity equivalent to the constant. */
1663
1664 if (elt->is_const && classp && REG_P (classp->exp)
1665 && !REG_P (x))
1666 {
1667 int exp_q = REG_QTY (REGNO (classp->exp));
1668 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1669
1670 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1671 exp_ent->const_insn = this_insn;
1672 }
1673
1674 else if (REG_P (x)
1675 && classp
1676 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1677 && ! elt->is_const)
1678 {
1679 struct table_elt *p;
1680
1681 for (p = classp; p != 0; p = p->next_same_value)
1682 {
1683 if (p->is_const && !REG_P (p->exp))
1684 {
1685 int x_q = REG_QTY (REGNO (x));
1686 struct qty_table_elem *x_ent = &qty_table[x_q];
1687
1688 x_ent->const_rtx
1689 = gen_lowpart (GET_MODE (x), p->exp);
1690 x_ent->const_insn = this_insn;
1691 break;
1692 }
1693 }
1694 }
1695
1696 else if (REG_P (x)
1697 && qty_table[REG_QTY (REGNO (x))].const_rtx
1698 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1699 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1700
1701 /* If this is a constant with symbolic value,
1702 and it has a term with an explicit integer value,
1703 link it up with related expressions. */
1704 if (GET_CODE (x) == CONST)
1705 {
1706 rtx subexp = get_related_value (x);
1707 unsigned subhash;
1708 struct table_elt *subelt, *subelt_prev;
1709
1710 if (subexp != 0)
1711 {
1712 /* Get the integer-free subexpression in the hash table. */
1713 subhash = SAFE_HASH (subexp, mode);
1714 subelt = lookup (subexp, subhash, mode);
1715 if (subelt == 0)
1716 subelt = insert (subexp, NULL, subhash, mode);
1717 /* Initialize SUBELT's circular chain if it has none. */
1718 if (subelt->related_value == 0)
1719 subelt->related_value = subelt;
1720 /* Find the element in the circular chain that precedes SUBELT. */
1721 subelt_prev = subelt;
1722 while (subelt_prev->related_value != subelt)
1723 subelt_prev = subelt_prev->related_value;
1724 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1725 This way the element that follows SUBELT is the oldest one. */
1726 elt->related_value = subelt_prev->related_value;
1727 subelt_prev->related_value = elt;
1728 }
1729 }
1730
1731 return elt;
1732 }
1733
1734 /* Wrap insert_with_costs by passing the default costs. */
1735
1736 static struct table_elt *
1737 insert (rtx x, struct table_elt *classp, unsigned int hash,
1738 enum machine_mode mode)
1739 {
1740 return
1741 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1742 }
1743
1744 \f
1745 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1746 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1747 the two classes equivalent.
1748
1749 CLASS1 will be the surviving class; CLASS2 should not be used after this
1750 call.
1751
1752 Any invalid entries in CLASS2 will not be copied. */
1753
1754 static void
1755 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1756 {
1757 struct table_elt *elt, *next, *new_elt;
1758
1759 /* Ensure we start with the head of the classes. */
1760 class1 = class1->first_same_value;
1761 class2 = class2->first_same_value;
1762
1763 /* If they were already equal, forget it. */
1764 if (class1 == class2)
1765 return;
1766
1767 for (elt = class2; elt; elt = next)
1768 {
1769 unsigned int hash;
1770 rtx exp = elt->exp;
1771 enum machine_mode mode = elt->mode;
1772
1773 next = elt->next_same_value;
1774
1775 /* Remove old entry, make a new one in CLASS1's class.
1776 Don't do this for invalid entries as we cannot find their
1777 hash code (it also isn't necessary). */
1778 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1779 {
1780 bool need_rehash = false;
1781
1782 hash_arg_in_memory = 0;
1783 hash = HASH (exp, mode);
1784
1785 if (REG_P (exp))
1786 {
1787 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1788 delete_reg_equiv (REGNO (exp));
1789 }
1790
1791 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1792 remove_pseudo_from_table (exp, hash);
1793 else
1794 remove_from_table (elt, hash);
1795
1796 if (insert_regs (exp, class1, 0) || need_rehash)
1797 {
1798 rehash_using_reg (exp);
1799 hash = HASH (exp, mode);
1800 }
1801 new_elt = insert (exp, class1, hash, mode);
1802 new_elt->in_memory = hash_arg_in_memory;
1803 }
1804 }
1805 }
1806 \f
1807 /* Flush the entire hash table. */
1808
1809 static void
1810 flush_hash_table (void)
1811 {
1812 int i;
1813 struct table_elt *p;
1814
1815 for (i = 0; i < HASH_SIZE; i++)
1816 for (p = table[i]; p; p = table[i])
1817 {
1818 /* Note that invalidate can remove elements
1819 after P in the current hash chain. */
1820 if (REG_P (p->exp))
1821 invalidate (p->exp, VOIDmode);
1822 else
1823 remove_from_table (p, i);
1824 }
1825 }
1826 \f
1827 /* Function called for each rtx to check whether an anti dependence exist. */
1828 struct check_dependence_data
1829 {
1830 enum machine_mode mode;
1831 rtx exp;
1832 rtx addr;
1833 };
1834
1835 static int
1836 check_dependence (rtx *x, void *data)
1837 {
1838 struct check_dependence_data *d = (struct check_dependence_data *) data;
1839 if (*x && MEM_P (*x))
1840 return canon_anti_dependence (*x, true, d->exp, d->mode, d->addr);
1841 else
1842 return 0;
1843 }
1844 \f
1845 /* Remove from the hash table, or mark as invalid, all expressions whose
1846 values could be altered by storing in X. X is a register, a subreg, or
1847 a memory reference with nonvarying address (because, when a memory
1848 reference with a varying address is stored in, all memory references are
1849 removed by invalidate_memory so specific invalidation is superfluous).
1850 FULL_MODE, if not VOIDmode, indicates that this much should be
1851 invalidated instead of just the amount indicated by the mode of X. This
1852 is only used for bitfield stores into memory.
1853
1854 A nonvarying address may be just a register or just a symbol reference,
1855 or it may be either of those plus a numeric offset. */
1856
1857 static void
1858 invalidate (rtx x, enum machine_mode full_mode)
1859 {
1860 int i;
1861 struct table_elt *p;
1862 rtx addr;
1863
1864 switch (GET_CODE (x))
1865 {
1866 case REG:
1867 {
1868 /* If X is a register, dependencies on its contents are recorded
1869 through the qty number mechanism. Just change the qty number of
1870 the register, mark it as invalid for expressions that refer to it,
1871 and remove it itself. */
1872 unsigned int regno = REGNO (x);
1873 unsigned int hash = HASH (x, GET_MODE (x));
1874
1875 /* Remove REGNO from any quantity list it might be on and indicate
1876 that its value might have changed. If it is a pseudo, remove its
1877 entry from the hash table.
1878
1879 For a hard register, we do the first two actions above for any
1880 additional hard registers corresponding to X. Then, if any of these
1881 registers are in the table, we must remove any REG entries that
1882 overlap these registers. */
1883
1884 delete_reg_equiv (regno);
1885 REG_TICK (regno)++;
1886 SUBREG_TICKED (regno) = -1;
1887
1888 if (regno >= FIRST_PSEUDO_REGISTER)
1889 remove_pseudo_from_table (x, hash);
1890 else
1891 {
1892 HOST_WIDE_INT in_table
1893 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1894 unsigned int endregno = END_HARD_REGNO (x);
1895 unsigned int tregno, tendregno, rn;
1896 struct table_elt *p, *next;
1897
1898 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1899
1900 for (rn = regno + 1; rn < endregno; rn++)
1901 {
1902 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1903 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1904 delete_reg_equiv (rn);
1905 REG_TICK (rn)++;
1906 SUBREG_TICKED (rn) = -1;
1907 }
1908
1909 if (in_table)
1910 for (hash = 0; hash < HASH_SIZE; hash++)
1911 for (p = table[hash]; p; p = next)
1912 {
1913 next = p->next_same_hash;
1914
1915 if (!REG_P (p->exp)
1916 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1917 continue;
1918
1919 tregno = REGNO (p->exp);
1920 tendregno = END_HARD_REGNO (p->exp);
1921 if (tendregno > regno && tregno < endregno)
1922 remove_from_table (p, hash);
1923 }
1924 }
1925 }
1926 return;
1927
1928 case SUBREG:
1929 invalidate (SUBREG_REG (x), VOIDmode);
1930 return;
1931
1932 case PARALLEL:
1933 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1934 invalidate (XVECEXP (x, 0, i), VOIDmode);
1935 return;
1936
1937 case EXPR_LIST:
1938 /* This is part of a disjoint return value; extract the location in
1939 question ignoring the offset. */
1940 invalidate (XEXP (x, 0), VOIDmode);
1941 return;
1942
1943 case MEM:
1944 addr = canon_rtx (get_addr (XEXP (x, 0)));
1945 /* Calculate the canonical version of X here so that
1946 true_dependence doesn't generate new RTL for X on each call. */
1947 x = canon_rtx (x);
1948
1949 /* Remove all hash table elements that refer to overlapping pieces of
1950 memory. */
1951 if (full_mode == VOIDmode)
1952 full_mode = GET_MODE (x);
1953
1954 for (i = 0; i < HASH_SIZE; i++)
1955 {
1956 struct table_elt *next;
1957
1958 for (p = table[i]; p; p = next)
1959 {
1960 next = p->next_same_hash;
1961 if (p->in_memory)
1962 {
1963 struct check_dependence_data d;
1964
1965 /* Just canonicalize the expression once;
1966 otherwise each time we call invalidate
1967 true_dependence will canonicalize the
1968 expression again. */
1969 if (!p->canon_exp)
1970 p->canon_exp = canon_rtx (p->exp);
1971 d.exp = x;
1972 d.addr = addr;
1973 d.mode = full_mode;
1974 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1975 remove_from_table (p, i);
1976 }
1977 }
1978 }
1979 return;
1980
1981 default:
1982 gcc_unreachable ();
1983 }
1984 }
1985 \f
1986 /* Remove all expressions that refer to register REGNO,
1987 since they are already invalid, and we are about to
1988 mark that register valid again and don't want the old
1989 expressions to reappear as valid. */
1990
1991 static void
1992 remove_invalid_refs (unsigned int regno)
1993 {
1994 unsigned int i;
1995 struct table_elt *p, *next;
1996
1997 for (i = 0; i < HASH_SIZE; i++)
1998 for (p = table[i]; p; p = next)
1999 {
2000 next = p->next_same_hash;
2001 if (!REG_P (p->exp)
2002 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2003 remove_from_table (p, i);
2004 }
2005 }
2006
2007 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2008 and mode MODE. */
2009 static void
2010 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2011 enum machine_mode mode)
2012 {
2013 unsigned int i;
2014 struct table_elt *p, *next;
2015 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2016
2017 for (i = 0; i < HASH_SIZE; i++)
2018 for (p = table[i]; p; p = next)
2019 {
2020 rtx exp = p->exp;
2021 next = p->next_same_hash;
2022
2023 if (!REG_P (exp)
2024 && (GET_CODE (exp) != SUBREG
2025 || !REG_P (SUBREG_REG (exp))
2026 || REGNO (SUBREG_REG (exp)) != regno
2027 || (((SUBREG_BYTE (exp)
2028 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2029 && SUBREG_BYTE (exp) <= end))
2030 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2031 remove_from_table (p, i);
2032 }
2033 }
2034 \f
2035 /* Recompute the hash codes of any valid entries in the hash table that
2036 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2037
2038 This is called when we make a jump equivalence. */
2039
2040 static void
2041 rehash_using_reg (rtx x)
2042 {
2043 unsigned int i;
2044 struct table_elt *p, *next;
2045 unsigned hash;
2046
2047 if (GET_CODE (x) == SUBREG)
2048 x = SUBREG_REG (x);
2049
2050 /* If X is not a register or if the register is known not to be in any
2051 valid entries in the table, we have no work to do. */
2052
2053 if (!REG_P (x)
2054 || REG_IN_TABLE (REGNO (x)) < 0
2055 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2056 return;
2057
2058 /* Scan all hash chains looking for valid entries that mention X.
2059 If we find one and it is in the wrong hash chain, move it. */
2060
2061 for (i = 0; i < HASH_SIZE; i++)
2062 for (p = table[i]; p; p = next)
2063 {
2064 next = p->next_same_hash;
2065 if (reg_mentioned_p (x, p->exp)
2066 && exp_equiv_p (p->exp, p->exp, 1, false)
2067 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2068 {
2069 if (p->next_same_hash)
2070 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2071
2072 if (p->prev_same_hash)
2073 p->prev_same_hash->next_same_hash = p->next_same_hash;
2074 else
2075 table[i] = p->next_same_hash;
2076
2077 p->next_same_hash = table[hash];
2078 p->prev_same_hash = 0;
2079 if (table[hash])
2080 table[hash]->prev_same_hash = p;
2081 table[hash] = p;
2082 }
2083 }
2084 }
2085 \f
2086 /* Remove from the hash table any expression that is a call-clobbered
2087 register. Also update their TICK values. */
2088
2089 static void
2090 invalidate_for_call (void)
2091 {
2092 unsigned int regno, endregno;
2093 unsigned int i;
2094 unsigned hash;
2095 struct table_elt *p, *next;
2096 int in_table = 0;
2097 hard_reg_set_iterator hrsi;
2098
2099 /* Go through all the hard registers. For each that is clobbered in
2100 a CALL_INSN, remove the register from quantity chains and update
2101 reg_tick if defined. Also see if any of these registers is currently
2102 in the table. */
2103 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2104 {
2105 delete_reg_equiv (regno);
2106 if (REG_TICK (regno) >= 0)
2107 {
2108 REG_TICK (regno)++;
2109 SUBREG_TICKED (regno) = -1;
2110 }
2111 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2112 }
2113
2114 /* In the case where we have no call-clobbered hard registers in the
2115 table, we are done. Otherwise, scan the table and remove any
2116 entry that overlaps a call-clobbered register. */
2117
2118 if (in_table)
2119 for (hash = 0; hash < HASH_SIZE; hash++)
2120 for (p = table[hash]; p; p = next)
2121 {
2122 next = p->next_same_hash;
2123
2124 if (!REG_P (p->exp)
2125 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2126 continue;
2127
2128 regno = REGNO (p->exp);
2129 endregno = END_HARD_REGNO (p->exp);
2130
2131 for (i = regno; i < endregno; i++)
2132 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2133 {
2134 remove_from_table (p, hash);
2135 break;
2136 }
2137 }
2138 }
2139 \f
2140 /* Given an expression X of type CONST,
2141 and ELT which is its table entry (or 0 if it
2142 is not in the hash table),
2143 return an alternate expression for X as a register plus integer.
2144 If none can be found, return 0. */
2145
2146 static rtx
2147 use_related_value (rtx x, struct table_elt *elt)
2148 {
2149 struct table_elt *relt = 0;
2150 struct table_elt *p, *q;
2151 HOST_WIDE_INT offset;
2152
2153 /* First, is there anything related known?
2154 If we have a table element, we can tell from that.
2155 Otherwise, must look it up. */
2156
2157 if (elt != 0 && elt->related_value != 0)
2158 relt = elt;
2159 else if (elt == 0 && GET_CODE (x) == CONST)
2160 {
2161 rtx subexp = get_related_value (x);
2162 if (subexp != 0)
2163 relt = lookup (subexp,
2164 SAFE_HASH (subexp, GET_MODE (subexp)),
2165 GET_MODE (subexp));
2166 }
2167
2168 if (relt == 0)
2169 return 0;
2170
2171 /* Search all related table entries for one that has an
2172 equivalent register. */
2173
2174 p = relt;
2175 while (1)
2176 {
2177 /* This loop is strange in that it is executed in two different cases.
2178 The first is when X is already in the table. Then it is searching
2179 the RELATED_VALUE list of X's class (RELT). The second case is when
2180 X is not in the table. Then RELT points to a class for the related
2181 value.
2182
2183 Ensure that, whatever case we are in, that we ignore classes that have
2184 the same value as X. */
2185
2186 if (rtx_equal_p (x, p->exp))
2187 q = 0;
2188 else
2189 for (q = p->first_same_value; q; q = q->next_same_value)
2190 if (REG_P (q->exp))
2191 break;
2192
2193 if (q)
2194 break;
2195
2196 p = p->related_value;
2197
2198 /* We went all the way around, so there is nothing to be found.
2199 Alternatively, perhaps RELT was in the table for some other reason
2200 and it has no related values recorded. */
2201 if (p == relt || p == 0)
2202 break;
2203 }
2204
2205 if (q == 0)
2206 return 0;
2207
2208 offset = (get_integer_term (x) - get_integer_term (p->exp));
2209 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2210 return plus_constant (q->mode, q->exp, offset);
2211 }
2212 \f
2213
2214 /* Hash a string. Just add its bytes up. */
2215 static inline unsigned
2216 hash_rtx_string (const char *ps)
2217 {
2218 unsigned hash = 0;
2219 const unsigned char *p = (const unsigned char *) ps;
2220
2221 if (p)
2222 while (*p)
2223 hash += *p++;
2224
2225 return hash;
2226 }
2227
2228 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2229 When the callback returns true, we continue with the new rtx. */
2230
2231 unsigned
2232 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2233 int *do_not_record_p, int *hash_arg_in_memory_p,
2234 bool have_reg_qty, hash_rtx_callback_function cb)
2235 {
2236 int i, j;
2237 unsigned hash = 0;
2238 enum rtx_code code;
2239 const char *fmt;
2240 enum machine_mode newmode;
2241 rtx newx;
2242
2243 /* Used to turn recursion into iteration. We can't rely on GCC's
2244 tail-recursion elimination since we need to keep accumulating values
2245 in HASH. */
2246 repeat:
2247 if (x == 0)
2248 return hash;
2249
2250 /* Invoke the callback first. */
2251 if (cb != NULL
2252 && ((*cb) (x, mode, &newx, &newmode)))
2253 {
2254 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2255 hash_arg_in_memory_p, have_reg_qty, cb);
2256 return hash;
2257 }
2258
2259 code = GET_CODE (x);
2260 switch (code)
2261 {
2262 case REG:
2263 {
2264 unsigned int regno = REGNO (x);
2265
2266 if (do_not_record_p && !reload_completed)
2267 {
2268 /* On some machines, we can't record any non-fixed hard register,
2269 because extending its life will cause reload problems. We
2270 consider ap, fp, sp, gp to be fixed for this purpose.
2271
2272 We also consider CCmode registers to be fixed for this purpose;
2273 failure to do so leads to failure to simplify 0<100 type of
2274 conditionals.
2275
2276 On all machines, we can't record any global registers.
2277 Nor should we record any register that is in a small
2278 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2279 bool record;
2280
2281 if (regno >= FIRST_PSEUDO_REGISTER)
2282 record = true;
2283 else if (x == frame_pointer_rtx
2284 || x == hard_frame_pointer_rtx
2285 || x == arg_pointer_rtx
2286 || x == stack_pointer_rtx
2287 || x == pic_offset_table_rtx)
2288 record = true;
2289 else if (global_regs[regno])
2290 record = false;
2291 else if (fixed_regs[regno])
2292 record = true;
2293 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2294 record = true;
2295 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2296 record = false;
2297 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2298 record = false;
2299 else
2300 record = true;
2301
2302 if (!record)
2303 {
2304 *do_not_record_p = 1;
2305 return 0;
2306 }
2307 }
2308
2309 hash += ((unsigned int) REG << 7);
2310 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2311 return hash;
2312 }
2313
2314 /* We handle SUBREG of a REG specially because the underlying
2315 reg changes its hash value with every value change; we don't
2316 want to have to forget unrelated subregs when one subreg changes. */
2317 case SUBREG:
2318 {
2319 if (REG_P (SUBREG_REG (x)))
2320 {
2321 hash += (((unsigned int) SUBREG << 7)
2322 + REGNO (SUBREG_REG (x))
2323 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2324 return hash;
2325 }
2326 break;
2327 }
2328
2329 case CONST_INT:
2330 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2331 + (unsigned int) INTVAL (x));
2332 return hash;
2333
2334 case CONST_DOUBLE:
2335 /* This is like the general case, except that it only counts
2336 the integers representing the constant. */
2337 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2338 if (GET_MODE (x) != VOIDmode)
2339 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2340 else
2341 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2342 + (unsigned int) CONST_DOUBLE_HIGH (x));
2343 return hash;
2344
2345 case CONST_FIXED:
2346 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2347 hash += fixed_hash (CONST_FIXED_VALUE (x));
2348 return hash;
2349
2350 case CONST_VECTOR:
2351 {
2352 int units;
2353 rtx elt;
2354
2355 units = CONST_VECTOR_NUNITS (x);
2356
2357 for (i = 0; i < units; ++i)
2358 {
2359 elt = CONST_VECTOR_ELT (x, i);
2360 hash += hash_rtx_cb (elt, GET_MODE (elt),
2361 do_not_record_p, hash_arg_in_memory_p,
2362 have_reg_qty, cb);
2363 }
2364
2365 return hash;
2366 }
2367
2368 /* Assume there is only one rtx object for any given label. */
2369 case LABEL_REF:
2370 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2371 differences and differences between each stage's debugging dumps. */
2372 hash += (((unsigned int) LABEL_REF << 7)
2373 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2374 return hash;
2375
2376 case SYMBOL_REF:
2377 {
2378 /* Don't hash on the symbol's address to avoid bootstrap differences.
2379 Different hash values may cause expressions to be recorded in
2380 different orders and thus different registers to be used in the
2381 final assembler. This also avoids differences in the dump files
2382 between various stages. */
2383 unsigned int h = 0;
2384 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2385
2386 while (*p)
2387 h += (h << 7) + *p++; /* ??? revisit */
2388
2389 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2390 return hash;
2391 }
2392
2393 case MEM:
2394 /* We don't record if marked volatile or if BLKmode since we don't
2395 know the size of the move. */
2396 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2397 {
2398 *do_not_record_p = 1;
2399 return 0;
2400 }
2401 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2402 *hash_arg_in_memory_p = 1;
2403
2404 /* Now that we have already found this special case,
2405 might as well speed it up as much as possible. */
2406 hash += (unsigned) MEM;
2407 x = XEXP (x, 0);
2408 goto repeat;
2409
2410 case USE:
2411 /* A USE that mentions non-volatile memory needs special
2412 handling since the MEM may be BLKmode which normally
2413 prevents an entry from being made. Pure calls are
2414 marked by a USE which mentions BLKmode memory.
