alias.c (rtx_equal_for_memref_p): Convert constant cases.
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "diagnostic-core.h"
37 #include "toplev.h"
38 #include "ggc.h"
39 #include "except.h"
40 #include "target.h"
41 #include "params.h"
42 #include "rtlhooks-def.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "dbgcnt.h"
46 #include "pointer-set.h"
47
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
52
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
58
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
62
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
66
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
75
76 Registers and "quantity numbers":
77
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
85 of as containing.
86
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
90
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
93
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
97
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
101
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
105
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
110
111 Constants and quantity numbers
112
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
116
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
120
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
123 `const_rtx'.
124
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
130
131 Other expressions:
132
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
137 hash codes.
138
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
141
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
146
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
150
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
155
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
163
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
166 must be removed.
167
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
175
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
186
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
193 the register.
194
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
198
199 Related expressions:
200
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
207
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
210
211 static int max_qty;
212
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
215
216 static int next_qty;
217
218 /* Per-qty information tracking.
219
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
222
223 `mode' contains the machine mode of this quantity.
224
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
230
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
242
243 struct qty_table_elem
244 {
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code) comparison_code : 16;
253 ENUM_BITFIELD(machine_mode) mode : 8;
254 };
255
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem *qty_table;
258
259 /* Structure used to pass arguments via for_each_rtx to function
260 cse_change_cc_mode. */
261 struct change_cc_mode_args
262 {
263 rtx insn;
264 rtx newreg;
265 };
266
267 #ifdef HAVE_cc0
268 /* For machines that have a CC0, we do not record its value in the hash
269 table since its use is guaranteed to be the insn immediately following
270 its definition and any other insn is presumed to invalidate it.
271
272 Instead, we store below the current and last value assigned to CC0.
273 If it should happen to be a constant, it is stored in preference
274 to the actual assigned value. In case it is a constant, we store
275 the mode in which the constant should be interpreted. */
276
277 static rtx this_insn_cc0, prev_insn_cc0;
278 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
279 #endif
280
281 /* Insn being scanned. */
282
283 static rtx this_insn;
284 static bool optimize_this_for_speed_p;
285
286 /* Index by register number, gives the number of the next (or
287 previous) register in the chain of registers sharing the same
288 value.
289
290 Or -1 if this register is at the end of the chain.
291
292 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
293
294 /* Per-register equivalence chain. */
295 struct reg_eqv_elem
296 {
297 int next, prev;
298 };
299
300 /* The table of all register equivalence chains. */
301 static struct reg_eqv_elem *reg_eqv_table;
302
303 struct cse_reg_info
304 {
305 /* The timestamp at which this register is initialized. */
306 unsigned int timestamp;
307
308 /* The quantity number of the register's current contents. */
309 int reg_qty;
310
311 /* The number of times the register has been altered in the current
312 basic block. */
313 int reg_tick;
314
315 /* The REG_TICK value at which rtx's containing this register are
316 valid in the hash table. If this does not equal the current
317 reg_tick value, such expressions existing in the hash table are
318 invalid. */
319 int reg_in_table;
320
321 /* The SUBREG that was set when REG_TICK was last incremented. Set
322 to -1 if the last store was to the whole register, not a subreg. */
323 unsigned int subreg_ticked;
324 };
325
326 /* A table of cse_reg_info indexed by register numbers. */
327 static struct cse_reg_info *cse_reg_info_table;
328
329 /* The size of the above table. */
330 static unsigned int cse_reg_info_table_size;
331
332 /* The index of the first entry that has not been initialized. */
333 static unsigned int cse_reg_info_table_first_uninitialized;
334
335 /* The timestamp at the beginning of the current run of
336 cse_extended_basic_block. We increment this variable at the beginning of
337 the current run of cse_extended_basic_block. The timestamp field of a
338 cse_reg_info entry matches the value of this variable if and only
339 if the entry has been initialized during the current run of
340 cse_extended_basic_block. */
341 static unsigned int cse_reg_info_timestamp;
342
343 /* A HARD_REG_SET containing all the hard registers for which there is
344 currently a REG expression in the hash table. Note the difference
345 from the above variables, which indicate if the REG is mentioned in some
346 expression in the table. */
347
348 static HARD_REG_SET hard_regs_in_table;
349
350 /* True if CSE has altered the CFG. */
351 static bool cse_cfg_altered;
352
353 /* True if CSE has altered conditional jump insns in such a way
354 that jump optimization should be redone. */
355 static bool cse_jumps_altered;
356
357 /* True if we put a LABEL_REF into the hash table for an INSN
358 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
359 to put in the note. */
360 static bool recorded_label_ref;
361
362 /* canon_hash stores 1 in do_not_record
363 if it notices a reference to CC0, PC, or some other volatile
364 subexpression. */
365
366 static int do_not_record;
367
368 /* canon_hash stores 1 in hash_arg_in_memory
369 if it notices a reference to memory within the expression being hashed. */
370
371 static int hash_arg_in_memory;
372
373 /* The hash table contains buckets which are chains of `struct table_elt's,
374 each recording one expression's information.
375 That expression is in the `exp' field.
376
377 The canon_exp field contains a canonical (from the point of view of
378 alias analysis) version of the `exp' field.
379
380 Those elements with the same hash code are chained in both directions
381 through the `next_same_hash' and `prev_same_hash' fields.
382
383 Each set of expressions with equivalent values
384 are on a two-way chain through the `next_same_value'
385 and `prev_same_value' fields, and all point with
386 the `first_same_value' field at the first element in
387 that chain. The chain is in order of increasing cost.
388 Each element's cost value is in its `cost' field.
389
390 The `in_memory' field is nonzero for elements that
391 involve any reference to memory. These elements are removed
392 whenever a write is done to an unidentified location in memory.
393 To be safe, we assume that a memory address is unidentified unless
394 the address is either a symbol constant or a constant plus
395 the frame pointer or argument pointer.
396
397 The `related_value' field is used to connect related expressions
398 (that differ by adding an integer).
399 The related expressions are chained in a circular fashion.
400 `related_value' is zero for expressions for which this
401 chain is not useful.
402
403 The `cost' field stores the cost of this element's expression.
404 The `regcost' field stores the value returned by approx_reg_cost for
405 this element's expression.
406
407 The `is_const' flag is set if the element is a constant (including
408 a fixed address).
409
410 The `flag' field is used as a temporary during some search routines.
411
412 The `mode' field is usually the same as GET_MODE (`exp'), but
413 if `exp' is a CONST_INT and has no machine mode then the `mode'
414 field is the mode it was being used as. Each constant is
415 recorded separately for each mode it is used with. */
416
417 struct table_elt
418 {
419 rtx exp;
420 rtx canon_exp;
421 struct table_elt *next_same_hash;
422 struct table_elt *prev_same_hash;
423 struct table_elt *next_same_value;
424 struct table_elt *prev_same_value;
425 struct table_elt *first_same_value;
426 struct table_elt *related_value;
427 int cost;
428 int regcost;
429 /* The size of this field should match the size
430 of the mode field of struct rtx_def (see rtl.h). */
431 ENUM_BITFIELD(machine_mode) mode : 8;
432 char in_memory;
433 char is_const;
434 char flag;
435 };
436
437 /* We don't want a lot of buckets, because we rarely have very many
438 things stored in the hash table, and a lot of buckets slows
439 down a lot of loops that happen frequently. */
440 #define HASH_SHIFT 5
441 #define HASH_SIZE (1 << HASH_SHIFT)
442 #define HASH_MASK (HASH_SIZE - 1)
443
444 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
445 register (hard registers may require `do_not_record' to be set). */
446
447 #define HASH(X, M) \
448 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
449 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
450 : canon_hash (X, M)) & HASH_MASK)
451
452 /* Like HASH, but without side-effects. */
453 #define SAFE_HASH(X, M) \
454 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
455 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
456 : safe_hash (X, M)) & HASH_MASK)
457
458 /* Determine whether register number N is considered a fixed register for the
459 purpose of approximating register costs.
460 It is desirable to replace other regs with fixed regs, to reduce need for
461 non-fixed hard regs.
462 A reg wins if it is either the frame pointer or designated as fixed. */
463 #define FIXED_REGNO_P(N) \
464 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
465 || fixed_regs[N] || global_regs[N])
466
467 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
468 hard registers and pointers into the frame are the cheapest with a cost
469 of 0. Next come pseudos with a cost of one and other hard registers with
470 a cost of 2. Aside from these special cases, call `rtx_cost'. */
471
472 #define CHEAP_REGNO(N) \
473 (REGNO_PTR_FRAME_P(N) \
474 || (HARD_REGISTER_NUM_P (N) \
475 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
476
477 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
478 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
479
480 /* Get the number of times this register has been updated in this
481 basic block. */
482
483 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
484
485 /* Get the point at which REG was recorded in the table. */
486
487 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
488
489 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
490 SUBREG). */
491
492 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
493
494 /* Get the quantity number for REG. */
495
496 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
497
498 /* Determine if the quantity number for register X represents a valid index
499 into the qty_table. */
500
501 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
502
503 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
504
505 #define CHEAPER(X, Y) \
506 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
507
508 static struct table_elt *table[HASH_SIZE];
509
510 /* Chain of `struct table_elt's made so far for this function
511 but currently removed from the table. */
512
513 static struct table_elt *free_element_chain;
514
515 /* Set to the cost of a constant pool reference if one was found for a
516 symbolic constant. If this was found, it means we should try to
517 convert constants into constant pool entries if they don't fit in
518 the insn. */
519
520 static int constant_pool_entries_cost;
521 static int constant_pool_entries_regcost;
522
523 /* Trace a patch through the CFG. */
524
525 struct branch_path
526 {
527 /* The basic block for this path entry. */
528 basic_block bb;
529 };
530
531 /* This data describes a block that will be processed by
532 cse_extended_basic_block. */
533
534 struct cse_basic_block_data
535 {
536 /* Total number of SETs in block. */
537 int nsets;
538 /* Size of current branch path, if any. */
539 int path_size;
540 /* Current path, indicating which basic_blocks will be processed. */
541 struct branch_path *path;
542 };
543
544
545 /* Pointers to the live in/live out bitmaps for the boundaries of the
546 current EBB. */
547 static bitmap cse_ebb_live_in, cse_ebb_live_out;
548
549 /* A simple bitmap to track which basic blocks have been visited
550 already as part of an already processed extended basic block. */
551 static sbitmap cse_visited_basic_blocks;
552
553 static bool fixed_base_plus_p (rtx x);
554 static int notreg_cost (rtx, enum rtx_code, int);
555 static int approx_reg_cost_1 (rtx *, void *);
556 static int approx_reg_cost (rtx);
557 static int preferable (int, int, int, int);
558 static void new_basic_block (void);
559 static void make_new_qty (unsigned int, enum machine_mode);
560 static void make_regs_eqv (unsigned int, unsigned int);
561 static void delete_reg_equiv (unsigned int);
562 static int mention_regs (rtx);
563 static int insert_regs (rtx, struct table_elt *, int);
564 static void remove_from_table (struct table_elt *, unsigned);
565 static void remove_pseudo_from_table (rtx, unsigned);
566 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
567 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
568 static rtx lookup_as_function (rtx, enum rtx_code);
569 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
570 enum machine_mode, int, int);
571 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
572 enum machine_mode);
573 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
574 static void invalidate (rtx, enum machine_mode);
575 static void remove_invalid_refs (unsigned int);
576 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
577 enum machine_mode);
578 static void rehash_using_reg (rtx);
579 static void invalidate_memory (void);
580 static void invalidate_for_call (void);
581 static rtx use_related_value (rtx, struct table_elt *);
582
583 static inline unsigned canon_hash (rtx, enum machine_mode);
584 static inline unsigned safe_hash (rtx, enum machine_mode);
585 static inline unsigned hash_rtx_string (const char *);
586
587 static rtx canon_reg (rtx, rtx);
588 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
589 enum machine_mode *,
590 enum machine_mode *);
591 static rtx fold_rtx (rtx, rtx);
592 static rtx equiv_constant (rtx);
593 static void record_jump_equiv (rtx, bool);
594 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
595 int);
596 static void cse_insn (rtx);
597 static void cse_prescan_path (struct cse_basic_block_data *);
598 static void invalidate_from_clobbers (rtx);
599 static void invalidate_from_sets_and_clobbers (rtx);
600 static rtx cse_process_notes (rtx, rtx, bool *);
601 static void cse_extended_basic_block (struct cse_basic_block_data *);
602 static int check_for_label_ref (rtx *, void *);
603 extern void dump_class (struct table_elt*);
604 static void get_cse_reg_info_1 (unsigned int regno);
605 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
606 static int check_dependence (rtx *, void *);
607
608 static void flush_hash_table (void);
609 static bool insn_live_p (rtx, int *);
610 static bool set_live_p (rtx, rtx, int *);
611 static int cse_change_cc_mode (rtx *, void *);
612 static void cse_change_cc_mode_insn (rtx, rtx);
613 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
614 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
615 bool);
616 \f
617
618 #undef RTL_HOOKS_GEN_LOWPART
619 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
620
621 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
622 \f
623 /* Nonzero if X has the form (PLUS frame-pointer integer). */
624
625 static bool
626 fixed_base_plus_p (rtx x)
627 {
628 switch (GET_CODE (x))
629 {
630 case REG:
631 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
632 return true;
633 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
634 return true;
635 return false;
636
637 case PLUS:
638 if (!CONST_INT_P (XEXP (x, 1)))
639 return false;
640 return fixed_base_plus_p (XEXP (x, 0));
641
642 default:
643 return false;
644 }
645 }
646
647 /* Dump the expressions in the equivalence class indicated by CLASSP.
648 This function is used only for debugging. */
649 DEBUG_FUNCTION void
650 dump_class (struct table_elt *classp)
651 {
652 struct table_elt *elt;
653
654 fprintf (stderr, "Equivalence chain for ");
655 print_rtl (stderr, classp->exp);
656 fprintf (stderr, ": \n");
657
658 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
659 {
660 print_rtl (stderr, elt->exp);
661 fprintf (stderr, "\n");
662 }
663 }
664
665 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
666
667 static int
668 approx_reg_cost_1 (rtx *xp, void *data)
669 {
670 rtx x = *xp;
671 int *cost_p = (int *) data;
672
673 if (x && REG_P (x))
674 {
675 unsigned int regno = REGNO (x);
676
677 if (! CHEAP_REGNO (regno))
678 {
679 if (regno < FIRST_PSEUDO_REGISTER)
680 {
681 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
682 return 1;
683 *cost_p += 2;
684 }
685 else
686 *cost_p += 1;
687 }
688 }
689
690 return 0;
691 }
692
693 /* Return an estimate of the cost of the registers used in an rtx.
694 This is mostly the number of different REG expressions in the rtx;
695 however for some exceptions like fixed registers we use a cost of
696 0. If any other hard register reference occurs, return MAX_COST. */
697
698 static int
699 approx_reg_cost (rtx x)
700 {
701 int cost = 0;
702
703 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
704 return MAX_COST;
705
706 return cost;
707 }
708
709 /* Return a negative value if an rtx A, whose costs are given by COST_A
710 and REGCOST_A, is more desirable than an rtx B.
711 Return a positive value if A is less desirable, or 0 if the two are
712 equally good. */
713 static int
714 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
715 {
716 /* First, get rid of cases involving expressions that are entirely
717 unwanted. */
718 if (cost_a != cost_b)
719 {
720 if (cost_a == MAX_COST)
721 return 1;
722 if (cost_b == MAX_COST)
723 return -1;
724 }
725
726 /* Avoid extending lifetimes of hardregs. */
727 if (regcost_a != regcost_b)
728 {
729 if (regcost_a == MAX_COST)
730 return 1;
731 if (regcost_b == MAX_COST)
732 return -1;
733 }
734
735 /* Normal operation costs take precedence. */
736 if (cost_a != cost_b)
737 return cost_a - cost_b;
738 /* Only if these are identical consider effects on register pressure. */
739 if (regcost_a != regcost_b)
740 return regcost_a - regcost_b;
741 return 0;
742 }
743
744 /* Internal function, to compute cost when X is not a register; called
745 from COST macro to keep it simple. */
746
747 static int
748 notreg_cost (rtx x, enum rtx_code outer, int opno)
749 {
750 return ((GET_CODE (x) == SUBREG
751 && REG_P (SUBREG_REG (x))
752 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
753 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
754 && (GET_MODE_SIZE (GET_MODE (x))
755 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
756 && subreg_lowpart_p (x)
757 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
758 GET_MODE (SUBREG_REG (x))))
759 ? 0
760 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
761 }
762
763 \f
764 /* Initialize CSE_REG_INFO_TABLE. */
765
766 static void
767 init_cse_reg_info (unsigned int nregs)
768 {
769 /* Do we need to grow the table? */
770 if (nregs > cse_reg_info_table_size)
771 {
772 unsigned int new_size;
773
774 if (cse_reg_info_table_size < 2048)
775 {
776 /* Compute a new size that is a power of 2 and no smaller
777 than the large of NREGS and 64. */
778 new_size = (cse_reg_info_table_size
779 ? cse_reg_info_table_size : 64);
780
781 while (new_size < nregs)
782 new_size *= 2;
783 }
784 else
785 {
786 /* If we need a big table, allocate just enough to hold
787 NREGS registers. */
788 new_size = nregs;
789 }
790
791 /* Reallocate the table with NEW_SIZE entries. */
792 free (cse_reg_info_table);
793 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
794 cse_reg_info_table_size = new_size;
795 cse_reg_info_table_first_uninitialized = 0;
796 }
797
798 /* Do we have all of the first NREGS entries initialized? */
799 if (cse_reg_info_table_first_uninitialized < nregs)
800 {
801 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
802 unsigned int i;
803
804 /* Put the old timestamp on newly allocated entries so that they
805 will all be considered out of date. We do not touch those
806 entries beyond the first NREGS entries to be nice to the
807 virtual memory. */
808 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
809 cse_reg_info_table[i].timestamp = old_timestamp;
810
811 cse_reg_info_table_first_uninitialized = nregs;
812 }
813 }
814
815 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
816
817 static void
818 get_cse_reg_info_1 (unsigned int regno)
819 {
820 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
821 entry will be considered to have been initialized. */
822 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
823
824 /* Initialize the rest of the entry. */
825 cse_reg_info_table[regno].reg_tick = 1;
826 cse_reg_info_table[regno].reg_in_table = -1;
827 cse_reg_info_table[regno].subreg_ticked = -1;
828 cse_reg_info_table[regno].reg_qty = -regno - 1;
829 }
830
831 /* Find a cse_reg_info entry for REGNO. */
832
833 static inline struct cse_reg_info *
834 get_cse_reg_info (unsigned int regno)
835 {
836 struct cse_reg_info *p = &cse_reg_info_table[regno];
837
838 /* If this entry has not been initialized, go ahead and initialize
839 it. */
840 if (p->timestamp != cse_reg_info_timestamp)
841 get_cse_reg_info_1 (regno);
842
843 return p;
844 }
845
846 /* Clear the hash table and initialize each register with its own quantity,
847 for a new basic block. */
848
849 static void
850 new_basic_block (void)
851 {
852 int i;
853
854 next_qty = 0;
855
856 /* Invalidate cse_reg_info_table. */
857 cse_reg_info_timestamp++;
858
859 /* Clear out hash table state for this pass. */
860 CLEAR_HARD_REG_SET (hard_regs_in_table);
861
862 /* The per-quantity values used to be initialized here, but it is
863 much faster to initialize each as it is made in `make_new_qty'. */
864
865 for (i = 0; i < HASH_SIZE; i++)
866 {
867 struct table_elt *first;
868
869 first = table[i];
870 if (first != NULL)
871 {
872 struct table_elt *last = first;
873
874 table[i] = NULL;
875
876 while (last->next_same_hash != NULL)
877 last = last->next_same_hash;
878
879 /* Now relink this hash entire chain into
880 the free element list. */
881
882 last->next_same_hash = free_element_chain;
883 free_element_chain = first;
884 }
885 }
886
887 #ifdef HAVE_cc0
888 prev_insn_cc0 = 0;
889 #endif
890 }
891
892 /* Say that register REG contains a quantity in mode MODE not in any
893 register before and initialize that quantity. */
894
895 static void
896 make_new_qty (unsigned int reg, enum machine_mode mode)
897 {
898 int q;
899 struct qty_table_elem *ent;
900 struct reg_eqv_elem *eqv;
901
902 gcc_assert (next_qty < max_qty);
903
904 q = REG_QTY (reg) = next_qty++;
905 ent = &qty_table[q];
906 ent->first_reg = reg;
907 ent->last_reg = reg;
908 ent->mode = mode;
909 ent->const_rtx = ent->const_insn = NULL_RTX;
910 ent->comparison_code = UNKNOWN;
911
912 eqv = &reg_eqv_table[reg];
913 eqv->next = eqv->prev = -1;
914 }
915
916 /* Make reg NEW equivalent to reg OLD.
917 OLD is not changing; NEW is. */
918
919 static void
920 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
921 {
922 unsigned int lastr, firstr;
923 int q = REG_QTY (old_reg);
924 struct qty_table_elem *ent;
925
926 ent = &qty_table[q];
927
928 /* Nothing should become eqv until it has a "non-invalid" qty number. */
929 gcc_assert (REGNO_QTY_VALID_P (old_reg));
930
931 REG_QTY (new_reg) = q;
932 firstr = ent->first_reg;
933 lastr = ent->last_reg;
934
935 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
936 hard regs. Among pseudos, if NEW will live longer than any other reg
937 of the same qty, and that is beyond the current basic block,
938 make it the new canonical replacement for this qty. */
939 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
940 /* Certain fixed registers might be of the class NO_REGS. This means
941 that not only can they not be allocated by the compiler, but
942 they cannot be used in substitutions or canonicalizations
943 either. */
944 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
945 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
946 || (new_reg >= FIRST_PSEUDO_REGISTER
947 && (firstr < FIRST_PSEUDO_REGISTER
948 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
949 && !bitmap_bit_p (cse_ebb_live_out, firstr))
950 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
951 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
952 {
953 reg_eqv_table[firstr].prev = new_reg;
954 reg_eqv_table[new_reg].next = firstr;
955 reg_eqv_table[new_reg].prev = -1;
956 ent->first_reg = new_reg;
957 }
958 else
959 {
960 /* If NEW is a hard reg (known to be non-fixed), insert at end.
961 Otherwise, insert before any non-fixed hard regs that are at the
962 end. Registers of class NO_REGS cannot be used as an
963 equivalent for anything. */
964 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
965 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
966 && new_reg >= FIRST_PSEUDO_REGISTER)
967 lastr = reg_eqv_table[lastr].prev;
968 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
969 if (reg_eqv_table[lastr].next >= 0)
970 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
971 else
972 qty_table[q].last_reg = new_reg;
973 reg_eqv_table[lastr].next = new_reg;
974 reg_eqv_table[new_reg].prev = lastr;
975 }
976 }
977
978 /* Remove REG from its equivalence class. */
979
980 static void
981 delete_reg_equiv (unsigned int reg)
982 {
983 struct qty_table_elem *ent;
984 int q = REG_QTY (reg);
985 int p, n;
986
987 /* If invalid, do nothing. */
988 if (! REGNO_QTY_VALID_P (reg))
989 return;
990
991 ent = &qty_table[q];
992
993 p = reg_eqv_table[reg].prev;
994 n = reg_eqv_table[reg].next;
995
996 if (n != -1)
997 reg_eqv_table[n].prev = p;
998 else
999 ent->last_reg = p;
1000 if (p != -1)
1001 reg_eqv_table[p].next = n;
1002 else
1003 ent->first_reg = n;
1004
1005 REG_QTY (reg) = -reg - 1;
1006 }
1007
1008 /* Remove any invalid expressions from the hash table
1009 that refer to any of the registers contained in expression X.
1010
1011 Make sure that newly inserted references to those registers
1012 as subexpressions will be considered valid.
1013
1014 mention_regs is not called when a register itself
1015 is being stored in the table.
1016
1017 Return 1 if we have done something that may have changed the hash code
1018 of X. */
1019
1020 static int
1021 mention_regs (rtx x)
1022 {
1023 enum rtx_code code;
1024 int i, j;
1025 const char *fmt;
1026 int changed = 0;
1027
1028 if (x == 0)
1029 return 0;
1030
1031 code = GET_CODE (x);
1032 if (code == REG)
1033 {
1034 unsigned int regno = REGNO (x);
1035 unsigned int endregno = END_REGNO (x);
1036 unsigned int i;
1037
1038 for (i = regno; i < endregno; i++)
1039 {
1040 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1041 remove_invalid_refs (i);
1042
1043 REG_IN_TABLE (i) = REG_TICK (i);
1044 SUBREG_TICKED (i) = -1;
1045 }
1046
1047 return 0;
1048 }
1049
1050 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1051 pseudo if they don't use overlapping words. We handle only pseudos
1052 here for simplicity. */
1053 if (code == SUBREG && REG_P (SUBREG_REG (x))
1054 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1055 {
1056 unsigned int i = REGNO (SUBREG_REG (x));
1057
1058 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1059 {
1060 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1061 the last store to this register really stored into this
1062 subreg, then remove the memory of this subreg.