2415 See calls.c:emit_call_1. */
2416 if (MEM_P (XEXP (x, 0))
2417 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2418 {
2419 hash += (unsigned) USE;
2420 x = XEXP (x, 0);
2421
2422 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2423 *hash_arg_in_memory_p = 1;
2424
2425 /* Now that we have already found this special case,
2426 might as well speed it up as much as possible. */
2427 hash += (unsigned) MEM;
2428 x = XEXP (x, 0);
2429 goto repeat;
2430 }
2431 break;
2432
2433 case PRE_DEC:
2434 case PRE_INC:
2435 case POST_DEC:
2436 case POST_INC:
2437 case PRE_MODIFY:
2438 case POST_MODIFY:
2439 case PC:
2440 case CC0:
2441 case CALL:
2442 case UNSPEC_VOLATILE:
2443 if (do_not_record_p) {
2444 *do_not_record_p = 1;
2445 return 0;
2446 }
2447 else
2448 return hash;
2449 break;
2450
2451 case ASM_OPERANDS:
2452 if (do_not_record_p && MEM_VOLATILE_P (x))
2453 {
2454 *do_not_record_p = 1;
2455 return 0;
2456 }
2457 else
2458 {
2459 /* We don't want to take the filename and line into account. */
2460 hash += (unsigned) code + (unsigned) GET_MODE (x)
2461 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2462 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2463 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2464
2465 if (ASM_OPERANDS_INPUT_LENGTH (x))
2466 {
2467 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2468 {
2469 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2470 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2471 do_not_record_p, hash_arg_in_memory_p,
2472 have_reg_qty, cb)
2473 + hash_rtx_string
2474 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2475 }
2476
2477 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2478 x = ASM_OPERANDS_INPUT (x, 0);
2479 mode = GET_MODE (x);
2480 goto repeat;
2481 }
2482
2483 return hash;
2484 }
2485 break;
2486
2487 default:
2488 break;
2489 }
2490
2491 i = GET_RTX_LENGTH (code) - 1;
2492 hash += (unsigned) code + (unsigned) GET_MODE (x);
2493 fmt = GET_RTX_FORMAT (code);
2494 for (; i >= 0; i--)
2495 {
2496 switch (fmt[i])
2497 {
2498 case 'e':
2499 /* If we are about to do the last recursive call
2500 needed at this level, change it into iteration.
2501 This function is called enough to be worth it. */
2502 if (i == 0)
2503 {
2504 x = XEXP (x, i);
2505 goto repeat;
2506 }
2507
2508 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2509 hash_arg_in_memory_p,
2510 have_reg_qty, cb);
2511 break;
2512
2513 case 'E':
2514 for (j = 0; j < XVECLEN (x, i); j++)
2515 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2516 hash_arg_in_memory_p,
2517 have_reg_qty, cb);
2518 break;
2519
2520 case 's':
2521 hash += hash_rtx_string (XSTR (x, i));
2522 break;
2523
2524 case 'i':
2525 hash += (unsigned int) XINT (x, i);
2526 break;
2527
2528 case '0': case 't':
2529 /* Unused. */
2530 break;
2531
2532 default:
2533 gcc_unreachable ();
2534 }
2535 }
2536
2537 return hash;
2538 }
2539
2540 /* Hash an rtx. We are careful to make sure the value is never negative.
2541 Equivalent registers hash identically.
2542 MODE is used in hashing for CONST_INTs only;
2543 otherwise the mode of X is used.
2544
2545 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2546
2547 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2548 a MEM rtx which does not have the MEM_READONLY_P flag set.
2549
2550 Note that cse_insn knows that the hash code of a MEM expression
2551 is just (int) MEM plus the hash code of the address. */
2552
2553 unsigned
2554 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2555 int *hash_arg_in_memory_p, bool have_reg_qty)
2556 {
2557 return hash_rtx_cb (x, mode, do_not_record_p,
2558 hash_arg_in_memory_p, have_reg_qty, NULL);
2559 }
2560
2561 /* Hash an rtx X for cse via hash_rtx.
2562 Stores 1 in do_not_record if any subexpression is volatile.
2563 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2564 does not have the MEM_READONLY_P flag set. */
2565
2566 static inline unsigned
2567 canon_hash (rtx x, enum machine_mode mode)
2568 {
2569 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2570 }
2571
2572 /* Like canon_hash but with no side effects, i.e. do_not_record
2573 and hash_arg_in_memory are not changed. */
2574
2575 static inline unsigned
2576 safe_hash (rtx x, enum machine_mode mode)
2577 {
2578 int dummy_do_not_record;
2579 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2580 }
2581 \f
2582 /* Return 1 iff X and Y would canonicalize into the same thing,
2583 without actually constructing the canonicalization of either one.
2584 If VALIDATE is nonzero,
2585 we assume X is an expression being processed from the rtl
2586 and Y was found in the hash table. We check register refs
2587 in Y for being marked as valid.
2588
2589 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2590
2591 int
2592 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2593 {
2594 int i, j;
2595 enum rtx_code code;
2596 const char *fmt;
2597
2598 /* Note: it is incorrect to assume an expression is equivalent to itself
2599 if VALIDATE is nonzero. */
2600 if (x == y && !validate)
2601 return 1;
2602
2603 if (x == 0 || y == 0)
2604 return x == y;
2605
2606 code = GET_CODE (x);
2607 if (code != GET_CODE (y))
2608 return 0;
2609
2610 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2611 if (GET_MODE (x) != GET_MODE (y))
2612 return 0;
2613
2614 /* MEMs referring to different address space are not equivalent. */
2615 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2616 return 0;
2617
2618 switch (code)
2619 {
2620 case PC:
2621 case CC0:
2622 CASE_CONST_UNIQUE:
2623 return x == y;
2624
2625 case LABEL_REF:
2626 return XEXP (x, 0) == XEXP (y, 0);
2627
2628 case SYMBOL_REF:
2629 return XSTR (x, 0) == XSTR (y, 0);
2630
2631 case REG:
2632 if (for_gcse)
2633 return REGNO (x) == REGNO (y);
2634 else
2635 {
2636 unsigned int regno = REGNO (y);
2637 unsigned int i;
2638 unsigned int endregno = END_REGNO (y);
2639
2640 /* If the quantities are not the same, the expressions are not
2641 equivalent. If there are and we are not to validate, they
2642 are equivalent. Otherwise, ensure all regs are up-to-date. */
2643
2644 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2645 return 0;
2646
2647 if (! validate)
2648 return 1;
2649
2650 for (i = regno; i < endregno; i++)
2651 if (REG_IN_TABLE (i) != REG_TICK (i))
2652 return 0;
2653
2654 return 1;
2655 }
2656
2657 case MEM:
2658 if (for_gcse)
2659 {
2660 /* A volatile mem should not be considered equivalent to any
2661 other. */
2662 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2663 return 0;
2664
2665 /* Can't merge two expressions in different alias sets, since we
2666 can decide that the expression is transparent in a block when
2667 it isn't, due to it being set with the different alias set.
2668
2669 Also, can't merge two expressions with different MEM_ATTRS.
2670 They could e.g. be two different entities allocated into the
2671 same space on the stack (see e.g. PR25130). In that case, the
2672 MEM addresses can be the same, even though the two MEMs are
2673 absolutely not equivalent.
2674
2675 But because really all MEM attributes should be the same for
2676 equivalent MEMs, we just use the invariant that MEMs that have
2677 the same attributes share the same mem_attrs data structure. */
2678 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2679 return 0;
2680 }
2681 break;
2682
2683 /* For commutative operations, check both orders. */
2684 case PLUS:
2685 case MULT:
2686 case AND:
2687 case IOR:
2688 case XOR:
2689 case NE:
2690 case EQ:
2691 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2692 validate, for_gcse)
2693 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2694 validate, for_gcse))
2695 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2696 validate, for_gcse)
2697 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2698 validate, for_gcse)));
2699
2700 case ASM_OPERANDS:
2701 /* We don't use the generic code below because we want to
2702 disregard filename and line numbers. */
2703
2704 /* A volatile asm isn't equivalent to any other. */
2705 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2706 return 0;
2707
2708 if (GET_MODE (x) != GET_MODE (y)
2709 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2710 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2711 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2712 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2713 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2714 return 0;
2715
2716 if (ASM_OPERANDS_INPUT_LENGTH (x))
2717 {
2718 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2719 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2720 ASM_OPERANDS_INPUT (y, i),
2721 validate, for_gcse)
2722 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2723 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2724 return 0;
2725 }
2726
2727 return 1;
2728
2729 default:
2730 break;
2731 }
2732
2733 /* Compare the elements. If any pair of corresponding elements
2734 fail to match, return 0 for the whole thing. */
2735
2736 fmt = GET_RTX_FORMAT (code);
2737 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2738 {
2739 switch (fmt[i])
2740 {
2741 case 'e':
2742 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2743 validate, for_gcse))
2744 return 0;
2745 break;
2746
2747 case 'E':
2748 if (XVECLEN (x, i) != XVECLEN (y, i))
2749 return 0;
2750 for (j = 0; j < XVECLEN (x, i); j++)
2751 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2752 validate, for_gcse))
2753 return 0;
2754 break;
2755
2756 case 's':
2757 if (strcmp (XSTR (x, i), XSTR (y, i)))
2758 return 0;
2759 break;
2760
2761 case 'i':
2762 if (XINT (x, i) != XINT (y, i))
2763 return 0;
2764 break;
2765
2766 case 'w':
2767 if (XWINT (x, i) != XWINT (y, i))
2768 return 0;
2769 break;
2770
2771 case '0':
2772 case 't':
2773 break;
2774
2775 default:
2776 gcc_unreachable ();
2777 }
2778 }
2779
2780 return 1;
2781 }
2782 \f
2783 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2784 the result if necessary. INSN is as for canon_reg. */
2785
2786 static void
2787 validate_canon_reg (rtx *xloc, rtx insn)
2788 {
2789 if (*xloc)
2790 {
2791 rtx new_rtx = canon_reg (*xloc, insn);
2792
2793 /* If replacing pseudo with hard reg or vice versa, ensure the
2794 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2795 gcc_assert (insn && new_rtx);
2796 validate_change (insn, xloc, new_rtx, 1);
2797 }
2798 }
2799
2800 /* Canonicalize an expression:
2801 replace each register reference inside it
2802 with the "oldest" equivalent register.
2803
2804 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2805 after we make our substitution. The calls are made with IN_GROUP nonzero
2806 so apply_change_group must be called upon the outermost return from this
2807 function (unless INSN is zero). The result of apply_change_group can
2808 generally be discarded since the changes we are making are optional. */
2809
2810 static rtx
2811 canon_reg (rtx x, rtx insn)
2812 {
2813 int i;
2814 enum rtx_code code;
2815 const char *fmt;
2816
2817 if (x == 0)
2818 return x;
2819
2820 code = GET_CODE (x);
2821 switch (code)
2822 {
2823 case PC:
2824 case CC0:
2825 case CONST:
2826 CASE_CONST_ANY:
2827 case SYMBOL_REF:
2828 case LABEL_REF:
2829 case ADDR_VEC:
2830 case ADDR_DIFF_VEC:
2831 return x;
2832
2833 case REG:
2834 {
2835 int first;
2836 int q;
2837 struct qty_table_elem *ent;
2838
2839 /* Never replace a hard reg, because hard regs can appear
2840 in more than one machine mode, and we must preserve the mode
2841 of each occurrence. Also, some hard regs appear in
2842 MEMs that are shared and mustn't be altered. Don't try to
2843 replace any reg that maps to a reg of class NO_REGS. */
2844 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2845 || ! REGNO_QTY_VALID_P (REGNO (x)))
2846 return x;
2847
2848 q = REG_QTY (REGNO (x));
2849 ent = &qty_table[q];
2850 first = ent->first_reg;
2851 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2852 : REGNO_REG_CLASS (first) == NO_REGS ? x
2853 : gen_rtx_REG (ent->mode, first));
2854 }
2855
2856 default:
2857 break;
2858 }
2859
2860 fmt = GET_RTX_FORMAT (code);
2861 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2862 {
2863 int j;
2864
2865 if (fmt[i] == 'e')
2866 validate_canon_reg (&XEXP (x, i), insn);
2867 else if (fmt[i] == 'E')
2868 for (j = 0; j < XVECLEN (x, i); j++)
2869 validate_canon_reg (&XVECEXP (x, i, j), insn);
2870 }
2871
2872 return x;
2873 }
2874 \f
2875 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2876 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2877 what values are being compared.
2878
2879 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2880 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2881 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2882 compared to produce cc0.
2883
2884 The return value is the comparison operator and is either the code of
2885 A or the code corresponding to the inverse of the comparison. */
2886
2887 static enum rtx_code
2888 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2889 enum machine_mode *pmode1, enum machine_mode *pmode2)
2890 {
2891 rtx arg1, arg2;
2892 struct pointer_set_t *visited = NULL;
2893 /* Set nonzero when we find something of interest. */
2894 rtx x = NULL;
2895
2896 arg1 = *parg1, arg2 = *parg2;
2897
2898 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2899
2900 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2901 {
2902 int reverse_code = 0;
2903 struct table_elt *p = 0;
2904
2905 /* Remember state from previous iteration. */
2906 if (x)
2907 {
2908 if (!visited)
2909 visited = pointer_set_create ();
2910 pointer_set_insert (visited, x);
2911 x = 0;
2912 }
2913
2914 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2915 On machines with CC0, this is the only case that can occur, since
2916 fold_rtx will return the COMPARE or item being compared with zero
2917 when given CC0. */
2918
2919 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2920 x = arg1;
2921
2922 /* If ARG1 is a comparison operator and CODE is testing for
2923 STORE_FLAG_VALUE, get the inner arguments. */
2924
2925 else if (COMPARISON_P (arg1))
2926 {
2927 #ifdef FLOAT_STORE_FLAG_VALUE
2928 REAL_VALUE_TYPE fsfv;
2929 #endif
2930
2931 if (code == NE
2932 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2933 && code == LT && STORE_FLAG_VALUE == -1)
2934 #ifdef FLOAT_STORE_FLAG_VALUE
2935 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2936 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2937 REAL_VALUE_NEGATIVE (fsfv)))
2938 #endif
2939 )
2940 x = arg1;
2941 else if (code == EQ
2942 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2943 && code == GE && STORE_FLAG_VALUE == -1)
2944 #ifdef FLOAT_STORE_FLAG_VALUE
2945 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2946 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2947 REAL_VALUE_NEGATIVE (fsfv)))
2948 #endif
2949 )
2950 x = arg1, reverse_code = 1;
2951 }
2952
2953 /* ??? We could also check for
2954
2955 (ne (and (eq (...) (const_int 1))) (const_int 0))
2956
2957 and related forms, but let's wait until we see them occurring. */
2958
2959 if (x == 0)
2960 /* Look up ARG1 in the hash table and see if it has an equivalence
2961 that lets us see what is being compared. */
2962 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2963 if (p)
2964 {
2965 p = p->first_same_value;
2966
2967 /* If what we compare is already known to be constant, that is as
2968 good as it gets.
2969 We need to break the loop in this case, because otherwise we
2970 can have an infinite loop when looking at a reg that is known
2971 to be a constant which is the same as a comparison of a reg
2972 against zero which appears later in the insn stream, which in
2973 turn is constant and the same as the comparison of the first reg
2974 against zero... */
2975 if (p->is_const)
2976 break;
2977 }
2978
2979 for (; p; p = p->next_same_value)
2980 {
2981 enum machine_mode inner_mode = GET_MODE (p->exp);
2982 #ifdef FLOAT_STORE_FLAG_VALUE
2983 REAL_VALUE_TYPE fsfv;
2984 #endif
2985
2986 /* If the entry isn't valid, skip it. */
2987 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2988 continue;
2989
2990 /* If it's a comparison we've used before, skip it. */
2991 if (visited && pointer_set_contains (visited, p->exp))
2992 continue;
2993
2994 if (GET_CODE (p->exp) == COMPARE
2995 /* Another possibility is that this machine has a compare insn
2996 that includes the comparison code. In that case, ARG1 would
2997 be equivalent to a comparison operation that would set ARG1 to
2998 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2999 ORIG_CODE is the actual comparison being done; if it is an EQ,
3000 we must reverse ORIG_CODE. On machine with a negative value
3001 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3002 || ((code == NE
3003 || (code == LT
3004 && val_signbit_known_set_p (inner_mode,
3005 STORE_FLAG_VALUE))
3006 #ifdef FLOAT_STORE_FLAG_VALUE
3007 || (code == LT
3008 && SCALAR_FLOAT_MODE_P (inner_mode)
3009 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3010 REAL_VALUE_NEGATIVE (fsfv)))
3011 #endif
3012 )
3013 && COMPARISON_P (p->exp)))
3014 {
3015 x = p->exp;
3016 break;
3017 }
3018 else if ((code == EQ
3019 || (code == GE
3020 && val_signbit_known_set_p (inner_mode,
3021 STORE_FLAG_VALUE))
3022 #ifdef FLOAT_STORE_FLAG_VALUE
3023 || (code == GE
3024 && SCALAR_FLOAT_MODE_P (inner_mode)
3025 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3026 REAL_VALUE_NEGATIVE (fsfv)))
3027 #endif
3028 )
3029 && COMPARISON_P (p->exp))
3030 {
3031 reverse_code = 1;
3032 x = p->exp;
3033 break;
3034 }
3035
3036 /* If this non-trapping address, e.g. fp + constant, the
3037 equivalent is a better operand since it may let us predict
3038 the value of the comparison. */
3039 else if (!rtx_addr_can_trap_p (p->exp))
3040 {
3041 arg1 = p->exp;
3042 continue;
3043 }
3044 }
3045
3046 /* If we didn't find a useful equivalence for ARG1, we are done.
3047 Otherwise, set up for the next iteration. */
3048 if (x == 0)
3049 break;
3050
3051 /* If we need to reverse the comparison, make sure that that is
3052 possible -- we can't necessarily infer the value of GE from LT
3053 with floating-point operands. */
3054 if (reverse_code)
3055 {
3056 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3057 if (reversed == UNKNOWN)
3058 break;
3059 else
3060 code = reversed;
3061 }
3062 else if (COMPARISON_P (x))
3063 code = GET_CODE (x);
3064 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3065 }
3066
3067 /* Return our results. Return the modes from before fold_rtx
3068 because fold_rtx might produce const_int, and then it's too late. */
3069 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3070 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3071
3072 if (visited)
3073 pointer_set_destroy (visited);
3074 return code;
3075 }
3076 \f
3077 /* If X is a nontrivial arithmetic operation on an argument for which
3078 a constant value can be determined, return the result of operating
3079 on that value, as a constant. Otherwise, return X, possibly with
3080 one or more operands changed to a forward-propagated constant.
3081
3082 If X is a register whose contents are known, we do NOT return
3083 those contents here; equiv_constant is called to perform that task.
3084 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3085
3086 INSN is the insn that we may be modifying. If it is 0, make a copy
3087 of X before modifying it. */
3088
3089 static rtx
3090 fold_rtx (rtx x, rtx insn)
3091 {
3092 enum rtx_code code;
3093 enum machine_mode mode;
3094 const char *fmt;
3095 int i;
3096 rtx new_rtx = 0;
3097 int changed = 0;
3098
3099 /* Operands of X. */
3100 rtx folded_arg0;
3101 rtx folded_arg1;
3102
3103 /* Constant equivalents of first three operands of X;
3104 0 when no such equivalent is known. */
3105 rtx const_arg0;
3106 rtx const_arg1;
3107 rtx const_arg2;
3108
3109 /* The mode of the first operand of X. We need this for sign and zero
3110 extends. */
3111 enum machine_mode mode_arg0;
3112
3113 if (x == 0)
3114 return x;
3115
3116 /* Try to perform some initial simplifications on X. */
3117 code = GET_CODE (x);
3118 switch (code)
3119 {
3120 case MEM:
3121 case SUBREG:
3122 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3123 return new_rtx;
3124 return x;
3125
3126 case CONST:
3127 CASE_CONST_ANY:
3128 case SYMBOL_REF:
3129 case LABEL_REF:
3130 case REG:
3131 case PC:
3132 /* No use simplifying an EXPR_LIST
3133 since they are used only for lists of args
3134 in a function call's REG_EQUAL note. */
3135 case EXPR_LIST:
3136 return x;
3137
3138 #ifdef HAVE_cc0
3139 case CC0:
3140 return prev_insn_cc0;
3141 #endif
3142
3143 case ASM_OPERANDS:
3144 if (insn)
3145 {
3146 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3147 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3148 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3149 }
3150 return x;
3151
3152 #ifdef NO_FUNCTION_CSE
3153 case CALL:
3154 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3155 return x;
3156 break;
3157 #endif
3158
3159 /* Anything else goes through the loop below. */
3160 default:
3161 break;
3162 }
3163
3164 mode = GET_MODE (x);
3165 const_arg0 = 0;
3166 const_arg1 = 0;
3167 const_arg2 = 0;
3168 mode_arg0 = VOIDmode;
3169
3170 /* Try folding our operands.