1063 Otherwise, remove any memory of the entire register and
1064 all its subregs from the table. */
1065 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1066 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1067 remove_invalid_refs (i);
1068 else
1069 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1070 }
1071
1072 REG_IN_TABLE (i) = REG_TICK (i);
1073 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1074 return 0;
1075 }
1076
1077 /* If X is a comparison or a COMPARE and either operand is a register
1078 that does not have a quantity, give it one. This is so that a later
1079 call to record_jump_equiv won't cause X to be assigned a different
1080 hash code and not found in the table after that call.
1081
1082 It is not necessary to do this here, since rehash_using_reg can
1083 fix up the table later, but doing this here eliminates the need to
1084 call that expensive function in the most common case where the only
1085 use of the register is in the comparison. */
1086
1087 if (code == COMPARE || COMPARISON_P (x))
1088 {
1089 if (REG_P (XEXP (x, 0))
1090 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1091 if (insert_regs (XEXP (x, 0), NULL, 0))
1092 {
1093 rehash_using_reg (XEXP (x, 0));
1094 changed = 1;
1095 }
1096
1097 if (REG_P (XEXP (x, 1))
1098 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1099 if (insert_regs (XEXP (x, 1), NULL, 0))
1100 {
1101 rehash_using_reg (XEXP (x, 1));
1102 changed = 1;
1103 }
1104 }
1105
1106 fmt = GET_RTX_FORMAT (code);
1107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1108 if (fmt[i] == 'e')
1109 changed |= mention_regs (XEXP (x, i));
1110 else if (fmt[i] == 'E')
1111 for (j = 0; j < XVECLEN (x, i); j++)
1112 changed |= mention_regs (XVECEXP (x, i, j));
1113
1114 return changed;
1115 }
1116
1117 /* Update the register quantities for inserting X into the hash table
1118 with a value equivalent to CLASSP.
1119 (If the class does not contain a REG, it is irrelevant.)
1120 If MODIFIED is nonzero, X is a destination; it is being modified.
1121 Note that delete_reg_equiv should be called on a register
1122 before insert_regs is done on that register with MODIFIED != 0.
1123
1124 Nonzero value means that elements of reg_qty have changed
1125 so X's hash code may be different. */
1126
1127 static int
1128 insert_regs (rtx x, struct table_elt *classp, int modified)
1129 {
1130 if (REG_P (x))
1131 {
1132 unsigned int regno = REGNO (x);
1133 int qty_valid;
1134
1135 /* If REGNO is in the equivalence table already but is of the
1136 wrong mode for that equivalence, don't do anything here. */
1137
1138 qty_valid = REGNO_QTY_VALID_P (regno);
1139 if (qty_valid)
1140 {
1141 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1142
1143 if (ent->mode != GET_MODE (x))
1144 return 0;
1145 }
1146
1147 if (modified || ! qty_valid)
1148 {
1149 if (classp)
1150 for (classp = classp->first_same_value;
1151 classp != 0;
1152 classp = classp->next_same_value)
1153 if (REG_P (classp->exp)
1154 && GET_MODE (classp->exp) == GET_MODE (x))
1155 {
1156 unsigned c_regno = REGNO (classp->exp);
1157
1158 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1159
1160 /* Suppose that 5 is hard reg and 100 and 101 are
1161 pseudos. Consider
1162
1163 (set (reg:si 100) (reg:si 5))
1164 (set (reg:si 5) (reg:si 100))
1165 (set (reg:di 101) (reg:di 5))
1166
1167 We would now set REG_QTY (101) = REG_QTY (5), but the
1168 entry for 5 is in SImode. When we use this later in
1169 copy propagation, we get the register in wrong mode. */
1170 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1171 continue;
1172
1173 make_regs_eqv (regno, c_regno);
1174 return 1;
1175 }
1176
1177 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1178 than REG_IN_TABLE to find out if there was only a single preceding
1179 invalidation - for the SUBREG - or another one, which would be
1180 for the full register. However, if we find here that REG_TICK
1181 indicates that the register is invalid, it means that it has
1182 been invalidated in a separate operation. The SUBREG might be used
1183 now (then this is a recursive call), or we might use the full REG
1184 now and a SUBREG of it later. So bump up REG_TICK so that
1185 mention_regs will do the right thing. */
1186 if (! modified
1187 && REG_IN_TABLE (regno) >= 0
1188 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1189 REG_TICK (regno)++;
1190 make_new_qty (regno, GET_MODE (x));
1191 return 1;
1192 }
1193
1194 return 0;
1195 }
1196
1197 /* If X is a SUBREG, we will likely be inserting the inner register in the
1198 table. If that register doesn't have an assigned quantity number at
1199 this point but does later, the insertion that we will be doing now will
1200 not be accessible because its hash code will have changed. So assign
1201 a quantity number now. */
1202
1203 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1204 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1205 {
1206 insert_regs (SUBREG_REG (x), NULL, 0);
1207 mention_regs (x);
1208 return 1;
1209 }
1210 else
1211 return mention_regs (x);
1212 }
1213 \f
1214
1215 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1216 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1217 CST is equal to an anchor. */
1218
1219 static bool
1220 compute_const_anchors (rtx cst,
1221 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1222 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1223 {
1224 HOST_WIDE_INT n = INTVAL (cst);
1225
1226 *lower_base = n & ~(targetm.const_anchor - 1);
1227 if (*lower_base == n)
1228 return false;
1229
1230 *upper_base =
1231 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1232 *upper_offs = n - *upper_base;
1233 *lower_offs = n - *lower_base;
1234 return true;
1235 }
1236
1237 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1238
1239 static void
1240 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1241 enum machine_mode mode)
1242 {
1243 struct table_elt *elt;
1244 unsigned hash;
1245 rtx anchor_exp;
1246 rtx exp;
1247
1248 anchor_exp = GEN_INT (anchor);
1249 hash = HASH (anchor_exp, mode);
1250 elt = lookup (anchor_exp, hash, mode);
1251 if (!elt)
1252 elt = insert (anchor_exp, NULL, hash, mode);
1253
1254 exp = plus_constant (mode, reg, offs);
1255 /* REG has just been inserted and the hash codes recomputed. */
1256 mention_regs (exp);
1257 hash = HASH (exp, mode);
1258
1259 /* Use the cost of the register rather than the whole expression. When
1260 looking up constant anchors we will further offset the corresponding
1261 expression therefore it does not make sense to prefer REGs over
1262 reg-immediate additions. Prefer instead the oldest expression. Also
1263 don't prefer pseudos over hard regs so that we derive constants in
1264 argument registers from other argument registers rather than from the
1265 original pseudo that was used to synthesize the constant. */
1266 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1267 }
1268
1269 /* The constant CST is equivalent to the register REG. Create
1270 equivalences between the two anchors of CST and the corresponding
1271 register-offset expressions using REG. */
1272
1273 static void
1274 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1275 {
1276 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1277
1278 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1279 &upper_base, &upper_offs))
1280 return;
1281
1282 /* Ignore anchors of value 0. Constants accessible from zero are
1283 simple. */
1284 if (lower_base != 0)
1285 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1286
1287 if (upper_base != 0)
1288 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1289 }
1290
1291 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1292 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1293 valid expression. Return the cheapest and oldest of such expressions. In
1294 *OLD, return how old the resulting expression is compared to the other
1295 equivalent expressions. */
1296
1297 static rtx
1298 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1299 unsigned *old)
1300 {
1301 struct table_elt *elt;
1302 unsigned idx;
1303 struct table_elt *match_elt;
1304 rtx match;
1305
1306 /* Find the cheapest and *oldest* expression to maximize the chance of
1307 reusing the same pseudo. */
1308
1309 match_elt = NULL;
1310 match = NULL_RTX;
1311 for (elt = anchor_elt->first_same_value, idx = 0;
1312 elt;
1313 elt = elt->next_same_value, idx++)
1314 {
1315 if (match_elt && CHEAPER (match_elt, elt))
1316 return match;
1317
1318 if (REG_P (elt->exp)
1319 || (GET_CODE (elt->exp) == PLUS
1320 && REG_P (XEXP (elt->exp, 0))
1321 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1322 {
1323 rtx x;
1324
1325 /* Ignore expressions that are no longer valid. */
1326 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1327 continue;
1328
1329 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1330 if (REG_P (x)
1331 || (GET_CODE (x) == PLUS
1332 && IN_RANGE (INTVAL (XEXP (x, 1)),
1333 -targetm.const_anchor,
1334 targetm.const_anchor - 1)))
1335 {
1336 match = x;
1337 match_elt = elt;
1338 *old = idx;
1339 }
1340 }
1341 }
1342
1343 return match;
1344 }
1345
1346 /* Try to express the constant SRC_CONST using a register+offset expression
1347 derived from a constant anchor. Return it if successful or NULL_RTX,
1348 otherwise. */
1349
1350 static rtx
1351 try_const_anchors (rtx src_const, enum machine_mode mode)
1352 {
1353 struct table_elt *lower_elt, *upper_elt;
1354 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1355 rtx lower_anchor_rtx, upper_anchor_rtx;
1356 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1357 unsigned lower_old, upper_old;
1358
1359 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1360 &upper_base, &upper_offs))
1361 return NULL_RTX;
1362
1363 lower_anchor_rtx = GEN_INT (lower_base);
1364 upper_anchor_rtx = GEN_INT (upper_base);
1365 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1366 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1367
1368 if (lower_elt)
1369 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1370 if (upper_elt)
1371 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1372
1373 if (!lower_exp)
1374 return upper_exp;
1375 if (!upper_exp)
1376 return lower_exp;
1377
1378 /* Return the older expression. */
1379 return (upper_old > lower_old ? upper_exp : lower_exp);
1380 }
1381 \f
1382 /* Look in or update the hash table. */
1383
1384 /* Remove table element ELT from use in the table.
1385 HASH is its hash code, made using the HASH macro.
1386 It's an argument because often that is known in advance
1387 and we save much time not recomputing it. */
1388
1389 static void
1390 remove_from_table (struct table_elt *elt, unsigned int hash)
1391 {
1392 if (elt == 0)
1393 return;
1394
1395 /* Mark this element as removed. See cse_insn. */
1396 elt->first_same_value = 0;
1397
1398 /* Remove the table element from its equivalence class. */
1399
1400 {
1401 struct table_elt *prev = elt->prev_same_value;
1402 struct table_elt *next = elt->next_same_value;
1403
1404 if (next)
1405 next->prev_same_value = prev;
1406
1407 if (prev)
1408 prev->next_same_value = next;
1409 else
1410 {
1411 struct table_elt *newfirst = next;
1412 while (next)
1413 {
1414 next->first_same_value = newfirst;
1415 next = next->next_same_value;
1416 }
1417 }
1418 }
1419
1420 /* Remove the table element from its hash bucket. */
1421
1422 {
1423 struct table_elt *prev = elt->prev_same_hash;
1424 struct table_elt *next = elt->next_same_hash;
1425
1426 if (next)
1427 next->prev_same_hash = prev;
1428
1429 if (prev)
1430 prev->next_same_hash = next;
1431 else if (table[hash] == elt)
1432 table[hash] = next;
1433 else
1434 {
1435 /* This entry is not in the proper hash bucket. This can happen
1436 when two classes were merged by `merge_equiv_classes'. Search
1437 for the hash bucket that it heads. This happens only very
1438 rarely, so the cost is acceptable. */
1439 for (hash = 0; hash < HASH_SIZE; hash++)
1440 if (table[hash] == elt)
1441 table[hash] = next;
1442 }
1443 }
1444
1445 /* Remove the table element from its related-value circular chain. */
1446
1447 if (elt->related_value != 0 && elt->related_value != elt)
1448 {
1449 struct table_elt *p = elt->related_value;
1450
1451 while (p->related_value != elt)
1452 p = p->related_value;
1453 p->related_value = elt->related_value;
1454 if (p->related_value == p)
1455 p->related_value = 0;
1456 }
1457
1458 /* Now add it to the free element chain. */
1459 elt->next_same_hash = free_element_chain;
1460 free_element_chain = elt;
1461 }
1462
1463 /* Same as above, but X is a pseudo-register. */
1464
1465 static void
1466 remove_pseudo_from_table (rtx x, unsigned int hash)
1467 {
1468 struct table_elt *elt;
1469
1470 /* Because a pseudo-register can be referenced in more than one
1471 mode, we might have to remove more than one table entry. */
1472 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1473 remove_from_table (elt, hash);
1474 }
1475
1476 /* Look up X in the hash table and return its table element,
1477 or 0 if X is not in the table.
1478
1479 MODE is the machine-mode of X, or if X is an integer constant
1480 with VOIDmode then MODE is the mode with which X will be used.
1481
1482 Here we are satisfied to find an expression whose tree structure
1483 looks like X. */
1484
1485 static struct table_elt *
1486 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1487 {
1488 struct table_elt *p;
1489
1490 for (p = table[hash]; p; p = p->next_same_hash)
1491 if (mode == p->mode && ((x == p->exp && REG_P (x))
1492 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1493 return p;
1494
1495 return 0;
1496 }
1497
1498 /* Like `lookup' but don't care whether the table element uses invalid regs.
1499 Also ignore discrepancies in the machine mode of a register. */
1500
1501 static struct table_elt *
1502 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1503 {
1504 struct table_elt *p;
1505
1506 if (REG_P (x))
1507 {
1508 unsigned int regno = REGNO (x);
1509
1510 /* Don't check the machine mode when comparing registers;
1511 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1512 for (p = table[hash]; p; p = p->next_same_hash)
1513 if (REG_P (p->exp)
1514 && REGNO (p->exp) == regno)
1515 return p;
1516 }
1517 else
1518 {
1519 for (p = table[hash]; p; p = p->next_same_hash)
1520 if (mode == p->mode
1521 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1522 return p;
1523 }
1524
1525 return 0;
1526 }
1527
1528 /* Look for an expression equivalent to X and with code CODE.
1529 If one is found, return that expression. */
1530
1531 static rtx
1532 lookup_as_function (rtx x, enum rtx_code code)
1533 {
1534 struct table_elt *p
1535 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1536
1537 if (p == 0)
1538 return 0;
1539
1540 for (p = p->first_same_value; p; p = p->next_same_value)
1541 if (GET_CODE (p->exp) == code
1542 /* Make sure this is a valid entry in the table. */
1543 && exp_equiv_p (p->exp, p->exp, 1, false))
1544 return p->exp;
1545
1546 return 0;
1547 }
1548
1549 /* Insert X in the hash table, assuming HASH is its hash code and
1550 CLASSP is an element of the class it should go in (or 0 if a new
1551 class should be made). COST is the code of X and reg_cost is the
1552 cost of registers in X. It is inserted at the proper position to
1553 keep the class in the order cheapest first.
1554
1555 MODE is the machine-mode of X, or if X is an integer constant
1556 with VOIDmode then MODE is the mode with which X will be used.
1557
1558 For elements of equal cheapness, the most recent one
1559 goes in front, except that the first element in the list
1560 remains first unless a cheaper element is added. The order of
1561 pseudo-registers does not matter, as canon_reg will be called to
1562 find the cheapest when a register is retrieved from the table.
1563
1564 The in_memory field in the hash table element is set to 0.
1565 The caller must set it nonzero if appropriate.
1566
1567 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1568 and if insert_regs returns a nonzero value
1569 you must then recompute its hash code before calling here.
1570
1571 If necessary, update table showing constant values of quantities. */
1572
1573 static struct table_elt *
1574 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1575 enum machine_mode mode, int cost, int reg_cost)
1576 {
1577 struct table_elt *elt;
1578
1579 /* If X is a register and we haven't made a quantity for it,
1580 something is wrong. */
1581 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1582
1583 /* If X is a hard register, show it is being put in the table. */
1584 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1585 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1586
1587 /* Put an element for X into the right hash bucket. */
1588
1589 elt = free_element_chain;
1590 if (elt)
1591 free_element_chain = elt->next_same_hash;
1592 else
1593 elt = XNEW (struct table_elt);
1594
1595 elt->exp = x;
1596 elt->canon_exp = NULL_RTX;
1597 elt->cost = cost;
1598 elt->regcost = reg_cost;
1599 elt->next_same_value = 0;
1600 elt->prev_same_value = 0;
1601 elt->next_same_hash = table[hash];
1602 elt->prev_same_hash = 0;
1603 elt->related_value = 0;
1604 elt->in_memory = 0;
1605 elt->mode = mode;
1606 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1607
1608 if (table[hash])
1609 table[hash]->prev_same_hash = elt;
1610 table[hash] = elt;
1611
1612 /* Put it into the proper value-class. */
1613 if (classp)
1614 {
1615 classp = classp->first_same_value;
1616 if (CHEAPER (elt, classp))
1617 /* Insert at the head of the class. */
1618 {
1619 struct table_elt *p;
1620 elt->next_same_value = classp;
1621 classp->prev_same_value = elt;
1622 elt->first_same_value = elt;
1623
1624 for (p = classp; p; p = p->next_same_value)
1625 p->first_same_value = elt;
1626 }
1627 else
1628 {
1629 /* Insert not at head of the class. */
1630 /* Put it after the last element cheaper than X. */
1631 struct table_elt *p, *next;
1632
1633 for (p = classp;
1634 (next = p->next_same_value) && CHEAPER (next, elt);
1635 p = next)
1636 ;
1637
1638 /* Put it after P and before NEXT. */
1639 elt->next_same_value = next;
1640 if (next)
1641 next->prev_same_value = elt;
1642
1643 elt->prev_same_value = p;
1644 p->next_same_value = elt;
1645 elt->first_same_value = classp;
1646 }
1647 }
1648 else
1649 elt->first_same_value = elt;
1650
1651 /* If this is a constant being set equivalent to a register or a register
1652 being set equivalent to a constant, note the constant equivalence.
1653
1654 If this is a constant, it cannot be equivalent to a different constant,
1655 and a constant is the only thing that can be cheaper than a register. So
1656 we know the register is the head of the class (before the constant was
1657 inserted).
1658
1659 If this is a register that is not already known equivalent to a
1660 constant, we must check the entire class.
1661
1662 If this is a register that is already known equivalent to an insn,
1663 update the qtys `const_insn' to show that `this_insn' is the latest
1664 insn making that quantity equivalent to the constant. */
1665
1666 if (elt->is_const && classp && REG_P (classp->exp)
1667 && !REG_P (x))
1668 {
1669 int exp_q = REG_QTY (REGNO (classp->exp));
1670 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1671
1672 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1673 exp_ent->const_insn = this_insn;
1674 }
1675
1676 else if (REG_P (x)
1677 && classp
1678 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1679 && ! elt->is_const)
1680 {
1681 struct table_elt *p;
1682
1683 for (p = classp; p != 0; p = p->next_same_value)
1684 {
1685 if (p->is_const && !REG_P (p->exp))
1686 {
1687 int x_q = REG_QTY (REGNO (x));
1688 struct qty_table_elem *x_ent = &qty_table[x_q];
1689
1690 x_ent->const_rtx
1691 = gen_lowpart (GET_MODE (x), p->exp);
1692 x_ent->const_insn = this_insn;
1693 break;
1694 }
1695 }
1696 }
1697
1698 else if (REG_P (x)
1699 && qty_table[REG_QTY (REGNO (x))].const_rtx
1700 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1701 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1702
1703 /* If this is a constant with symbolic value,
1704 and it has a term with an explicit integer value,
1705 link it up with related expressions. */
1706 if (GET_CODE (x) == CONST)
1707 {
1708 rtx subexp = get_related_value (x);
1709 unsigned subhash;
1710 struct table_elt *subelt, *subelt_prev;
1711
1712 if (subexp != 0)
1713 {
1714 /* Get the integer-free subexpression in the hash table. */
1715 subhash = SAFE_HASH (subexp, mode);
1716 subelt = lookup (subexp, subhash, mode);
1717 if (subelt == 0)
1718 subelt = insert (subexp, NULL, subhash, mode);
1719 /* Initialize SUBELT's circular chain if it has none. */
1720 if (subelt->related_value == 0)
1721 subelt->related_value = subelt;
1722 /* Find the element in the circular chain that precedes SUBELT. */
1723 subelt_prev = subelt;
1724 while (subelt_prev->related_value != subelt)
1725 subelt_prev = subelt_prev->related_value;
1726 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1727 This way the element that follows SUBELT is the oldest one. */
1728 elt->related_value = subelt_prev->related_value;
1729 subelt_prev->related_value = elt;
1730 }
1731 }
1732
1733 return elt;
1734 }
1735
1736 /* Wrap insert_with_costs by passing the default costs. */
1737
1738 static struct table_elt *
1739 insert (rtx x, struct table_elt *classp, unsigned int hash,
1740 enum machine_mode mode)
1741 {
1742 return
1743 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1744 }
1745
1746 \f
1747 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1748 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1749 the two classes equivalent.
1750
1751 CLASS1 will be the surviving class; CLASS2 should not be used after this
1752 call.
1753
1754 Any invalid entries in CLASS2 will not be copied. */
1755
1756 static void
1757 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1758 {
1759 struct table_elt *elt, *next, *new_elt;
1760
1761 /* Ensure we start with the head of the classes. */
1762 class1 = class1->first_same_value;
1763 class2 = class2->first_same_value;
1764
1765 /* If they were already equal, forget it. */
1766 if (class1 == class2)
1767 return;
1768
1769 for (elt = class2; elt; elt = next)
1770 {
1771 unsigned int hash;
1772 rtx exp = elt->exp;
1773 enum machine_mode mode = elt->mode;
1774
1775 next = elt->next_same_value;
1776
1777 /* Remove old entry, make a new one in CLASS1's class.
1778 Don't do this for invalid entries as we cannot find their
1779 hash code (it also isn't necessary). */
1780 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1781 {
1782 bool need_rehash = false;
1783
1784 hash_arg_in_memory = 0;
1785 hash = HASH (exp, mode);
1786
1787 if (REG_P (exp))
1788 {
1789 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1790 delete_reg_equiv (REGNO (exp));
1791 }
1792
1793 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1794 remove_pseudo_from_table (exp, hash);
1795 else
1796 remove_from_table (elt, hash);
1797
1798 if (insert_regs (exp, class1, 0) || need_rehash)
1799 {
1800 rehash_using_reg (exp);
1801 hash = HASH (exp, mode);
1802 }
1803 new_elt = insert (exp, class1, hash, mode);
1804 new_elt->in_memory = hash_arg_in_memory;
1805 }
1806 }
1807 }
1808 \f
1809 /* Flush the entire hash table. */
1810
1811 static void
1812 flush_hash_table (void)
1813 {
1814 int i;
1815 struct table_elt *p;
1816
1817 for (i = 0; i < HASH_SIZE; i++)
1818 for (p = table[i]; p; p = table[i])
1819 {
1820 /* Note that invalidate can remove elements
1821 after P in the current hash chain. */
1822 if (REG_P (p->exp))
1823 invalidate (p->exp, VOIDmode);
1824 else
1825 remove_from_table (p, i);
1826 }
1827 }
1828 \f
1829 /* Function called for each rtx to check whether true dependence exist. */
1830 struct check_dependence_data
1831 {
1832 enum machine_mode mode;
1833 rtx exp;
1834 rtx addr;
1835 };
1836
1837 static int
1838 check_dependence (rtx *x, void *data)
1839 {
1840 struct check_dependence_data *d = (struct check_dependence_data *) data;
1841 if (*x && MEM_P (*x))
1842 return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX);
1843 else
1844 return 0;
1845 }
1846 \f
1847 /* Remove from the hash table, or mark as invalid, all expressions whose
1848 values could be altered by storing in X. X is a register, a subreg, or
1849 a memory reference with nonvarying address (because, when a memory
1850 reference with a varying address is stored in, all memory references are
1851 removed by invalidate_memory so specific invalidation is superfluous).
1852 FULL_MODE, if not VOIDmode, indicates that this much should be
1853 invalidated instead of just the amount indicated by the mode of X. This
1854 is only used for bitfield stores into memory.
1855
1856 A nonvarying address may be just a register or just a symbol reference,
1857 or it may be either of those plus a numeric offset. */
1858
1859 static void
1860 invalidate (rtx x, enum machine_mode full_mode)
1861 {
1862 int i;
1863 struct table_elt *p;
1864 rtx addr;
1865
1866 switch (GET_CODE (x))
1867 {
1868 case REG:
1869 {
1870 /* If X is a register, dependencies on its contents are recorded
1871 through the qty number mechanism. Just change the qty number of
1872 the register, mark it as invalid for expressions that refer to it,
1873 and remove it itself. */
1874 unsigned int regno = REGNO (x);
1875 unsigned int hash = HASH (x, GET_MODE (x));
1876
1877 /* Remove REGNO from any quantity list it might be on and indicate
1878 that its value might have changed. If it is a pseudo, remove its
1879 entry from the hash table.
1880
1881 For a hard register, we do the first two actions above for any
1882 additional hard registers corresponding to X. Then, if any of these
1883 registers are in the table, we must remove any REG entries that
1884 overlap these registers. */
1885
1886 delete_reg_equiv (regno);
1887 REG_TICK (regno)++;
1888 SUBREG_TICKED (regno) = -1;
1889
1890 if (regno >= FIRST_PSEUDO_REGISTER)
1891 remove_pseudo_from_table (x, hash);
1892 else
1893 {
1894 HOST_WIDE_INT in_table
1895 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1896 unsigned int endregno = END_HARD_REGNO (x);
1897 unsigned int tregno, tendregno, rn;
1898 struct table_elt *p, *next;
1899
1900 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1901
1902 for (rn = regno + 1; rn < endregno; rn++)
1903 {
1904 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1905 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1906 delete_reg_equiv (rn);
1907 REG_TICK (rn)++;
1908 SUBREG_TICKED (rn) = -1;
1909 }
1910
1911 if (in_table)
1912 for (hash = 0; hash < HASH_SIZE; hash++)
1913 for (p = table[hash]; p; p = next)
1914 {
1915 next = p->next_same_hash;
1916
1917 if (!REG_P (p->exp)
1918 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1919 continue;
1920
1921 tregno = REGNO (p->exp);
1922 tendregno = END_HARD_REGNO (p->exp);
1923 if (tendregno > regno && tregno < endregno)
1924 remove_from_table (p, hash);
1925 }
1926 }
1927 }
1928 return;
1929
1930 case SUBREG:
1931 invalidate (SUBREG_REG (x), VOIDmode);
1932 return;
1933
1934 case PARALLEL:
1935 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1936 invalidate (XVECEXP (x, 0, i), VOIDmode);
1937 return;
1938
1939 case EXPR_LIST:
1940 /* This is part of a disjoint return value; extract the location in
1941 question ignoring the offset. */
1942 invalidate (XEXP (x, 0), VOIDmode);
1943 return;
1944
1945 case MEM:
1946 addr = canon_rtx (get_addr (XEXP (x, 0)));
1947 /* Calculate the canonical version of X here so that
1948 true_dependence doesn't generate new RTL for X on each call. */
1949 x = canon_rtx (x);
1950
1951 /* Remove all hash table elements that refer to overlapping pieces of
1952 memory. */
1953 if (full_mode == VOIDmode)
1954 full_mode = GET_MODE (x);
1955
1956 for (i = 0; i < HASH_SIZE; i++)
1957 {
1958 struct table_elt *next;
1959
1960 for (p = table[i]; p; p = next)
1961 {
1962 next = p->next_same_hash;
1963 if (p->in_memory)
1964 {
1965 struct check_dependence_data d;
1966
1967 /* Just canonicalize the expression once;
1968 otherwise each time we call invalidate
1969 true_dependence will canonicalize the
1970 expression again. */
1971 if (!p->canon_exp)
1972 p->canon_exp = canon_rtx (p->exp);
1973 d.exp = x;
1974 d.addr = addr;
1975 d.mode = full_mode;
1976 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1977 remove_from_table (p, i);
1978 }
1979 }
1980 }
1981 return;
1982
1983 default:
1984 gcc_unreachable ();
1985 }
1986 }
1987 \f
1988 /* Remove all expressions that refer to register REGNO,
1989 since they are already invalid, and we are about to
1990 mark that register valid again and don't want the old
1991 expressions to reappear as valid. */
1992
1993 static void
1994 remove_invalid_refs (unsigned int regno)
1995 {
1996 unsigned int i;
1997 struct table_elt *p, *next;
1998
1999 for (i = 0; i < HASH_SIZE; i++)
2000 for (p = table[i]; p; p = next)
2001 {
2002 next = p->next_same_hash;
2003 if (!REG_P (p->exp)
2004 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2005 remove_from_table (p, i);
2006 }
2007 }
2008
2009 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2010 and mode MODE. */
2011 static void
2012 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2013 enum machine_mode mode)
2014 {
2015 unsigned int i;
2016 struct table_elt *p, *next;
2017 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2018
2019 for (i = 0; i < HASH_SIZE; i++)
2020 for (p = table[i]; p; p = next)
2021 {
2022 rtx exp = p->exp;
2023 next = p->next_same_hash;
2024
2025 if (!REG_P (exp)
2026 && (GET_CODE (exp) != SUBREG
2027 || !REG_P (SUBREG_REG (exp))
2028 || REGNO (SUBREG_REG (exp)) != regno
2029 || (((SUBREG_BYTE (exp)
2030 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2031 && SUBREG_BYTE (exp) <= end))
2032 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2033 remove_from_table (p, i);
2034 }
2035 }
2036 \f
2037 /* Recompute the hash codes of any valid entries in the hash table that
2038 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2039
2040 This is called when we make a jump equivalence. */
2041
2042 static void
2043 rehash_using_reg (rtx x)
2044 {
2045 unsigned int i;
2046 struct table_elt *p, *next;
2047 unsigned hash;
2048
2049 if (GET_CODE (x) == SUBREG)
2050 x = SUBREG_REG (x);
2051
2052 /* If X is not a register or if the register is known not to be in any
2053 valid entries in the table, we have no work to do. */
2054
2055 if (!REG_P (x)
2056 || REG_IN_TABLE (REGNO (x)) < 0
2057 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2058 return;
2059
2060 /* Scan all hash chains looking for valid entries that mention X.
2061 If we find one and it is in the wrong hash chain, move it. */
2062
2063 for (i = 0; i < HASH_SIZE; i++)
2064 for (p = table[i]; p; p = next)
2065 {
2066 next = p->next_same_hash;
2067 if (reg_mentioned_p (x, p->exp)
2068 && exp_equiv_p (p->exp, p->exp, 1, false)
2069 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2070 {
2071 if (p->next_same_hash)
2072 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2073
2074 if (p->prev_same_hash)
2075 p->prev_same_hash->next_same_hash = p->next_same_hash;
2076 else
2077 table[i] = p->next_same_hash;
2078
2079 p->next_same_hash = table[hash];
2080 p->prev_same_hash = 0;
2081 if (table[hash])
2082 table[hash]->prev_same_hash = p;
2083 table[hash] = p;
2084 }
2085 }
2086 }
2087 \f
2088 /* Remove from the hash table any expression that is a call-clobbered
2089 register. Also update their TICK values. */
2090
2091 static void
2092 invalidate_for_call (void)
2093 {
2094 unsigned int regno, endregno;
2095 unsigned int i;
2096 unsigned hash;
2097 struct table_elt *p, *next;
2098 int in_table = 0;
2099
2100 /* Go through all the hard registers. For each that is clobbered in
2101 a CALL_INSN, remove the register from quantity chains and update
2102 reg_tick if defined. Also see if any of these registers is currently
2103 in the table. */
2104
2105 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2106 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2107 {
2108 delete_reg_equiv (regno);
2109 if (REG_TICK (regno) >= 0)
2110 {
2111 REG_TICK (regno)++;
2112 SUBREG_TICKED (regno) = -1;
2113 }
2114
2115 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2116 }
2117
2118 /* In the case where we have no call-clobbered hard registers in the
2119 table, we are done. Otherwise, scan the table and remove any
2120 entry that overlaps a call-clobbered register. */
2121
2122 if (in_table)
2123 for (hash = 0; hash < HASH_SIZE; hash++)
2124 for (p = table[hash]; p; p = next)
2125 {
2126 next = p->next_same_hash;
2127
2128 if (!REG_P (p->exp)
2129 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2130 continue;
2131
2132 regno = REGNO (p->exp);
2133 endregno = END_HARD_REGNO (p->exp);
2134
2135 for (i = regno; i < endregno; i++)
2136 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2137 {
2138 remove_from_table (p, hash);
2139 break;
2140 }
2141 }
2142 }
2143 \f
2144 /* Given an expression X of type CONST,
2145 and ELT which is its table entry (or 0 if it
2146 is not in the hash table),
2147 return an alternate expression for X as a register plus integer.
2148 If none can be found, return 0. */
2149
2150 static rtx
2151 use_related_value (rtx x, struct table_elt *elt)
2152 {
2153 struct table_elt *relt = 0;
2154 struct table_elt *p, *q;
2155 HOST_WIDE_INT offset;
2156
2157 /* First, is there anything related known?
2158 If we have a table element, we can tell from that.
2159 Otherwise, must look it up. */
2160
2161 if (elt != 0 && elt->related_value != 0)
2162 relt = elt;
2163 else if (elt == 0 && GET_CODE (x) == CONST)
2164 {
2165 rtx subexp = get_related_value (x);
2166 if (subexp != 0)
2167 relt = lookup (subexp,
2168 SAFE_HASH (subexp, GET_MODE (subexp)),
2169 GET_MODE (subexp));
2170 }
2171
2172 if (relt == 0)
2173 return 0;
2174
2175 /* Search all related table entries for one that has an
2176 equivalent register. */
2177
2178 p = relt;
2179 while (1)
2180 {
2181 /* This loop is strange in that it is executed in two different cases.
2182 The first is when X is already in the table. Then it is searching
2183 the RELATED_VALUE list of X's class (RELT). The second case is when
2184 X is not in the table. Then RELT points to a class for the related
2185 value.
2186
2187 Ensure that, whatever case we are in, that we ignore classes that have
2188 the same value as X. */
2189
2190 if (rtx_equal_p (x, p->exp))
2191 q = 0;
2192 else
2193 for (q = p->first_same_value; q; q = q->next_same_value)
2194 if (REG_P (q->exp))
2195 break;
2196
2197 if (q)
2198 break;
2199
2200 p = p->related_value;
2201
2202 /* We went all the way around, so there is nothing to be found.
2203 Alternatively, perhaps RELT was in the table for some other reason
2204 and it has no related values recorded. */
2205 if (p == relt || p == 0)
2206 break;
2207 }
2208
2209 if (q == 0)
2210 return 0;
2211
2212 offset = (get_integer_term (x) - get_integer_term (p->exp));
2213 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2214 return plus_constant (q->mode, q->exp, offset);
2215 }
2216 \f
2217
2218 /* Hash a string. Just add its bytes up. */
2219 static inline unsigned
2220 hash_rtx_string (const char *ps)
2221 {
2222 unsigned hash = 0;
2223 const unsigned char *p = (const unsigned char *) ps;
2224
2225 if (p)
2226 while (*p)
2227 hash += *p++;
2228
2229 return hash;
2230 }
2231
2232 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2233 When the callback returns true, we continue with the new rtx. */
2234
2235 unsigned
2236 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2237 int *do_not_record_p, int *hash_arg_in_memory_p,
2238 bool have_reg_qty, hash_rtx_callback_function cb)
2239 {
2240 int i, j;
2241 unsigned hash = 0;
2242 enum rtx_code code;
2243 const char *fmt;
2244 enum machine_mode newmode;
2245 rtx newx;
2246
2247 /* Used to turn recursion into iteration. We can't rely on GCC's
2248 tail-recursion elimination since we need to keep accumulating values
2249 in HASH. */
2250 repeat:
2251 if (x == 0)
2252 return hash;
2253
2254 /* Invoke the callback first. */
2255 if (cb != NULL
2256 && ((*cb) (x, mode, &newx, &newmode)))
2257 {
2258 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2259 hash_arg_in_memory_p, have_reg_qty, cb);
2260 return hash;
2261 }
2262
2263 code = GET_CODE (x);
2264 switch (code)
2265 {
2266 case REG:
2267 {
2268 unsigned int regno = REGNO (x);
2269
2270 if (do_not_record_p && !reload_completed)
2271 {
2272 /* On some machines, we can't record any non-fixed hard register,
2273 because extending its life will cause reload problems. We
2274 consider ap, fp, sp, gp to be fixed for this purpose.
2275
2276 We also consider CCmode registers to be fixed for this purpose;
2277 failure to do so leads to failure to simplify 0<100 type of
2278 conditionals.
2279
2280 On all machines, we can't record any global registers.
2281 Nor should we record any register that is in a small
2282 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2283 bool record;
2284
2285 if (regno >= FIRST_PSEUDO_REGISTER)
2286 record = true;
2287 else if (x == frame_pointer_rtx
2288 || x == hard_frame_pointer_rtx
2289 || x == arg_pointer_rtx
2290 || x == stack_pointer_rtx
2291 || x == pic_offset_table_rtx)
2292 record = true;
2293 else if (global_regs[regno])
2294 record = false;
2295 else if (fixed_regs[regno])
2296 record = true;
2297 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2298 record = true;
2299 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2300 record = false;
2301 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2302 record = false;
2303 else
2304 record = true;
2305
2306 if (!record)
2307 {
2308 *do_not_record_p = 1;
2309 return 0;
2310 }
2311 }
2312
2313 hash += ((unsigned int) REG << 7);
2314 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2315 return hash;
2316 }
2317
2318 /* We handle SUBREG of a REG specially because the underlying
2319 reg changes its hash value with every value change; we don't
2320 want to have to forget unrelated subregs when one subreg changes. */
2321 case SUBREG:
2322 {
2323 if (REG_P (SUBREG_REG (x)))
2324 {
2325 hash += (((unsigned int) SUBREG << 7)
2326 + REGNO (SUBREG_REG (x))
2327 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2328 return hash;
2329 }
2330 break;
2331 }
2332
2333 case CONST_INT:
2334 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2335 + (unsigned int) INTVAL (x));
2336 return hash;
2337
2338 case CONST_DOUBLE:
2339 /* This is like the general case, except that it only counts
2340 the integers representing the constant. */
2341 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2342 if (GET_MODE (x) != VOIDmode)
2343 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2344 else
2345 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2346 + (unsigned int) CONST_DOUBLE_HIGH (x));
2347 return hash;
2348
2349 case CONST_FIXED:
2350 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2351 hash += fixed_hash (CONST_FIXED_VALUE (x));
2352 return hash;
2353
2354 case CONST_VECTOR:
2355 {
2356 int units;
2357 rtx elt;
2358
2359 units = CONST_VECTOR_NUNITS (x);
2360
2361 for (i = 0; i < units; ++i)
2362 {
2363 elt = CONST_VECTOR_ELT (x, i);
2364 hash += hash_rtx_cb (elt, GET_MODE (elt),
2365 do_not_record_p, hash_arg_in_memory_p,
2366 have_reg_qty, cb);
2367 }
2368
2369 return hash;
2370 }
2371
2372 /* Assume there is only one rtx object for any given label. */
2373 case LABEL_REF:
2374 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2375 differences and differences between each stage's debugging dumps. */
2376 hash += (((unsigned int) LABEL_REF << 7)
2377 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2378 return hash;
2379
2380 case SYMBOL_REF:
2381 {
2382 /* Don't hash on the symbol's address to avoid bootstrap differences.
2383 Different hash values may cause expressions to be recorded in
2384 different orders and thus different registers to be used in the
2385 final assembler. This also avoids differences in the dump files
2386 between various stages. */
2387 unsigned int h = 0;
2388 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2389
2390 while (*p)
2391 h += (h << 7) + *p++; /* ??? revisit */
2392
2393 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2394 return hash;
2395 }
2396
2397 case MEM:
2398 /* We don't record if marked volatile or if BLKmode since we don't
2399 know the size of the move. */
2400 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2401 {
2402 *do_not_record_p = 1;
2403 return 0;
2404 }
2405 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2406 *hash_arg_in_memory_p = 1;
2407
2408 /* Now that we have already found this special case,
2409 might as well speed it up as much as possible. */
2410 hash += (unsigned) MEM;
2411 x = XEXP (x, 0);
2412 goto repeat;
2413
2414 case USE:
2415 /* A USE that mentions non-volatile memory needs special
2416 handling since the MEM may be BLKmode which normally
2417 prevents an entry from being made. Pure calls are
2418 marked by a USE which mentions BLKmode memory.
2419 See calls.c:emit_call_1. */
2420 if (MEM_P (XEXP (x, 0))
2421 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2422 {
2423 hash += (unsigned) USE;
2424 x = XEXP (x, 0);
2425
2426 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2427 *hash_arg_in_memory_p = 1;
2428
2429 /* Now that we have already found this special case,
2430 might as well speed it up as much as possible. */
2431 hash += (unsigned) MEM;
2432 x = XEXP (x, 0);
2433 goto repeat;
2434 }
2435 break;
2436
2437 case PRE_DEC:
2438 case PRE_INC:
2439 case POST_DEC:
2440 case POST_INC:
2441 case PRE_MODIFY:
2442 case POST_MODIFY:
2443 case PC:
2444 case CC0:
2445 case CALL:
2446 case UNSPEC_VOLATILE:
2447 if (do_not_record_p) {
2448 *do_not_record_p = 1;
2449 return 0;
2450 }
2451 else
2452 return hash;
2453 break;
2454
2455 case ASM_OPERANDS:
2456 if (do_not_record_p && MEM_VOLATILE_P (x))
2457 {
2458 *do_not_record_p = 1;
2459 return 0;
2460 }
2461 else
2462 {
2463 /* We don't want to take the filename and line into account. */
2464 hash += (unsigned) code + (unsigned) GET_MODE (x)
2465 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2466 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2467 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2468
2469 if (ASM_OPERANDS_INPUT_LENGTH (x))
2470 {
2471 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2472 {
2473 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2474 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2475 do_not_record_p, hash_arg_in_memory_p,
2476 have_reg_qty, cb)
2477 + hash_rtx_string
2478 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2479 }
2480
2481 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2482 x = ASM_OPERANDS_INPUT (x, 0);
2483 mode = GET_MODE (x);
2484 goto repeat;
2485 }
2486
2487 return hash;
2488 }
2489 break;
2490
2491 default:
2492 break;
2493 }
2494
2495 i = GET_RTX_LENGTH (code) - 1;
2496 hash += (unsigned) code + (unsigned) GET_MODE (x);
2497 fmt = GET_RTX_FORMAT (code);
2498 for (; i >= 0; i--)
2499 {
2500 switch (fmt[i])
2501 {
2502 case 'e':
2503 /* If we are about to do the last recursive call
2504 needed at this level, change it into iteration.
2505 This function is called enough to be worth it. */
2506 if (i == 0)
2507 {
2508 x = XEXP (x, i);
2509 goto repeat;
2510 }
2511
2512 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2513 hash_arg_in_memory_p,
2514 have_reg_qty, cb);
2515 break;
2516
2517 case 'E':
2518 for (j = 0; j < XVECLEN (x, i); j++)
2519 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2520 hash_arg_in_memory_p,
2521 have_reg_qty, cb);
2522 break;
2523
2524 case 's':
2525 hash += hash_rtx_string (XSTR (x, i));
2526 break;
2527
2528 case 'i':
2529 hash += (unsigned int) XINT (x, i);
2530 break;
2531
2532 case '0': case 't':
2533 /* Unused. */
2534 break;
2535
2536 default:
2537 gcc_unreachable ();
2538 }
2539 }
2540
2541 return hash;
2542 }
2543
2544 /* Hash an rtx. We are careful to make sure the value is never negative.
2545 Equivalent registers hash identically.
2546 MODE is used in hashing for CONST_INTs only;
2547 otherwise the mode of X is used.
2548
2549 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2550
2551 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2552 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2553
2554 Note that cse_insn knows that the hash code of a MEM expression
2555 is just (int) MEM plus the hash code of the address. */
2556
2557 unsigned
2558 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2559 int *hash_arg_in_memory_p, bool have_reg_qty)
2560 {
2561 return hash_rtx_cb (x, mode, do_not_record_p,
2562 hash_arg_in_memory_p, have_reg_qty, NULL);
2563 }
2564
2565 /* Hash an rtx X for cse via hash_rtx.
2566 Stores 1 in do_not_record if any subexpression is volatile.
2567 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2568 does not have the RTX_UNCHANGING_P bit set. */
2569
2570 static inline unsigned
2571 canon_hash (rtx x, enum machine_mode mode)
2572 {
2573 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2574 }
2575
2576 /* Like canon_hash but with no side effects, i.e. do_not_record
2577 and hash_arg_in_memory are not changed. */
2578
2579 static inline unsigned
2580 safe_hash (rtx x, enum machine_mode mode)
2581 {
2582 int dummy_do_not_record;
2583 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2584 }
2585 \f
2586 /* Return 1 iff X and Y would canonicalize into the same thing,
2587 without actually constructing the canonicalization of either one.
2588 If VALIDATE is nonzero,
2589 we assume X is an expression being processed from the rtl
2590 and Y was found in the hash table. We check register refs
2591 in Y for being marked as valid.
2592
2593 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2594
2595 int
2596 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2597 {
2598 int i, j;
2599 enum rtx_code code;
2600 const char *fmt;
2601
2602 /* Note: it is incorrect to assume an expression is equivalent to itself
2603 if VALIDATE is nonzero. */
2604 if (x == y && !validate)
2605 return 1;
2606
2607 if (x == 0 || y == 0)
2608 return x == y;
2609
2610 code = GET_CODE (x);
2611 if (code != GET_CODE (y))
2612 return 0;
2613
2614 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2615 if (GET_MODE (x) != GET_MODE (y))
2616 return 0;
2617
2618 /* MEMs referring to different address space are not equivalent. */
2619 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2620 return 0;
2621
2622 switch (code)
2623 {
2624 case PC:
2625 case CC0:
2626 CASE_CONST_UNIQUE:
2627 return x == y;
2628
2629 case LABEL_REF:
2630 return XEXP (x, 0) == XEXP (y, 0);
2631
2632 case SYMBOL_REF:
2633 return XSTR (x, 0) == XSTR (y, 0);
2634
2635 case REG:
2636 if (for_gcse)
2637 return REGNO (x) == REGNO (y);
2638 else
2639 {
2640 unsigned int regno = REGNO (y);
2641 unsigned int i;
2642 unsigned int endregno = END_REGNO (y);
2643
2644 /* If the quantities are not the same, the expressions are not
2645 equivalent. If there are and we are not to validate, they
2646 are equivalent. Otherwise, ensure all regs are up-to-date. */
2647
2648 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2649 return 0;
2650
2651 if (! validate)
2652 return 1;
2653
2654 for (i = regno; i < endregno; i++)
2655 if (REG_IN_TABLE (i) != REG_TICK (i))
2656 return 0;
2657
2658 return 1;
2659 }
2660
2661 case MEM:
2662 if (for_gcse)
2663 {
2664 /* A volatile mem should not be considered equivalent to any
2665 other. */
2666 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2667 return 0;
2668
2669 /* Can't merge two expressions in different alias sets, since we
2670 can decide that the expression is transparent in a block when
2671 it isn't, due to it being set with the different alias set.
2672
2673 Also, can't merge two expressions with different MEM_ATTRS.
2674 They could e.g. be two different entities allocated into the
2675 same space on the stack (see e.g. PR25130). In that case, the
2676 MEM addresses can be the same, even though the two MEMs are
2677 absolutely not equivalent.
2678
2679 But because really all MEM attributes should be the same for
2680 equivalent MEMs, we just use the invariant that MEMs that have
2681 the same attributes share the same mem_attrs data structure. */
2682 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2683 return 0;
2684 }
2685 break;
2686
2687 /* For commutative operations, check both orders. */
2688 case PLUS:
2689 case MULT:
2690 case AND:
2691 case IOR:
2692 case XOR:
2693 case NE:
2694 case EQ:
2695 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2696 validate, for_gcse)
2697 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2698 validate, for_gcse))
2699 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2700 validate, for_gcse)
2701 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2702 validate, for_gcse)));
2703
2704 case ASM_OPERANDS:
2705 /* We don't use the generic code below because we want to
2706 disregard filename and line numbers. */
2707
2708 /* A volatile asm isn't equivalent to any other. */
2709 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2710 return 0;
2711
2712 if (GET_MODE (x) != GET_MODE (y)
2713 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2714 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2715 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2716 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2717 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2718 return 0;
2719
2720 if (ASM_OPERANDS_INPUT_LENGTH (x))
2721 {
2722 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2723 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2724 ASM_OPERANDS_INPUT (y, i),
2725 validate, for_gcse)
2726 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2727 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2728 return 0;
2729 }
2730
2731 return 1;
2732
2733 default:
2734 break;
2735 }
2736
2737 /* Compare the elements. If any pair of corresponding elements
2738 fail to match, return 0 for the whole thing. */
2739
2740 fmt = GET_RTX_FORMAT (code);
2741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2742 {
2743 switch (fmt[i])
2744 {
2745 case 'e':
2746 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2747 validate, for_gcse))
2748 return 0;
2749 break;
2750
2751 case 'E':
2752 if (XVECLEN (x, i) != XVECLEN (y, i))
2753 return 0;
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2756 validate, for_gcse))
2757 return 0;
2758 break;
2759
2760 case 's':
2761 if (strcmp (XSTR (x, i), XSTR (y, i)))
2762 return 0;
2763 break;
2764
2765 case 'i':
2766 if (XINT (x, i) != XINT (y, i))
2767 return 0;
2768 break;
2769
2770 case 'w':
2771 if (XWINT (x, i) != XWINT (y, i))
2772 return 0;
2773 break;
2774
2775 case '0':
2776 case 't':
2777 break;
2778
2779 default:
2780 gcc_unreachable ();
2781 }
2782 }
2783
2784 return 1;
2785 }
2786 \f
2787 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2788 the result if necessary. INSN is as for canon_reg. */
2789
2790 static void
2791 validate_canon_reg (rtx *xloc, rtx insn)
2792 {
2793 if (*xloc)
2794 {
2795 rtx new_rtx = canon_reg (*xloc, insn);
2796
2797 /* If replacing pseudo with hard reg or vice versa, ensure the
2798 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2799 gcc_assert (insn && new_rtx);
2800 validate_change (insn, xloc, new_rtx, 1);
2801 }
2802 }
2803
2804 /* Canonicalize an expression:
2805 replace each register reference inside it
2806 with the "oldest" equivalent register.