3171 Then see which ones have constant values known. */
3172
3173 fmt = GET_RTX_FORMAT (code);
3174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3175 if (fmt[i] == 'e')
3176 {
3177 rtx folded_arg = XEXP (x, i), const_arg;
3178 enum machine_mode mode_arg = GET_MODE (folded_arg);
3179
3180 switch (GET_CODE (folded_arg))
3181 {
3182 case MEM:
3183 case REG:
3184 case SUBREG:
3185 const_arg = equiv_constant (folded_arg);
3186 break;
3187
3188 case CONST:
3189 CASE_CONST_ANY:
3190 case SYMBOL_REF:
3191 case LABEL_REF:
3192 const_arg = folded_arg;
3193 break;
3194
3195 #ifdef HAVE_cc0
3196 case CC0:
3197 folded_arg = prev_insn_cc0;
3198 mode_arg = prev_insn_cc0_mode;
3199 const_arg = equiv_constant (folded_arg);
3200 break;
3201 #endif
3202
3203 default:
3204 folded_arg = fold_rtx (folded_arg, insn);
3205 const_arg = equiv_constant (folded_arg);
3206 break;
3207 }
3208
3209 /* For the first three operands, see if the operand
3210 is constant or equivalent to a constant. */
3211 switch (i)
3212 {
3213 case 0:
3214 folded_arg0 = folded_arg;
3215 const_arg0 = const_arg;
3216 mode_arg0 = mode_arg;
3217 break;
3218 case 1:
3219 folded_arg1 = folded_arg;
3220 const_arg1 = const_arg;
3221 break;
3222 case 2:
3223 const_arg2 = const_arg;
3224 break;
3225 }
3226
3227 /* Pick the least expensive of the argument and an equivalent constant
3228 argument. */
3229 if (const_arg != 0
3230 && const_arg != folded_arg
3231 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3232
3233 /* It's not safe to substitute the operand of a conversion
3234 operator with a constant, as the conversion's identity
3235 depends upon the mode of its operand. This optimization
3236 is handled by the call to simplify_unary_operation. */
3237 && (GET_RTX_CLASS (code) != RTX_UNARY
3238 || GET_MODE (const_arg) == mode_arg0
3239 || (code != ZERO_EXTEND
3240 && code != SIGN_EXTEND
3241 && code != TRUNCATE
3242 && code != FLOAT_TRUNCATE
3243 && code != FLOAT_EXTEND
3244 && code != FLOAT
3245 && code != FIX
3246 && code != UNSIGNED_FLOAT
3247 && code != UNSIGNED_FIX)))
3248 folded_arg = const_arg;
3249
3250 if (folded_arg == XEXP (x, i))
3251 continue;
3252
3253 if (insn == NULL_RTX && !changed)
3254 x = copy_rtx (x);
3255 changed = 1;
3256 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3257 }
3258
3259 if (changed)
3260 {
3261 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3262 consistent with the order in X. */
3263 if (canonicalize_change_group (insn, x))
3264 {
3265 rtx tem;
3266 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3267 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3268 }
3269
3270 apply_change_group ();
3271 }
3272
3273 /* If X is an arithmetic operation, see if we can simplify it. */
3274
3275 switch (GET_RTX_CLASS (code))
3276 {
3277 case RTX_UNARY:
3278 {
3279 /* We can't simplify extension ops unless we know the
3280 original mode. */
3281 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3282 && mode_arg0 == VOIDmode)
3283 break;
3284
3285 new_rtx = simplify_unary_operation (code, mode,
3286 const_arg0 ? const_arg0 : folded_arg0,
3287 mode_arg0);
3288 }
3289 break;
3290
3291 case RTX_COMPARE:
3292 case RTX_COMM_COMPARE:
3293 /* See what items are actually being compared and set FOLDED_ARG[01]
3294 to those values and CODE to the actual comparison code. If any are
3295 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3296 do anything if both operands are already known to be constant. */
3297
3298 /* ??? Vector mode comparisons are not supported yet. */
3299 if (VECTOR_MODE_P (mode))
3300 break;
3301
3302 if (const_arg0 == 0 || const_arg1 == 0)
3303 {
3304 struct table_elt *p0, *p1;
3305 rtx true_rtx, false_rtx;
3306 enum machine_mode mode_arg1;
3307
3308 if (SCALAR_FLOAT_MODE_P (mode))
3309 {
3310 #ifdef FLOAT_STORE_FLAG_VALUE
3311 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3312 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3313 #else
3314 true_rtx = NULL_RTX;
3315 #endif
3316 false_rtx = CONST0_RTX (mode);
3317 }
3318 else
3319 {
3320 true_rtx = const_true_rtx;
3321 false_rtx = const0_rtx;
3322 }
3323
3324 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3325 &mode_arg0, &mode_arg1);
3326
3327 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3328 what kinds of things are being compared, so we can't do
3329 anything with this comparison. */
3330
3331 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3332 break;
3333
3334 const_arg0 = equiv_constant (folded_arg0);
3335 const_arg1 = equiv_constant (folded_arg1);
3336
3337 /* If we do not now have two constants being compared, see
3338 if we can nevertheless deduce some things about the
3339 comparison. */
3340 if (const_arg0 == 0 || const_arg1 == 0)
3341 {
3342 if (const_arg1 != NULL)
3343 {
3344 rtx cheapest_simplification;
3345 int cheapest_cost;
3346 rtx simp_result;
3347 struct table_elt *p;
3348
3349 /* See if we can find an equivalent of folded_arg0
3350 that gets us a cheaper expression, possibly a
3351 constant through simplifications. */
3352 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3353 mode_arg0);
3354
3355 if (p != NULL)
3356 {
3357 cheapest_simplification = x;
3358 cheapest_cost = COST (x);
3359
3360 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3361 {
3362 int cost;
3363
3364 /* If the entry isn't valid, skip it. */
3365 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3366 continue;
3367
3368 /* Try to simplify using this equivalence. */
3369 simp_result
3370 = simplify_relational_operation (code, mode,
3371 mode_arg0,
3372 p->exp,
3373 const_arg1);
3374
3375 if (simp_result == NULL)
3376 continue;
3377
3378 cost = COST (simp_result);
3379 if (cost < cheapest_cost)
3380 {
3381 cheapest_cost = cost;
3382 cheapest_simplification = simp_result;
3383 }
3384 }
3385
3386 /* If we have a cheaper expression now, use that
3387 and try folding it further, from the top. */
3388 if (cheapest_simplification != x)
3389 return fold_rtx (copy_rtx (cheapest_simplification),
3390 insn);
3391 }
3392 }
3393
3394 /* See if the two operands are the same. */
3395
3396 if ((REG_P (folded_arg0)
3397 && REG_P (folded_arg1)
3398 && (REG_QTY (REGNO (folded_arg0))
3399 == REG_QTY (REGNO (folded_arg1))))
3400 || ((p0 = lookup (folded_arg0,
3401 SAFE_HASH (folded_arg0, mode_arg0),
3402 mode_arg0))
3403 && (p1 = lookup (folded_arg1,
3404 SAFE_HASH (folded_arg1, mode_arg0),
3405 mode_arg0))
3406 && p0->first_same_value == p1->first_same_value))
3407 folded_arg1 = folded_arg0;
3408
3409 /* If FOLDED_ARG0 is a register, see if the comparison we are
3410 doing now is either the same as we did before or the reverse
3411 (we only check the reverse if not floating-point). */
3412 else if (REG_P (folded_arg0))
3413 {
3414 int qty = REG_QTY (REGNO (folded_arg0));
3415
3416 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3417 {
3418 struct qty_table_elem *ent = &qty_table[qty];
3419
3420 if ((comparison_dominates_p (ent->comparison_code, code)
3421 || (! FLOAT_MODE_P (mode_arg0)
3422 && comparison_dominates_p (ent->comparison_code,
3423 reverse_condition (code))))
3424 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3425 || (const_arg1
3426 && rtx_equal_p (ent->comparison_const,
3427 const_arg1))
3428 || (REG_P (folded_arg1)
3429 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3430 {
3431 if (comparison_dominates_p (ent->comparison_code, code))
3432 {
3433 if (true_rtx)
3434 return true_rtx;
3435 else
3436 break;
3437 }
3438 else
3439 return false_rtx;
3440 }
3441 }
3442 }
3443 }
3444 }
3445
3446 /* If we are comparing against zero, see if the first operand is
3447 equivalent to an IOR with a constant. If so, we may be able to
3448 determine the result of this comparison. */
3449 if (const_arg1 == const0_rtx && !const_arg0)
3450 {
3451 rtx y = lookup_as_function (folded_arg0, IOR);
3452 rtx inner_const;
3453
3454 if (y != 0
3455 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3456 && CONST_INT_P (inner_const)
3457 && INTVAL (inner_const) != 0)
3458 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3459 }
3460
3461 {
3462 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3463 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3464 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3465 op0, op1);
3466 }
3467 break;
3468
3469 case RTX_BIN_ARITH:
3470 case RTX_COMM_ARITH:
3471 switch (code)
3472 {
3473 case PLUS:
3474 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3475 with that LABEL_REF as its second operand. If so, the result is
3476 the first operand of that MINUS. This handles switches with an
3477 ADDR_DIFF_VEC table. */
3478 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3479 {
3480 rtx y
3481 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3482 : lookup_as_function (folded_arg0, MINUS);
3483
3484 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3485 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3486 return XEXP (y, 0);
3487
3488 /* Now try for a CONST of a MINUS like the above. */
3489 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3490 : lookup_as_function (folded_arg0, CONST))) != 0
3491 && GET_CODE (XEXP (y, 0)) == MINUS
3492 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3493 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3494 return XEXP (XEXP (y, 0), 0);
3495 }
3496
3497 /* Likewise if the operands are in the other order. */
3498 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3499 {
3500 rtx y
3501 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3502 : lookup_as_function (folded_arg1, MINUS);
3503
3504 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3505 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3506 return XEXP (y, 0);
3507
3508 /* Now try for a CONST of a MINUS like the above. */
3509 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3510 : lookup_as_function (folded_arg1, CONST))) != 0
3511 && GET_CODE (XEXP (y, 0)) == MINUS
3512 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3513 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3514 return XEXP (XEXP (y, 0), 0);
3515 }
3516
3517 /* If second operand is a register equivalent to a negative
3518 CONST_INT, see if we can find a register equivalent to the
3519 positive constant. Make a MINUS if so. Don't do this for
3520 a non-negative constant since we might then alternate between
3521 choosing positive and negative constants. Having the positive
3522 constant previously-used is the more common case. Be sure
3523 the resulting constant is non-negative; if const_arg1 were
3524 the smallest negative number this would overflow: depending
3525 on the mode, this would either just be the same value (and
3526 hence not save anything) or be incorrect. */
3527 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3528 && INTVAL (const_arg1) < 0
3529 /* This used to test
3530
3531 -INTVAL (const_arg1) >= 0
3532
3533 But The Sun V5.0 compilers mis-compiled that test. So
3534 instead we test for the problematic value in a more direct
3535 manner and hope the Sun compilers get it correct. */
3536 && INTVAL (const_arg1) !=
3537 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3538 && REG_P (folded_arg1))
3539 {
3540 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3541 struct table_elt *p
3542 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3543
3544 if (p)
3545 for (p = p->first_same_value; p; p = p->next_same_value)
3546 if (REG_P (p->exp))
3547 return simplify_gen_binary (MINUS, mode, folded_arg0,
3548 canon_reg (p->exp, NULL_RTX));
3549 }
3550 goto from_plus;
3551
3552 case MINUS:
3553 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3554 If so, produce (PLUS Z C2-C). */
3555 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3556 {
3557 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3558 if (y && CONST_INT_P (XEXP (y, 1)))
3559 return fold_rtx (plus_constant (mode, copy_rtx (y),
3560 -INTVAL (const_arg1)),
3561 NULL_RTX);
3562 }
3563
3564 /* Fall through. */
3565
3566 from_plus:
3567 case SMIN: case SMAX: case UMIN: case UMAX:
3568 case IOR: case AND: case XOR:
3569 case MULT:
3570 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3571 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3572 is known to be of similar form, we may be able to replace the
3573 operation with a combined operation. This may eliminate the
3574 intermediate operation if every use is simplified in this way.
3575 Note that the similar optimization done by combine.c only works
3576 if the intermediate operation's result has only one reference. */
3577
3578 if (REG_P (folded_arg0)
3579 && const_arg1 && CONST_INT_P (const_arg1))
3580 {
3581 int is_shift
3582 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3583 rtx y, inner_const, new_const;
3584 rtx canon_const_arg1 = const_arg1;
3585 enum rtx_code associate_code;
3586
3587 if (is_shift
3588 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3589 || INTVAL (const_arg1) < 0))
3590 {
3591 if (SHIFT_COUNT_TRUNCATED)
3592 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3593 & (GET_MODE_BITSIZE (mode)
3594 - 1));
3595 else
3596 break;
3597 }
3598
3599 y = lookup_as_function (folded_arg0, code);
3600 if (y == 0)
3601 break;
3602
3603 /* If we have compiled a statement like
3604 "if (x == (x & mask1))", and now are looking at
3605 "x & mask2", we will have a case where the first operand
3606 of Y is the same as our first operand. Unless we detect
3607 this case, an infinite loop will result. */
3608 if (XEXP (y, 0) == folded_arg0)
3609 break;
3610
3611 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3612 if (!inner_const || !CONST_INT_P (inner_const))
3613 break;
3614
3615 /* Don't associate these operations if they are a PLUS with the
3616 same constant and it is a power of two. These might be doable
3617 with a pre- or post-increment. Similarly for two subtracts of
3618 identical powers of two with post decrement. */
3619
3620 if (code == PLUS && const_arg1 == inner_const
3621 && ((HAVE_PRE_INCREMENT
3622 && exact_log2 (INTVAL (const_arg1)) >= 0)
3623 || (HAVE_POST_INCREMENT
3624 && exact_log2 (INTVAL (const_arg1)) >= 0)
3625 || (HAVE_PRE_DECREMENT
3626 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3627 || (HAVE_POST_DECREMENT
3628 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3629 break;
3630
3631 /* ??? Vector mode shifts by scalar
3632 shift operand are not supported yet. */
3633 if (is_shift && VECTOR_MODE_P (mode))
3634 break;
3635
3636 if (is_shift
3637 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3638 || INTVAL (inner_const) < 0))
3639 {
3640 if (SHIFT_COUNT_TRUNCATED)
3641 inner_const = GEN_INT (INTVAL (inner_const)
3642 & (GET_MODE_BITSIZE (mode) - 1));
3643 else
3644 break;
3645 }
3646
3647 /* Compute the code used to compose the constants. For example,
3648 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3649
3650 associate_code = (is_shift || code == MINUS ? PLUS : code);
3651
3652 new_const = simplify_binary_operation (associate_code, mode,
3653 canon_const_arg1,
3654 inner_const);
3655
3656 if (new_const == 0)
3657 break;
3658
3659 /* If we are associating shift operations, don't let this
3660 produce a shift of the size of the object or larger.
3661 This could occur when we follow a sign-extend by a right
3662 shift on a machine that does a sign-extend as a pair
3663 of shifts. */
3664
3665 if (is_shift
3666 && CONST_INT_P (new_const)
3667 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3668 {
3669 /* As an exception, we can turn an ASHIFTRT of this
3670 form into a shift of the number of bits - 1. */
3671 if (code == ASHIFTRT)
3672 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3673 else if (!side_effects_p (XEXP (y, 0)))
3674 return CONST0_RTX (mode);
3675 else
3676 break;
3677 }
3678
3679 y = copy_rtx (XEXP (y, 0));
3680
3681 /* If Y contains our first operand (the most common way this
3682 can happen is if Y is a MEM), we would do into an infinite
3683 loop if we tried to fold it. So don't in that case. */
3684
3685 if (! reg_mentioned_p (folded_arg0, y))
3686 y = fold_rtx (y, insn);
3687
3688 return simplify_gen_binary (code, mode, y, new_const);
3689 }
3690 break;
3691
3692 case DIV: case UDIV:
3693 /* ??? The associative optimization performed immediately above is
3694 also possible for DIV and UDIV using associate_code of MULT.
3695 However, we would need extra code to verify that the
3696 multiplication does not overflow, that is, there is no overflow
3697 in the calculation of new_const. */
3698 break;
3699
3700 default:
3701 break;
3702 }
3703
3704 new_rtx = simplify_binary_operation (code, mode,
3705 const_arg0 ? const_arg0 : folded_arg0,
3706 const_arg1 ? const_arg1 : folded_arg1);
3707 break;
3708
3709 case RTX_OBJ:
3710 /* (lo_sum (high X) X) is simply X. */
3711 if (code == LO_SUM && const_arg0 != 0
3712 && GET_CODE (const_arg0) == HIGH
3713 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3714 return const_arg1;
3715 break;
3716
3717 case RTX_TERNARY:
3718 case RTX_BITFIELD_OPS:
3719 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3720 const_arg0 ? const_arg0 : folded_arg0,
3721 const_arg1 ? const_arg1 : folded_arg1,
3722 const_arg2 ? const_arg2 : XEXP (x, 2));
3723 break;
3724
3725 default:
3726 break;
3727 }
3728
3729 return new_rtx ? new_rtx : x;
3730 }
3731 \f
3732 /* Return a constant value currently equivalent to X.
3733 Return 0 if we don't know one. */
3734
3735 static rtx
3736 equiv_constant (rtx x)
3737 {
3738 if (REG_P (x)
3739 && REGNO_QTY_VALID_P (REGNO (x)))
3740 {
3741 int x_q = REG_QTY (REGNO (x));
3742 struct qty_table_elem *x_ent = &qty_table[x_q];
3743
3744 if (x_ent->const_rtx)
3745 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3746 }
3747
3748 if (x == 0 || CONSTANT_P (x))
3749 return x;
3750
3751 if (GET_CODE (x) == SUBREG)
3752 {
3753 enum machine_mode mode = GET_MODE (x);
3754 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3755 rtx new_rtx;
3756
3757 /* See if we previously assigned a constant value to this SUBREG. */
3758 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3759 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3760 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3761 return new_rtx;
3762
3763 /* If we didn't and if doing so makes sense, see if we previously
3764 assigned a constant value to the enclosing word mode SUBREG. */
3765 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3766 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3767 {
3768 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3769 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3770 {
3771 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3772 new_rtx = lookup_as_function (y, CONST_INT);
3773 if (new_rtx)
3774 return gen_lowpart (mode, new_rtx);
3775 }
3776 }
3777
3778 /* Otherwise see if we already have a constant for the inner REG,
3779 and if that is enough to calculate an equivalent constant for
3780 the subreg. Note that the upper bits of paradoxical subregs
3781 are undefined, so they cannot be said to equal anything. */
3782 if (REG_P (SUBREG_REG (x))
3783 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3784 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3785 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3786
3787 return 0;
3788 }
3789
3790 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3791 the hash table in case its value was seen before. */
3792
3793 if (MEM_P (x))
3794 {
3795 struct table_elt *elt;
3796
3797 x = avoid_constant_pool_reference (x);
3798 if (CONSTANT_P (x))
3799 return x;
3800
3801 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3802 if (elt == 0)
3803 return 0;
3804
3805 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3806 if (elt->is_const && CONSTANT_P (elt->exp))
3807 return elt->exp;
3808 }
3809
3810 return 0;
3811 }
3812 \f
3813 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3814 "taken" branch.
3815
3816 In certain cases, this can cause us to add an equivalence. For example,
3817 if we are following the taken case of
3818 if (i == 2)
3819 we can add the fact that `i' and '2' are now equivalent.
3820
3821 In any case, we can record that this comparison was passed. If the same
3822 comparison is seen later, we will know its value. */
3823
3824 static void
3825 record_jump_equiv (rtx insn, bool taken)
3826 {
3827 int cond_known_true;
3828 rtx op0, op1;
3829 rtx set;
3830 enum machine_mode mode, mode0, mode1;
3831 int reversed_nonequality = 0;
3832 enum rtx_code code;
3833
3834 /* Ensure this is the right kind of insn. */
3835 gcc_assert (any_condjump_p (insn));
3836
3837 set = pc_set (insn);
3838
3839 /* See if this jump condition is known true or false. */
3840 if (taken)
3841 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3842 else
3843 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3844
3845 /* Get the type of comparison being done and the operands being compared.
3846 If we had to reverse a non-equality condition, record that fact so we
3847 know that it isn't valid for floating-point. */
3848 code = GET_CODE (XEXP (SET_SRC (set), 0));
3849 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3850 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3851
3852 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3853 if (! cond_known_true)
3854 {
3855 code = reversed_comparison_code_parts (code, op0, op1, insn);
3856
3857 /* Don't remember if we can't find the inverse. */
3858 if (code == UNKNOWN)
3859 return;
3860 }
3861
3862 /* The mode is the mode of the non-constant. */
3863 mode = mode0;
3864 if (mode1 != VOIDmode)
3865 mode = mode1;
3866
3867 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3868 }
3869
3870 /* Yet another form of subreg creation. In this case, we want something in
3871 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3872
3873 static rtx
3874 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3875 {
3876 enum machine_mode op_mode = GET_MODE (op);
3877 if (op_mode == mode || op_mode == VOIDmode)
3878 return op;
3879 return lowpart_subreg (mode, op, op_mode);
3880 }
3881
3882 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3883 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3884 Make any useful entries we can with that information. Called from
3885 above function and called recursively. */
3886
3887 static void
3888 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3889 rtx op1, int reversed_nonequality)
3890 {
3891 unsigned op0_hash, op1_hash;
3892 int op0_in_memory, op1_in_memory;
3893 struct table_elt *op0_elt, *op1_elt;
3894
3895 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3896 we know that they are also equal in the smaller mode (this is also
3897 true for all smaller modes whether or not there is a SUBREG, but
3898 is not worth testing for with no SUBREG). */
3899
3900 /* Note that GET_MODE (op0) may not equal MODE. */
3901 if (code == EQ && paradoxical_subreg_p (op0))
3902 {
3903 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3904 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3905 if (tem)
3906 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3907 reversed_nonequality);
3908 }
3909
3910 if (code == EQ && paradoxical_subreg_p (op1))
3911 {
3912 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3913 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3914 if (tem)
3915 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3916 reversed_nonequality);
3917 }
3918
3919 /* Similarly, if this is an NE comparison, and either is a SUBREG
3920 making a smaller mode, we know the whole thing is also NE. */
3921
3922 /* Note that GET_MODE (op0) may not equal MODE;
3923 if we test MODE instead, we can get an infinite recursion
3924 alternating between two modes each wider than MODE. */
3925
3926 if (code == NE && GET_CODE (op0) == SUBREG
3927 && subreg_lowpart_p (op0)
3928 && (GET_MODE_SIZE (GET_MODE (op0))
3929 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3930 {
3931 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3932 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3933 if (tem)
3934 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3935 reversed_nonequality);
3936 }
3937
3938 if (code == NE && GET_CODE (op1) == SUBREG
3939 && subreg_lowpart_p (op1)
3940 && (GET_MODE_SIZE (GET_MODE (op1))
3941 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3942 {
3943 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3944 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3945 if (tem)
3946 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3947 reversed_nonequality);
3948 }
3949
3950 /* Hash both operands. */
3951
3952 do_not_record = 0;
3953 hash_arg_in_memory = 0;
3954 op0_hash = HASH (op0, mode);
3955 op0_in_memory = hash_arg_in_memory;
3956
3957 if (do_not_record)
3958 return;
3959
3960 do_not_record = 0;
3961 hash_arg_in_memory = 0;
3962 op1_hash = HASH (op1, mode);
3963 op1_in_memory = hash_arg_in_memory;
3964
3965 if (do_not_record)
3966 return;
3967
3968 /* Look up both operands. */
3969 op0_elt = lookup (op0, op0_hash, mode);
3970 op1_elt = lookup (op1, op1_hash, mode);
3971
3972 /* If both operands are already equivalent or if they are not in the
3973 table but are identical, do nothing. */
3974 if ((op0_elt != 0 && op1_elt != 0
3975 && op0_elt->first_same_value == op1_elt->first_same_value)
3976 || op0 == op1 || rtx_equal_p (op0, op1))
3977 return;
3978
3979 /* If we aren't setting two things equal all we can do is save this
3980 comparison. Similarly if this is floating-point. In the latter
3981 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3982 If we record the equality, we might inadvertently delete code
3983 whose intent was to change -0 to +0. */
3984
3985 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3986 {
3987 struct qty_table_elem *ent;
3988 int qty;
3989
3990 /* If we reversed a floating-point comparison, if OP0 is not a
3991 register, or if OP1 is neither a register or constant, we can't
3992 do anything. */
3993
3994 if (!REG_P (op1))
3995 op1 = equiv_constant (op1);
3996
3997 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3998 || !REG_P (op0) || op1 == 0)
3999 return;
4000
4001 /* Put OP0 in the hash table if it isn't already. This gives it a
4002 new quantity number. */
4003 if (op0_elt == 0)
4004 {
4005 if (insert_regs (op0, NULL, 0))
4006 {
4007 rehash_using_reg (op0);
4008 op0_hash = HASH (op0, mode);
4009
4010 /* If OP0 is contained in OP1, this changes its hash code
4011 as well. Faster to rehash than to check, except
4012 for the simple case of a constant. */
4013 if (! CONSTANT_P (op1))
4014 op1_hash = HASH (op1,mode);
4015 }
4016
4017 op0_elt = insert (op0, NULL, op0_hash, mode);
4018 op0_elt->in_memory = op0_in_memory;
4019 }
4020
4021 qty = REG_QTY (REGNO (op0));
4022 ent = &qty_table[qty];
4023
4024 ent->comparison_code = code;
4025 if (REG_P (op1))
4026 {
4027 /* Look it up again--in case op0 and op1 are the same. */
4028 op1_elt = lookup (op1, op1_hash, mode);
4029
4030 /* Put OP1 in the hash table so it gets a new quantity number. */
4031 if (op1_elt == 0)
4032 {
4033 if (insert_regs (op1, NULL, 0))
4034 {
4035 rehash_using_reg (op1);
4036 op1_hash = HASH (op1, mode);
4037 }
4038
4039 op1_elt = insert (op1, NULL, op1_hash, mode);
4040 op1_elt->in_memory = op1_in_memory;
4041 }
4042
4043 ent->comparison_const = NULL_RTX;
4044 ent->comparison_qty = REG_QTY (REGNO (op1));
4045 }
4046 else
4047 {
4048 ent->comparison_const = op1;
4049 ent->comparison_qty = -1;
4050 }
4051
4052 return;
4053 }
4054
4055 /* If either side is still missing an equivalence, make it now,
4056 then merge the equivalences. */
4057
4058 if (op0_elt == 0)
4059 {
4060 if (insert_regs (op0, NULL, 0))
4061 {
4062 rehash_using_reg (op0);
4063 op0_hash = HASH (op0, mode);
4064 }
4065
4066 op0_elt = insert (op0, NULL, op0_hash, mode);
4067 op0_elt->in_memory = op0_in_memory;
4068 }
4069
4070 if (op1_elt == 0)
4071 {
4072 if (insert_regs (op1, NULL, 0))
4073 {
4074 rehash_using_reg (op1);
4075 op1_hash = HASH (op1, mode);
4076 }
4077
4078 op1_elt = insert (op1, NULL, op1_hash, mode);
4079 op1_elt->in_memory = op1_in_memory;
4080 }
4081
4082 merge_equiv_classes (op0_elt, op1_elt);
4083 }
4084 \f
4085 /* CSE processing for one instruction.