2807
2808 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2809 after we make our substitution. The calls are made with IN_GROUP nonzero
2810 so apply_change_group must be called upon the outermost return from this
2811 function (unless INSN is zero). The result of apply_change_group can
2812 generally be discarded since the changes we are making are optional. */
2813
2814 static rtx
2815 canon_reg (rtx x, rtx insn)
2816 {
2817 int i;
2818 enum rtx_code code;
2819 const char *fmt;
2820
2821 if (x == 0)
2822 return x;
2823
2824 code = GET_CODE (x);
2825 switch (code)
2826 {
2827 case PC:
2828 case CC0:
2829 case CONST:
2830 CASE_CONST_ANY:
2831 case SYMBOL_REF:
2832 case LABEL_REF:
2833 case ADDR_VEC:
2834 case ADDR_DIFF_VEC:
2835 return x;
2836
2837 case REG:
2838 {
2839 int first;
2840 int q;
2841 struct qty_table_elem *ent;
2842
2843 /* Never replace a hard reg, because hard regs can appear
2844 in more than one machine mode, and we must preserve the mode
2845 of each occurrence. Also, some hard regs appear in
2846 MEMs that are shared and mustn't be altered. Don't try to
2847 replace any reg that maps to a reg of class NO_REGS. */
2848 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2849 || ! REGNO_QTY_VALID_P (REGNO (x)))
2850 return x;
2851
2852 q = REG_QTY (REGNO (x));
2853 ent = &qty_table[q];
2854 first = ent->first_reg;
2855 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2856 : REGNO_REG_CLASS (first) == NO_REGS ? x
2857 : gen_rtx_REG (ent->mode, first));
2858 }
2859
2860 default:
2861 break;
2862 }
2863
2864 fmt = GET_RTX_FORMAT (code);
2865 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2866 {
2867 int j;
2868
2869 if (fmt[i] == 'e')
2870 validate_canon_reg (&XEXP (x, i), insn);
2871 else if (fmt[i] == 'E')
2872 for (j = 0; j < XVECLEN (x, i); j++)
2873 validate_canon_reg (&XVECEXP (x, i, j), insn);
2874 }
2875
2876 return x;
2877 }
2878 \f
2879 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2880 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2881 what values are being compared.
2882
2883 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2884 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2885 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2886 compared to produce cc0.
2887
2888 The return value is the comparison operator and is either the code of
2889 A or the code corresponding to the inverse of the comparison. */
2890
2891 static enum rtx_code
2892 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2893 enum machine_mode *pmode1, enum machine_mode *pmode2)
2894 {
2895 rtx arg1, arg2;
2896 struct pointer_set_t *visited = NULL;
2897 /* Set nonzero when we find something of interest. */
2898 rtx x = NULL;
2899
2900 arg1 = *parg1, arg2 = *parg2;
2901
2902 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2903
2904 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2905 {
2906 int reverse_code = 0;
2907 struct table_elt *p = 0;
2908
2909 /* Remember state from previous iteration. */
2910 if (x)
2911 {
2912 if (!visited)
2913 visited = pointer_set_create ();
2914 pointer_set_insert (visited, x);
2915 x = 0;
2916 }
2917
2918 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2919 On machines with CC0, this is the only case that can occur, since
2920 fold_rtx will return the COMPARE or item being compared with zero
2921 when given CC0. */
2922
2923 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2924 x = arg1;
2925
2926 /* If ARG1 is a comparison operator and CODE is testing for
2927 STORE_FLAG_VALUE, get the inner arguments. */
2928
2929 else if (COMPARISON_P (arg1))
2930 {
2931 #ifdef FLOAT_STORE_FLAG_VALUE
2932 REAL_VALUE_TYPE fsfv;
2933 #endif
2934
2935 if (code == NE
2936 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2937 && code == LT && STORE_FLAG_VALUE == -1)
2938 #ifdef FLOAT_STORE_FLAG_VALUE
2939 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2940 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2941 REAL_VALUE_NEGATIVE (fsfv)))
2942 #endif
2943 )
2944 x = arg1;
2945 else if (code == EQ
2946 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2947 && code == GE && STORE_FLAG_VALUE == -1)
2948 #ifdef FLOAT_STORE_FLAG_VALUE
2949 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2950 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2951 REAL_VALUE_NEGATIVE (fsfv)))
2952 #endif
2953 )
2954 x = arg1, reverse_code = 1;
2955 }
2956
2957 /* ??? We could also check for
2958
2959 (ne (and (eq (...) (const_int 1))) (const_int 0))
2960
2961 and related forms, but let's wait until we see them occurring. */
2962
2963 if (x == 0)
2964 /* Look up ARG1 in the hash table and see if it has an equivalence
2965 that lets us see what is being compared. */
2966 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2967 if (p)
2968 {
2969 p = p->first_same_value;
2970
2971 /* If what we compare is already known to be constant, that is as
2972 good as it gets.
2973 We need to break the loop in this case, because otherwise we
2974 can have an infinite loop when looking at a reg that is known
2975 to be a constant which is the same as a comparison of a reg
2976 against zero which appears later in the insn stream, which in
2977 turn is constant and the same as the comparison of the first reg
2978 against zero... */
2979 if (p->is_const)
2980 break;
2981 }
2982
2983 for (; p; p = p->next_same_value)
2984 {
2985 enum machine_mode inner_mode = GET_MODE (p->exp);
2986 #ifdef FLOAT_STORE_FLAG_VALUE
2987 REAL_VALUE_TYPE fsfv;
2988 #endif
2989
2990 /* If the entry isn't valid, skip it. */
2991 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2992 continue;
2993
2994 /* If it's a comparison we've used before, skip it. */
2995 if (visited && pointer_set_contains (visited, p->exp))
2996 continue;
2997
2998 if (GET_CODE (p->exp) == COMPARE
2999 /* Another possibility is that this machine has a compare insn
3000 that includes the comparison code. In that case, ARG1 would
3001 be equivalent to a comparison operation that would set ARG1 to
3002 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3003 ORIG_CODE is the actual comparison being done; if it is an EQ,
3004 we must reverse ORIG_CODE. On machine with a negative value
3005 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3006 || ((code == NE
3007 || (code == LT
3008 && val_signbit_known_set_p (inner_mode,
3009 STORE_FLAG_VALUE))
3010 #ifdef FLOAT_STORE_FLAG_VALUE
3011 || (code == LT
3012 && SCALAR_FLOAT_MODE_P (inner_mode)
3013 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3014 REAL_VALUE_NEGATIVE (fsfv)))
3015 #endif
3016 )
3017 && COMPARISON_P (p->exp)))
3018 {
3019 x = p->exp;
3020 break;
3021 }
3022 else if ((code == EQ
3023 || (code == GE
3024 && val_signbit_known_set_p (inner_mode,
3025 STORE_FLAG_VALUE))
3026 #ifdef FLOAT_STORE_FLAG_VALUE
3027 || (code == GE
3028 && SCALAR_FLOAT_MODE_P (inner_mode)
3029 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3030 REAL_VALUE_NEGATIVE (fsfv)))
3031 #endif
3032 )
3033 && COMPARISON_P (p->exp))
3034 {
3035 reverse_code = 1;
3036 x = p->exp;
3037 break;
3038 }
3039
3040 /* If this non-trapping address, e.g. fp + constant, the
3041 equivalent is a better operand since it may let us predict
3042 the value of the comparison. */
3043 else if (!rtx_addr_can_trap_p (p->exp))
3044 {
3045 arg1 = p->exp;
3046 continue;
3047 }
3048 }
3049
3050 /* If we didn't find a useful equivalence for ARG1, we are done.
3051 Otherwise, set up for the next iteration. */
3052 if (x == 0)
3053 break;
3054
3055 /* If we need to reverse the comparison, make sure that that is
3056 possible -- we can't necessarily infer the value of GE from LT
3057 with floating-point operands. */
3058 if (reverse_code)
3059 {
3060 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3061 if (reversed == UNKNOWN)
3062 break;
3063 else
3064 code = reversed;
3065 }
3066 else if (COMPARISON_P (x))
3067 code = GET_CODE (x);
3068 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3069 }
3070
3071 /* Return our results. Return the modes from before fold_rtx
3072 because fold_rtx might produce const_int, and then it's too late. */
3073 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3074 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3075
3076 if (visited)
3077 pointer_set_destroy (visited);
3078 return code;
3079 }
3080 \f
3081 /* If X is a nontrivial arithmetic operation on an argument for which
3082 a constant value can be determined, return the result of operating
3083 on that value, as a constant. Otherwise, return X, possibly with
3084 one or more operands changed to a forward-propagated constant.
3085
3086 If X is a register whose contents are known, we do NOT return
3087 those contents here; equiv_constant is called to perform that task.
3088 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3089
3090 INSN is the insn that we may be modifying. If it is 0, make a copy
3091 of X before modifying it. */
3092
3093 static rtx
3094 fold_rtx (rtx x, rtx insn)
3095 {
3096 enum rtx_code code;
3097 enum machine_mode mode;
3098 const char *fmt;
3099 int i;
3100 rtx new_rtx = 0;
3101 int changed = 0;
3102
3103 /* Operands of X. */
3104 rtx folded_arg0;
3105 rtx folded_arg1;
3106
3107 /* Constant equivalents of first three operands of X;
3108 0 when no such equivalent is known. */
3109 rtx const_arg0;
3110 rtx const_arg1;
3111 rtx const_arg2;
3112
3113 /* The mode of the first operand of X. We need this for sign and zero
3114 extends. */
3115 enum machine_mode mode_arg0;
3116
3117 if (x == 0)
3118 return x;
3119
3120 /* Try to perform some initial simplifications on X. */
3121 code = GET_CODE (x);
3122 switch (code)
3123 {
3124 case MEM:
3125 case SUBREG:
3126 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3127 return new_rtx;
3128 return x;
3129
3130 case CONST:
3131 CASE_CONST_ANY:
3132 case SYMBOL_REF:
3133 case LABEL_REF:
3134 case REG:
3135 case PC:
3136 /* No use simplifying an EXPR_LIST
3137 since they are used only for lists of args
3138 in a function call's REG_EQUAL note. */
3139 case EXPR_LIST:
3140 return x;
3141
3142 #ifdef HAVE_cc0
3143 case CC0:
3144 return prev_insn_cc0;
3145 #endif
3146
3147 case ASM_OPERANDS:
3148 if (insn)
3149 {
3150 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3151 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3152 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3153 }
3154 return x;
3155
3156 #ifdef NO_FUNCTION_CSE
3157 case CALL:
3158 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3159 return x;
3160 break;
3161 #endif
3162
3163 /* Anything else goes through the loop below. */
3164 default:
3165 break;
3166 }
3167
3168 mode = GET_MODE (x);
3169 const_arg0 = 0;
3170 const_arg1 = 0;
3171 const_arg2 = 0;
3172 mode_arg0 = VOIDmode;
3173
3174 /* Try folding our operands.
3175 Then see which ones have constant values known. */
3176
3177 fmt = GET_RTX_FORMAT (code);
3178 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3179 if (fmt[i] == 'e')
3180 {
3181 rtx folded_arg = XEXP (x, i), const_arg;
3182 enum machine_mode mode_arg = GET_MODE (folded_arg);
3183
3184 switch (GET_CODE (folded_arg))
3185 {
3186 case MEM:
3187 case REG:
3188 case SUBREG:
3189 const_arg = equiv_constant (folded_arg);
3190 break;
3191
3192 case CONST:
3193 CASE_CONST_ANY:
3194 case SYMBOL_REF:
3195 case LABEL_REF:
3196 const_arg = folded_arg;
3197 break;
3198
3199 #ifdef HAVE_cc0
3200 case CC0:
3201 folded_arg = prev_insn_cc0;
3202 mode_arg = prev_insn_cc0_mode;
3203 const_arg = equiv_constant (folded_arg);
3204 break;
3205 #endif
3206
3207 default:
3208 folded_arg = fold_rtx (folded_arg, insn);
3209 const_arg = equiv_constant (folded_arg);
3210 break;
3211 }
3212
3213 /* For the first three operands, see if the operand
3214 is constant or equivalent to a constant. */
3215 switch (i)
3216 {
3217 case 0:
3218 folded_arg0 = folded_arg;
3219 const_arg0 = const_arg;
3220 mode_arg0 = mode_arg;
3221 break;
3222 case 1:
3223 folded_arg1 = folded_arg;
3224 const_arg1 = const_arg;
3225 break;
3226 case 2:
3227 const_arg2 = const_arg;
3228 break;
3229 }
3230
3231 /* Pick the least expensive of the argument and an equivalent constant
3232 argument. */
3233 if (const_arg != 0
3234 && const_arg != folded_arg
3235 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3236
3237 /* It's not safe to substitute the operand of a conversion
3238 operator with a constant, as the conversion's identity
3239 depends upon the mode of its operand. This optimization
3240 is handled by the call to simplify_unary_operation. */
3241 && (GET_RTX_CLASS (code) != RTX_UNARY
3242 || GET_MODE (const_arg) == mode_arg0
3243 || (code != ZERO_EXTEND
3244 && code != SIGN_EXTEND
3245 && code != TRUNCATE
3246 && code != FLOAT_TRUNCATE
3247 && code != FLOAT_EXTEND
3248 && code != FLOAT
3249 && code != FIX
3250 && code != UNSIGNED_FLOAT
3251 && code != UNSIGNED_FIX)))
3252 folded_arg = const_arg;
3253
3254 if (folded_arg == XEXP (x, i))
3255 continue;
3256
3257 if (insn == NULL_RTX && !changed)
3258 x = copy_rtx (x);
3259 changed = 1;
3260 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3261 }
3262
3263 if (changed)
3264 {
3265 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3266 consistent with the order in X. */
3267 if (canonicalize_change_group (insn, x))
3268 {
3269 rtx tem;
3270 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3271 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3272 }
3273
3274 apply_change_group ();
3275 }
3276
3277 /* If X is an arithmetic operation, see if we can simplify it. */
3278
3279 switch (GET_RTX_CLASS (code))
3280 {
3281 case RTX_UNARY:
3282 {
3283 /* We can't simplify extension ops unless we know the
3284 original mode. */
3285 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3286 && mode_arg0 == VOIDmode)
3287 break;
3288
3289 new_rtx = simplify_unary_operation (code, mode,
3290 const_arg0 ? const_arg0 : folded_arg0,
3291 mode_arg0);
3292 }
3293 break;
3294
3295 case RTX_COMPARE:
3296 case RTX_COMM_COMPARE:
3297 /* See what items are actually being compared and set FOLDED_ARG[01]
3298 to those values and CODE to the actual comparison code. If any are
3299 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3300 do anything if both operands are already known to be constant. */
3301
3302 /* ??? Vector mode comparisons are not supported yet. */
3303 if (VECTOR_MODE_P (mode))
3304 break;
3305
3306 if (const_arg0 == 0 || const_arg1 == 0)
3307 {
3308 struct table_elt *p0, *p1;
3309 rtx true_rtx, false_rtx;
3310 enum machine_mode mode_arg1;
3311
3312 if (SCALAR_FLOAT_MODE_P (mode))
3313 {
3314 #ifdef FLOAT_STORE_FLAG_VALUE
3315 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3316 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3317 #else
3318 true_rtx = NULL_RTX;
3319 #endif
3320 false_rtx = CONST0_RTX (mode);
3321 }
3322 else
3323 {
3324 true_rtx = const_true_rtx;
3325 false_rtx = const0_rtx;
3326 }
3327
3328 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3329 &mode_arg0, &mode_arg1);
3330
3331 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3332 what kinds of things are being compared, so we can't do
3333 anything with this comparison. */
3334
3335 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3336 break;
3337
3338 const_arg0 = equiv_constant (folded_arg0);
3339 const_arg1 = equiv_constant (folded_arg1);
3340
3341 /* If we do not now have two constants being compared, see
3342 if we can nevertheless deduce some things about the
3343 comparison. */
3344 if (const_arg0 == 0 || const_arg1 == 0)
3345 {
3346 if (const_arg1 != NULL)
3347 {
3348 rtx cheapest_simplification;
3349 int cheapest_cost;
3350 rtx simp_result;
3351 struct table_elt *p;
3352
3353 /* See if we can find an equivalent of folded_arg0
3354 that gets us a cheaper expression, possibly a
3355 constant through simplifications. */
3356 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3357 mode_arg0);
3358
3359 if (p != NULL)
3360 {
3361 cheapest_simplification = x;
3362 cheapest_cost = COST (x);
3363
3364 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3365 {
3366 int cost;
3367
3368 /* If the entry isn't valid, skip it. */
3369 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3370 continue;
3371
3372 /* Try to simplify using this equivalence. */
3373 simp_result
3374 = simplify_relational_operation (code, mode,
3375 mode_arg0,
3376 p->exp,
3377 const_arg1);
3378
3379 if (simp_result == NULL)
3380 continue;
3381
3382 cost = COST (simp_result);
3383 if (cost < cheapest_cost)
3384 {
3385 cheapest_cost = cost;
3386 cheapest_simplification = simp_result;
3387 }
3388 }
3389
3390 /* If we have a cheaper expression now, use that
3391 and try folding it further, from the top. */
3392 if (cheapest_simplification != x)
3393 return fold_rtx (copy_rtx (cheapest_simplification),
3394 insn);
3395 }
3396 }
3397
3398 /* See if the two operands are the same. */
3399
3400 if ((REG_P (folded_arg0)
3401 && REG_P (folded_arg1)
3402 && (REG_QTY (REGNO (folded_arg0))
3403 == REG_QTY (REGNO (folded_arg1))))
3404 || ((p0 = lookup (folded_arg0,
3405 SAFE_HASH (folded_arg0, mode_arg0),
3406 mode_arg0))
3407 && (p1 = lookup (folded_arg1,
3408 SAFE_HASH (folded_arg1, mode_arg0),
3409 mode_arg0))
3410 && p0->first_same_value == p1->first_same_value))
3411 folded_arg1 = folded_arg0;
3412
3413 /* If FOLDED_ARG0 is a register, see if the comparison we are
3414 doing now is either the same as we did before or the reverse
3415 (we only check the reverse if not floating-point). */
3416 else if (REG_P (folded_arg0))
3417 {
3418 int qty = REG_QTY (REGNO (folded_arg0));
3419
3420 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3421 {
3422 struct qty_table_elem *ent = &qty_table[qty];
3423
3424 if ((comparison_dominates_p (ent->comparison_code, code)
3425 || (! FLOAT_MODE_P (mode_arg0)
3426 && comparison_dominates_p (ent->comparison_code,
3427 reverse_condition (code))))
3428 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3429 || (const_arg1
3430 && rtx_equal_p (ent->comparison_const,
3431 const_arg1))
3432 || (REG_P (folded_arg1)
3433 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3434 {
3435 if (comparison_dominates_p (ent->comparison_code, code))
3436 {
3437 if (true_rtx)
3438 return true_rtx;
3439 else
3440 break;
3441 }
3442 else
3443 return false_rtx;
3444 }
3445 }
3446 }
3447 }
3448 }
3449
3450 /* If we are comparing against zero, see if the first operand is
3451 equivalent to an IOR with a constant. If so, we may be able to
3452 determine the result of this comparison. */
3453 if (const_arg1 == const0_rtx && !const_arg0)
3454 {
3455 rtx y = lookup_as_function (folded_arg0, IOR);
3456 rtx inner_const;
3457
3458 if (y != 0
3459 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3460 && CONST_INT_P (inner_const)
3461 && INTVAL (inner_const) != 0)
3462 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3463 }
3464
3465 {
3466 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3467 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3468 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3469 }
3470 break;
3471
3472 case RTX_BIN_ARITH:
3473 case RTX_COMM_ARITH:
3474 switch (code)
3475 {
3476 case PLUS:
3477 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3478 with that LABEL_REF as its second operand. If so, the result is
3479 the first operand of that MINUS. This handles switches with an
3480 ADDR_DIFF_VEC table. */
3481 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3482 {
3483 rtx y
3484 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3485 : lookup_as_function (folded_arg0, MINUS);
3486
3487 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3488 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3489 return XEXP (y, 0);
3490
3491 /* Now try for a CONST of a MINUS like the above. */
3492 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3493 : lookup_as_function (folded_arg0, CONST))) != 0
3494 && GET_CODE (XEXP (y, 0)) == MINUS
3495 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3496 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3497 return XEXP (XEXP (y, 0), 0);
3498 }
3499
3500 /* Likewise if the operands are in the other order. */
3501 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3502 {
3503 rtx y
3504 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3505 : lookup_as_function (folded_arg1, MINUS);
3506
3507 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3508 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3509 return XEXP (y, 0);
3510
3511 /* Now try for a CONST of a MINUS like the above. */
3512 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3513 : lookup_as_function (folded_arg1, CONST))) != 0
3514 && GET_CODE (XEXP (y, 0)) == MINUS
3515 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3516 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3517 return XEXP (XEXP (y, 0), 0);
3518 }
3519
3520 /* If second operand is a register equivalent to a negative
3521 CONST_INT, see if we can find a register equivalent to the
3522 positive constant. Make a MINUS if so. Don't do this for
3523 a non-negative constant since we might then alternate between
3524 choosing positive and negative constants. Having the positive
3525 constant previously-used is the more common case. Be sure
3526 the resulting constant is non-negative; if const_arg1 were
3527 the smallest negative number this would overflow: depending
3528 on the mode, this would either just be the same value (and
3529 hence not save anything) or be incorrect. */
3530 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3531 && INTVAL (const_arg1) < 0
3532 /* This used to test
3533
3534 -INTVAL (const_arg1) >= 0
3535
3536 But The Sun V5.0 compilers mis-compiled that test. So
3537 instead we test for the problematic value in a more direct
3538 manner and hope the Sun compilers get it correct. */
3539 && INTVAL (const_arg1) !=
3540 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3541 && REG_P (folded_arg1))
3542 {
3543 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3544 struct table_elt *p
3545 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3546
3547 if (p)
3548 for (p = p->first_same_value; p; p = p->next_same_value)
3549 if (REG_P (p->exp))
3550 return simplify_gen_binary (MINUS, mode, folded_arg0,
3551 canon_reg (p->exp, NULL_RTX));
3552 }
3553 goto from_plus;
3554
3555 case MINUS:
3556 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3557 If so, produce (PLUS Z C2-C). */
3558 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3559 {
3560 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3561 if (y && CONST_INT_P (XEXP (y, 1)))
3562 return fold_rtx (plus_constant (mode, copy_rtx (y),
3563 -INTVAL (const_arg1)),
3564 NULL_RTX);
3565 }
3566
3567 /* Fall through. */
3568
3569 from_plus:
3570 case SMIN: case SMAX: case UMIN: case UMAX:
3571 case IOR: case AND: case XOR:
3572 case MULT:
3573 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3574 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3575 is known to be of similar form, we may be able to replace the
3576 operation with a combined operation. This may eliminate the
3577 intermediate operation if every use is simplified in this way.
3578 Note that the similar optimization done by combine.c only works
3579 if the intermediate operation's result has only one reference. */
3580
3581 if (REG_P (folded_arg0)
3582 && const_arg1 && CONST_INT_P (const_arg1))
3583 {
3584 int is_shift
3585 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3586 rtx y, inner_const, new_const;
3587 rtx canon_const_arg1 = const_arg1;
3588 enum rtx_code associate_code;
3589
3590 if (is_shift
3591 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3592 || INTVAL (const_arg1) < 0))
3593 {
3594 if (SHIFT_COUNT_TRUNCATED)
3595 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3596 & (GET_MODE_BITSIZE (mode)
3597 - 1));
3598 else
3599 break;
3600 }
3601
3602 y = lookup_as_function (folded_arg0, code);
3603 if (y == 0)
3604 break;
3605
3606 /* If we have compiled a statement like
3607 "if (x == (x & mask1))", and now are looking at
3608 "x & mask2", we will have a case where the first operand
3609 of Y is the same as our first operand. Unless we detect
3610 this case, an infinite loop will result. */
3611 if (XEXP (y, 0) == folded_arg0)
3612 break;
3613
3614 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3615 if (!inner_const || !CONST_INT_P (inner_const))
3616 break;
3617
3618 /* Don't associate these operations if they are a PLUS with the
3619 same constant and it is a power of two. These might be doable
3620 with a pre- or post-increment. Similarly for two subtracts of
3621 identical powers of two with post decrement. */
3622
3623 if (code == PLUS && const_arg1 == inner_const
3624 && ((HAVE_PRE_INCREMENT
3625 && exact_log2 (INTVAL (const_arg1)) >= 0)
3626 || (HAVE_POST_INCREMENT
3627 && exact_log2 (INTVAL (const_arg1)) >= 0)
3628 || (HAVE_PRE_DECREMENT
3629 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3630 || (HAVE_POST_DECREMENT
3631 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3632 break;
3633
3634 /* ??? Vector mode shifts by scalar
3635 shift operand are not supported yet. */
3636 if (is_shift && VECTOR_MODE_P (mode))
3637 break;
3638
3639 if (is_shift
3640 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3641 || INTVAL (inner_const) < 0))
3642 {
3643 if (SHIFT_COUNT_TRUNCATED)
3644 inner_const = GEN_INT (INTVAL (inner_const)
3645 & (GET_MODE_BITSIZE (mode) - 1));
3646 else
3647 break;
3648 }
3649
3650 /* Compute the code used to compose the constants. For example,
3651 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3652
3653 associate_code = (is_shift || code == MINUS ? PLUS : code);
3654
3655 new_const = simplify_binary_operation (associate_code, mode,
3656 canon_const_arg1,
3657 inner_const);
3658
3659 if (new_const == 0)
3660 break;
3661
3662 /* If we are associating shift operations, don't let this
3663 produce a shift of the size of the object or larger.