4086
4087 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4088 but the few that "leak through" are cleaned up by cse_insn, and complex
4089 addressing modes are often formed here.
4090
4091 The main function is cse_insn, and between here and that function
4092 a couple of helper functions is defined to keep the size of cse_insn
4093 within reasonable proportions.
4094
4095 Data is shared between the main and helper functions via STRUCT SET,
4096 that contains all data related for every set in the instruction that
4097 is being processed.
4098
4099 Note that cse_main processes all sets in the instruction. Most
4100 passes in GCC only process simple SET insns or single_set insns, but
4101 CSE processes insns with multiple sets as well. */
4102
4103 /* Data on one SET contained in the instruction. */
4104
4105 struct set
4106 {
4107 /* The SET rtx itself. */
4108 rtx rtl;
4109 /* The SET_SRC of the rtx (the original value, if it is changing). */
4110 rtx src;
4111 /* The hash-table element for the SET_SRC of the SET. */
4112 struct table_elt *src_elt;
4113 /* Hash value for the SET_SRC. */
4114 unsigned src_hash;
4115 /* Hash value for the SET_DEST. */
4116 unsigned dest_hash;
4117 /* The SET_DEST, with SUBREG, etc., stripped. */
4118 rtx inner_dest;
4119 /* Nonzero if the SET_SRC is in memory. */
4120 char src_in_memory;
4121 /* Nonzero if the SET_SRC contains something
4122 whose value cannot be predicted and understood. */
4123 char src_volatile;
4124 /* Original machine mode, in case it becomes a CONST_INT.
4125 The size of this field should match the size of the mode
4126 field of struct rtx_def (see rtl.h). */
4127 ENUM_BITFIELD(machine_mode) mode : 8;
4128 /* A constant equivalent for SET_SRC, if any. */
4129 rtx src_const;
4130 /* Hash value of constant equivalent for SET_SRC. */
4131 unsigned src_const_hash;
4132 /* Table entry for constant equivalent for SET_SRC, if any. */
4133 struct table_elt *src_const_elt;
4134 /* Table entry for the destination address. */
4135 struct table_elt *dest_addr_elt;
4136 };
4137 \f
4138 /* Special handling for (set REG0 REG1) where REG0 is the
4139 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4140 be used in the sequel, so (if easily done) change this insn to
4141 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4142 that computed their value. Then REG1 will become a dead store
4143 and won't cloud the situation for later optimizations.
4144
4145 Do not make this change if REG1 is a hard register, because it will
4146 then be used in the sequel and we may be changing a two-operand insn
4147 into a three-operand insn.
4148
4149 This is the last transformation that cse_insn will try to do. */
4150
4151 static void
4152 try_back_substitute_reg (rtx set, rtx insn)
4153 {
4154 rtx dest = SET_DEST (set);
4155 rtx src = SET_SRC (set);
4156
4157 if (REG_P (dest)
4158 && REG_P (src) && ! HARD_REGISTER_P (src)
4159 && REGNO_QTY_VALID_P (REGNO (src)))
4160 {
4161 int src_q = REG_QTY (REGNO (src));
4162 struct qty_table_elem *src_ent = &qty_table[src_q];
4163
4164 if (src_ent->first_reg == REGNO (dest))
4165 {
4166 /* Scan for the previous nonnote insn, but stop at a basic
4167 block boundary. */
4168 rtx prev = insn;
4169 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4170 do
4171 {
4172 prev = PREV_INSN (prev);
4173 }
4174 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4175
4176 /* Do not swap the registers around if the previous instruction
4177 attaches a REG_EQUIV note to REG1.
4178
4179 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4180 from the pseudo that originally shadowed an incoming argument
4181 to another register. Some uses of REG_EQUIV might rely on it
4182 being attached to REG1 rather than REG2.
4183
4184 This section previously turned the REG_EQUIV into a REG_EQUAL
4185 note. We cannot do that because REG_EQUIV may provide an
4186 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4187 if (NONJUMP_INSN_P (prev)
4188 && GET_CODE (PATTERN (prev)) == SET
4189 && SET_DEST (PATTERN (prev)) == src
4190 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4191 {
4192 rtx note;
4193
4194 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4195 validate_change (insn, &SET_DEST (set), src, 1);
4196 validate_change (insn, &SET_SRC (set), dest, 1);
4197 apply_change_group ();
4198
4199 /* If INSN has a REG_EQUAL note, and this note mentions
4200 REG0, then we must delete it, because the value in
4201 REG0 has changed. If the note's value is REG1, we must
4202 also delete it because that is now this insn's dest. */
4203 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4204 if (note != 0
4205 && (reg_mentioned_p (dest, XEXP (note, 0))
4206 || rtx_equal_p (src, XEXP (note, 0))))
4207 remove_note (insn, note);
4208 }
4209 }
4210 }
4211 }
4212 \f
4213 /* Record all the SETs in this instruction into SETS_PTR,
4214 and return the number of recorded sets. */
4215 static int
4216 find_sets_in_insn (rtx insn, struct set **psets)
4217 {
4218 struct set *sets = *psets;
4219 int n_sets = 0;
4220 rtx x = PATTERN (insn);
4221
4222 if (GET_CODE (x) == SET)
4223 {
4224 /* Ignore SETs that are unconditional jumps.
4225 They never need cse processing, so this does not hurt.
4226 The reason is not efficiency but rather
4227 so that we can test at the end for instructions
4228 that have been simplified to unconditional jumps
4229 and not be misled by unchanged instructions
4230 that were unconditional jumps to begin with. */
4231 if (SET_DEST (x) == pc_rtx
4232 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4233 ;
4234 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4235 The hard function value register is used only once, to copy to
4236 someplace else, so it isn't worth cse'ing. */
4237 else if (GET_CODE (SET_SRC (x)) == CALL)
4238 ;
4239 else
4240 sets[n_sets++].rtl = x;
4241 }
4242 else if (GET_CODE (x) == PARALLEL)
4243 {
4244 int i, lim = XVECLEN (x, 0);
4245
4246 /* Go over the epressions of the PARALLEL in forward order, to
4247 put them in the same order in the SETS array. */
4248 for (i = 0; i < lim; i++)
4249 {
4250 rtx y = XVECEXP (x, 0, i);
4251 if (GET_CODE (y) == SET)
4252 {
4253 /* As above, we ignore unconditional jumps and call-insns and
4254 ignore the result of apply_change_group. */
4255 if (SET_DEST (y) == pc_rtx
4256 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4257 ;
4258 else if (GET_CODE (SET_SRC (y)) == CALL)
4259 ;
4260 else
4261 sets[n_sets++].rtl = y;
4262 }
4263 }
4264 }
4265
4266 return n_sets;
4267 }
4268 \f
4269 /* Where possible, substitute every register reference in the N_SETS
4270 number of SETS in INSN with the the canonical register.
4271
4272 Register canonicalization propagatest the earliest register (i.e.
4273 one that is set before INSN) with the same value. This is a very
4274 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4275 to RTL. For instance, a CONST for an address is usually expanded
4276 multiple times to loads into different registers, thus creating many
4277 subexpressions of the form:
4278
4279 (set (reg1) (some_const))
4280 (set (mem (... reg1 ...) (thing)))
4281 (set (reg2) (some_const))
4282 (set (mem (... reg2 ...) (thing)))
4283
4284 After canonicalizing, the code takes the following form:
4285
4286 (set (reg1) (some_const))
4287 (set (mem (... reg1 ...) (thing)))
4288 (set (reg2) (some_const))
4289 (set (mem (... reg1 ...) (thing)))
4290
4291 The set to reg2 is now trivially dead, and the memory reference (or
4292 address, or whatever) may be a candidate for further CSEing.
4293
4294 In this function, the result of apply_change_group can be ignored;
4295 see canon_reg. */
4296
4297 static void
4298 canonicalize_insn (rtx insn, struct set **psets, int n_sets)
4299 {
4300 struct set *sets = *psets;
4301 rtx tem;
4302 rtx x = PATTERN (insn);
4303 int i;
4304
4305 if (CALL_P (insn))
4306 {
4307 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4308 if (GET_CODE (XEXP (tem, 0)) != SET)
4309 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4310 }
4311
4312 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4313 {
4314 canon_reg (SET_SRC (x), insn);
4315 apply_change_group ();
4316 fold_rtx (SET_SRC (x), insn);
4317 }
4318 else if (GET_CODE (x) == CLOBBER)
4319 {
4320 /* If we clobber memory, canon the address.
4321 This does nothing when a register is clobbered
4322 because we have already invalidated the reg. */
4323 if (MEM_P (XEXP (x, 0)))
4324 canon_reg (XEXP (x, 0), insn);
4325 }
4326 else if (GET_CODE (x) == USE
4327 && ! (REG_P (XEXP (x, 0))
4328 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4329 /* Canonicalize a USE of a pseudo register or memory location. */
4330 canon_reg (x, insn);
4331 else if (GET_CODE (x) == ASM_OPERANDS)
4332 {
4333 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4334 {
4335 rtx input = ASM_OPERANDS_INPUT (x, i);
4336 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4337 {
4338 input = canon_reg (input, insn);
4339 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4340 }
4341 }
4342 }
4343 else if (GET_CODE (x) == CALL)
4344 {
4345 canon_reg (x, insn);
4346 apply_change_group ();
4347 fold_rtx (x, insn);
4348 }
4349 else if (DEBUG_INSN_P (insn))
4350 canon_reg (PATTERN (insn), insn);
4351 else if (GET_CODE (x) == PARALLEL)
4352 {
4353 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4354 {
4355 rtx y = XVECEXP (x, 0, i);
4356 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4357 {
4358 canon_reg (SET_SRC (y), insn);
4359 apply_change_group ();
4360 fold_rtx (SET_SRC (y), insn);
4361 }
4362 else if (GET_CODE (y) == CLOBBER)
4363 {
4364 if (MEM_P (XEXP (y, 0)))
4365 canon_reg (XEXP (y, 0), insn);
4366 }
4367 else if (GET_CODE (y) == USE
4368 && ! (REG_P (XEXP (y, 0))
4369 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4370 canon_reg (y, insn);
4371 else if (GET_CODE (y) == CALL)
4372 {
4373 canon_reg (y, insn);
4374 apply_change_group ();
4375 fold_rtx (y, insn);
4376 }
4377 }
4378 }
4379
4380 if (n_sets == 1 && REG_NOTES (insn) != 0
4381 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4382 {
4383 /* We potentially will process this insn many times. Therefore,
4384 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4385 unique set in INSN.
4386
4387 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4388 because cse_insn handles those specially. */
4389 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4390 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4391 remove_note (insn, tem);
4392 else
4393 {
4394 canon_reg (XEXP (tem, 0), insn);
4395 apply_change_group ();
4396 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4397 df_notes_rescan (insn);
4398 }
4399 }
4400
4401 /* Canonicalize sources and addresses of destinations.
4402 We do this in a separate pass to avoid problems when a MATCH_DUP is
4403 present in the insn pattern. In that case, we want to ensure that
4404 we don't break the duplicate nature of the pattern. So we will replace
4405 both operands at the same time. Otherwise, we would fail to find an
4406 equivalent substitution in the loop calling validate_change below.
4407
4408 We used to suppress canonicalization of DEST if it appears in SRC,
4409 but we don't do this any more. */
4410
4411 for (i = 0; i < n_sets; i++)
4412 {
4413 rtx dest = SET_DEST (sets[i].rtl);
4414 rtx src = SET_SRC (sets[i].rtl);
4415 rtx new_rtx = canon_reg (src, insn);
4416
4417 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4418
4419 if (GET_CODE (dest) == ZERO_EXTRACT)
4420 {
4421 validate_change (insn, &XEXP (dest, 1),
4422 canon_reg (XEXP (dest, 1), insn), 1);
4423 validate_change (insn, &XEXP (dest, 2),
4424 canon_reg (XEXP (dest, 2), insn), 1);
4425 }
4426
4427 while (GET_CODE (dest) == SUBREG
4428 || GET_CODE (dest) == ZERO_EXTRACT
4429 || GET_CODE (dest) == STRICT_LOW_PART)
4430 dest = XEXP (dest, 0);
4431
4432 if (MEM_P (dest))
4433 canon_reg (dest, insn);
4434 }
4435
4436 /* Now that we have done all the replacements, we can apply the change
4437 group and see if they all work. Note that this will cause some
4438 canonicalizations that would have worked individually not to be applied
4439 because some other canonicalization didn't work, but this should not
4440 occur often.
4441
4442 The result of apply_change_group can be ignored; see canon_reg. */
4443
4444 apply_change_group ();
4445 }
4446 \f
4447 /* Main function of CSE.
4448 First simplify sources and addresses of all assignments
4449 in the instruction, using previously-computed equivalents values.
4450 Then install the new sources and destinations in the table
4451 of available values. */
4452
4453 static void
4454 cse_insn (rtx insn)
4455 {
4456 rtx x = PATTERN (insn);
4457 int i;
4458 rtx tem;
4459 int n_sets = 0;
4460
4461 rtx src_eqv = 0;
4462 struct table_elt *src_eqv_elt = 0;
4463 int src_eqv_volatile = 0;
4464 int src_eqv_in_memory = 0;
4465 unsigned src_eqv_hash = 0;
4466
4467 struct set *sets = (struct set *) 0;
4468
4469 if (GET_CODE (x) == SET)
4470 sets = XALLOCA (struct set);
4471 else if (GET_CODE (x) == PARALLEL)
4472 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4473
4474 this_insn = insn;
4475 #ifdef HAVE_cc0
4476 /* Records what this insn does to set CC0. */
4477 this_insn_cc0 = 0;
4478 this_insn_cc0_mode = VOIDmode;
4479 #endif
4480
4481 /* Find all regs explicitly clobbered in this insn,
4482 to ensure they are not replaced with any other regs
4483 elsewhere in this insn. */
4484 invalidate_from_sets_and_clobbers (insn);
4485
4486 /* Record all the SETs in this instruction. */
4487 n_sets = find_sets_in_insn (insn, &sets);
4488
4489 /* Substitute the canonical register where possible. */
4490 canonicalize_insn (insn, &sets, n_sets);
4491
4492 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4493 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4494 is necessary because SRC_EQV is handled specially for this case, and if
4495 it isn't set, then there will be no equivalence for the destination. */
4496 if (n_sets == 1 && REG_NOTES (insn) != 0
4497 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4498 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4499 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4500 src_eqv = copy_rtx (XEXP (tem, 0));
4501
4502 /* Set sets[i].src_elt to the class each source belongs to.
4503 Detect assignments from or to volatile things
4504 and set set[i] to zero so they will be ignored
4505 in the rest of this function.
4506
4507 Nothing in this loop changes the hash table or the register chains. */
4508
4509 for (i = 0; i < n_sets; i++)
4510 {
4511 bool repeat = false;
4512 rtx src, dest;
4513 rtx src_folded;
4514 struct table_elt *elt = 0, *p;
4515 enum machine_mode mode;
4516 rtx src_eqv_here;
4517 rtx src_const = 0;
4518 rtx src_related = 0;
4519 bool src_related_is_const_anchor = false;
4520 struct table_elt *src_const_elt = 0;
4521 int src_cost = MAX_COST;
4522 int src_eqv_cost = MAX_COST;
4523 int src_folded_cost = MAX_COST;
4524 int src_related_cost = MAX_COST;
4525 int src_elt_cost = MAX_COST;
4526 int src_regcost = MAX_COST;
4527 int src_eqv_regcost = MAX_COST;
4528 int src_folded_regcost = MAX_COST;
4529 int src_related_regcost = MAX_COST;
4530 int src_elt_regcost = MAX_COST;
4531 /* Set nonzero if we need to call force_const_mem on with the
4532 contents of src_folded before using it. */
4533 int src_folded_force_flag = 0;
4534
4535 dest = SET_DEST (sets[i].rtl);
4536 src = SET_SRC (sets[i].rtl);
4537
4538 /* If SRC is a constant that has no machine mode,
4539 hash it with the destination's machine mode.
4540 This way we can keep different modes separate. */
4541
4542 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4543 sets[i].mode = mode;
4544
4545 if (src_eqv)
4546 {
4547 enum machine_mode eqvmode = mode;
4548 if (GET_CODE (dest) == STRICT_LOW_PART)
4549 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4550 do_not_record = 0;
4551 hash_arg_in_memory = 0;
4552 src_eqv_hash = HASH (src_eqv, eqvmode);
4553
4554 /* Find the equivalence class for the equivalent expression. */
4555
4556 if (!do_not_record)
4557 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4558
4559 src_eqv_volatile = do_not_record;
4560 src_eqv_in_memory = hash_arg_in_memory;
4561 }
4562
4563 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4564 value of the INNER register, not the destination. So it is not
4565 a valid substitution for the source. But save it for later. */
4566 if (GET_CODE (dest) == STRICT_LOW_PART)
4567 src_eqv_here = 0;
4568 else
4569 src_eqv_here = src_eqv;
4570
4571 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4572 simplified result, which may not necessarily be valid. */
4573 src_folded = fold_rtx (src, insn);
4574
4575 #if 0
4576 /* ??? This caused bad code to be generated for the m68k port with -O2.
4577 Suppose src is (CONST_INT -1), and that after truncation src_folded
4578 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4579 At the end we will add src and src_const to the same equivalence
4580 class. We now have 3 and -1 on the same equivalence class. This
4581 causes later instructions to be mis-optimized. */
4582 /* If storing a constant in a bitfield, pre-truncate the constant
4583 so we will be able to record it later. */
4584 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4585 {
4586 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4587
4588 if (CONST_INT_P (src)
4589 && CONST_INT_P (width)
4590 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4591 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4592 src_folded
4593 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4594 << INTVAL (width)) - 1));
4595 }
4596 #endif
4597
4598 /* Compute SRC's hash code, and also notice if it
4599 should not be recorded at all. In that case,
4600 prevent any further processing of this assignment. */
4601 do_not_record = 0;
4602 hash_arg_in_memory = 0;
4603
4604 sets[i].src = src;
4605 sets[i].src_hash = HASH (src, mode);
4606 sets[i].src_volatile = do_not_record;
4607 sets[i].src_in_memory = hash_arg_in_memory;
4608
4609 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4610 a pseudo, do not record SRC. Using SRC as a replacement for
4611 anything else will be incorrect in that situation. Note that
4612 this usually occurs only for stack slots, in which case all the
4613 RTL would be referring to SRC, so we don't lose any optimization
4614 opportunities by not having SRC in the hash table. */
4615
4616 if (MEM_P (src)
4617 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4618 && REG_P (dest)
4619 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4620 sets[i].src_volatile = 1;
4621
4622 #if 0
4623 /* It is no longer clear why we used to do this, but it doesn't
4624 appear to still be needed. So let's try without it since this
4625 code hurts cse'ing widened ops. */
4626 /* If source is a paradoxical subreg (such as QI treated as an SI),
4627 treat it as volatile. It may do the work of an SI in one context
4628 where the extra bits are not being used, but cannot replace an SI
4629 in general. */
4630 if (paradoxical_subreg_p (src))
4631 sets[i].src_volatile = 1;
4632 #endif
4633
4634 /* Locate all possible equivalent forms for SRC. Try to replace
4635 SRC in the insn with each cheaper equivalent.
4636
4637 We have the following types of equivalents: SRC itself, a folded
4638 version, a value given in a REG_EQUAL note, or a value related
4639 to a constant.
4640
4641 Each of these equivalents may be part of an additional class
4642 of equivalents (if more than one is in the table, they must be in
4643 the same class; we check for this).
4644
4645 If the source is volatile, we don't do any table lookups.
4646
4647 We note any constant equivalent for possible later use in a
4648 REG_NOTE. */
4649
4650 if (!sets[i].src_volatile)
4651 elt = lookup (src, sets[i].src_hash, mode);
4652
4653 sets[i].src_elt = elt;
4654
4655 if (elt && src_eqv_here && src_eqv_elt)
4656 {
4657 if (elt->first_same_value != src_eqv_elt->first_same_value)
4658 {
4659 /* The REG_EQUAL is indicating that two formerly distinct
4660 classes are now equivalent. So merge them. */
4661 merge_equiv_classes (elt, src_eqv_elt);
4662 src_eqv_hash = HASH (src_eqv, elt->mode);
4663 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4664 }
4665
4666 src_eqv_here = 0;
4667 }
4668
4669 else if (src_eqv_elt)
4670 elt = src_eqv_elt;
4671
4672 /* Try to find a constant somewhere and record it in `src_const'.
4673 Record its table element, if any, in `src_const_elt'. Look in
4674 any known equivalences first. (If the constant is not in the
4675 table, also set `sets[i].src_const_hash'). */
4676 if (elt)
4677 for (p = elt->first_same_value; p; p = p->next_same_value)
4678 if (p->is_const)
4679 {
4680 src_const = p->exp;
4681 src_const_elt = elt;
4682 break;
4683 }
4684
4685 if (src_const == 0
4686 && (CONSTANT_P (src_folded)
4687 /* Consider (minus (label_ref L1) (label_ref L2)) as
4688 "constant" here so we will record it. This allows us
4689 to fold switch statements when an ADDR_DIFF_VEC is used. */
4690 || (GET_CODE (src_folded) == MINUS
4691 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4692 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4693 src_const = src_folded, src_const_elt = elt;
4694 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4695 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4696
4697 /* If we don't know if the constant is in the table, get its
4698 hash code and look it up. */
4699 if (src_const && src_const_elt == 0)
4700 {
4701 sets[i].src_const_hash = HASH (src_const, mode);
4702 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4703 }
4704
4705 sets[i].src_const = src_const;
4706 sets[i].src_const_elt = src_const_elt;
4707
4708 /* If the constant and our source are both in the table, mark them as
4709 equivalent. Otherwise, if a constant is in the table but the source
4710 isn't, set ELT to it. */
4711 if (src_const_elt && elt
4712 && src_const_elt->first_same_value != elt->first_same_value)
4713 merge_equiv_classes (elt, src_const_elt);
4714 else if (src_const_elt && elt == 0)
4715 elt = src_const_elt;
4716
4717 /* See if there is a register linearly related to a constant
4718 equivalent of SRC. */
4719 if (src_const
4720 && (GET_CODE (src_const) == CONST
4721 || (src_const_elt && src_const_elt->related_value != 0)))
4722 {
4723 src_related = use_related_value (src_const, src_const_elt);
4724 if (src_related)
4725 {
4726 struct table_elt *src_related_elt
4727 = lookup (src_related, HASH (src_related, mode), mode);
4728 if (src_related_elt && elt)
4729 {
4730 if (elt->first_same_value
4731 != src_related_elt->first_same_value)
4732 /* This can occur when we previously saw a CONST
4733 involving a SYMBOL_REF and then see the SYMBOL_REF
4734 twice. Merge the involved classes. */
4735 merge_equiv_classes (elt, src_related_elt);
4736
4737 src_related = 0;
4738 src_related_elt = 0;
4739 }
4740 else if (src_related_elt && elt == 0)
4741 elt = src_related_elt;
4742 }
4743 }
4744
4745 /* See if we have a CONST_INT that is already in a register in a
4746 wider mode. */
4747
4748 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4749 && GET_MODE_CLASS (mode) == MODE_INT
4750 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4751 {
4752 enum machine_mode wider_mode;
4753
4754 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4755 wider_mode != VOIDmode
4756 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4757 && src_related == 0;
4758 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4759 {
4760 struct table_elt *const_elt
4761 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4762
4763 if (const_elt == 0)
4764 continue;
4765
4766 for (const_elt = const_elt->first_same_value;
4767 const_elt; const_elt = const_elt->next_same_value)
4768 if (REG_P (const_elt->exp))
4769 {
4770 src_related = gen_lowpart (mode, const_elt->exp);
4771 break;
4772 }
4773 }
4774 }
4775
4776 /* Another possibility is that we have an AND with a constant in
4777 a mode narrower than a word. If so, it might have been generated
4778 as part of an "if" which would narrow the AND. If we already
4779 have done the AND in a wider mode, we can use a SUBREG of that
4780 value. */
4781
4782 if (flag_expensive_optimizations && ! src_related
4783 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4784 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4785 {
4786 enum machine_mode tmode;
4787 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4788
4789 for (tmode = GET_MODE_WIDER_MODE (mode);
4790 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4791 tmode = GET_MODE_WIDER_MODE (tmode))
4792 {
4793 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4794 struct table_elt *larger_elt;
4795
4796 if (inner)
4797 {
4798 PUT_MODE (new_and, tmode);
4799 XEXP (new_and, 0) = inner;
4800 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4801 if (larger_elt == 0)
4802 continue;
4803
4804 for (larger_elt = larger_elt->first_same_value;
4805 larger_elt; larger_elt = larger_elt->next_same_value)
4806 if (REG_P (larger_elt->exp))
4807 {
4808 src_related
4809 = gen_lowpart (mode, larger_elt->exp);
4810 break;
4811 }
4812
4813 if (src_related)
4814 break;
4815 }
4816 }
4817 }
4818
4819 #ifdef LOAD_EXTEND_OP
4820 /* See if a MEM has already been loaded with a widening operation;
4821 if it has, we can use a subreg of that. Many CISC machines
4822 also have such operations, but this is only likely to be
4823 beneficial on these machines. */
4824
4825 if (flag_expensive_optimizations && src_related == 0
4826 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4827 && GET_MODE_CLASS (mode) == MODE_INT
4828 && MEM_P (src) && ! do_not_record
4829 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4830 {
4831 struct rtx_def memory_extend_buf;
4832 rtx memory_extend_rtx = &memory_extend_buf;
4833 enum machine_mode tmode;
4834
4835 /* Set what we are trying to extend and the operation it might
4836 have been extended with. */
4837 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4838 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4839 XEXP (memory_extend_rtx, 0) = src;
4840
4841 for (tmode = GET_MODE_WIDER_MODE (mode);
4842 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4843 tmode = GET_MODE_WIDER_MODE (tmode))
4844 {
4845 struct table_elt *larger_elt;
4846
4847 PUT_MODE (memory_extend_rtx, tmode);
4848 larger_elt = lookup (memory_extend_rtx,
4849 HASH (memory_extend_rtx, tmode), tmode);
4850 if (larger_elt == 0)
4851 continue;
4852
4853 for (larger_elt = larger_elt->first_same_value;
4854 larger_elt; larger_elt = larger_elt->next_same_value)
4855 if (REG_P (larger_elt->exp))
4856 {
4857 src_related = gen_lowpart (mode, larger_elt->exp);
4858 break;
4859 }
4860
4861 if (src_related)
4862 break;
4863 }
4864 }
4865 #endif /* LOAD_EXTEND_OP */
4866
4867 /* Try to express the constant using a register+offset expression
4868 derived from a constant anchor. */
4869
4870 if (targetm.const_anchor
4871 && !src_related
4872 && src_const
4873 && GET_CODE (src_const) == CONST_INT)
4874 {
4875 src_related = try_const_anchors (src_const, mode);
4876 src_related_is_const_anchor = src_related != NULL_RTX;
4877 }
4878
4879
4880 if (src == src_folded)
4881 src_folded = 0;
4882
4883 /* At this point, ELT, if nonzero, points to a class of expressions
4884 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4885 and SRC_RELATED, if nonzero, each contain additional equivalent
4886 expressions. Prune these latter expressions by deleting expressions
4887 already in the equivalence class.
4888
4889 Check for an equivalent identical to the destination. If found,
4890 this is the preferred equivalent since it will likely lead to
4891 elimination of the insn. Indicate this by placing it in
4892 `src_related'. */
4893
4894 if (elt)
4895 elt = elt->first_same_value;
4896 for (p = elt; p; p = p->next_same_value)
4897 {
4898 enum rtx_code code = GET_CODE (p->exp);
4899
4900 /* If the expression is not valid, ignore it. Then we do not
4901 have to check for validity below. In most cases, we can use
4902 `rtx_equal_p', since canonicalization has already been done. */
4903 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4904 continue;
4905
4906 /* Also skip paradoxical subregs, unless that's what we're
4907 looking for. */
4908 if (paradoxical_subreg_p (p->exp)
4909 && ! (src != 0
4910 && GET_CODE (src) == SUBREG
4911 && GET_MODE (src) == GET_MODE (p->exp)
4912 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4913 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4914 continue;
4915
4916 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4917 src = 0;
4918 else if (src_folded && GET_CODE (src_folded) == code
4919 && rtx_equal_p (src_folded, p->exp))
4920 src_folded = 0;
4921 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4922 && rtx_equal_p (src_eqv_here, p->exp))
4923 src_eqv_here = 0;
4924 else if (src_related && GET_CODE (src_related) == code
4925 && rtx_equal_p (src_related, p->exp))
4926 src_related = 0;
4927
4928 /* This is the same as the destination of the insns, we want
4929 to prefer it. Copy it to src_related. The code below will
4930 then give it a negative cost. */
4931 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4932 src_related = dest;
4933 }
4934
4935 /* Find the cheapest valid equivalent, trying all the available
4936 possibilities. Prefer items not in the hash table to ones
4937 that are when they are equal cost. Note that we can never
4938 worsen an insn as the current contents will also succeed.
4939 If we find an equivalent identical to the destination, use it as best,
4940 since this insn will probably be eliminated in that case. */
4941 if (src)
4942 {
4943 if (rtx_equal_p (src, dest))
4944 src_cost = src_regcost = -1;
4945 else
4946 {
4947 src_cost = COST (src);
4948 src_regcost = approx_reg_cost (src);
4949 }
4950 }
4951
4952 if (src_eqv_here)
4953 {
4954 if (rtx_equal_p (src_eqv_here, dest))
4955 src_eqv_cost = src_eqv_regcost = -1;
4956 else
4957 {
4958 src_eqv_cost = COST (src_eqv_here);
4959 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4960 }
4961 }
4962
4963 if (src_folded)
4964 {
4965 if (rtx_equal_p (src_folded, dest))
4966 src_folded_cost = src_folded_regcost = -1;
4967 else
4968 {
4969 src_folded_cost = COST (src_folded);
4970 src_folded_regcost = approx_reg_cost (src_folded);
4971 }
4972 }
4973
4974 if (src_related)
4975 {
4976 if (rtx_equal_p (src_related, dest))
4977 src_related_cost = src_related_regcost = -1;
4978 else
4979 {
4980 src_related_cost = COST (src_related);
4981 src_related_regcost = approx_reg_cost (src_related);
4982
4983 /* If a const-anchor is used to synthesize a constant that
4984 normally requires multiple instructions then slightly prefer
4985 it over the original sequence. These instructions are likely
4986 to become redundant now. We can't compare against the cost
4987 of src_eqv_here because, on MIPS for example, multi-insn
4988 constants have zero cost; they are assumed to be hoisted from
4989 loops. */
4990 if (src_related_is_const_anchor
4991 && src_related_cost == src_cost
4992 && src_eqv_here)
4993 src_related_cost--;
4994 }
4995 }
4996
4997 /* If this was an indirect jump insn, a known label will really be
4998 cheaper even though it looks more expensive. */
4999 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5000 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5001
5002 /* Terminate loop when replacement made. This must terminate since
5003 the current contents will be tested and will always be valid. */
5004 while (1)
5005 {
5006 rtx trial;
5007
5008 /* Skip invalid entries. */
5009 while (elt && !REG_P (elt->exp)
5010 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5011 elt = elt->next_same_value;
5012
5013 /* A paradoxical subreg would be bad here: it'll be the right
5014 size, but later may be adjusted so that the upper bits aren't
5015 what we want. So reject it. */
5016 if (elt != 0
5017 && paradoxical_subreg_p (elt->exp)
5018 /* It is okay, though, if the rtx we're trying to match
5019 will ignore any of the bits we can't predict. */
5020 && ! (src != 0
5021 && GET_CODE (src) == SUBREG
5022 && GET_MODE (src) == GET_MODE (elt->exp)
5023 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5024 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5025 {
5026 elt = elt->next_same_value;
5027 continue;
5028 }
5029
5030 if (elt)
5031 {
5032 src_elt_cost = elt->cost;
5033 src_elt_regcost = elt->regcost;
5034 }
5035
5036 /* Find cheapest and skip it for the next time. For items
5037 of equal cost, use this order:
5038 src_folded, src, src_eqv, src_related and hash table entry. */
5039 if (src_folded
5040 && preferable (src_folded_cost, src_folded_regcost,
5041 src_cost, src_regcost) <= 0
5042 && preferable (src_folded_cost, src_folded_regcost,
5043 src_eqv_cost, src_eqv_regcost) <= 0
5044 && preferable (src_folded_cost, src_folded_regcost,
5045 src_related_cost, src_related_regcost) <= 0
5046 && preferable (src_folded_cost, src_folded_regcost,
5047 src_elt_cost, src_elt_regcost) <= 0)
5048 {
5049 trial = src_folded, src_folded_cost = MAX_COST;
5050 if (src_folded_force_flag)
5051 {
5052 rtx forced = force_const_mem (mode, trial);
5053 if (forced)
5054 trial = forced;
5055 }
5056 }
5057 else if (src
5058 && preferable (src_cost, src_regcost,
5059 src_eqv_cost, src_eqv_regcost) <= 0
5060 && preferable (src_cost, src_regcost,
5061 src_related_cost, src_related_regcost) <= 0
5062 && preferable (src_cost, src_regcost,
5063 src_elt_cost, src_elt_regcost) <= 0)
5064 trial = src, src_cost = MAX_COST;
5065 else if (src_eqv_here
5066 && preferable (src_eqv_cost, src_eqv_regcost,
5067 src_related_cost, src_related_regcost) <= 0
5068 && preferable (src_eqv_cost, src_eqv_regcost,
5069 src_elt_cost, src_elt_regcost) <= 0)
5070 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5071 else if (src_related
5072 && preferable (src_related_cost, src_related_regcost,
5073 src_elt_cost, src_elt_regcost) <= 0)
5074 trial = src_related, src_related_cost = MAX_COST;
5075 else
5076 {
5077 trial = elt->exp;
5078 elt = elt->next_same_value;
5079 src_elt_cost = MAX_COST;
5080 }
5081
5082 /* Avoid creation of overlapping memory moves. */
5083 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5084 {
5085 rtx src, dest;
5086
5087 /* BLKmode moves are not handled by cse anyway. */
5088 if (GET_MODE (trial) == BLKmode)
5089 break;
5090
5091 src = canon_rtx (trial);
5092 dest = canon_rtx (SET_DEST (sets[i].rtl));
5093
5094 if (!MEM_P (src) || !MEM_P (dest)
5095 || !nonoverlapping_memrefs_p (src, dest, false))
5096 break;
5097 }
5098
5099 /* Try to optimize
5100 (set (reg:M N) (const_int A))
5101 (set (reg:M2 O) (const_int B))
5102 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5103 (reg:M2 O)). */
5104 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5105 && CONST_INT_P (trial)
5106 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5107 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5108 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5109 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5110 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5111 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5112 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5113 <= HOST_BITS_PER_WIDE_INT))
5114 {
5115 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5116 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5117 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5118 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5119 struct table_elt *dest_elt
5120 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5121 rtx dest_cst = NULL;
5122
5123 if (dest_elt)
5124 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5125 if (p->is_const && CONST_INT_P (p->exp))
5126 {
5127 dest_cst = p->exp;
5128 break;
5129 }
5130 if (dest_cst)
5131 {
5132 HOST_WIDE_INT val = INTVAL (dest_cst);
5133 HOST_WIDE_INT mask;
5134 unsigned int shift;
5135 if (BITS_BIG_ENDIAN)
5136 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5137 - INTVAL (pos) - INTVAL (width);
5138 else
5139 shift = INTVAL (pos);
5140 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5141 mask = ~(HOST_WIDE_INT) 0;
5142 else
5143 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5144 val &= ~(mask << shift);
5145 val |= (INTVAL (trial) & mask) << shift;
5146 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5147 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5148 dest_reg, 1);
5149 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5150 GEN_INT (val), 1);
5151 if (apply_change_group ())
5152 {
5153 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5154 if (note)
5155 {
5156 remove_note (insn, note);
5157 df_notes_rescan (insn);
5158 }
5159 src_eqv = NULL_RTX;
5160 src_eqv_elt = NULL;
5161 src_eqv_volatile = 0;
5162 src_eqv_in_memory = 0;
5163 src_eqv_hash = 0;
5164 repeat = true;
5165 break;
5166 }
5167 }
5168 }
5169
5170 /* We don't normally have an insn matching (set (pc) (pc)), so
5171 check for this separately here. We will delete such an
5172 insn below.
5173
5174 For other cases such as a table jump or conditional jump
5175 where we know the ultimate target, go ahead and replace the
5176 operand. While that may not make a valid insn, we will
5177 reemit the jump below (and also insert any necessary
5178 barriers). */
5179 if (n_sets == 1 && dest == pc_rtx
5180 && (trial == pc_rtx
5181 || (GET_CODE (trial) == LABEL_REF
5182 && ! condjump_p (insn))))
5183 {
5184 /* Don't substitute non-local labels, this confuses CFG. */
5185 if (GET_CODE (trial) == LABEL_REF
5186 && LABEL_REF_NONLOCAL_P (trial))
5187 continue;
5188
5189 SET_SRC (sets[i].rtl) = trial;
5190 cse_jumps_altered = true;
5191 break;
5192 }
5193
5194 /* Reject certain invalid forms of CONST that we create. */
5195 else if (CONSTANT_P (trial)
5196 && GET_CODE (trial) == CONST
5197 /* Reject cases that will cause decode_rtx_const to
5198 die. On the alpha when simplifying a switch, we
5199 get (const (truncate (minus (label_ref)
5200 (label_ref)))). */
5201 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5202 /* Likewise on IA-64, except without the
5203 truncate. */
5204 || (GET_CODE (XEXP (trial, 0)) == MINUS
5205 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5206 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5207 /* Do nothing for this case. */
5208 ;
5209
5210 /* Look for a substitution that makes a valid insn. */
5211 else if (validate_unshare_change
5212 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5213 {
5214 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5215
5216 /* The result of apply_change_group can be ignored; see
5217 canon_reg. */
5218
5219 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5220 apply_change_group ();
5221
5222 break;
5223 }
5224
5225 /* If we previously found constant pool entries for
5226 constants and this is a constant, try making a
5227 pool entry. Put it in src_folded unless we already have done
5228 this since that is where it likely came from. */
5229
5230 else if (constant_pool_entries_cost
5231 && CONSTANT_P (trial)
5232 && (src_folded == 0
5233 || (!MEM_P (src_folded)
5234 && ! src_folded_force_flag))
5235 && GET_MODE_CLASS (mode) != MODE_CC
5236 && mode != VOIDmode)
5237 {
5238 src_folded_force_flag = 1;
5239 src_folded = trial;
5240 src_folded_cost = constant_pool_entries_cost;
5241 src_folded_regcost = constant_pool_entries_regcost;
5242 }
5243 }
5244
5245 /* If we changed the insn too much, handle this set from scratch. */
5246 if (repeat)
5247 {
5248 i--;
5249 continue;
5250 }
5251
5252 src = SET_SRC (sets[i].rtl);
5253
5254 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5255 However, there is an important exception: If both are registers
5256 that are not the head of their equivalence class, replace SET_SRC
5257 with the head of the class. If we do not do this, we will have
5258 both registers live over a portion of the basic block. This way,
5259 their lifetimes will likely abut instead of overlapping. */
5260 if (REG_P (dest)
5261 && REGNO_QTY_VALID_P (REGNO (dest)))
5262 {
5263 int dest_q = REG_QTY (REGNO (dest));
5264 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5265
5266 if (dest_ent->mode == GET_MODE (dest)
5267 && dest_ent->first_reg != REGNO (dest)
5268 && REG_P (src) && REGNO (src) == REGNO (dest)
5269 /* Don't do this if the original insn had a hard reg as
5270 SET_SRC or SET_DEST. */
5271 && (!REG_P (sets[i].src)
5272 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5273 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5274 /* We can't call canon_reg here because it won't do anything if
5275 SRC is a hard register. */
5276 {
5277 int src_q = REG_QTY (REGNO (src));
5278 struct qty_table_elem *src_ent = &qty_table[src_q];
5279 int first = src_ent->first_reg;
5280 rtx new_src
5281 = (first >= FIRST_PSEUDO_REGISTER
5282 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5283
5284 /* We must use validate-change even for this, because this
5285 might be a special no-op instruction, suitable only to
5286 tag notes onto. */
5287 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5288 {
5289 src = new_src;
5290 /* If we had a constant that is cheaper than what we are now
5291 setting SRC to, use that constant. We ignored it when we
5292 thought we could make this into a no-op. */
5293 if (src_const && COST (src_const) < COST (src)
5294 && validate_change (insn, &SET_SRC (sets[i].rtl),
5295 src_const, 0))
5296 src = src_const;
5297 }
5298 }
5299 }
5300
5301 /* If we made a change, recompute SRC values. */
5302 if (src != sets[i].src)
5303 {
5304 do_not_record = 0;
5305 hash_arg_in_memory = 0;
5306 sets[i].src = src;
5307 sets[i].src_hash = HASH (src, mode);
5308 sets[i].src_volatile = do_not_record;
5309 sets[i].src_in_memory = hash_arg_in_memory;
5310 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5311 }
5312
5313 /* If this is a single SET, we are setting a register, and we have an
5314 equivalent constant, we want to add a REG_EQUAL note if the constant
5315 is different from the source. We don't want to do it for a constant
5316 pseudo since verifying that this pseudo hasn't been eliminated is a
5317 pain; moreover such a note won't help anything.
5318
5319 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5320 which can be created for a reference to a compile time computable
5321 entry in a jump table. */
5322 if (n_sets == 1
5323 && REG_P (dest)
5324 && src_const
5325 && !REG_P (src_const)
5326 && !(GET_CODE (src_const) == SUBREG
5327 && REG_P (SUBREG_REG (src_const)))
5328 && !(GET_CODE (src_const) == CONST
5329 && GET_CODE (XEXP (src_const, 0)) == MINUS
5330 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5331 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5332 && !rtx_equal_p (src, src_const))
5333 {
5334 /* Make sure that the rtx is not shared. */
5335 src_const = copy_rtx (src_const);
5336
5337 /* Record the actual constant value in a REG_EQUAL note,
5338 making a new one if one does not already exist. */
5339 set_unique_reg_note (insn, REG_EQUAL, src_const);
5340 df_notes_rescan (insn);
5341 }
5342
5343 /* Now deal with the destination. */
5344 do_not_record = 0;
5345
5346 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5347 while (GET_CODE (dest) == SUBREG
5348 || GET_CODE (dest) == ZERO_EXTRACT
5349 || GET_CODE (dest) == STRICT_LOW_PART)
5350 dest = XEXP (dest, 0);
5351
5352 sets[i].inner_dest = dest;
5353
5354 if (MEM_P (dest))
5355 {
5356 #ifdef PUSH_ROUNDING
5357 /* Stack pushes invalidate the stack pointer. */
5358 rtx addr = XEXP (dest, 0);
5359 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5360 && XEXP (addr, 0) == stack_pointer_rtx)
5361 invalidate (stack_pointer_rtx, VOIDmode);
5362 #endif
5363 dest = fold_rtx (dest, insn);
5364 }
5365
5366 /* Compute the hash code of the destination now,
5367 before the effects of this instruction are recorded,
5368 since the register values used in the address computation
5369 are those before this instruction. */
5370 sets[i].dest_hash = HASH (dest, mode);
5371
5372 /* Don't enter a bit-field in the hash table
5373 because the value in it after the store
5374 may not equal what was stored, due to truncation. */
5375
5376 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5377 {
5378 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5379
5380 if (src_const != 0 && CONST_INT_P (src_const)
5381 && CONST_INT_P (width)
5382 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5383 && ! (INTVAL (src_const)
5384 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5385 /* Exception: if the value is constant,
5386 and it won't be truncated, record it. */
5387 ;
5388 else
5389 {
5390 /* This is chosen so that the destination will be invalidated
5391 but no new value will be recorded.