3664 This could occur when we follow a sign-extend by a right
3665 shift on a machine that does a sign-extend as a pair
3666 of shifts. */
3667
3668 if (is_shift
3669 && CONST_INT_P (new_const)
3670 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3671 {
3672 /* As an exception, we can turn an ASHIFTRT of this
3673 form into a shift of the number of bits - 1. */
3674 if (code == ASHIFTRT)
3675 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3676 else if (!side_effects_p (XEXP (y, 0)))
3677 return CONST0_RTX (mode);
3678 else
3679 break;
3680 }
3681
3682 y = copy_rtx (XEXP (y, 0));
3683
3684 /* If Y contains our first operand (the most common way this
3685 can happen is if Y is a MEM), we would do into an infinite
3686 loop if we tried to fold it. So don't in that case. */
3687
3688 if (! reg_mentioned_p (folded_arg0, y))
3689 y = fold_rtx (y, insn);
3690
3691 return simplify_gen_binary (code, mode, y, new_const);
3692 }
3693 break;
3694
3695 case DIV: case UDIV:
3696 /* ??? The associative optimization performed immediately above is
3697 also possible for DIV and UDIV using associate_code of MULT.
3698 However, we would need extra code to verify that the
3699 multiplication does not overflow, that is, there is no overflow
3700 in the calculation of new_const. */
3701 break;
3702
3703 default:
3704 break;
3705 }
3706
3707 new_rtx = simplify_binary_operation (code, mode,
3708 const_arg0 ? const_arg0 : folded_arg0,
3709 const_arg1 ? const_arg1 : folded_arg1);
3710 break;
3711
3712 case RTX_OBJ:
3713 /* (lo_sum (high X) X) is simply X. */
3714 if (code == LO_SUM && const_arg0 != 0
3715 && GET_CODE (const_arg0) == HIGH
3716 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3717 return const_arg1;
3718 break;
3719
3720 case RTX_TERNARY:
3721 case RTX_BITFIELD_OPS:
3722 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3723 const_arg0 ? const_arg0 : folded_arg0,
3724 const_arg1 ? const_arg1 : folded_arg1,
3725 const_arg2 ? const_arg2 : XEXP (x, 2));
3726 break;
3727
3728 default:
3729 break;
3730 }
3731
3732 return new_rtx ? new_rtx : x;
3733 }
3734 \f
3735 /* Return a constant value currently equivalent to X.
3736 Return 0 if we don't know one. */
3737
3738 static rtx
3739 equiv_constant (rtx x)
3740 {
3741 if (REG_P (x)
3742 && REGNO_QTY_VALID_P (REGNO (x)))
3743 {
3744 int x_q = REG_QTY (REGNO (x));
3745 struct qty_table_elem *x_ent = &qty_table[x_q];
3746
3747 if (x_ent->const_rtx)
3748 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3749 }
3750
3751 if (x == 0 || CONSTANT_P (x))
3752 return x;
3753
3754 if (GET_CODE (x) == SUBREG)
3755 {
3756 enum machine_mode mode = GET_MODE (x);
3757 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3758 rtx new_rtx;
3759
3760 /* See if we previously assigned a constant value to this SUBREG. */
3761 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3762 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3763 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3764 return new_rtx;
3765
3766 /* If we didn't and if doing so makes sense, see if we previously
3767 assigned a constant value to the enclosing word mode SUBREG. */
3768 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3769 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3770 {
3771 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3772 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3773 {
3774 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3775 new_rtx = lookup_as_function (y, CONST_INT);
3776 if (new_rtx)
3777 return gen_lowpart (mode, new_rtx);
3778 }
3779 }
3780
3781 /* Otherwise see if we already have a constant for the inner REG,
3782 and if that is enough to calculate an equivalent constant for
3783 the subreg. Note that the upper bits of paradoxical subregs
3784 are undefined, so they cannot be said to equal anything. */
3785 if (REG_P (SUBREG_REG (x))
3786 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3787 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3788 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3789
3790 return 0;
3791 }
3792
3793 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3794 the hash table in case its value was seen before. */
3795
3796 if (MEM_P (x))
3797 {
3798 struct table_elt *elt;
3799
3800 x = avoid_constant_pool_reference (x);
3801 if (CONSTANT_P (x))
3802 return x;
3803
3804 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3805 if (elt == 0)
3806 return 0;
3807
3808 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3809 if (elt->is_const && CONSTANT_P (elt->exp))
3810 return elt->exp;
3811 }
3812
3813 return 0;
3814 }
3815 \f
3816 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3817 "taken" branch.
3818
3819 In certain cases, this can cause us to add an equivalence. For example,
3820 if we are following the taken case of
3821 if (i == 2)
3822 we can add the fact that `i' and '2' are now equivalent.
3823
3824 In any case, we can record that this comparison was passed. If the same
3825 comparison is seen later, we will know its value. */
3826
3827 static void
3828 record_jump_equiv (rtx insn, bool taken)
3829 {
3830 int cond_known_true;
3831 rtx op0, op1;
3832 rtx set;
3833 enum machine_mode mode, mode0, mode1;
3834 int reversed_nonequality = 0;
3835 enum rtx_code code;
3836
3837 /* Ensure this is the right kind of insn. */
3838 gcc_assert (any_condjump_p (insn));
3839
3840 set = pc_set (insn);
3841
3842 /* See if this jump condition is known true or false. */
3843 if (taken)
3844 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3845 else
3846 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3847
3848 /* Get the type of comparison being done and the operands being compared.
3849 If we had to reverse a non-equality condition, record that fact so we
3850 know that it isn't valid for floating-point. */
3851 code = GET_CODE (XEXP (SET_SRC (set), 0));
3852 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3853 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3854
3855 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3856 if (! cond_known_true)
3857 {
3858 code = reversed_comparison_code_parts (code, op0, op1, insn);
3859
3860 /* Don't remember if we can't find the inverse. */
3861 if (code == UNKNOWN)
3862 return;
3863 }
3864
3865 /* The mode is the mode of the non-constant. */
3866 mode = mode0;
3867 if (mode1 != VOIDmode)
3868 mode = mode1;
3869
3870 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3871 }
3872
3873 /* Yet another form of subreg creation. In this case, we want something in
3874 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3875
3876 static rtx
3877 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3878 {
3879 enum machine_mode op_mode = GET_MODE (op);
3880 if (op_mode == mode || op_mode == VOIDmode)
3881 return op;
3882 return lowpart_subreg (mode, op, op_mode);
3883 }
3884
3885 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3886 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3887 Make any useful entries we can with that information. Called from
3888 above function and called recursively. */
3889
3890 static void
3891 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3892 rtx op1, int reversed_nonequality)
3893 {
3894 unsigned op0_hash, op1_hash;
3895 int op0_in_memory, op1_in_memory;
3896 struct table_elt *op0_elt, *op1_elt;
3897
3898 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3899 we know that they are also equal in the smaller mode (this is also
3900 true for all smaller modes whether or not there is a SUBREG, but
3901 is not worth testing for with no SUBREG). */
3902
3903 /* Note that GET_MODE (op0) may not equal MODE. */
3904 if (code == EQ && paradoxical_subreg_p (op0))
3905 {
3906 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3907 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3908 if (tem)
3909 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3910 reversed_nonequality);
3911 }
3912
3913 if (code == EQ && paradoxical_subreg_p (op1))
3914 {
3915 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3916 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3917 if (tem)
3918 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3919 reversed_nonequality);
3920 }
3921
3922 /* Similarly, if this is an NE comparison, and either is a SUBREG
3923 making a smaller mode, we know the whole thing is also NE. */
3924
3925 /* Note that GET_MODE (op0) may not equal MODE;
3926 if we test MODE instead, we can get an infinite recursion
3927 alternating between two modes each wider than MODE. */
3928
3929 if (code == NE && GET_CODE (op0) == SUBREG
3930 && subreg_lowpart_p (op0)
3931 && (GET_MODE_SIZE (GET_MODE (op0))
3932 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3933 {
3934 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3935 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3936 if (tem)
3937 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3938 reversed_nonequality);
3939 }
3940
3941 if (code == NE && GET_CODE (op1) == SUBREG
3942 && subreg_lowpart_p (op1)
3943 && (GET_MODE_SIZE (GET_MODE (op1))
3944 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3945 {
3946 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3947 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3948 if (tem)
3949 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3950 reversed_nonequality);
3951 }
3952
3953 /* Hash both operands. */
3954
3955 do_not_record = 0;
3956 hash_arg_in_memory = 0;
3957 op0_hash = HASH (op0, mode);
3958 op0_in_memory = hash_arg_in_memory;
3959
3960 if (do_not_record)
3961 return;
3962
3963 do_not_record = 0;
3964 hash_arg_in_memory = 0;
3965 op1_hash = HASH (op1, mode);
3966 op1_in_memory = hash_arg_in_memory;
3967
3968 if (do_not_record)
3969 return;
3970
3971 /* Look up both operands. */
3972 op0_elt = lookup (op0, op0_hash, mode);
3973 op1_elt = lookup (op1, op1_hash, mode);
3974
3975 /* If both operands are already equivalent or if they are not in the
3976 table but are identical, do nothing. */
3977 if ((op0_elt != 0 && op1_elt != 0
3978 && op0_elt->first_same_value == op1_elt->first_same_value)
3979 || op0 == op1 || rtx_equal_p (op0, op1))
3980 return;
3981
3982 /* If we aren't setting two things equal all we can do is save this
3983 comparison. Similarly if this is floating-point. In the latter
3984 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3985 If we record the equality, we might inadvertently delete code
3986 whose intent was to change -0 to +0. */
3987
3988 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3989 {
3990 struct qty_table_elem *ent;
3991 int qty;
3992
3993 /* If we reversed a floating-point comparison, if OP0 is not a
3994 register, or if OP1 is neither a register or constant, we can't
3995 do anything. */
3996
3997 if (!REG_P (op1))
3998 op1 = equiv_constant (op1);
3999
4000 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4001 || !REG_P (op0) || op1 == 0)
4002 return;
4003
4004 /* Put OP0 in the hash table if it isn't already. This gives it a
4005 new quantity number. */
4006 if (op0_elt == 0)
4007 {
4008 if (insert_regs (op0, NULL, 0))
4009 {
4010 rehash_using_reg (op0);
4011 op0_hash = HASH (op0, mode);
4012
4013 /* If OP0 is contained in OP1, this changes its hash code
4014 as well. Faster to rehash than to check, except
4015 for the simple case of a constant. */
4016 if (! CONSTANT_P (op1))
4017 op1_hash = HASH (op1,mode);
4018 }
4019
4020 op0_elt = insert (op0, NULL, op0_hash, mode);
4021 op0_elt->in_memory = op0_in_memory;
4022 }
4023
4024 qty = REG_QTY (REGNO (op0));
4025 ent = &qty_table[qty];
4026
4027 ent->comparison_code = code;
4028 if (REG_P (op1))
4029 {
4030 /* Look it up again--in case op0 and op1 are the same. */
4031 op1_elt = lookup (op1, op1_hash, mode);
4032
4033 /* Put OP1 in the hash table so it gets a new quantity number. */
4034 if (op1_elt == 0)
4035 {
4036 if (insert_regs (op1, NULL, 0))
4037 {
4038 rehash_using_reg (op1);
4039 op1_hash = HASH (op1, mode);
4040 }
4041
4042 op1_elt = insert (op1, NULL, op1_hash, mode);
4043 op1_elt->in_memory = op1_in_memory;
4044 }
4045
4046 ent->comparison_const = NULL_RTX;
4047 ent->comparison_qty = REG_QTY (REGNO (op1));
4048 }
4049 else
4050 {
4051 ent->comparison_const = op1;
4052 ent->comparison_qty = -1;
4053 }
4054
4055 return;
4056 }
4057
4058 /* If either side is still missing an equivalence, make it now,
4059 then merge the equivalences. */
4060
4061 if (op0_elt == 0)
4062 {
4063 if (insert_regs (op0, NULL, 0))
4064 {
4065 rehash_using_reg (op0);
4066 op0_hash = HASH (op0, mode);
4067 }
4068
4069 op0_elt = insert (op0, NULL, op0_hash, mode);
4070 op0_elt->in_memory = op0_in_memory;
4071 }
4072
4073 if (op1_elt == 0)
4074 {
4075 if (insert_regs (op1, NULL, 0))
4076 {
4077 rehash_using_reg (op1);
4078 op1_hash = HASH (op1, mode);
4079 }
4080
4081 op1_elt = insert (op1, NULL, op1_hash, mode);
4082 op1_elt->in_memory = op1_in_memory;
4083 }
4084
4085 merge_equiv_classes (op0_elt, op1_elt);
4086 }
4087 \f
4088 /* CSE processing for one instruction.
4089
4090 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4091 but the few that "leak through" are cleaned up by cse_insn, and complex
4092 addressing modes are often formed here.
4093
4094 The main function is cse_insn, and between here and that function
4095 a couple of helper functions is defined to keep the size of cse_insn
4096 within reasonable proportions.
4097
4098 Data is shared between the main and helper functions via STRUCT SET,
4099 that contains all data related for every set in the instruction that
4100 is being processed.
4101
4102 Note that cse_main processes all sets in the instruction. Most
4103 passes in GCC only process simple SET insns or single_set insns, but
4104 CSE processes insns with multiple sets as well. */
4105
4106 /* Data on one SET contained in the instruction. */
4107
4108 struct set
4109 {
4110 /* The SET rtx itself. */
4111 rtx rtl;
4112 /* The SET_SRC of the rtx (the original value, if it is changing). */
4113 rtx src;
4114 /* The hash-table element for the SET_SRC of the SET. */
4115 struct table_elt *src_elt;
4116 /* Hash value for the SET_SRC. */
4117 unsigned src_hash;
4118 /* Hash value for the SET_DEST. */
4119 unsigned dest_hash;
4120 /* The SET_DEST, with SUBREG, etc., stripped. */
4121 rtx inner_dest;
4122 /* Nonzero if the SET_SRC is in memory. */
4123 char src_in_memory;
4124 /* Nonzero if the SET_SRC contains something
4125 whose value cannot be predicted and understood. */
4126 char src_volatile;
4127 /* Original machine mode, in case it becomes a CONST_INT.
4128 The size of this field should match the size of the mode
4129 field of struct rtx_def (see rtl.h). */
4130 ENUM_BITFIELD(machine_mode) mode : 8;
4131 /* A constant equivalent for SET_SRC, if any. */
4132 rtx src_const;
4133 /* Hash value of constant equivalent for SET_SRC. */
4134 unsigned src_const_hash;
4135 /* Table entry for constant equivalent for SET_SRC, if any. */
4136 struct table_elt *src_const_elt;
4137 /* Table entry for the destination address. */
4138 struct table_elt *dest_addr_elt;
4139 };
4140 \f
4141 /* Special handling for (set REG0 REG1) where REG0 is the
4142 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4143 be used in the sequel, so (if easily done) change this insn to
4144 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4145 that computed their value. Then REG1 will become a dead store
4146 and won't cloud the situation for later optimizations.
4147
4148 Do not make this change if REG1 is a hard register, because it will
4149 then be used in the sequel and we may be changing a two-operand insn
4150 into a three-operand insn.
4151
4152 This is the last transformation that cse_insn will try to do. */
4153
4154 static void
4155 try_back_substitute_reg (rtx set, rtx insn)
4156 {
4157 rtx dest = SET_DEST (set);
4158 rtx src = SET_SRC (set);
4159
4160 if (REG_P (dest)
4161 && REG_P (src) && ! HARD_REGISTER_P (src)
4162 && REGNO_QTY_VALID_P (REGNO (src)))
4163 {
4164 int src_q = REG_QTY (REGNO (src));
4165 struct qty_table_elem *src_ent = &qty_table[src_q];
4166
4167 if (src_ent->first_reg == REGNO (dest))
4168 {
4169 /* Scan for the previous nonnote insn, but stop at a basic
4170 block boundary. */
4171 rtx prev = insn;
4172 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4173 do
4174 {
4175 prev = PREV_INSN (prev);
4176 }
4177 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4178
4179 /* Do not swap the registers around if the previous instruction
4180 attaches a REG_EQUIV note to REG1.
4181
4182 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4183 from the pseudo that originally shadowed an incoming argument
4184 to another register. Some uses of REG_EQUIV might rely on it
4185 being attached to REG1 rather than REG2.
4186
4187 This section previously turned the REG_EQUIV into a REG_EQUAL
4188 note. We cannot do that because REG_EQUIV may provide an
4189 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4190 if (NONJUMP_INSN_P (prev)
4191 && GET_CODE (PATTERN (prev)) == SET
4192 && SET_DEST (PATTERN (prev)) == src
4193 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4194 {
4195 rtx note;
4196
4197 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4198 validate_change (insn, &SET_DEST (set), src, 1);
4199 validate_change (insn, &SET_SRC (set), dest, 1);
4200 apply_change_group ();
4201
4202 /* If INSN has a REG_EQUAL note, and this note mentions
4203 REG0, then we must delete it, because the value in
4204 REG0 has changed. If the note's value is REG1, we must
4205 also delete it because that is now this insn's dest. */
4206 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4207 if (note != 0
4208 && (reg_mentioned_p (dest, XEXP (note, 0))
4209 || rtx_equal_p (src, XEXP (note, 0))))
4210 remove_note (insn, note);
4211 }
4212 }
4213 }
4214 }
4215 \f
4216 /* Record all the SETs in this instruction into SETS_PTR,
4217 and return the number of recorded sets. */
4218 static int
4219 find_sets_in_insn (rtx insn, struct set **psets)
4220 {
4221 struct set *sets = *psets;
4222 int n_sets = 0;
4223 rtx x = PATTERN (insn);
4224
4225 if (GET_CODE (x) == SET)
4226 {
4227 /* Ignore SETs that are unconditional jumps.
4228 They never need cse processing, so this does not hurt.
4229 The reason is not efficiency but rather
4230 so that we can test at the end for instructions
4231 that have been simplified to unconditional jumps
4232 and not be misled by unchanged instructions
4233 that were unconditional jumps to begin with. */
4234 if (SET_DEST (x) == pc_rtx
4235 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4236 ;
4237 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4238 The hard function value register is used only once, to copy to
4239 someplace else, so it isn't worth cse'ing. */
4240 else if (GET_CODE (SET_SRC (x)) == CALL)
4241 ;
4242 else
4243 sets[n_sets++].rtl = x;
4244 }
4245 else if (GET_CODE (x) == PARALLEL)
4246 {
4247 int i, lim = XVECLEN (x, 0);
4248
4249 /* Go over the epressions of the PARALLEL in forward order, to
4250 put them in the same order in the SETS array. */
4251 for (i = 0; i < lim; i++)
4252 {
4253 rtx y = XVECEXP (x, 0, i);
4254 if (GET_CODE (y) == SET)
4255 {
4256 /* As above, we ignore unconditional jumps and call-insns and
4257 ignore the result of apply_change_group. */
4258 if (SET_DEST (y) == pc_rtx
4259 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4260 ;
4261 else if (GET_CODE (SET_SRC (y)) == CALL)
4262 ;
4263 else
4264 sets[n_sets++].rtl = y;
4265 }
4266 }
4267 }
4268
4269 return n_sets;
4270 }
4271 \f
4272 /* Where possible, substitute every register reference in the N_SETS
4273 number of SETS in INSN with the the canonical register.
4274
4275 Register canonicalization propagatest the earliest register (i.e.
4276 one that is set before INSN) with the same value. This is a very
4277 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4278 to RTL. For instance, a CONST for an address is usually expanded
4279 multiple times to loads into different registers, thus creating many
4280 subexpressions of the form:
4281
4282 (set (reg1) (some_const))
4283 (set (mem (... reg1 ...) (thing)))
4284 (set (reg2) (some_const))
4285 (set (mem (... reg2 ...) (thing)))
4286
4287 After canonicalizing, the code takes the following form:
4288
4289 (set (reg1) (some_const))
4290 (set (mem (... reg1 ...) (thing)))
4291 (set (reg2) (some_const))
4292 (set (mem (... reg1 ...) (thing)))
4293
4294 The set to reg2 is now trivially dead, and the memory reference (or
4295 address, or whatever) may be a candidate for further CSEing.
4296
4297 In this function, the result of apply_change_group can be ignored;
4298 see canon_reg. */
4299
4300 static void
4301 canonicalize_insn (rtx insn, struct set **psets, int n_sets)
4302 {
4303 struct set *sets = *psets;
4304 rtx tem;
4305 rtx x = PATTERN (insn);
4306 int i;
4307
4308 if (CALL_P (insn))
4309 {
4310 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4311 if (GET_CODE (XEXP (tem, 0)) != SET)
4312 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4313 }
4314
4315 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4316 {
4317 canon_reg (SET_SRC (x), insn);
4318 apply_change_group ();
4319 fold_rtx (SET_SRC (x), insn);
4320 }
4321 else if (GET_CODE (x) == CLOBBER)
4322 {
4323 /* If we clobber memory, canon the address.
4324 This does nothing when a register is clobbered
4325 because we have already invalidated the reg. */
4326 if (MEM_P (XEXP (x, 0)))
4327 canon_reg (XEXP (x, 0), insn);
4328 }
4329 else if (GET_CODE (x) == USE
4330 && ! (REG_P (XEXP (x, 0))
4331 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4332 /* Canonicalize a USE of a pseudo register or memory location. */
4333 canon_reg (x, insn);
4334 else if (GET_CODE (x) == ASM_OPERANDS)
4335 {
4336 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4337 {
4338 rtx input = ASM_OPERANDS_INPUT (x, i);
4339 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4340 {
4341 input = canon_reg (input, insn);
4342 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4343 }
4344 }
4345 }
4346 else if (GET_CODE (x) == CALL)
4347 {
4348 canon_reg (x, insn);
4349 apply_change_group ();
4350 fold_rtx (x, insn);
4351 }
4352 else if (DEBUG_INSN_P (insn))
4353 canon_reg (PATTERN (insn), insn);
4354 else if (GET_CODE (x) == PARALLEL)
4355 {
4356 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4357 {
4358 rtx y = XVECEXP (x, 0, i);
4359 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4360 {
4361 canon_reg (SET_SRC (y), insn);
4362 apply_change_group ();
4363 fold_rtx (SET_SRC (y), insn);
4364 }
4365 else if (GET_CODE (y) == CLOBBER)
4366 {
4367 if (MEM_P (XEXP (y, 0)))
4368 canon_reg (XEXP (y, 0), insn);
4369 }
4370 else if (GET_CODE (y) == USE
4371 && ! (REG_P (XEXP (y, 0))
4372 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4373 canon_reg (y, insn);
4374 else if (GET_CODE (y) == CALL)
4375 {
4376 canon_reg (y, insn);
4377 apply_change_group ();
4378 fold_rtx (y, insn);
4379 }
4380 }
4381 }
4382
4383 if (n_sets == 1 && REG_NOTES (insn) != 0
4384 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4385 {
4386 /* We potentially will process this insn many times. Therefore,
4387 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4388 unique set in INSN.
4389
4390 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4391 because cse_insn handles those specially. */
4392 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4393 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4394 remove_note (insn, tem);
4395 else
4396 {
4397 canon_reg (XEXP (tem, 0), insn);
4398 apply_change_group ();
4399 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4400 df_notes_rescan (insn);
4401 }
4402 }
4403
4404 /* Canonicalize sources and addresses of destinations.
4405 We do this in a separate pass to avoid problems when a MATCH_DUP is
4406 present in the insn pattern. In that case, we want to ensure that
4407 we don't break the duplicate nature of the pattern. So we will replace
4408 both operands at the same time. Otherwise, we would fail to find an
4409 equivalent substitution in the loop calling validate_change below.