5392 We must invalidate because sometimes constant
5393 values can be recorded for bitfields. */
5394 sets[i].src_elt = 0;
5395 sets[i].src_volatile = 1;
5396 src_eqv = 0;
5397 src_eqv_elt = 0;
5398 }
5399 }
5400
5401 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5402 the insn. */
5403 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5404 {
5405 /* One less use of the label this insn used to jump to. */
5406 delete_insn_and_edges (insn);
5407 cse_jumps_altered = true;
5408 /* No more processing for this set. */
5409 sets[i].rtl = 0;
5410 }
5411
5412 /* If this SET is now setting PC to a label, we know it used to
5413 be a conditional or computed branch. */
5414 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5415 && !LABEL_REF_NONLOCAL_P (src))
5416 {
5417 /* We reemit the jump in as many cases as possible just in
5418 case the form of an unconditional jump is significantly
5419 different than a computed jump or conditional jump.
5420
5421 If this insn has multiple sets, then reemitting the
5422 jump is nontrivial. So instead we just force rerecognition
5423 and hope for the best. */
5424 if (n_sets == 1)
5425 {
5426 rtx new_rtx, note;
5427
5428 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5429 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5430 LABEL_NUSES (XEXP (src, 0))++;
5431
5432 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5433 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5434 if (note)
5435 {
5436 XEXP (note, 1) = NULL_RTX;
5437 REG_NOTES (new_rtx) = note;
5438 }
5439
5440 delete_insn_and_edges (insn);
5441 insn = new_rtx;
5442 }
5443 else
5444 INSN_CODE (insn) = -1;
5445
5446 /* Do not bother deleting any unreachable code, let jump do it. */
5447 cse_jumps_altered = true;
5448 sets[i].rtl = 0;
5449 }
5450
5451 /* If destination is volatile, invalidate it and then do no further
5452 processing for this assignment. */
5453
5454 else if (do_not_record)
5455 {
5456 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5457 invalidate (dest, VOIDmode);
5458 else if (MEM_P (dest))
5459 invalidate (dest, VOIDmode);
5460 else if (GET_CODE (dest) == STRICT_LOW_PART
5461 || GET_CODE (dest) == ZERO_EXTRACT)
5462 invalidate (XEXP (dest, 0), GET_MODE (dest));
5463 sets[i].rtl = 0;
5464 }
5465
5466 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5467 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5468
5469 #ifdef HAVE_cc0
5470 /* If setting CC0, record what it was set to, or a constant, if it
5471 is equivalent to a constant. If it is being set to a floating-point
5472 value, make a COMPARE with the appropriate constant of 0. If we
5473 don't do this, later code can interpret this as a test against
5474 const0_rtx, which can cause problems if we try to put it into an
5475 insn as a floating-point operand. */
5476 if (dest == cc0_rtx)
5477 {
5478 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5479 this_insn_cc0_mode = mode;
5480 if (FLOAT_MODE_P (mode))
5481 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5482 CONST0_RTX (mode));
5483 }
5484 #endif
5485 }
5486
5487 /* Now enter all non-volatile source expressions in the hash table
5488 if they are not already present.
5489 Record their equivalence classes in src_elt.
5490 This way we can insert the corresponding destinations into
5491 the same classes even if the actual sources are no longer in them
5492 (having been invalidated). */
5493
5494 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5495 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5496 {
5497 struct table_elt *elt;
5498 struct table_elt *classp = sets[0].src_elt;
5499 rtx dest = SET_DEST (sets[0].rtl);
5500 enum machine_mode eqvmode = GET_MODE (dest);
5501
5502 if (GET_CODE (dest) == STRICT_LOW_PART)
5503 {
5504 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5505 classp = 0;
5506 }
5507 if (insert_regs (src_eqv, classp, 0))
5508 {
5509 rehash_using_reg (src_eqv);
5510 src_eqv_hash = HASH (src_eqv, eqvmode);
5511 }
5512 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5513 elt->in_memory = src_eqv_in_memory;
5514 src_eqv_elt = elt;
5515
5516 /* Check to see if src_eqv_elt is the same as a set source which
5517 does not yet have an elt, and if so set the elt of the set source
5518 to src_eqv_elt. */
5519 for (i = 0; i < n_sets; i++)
5520 if (sets[i].rtl && sets[i].src_elt == 0
5521 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5522 sets[i].src_elt = src_eqv_elt;
5523 }
5524
5525 for (i = 0; i < n_sets; i++)
5526 if (sets[i].rtl && ! sets[i].src_volatile
5527 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5528 {
5529 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5530 {
5531 /* REG_EQUAL in setting a STRICT_LOW_PART
5532 gives an equivalent for the entire destination register,
5533 not just for the subreg being stored in now.
5534 This is a more interesting equivalence, so we arrange later
5535 to treat the entire reg as the destination. */
5536 sets[i].src_elt = src_eqv_elt;
5537 sets[i].src_hash = src_eqv_hash;
5538 }
5539 else
5540 {
5541 /* Insert source and constant equivalent into hash table, if not
5542 already present. */
5543 struct table_elt *classp = src_eqv_elt;
5544 rtx src = sets[i].src;
5545 rtx dest = SET_DEST (sets[i].rtl);
5546 enum machine_mode mode
5547 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5548
5549 /* It's possible that we have a source value known to be
5550 constant but don't have a REG_EQUAL note on the insn.
5551 Lack of a note will mean src_eqv_elt will be NULL. This
5552 can happen where we've generated a SUBREG to access a
5553 CONST_INT that is already in a register in a wider mode.
5554 Ensure that the source expression is put in the proper
5555 constant class. */
5556 if (!classp)
5557 classp = sets[i].src_const_elt;
5558
5559 if (sets[i].src_elt == 0)
5560 {
5561 struct table_elt *elt;
5562
5563 /* Note that these insert_regs calls cannot remove
5564 any of the src_elt's, because they would have failed to
5565 match if not still valid. */
5566 if (insert_regs (src, classp, 0))
5567 {
5568 rehash_using_reg (src);
5569 sets[i].src_hash = HASH (src, mode);
5570 }
5571 elt = insert (src, classp, sets[i].src_hash, mode);
5572 elt->in_memory = sets[i].src_in_memory;
5573 sets[i].src_elt = classp = elt;
5574 }
5575 if (sets[i].src_const && sets[i].src_const_elt == 0
5576 && src != sets[i].src_const
5577 && ! rtx_equal_p (sets[i].src_const, src))
5578 sets[i].src_elt = insert (sets[i].src_const, classp,
5579 sets[i].src_const_hash, mode);
5580 }
5581 }
5582 else if (sets[i].src_elt == 0)
5583 /* If we did not insert the source into the hash table (e.g., it was
5584 volatile), note the equivalence class for the REG_EQUAL value, if any,
5585 so that the destination goes into that class. */
5586 sets[i].src_elt = src_eqv_elt;
5587
5588 /* Record destination addresses in the hash table. This allows us to
5589 check if they are invalidated by other sets. */
5590 for (i = 0; i < n_sets; i++)
5591 {
5592 if (sets[i].rtl)
5593 {
5594 rtx x = sets[i].inner_dest;
5595 struct table_elt *elt;
5596 enum machine_mode mode;
5597 unsigned hash;
5598
5599 if (MEM_P (x))
5600 {
5601 x = XEXP (x, 0);
5602 mode = GET_MODE (x);
5603 hash = HASH (x, mode);
5604 elt = lookup (x, hash, mode);
5605 if (!elt)
5606 {
5607 if (insert_regs (x, NULL, 0))
5608 {
5609 rtx dest = SET_DEST (sets[i].rtl);
5610
5611 rehash_using_reg (x);
5612 hash = HASH (x, mode);
5613 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5614 }
5615 elt = insert (x, NULL, hash, mode);
5616 }
5617
5618 sets[i].dest_addr_elt = elt;
5619 }
5620 else
5621 sets[i].dest_addr_elt = NULL;
5622 }
5623 }
5624
5625 invalidate_from_clobbers (insn);
5626
5627 /* Some registers are invalidated by subroutine calls. Memory is
5628 invalidated by non-constant calls. */
5629
5630 if (CALL_P (insn))
5631 {
5632 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5633 invalidate_memory ();
5634 invalidate_for_call ();
5635 }
5636
5637 /* Now invalidate everything set by this instruction.
5638 If a SUBREG or other funny destination is being set,
5639 sets[i].rtl is still nonzero, so here we invalidate the reg
5640 a part of which is being set. */
5641
5642 for (i = 0; i < n_sets; i++)
5643 if (sets[i].rtl)
5644 {
5645 /* We can't use the inner dest, because the mode associated with
5646 a ZERO_EXTRACT is significant. */
5647 rtx dest = SET_DEST (sets[i].rtl);
5648
5649 /* Needed for registers to remove the register from its
5650 previous quantity's chain.
5651 Needed for memory if this is a nonvarying address, unless
5652 we have just done an invalidate_memory that covers even those. */
5653 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5654 invalidate (dest, VOIDmode);
5655 else if (MEM_P (dest))
5656 invalidate (dest, VOIDmode);
5657 else if (GET_CODE (dest) == STRICT_LOW_PART
5658 || GET_CODE (dest) == ZERO_EXTRACT)
5659 invalidate (XEXP (dest, 0), GET_MODE (dest));
5660 }
5661
5662 /* A volatile ASM or an UNSPEC_VOLATILE invalidates everything. */
5663 if (NONJUMP_INSN_P (insn)
5664 && volatile_insn_p (PATTERN (insn)))
5665 flush_hash_table ();
5666
5667 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5668 the regs restored by the longjmp come from a later time
5669 than the setjmp. */
5670 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5671 {
5672 flush_hash_table ();
5673 goto done;
5674 }
5675
5676 /* Make sure registers mentioned in destinations
5677 are safe for use in an expression to be inserted.
5678 This removes from the hash table
5679 any invalid entry that refers to one of these registers.
5680
5681 We don't care about the return value from mention_regs because
5682 we are going to hash the SET_DEST values unconditionally. */
5683
5684 for (i = 0; i < n_sets; i++)
5685 {
5686 if (sets[i].rtl)
5687 {
5688 rtx x = SET_DEST (sets[i].rtl);
5689
5690 if (!REG_P (x))
5691 mention_regs (x);
5692 else
5693 {
5694 /* We used to rely on all references to a register becoming
5695 inaccessible when a register changes to a new quantity,
5696 since that changes the hash code. However, that is not
5697 safe, since after HASH_SIZE new quantities we get a
5698 hash 'collision' of a register with its own invalid
5699 entries. And since SUBREGs have been changed not to
5700 change their hash code with the hash code of the register,
5701 it wouldn't work any longer at all. So we have to check
5702 for any invalid references lying around now.
5703 This code is similar to the REG case in mention_regs,
5704 but it knows that reg_tick has been incremented, and
5705 it leaves reg_in_table as -1 . */
5706 unsigned int regno = REGNO (x);
5707 unsigned int endregno = END_REGNO (x);
5708 unsigned int i;
5709
5710 for (i = regno; i < endregno; i++)
5711 {
5712 if (REG_IN_TABLE (i) >= 0)
5713 {
5714 remove_invalid_refs (i);
5715 REG_IN_TABLE (i) = -1;
5716 }
5717 }
5718 }
5719 }
5720 }
5721
5722 /* We may have just removed some of the src_elt's from the hash table.
5723 So replace each one with the current head of the same class.
5724 Also check if destination addresses have been removed. */
5725
5726 for (i = 0; i < n_sets; i++)
5727 if (sets[i].rtl)
5728 {
5729 if (sets[i].dest_addr_elt
5730 && sets[i].dest_addr_elt->first_same_value == 0)
5731 {
5732 /* The elt was removed, which means this destination is not
5733 valid after this instruction. */
5734 sets[i].rtl = NULL_RTX;
5735 }
5736 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5737 /* If elt was removed, find current head of same class,
5738 or 0 if nothing remains of that class. */
5739 {
5740 struct table_elt *elt = sets[i].src_elt;
5741
5742 while (elt && elt->prev_same_value)
5743 elt = elt->prev_same_value;
5744
5745 while (elt && elt->first_same_value == 0)
5746 elt = elt->next_same_value;
5747 sets[i].src_elt = elt ? elt->first_same_value : 0;
5748 }
5749 }
5750
5751 /* Now insert the destinations into their equivalence classes. */
5752
5753 for (i = 0; i < n_sets; i++)
5754 if (sets[i].rtl)
5755 {
5756 rtx dest = SET_DEST (sets[i].rtl);
5757 struct table_elt *elt;
5758
5759 /* Don't record value if we are not supposed to risk allocating
5760 floating-point values in registers that might be wider than
5761 memory. */
5762 if ((flag_float_store
5763 && MEM_P (dest)
5764 && FLOAT_MODE_P (GET_MODE (dest)))
5765 /* Don't record BLKmode values, because we don't know the
5766 size of it, and can't be sure that other BLKmode values
5767 have the same or smaller size. */
5768 || GET_MODE (dest) == BLKmode
5769 /* If we didn't put a REG_EQUAL value or a source into the hash
5770 table, there is no point is recording DEST. */
5771 || sets[i].src_elt == 0
5772 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5773 or SIGN_EXTEND, don't record DEST since it can cause
5774 some tracking to be wrong.
5775
5776 ??? Think about this more later. */
5777 || (paradoxical_subreg_p (dest)
5778 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5779 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5780 continue;
5781
5782 /* STRICT_LOW_PART isn't part of the value BEING set,
5783 and neither is the SUBREG inside it.
5784 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5785 if (GET_CODE (dest) == STRICT_LOW_PART)
5786 dest = SUBREG_REG (XEXP (dest, 0));
5787
5788 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5789 /* Registers must also be inserted into chains for quantities. */
5790 if (insert_regs (dest, sets[i].src_elt, 1))
5791 {
5792 /* If `insert_regs' changes something, the hash code must be
5793 recalculated. */
5794 rehash_using_reg (dest);
5795 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5796 }
5797
5798 elt = insert (dest, sets[i].src_elt,
5799 sets[i].dest_hash, GET_MODE (dest));
5800
5801 /* If this is a constant, insert the constant anchors with the
5802 equivalent register-offset expressions using register DEST. */
5803 if (targetm.const_anchor
5804 && REG_P (dest)
5805 && SCALAR_INT_MODE_P (GET_MODE (dest))
5806 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5807 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5808
5809 elt->in_memory = (MEM_P (sets[i].inner_dest)
5810 && !MEM_READONLY_P (sets[i].inner_dest));
5811
5812 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5813 narrower than M2, and both M1 and M2 are the same number of words,
5814 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5815 make that equivalence as well.
5816
5817 However, BAR may have equivalences for which gen_lowpart
5818 will produce a simpler value than gen_lowpart applied to
5819 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5820 BAR's equivalences. If we don't get a simplified form, make
5821 the SUBREG. It will not be used in an equivalence, but will
5822 cause two similar assignments to be detected.
5823
5824 Note the loop below will find SUBREG_REG (DEST) since we have
5825 already entered SRC and DEST of the SET in the table. */
5826
5827 if (GET_CODE (dest) == SUBREG
5828 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5829 / UNITS_PER_WORD)
5830 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5831 && (GET_MODE_SIZE (GET_MODE (dest))
5832 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5833 && sets[i].src_elt != 0)
5834 {
5835 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5836 struct table_elt *elt, *classp = 0;
5837
5838 for (elt = sets[i].src_elt->first_same_value; elt;
5839 elt = elt->next_same_value)
5840 {
5841 rtx new_src = 0;
5842 unsigned src_hash;
5843 struct table_elt *src_elt;
5844 int byte = 0;
5845
5846 /* Ignore invalid entries. */
5847 if (!REG_P (elt->exp)
5848 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5849 continue;
5850
5851 /* We may have already been playing subreg games. If the
5852 mode is already correct for the destination, use it. */
5853 if (GET_MODE (elt->exp) == new_mode)
5854 new_src = elt->exp;
5855 else
5856 {
5857 /* Calculate big endian correction for the SUBREG_BYTE.
5858 We have already checked that M1 (GET_MODE (dest))
5859 is not narrower than M2 (new_mode). */
5860 if (BYTES_BIG_ENDIAN)
5861 byte = (GET_MODE_SIZE (GET_MODE (dest))
5862 - GET_MODE_SIZE (new_mode));
5863
5864 new_src = simplify_gen_subreg (new_mode, elt->exp,
5865 GET_MODE (dest), byte);
5866 }
5867
5868 /* The call to simplify_gen_subreg fails if the value
5869 is VOIDmode, yet we can't do any simplification, e.g.
5870 for EXPR_LISTs denoting function call results.
5871 It is invalid to construct a SUBREG with a VOIDmode
5872 SUBREG_REG, hence a zero new_src means we can't do
5873 this substitution. */
5874 if (! new_src)
5875 continue;
5876
5877 src_hash = HASH (new_src, new_mode);
5878 src_elt = lookup (new_src, src_hash, new_mode);
5879
5880 /* Put the new source in the hash table is if isn't
5881 already. */
5882 if (src_elt == 0)
5883 {
5884 if (insert_regs (new_src, classp, 0))
5885 {
5886 rehash_using_reg (new_src);
5887 src_hash = HASH (new_src, new_mode);
5888 }
5889 src_elt = insert (new_src, classp, src_hash, new_mode);
5890 src_elt->in_memory = elt->in_memory;
5891 }
5892 else if (classp && classp != src_elt->first_same_value)
5893 /* Show that two things that we've seen before are
5894 actually the same. */
5895 merge_equiv_classes (src_elt, classp);
5896
5897 classp = src_elt->first_same_value;
5898 /* Ignore invalid entries. */
5899 while (classp
5900 && !REG_P (classp->exp)
5901 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5902 classp = classp->next_same_value;
5903 }
5904 }
5905 }
5906
5907 /* Special handling for (set REG0 REG1) where REG0 is the
5908 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5909 be used in the sequel, so (if easily done) change this insn to
5910 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5911 that computed their value. Then REG1 will become a dead store
5912 and won't cloud the situation for later optimizations.
5913
5914 Do not make this change if REG1 is a hard register, because it will
5915 then be used in the sequel and we may be changing a two-operand insn
5916 into a three-operand insn.
5917
5918 Also do not do this if we are operating on a copy of INSN. */
5919
5920 if (n_sets == 1 && sets[0].rtl)
5921 try_back_substitute_reg (sets[0].rtl, insn);
5922
5923 done:;
5924 }
5925 \f
5926 /* Remove from the hash table all expressions that reference memory. */
5927
5928 static void
5929 invalidate_memory (void)
5930 {
5931 int i;
5932 struct table_elt *p, *next;
5933
5934 for (i = 0; i < HASH_SIZE; i++)
5935 for (p = table[i]; p; p = next)
5936 {
5937 next = p->next_same_hash;
5938 if (p->in_memory)
5939 remove_from_table (p, i);
5940 }
5941 }
5942
5943 /* Perform invalidation on the basis of everything about INSN,
5944 except for invalidating the actual places that are SET in it.
5945 This includes the places CLOBBERed, and anything that might
5946 alias with something that is SET or CLOBBERed. */
5947
5948 static void
5949 invalidate_from_clobbers (rtx insn)
5950 {
5951 rtx x = PATTERN (insn);
5952
5953 if (GET_CODE (x) == CLOBBER)
5954 {
5955 rtx ref = XEXP (x, 0);
5956 if (ref)
5957 {
5958 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5959 || MEM_P (ref))
5960 invalidate (ref, VOIDmode);
5961 else if (GET_CODE (ref) == STRICT_LOW_PART
5962 || GET_CODE (ref) == ZERO_EXTRACT)
5963 invalidate (XEXP (ref, 0), GET_MODE (ref));
5964 }
5965 }
5966 else if (GET_CODE (x) == PARALLEL)
5967 {
5968 int i;
5969 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5970 {
5971 rtx y = XVECEXP (x, 0, i);
5972 if (GET_CODE (y) == CLOBBER)
5973 {
5974 rtx ref = XEXP (y, 0);
5975 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5976 || MEM_P (ref))
5977 invalidate (ref, VOIDmode);
5978 else if (GET_CODE (ref) == STRICT_LOW_PART
5979 || GET_CODE (ref) == ZERO_EXTRACT)
5980 invalidate (XEXP (ref, 0), GET_MODE (ref));
5981 }
5982 }
5983 }
5984 }
5985 \f
5986 /* Perform invalidation on the basis of everything about INSN.
5987 This includes the places CLOBBERed, and anything that might
5988 alias with something that is SET or CLOBBERed. */
5989
5990 static void
5991 invalidate_from_sets_and_clobbers (rtx insn)
5992 {
5993 rtx tem;
5994 rtx x = PATTERN (insn);
5995
5996 if (CALL_P (insn))
5997 {
5998 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5999 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6000 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6001 }
6002
6003 /* Ensure we invalidate the destination register of a CALL insn.
6004 This is necessary for machines where this register is a fixed_reg,
6005 because no other code would invalidate it. */
6006 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6007 invalidate (SET_DEST (x), VOIDmode);
6008
6009 else if (GET_CODE (x) == PARALLEL)
6010 {
6011 int i;
6012
6013 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6014 {
6015 rtx y = XVECEXP (x, 0, i);
6016 if (GET_CODE (y) == CLOBBER)
6017 {
6018 rtx clobbered = XEXP (y, 0);
6019
6020 if (REG_P (clobbered)
6021 || GET_CODE (clobbered) == SUBREG)
6022 invalidate (clobbered, VOIDmode);
6023 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6024 || GET_CODE (clobbered) == ZERO_EXTRACT)
6025 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6026 }
6027 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6028 invalidate (SET_DEST (y), VOIDmode);
6029 }
6030 }
6031 }
6032 \f
6033 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6034 and replace any registers in them with either an equivalent constant
6035 or the canonical form of the register. If we are inside an address,
6036 only do this if the address remains valid.
6037
6038 OBJECT is 0 except when within a MEM in which case it is the MEM.
6039
6040 Return the replacement for X. */
6041
6042 static rtx
6043 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6044 {
6045 enum rtx_code code = GET_CODE (x);
6046 const char *fmt = GET_RTX_FORMAT (code);
6047 int i;
6048
6049 switch (code)
6050 {
6051 case CONST:
6052 case SYMBOL_REF:
6053 case LABEL_REF:
6054 CASE_CONST_ANY:
6055 case PC:
6056 case CC0:
6057 case LO_SUM:
6058 return x;
6059
6060 case MEM:
6061 validate_change (x, &XEXP (x, 0),
6062 cse_process_notes (XEXP (x, 0), x, changed), 0);
6063 return x;
6064
6065 case EXPR_LIST:
6066 case INSN_LIST:
6067 if (REG_NOTE_KIND (x) == REG_EQUAL)
6068 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6069 if (XEXP (x, 1))
6070 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6071 return x;
6072
6073 case SIGN_EXTEND:
6074 case ZERO_EXTEND:
6075 case SUBREG:
6076 {
6077 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6078 /* We don't substitute VOIDmode constants into these rtx,
6079 since they would impede folding. */
6080 if (GET_MODE (new_rtx) != VOIDmode)
6081 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6082 return x;
6083 }
6084
6085 case REG:
6086 i = REG_QTY (REGNO (x));
6087
6088 /* Return a constant or a constant register. */
6089 if (REGNO_QTY_VALID_P (REGNO (x)))
6090 {
6091 struct qty_table_elem *ent = &qty_table[i];
6092
6093 if (ent->const_rtx != NULL_RTX
6094 && (CONSTANT_P (ent->const_rtx)
6095 || REG_P (ent->const_rtx)))
6096 {
6097 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6098 if (new_rtx)
6099 return copy_rtx (new_rtx);
6100 }
6101 }
6102
6103 /* Otherwise, canonicalize this register. */
6104 return canon_reg (x, NULL_RTX);
6105
6106 default:
6107 break;
6108 }
6109
6110 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6111 if (fmt[i] == 'e')
6112 validate_change (object, &XEXP (x, i),
6113 cse_process_notes (XEXP (x, i), object, changed), 0);
6114
6115 return x;
6116 }
6117
6118 static rtx
6119 cse_process_notes (rtx x, rtx object, bool *changed)
6120 {
6121 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6122 if (new_rtx != x)
6123 *changed = true;
6124 return new_rtx;
6125 }
6126
6127 \f
6128 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6129
6130 DATA is a pointer to a struct cse_basic_block_data, that is used to
6131 describe the path.