4410
4411 We used to suppress canonicalization of DEST if it appears in SRC,
4412 but we don't do this any more. */
4413
4414 for (i = 0; i < n_sets; i++)
4415 {
4416 rtx dest = SET_DEST (sets[i].rtl);
4417 rtx src = SET_SRC (sets[i].rtl);
4418 rtx new_rtx = canon_reg (src, insn);
4419
4420 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4421
4422 if (GET_CODE (dest) == ZERO_EXTRACT)
4423 {
4424 validate_change (insn, &XEXP (dest, 1),
4425 canon_reg (XEXP (dest, 1), insn), 1);
4426 validate_change (insn, &XEXP (dest, 2),
4427 canon_reg (XEXP (dest, 2), insn), 1);
4428 }
4429
4430 while (GET_CODE (dest) == SUBREG
4431 || GET_CODE (dest) == ZERO_EXTRACT
4432 || GET_CODE (dest) == STRICT_LOW_PART)
4433 dest = XEXP (dest, 0);
4434
4435 if (MEM_P (dest))
4436 canon_reg (dest, insn);
4437 }
4438
4439 /* Now that we have done all the replacements, we can apply the change
4440 group and see if they all work. Note that this will cause some
4441 canonicalizations that would have worked individually not to be applied
4442 because some other canonicalization didn't work, but this should not
4443 occur often.
4444
4445 The result of apply_change_group can be ignored; see canon_reg. */
4446
4447 apply_change_group ();
4448 }
4449 \f
4450 /* Main function of CSE.
4451 First simplify sources and addresses of all assignments
4452 in the instruction, using previously-computed equivalents values.
4453 Then install the new sources and destinations in the table
4454 of available values. */
4455
4456 static void
4457 cse_insn (rtx insn)
4458 {
4459 rtx x = PATTERN (insn);
4460 int i;
4461 rtx tem;
4462 int n_sets = 0;
4463
4464 rtx src_eqv = 0;
4465 struct table_elt *src_eqv_elt = 0;
4466 int src_eqv_volatile = 0;
4467 int src_eqv_in_memory = 0;
4468 unsigned src_eqv_hash = 0;
4469
4470 struct set *sets = (struct set *) 0;
4471
4472 if (GET_CODE (x) == SET)
4473 sets = XALLOCA (struct set);
4474 else if (GET_CODE (x) == PARALLEL)
4475 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4476
4477 this_insn = insn;
4478 #ifdef HAVE_cc0
4479 /* Records what this insn does to set CC0. */
4480 this_insn_cc0 = 0;
4481 this_insn_cc0_mode = VOIDmode;
4482 #endif
4483
4484 /* Find all regs explicitly clobbered in this insn,
4485 to ensure they are not replaced with any other regs
4486 elsewhere in this insn. */
4487 invalidate_from_sets_and_clobbers (insn);
4488
4489 /* Record all the SETs in this instruction. */
4490 n_sets = find_sets_in_insn (insn, &sets);
4491
4492 /* Substitute the canonical register where possible. */
4493 canonicalize_insn (insn, &sets, n_sets);
4494
4495 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4496 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4497 is necessary because SRC_EQV is handled specially for this case, and if
4498 it isn't set, then there will be no equivalence for the destination. */
4499 if (n_sets == 1 && REG_NOTES (insn) != 0
4500 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4501 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4502 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4503 src_eqv = copy_rtx (XEXP (tem, 0));
4504
4505 /* Set sets[i].src_elt to the class each source belongs to.
4506 Detect assignments from or to volatile things
4507 and set set[i] to zero so they will be ignored
4508 in the rest of this function.
4509
4510 Nothing in this loop changes the hash table or the register chains. */
4511
4512 for (i = 0; i < n_sets; i++)
4513 {
4514 bool repeat = false;
4515 rtx src, dest;
4516 rtx src_folded;
4517 struct table_elt *elt = 0, *p;
4518 enum machine_mode mode;
4519 rtx src_eqv_here;
4520 rtx src_const = 0;
4521 rtx src_related = 0;
4522 bool src_related_is_const_anchor = false;
4523 struct table_elt *src_const_elt = 0;
4524 int src_cost = MAX_COST;
4525 int src_eqv_cost = MAX_COST;
4526 int src_folded_cost = MAX_COST;
4527 int src_related_cost = MAX_COST;
4528 int src_elt_cost = MAX_COST;
4529 int src_regcost = MAX_COST;
4530 int src_eqv_regcost = MAX_COST;
4531 int src_folded_regcost = MAX_COST;
4532 int src_related_regcost = MAX_COST;
4533 int src_elt_regcost = MAX_COST;
4534 /* Set nonzero if we need to call force_const_mem on with the
4535 contents of src_folded before using it. */
4536 int src_folded_force_flag = 0;
4537
4538 dest = SET_DEST (sets[i].rtl);
4539 src = SET_SRC (sets[i].rtl);
4540
4541 /* If SRC is a constant that has no machine mode,
4542 hash it with the destination's machine mode.
4543 This way we can keep different modes separate. */
4544
4545 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4546 sets[i].mode = mode;
4547
4548 if (src_eqv)
4549 {
4550 enum machine_mode eqvmode = mode;
4551 if (GET_CODE (dest) == STRICT_LOW_PART)
4552 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4553 do_not_record = 0;
4554 hash_arg_in_memory = 0;
4555 src_eqv_hash = HASH (src_eqv, eqvmode);
4556
4557 /* Find the equivalence class for the equivalent expression. */
4558
4559 if (!do_not_record)
4560 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4561
4562 src_eqv_volatile = do_not_record;
4563 src_eqv_in_memory = hash_arg_in_memory;
4564 }
4565
4566 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4567 value of the INNER register, not the destination. So it is not
4568 a valid substitution for the source. But save it for later. */
4569 if (GET_CODE (dest) == STRICT_LOW_PART)
4570 src_eqv_here = 0;
4571 else
4572 src_eqv_here = src_eqv;
4573
4574 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4575 simplified result, which may not necessarily be valid. */
4576 src_folded = fold_rtx (src, insn);
4577
4578 #if 0
4579 /* ??? This caused bad code to be generated for the m68k port with -O2.
4580 Suppose src is (CONST_INT -1), and that after truncation src_folded
4581 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4582 At the end we will add src and src_const to the same equivalence
4583 class. We now have 3 and -1 on the same equivalence class. This
4584 causes later instructions to be mis-optimized. */
4585 /* If storing a constant in a bitfield, pre-truncate the constant
4586 so we will be able to record it later. */
4587 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4588 {
4589 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4590
4591 if (CONST_INT_P (src)
4592 && CONST_INT_P (width)
4593 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4594 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4595 src_folded
4596 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4597 << INTVAL (width)) - 1));
4598 }
4599 #endif
4600
4601 /* Compute SRC's hash code, and also notice if it
4602 should not be recorded at all. In that case,
4603 prevent any further processing of this assignment. */
4604 do_not_record = 0;
4605 hash_arg_in_memory = 0;
4606
4607 sets[i].src = src;
4608 sets[i].src_hash = HASH (src, mode);
4609 sets[i].src_volatile = do_not_record;
4610 sets[i].src_in_memory = hash_arg_in_memory;
4611
4612 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4613 a pseudo, do not record SRC. Using SRC as a replacement for
4614 anything else will be incorrect in that situation. Note that
4615 this usually occurs only for stack slots, in which case all the
4616 RTL would be referring to SRC, so we don't lose any optimization
4617 opportunities by not having SRC in the hash table. */
4618
4619 if (MEM_P (src)
4620 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4621 && REG_P (dest)
4622 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4623 sets[i].src_volatile = 1;
4624
4625 #if 0
4626 /* It is no longer clear why we used to do this, but it doesn't
4627 appear to still be needed. So let's try without it since this
4628 code hurts cse'ing widened ops. */
4629 /* If source is a paradoxical subreg (such as QI treated as an SI),
4630 treat it as volatile. It may do the work of an SI in one context
4631 where the extra bits are not being used, but cannot replace an SI
4632 in general. */
4633 if (paradoxical_subreg_p (src))
4634 sets[i].src_volatile = 1;
4635 #endif
4636
4637 /* Locate all possible equivalent forms for SRC. Try to replace
4638 SRC in the insn with each cheaper equivalent.
4639
4640 We have the following types of equivalents: SRC itself, a folded
4641 version, a value given in a REG_EQUAL note, or a value related
4642 to a constant.
4643
4644 Each of these equivalents may be part of an additional class
4645 of equivalents (if more than one is in the table, they must be in
4646 the same class; we check for this).
4647
4648 If the source is volatile, we don't do any table lookups.
4649
4650 We note any constant equivalent for possible later use in a
4651 REG_NOTE. */
4652
4653 if (!sets[i].src_volatile)
4654 elt = lookup (src, sets[i].src_hash, mode);
4655
4656 sets[i].src_elt = elt;
4657
4658 if (elt && src_eqv_here && src_eqv_elt)
4659 {
4660 if (elt->first_same_value != src_eqv_elt->first_same_value)
4661 {
4662 /* The REG_EQUAL is indicating that two formerly distinct
4663 classes are now equivalent. So merge them. */
4664 merge_equiv_classes (elt, src_eqv_elt);
4665 src_eqv_hash = HASH (src_eqv, elt->mode);
4666 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4667 }
4668
4669 src_eqv_here = 0;
4670 }
4671
4672 else if (src_eqv_elt)
4673 elt = src_eqv_elt;
4674
4675 /* Try to find a constant somewhere and record it in `src_const'.
4676 Record its table element, if any, in `src_const_elt'. Look in
4677 any known equivalences first. (If the constant is not in the
4678 table, also set `sets[i].src_const_hash'). */
4679 if (elt)
4680 for (p = elt->first_same_value; p; p = p->next_same_value)
4681 if (p->is_const)
4682 {
4683 src_const = p->exp;
4684 src_const_elt = elt;
4685 break;
4686 }
4687
4688 if (src_const == 0
4689 && (CONSTANT_P (src_folded)
4690 /* Consider (minus (label_ref L1) (label_ref L2)) as
4691 "constant" here so we will record it. This allows us
4692 to fold switch statements when an ADDR_DIFF_VEC is used. */
4693 || (GET_CODE (src_folded) == MINUS
4694 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4695 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4696 src_const = src_folded, src_const_elt = elt;
4697 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4698 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4699
4700 /* If we don't know if the constant is in the table, get its
4701 hash code and look it up. */
4702 if (src_const && src_const_elt == 0)
4703 {
4704 sets[i].src_const_hash = HASH (src_const, mode);
4705 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4706 }
4707
4708 sets[i].src_const = src_const;
4709 sets[i].src_const_elt = src_const_elt;
4710
4711 /* If the constant and our source are both in the table, mark them as
4712 equivalent. Otherwise, if a constant is in the table but the source
4713 isn't, set ELT to it. */
4714 if (src_const_elt && elt
4715 && src_const_elt->first_same_value != elt->first_same_value)
4716 merge_equiv_classes (elt, src_const_elt);
4717 else if (src_const_elt && elt == 0)
4718 elt = src_const_elt;
4719
4720 /* See if there is a register linearly related to a constant
4721 equivalent of SRC. */
4722 if (src_const
4723 && (GET_CODE (src_const) == CONST
4724 || (src_const_elt && src_const_elt->related_value != 0)))
4725 {
4726 src_related = use_related_value (src_const, src_const_elt);
4727 if (src_related)
4728 {
4729 struct table_elt *src_related_elt
4730 = lookup (src_related, HASH (src_related, mode), mode);
4731 if (src_related_elt && elt)
4732 {
4733 if (elt->first_same_value
4734 != src_related_elt->first_same_value)
4735 /* This can occur when we previously saw a CONST
4736 involving a SYMBOL_REF and then see the SYMBOL_REF
4737 twice. Merge the involved classes. */
4738 merge_equiv_classes (elt, src_related_elt);
4739
4740 src_related = 0;
4741 src_related_elt = 0;
4742 }
4743 else if (src_related_elt && elt == 0)
4744 elt = src_related_elt;
4745 }
4746 }
4747
4748 /* See if we have a CONST_INT that is already in a register in a
4749 wider mode. */
4750
4751 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4752 && GET_MODE_CLASS (mode) == MODE_INT
4753 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4754 {
4755 enum machine_mode wider_mode;
4756
4757 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4758 wider_mode != VOIDmode
4759 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4760 && src_related == 0;
4761 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4762 {
4763 struct table_elt *const_elt
4764 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4765
4766 if (const_elt == 0)
4767 continue;
4768
4769 for (const_elt = const_elt->first_same_value;
4770 const_elt; const_elt = const_elt->next_same_value)
4771 if (REG_P (const_elt->exp))
4772 {
4773 src_related = gen_lowpart (mode, const_elt->exp);
4774 break;
4775 }
4776 }
4777 }
4778
4779 /* Another possibility is that we have an AND with a constant in
4780 a mode narrower than a word. If so, it might have been generated
4781 as part of an "if" which would narrow the AND. If we already
4782 have done the AND in a wider mode, we can use a SUBREG of that
4783 value. */
4784
4785 if (flag_expensive_optimizations && ! src_related
4786 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4787 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4788 {
4789 enum machine_mode tmode;
4790 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4791
4792 for (tmode = GET_MODE_WIDER_MODE (mode);
4793 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4794 tmode = GET_MODE_WIDER_MODE (tmode))
4795 {
4796 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4797 struct table_elt *larger_elt;
4798
4799 if (inner)
4800 {
4801 PUT_MODE (new_and, tmode);
4802 XEXP (new_and, 0) = inner;
4803 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4804 if (larger_elt == 0)
4805 continue;
4806
4807 for (larger_elt = larger_elt->first_same_value;
4808 larger_elt; larger_elt = larger_elt->next_same_value)
4809 if (REG_P (larger_elt->exp))
4810 {
4811 src_related
4812 = gen_lowpart (mode, larger_elt->exp);
4813 break;
4814 }
4815
4816 if (src_related)
4817 break;
4818 }
4819 }
4820 }
4821
4822 #ifdef LOAD_EXTEND_OP
4823 /* See if a MEM has already been loaded with a widening operation;
4824 if it has, we can use a subreg of that. Many CISC machines
4825 also have such operations, but this is only likely to be
4826 beneficial on these machines. */
4827
4828 if (flag_expensive_optimizations && src_related == 0
4829 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4830 && GET_MODE_CLASS (mode) == MODE_INT
4831 && MEM_P (src) && ! do_not_record
4832 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4833 {
4834 struct rtx_def memory_extend_buf;
4835 rtx memory_extend_rtx = &memory_extend_buf;
4836 enum machine_mode tmode;
4837
4838 /* Set what we are trying to extend and the operation it might
4839 have been extended with. */
4840 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4841 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4842 XEXP (memory_extend_rtx, 0) = src;
4843
4844 for (tmode = GET_MODE_WIDER_MODE (mode);
4845 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4846 tmode = GET_MODE_WIDER_MODE (tmode))
4847 {
4848 struct table_elt *larger_elt;
4849
4850 PUT_MODE (memory_extend_rtx, tmode);
4851 larger_elt = lookup (memory_extend_rtx,
4852 HASH (memory_extend_rtx, tmode), tmode);
4853 if (larger_elt == 0)
4854 continue;
4855
4856 for (larger_elt = larger_elt->first_same_value;
4857 larger_elt; larger_elt = larger_elt->next_same_value)
4858 if (REG_P (larger_elt->exp))
4859 {
4860 src_related = gen_lowpart (mode, larger_elt->exp);
4861 break;
4862 }
4863
4864 if (src_related)
4865 break;
4866 }
4867 }
4868 #endif /* LOAD_EXTEND_OP */
4869
4870 /* Try to express the constant using a register+offset expression
4871 derived from a constant anchor. */
4872
4873 if (targetm.const_anchor
4874 && !src_related
4875 && src_const
4876 && GET_CODE (src_const) == CONST_INT)
4877 {
4878 src_related = try_const_anchors (src_const, mode);
4879 src_related_is_const_anchor = src_related != NULL_RTX;
4880 }
4881
4882
4883 if (src == src_folded)
4884 src_folded = 0;
4885
4886 /* At this point, ELT, if nonzero, points to a class of expressions
4887 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4888 and SRC_RELATED, if nonzero, each contain additional equivalent
4889 expressions. Prune these latter expressions by deleting expressions
4890 already in the equivalence class.
4891
4892 Check for an equivalent identical to the destination. If found,
4893 this is the preferred equivalent since it will likely lead to
4894 elimination of the insn. Indicate this by placing it in
4895 `src_related'. */
4896
4897 if (elt)
4898 elt = elt->first_same_value;
4899 for (p = elt; p; p = p->next_same_value)
4900 {
4901 enum rtx_code code = GET_CODE (p->exp);
4902
4903 /* If the expression is not valid, ignore it. Then we do not
4904 have to check for validity below. In most cases, we can use
4905 `rtx_equal_p', since canonicalization has already been done. */
4906 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4907 continue;
4908
4909 /* Also skip paradoxical subregs, unless that's what we're
4910 looking for. */
4911 if (paradoxical_subreg_p (p->exp)
4912 && ! (src != 0
4913 && GET_CODE (src) == SUBREG
4914 && GET_MODE (src) == GET_MODE (p->exp)
4915 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4916 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4917 continue;
4918
4919 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4920 src = 0;
4921 else if (src_folded && GET_CODE (src_folded) == code
4922 && rtx_equal_p (src_folded, p->exp))
4923 src_folded = 0;
4924 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4925 && rtx_equal_p (src_eqv_here, p->exp))
4926 src_eqv_here = 0;
4927 else if (src_related && GET_CODE (src_related) == code
4928 && rtx_equal_p (src_related, p->exp))
4929 src_related = 0;
4930
4931 /* This is the same as the destination of the insns, we want
4932 to prefer it. Copy it to src_related. The code below will
4933 then give it a negative cost. */
4934 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4935 src_related = dest;
4936 }
4937
4938 /* Find the cheapest valid equivalent, trying all the available
4939 possibilities. Prefer items not in the hash table to ones
4940 that are when they are equal cost. Note that we can never
4941 worsen an insn as the current contents will also succeed.
4942 If we find an equivalent identical to the destination, use it as best,
4943 since this insn will probably be eliminated in that case. */
4944 if (src)
4945 {
4946 if (rtx_equal_p (src, dest))
4947 src_cost = src_regcost = -1;
4948 else
4949 {
4950 src_cost = COST (src);
4951 src_regcost = approx_reg_cost (src);
4952 }
4953 }
4954
4955 if (src_eqv_here)
4956 {
4957 if (rtx_equal_p (src_eqv_here, dest))
4958 src_eqv_cost = src_eqv_regcost = -1;
4959 else
4960 {
4961 src_eqv_cost = COST (src_eqv_here);
4962 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4963 }
4964 }
4965
4966 if (src_folded)
4967 {
4968 if (rtx_equal_p (src_folded, dest))
4969 src_folded_cost = src_folded_regcost = -1;
4970 else
4971 {
4972 src_folded_cost = COST (src_folded);
4973 src_folded_regcost = approx_reg_cost (src_folded);
4974 }
4975 }
4976
4977 if (src_related)
4978 {
4979 if (rtx_equal_p (src_related, dest))
4980 src_related_cost = src_related_regcost = -1;
4981 else
4982 {
4983 src_related_cost = COST (src_related);
4984 src_related_regcost = approx_reg_cost (src_related);
4985
4986 /* If a const-anchor is used to synthesize a constant that
4987 normally requires multiple instructions then slightly prefer
4988 it over the original sequence. These instructions are likely
4989 to become redundant now. We can't compare against the cost
4990 of src_eqv_here because, on MIPS for example, multi-insn
4991 constants have zero cost; they are assumed to be hoisted from
4992 loops. */
4993 if (src_related_is_const_anchor
4994 && src_related_cost == src_cost
4995 && src_eqv_here)
4996 src_related_cost--;
4997 }
4998 }
4999
5000 /* If this was an indirect jump insn, a known label will really be
5001 cheaper even though it looks more expensive. */
5002 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5003 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5004
5005 /* Terminate loop when replacement made. This must terminate since
5006 the current contents will be tested and will always be valid. */
5007 while (1)
5008 {
5009 rtx trial;
5010
5011 /* Skip invalid entries. */
5012 while (elt && !REG_P (elt->exp)
5013 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5014 elt = elt->next_same_value;
5015
5016 /* A paradoxical subreg would be bad here: it'll be the right
5017 size, but later may be adjusted so that the upper bits aren't
5018 what we want. So reject it. */
5019 if (elt != 0
5020 && paradoxical_subreg_p (elt->exp)
5021 /* It is okay, though, if the rtx we're trying to match
5022 will ignore any of the bits we can't predict. */
5023 && ! (src != 0
5024 && GET_CODE (src) == SUBREG
5025 && GET_MODE (src) == GET_MODE (elt->exp)
5026 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5027 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5028 {
5029 elt = elt->next_same_value;
5030 continue;
5031 }
5032
5033 if (elt)
5034 {
5035 src_elt_cost = elt->cost;
5036 src_elt_regcost = elt->regcost;
5037 }
5038
5039 /* Find cheapest and skip it for the next time. For items
5040 of equal cost, use this order:
5041 src_folded, src, src_eqv, src_related and hash table entry. */
5042 if (src_folded
5043 && preferable (src_folded_cost, src_folded_regcost,
5044 src_cost, src_regcost) <= 0
5045 && preferable (src_folded_cost, src_folded_regcost,
5046 src_eqv_cost, src_eqv_regcost) <= 0
5047 && preferable (src_folded_cost, src_folded_regcost,
5048 src_related_cost, src_related_regcost) <= 0
5049 && preferable (src_folded_cost, src_folded_regcost,
5050 src_elt_cost, src_elt_regcost) <= 0)
5051 {
5052 trial = src_folded, src_folded_cost = MAX_COST;
5053 if (src_folded_force_flag)
5054 {
5055 rtx forced = force_const_mem (mode, trial);
5056 if (forced)
5057 trial = forced;
5058 }
5059 }
5060 else if (src
5061 && preferable (src_cost, src_regcost,
5062 src_eqv_cost, src_eqv_regcost) <= 0
5063 && preferable (src_cost, src_regcost,
5064 src_related_cost, src_related_regcost) <= 0
5065 && preferable (src_cost, src_regcost,
5066 src_elt_cost, src_elt_regcost) <= 0)
5067 trial = src, src_cost = MAX_COST;
5068 else if (src_eqv_here
5069 && preferable (src_eqv_cost, src_eqv_regcost,
5070 src_related_cost, src_related_regcost) <= 0
5071 && preferable (src_eqv_cost, src_eqv_regcost,
5072 src_elt_cost, src_elt_regcost) <= 0)
5073 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5074 else if (src_related
5075 && preferable (src_related_cost, src_related_regcost,
5076 src_elt_cost, src_elt_regcost) <= 0)
5077 trial = src_related, src_related_cost = MAX_COST;
5078 else
5079 {
5080 trial = elt->exp;
5081 elt = elt->next_same_value;
5082 src_elt_cost = MAX_COST;
5083 }
5084
5085 /* Avoid creation of overlapping memory moves. */
5086 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5087 {
5088 rtx src, dest;
5089
5090 /* BLKmode moves are not handled by cse anyway. */
5091 if (GET_MODE (trial) == BLKmode)
5092 break;
5093
5094 src = canon_rtx (trial);
5095 dest = canon_rtx (SET_DEST (sets[i].rtl));
5096
5097 if (!MEM_P (src) || !MEM_P (dest)
5098 || !nonoverlapping_memrefs_p (src, dest, false))
5099 break;
5100 }
5101
5102 /* Try to optimize
5103 (set (reg:M N) (const_int A))
5104 (set (reg:M2 O) (const_int B))
5105 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5106 (reg:M2 O)). */
5107 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5108 && CONST_INT_P (trial)
5109 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5110 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5111 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5112 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5113 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5114 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5115 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5116 <= HOST_BITS_PER_WIDE_INT))
5117 {
5118 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5119 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5120 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5121 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5122 struct table_elt *dest_elt
5123 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5124 rtx dest_cst = NULL;
5125
5126 if (dest_elt)
5127 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5128 if (p->is_const && CONST_INT_P (p->exp))
5129 {
5130 dest_cst = p->exp;
5131 break;
5132 }
5133 if (dest_cst)
5134 {
5135 HOST_WIDE_INT val = INTVAL (dest_cst);
5136 HOST_WIDE_INT mask;
5137 unsigned int shift;
5138 if (BITS_BIG_ENDIAN)
5139 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5140 - INTVAL (pos) - INTVAL (width);
5141 else
5142 shift = INTVAL (pos);
5143 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5144 mask = ~(HOST_WIDE_INT) 0;
5145 else
5146 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5147 val &= ~(mask << shift);
5148 val |= (INTVAL (trial) & mask) << shift;
5149 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5150 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5151 dest_reg, 1);
5152 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5153 GEN_INT (val), 1);
5154 if (apply_change_group ())
5155 {
5156 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5157 if (note)
5158 {
5159 remove_note (insn, note);
5160 df_notes_rescan (insn);
5161 }
5162 src_eqv = NULL_RTX;
5163 src_eqv_elt = NULL;
5164 src_eqv_volatile = 0;
5165 src_eqv_in_memory = 0;
5166 src_eqv_hash = 0;
5167 repeat = true;
5168 break;
5169 }
5170 }
5171 }
5172
5173 /* We don't normally have an insn matching (set (pc) (pc)), so
5174 check for this separately here. We will delete such an
5175 insn below.
5176
5177 For other cases such as a table jump or conditional jump
5178 where we know the ultimate target, go ahead and replace the
5179 operand. While that may not make a valid insn, we will
5180 reemit the jump below (and also insert any necessary
5181 barriers). */
5182 if (n_sets == 1 && dest == pc_rtx
5183 && (trial == pc_rtx
5184 || (GET_CODE (trial) == LABEL_REF
5185 && ! condjump_p (insn))))
5186 {
5187 /* Don't substitute non-local labels, this confuses CFG. */
5188 if (GET_CODE (trial) == LABEL_REF
5189 && LABEL_REF_NONLOCAL_P (trial))
5190 continue;
5191
5192 SET_SRC (sets[i].rtl) = trial;
5193 cse_jumps_altered = true;
5194 break;
5195 }
5196
5197 /* Reject certain invalid forms of CONST that we create. */
5198 else if (CONSTANT_P (trial)
5199 && GET_CODE (trial) == CONST
5200 /* Reject cases that will cause decode_rtx_const to
5201 die. On the alpha when simplifying a switch, we
5202 get (const (truncate (minus (label_ref)
5203 (label_ref)))). */
5204 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5205 /* Likewise on IA-64, except without the
5206 truncate. */
5207 || (GET_CODE (XEXP (trial, 0)) == MINUS
5208 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5209 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5210 /* Do nothing for this case. */
5211 ;
5212
5213 /* Look for a substitution that makes a valid insn. */
5214 else if (validate_unshare_change
5215 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5216 {
5217 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5218
5219 /* The result of apply_change_group can be ignored; see
5220 canon_reg. */
5221
5222 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5223 apply_change_group ();
5224
5225 break;
5226 }
5227
5228 /* If we previously found constant pool entries for
5229 constants and this is a constant, try making a
5230 pool entry. Put it in src_folded unless we already have done
5231 this since that is where it likely came from. */
5232
5233 else if (constant_pool_entries_cost
5234 && CONSTANT_P (trial)
5235 && (src_folded == 0
5236 || (!MEM_P (src_folded)
5237 && ! src_folded_force_flag))
5238 && GET_MODE_CLASS (mode) != MODE_CC
5239 && mode != VOIDmode)
5240 {
5241 src_folded_force_flag = 1;
5242 src_folded = trial;
5243 src_folded_cost = constant_pool_entries_cost;
5244 src_folded_regcost = constant_pool_entries_regcost;
5245 }
5246 }
5247
5248 /* If we changed the insn too much, handle this set from scratch. */
5249 if (repeat)
5250 {
5251 i--;
5252 continue;
5253 }
5254
5255 src = SET_SRC (sets[i].rtl);
5256
5257 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5258 However, there is an important exception: If both are registers
5259 that are not the head of their equivalence class, replace SET_SRC
5260 with the head of the class. If we do not do this, we will have
5261 both registers live over a portion of the basic block. This way,
5262 their lifetimes will likely abut instead of overlapping. */
5263 if (REG_P (dest)
5264 && REGNO_QTY_VALID_P (REGNO (dest)))
5265 {
5266 int dest_q = REG_QTY (REGNO (dest));
5267 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5268
5269 if (dest_ent->mode == GET_MODE (dest)
5270 && dest_ent->first_reg != REGNO (dest)
5271 && REG_P (src) && REGNO (src) == REGNO (dest)
5272 /* Don't do this if the original insn had a hard reg as
5273 SET_SRC or SET_DEST. */
5274 && (!REG_P (sets[i].src)
5275 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5276 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5277 /* We can't call canon_reg here because it won't do anything if
5278 SRC is a hard register. */
5279 {
5280 int src_q = REG_QTY (REGNO (src));
5281 struct qty_table_elem *src_ent = &qty_table[src_q];
5282 int first = src_ent->first_reg;
5283 rtx new_src
5284 = (first >= FIRST_PSEUDO_REGISTER
5285 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5286
5287 /* We must use validate-change even for this, because this
5288 might be a special no-op instruction, suitable only to
5289 tag notes onto. */
5290 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5291 {
5292 src = new_src;
5293 /* If we had a constant that is cheaper than what we are now
5294 setting SRC to, use that constant. We ignored it when we
5295 thought we could make this into a no-op. */
5296 if (src_const && COST (src_const) < COST (src)
5297 && validate_change (insn, &SET_SRC (sets[i].rtl),
5298 src_const, 0))
5299 src = src_const;
5300 }
5301 }
5302 }
5303
5304 /* If we made a change, recompute SRC values. */
5305 if (src != sets[i].src)
5306 {
5307 do_not_record = 0;
5308 hash_arg_in_memory = 0;
5309 sets[i].src = src;
5310 sets[i].src_hash = HASH (src, mode);
5311 sets[i].src_volatile = do_not_record;
5312 sets[i].src_in_memory = hash_arg_in_memory;
5313 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5314 }
5315
5316 /* If this is a single SET, we are setting a register, and we have an
5317 equivalent constant, we want to add a REG_NOTE. We don't want
5318 to write a REG_EQUAL note for a constant pseudo since verifying that
5319 that pseudo hasn't been eliminated is a pain. Such a note also
5320 won't help anything.
5321
5322 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5323 which can be created for a reference to a compile time computable
5324 entry in a jump table. */
5325
5326 if (n_sets == 1 && src_const && REG_P (dest)
5327 && !REG_P (src_const)
5328 && ! (GET_CODE (src_const) == CONST
5329 && GET_CODE (XEXP (src_const, 0)) == MINUS
5330 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5331 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5332 {
5333 /* We only want a REG_EQUAL note if src_const != src. */
5334 if (! rtx_equal_p (src, src_const))
5335 {
5336 /* Make sure that the rtx is not shared. */
5337 src_const = copy_rtx (src_const);
5338
5339 /* Record the actual constant value in a REG_EQUAL note,
5340 making a new one if one does not already exist. */
5341 set_unique_reg_note (insn, REG_EQUAL, src_const);
5342 df_notes_rescan (insn);
5343 }
5344 }
5345
5346 /* Now deal with the destination. */
5347 do_not_record = 0;
5348
5349 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5350 while (GET_CODE (dest) == SUBREG
5351 || GET_CODE (dest) == ZERO_EXTRACT
5352 || GET_CODE (dest) == STRICT_LOW_PART)
5353 dest = XEXP (dest, 0);
5354
5355 sets[i].inner_dest = dest;
5356
5357 if (MEM_P (dest))
5358 {
5359 #ifdef PUSH_ROUNDING
5360 /* Stack pushes invalidate the stack pointer. */
5361 rtx addr = XEXP (dest, 0);
5362 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5363 && XEXP (addr, 0) == stack_pointer_rtx)
5364 invalidate (stack_pointer_rtx, VOIDmode);
5365 #endif
5366 dest = fold_rtx (dest, insn);
5367 }
5368
5369 /* Compute the hash code of the destination now,
5370 before the effects of this instruction are recorded,
5371 since the register values used in the address computation
5372 are those before this instruction. */
5373 sets[i].dest_hash = HASH (dest, mode);
5374
5375 /* Don't enter a bit-field in the hash table
5376 because the value in it after the store
5377 may not equal what was stored, due to truncation. */
5378
5379 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5380 {
5381 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5382
5383 if (src_const != 0 && CONST_INT_P (src_const)
5384 && CONST_INT_P (width)
5385 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5386 && ! (INTVAL (src_const)
5387 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5388 /* Exception: if the value is constant,
5389 and it won't be truncated, record it. */
5390 ;
5391 else
5392 {
5393 /* This is chosen so that the destination will be invalidated
5394 but no new value will be recorded.
5395 We must invalidate because sometimes constant
5396 values can be recorded for bitfields. */
5397 sets[i].src_elt = 0;
5398 sets[i].src_volatile = 1;
5399 src_eqv = 0;
5400 src_eqv_elt = 0;
5401 }
5402 }
5403
5404 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5405 the insn. */
5406 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5407 {
5408 /* One less use of the label this insn used to jump to. */
5409 delete_insn_and_edges (insn);
5410 cse_jumps_altered = true;
5411 /* No more processing for this set. */
5412 sets[i].rtl = 0;
5413 }
5414
5415 /* If this SET is now setting PC to a label, we know it used to
5416 be a conditional or computed branch. */
5417 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5418 && !LABEL_REF_NONLOCAL_P (src))
5419 {
5420 /* We reemit the jump in as many cases as possible just in
5421 case the form of an unconditional jump is significantly
5422 different than a computed jump or conditional jump.
5423
5424 If this insn has multiple sets, then reemitting the
5425 jump is nontrivial. So instead we just force rerecognition
5426 and hope for the best. */
5427 if (n_sets == 1)
5428 {
5429 rtx new_rtx, note;
5430
5431 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5432 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5433 LABEL_NUSES (XEXP (src, 0))++;
5434
5435 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5436 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5437 if (note)
5438 {
5439 XEXP (note, 1) = NULL_RTX;
5440 REG_NOTES (new_rtx) = note;
5441 }
5442
5443 delete_insn_and_edges (insn);
5444 insn = new_rtx;
5445 }
5446 else
5447 INSN_CODE (insn) = -1;
5448
5449 /* Do not bother deleting any unreachable code, let jump do it. */
5450 cse_jumps_altered = true;
5451 sets[i].rtl = 0;
5452 }
5453
5454 /* If destination is volatile, invalidate it and then do no further
5455 processing for this assignment. */
5456
5457 else if (do_not_record)
5458 {
5459 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5460 invalidate (dest, VOIDmode);
5461 else if (MEM_P (dest))
5462 invalidate (dest, VOIDmode);
5463 else if (GET_CODE (dest) == STRICT_LOW_PART
5464 || GET_CODE (dest) == ZERO_EXTRACT)
5465 invalidate (XEXP (dest, 0), GET_MODE (dest));
5466 sets[i].rtl = 0;
5467 }
5468
5469 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5470 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5471
5472 #ifdef HAVE_cc0
5473 /* If setting CC0, record what it was set to, or a constant, if it
5474 is equivalent to a constant. If it is being set to a floating-point
5475 value, make a COMPARE with the appropriate constant of 0. If we
5476 don't do this, later code can interpret this as a test against
5477 const0_rtx, which can cause problems if we try to put it into an
5478 insn as a floating-point operand. */
5479 if (dest == cc0_rtx)
5480 {
5481 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5482 this_insn_cc0_mode = mode;
5483 if (FLOAT_MODE_P (mode))
5484 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5485 CONST0_RTX (mode));
5486 }
5487 #endif
5488 }
5489
5490 /* Now enter all non-volatile source expressions in the hash table
5491 if they are not already present.
5492 Record their equivalence classes in src_elt.
5493 This way we can insert the corresponding destinations into
5494 the same classes even if the actual sources are no longer in them
5495 (having been invalidated). */
5496
5497 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5498 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5499 {
5500 struct table_elt *elt;
5501 struct table_elt *classp = sets[0].src_elt;
5502 rtx dest = SET_DEST (sets[0].rtl);
5503 enum machine_mode eqvmode = GET_MODE (dest);
5504
5505 if (GET_CODE (dest) == STRICT_LOW_PART)
5506 {
5507 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5508 classp = 0;
5509 }
5510 if (insert_regs (src_eqv, classp, 0))
5511 {
5512 rehash_using_reg (src_eqv);
5513 src_eqv_hash = HASH (src_eqv, eqvmode);
5514 }
5515 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5516 elt->in_memory = src_eqv_in_memory;
5517 src_eqv_elt = elt;
5518
5519 /* Check to see if src_eqv_elt is the same as a set source which
5520 does not yet have an elt, and if so set the elt of the set source
5521 to src_eqv_elt. */
5522 for (i = 0; i < n_sets; i++)
5523 if (sets[i].rtl && sets[i].src_elt == 0
5524 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5525 sets[i].src_elt = src_eqv_elt;
5526 }
5527
5528 for (i = 0; i < n_sets; i++)
5529 if (sets[i].rtl && ! sets[i].src_volatile
5530 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5531 {
5532 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5533 {
5534 /* REG_EQUAL in setting a STRICT_LOW_PART
5535 gives an equivalent for the entire destination register,
5536 not just for the subreg being stored in now.
5537 This is a more interesting equivalence, so we arrange later
5538 to treat the entire reg as the destination. */
5539 sets[i].src_elt = src_eqv_elt;
5540 sets[i].src_hash = src_eqv_hash;
5541 }
5542 else
5543 {
5544 /* Insert source and constant equivalent into hash table, if not
5545 already present. */
5546 struct table_elt *classp = src_eqv_elt;
5547 rtx src = sets[i].src;
5548 rtx dest = SET_DEST (sets[i].rtl);
5549 enum machine_mode mode
5550 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5551
5552 /* It's possible that we have a source value known to be
5553 constant but don't have a REG_EQUAL note on the insn.
5554 Lack of a note will mean src_eqv_elt will be NULL. This
5555 can happen where we've generated a SUBREG to access a
5556 CONST_INT that is already in a register in a wider mode.
5557 Ensure that the source expression is put in the proper
5558 constant class. */
5559 if (!classp)
5560 classp = sets[i].src_const_elt;
5561
5562 if (sets[i].src_elt == 0)
5563 {
5564 struct table_elt *elt;
5565
5566 /* Note that these insert_regs calls cannot remove
5567 any of the src_elt's, because they would have failed to
5568 match if not still valid. */
5569 if (insert_regs (src, classp, 0))
5570 {
5571 rehash_using_reg (src);
5572 sets[i].src_hash = HASH (src, mode);
5573 }
5574 elt = insert (src, classp, sets[i].src_hash, mode);
5575 elt->in_memory = sets[i].src_in_memory;
5576 sets[i].src_elt = classp = elt;
5577 }
5578 if (sets[i].src_const && sets[i].src_const_elt == 0
5579 && src != sets[i].src_const
5580 && ! rtx_equal_p (sets[i].src_const, src))
5581 sets[i].src_elt = insert (sets[i].src_const, classp,
5582 sets[i].src_const_hash, mode);
5583 }
5584 }
5585 else if (sets[i].src_elt == 0)
5586 /* If we did not insert the source into the hash table (e.g., it was
5587 volatile), note the equivalence class for the REG_EQUAL value, if any,
5588 so that the destination goes into that class. */
5589 sets[i].src_elt = src_eqv_elt;
5590
5591 /* Record destination addresses in the hash table. This allows us to
5592 check if they are invalidated by other sets. */
5593 for (i = 0; i < n_sets; i++)
5594 {
5595 if (sets[i].rtl)
5596 {
5597 rtx x = sets[i].inner_dest;
5598 struct table_elt *elt;
5599 enum machine_mode mode;
5600 unsigned hash;
5601
5602 if (MEM_P (x))
5603 {
5604 x = XEXP (x, 0);
5605 mode = GET_MODE (x);
5606 hash = HASH (x, mode);
5607 elt = lookup (x, hash, mode);
5608 if (!elt)
5609 {
5610 if (insert_regs (x, NULL, 0))
5611 {
5612 rtx dest = SET_DEST (sets[i].rtl);
5613
5614 rehash_using_reg (x);
5615 hash = HASH (x, mode);
5616 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5617 }
5618 elt = insert (x, NULL, hash, mode);
5619 }
5620
5621 sets[i].dest_addr_elt = elt;
5622 }
5623 else
5624 sets[i].dest_addr_elt = NULL;
5625 }
5626 }
5627
5628 invalidate_from_clobbers (insn);
5629
5630 /* Some registers are invalidated by subroutine calls. Memory is
5631 invalidated by non-constant calls. */
5632
5633 if (CALL_P (insn))
5634 {
5635 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5636 invalidate_memory ();
5637 invalidate_for_call ();
5638 }
5639
5640 /* Now invalidate everything set by this instruction.
5641 If a SUBREG or other funny destination is being set,
5642 sets[i].rtl is still nonzero, so here we invalidate the reg
5643 a part of which is being set. */
5644
5645 for (i = 0; i < n_sets; i++)
5646 if (sets[i].rtl)
5647 {
5648 /* We can't use the inner dest, because the mode associated with
5649 a ZERO_EXTRACT is significant. */
5650 rtx dest = SET_DEST (sets[i].rtl);
5651
5652 /* Needed for registers to remove the register from its
5653 previous quantity's chain.
5654 Needed for memory if this is a nonvarying address, unless
5655 we have just done an invalidate_memory that covers even those. */
5656 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5657 invalidate (dest, VOIDmode);
5658 else if (MEM_P (dest))
5659 invalidate (dest, VOIDmode);
5660 else if (GET_CODE (dest) == STRICT_LOW_PART
5661 || GET_CODE (dest) == ZERO_EXTRACT)
5662 invalidate (XEXP (dest, 0), GET_MODE (dest));
5663 }
5664
5665 /* A volatile ASM invalidates everything. */
5666 if (NONJUMP_INSN_P (insn)
5667 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5668 && MEM_VOLATILE_P (PATTERN (insn)))
5669 flush_hash_table ();
5670
5671 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5672 the regs restored by the longjmp come from a later time
5673 than the setjmp. */
5674 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5675 {
5676 flush_hash_table ();
5677 goto done;
5678 }
5679
5680 /* Make sure registers mentioned in destinations
5681 are safe for use in an expression to be inserted.
5682 This removes from the hash table
5683 any invalid entry that refers to one of these registers.
5684
5685 We don't care about the return value from mention_regs because
5686 we are going to hash the SET_DEST values unconditionally. */
5687
5688 for (i = 0; i < n_sets; i++)
5689 {
5690 if (sets[i].rtl)
5691 {
5692 rtx x = SET_DEST (sets[i].rtl);
5693
5694 if (!REG_P (x))
5695 mention_regs (x);
5696 else
5697 {
5698 /* We used to rely on all references to a register becoming
5699 inaccessible when a register changes to a new quantity,
5700 since that changes the hash code. However, that is not
5701 safe, since after HASH_SIZE new quantities we get a
5702 hash 'collision' of a register with its own invalid
5703 entries. And since SUBREGs have been changed not to
5704 change their hash code with the hash code of the register,
5705 it wouldn't work any longer at all. So we have to check
5706 for any invalid references lying around now.
5707 This code is similar to the REG case in mention_regs,
5708 but it knows that reg_tick has been incremented, and
5709 it leaves reg_in_table as -1 . */
5710 unsigned int regno = REGNO (x);
5711 unsigned int endregno = END_REGNO (x);
5712 unsigned int i;
5713
5714 for (i = regno; i < endregno; i++)
5715 {
5716 if (REG_IN_TABLE (i) >= 0)
5717 {
5718 remove_invalid_refs (i);
5719 REG_IN_TABLE (i) = -1;
5720 }
5721 }
5722 }
5723 }
5724 }
5725
5726 /* We may have just removed some of the src_elt's from the hash table.
5727 So replace each one with the current head of the same class.
5728 Also check if destination addresses have been removed. */
5729
5730 for (i = 0; i < n_sets; i++)
5731 if (sets[i].rtl)
5732 {
5733 if (sets[i].dest_addr_elt
5734 && sets[i].dest_addr_elt->first_same_value == 0)
5735 {
5736 /* The elt was removed, which means this destination is not
5737 valid after this instruction. */
5738 sets[i].rtl = NULL_RTX;
5739 }
5740 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5741 /* If elt was removed, find current head of same class,
5742 or 0 if nothing remains of that class. */
5743 {
5744 struct table_elt *elt = sets[i].src_elt;
5745
5746 while (elt && elt->prev_same_value)
5747 elt = elt->prev_same_value;
5748
5749 while (elt && elt->first_same_value == 0)
5750 elt = elt->next_same_value;
5751 sets[i].src_elt = elt ? elt->first_same_value : 0;
5752 }
5753 }
5754
5755 /* Now insert the destinations into their equivalence classes. */
5756
5757 for (i = 0; i < n_sets; i++)
5758 if (sets[i].rtl)
5759 {
5760 rtx dest = SET_DEST (sets[i].rtl);
5761 struct table_elt *elt;
5762
5763 /* Don't record value if we are not supposed to risk allocating
5764 floating-point values in registers that might be wider than
5765 memory. */
5766 if ((flag_float_store
5767 && MEM_P (dest)
5768 && FLOAT_MODE_P (GET_MODE (dest)))
5769 /* Don't record BLKmode values, because we don't know the
5770 size of it, and can't be sure that other BLKmode values
5771 have the same or smaller size. */
5772 || GET_MODE (dest) == BLKmode
5773 /* If we didn't put a REG_EQUAL value or a source into the hash
5774 table, there is no point is recording DEST. */
5775 || sets[i].src_elt == 0
5776 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5777 or SIGN_EXTEND, don't record DEST since it can cause
5778 some tracking to be wrong.
5779
5780 ??? Think about this more later. */
5781 || (paradoxical_subreg_p (dest)
5782 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5783 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5784 continue;
5785
5786 /* STRICT_LOW_PART isn't part of the value BEING set,
5787 and neither is the SUBREG inside it.
5788 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5789 if (GET_CODE (dest) == STRICT_LOW_PART)
5790 dest = SUBREG_REG (XEXP (dest, 0));
5791
5792 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5793 /* Registers must also be inserted into chains for quantities. */
5794 if (insert_regs (dest, sets[i].src_elt, 1))
5795 {
5796 /* If `insert_regs' changes something, the hash code must be
5797 recalculated. */
5798 rehash_using_reg (dest);
5799 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5800 }
5801
5802 elt = insert (dest, sets[i].src_elt,
5803 sets[i].dest_hash, GET_MODE (dest));
5804
5805 /* If this is a constant, insert the constant anchors with the
5806 equivalent register-offset expressions using register DEST. */
5807 if (targetm.const_anchor
5808 && REG_P (dest)
5809 && SCALAR_INT_MODE_P (GET_MODE (dest))
5810 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5811 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5812
5813 elt->in_memory = (MEM_P (sets[i].inner_dest)
5814 && !MEM_READONLY_P (sets[i].inner_dest));
5815
5816 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5817 narrower than M2, and both M1 and M2 are the same number of words,
5818 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5819 make that equivalence as well.
5820
5821 However, BAR may have equivalences for which gen_lowpart
5822 will produce a simpler value than gen_lowpart applied to
5823 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5824 BAR's equivalences. If we don't get a simplified form, make
5825 the SUBREG. It will not be used in an equivalence, but will
5826 cause two similar assignments to be detected.
5827
5828 Note the loop below will find SUBREG_REG (DEST) since we have
5829 already entered SRC and DEST of the SET in the table. */
5830
5831 if (GET_CODE (dest) == SUBREG
5832 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5833 / UNITS_PER_WORD)
5834 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5835 && (GET_MODE_SIZE (GET_MODE (dest))
5836 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5837 && sets[i].src_elt != 0)
5838 {
5839 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5840 struct table_elt *elt, *classp = 0;
5841
5842 for (elt = sets[i].src_elt->first_same_value; elt;
5843 elt = elt->next_same_value)
5844 {
5845 rtx new_src = 0;
5846 unsigned src_hash;
5847 struct table_elt *src_elt;
5848 int byte = 0;
5849
5850 /* Ignore invalid entries. */
5851 if (!REG_P (elt->exp)
5852 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5853 continue;
5854
5855 /* We may have already been playing subreg games. If the
5856 mode is already correct for the destination, use it. */
5857 if (GET_MODE (elt->exp) == new_mode)
5858 new_src = elt->exp;
5859 else
5860 {
5861 /* Calculate big endian correction for the SUBREG_BYTE.
5862 We have already checked that M1 (GET_MODE (dest))
5863 is not narrower than M2 (new_mode). */
5864 if (BYTES_BIG_ENDIAN)
5865 byte = (GET_MODE_SIZE (GET_MODE (dest))
5866 - GET_MODE_SIZE (new_mode));
5867
5868 new_src = simplify_gen_subreg (new_mode, elt->exp,
5869 GET_MODE (dest), byte);
5870 }
5871
5872 /* The call to simplify_gen_subreg fails if the value
5873 is VOIDmode, yet we can't do any simplification, e.g.
5874 for EXPR_LISTs denoting function call results.
5875 It is invalid to construct a SUBREG with a VOIDmode
5876 SUBREG_REG, hence a zero new_src means we can't do
5877 this substitution. */
5878 if (! new_src)
5879 continue;
5880
5881 src_hash = HASH (new_src, new_mode);
5882 src_elt = lookup (new_src, src_hash, new_mode);
5883
5884 /* Put the new source in the hash table is if isn't
5885 already. */
5886 if (src_elt == 0)
5887 {
5888 if (insert_regs (new_src, classp, 0))
5889 {
5890 rehash_using_reg (new_src);
5891 src_hash = HASH (new_src, new_mode);
5892 }
5893 src_elt = insert (new_src, classp, src_hash, new_mode);
5894 src_elt->in_memory = elt->in_memory;
5895 }
5896 else if (classp && classp != src_elt->first_same_value)
5897 /* Show that two things that we've seen before are
5898 actually the same. */
5899 merge_equiv_classes (src_elt, classp);
5900
5901 classp = src_elt->first_same_value;
5902 /* Ignore invalid entries. */
5903 while (classp
5904 && !REG_P (classp->exp)
5905 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5906 classp = classp->next_same_value;
5907 }
5908 }
5909 }
5910
5911 /* Special handling for (set REG0 REG1) where REG0 is the
5912 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5913 be used in the sequel, so (if easily done) change this insn to
5914 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5915 that computed their value. Then REG1 will become a dead store
5916 and won't cloud the situation for later optimizations.