6132 It is filled with a queue of basic blocks, starting with FIRST_BB
6133 and following a trace through the CFG.
6134
6135 If all paths starting at FIRST_BB have been followed, or no new path
6136 starting at FIRST_BB can be constructed, this function returns FALSE.
6137 Otherwise, DATA->path is filled and the function returns TRUE indicating
6138 that a path to follow was found.
6139
6140 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6141 block in the path will be FIRST_BB. */
6142
6143 static bool
6144 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6145 int follow_jumps)
6146 {
6147 basic_block bb;
6148 edge e;
6149 int path_size;
6150
6151 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6152
6153 /* See if there is a previous path. */
6154 path_size = data->path_size;
6155
6156 /* There is a previous path. Make sure it started with FIRST_BB. */
6157 if (path_size)
6158 gcc_assert (data->path[0].bb == first_bb);
6159
6160 /* There was only one basic block in the last path. Clear the path and
6161 return, so that paths starting at another basic block can be tried. */
6162 if (path_size == 1)
6163 {
6164 path_size = 0;
6165 goto done;
6166 }
6167
6168 /* If the path was empty from the beginning, construct a new path. */
6169 if (path_size == 0)
6170 data->path[path_size++].bb = first_bb;
6171 else
6172 {
6173 /* Otherwise, path_size must be equal to or greater than 2, because
6174 a previous path exists that is at least two basic blocks long.
6175
6176 Update the previous branch path, if any. If the last branch was
6177 previously along the branch edge, take the fallthrough edge now. */
6178 while (path_size >= 2)
6179 {
6180 basic_block last_bb_in_path, previous_bb_in_path;
6181 edge e;
6182
6183 --path_size;
6184 last_bb_in_path = data->path[path_size].bb;
6185 previous_bb_in_path = data->path[path_size - 1].bb;
6186
6187 /* If we previously followed a path along the branch edge, try
6188 the fallthru edge now. */
6189 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6190 && any_condjump_p (BB_END (previous_bb_in_path))
6191 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6192 && e == BRANCH_EDGE (previous_bb_in_path))
6193 {
6194 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6195 if (bb != EXIT_BLOCK_PTR
6196 && single_pred_p (bb)
6197 /* We used to assert here that we would only see blocks
6198 that we have not visited yet. But we may end up
6199 visiting basic blocks twice if the CFG has changed
6200 in this run of cse_main, because when the CFG changes
6201 the topological sort of the CFG also changes. A basic
6202 blocks that previously had more than two predecessors
6203 may now have a single predecessor, and become part of
6204 a path that starts at another basic block.
6205
6206 We still want to visit each basic block only once, so
6207 halt the path here if we have already visited BB. */
6208 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6209 {
6210 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6211 data->path[path_size++].bb = bb;
6212 break;
6213 }
6214 }
6215
6216 data->path[path_size].bb = NULL;
6217 }
6218
6219 /* If only one block remains in the path, bail. */
6220 if (path_size == 1)
6221 {
6222 path_size = 0;
6223 goto done;
6224 }
6225 }
6226
6227 /* Extend the path if possible. */
6228 if (follow_jumps)
6229 {
6230 bb = data->path[path_size - 1].bb;
6231 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6232 {
6233 if (single_succ_p (bb))
6234 e = single_succ_edge (bb);
6235 else if (EDGE_COUNT (bb->succs) == 2
6236 && any_condjump_p (BB_END (bb)))
6237 {
6238 /* First try to follow the branch. If that doesn't lead
6239 to a useful path, follow the fallthru edge. */
6240 e = BRANCH_EDGE (bb);
6241 if (!single_pred_p (e->dest))
6242 e = FALLTHRU_EDGE (bb);
6243 }
6244 else
6245 e = NULL;
6246
6247 if (e
6248 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6249 && e->dest != EXIT_BLOCK_PTR
6250 && single_pred_p (e->dest)
6251 /* Avoid visiting basic blocks twice. The large comment
6252 above explains why this can happen. */
6253 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6254 {
6255 basic_block bb2 = e->dest;
6256 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6257 data->path[path_size++].bb = bb2;
6258 bb = bb2;
6259 }
6260 else
6261 bb = NULL;
6262 }
6263 }
6264
6265 done:
6266 data->path_size = path_size;
6267 return path_size != 0;
6268 }
6269 \f
6270 /* Dump the path in DATA to file F. NSETS is the number of sets
6271 in the path. */
6272
6273 static void
6274 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6275 {
6276 int path_entry;
6277
6278 fprintf (f, ";; Following path with %d sets: ", nsets);
6279 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6280 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6281 fputc ('\n', dump_file);
6282 fflush (f);
6283 }
6284
6285 \f
6286 /* Return true if BB has exception handling successor edges. */
6287
6288 static bool
6289 have_eh_succ_edges (basic_block bb)
6290 {
6291 edge e;
6292 edge_iterator ei;
6293
6294 FOR_EACH_EDGE (e, ei, bb->succs)
6295 if (e->flags & EDGE_EH)
6296 return true;
6297
6298 return false;
6299 }
6300
6301 \f
6302 /* Scan to the end of the path described by DATA. Return an estimate of
6303 the total number of SETs of all insns in the path. */
6304
6305 static void
6306 cse_prescan_path (struct cse_basic_block_data *data)
6307 {
6308 int nsets = 0;
6309 int path_size = data->path_size;
6310 int path_entry;
6311
6312 /* Scan to end of each basic block in the path. */
6313 for (path_entry = 0; path_entry < path_size; path_entry++)
6314 {
6315 basic_block bb;
6316 rtx insn;
6317
6318 bb = data->path[path_entry].bb;
6319
6320 FOR_BB_INSNS (bb, insn)
6321 {
6322 if (!INSN_P (insn))
6323 continue;
6324
6325 /* A PARALLEL can have lots of SETs in it,
6326 especially if it is really an ASM_OPERANDS. */
6327 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6328 nsets += XVECLEN (PATTERN (insn), 0);
6329 else
6330 nsets += 1;
6331 }
6332 }
6333
6334 data->nsets = nsets;
6335 }
6336 \f
6337 /* Process a single extended basic block described by EBB_DATA. */
6338
6339 static void
6340 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6341 {
6342 int path_size = ebb_data->path_size;
6343 int path_entry;
6344 int num_insns = 0;
6345
6346 /* Allocate the space needed by qty_table. */
6347 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6348
6349 new_basic_block ();
6350 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6351 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6352 for (path_entry = 0; path_entry < path_size; path_entry++)
6353 {
6354 basic_block bb;
6355 rtx insn;
6356
6357 bb = ebb_data->path[path_entry].bb;
6358
6359 /* Invalidate recorded information for eh regs if there is an EH
6360 edge pointing to that bb. */
6361 if (bb_has_eh_pred (bb))
6362 {
6363 df_ref *def_rec;
6364
6365 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6366 {
6367 df_ref def = *def_rec;
6368 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6369 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6370 }
6371 }
6372
6373 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6374 FOR_BB_INSNS (bb, insn)
6375 {
6376 /* If we have processed 1,000 insns, flush the hash table to
6377 avoid extreme quadratic behavior. We must not include NOTEs
6378 in the count since there may be more of them when generating
6379 debugging information. If we clear the table at different
6380 times, code generated with -g -O might be different than code
6381 generated with -O but not -g.
6382
6383 FIXME: This is a real kludge and needs to be done some other
6384 way. */
6385 if (NONDEBUG_INSN_P (insn)
6386 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6387 {
6388 flush_hash_table ();
6389 num_insns = 0;
6390 }
6391
6392 if (INSN_P (insn))
6393 {
6394 /* Process notes first so we have all notes in canonical forms
6395 when looking for duplicate operations. */
6396 if (REG_NOTES (insn))
6397 {
6398 bool changed = false;
6399 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6400 NULL_RTX, &changed);
6401 if (changed)
6402 df_notes_rescan (insn);
6403 }
6404
6405 cse_insn (insn);
6406
6407 /* If we haven't already found an insn where we added a LABEL_REF,
6408 check this one. */
6409 if (INSN_P (insn) && !recorded_label_ref
6410 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6411 (void *) insn))
6412 recorded_label_ref = true;
6413
6414 #ifdef HAVE_cc0
6415 if (NONDEBUG_INSN_P (insn))
6416 {
6417 /* If the previous insn sets CC0 and this insn no
6418 longer references CC0, delete the previous insn.
6419 Here we use fact that nothing expects CC0 to be
6420 valid over an insn, which is true until the final
6421 pass. */
6422 rtx prev_insn, tem;
6423
6424 prev_insn = prev_nonnote_nondebug_insn (insn);
6425 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6426 && (tem = single_set (prev_insn)) != NULL_RTX
6427 && SET_DEST (tem) == cc0_rtx
6428 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6429 delete_insn (prev_insn);
6430
6431 /* If this insn is not the last insn in the basic
6432 block, it will be PREV_INSN(insn) in the next
6433 iteration. If we recorded any CC0-related
6434 information for this insn, remember it. */
6435 if (insn != BB_END (bb))
6436 {
6437 prev_insn_cc0 = this_insn_cc0;
6438 prev_insn_cc0_mode = this_insn_cc0_mode;
6439 }
6440 }
6441 #endif
6442 }
6443 }
6444
6445 /* With non-call exceptions, we are not always able to update
6446 the CFG properly inside cse_insn. So clean up possibly
6447 redundant EH edges here. */
6448 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6449 cse_cfg_altered |= purge_dead_edges (bb);
6450
6451 /* If we changed a conditional jump, we may have terminated
6452 the path we are following. Check that by verifying that
6453 the edge we would take still exists. If the edge does
6454 not exist anymore, purge the remainder of the path.
6455 Note that this will cause us to return to the caller. */
6456 if (path_entry < path_size - 1)
6457 {
6458 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6459 if (!find_edge (bb, next_bb))
6460 {
6461 do
6462 {
6463 path_size--;
6464
6465 /* If we truncate the path, we must also reset the
6466 visited bit on the remaining blocks in the path,
6467 or we will never visit them at all. */
6468 bitmap_clear_bit (cse_visited_basic_blocks,
6469 ebb_data->path[path_size].bb->index);
6470 ebb_data->path[path_size].bb = NULL;
6471 }
6472 while (path_size - 1 != path_entry);
6473 ebb_data->path_size = path_size;
6474 }
6475 }
6476
6477 /* If this is a conditional jump insn, record any known
6478 equivalences due to the condition being tested. */
6479 insn = BB_END (bb);
6480 if (path_entry < path_size - 1
6481 && JUMP_P (insn)
6482 && single_set (insn)
6483 && any_condjump_p (insn))
6484 {
6485 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6486 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6487 record_jump_equiv (insn, taken);
6488 }
6489
6490 #ifdef HAVE_cc0
6491 /* Clear the CC0-tracking related insns, they can't provide
6492 useful information across basic block boundaries. */
6493 prev_insn_cc0 = 0;
6494 #endif
6495 }
6496
6497 gcc_assert (next_qty <= max_qty);
6498
6499 free (qty_table);
6500 }
6501
6502 \f
6503 /* Perform cse on the instructions of a function.
6504 F is the first instruction.
6505 NREGS is one plus the highest pseudo-reg number used in the instruction.
6506
6507 Return 2 if jump optimizations should be redone due to simplifications
6508 in conditional jump instructions.
6509 Return 1 if the CFG should be cleaned up because it has been modified.
6510 Return 0 otherwise. */
6511
6512 static int
6513 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6514 {
6515 struct cse_basic_block_data ebb_data;
6516 basic_block bb;
6517 int *rc_order = XNEWVEC (int, last_basic_block);
6518 int i, n_blocks;
6519
6520 df_set_flags (DF_LR_RUN_DCE);
6521 df_note_add_problem ();
6522 df_analyze ();
6523 df_set_flags (DF_DEFER_INSN_RESCAN);
6524
6525 reg_scan (get_insns (), max_reg_num ());
6526 init_cse_reg_info (nregs);
6527
6528 ebb_data.path = XNEWVEC (struct branch_path,
6529 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6530
6531 cse_cfg_altered = false;
6532 cse_jumps_altered = false;
6533 recorded_label_ref = false;
6534 constant_pool_entries_cost = 0;
6535 constant_pool_entries_regcost = 0;
6536 ebb_data.path_size = 0;
6537 ebb_data.nsets = 0;
6538 rtl_hooks = cse_rtl_hooks;
6539
6540 init_recog ();
6541 init_alias_analysis ();
6542
6543 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6544
6545 /* Set up the table of already visited basic blocks. */
6546 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6547 bitmap_clear (cse_visited_basic_blocks);
6548
6549 /* Loop over basic blocks in reverse completion order (RPO),
6550 excluding the ENTRY and EXIT blocks. */
6551 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6552 i = 0;
6553 while (i < n_blocks)
6554 {
6555 /* Find the first block in the RPO queue that we have not yet
6556 processed before. */
6557 do
6558 {
6559 bb = BASIC_BLOCK (rc_order[i++]);
6560 }
6561 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6562 && i < n_blocks);
6563
6564 /* Find all paths starting with BB, and process them. */
6565 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6566 {
6567 /* Pre-scan the path. */
6568 cse_prescan_path (&ebb_data);
6569
6570 /* If this basic block has no sets, skip it. */
6571 if (ebb_data.nsets == 0)
6572 continue;
6573
6574 /* Get a reasonable estimate for the maximum number of qty's
6575 needed for this path. For this, we take the number of sets
6576 and multiply that by MAX_RECOG_OPERANDS. */
6577 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6578
6579 /* Dump the path we're about to process. */
6580 if (dump_file)
6581 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6582
6583 cse_extended_basic_block (&ebb_data);
6584 }
6585 }
6586
6587 /* Clean up. */
6588 end_alias_analysis ();
6589 free (reg_eqv_table);
6590 free (ebb_data.path);
6591 sbitmap_free (cse_visited_basic_blocks);
6592 free (rc_order);
6593 rtl_hooks = general_rtl_hooks;
6594
6595 if (cse_jumps_altered || recorded_label_ref)
6596 return 2;
6597 else if (cse_cfg_altered)
6598 return 1;
6599 else
6600 return 0;
6601 }
6602 \f
6603 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6604 which there isn't a REG_LABEL_OPERAND note.
6605 Return one if so. DATA is the insn. */
6606
6607 static int
6608 check_for_label_ref (rtx *rtl, void *data)
6609 {
6610 rtx insn = (rtx) data;
6611
6612 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6613 note for it, we must rerun jump since it needs to place the note. If
6614 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6615 don't do this since no REG_LABEL_OPERAND will be added. */
6616 return (GET_CODE (*rtl) == LABEL_REF
6617 && ! LABEL_REF_NONLOCAL_P (*rtl)
6618 && (!JUMP_P (insn)
6619 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6620 && LABEL_P (XEXP (*rtl, 0))
6621 && INSN_UID (XEXP (*rtl, 0)) != 0
6622 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6623 }
6624 \f
6625 /* Count the number of times registers are used (not set) in X.
6626 COUNTS is an array in which we accumulate the count, INCR is how much
6627 we count each register usage.
6628
6629 Don't count a usage of DEST, which is the SET_DEST of a SET which
6630 contains X in its SET_SRC. This is because such a SET does not
6631 modify the liveness of DEST.
6632 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6633 We must then count uses of a SET_DEST regardless, because the insn can't be
6634 deleted here. */
6635
6636 static void
6637 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6638 {
6639 enum rtx_code code;
6640 rtx note;
6641 const char *fmt;
6642 int i, j;
6643
6644 if (x == 0)
6645 return;
6646
6647 switch (code = GET_CODE (x))
6648 {
6649 case REG:
6650 if (x != dest)
6651 counts[REGNO (x)] += incr;
6652 return;
6653
6654 case PC:
6655 case CC0:
6656 case CONST:
6657 CASE_CONST_ANY:
6658 case SYMBOL_REF:
6659 case LABEL_REF:
6660 return;
6661
6662 case CLOBBER:
6663 /* If we are clobbering a MEM, mark any registers inside the address
6664 as being used. */
6665 if (MEM_P (XEXP (x, 0)))
6666 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6667 return;
6668
6669 case SET:
6670 /* Unless we are setting a REG, count everything in SET_DEST. */
6671 if (!REG_P (SET_DEST (x)))
6672 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6673 count_reg_usage (SET_SRC (x), counts,
6674 dest ? dest : SET_DEST (x),
6675 incr);
6676 return;
6677
6678 case DEBUG_INSN:
6679 return;
6680
6681 case CALL_INSN:
6682 case INSN:
6683 case JUMP_INSN:
6684 /* We expect dest to be NULL_RTX here. If the insn may throw,
6685 or if it cannot be deleted due to side-effects, mark this fact
6686 by setting DEST to pc_rtx. */
6687 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6688 || side_effects_p (PATTERN (x)))
6689 dest = pc_rtx;
6690 if (code == CALL_INSN)
6691 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6692 count_reg_usage (PATTERN (x), counts, dest, incr);
6693
6694 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6695 use them. */
6696
6697 note = find_reg_equal_equiv_note (x);
6698 if (note)
6699 {
6700 rtx eqv = XEXP (note, 0);
6701
6702 if (GET_CODE (eqv) == EXPR_LIST)
6703 /* This REG_EQUAL note describes the result of a function call.
6704 Process all the arguments. */
6705 do
6706 {
6707 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6708 eqv = XEXP (eqv, 1);
6709 }
6710 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6711 else
6712 count_reg_usage (eqv, counts, dest, incr);
6713 }
6714 return;
6715
6716 case EXPR_LIST:
6717 if (REG_NOTE_KIND (x) == REG_EQUAL
6718 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6719 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6720 involving registers in the address. */
6721 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6722 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6723
6724 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6725 return;
6726
6727 case ASM_OPERANDS:
6728 /* Iterate over just the inputs, not the constraints as well. */
6729 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6730 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6731 return;
6732
6733 case INSN_LIST:
6734 gcc_unreachable ();
6735
6736 default:
6737 break;
6738 }
6739
6740 fmt = GET_RTX_FORMAT (code);
6741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6742 {
6743 if (fmt[i] == 'e')
6744 count_reg_usage (XEXP (x, i), counts, dest, incr);
6745 else if (fmt[i] == 'E')
6746 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6747 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6748 }
6749 }
6750 \f
6751 /* Return true if X is a dead register. */
6752
6753 static inline int
6754 is_dead_reg (rtx x, int *counts)
6755 {
6756 return (REG_P (x)
6757 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6758 && counts[REGNO (x)] == 0);
6759 }
6760
6761 /* Return true if set is live. */
6762 static bool
6763 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6764 int *counts)
6765 {
6766 #ifdef HAVE_cc0
6767 rtx tem;
6768 #endif
6769
6770 if (set_noop_p (set))
6771 ;
6772
6773 #ifdef HAVE_cc0
6774 else if (GET_CODE (SET_DEST (set)) == CC0
6775 && !side_effects_p (SET_SRC (set))
6776 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6777 || !INSN_P (tem)
6778 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6779 return false;
6780 #endif
6781 else if (!is_dead_reg (SET_DEST (set), counts)
6782 || side_effects_p (SET_SRC (set)))
6783 return true;
6784 return false;
6785 }
6786
6787 /* Return true if insn is live. */
6788
6789 static bool
6790 insn_live_p (rtx insn, int *counts)
6791 {
6792 int i;
6793 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6794 return true;
6795 else if (GET_CODE (PATTERN (insn)) == SET)
6796 return set_live_p (PATTERN (insn), insn, counts);
6797 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6798 {
6799 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6800 {
6801 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6802
6803 if (GET_CODE (elt) == SET)
6804 {
6805 if (set_live_p (elt, insn, counts))
6806 return true;
6807 }
6808 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6809 return true;
6810 }
6811 return false;
6812 }
6813 else if (DEBUG_INSN_P (insn))
6814 {
6815 rtx next;
6816
6817 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6818 if (NOTE_P (next))
6819 continue;
6820 else if (!DEBUG_INSN_P (next))
6821 return true;
6822 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6823 return false;
6824
6825 return true;
6826 }
6827 else
6828 return true;
6829 }
6830
6831 /* Count the number of stores into pseudo. Callback for note_stores. */
6832
6833 static void
6834 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6835 {
6836 int *counts = (int *) data;
6837 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6838 counts[REGNO (x)]++;
6839 }
6840
6841 struct dead_debug_insn_data
6842 {
6843 int *counts;
6844 rtx *replacements;
6845 bool seen_repl;
6846 };
6847
6848 /* Return if a DEBUG_INSN needs to be reset because some dead
6849 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6850
6851 static int
6852 is_dead_debug_insn (rtx *loc, void *data)
6853 {
6854 rtx x = *loc;
6855 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6856
6857 if (is_dead_reg (x, ddid->counts))
6858 {
6859 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6860 ddid->seen_repl = true;
6861 else
6862 return 1;
6863 }
6864 return 0;
6865 }
6866
6867 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6868 Callback for simplify_replace_fn_rtx. */
6869
6870 static rtx
6871 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6872 {
6873 rtx *replacements = (rtx *) data;
6874
6875 if (REG_P (x)
6876 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6877 && replacements[REGNO (x)] != NULL_RTX)
6878 {
6879 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6880 return replacements[REGNO (x)];
6881 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6882 GET_MODE (replacements[REGNO (x)]));
6883 }
6884 return NULL_RTX;
6885 }
6886
6887 /* Scan all the insns and delete any that are dead; i.e., they store a register
6888 that is never used or they copy a register to itself.
6889
6890 This is used to remove insns made obviously dead by cse, loop or other
6891 optimizations. It improves the heuristics in loop since it won't try to
6892 move dead invariants out of loops or make givs for dead quantities. The
6893 remaining passes of the compilation are also sped up. */
6894
6895 int
6896 delete_trivially_dead_insns (rtx insns, int nreg)
6897 {
6898 int *counts;
6899 rtx insn, prev;
6900 rtx *replacements = NULL;
6901 int ndead = 0;
6902
6903 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6904 /* First count the number of times each register is used. */
6905 if (MAY_HAVE_DEBUG_INSNS)
6906 {
6907 counts = XCNEWVEC (int, nreg * 3);
6908 for (insn = insns; insn; insn = NEXT_INSN (insn))
6909 if (DEBUG_INSN_P (insn))
6910 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6911 NULL_RTX, 1);
6912 else if (INSN_P (insn))
6913 {
6914 count_reg_usage (insn, counts, NULL_RTX, 1);
6915 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6916 }
6917 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6918 First one counts how many times each pseudo is used outside
6919 of debug insns, second counts how many times each pseudo is
6920 used in debug insns and third counts how many times a pseudo
6921 is stored. */
6922 }
6923 else
6924 {
6925 counts = XCNEWVEC (int, nreg);
6926 for (insn = insns; insn; insn = NEXT_INSN (insn))
6927 if (INSN_P (insn))
6928 count_reg_usage (insn, counts, NULL_RTX, 1);
6929 /* If no debug insns can be present, COUNTS is just an array
6930 which counts how many times each pseudo is used. */
6931 }
6932 /* Go from the last insn to the first and delete insns that only set unused
6933 registers or copy a register to itself. As we delete an insn, remove
6934 usage counts for registers it uses.
6935
6936 The first jump optimization pass may leave a real insn as the last
6937 insn in the function. We must not skip that insn or we may end
6938 up deleting code that is not really dead.
6939
6940 If some otherwise unused register is only used in DEBUG_INSNs,
6941 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6942 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6943 has been created for the unused register, replace it with
6944 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6945 for (insn = get_last_insn (); insn; insn = prev)
6946 {
6947 int live_insn = 0;
6948
6949 prev = PREV_INSN (insn);
6950 if (!INSN_P (insn))
6951 continue;
6952
6953 live_insn = insn_live_p (insn, counts);
6954
6955 /* If this is a dead insn, delete it and show registers in it aren't
6956 being used. */
6957
6958 if (! live_insn && dbg_cnt (delete_trivial_dead))
6959 {
6960 if (DEBUG_INSN_P (insn))
6961 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6962 NULL_RTX, -1);
6963 else
6964 {
6965 rtx set;
6966 if (MAY_HAVE_DEBUG_INSNS
6967 && (set = single_set (insn)) != NULL_RTX
6968 && is_dead_reg (SET_DEST (set), counts)
6969 /* Used at least once in some DEBUG_INSN. */
6970 && counts[REGNO (SET_DEST (set)) + nreg] > 0
6971 /* And set exactly once. */
6972 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6973 && !side_effects_p (SET_SRC (set))
6974 && asm_noperands (PATTERN (insn)) < 0)
6975 {
6976 rtx dval, bind;
6977
6978 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
6979 dval = make_debug_expr_from_rtl (SET_DEST (set));
6980
6981 /* Emit a debug bind insn before the insn in which
6982 reg dies. */
6983 bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
6984 DEBUG_EXPR_TREE_DECL (dval),
6985 SET_SRC (set),
6986 VAR_INIT_STATUS_INITIALIZED);
6987 count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
6988
6989 bind = emit_debug_insn_before (bind, insn);
6990 df_insn_rescan (bind);
6991
6992 if (replacements == NULL)
6993 replacements = XCNEWVEC (rtx, nreg);
6994 replacements[REGNO (SET_DEST (set))] = dval;
6995 }
6996
6997 count_reg_usage (insn, counts, NULL_RTX, -1);
6998 ndead++;
6999 }
7000 delete_insn_and_edges (insn);
7001 }
7002 }
7003
7004 if (MAY_HAVE_DEBUG_INSNS)
7005 {
7006 struct dead_debug_insn_data ddid;
7007 ddid.counts = counts;
7008 ddid.replacements = replacements;
7009 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7010 if (DEBUG_INSN_P (insn))
7011 {
7012 /* If this debug insn references a dead register that wasn't replaced
7013 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7014 ddid.seen_repl = false;
7015 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7016 is_dead_debug_insn, &ddid))
7017 {
7018 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7019 df_insn_rescan (insn);
7020 }
7021 else if (ddid.seen_repl)
7022 {
7023 INSN_VAR_LOCATION_LOC (insn)
7024 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7025 NULL_RTX, replace_dead_reg,
7026 replacements);
7027 df_insn_rescan (insn);
7028 }
7029 }
7030 free (replacements);
7031 }
7032
7033 if (dump_file && ndead)
7034 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7035 ndead);
7036 /* Clean up. */
7037 free (counts);
7038 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7039 return ndead;
7040 }
7041
7042 /* This function is called via for_each_rtx. The argument, NEWREG, is
7043 a condition code register with the desired mode. If we are looking
7044 at the same register in a different mode, replace it with
7045 NEWREG. */
7046
7047 static int
7048 cse_change_cc_mode (rtx *loc, void *data)
7049 {
7050 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7051
7052 if (*loc
7053 && REG_P (*loc)
7054 && REGNO (*loc) == REGNO (args->newreg)
7055 && GET_MODE (*loc) != GET_MODE (args->newreg))
7056 {
7057 validate_change (args->insn, loc, args->newreg, 1);
7058
7059 return -1;
7060 }
7061 return 0;
7062 }
7063
7064 /* Change the mode of any reference to the register REGNO (NEWREG) to
7065 GET_MODE (NEWREG) in INSN. */
7066
7067 static void
7068 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7069 {
7070 struct change_cc_mode_args args;
7071 int success;
7072
7073 if (!INSN_P (insn))
7074 return;
7075
7076 args.insn = insn;
7077 args.newreg = newreg;
7078
7079 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7080 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7081
7082 /* If the following assertion was triggered, there is most probably
7083 something wrong with the cc_modes_compatible back end function.
7084 CC modes only can be considered compatible if the insn - with the mode
7085 replaced by any of the compatible modes - can still be recognized. */
7086 success = apply_change_group ();
7087 gcc_assert (success);
7088 }
7089
7090 /* Change the mode of any reference to the register REGNO (NEWREG) to
7091 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7092 any instruction which modifies NEWREG. */
7093
7094 static void
7095 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7096 {
7097 rtx insn;
7098
7099 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7100 {
7101 if (! INSN_P (insn))
7102 continue;
7103
7104 if (reg_set_p (newreg, insn))
7105 return;
7106
7107 cse_change_cc_mode_insn (insn, newreg);
7108 }
7109 }
7110
7111 /* BB is a basic block which finishes with CC_REG as a condition code
7112 register which is set to CC_SRC. Look through the successors of BB
7113 to find blocks which have a single predecessor (i.e., this one),
7114 and look through those blocks for an assignment to CC_REG which is
7115 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7116 permitted to change the mode of CC_SRC to a compatible mode. This
7117 returns VOIDmode if no equivalent assignments were found.
7118 Otherwise it returns the mode which CC_SRC should wind up with.
7119 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7120 but is passed unmodified down to recursive calls in order to prevent
7121 endless recursion.
7122
7123 The main complexity in this function is handling the mode issues.
7124 We may have more than one duplicate which we can eliminate, and we
7125 try to find a mode which will work for multiple duplicates. */
7126
7127 static enum machine_mode
7128 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7129 bool can_change_mode)
7130 {
7131 bool found_equiv;
7132 enum machine_mode mode;
7133 unsigned int insn_count;
7134 edge e;
7135 rtx insns[2];
7136 enum machine_mode modes[2];
7137 rtx last_insns[2];
7138 unsigned int i;
7139 rtx newreg;
7140 edge_iterator ei;
7141
7142 /* We expect to have two successors. Look at both before picking
7143 the final mode for the comparison. If we have more successors
7144 (i.e., some sort of table jump, although that seems unlikely),
7145 then we require all beyond the first two to use the same
7146 mode. */
7147
7148 found_equiv = false;
7149 mode = GET_MODE (cc_src);
7150 insn_count = 0;
7151 FOR_EACH_EDGE (e, ei, bb->succs)
7152 {
7153 rtx insn;
7154 rtx end;
7155
7156 if (e->flags & EDGE_COMPLEX)
7157 continue;
7158
7159 if (EDGE_COUNT (e->dest->preds) != 1
7160 || e->dest == EXIT_BLOCK_PTR
7161 /* Avoid endless recursion on unreachable blocks. */
7162 || e->dest == orig_bb)
7163 continue;
7164
7165 end = NEXT_INSN (BB_END (e->dest));
7166 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7167 {
7168 rtx set;
7169
7170 if (! INSN_P (insn))
7171 continue;
7172
7173 /* If CC_SRC is modified, we have to stop looking for
7174 something which uses it. */
7175 if (modified_in_p (cc_src, insn))
7176 break;
7177
7178 /* Check whether INSN sets CC_REG to CC_SRC. */
7179 set = single_set (insn);
7180 if (set
7181 && REG_P (SET_DEST (set))
7182 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7183 {
7184 bool found;
7185 enum machine_mode set_mode;
7186 enum machine_mode comp_mode;
7187
7188 found = false;
7189 set_mode = GET_MODE (SET_SRC (set));
7190 comp_mode = set_mode;
7191 if (rtx_equal_p (cc_src, SET_SRC (set)))
7192 found = true;
7193 else if (GET_CODE (cc_src) == COMPARE
7194 && GET_CODE (SET_SRC (set)) == COMPARE
7195 && mode != set_mode
7196 && rtx_equal_p (XEXP (cc_src, 0),
7197 XEXP (SET_SRC (set), 0))
7198 && rtx_equal_p (XEXP (cc_src, 1),
7199 XEXP (SET_SRC (set), 1)))
7200
7201 {
7202 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7203 if (comp_mode != VOIDmode
7204 && (can_change_mode || comp_mode == mode))
7205 found = true;
7206 }
7207
7208 if (found)
7209 {
7210 found_equiv = true;
7211 if (insn_count < ARRAY_SIZE (insns))
7212 {
7213 insns[insn_count] = insn;
7214 modes[insn_count] = set_mode;
7215 last_insns[insn_count] = end;
7216 ++insn_count;
7217
7218 if (mode != comp_mode)
7219 {
7220 gcc_assert (can_change_mode);
7221 mode = comp_mode;
7222
7223 /* The modified insn will be re-recognized later. */
7224 PUT_MODE (cc_src, mode);
7225 }
7226 }
7227 else
7228 {
7229 if (set_mode != mode)
7230 {
7231 /* We found a matching expression in the
7232 wrong mode, but we don't have room to
7233 store it in the array. Punt. This case
7234 should be rare. */
7235 break;
7236 }
7237 /* INSN sets CC_REG to a value equal to CC_SRC
7238 with the right mode. We can simply delete
7239 it. */
7240 delete_insn (insn);
7241 }
7242
7243 /* We found an instruction to delete. Keep looking,
7244 in the hopes of finding a three-way jump. */
7245 continue;
7246 }
7247
7248 /* We found an instruction which sets the condition
7249 code, so don't look any farther. */
7250 break;
7251 }
7252
7253 /* If INSN sets CC_REG in some other way, don't look any
7254 farther. */
7255 if (reg_set_p (cc_reg, insn))
7256 break;
7257 }
7258
7259 /* If we fell off the bottom of the block, we can keep looking
7260 through successors. We pass CAN_CHANGE_MODE as false because
7261 we aren't prepared to handle compatibility between the
7262 further blocks and this block. */
7263 if (insn == end)
7264 {
7265 enum machine_mode submode;
7266
7267 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7268 if (submode != VOIDmode)
7269 {
7270 gcc_assert (submode == mode);
7271 found_equiv = true;
7272 can_change_mode = false;
7273 }
7274 }
7275 }
7276
7277 if (! found_equiv)
7278 return VOIDmode;
7279
7280 /* Now INSN_COUNT is the number of instructions we found which set
7281 CC_REG to a value equivalent to CC_SRC. The instructions are in
7282 INSNS. The modes used by those instructions are in MODES. */
7283
7284 newreg = NULL_RTX;
7285 for (i = 0; i < insn_count; ++i)
7286 {
7287 if (modes[i] != mode)
7288 {
7289 /* We need to change the mode of CC_REG in INSNS[i] and
7290 subsequent instructions. */
7291 if (! newreg)
7292 {
7293 if (GET_MODE (cc_reg) == mode)
7294 newreg = cc_reg;
7295 else
7296 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7297 }
7298 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7299 newreg);
7300 }
7301
7302 delete_insn_and_edges (insns[i]);
7303 }
7304
7305 return mode;
7306 }
7307
7308 /* If we have a fixed condition code register (or two), walk through
7309 the instructions and try to eliminate duplicate assignments. */
7310
7311 static void
7312 cse_condition_code_reg (void)
7313 {
7314 unsigned int cc_regno_1;
7315 unsigned int cc_regno_2;
7316 rtx cc_reg_1;
7317 rtx cc_reg_2;
7318 basic_block bb;
7319
7320 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7321 return;
7322
7323 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7324 if (cc_regno_2 != INVALID_REGNUM)
7325 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7326 else
7327 cc_reg_2 = NULL_RTX;
7328
7329 FOR_EACH_BB (bb)
7330 {
7331 rtx last_insn;
7332 rtx cc_reg;
7333 rtx insn;
7334 rtx cc_src_insn;
7335 rtx cc_src;
7336 enum machine_mode mode;
7337 enum machine_mode orig_mode;
7338
7339 /* Look for blocks which end with a conditional jump based on a
7340 condition code register. Then look for the instruction which
7341 sets the condition code register. Then look through the
7342 successor blocks for instructions which set the condition
7343 code register to the same value. There are other possible
7344 uses of the condition code register, but these are by far the
7345 most common and the ones which we are most likely to be able
7346 to optimize. */
7347
7348 last_insn = BB_END (bb);
7349 if (!JUMP_P (last_insn))
7350 continue;
7351
7352 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7353 cc_reg = cc_reg_1;
7354 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7355 cc_reg = cc_reg_2;
7356 else
7357 continue;
7358
7359 cc_src_insn = NULL_RTX;
7360 cc_src = NULL_RTX;
7361 for (insn = PREV_INSN (last_insn);
7362 insn && insn != PREV_INSN (BB_HEAD (bb));
7363 insn = PREV_INSN (insn))
7364 {
7365 rtx set;
7366
7367 if (! INSN_P (insn))
7368 continue;
7369 set = single_set (insn);
7370 if (set
7371 && REG_P (SET_DEST (set))
7372 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7373 {
7374 cc_src_insn = insn;
7375 cc_src = SET_SRC (set);
7376 break;
7377 }
7378 else if (reg_set_p (cc_reg, insn))
7379 break;
7380 }
7381
7382 if (! cc_src_insn)
7383 continue;
7384
7385 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7386 continue;
7387
7388 /* Now CC_REG is a condition code register used for a
7389 conditional jump at the end of the block, and CC_SRC, in
7390 CC_SRC_INSN, is the value to which that condition code
7391 register is set, and CC_SRC is still meaningful at the end of
7392 the basic block. */
7393
7394 orig_mode = GET_MODE (cc_src);
7395 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7396 if (mode != VOIDmode)
7397 {
7398 gcc_assert (mode == GET_MODE (cc_src));
7399 if (mode != orig_mode)
7400 {
7401 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7402
7403 cse_change_cc_mode_insn (cc_src_insn, newreg);
7404
7405 /* Do the same in the following insns that use the
7406 current value of CC_REG within BB. */
7407 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7408 NEXT_INSN (last_insn),
7409 newreg);
7410 }
7411 }
7412 }
7413 }
7414 \f
7415
7416 /* Perform common subexpression elimination. Nonzero value from
7417 `cse_main' means that jumps were simplified and some code may now
7418 be unreachable, so do jump optimization again. */
7419 static bool
7420 gate_handle_cse (void)
7421 {
7422 return optimize > 0;
7423 }
7424
7425 static unsigned int
7426 rest_of_handle_cse (void)
7427 {
7428 int tem;
7429
7430 if (dump_file)
7431 dump_flow_info (dump_file, dump_flags);
7432
7433 tem = cse_main (get_insns (), max_reg_num ());
7434
7435 /* If we are not running more CSE passes, then we are no longer
7436 expecting CSE to be run. But always rerun it in a cheap mode. */
7437 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7438
7439 if (tem == 2)
7440 {
7441 timevar_push (TV_JUMP);
7442 rebuild_jump_labels (get_insns ());
7443 cleanup_cfg (CLEANUP_CFG_CHANGED);
7444 timevar_pop (TV_JUMP);
7445 }
7446 else if (tem == 1 || optimize > 1)
7447 cleanup_cfg (0);
7448
7449 return 0;
7450 }
7451
7452 namespace {
7453
7454 const pass_data pass_data_cse =
7455 {
7456 RTL_PASS, /* type */
7457 "cse1", /* name */
7458 OPTGROUP_NONE, /* optinfo_flags */
7459 true, /* has_gate */
7460 true, /* has_execute */
7461 TV_CSE, /* tv_id */
7462 0, /* properties_required */
7463 0, /* properties_provided */
7464 0, /* properties_destroyed */
7465 0, /* todo_flags_start */
7466 ( TODO_df_finish | TODO_verify_rtl_sharing
7467 | TODO_verify_flow ), /* todo_flags_finish */
7468 };
7469
7470 class pass_cse : public rtl_opt_pass
7471 {
7472 public:
7473 pass_cse(gcc::context *ctxt)
7474 : rtl_opt_pass(pass_data_cse, ctxt)
7475 {}
7476
7477 /* opt_pass methods: */
7478 bool gate () { return gate_handle_cse (); }
7479 unsigned int execute () { return rest_of_handle_cse (); }
7480
7481 }; // class pass_cse
7482
7483 } // anon namespace
7484
7485 rtl_opt_pass *
7486 make_pass_cse (gcc::context *ctxt)
7487 {
7488 return new pass_cse (ctxt);
7489 }
7490
7491
7492 static bool
7493 gate_handle_cse2 (void)
7494 {
7495 return optimize > 0 && flag_rerun_cse_after_loop;
7496 }
7497
7498 /* Run second CSE pass after loop optimizations. */
7499 static unsigned int
7500 rest_of_handle_cse2 (void)
7501 {
7502 int tem;
7503
7504 if (dump_file)
7505 dump_flow_info (dump_file, dump_flags);
7506
7507 tem = cse_main (get_insns (), max_reg_num ());
7508
7509 /* Run a pass to eliminate duplicated assignments to condition code
7510 registers. We have to run this after bypass_jumps, because it
7511 makes it harder for that pass to determine whether a jump can be
7512 bypassed safely. */
7513 cse_condition_code_reg ();
7514
7515 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7516
7517 if (tem == 2)
7518 {
7519 timevar_push (TV_JUMP);
7520 rebuild_jump_labels (get_insns ());
7521 cleanup_cfg (CLEANUP_CFG_CHANGED);
7522 timevar_pop (TV_JUMP);
7523 }
7524 else if (tem == 1)
7525 cleanup_cfg (0);
7526
7527 cse_not_expected = 1;
7528 return 0;
7529 }
7530
7531
7532 namespace {
7533
7534 const pass_data pass_data_cse2 =
7535 {
7536 RTL_PASS, /* type */
7537 "cse2", /* name */
7538 OPTGROUP_NONE, /* optinfo_flags */
7539 true, /* has_gate */
7540 true, /* has_execute */
7541 TV_CSE2, /* tv_id */
7542 0, /* properties_required */
7543 0, /* properties_provided */
7544 0, /* properties_destroyed */
7545 0, /* todo_flags_start */
7546 ( TODO_df_finish | TODO_verify_rtl_sharing
7547 | TODO_verify_flow ), /* todo_flags_finish */
7548 };
7549
7550 class pass_cse2 : public rtl_opt_pass
7551 {
7552 public:
7553 pass_cse2(gcc::context *ctxt)
7554 : rtl_opt_pass(pass_data_cse2, ctxt)
7555 {}
7556
7557 /* opt_pass methods: */
7558 bool gate () { return gate_handle_cse2 (); }
7559 unsigned int execute () { return rest_of_handle_cse2 (); }
7560
7561 }; // class pass_cse2
7562
7563 } // anon namespace
7564
7565 rtl_opt_pass *
7566 make_pass_cse2 (gcc::context *ctxt)
7567 {
7568 return new pass_cse2 (ctxt);
7569 }
7570
7571 static bool
7572 gate_handle_cse_after_global_opts (void)
7573 {
7574 return optimize > 0 && flag_rerun_cse_after_global_opts;
7575 }
7576
7577 /* Run second CSE pass after loop optimizations. */
7578 static unsigned int
7579 rest_of_handle_cse_after_global_opts (void)
7580 {
7581 int save_cfj;
7582 int tem;
7583
7584 /* We only want to do local CSE, so don't follow jumps. */
7585 save_cfj = flag_cse_follow_jumps;
7586 flag_cse_follow_jumps = 0;
7587
7588 rebuild_jump_labels (get_insns ());
7589 tem = cse_main (get_insns (), max_reg_num ());
7590 purge_all_dead_edges ();
7591 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7592
7593 cse_not_expected = !flag_rerun_cse_after_loop;
7594
7595 /* If cse altered any jumps, rerun jump opts to clean things up. */
7596 if (tem == 2)
7597 {
7598 timevar_push (TV_JUMP);
7599 rebuild_jump_labels (get_insns ());
7600 cleanup_cfg (CLEANUP_CFG_CHANGED);
7601 timevar_pop (TV_JUMP);
7602 }
7603 else if (tem == 1)
7604 cleanup_cfg (0);
7605
7606 flag_cse_follow_jumps = save_cfj;
7607 return 0;
7608 }
7609
7610 namespace {
7611
7612 const pass_data pass_data_cse_after_global_opts =
7613 {
7614 RTL_PASS, /* type */
7615 "cse_local", /* name */
7616 OPTGROUP_NONE, /* optinfo_flags */
7617 true, /* has_gate */
7618 true, /* has_execute */
7619 TV_CSE, /* tv_id */
7620 0, /* properties_required */
7621 0, /* properties_provided */
7622 0, /* properties_destroyed */
7623 0, /* todo_flags_start */
7624 ( TODO_df_finish | TODO_verify_rtl_sharing
7625 | TODO_verify_flow ), /* todo_flags_finish */
7626 };
7627
7628 class pass_cse_after_global_opts : public rtl_opt_pass
7629 {
7630 public:
7631 pass_cse_after_global_opts(gcc::context *ctxt)
7632 : rtl_opt_pass(pass_data_cse_after_global_opts, ctxt)
7633 {}
7634
7635 /* opt_pass methods: */
7636 bool gate () { return gate_handle_cse_after_global_opts (); }
7637 unsigned int execute () {
7638 return rest_of_handle_cse_after_global_opts ();
7639 }
7640
7641 }; // class pass_cse_after_global_opts
7642
7643 } // anon namespace
7644
7645 rtl_opt_pass *
7646 make_pass_cse_after_global_opts (gcc::context *ctxt)
7647 {
7648 return new pass_cse_after_global_opts (ctxt);
7649 }