5917
5918 Do not make this change if REG1 is a hard register, because it will
5919 then be used in the sequel and we may be changing a two-operand insn
5920 into a three-operand insn.
5921
5922 Also do not do this if we are operating on a copy of INSN. */
5923
5924 if (n_sets == 1 && sets[0].rtl)
5925 try_back_substitute_reg (sets[0].rtl, insn);
5926
5927 done:;
5928 }
5929 \f
5930 /* Remove from the hash table all expressions that reference memory. */
5931
5932 static void
5933 invalidate_memory (void)
5934 {
5935 int i;
5936 struct table_elt *p, *next;
5937
5938 for (i = 0; i < HASH_SIZE; i++)
5939 for (p = table[i]; p; p = next)
5940 {
5941 next = p->next_same_hash;
5942 if (p->in_memory)
5943 remove_from_table (p, i);
5944 }
5945 }
5946
5947 /* Perform invalidation on the basis of everything about INSN,
5948 except for invalidating the actual places that are SET in it.
5949 This includes the places CLOBBERed, and anything that might
5950 alias with something that is SET or CLOBBERed. */
5951
5952 static void
5953 invalidate_from_clobbers (rtx insn)
5954 {
5955 rtx x = PATTERN (insn);
5956
5957 if (GET_CODE (x) == CLOBBER)
5958 {
5959 rtx ref = XEXP (x, 0);
5960 if (ref)
5961 {
5962 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5963 || MEM_P (ref))
5964 invalidate (ref, VOIDmode);
5965 else if (GET_CODE (ref) == STRICT_LOW_PART
5966 || GET_CODE (ref) == ZERO_EXTRACT)
5967 invalidate (XEXP (ref, 0), GET_MODE (ref));
5968 }
5969 }
5970 else if (GET_CODE (x) == PARALLEL)
5971 {
5972 int i;
5973 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5974 {
5975 rtx y = XVECEXP (x, 0, i);
5976 if (GET_CODE (y) == CLOBBER)
5977 {
5978 rtx ref = XEXP (y, 0);
5979 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5980 || MEM_P (ref))
5981 invalidate (ref, VOIDmode);
5982 else if (GET_CODE (ref) == STRICT_LOW_PART
5983 || GET_CODE (ref) == ZERO_EXTRACT)
5984 invalidate (XEXP (ref, 0), GET_MODE (ref));
5985 }
5986 }
5987 }
5988 }
5989 \f
5990 /* Perform invalidation on the basis of everything about INSN.
5991 This includes the places CLOBBERed, and anything that might
5992 alias with something that is SET or CLOBBERed. */
5993
5994 static void
5995 invalidate_from_sets_and_clobbers (rtx insn)
5996 {
5997 rtx tem;
5998 rtx x = PATTERN (insn);
5999
6000 if (CALL_P (insn))
6001 {
6002 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6003 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6004 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6005 }
6006
6007 /* Ensure we invalidate the destination register of a CALL insn.
6008 This is necessary for machines where this register is a fixed_reg,
6009 because no other code would invalidate it. */
6010 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6011 invalidate (SET_DEST (x), VOIDmode);
6012
6013 else if (GET_CODE (x) == PARALLEL)
6014 {
6015 int i;
6016
6017 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6018 {
6019 rtx y = XVECEXP (x, 0, i);
6020 if (GET_CODE (y) == CLOBBER)
6021 {
6022 rtx clobbered = XEXP (y, 0);
6023
6024 if (REG_P (clobbered)
6025 || GET_CODE (clobbered) == SUBREG)
6026 invalidate (clobbered, VOIDmode);
6027 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6028 || GET_CODE (clobbered) == ZERO_EXTRACT)
6029 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6030 }
6031 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6032 invalidate (SET_DEST (y), VOIDmode);
6033 }
6034 }
6035 }
6036 \f
6037 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6038 and replace any registers in them with either an equivalent constant
6039 or the canonical form of the register. If we are inside an address,
6040 only do this if the address remains valid.
6041
6042 OBJECT is 0 except when within a MEM in which case it is the MEM.
6043
6044 Return the replacement for X. */
6045
6046 static rtx
6047 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6048 {
6049 enum rtx_code code = GET_CODE (x);
6050 const char *fmt = GET_RTX_FORMAT (code);
6051 int i;
6052
6053 switch (code)
6054 {
6055 case CONST:
6056 case SYMBOL_REF:
6057 case LABEL_REF:
6058 CASE_CONST_ANY:
6059 case PC:
6060 case CC0:
6061 case LO_SUM:
6062 return x;
6063
6064 case MEM:
6065 validate_change (x, &XEXP (x, 0),
6066 cse_process_notes (XEXP (x, 0), x, changed), 0);
6067 return x;
6068
6069 case EXPR_LIST:
6070 case INSN_LIST:
6071 if (REG_NOTE_KIND (x) == REG_EQUAL)
6072 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6073 if (XEXP (x, 1))
6074 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6075 return x;
6076
6077 case SIGN_EXTEND:
6078 case ZERO_EXTEND:
6079 case SUBREG:
6080 {
6081 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6082 /* We don't substitute VOIDmode constants into these rtx,
6083 since they would impede folding. */
6084 if (GET_MODE (new_rtx) != VOIDmode)
6085 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6086 return x;
6087 }
6088
6089 case REG:
6090 i = REG_QTY (REGNO (x));
6091
6092 /* Return a constant or a constant register. */
6093 if (REGNO_QTY_VALID_P (REGNO (x)))
6094 {
6095 struct qty_table_elem *ent = &qty_table[i];
6096
6097 if (ent->const_rtx != NULL_RTX
6098 && (CONSTANT_P (ent->const_rtx)
6099 || REG_P (ent->const_rtx)))
6100 {
6101 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6102 if (new_rtx)
6103 return copy_rtx (new_rtx);
6104 }
6105 }
6106
6107 /* Otherwise, canonicalize this register. */
6108 return canon_reg (x, NULL_RTX);
6109
6110 default:
6111 break;
6112 }
6113
6114 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6115 if (fmt[i] == 'e')
6116 validate_change (object, &XEXP (x, i),
6117 cse_process_notes (XEXP (x, i), object, changed), 0);
6118
6119 return x;
6120 }
6121
6122 static rtx
6123 cse_process_notes (rtx x, rtx object, bool *changed)
6124 {
6125 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6126 if (new_rtx != x)
6127 *changed = true;
6128 return new_rtx;
6129 }
6130
6131 \f
6132 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6133
6134 DATA is a pointer to a struct cse_basic_block_data, that is used to
6135 describe the path.
6136 It is filled with a queue of basic blocks, starting with FIRST_BB
6137 and following a trace through the CFG.
6138
6139 If all paths starting at FIRST_BB have been followed, or no new path
6140 starting at FIRST_BB can be constructed, this function returns FALSE.
6141 Otherwise, DATA->path is filled and the function returns TRUE indicating
6142 that a path to follow was found.
6143
6144 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6145 block in the path will be FIRST_BB. */
6146
6147 static bool
6148 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6149 int follow_jumps)
6150 {
6151 basic_block bb;
6152 edge e;
6153 int path_size;
6154
6155 SET_BIT (cse_visited_basic_blocks, first_bb->index);
6156
6157 /* See if there is a previous path. */
6158 path_size = data->path_size;
6159
6160 /* There is a previous path. Make sure it started with FIRST_BB. */
6161 if (path_size)
6162 gcc_assert (data->path[0].bb == first_bb);
6163
6164 /* There was only one basic block in the last path. Clear the path and
6165 return, so that paths starting at another basic block can be tried. */
6166 if (path_size == 1)
6167 {
6168 path_size = 0;
6169 goto done;
6170 }
6171
6172 /* If the path was empty from the beginning, construct a new path. */
6173 if (path_size == 0)
6174 data->path[path_size++].bb = first_bb;
6175 else
6176 {
6177 /* Otherwise, path_size must be equal to or greater than 2, because
6178 a previous path exists that is at least two basic blocks long.
6179
6180 Update the previous branch path, if any. If the last branch was
6181 previously along the branch edge, take the fallthrough edge now. */
6182 while (path_size >= 2)
6183 {
6184 basic_block last_bb_in_path, previous_bb_in_path;
6185 edge e;
6186
6187 --path_size;
6188 last_bb_in_path = data->path[path_size].bb;
6189 previous_bb_in_path = data->path[path_size - 1].bb;
6190
6191 /* If we previously followed a path along the branch edge, try
6192 the fallthru edge now. */
6193 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6194 && any_condjump_p (BB_END (previous_bb_in_path))
6195 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6196 && e == BRANCH_EDGE (previous_bb_in_path))
6197 {
6198 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6199 if (bb != EXIT_BLOCK_PTR
6200 && single_pred_p (bb)
6201 /* We used to assert here that we would only see blocks
6202 that we have not visited yet. But we may end up
6203 visiting basic blocks twice if the CFG has changed
6204 in this run of cse_main, because when the CFG changes
6205 the topological sort of the CFG also changes. A basic
6206 blocks that previously had more than two predecessors
6207 may now have a single predecessor, and become part of
6208 a path that starts at another basic block.
6209
6210 We still want to visit each basic block only once, so
6211 halt the path here if we have already visited BB. */
6212 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
6213 {
6214 SET_BIT (cse_visited_basic_blocks, bb->index);
6215 data->path[path_size++].bb = bb;
6216 break;
6217 }
6218 }
6219
6220 data->path[path_size].bb = NULL;
6221 }
6222
6223 /* If only one block remains in the path, bail. */
6224 if (path_size == 1)
6225 {
6226 path_size = 0;
6227 goto done;
6228 }
6229 }
6230
6231 /* Extend the path if possible. */
6232 if (follow_jumps)
6233 {
6234 bb = data->path[path_size - 1].bb;
6235 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6236 {
6237 if (single_succ_p (bb))
6238 e = single_succ_edge (bb);
6239 else if (EDGE_COUNT (bb->succs) == 2
6240 && any_condjump_p (BB_END (bb)))
6241 {
6242 /* First try to follow the branch. If that doesn't lead
6243 to a useful path, follow the fallthru edge. */
6244 e = BRANCH_EDGE (bb);
6245 if (!single_pred_p (e->dest))
6246 e = FALLTHRU_EDGE (bb);
6247 }
6248 else
6249 e = NULL;
6250
6251 if (e
6252 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6253 && e->dest != EXIT_BLOCK_PTR
6254 && single_pred_p (e->dest)
6255 /* Avoid visiting basic blocks twice. The large comment
6256 above explains why this can happen. */
6257 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
6258 {
6259 basic_block bb2 = e->dest;
6260 SET_BIT (cse_visited_basic_blocks, bb2->index);
6261 data->path[path_size++].bb = bb2;
6262 bb = bb2;
6263 }
6264 else
6265 bb = NULL;
6266 }
6267 }
6268
6269 done:
6270 data->path_size = path_size;
6271 return path_size != 0;
6272 }
6273 \f
6274 /* Dump the path in DATA to file F. NSETS is the number of sets
6275 in the path. */
6276
6277 static void
6278 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6279 {
6280 int path_entry;
6281
6282 fprintf (f, ";; Following path with %d sets: ", nsets);
6283 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6284 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6285 fputc ('\n', dump_file);
6286 fflush (f);
6287 }
6288
6289 \f
6290 /* Return true if BB has exception handling successor edges. */
6291
6292 static bool
6293 have_eh_succ_edges (basic_block bb)
6294 {
6295 edge e;
6296 edge_iterator ei;
6297
6298 FOR_EACH_EDGE (e, ei, bb->succs)
6299 if (e->flags & EDGE_EH)
6300 return true;
6301
6302 return false;
6303 }
6304
6305 \f
6306 /* Scan to the end of the path described by DATA. Return an estimate of
6307 the total number of SETs of all insns in the path. */
6308
6309 static void
6310 cse_prescan_path (struct cse_basic_block_data *data)
6311 {
6312 int nsets = 0;
6313 int path_size = data->path_size;
6314 int path_entry;
6315
6316 /* Scan to end of each basic block in the path. */
6317 for (path_entry = 0; path_entry < path_size; path_entry++)
6318 {
6319 basic_block bb;
6320 rtx insn;
6321
6322 bb = data->path[path_entry].bb;
6323
6324 FOR_BB_INSNS (bb, insn)
6325 {
6326 if (!INSN_P (insn))
6327 continue;
6328
6329 /* A PARALLEL can have lots of SETs in it,
6330 especially if it is really an ASM_OPERANDS. */
6331 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6332 nsets += XVECLEN (PATTERN (insn), 0);
6333 else
6334 nsets += 1;
6335 }
6336 }
6337
6338 data->nsets = nsets;
6339 }
6340 \f
6341 /* Process a single extended basic block described by EBB_DATA. */
6342
6343 static void
6344 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6345 {
6346 int path_size = ebb_data->path_size;
6347 int path_entry;
6348 int num_insns = 0;
6349
6350 /* Allocate the space needed by qty_table. */
6351 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6352
6353 new_basic_block ();
6354 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6355 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6356 for (path_entry = 0; path_entry < path_size; path_entry++)
6357 {
6358 basic_block bb;
6359 rtx insn;
6360
6361 bb = ebb_data->path[path_entry].bb;
6362
6363 /* Invalidate recorded information for eh regs if there is an EH
6364 edge pointing to that bb. */
6365 if (bb_has_eh_pred (bb))
6366 {
6367 df_ref *def_rec;
6368
6369 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6370 {
6371 df_ref def = *def_rec;
6372 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6373 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6374 }
6375 }
6376
6377 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6378 FOR_BB_INSNS (bb, insn)
6379 {
6380 /* If we have processed 1,000 insns, flush the hash table to
6381 avoid extreme quadratic behavior. We must not include NOTEs
6382 in the count since there may be more of them when generating
6383 debugging information. If we clear the table at different
6384 times, code generated with -g -O might be different than code
6385 generated with -O but not -g.
6386
6387 FIXME: This is a real kludge and needs to be done some other
6388 way. */
6389 if (NONDEBUG_INSN_P (insn)
6390 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6391 {
6392 flush_hash_table ();
6393 num_insns = 0;
6394 }
6395
6396 if (INSN_P (insn))
6397 {
6398 /* Process notes first so we have all notes in canonical forms
6399 when looking for duplicate operations. */
6400 if (REG_NOTES (insn))
6401 {
6402 bool changed = false;
6403 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6404 NULL_RTX, &changed);
6405 if (changed)
6406 df_notes_rescan (insn);
6407 }
6408
6409 cse_insn (insn);
6410
6411 /* If we haven't already found an insn where we added a LABEL_REF,
6412 check this one. */
6413 if (INSN_P (insn) && !recorded_label_ref
6414 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6415 (void *) insn))
6416 recorded_label_ref = true;
6417
6418 #ifdef HAVE_cc0
6419 if (NONDEBUG_INSN_P (insn))
6420 {
6421 /* If the previous insn sets CC0 and this insn no
6422 longer references CC0, delete the previous insn.
6423 Here we use fact that nothing expects CC0 to be
6424 valid over an insn, which is true until the final
6425 pass. */
6426 rtx prev_insn, tem;
6427
6428 prev_insn = prev_nonnote_nondebug_insn (insn);
6429 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6430 && (tem = single_set (prev_insn)) != NULL_RTX
6431 && SET_DEST (tem) == cc0_rtx
6432 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6433 delete_insn (prev_insn);
6434
6435 /* If this insn is not the last insn in the basic
6436 block, it will be PREV_INSN(insn) in the next
6437 iteration. If we recorded any CC0-related
6438 information for this insn, remember it. */
6439 if (insn != BB_END (bb))
6440 {
6441 prev_insn_cc0 = this_insn_cc0;
6442 prev_insn_cc0_mode = this_insn_cc0_mode;
6443 }
6444 }
6445 #endif
6446 }
6447 }
6448
6449 /* With non-call exceptions, we are not always able to update
6450 the CFG properly inside cse_insn. So clean up possibly
6451 redundant EH edges here. */
6452 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6453 cse_cfg_altered |= purge_dead_edges (bb);
6454
6455 /* If we changed a conditional jump, we may have terminated
6456 the path we are following. Check that by verifying that
6457 the edge we would take still exists. If the edge does
6458 not exist anymore, purge the remainder of the path.
6459 Note that this will cause us to return to the caller. */
6460 if (path_entry < path_size - 1)
6461 {
6462 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6463 if (!find_edge (bb, next_bb))
6464 {
6465 do
6466 {
6467 path_size--;
6468
6469 /* If we truncate the path, we must also reset the
6470 visited bit on the remaining blocks in the path,
6471 or we will never visit them at all. */
6472 RESET_BIT (cse_visited_basic_blocks,
6473 ebb_data->path[path_size].bb->index);
6474 ebb_data->path[path_size].bb = NULL;
6475 }
6476 while (path_size - 1 != path_entry);
6477 ebb_data->path_size = path_size;
6478 }
6479 }
6480
6481 /* If this is a conditional jump insn, record any known
6482 equivalences due to the condition being tested. */
6483 insn = BB_END (bb);
6484 if (path_entry < path_size - 1
6485 && JUMP_P (insn)
6486 && single_set (insn)
6487 && any_condjump_p (insn))
6488 {
6489 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6490 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6491 record_jump_equiv (insn, taken);
6492 }
6493
6494 #ifdef HAVE_cc0
6495 /* Clear the CC0-tracking related insns, they can't provide
6496 useful information across basic block boundaries. */
6497 prev_insn_cc0 = 0;
6498 #endif
6499 }
6500
6501 gcc_assert (next_qty <= max_qty);
6502
6503 free (qty_table);
6504 }
6505
6506 \f
6507 /* Perform cse on the instructions of a function.
6508 F is the first instruction.
6509 NREGS is one plus the highest pseudo-reg number used in the instruction.
6510
6511 Return 2 if jump optimizations should be redone due to simplifications
6512 in conditional jump instructions.
6513 Return 1 if the CFG should be cleaned up because it has been modified.
6514 Return 0 otherwise. */
6515
6516 static int
6517 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6518 {
6519 struct cse_basic_block_data ebb_data;
6520 basic_block bb;
6521 int *rc_order = XNEWVEC (int, last_basic_block);
6522 int i, n_blocks;
6523
6524 df_set_flags (DF_LR_RUN_DCE);
6525 df_analyze ();
6526 df_set_flags (DF_DEFER_INSN_RESCAN);
6527
6528 reg_scan (get_insns (), max_reg_num ());
6529 init_cse_reg_info (nregs);
6530
6531 ebb_data.path = XNEWVEC (struct branch_path,
6532 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6533
6534 cse_cfg_altered = false;
6535 cse_jumps_altered = false;
6536 recorded_label_ref = false;
6537 constant_pool_entries_cost = 0;
6538 constant_pool_entries_regcost = 0;
6539 ebb_data.path_size = 0;
6540 ebb_data.nsets = 0;
6541 rtl_hooks = cse_rtl_hooks;
6542
6543 init_recog ();
6544 init_alias_analysis ();
6545
6546 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6547
6548 /* Set up the table of already visited basic blocks. */
6549 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6550 sbitmap_zero (cse_visited_basic_blocks);
6551
6552 /* Loop over basic blocks in reverse completion order (RPO),
6553 excluding the ENTRY and EXIT blocks. */
6554 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6555 i = 0;
6556 while (i < n_blocks)
6557 {
6558 /* Find the first block in the RPO queue that we have not yet
6559 processed before. */
6560 do
6561 {
6562 bb = BASIC_BLOCK (rc_order[i++]);
6563 }
6564 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6565 && i < n_blocks);
6566
6567 /* Find all paths starting with BB, and process them. */
6568 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6569 {
6570 /* Pre-scan the path. */
6571 cse_prescan_path (&ebb_data);
6572
6573 /* If this basic block has no sets, skip it. */
6574 if (ebb_data.nsets == 0)
6575 continue;
6576
6577 /* Get a reasonable estimate for the maximum number of qty's
6578 needed for this path. For this, we take the number of sets
6579 and multiply that by MAX_RECOG_OPERANDS. */
6580 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6581
6582 /* Dump the path we're about to process. */
6583 if (dump_file)
6584 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6585
6586 cse_extended_basic_block (&ebb_data);
6587 }
6588 }
6589
6590 /* Clean up. */
6591 end_alias_analysis ();
6592 free (reg_eqv_table);
6593 free (ebb_data.path);
6594 sbitmap_free (cse_visited_basic_blocks);
6595 free (rc_order);
6596 rtl_hooks = general_rtl_hooks;
6597
6598 if (cse_jumps_altered || recorded_label_ref)
6599 return 2;
6600 else if (cse_cfg_altered)
6601 return 1;
6602 else
6603 return 0;
6604 }
6605 \f
6606 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6607 which there isn't a REG_LABEL_OPERAND note.
6608 Return one if so. DATA is the insn. */
6609
6610 static int
6611 check_for_label_ref (rtx *rtl, void *data)
6612 {
6613 rtx insn = (rtx) data;
6614
6615 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6616 note for it, we must rerun jump since it needs to place the note. If
6617 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6618 don't do this since no REG_LABEL_OPERAND will be added. */
6619 return (GET_CODE (*rtl) == LABEL_REF
6620 && ! LABEL_REF_NONLOCAL_P (*rtl)
6621 && (!JUMP_P (insn)
6622 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6623 && LABEL_P (XEXP (*rtl, 0))
6624 && INSN_UID (XEXP (*rtl, 0)) != 0
6625 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6626 }
6627 \f
6628 /* Count the number of times registers are used (not set) in X.
6629 COUNTS is an array in which we accumulate the count, INCR is how much
6630 we count each register usage.
6631
6632 Don't count a usage of DEST, which is the SET_DEST of a SET which
6633 contains X in its SET_SRC. This is because such a SET does not
6634 modify the liveness of DEST.
6635 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6636 We must then count uses of a SET_DEST regardless, because the insn can't be
6637 deleted here. */
6638
6639 static void
6640 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6641 {
6642 enum rtx_code code;
6643 rtx note;
6644 const char *fmt;
6645 int i, j;
6646
6647 if (x == 0)
6648 return;
6649
6650 switch (code = GET_CODE (x))
6651 {
6652 case REG:
6653 if (x != dest)
6654 counts[REGNO (x)] += incr;
6655 return;
6656
6657 case PC:
6658 case CC0:
6659 case CONST:
6660 CASE_CONST_ANY:
6661 case SYMBOL_REF:
6662 case LABEL_REF:
6663 return;
6664
6665 case CLOBBER:
6666 /* If we are clobbering a MEM, mark any registers inside the address
6667 as being used. */
6668 if (MEM_P (XEXP (x, 0)))
6669 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6670 return;
6671
6672 case SET:
6673 /* Unless we are setting a REG, count everything in SET_DEST. */
6674 if (!REG_P (SET_DEST (x)))
6675 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6676 count_reg_usage (SET_SRC (x), counts,
6677 dest ? dest : SET_DEST (x),
6678 incr);
6679 return;
6680
6681 case DEBUG_INSN:
6682 return;
6683
6684 case CALL_INSN:
6685 case INSN:
6686 case JUMP_INSN:
6687 /* We expect dest to be NULL_RTX here. If the insn may throw,
6688 or if it cannot be deleted due to side-effects, mark this fact
6689 by setting DEST to pc_rtx. */
6690 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6691 || side_effects_p (PATTERN (x)))
6692 dest = pc_rtx;
6693 if (code == CALL_INSN)
6694 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6695 count_reg_usage (PATTERN (x), counts, dest, incr);
6696
6697 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6698 use them. */
6699
6700 note = find_reg_equal_equiv_note (x);
6701 if (note)
6702 {
6703 rtx eqv = XEXP (note, 0);
6704
6705 if (GET_CODE (eqv) == EXPR_LIST)
6706 /* This REG_EQUAL note describes the result of a function call.
6707 Process all the arguments. */
6708 do
6709 {
6710 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6711 eqv = XEXP (eqv, 1);
6712 }
6713 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6714 else
6715 count_reg_usage (eqv, counts, dest, incr);
6716 }
6717 return;
6718
6719 case EXPR_LIST:
6720 if (REG_NOTE_KIND (x) == REG_EQUAL
6721 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6722 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6723 involving registers in the address. */
6724 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6725 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6726
6727 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6728 return;
6729
6730 case ASM_OPERANDS:
6731 /* Iterate over just the inputs, not the constraints as well. */
6732 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6733 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6734 return;
6735
6736 case INSN_LIST:
6737 gcc_unreachable ();
6738
6739 default:
6740 break;
6741 }
6742
6743 fmt = GET_RTX_FORMAT (code);
6744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6745 {
6746 if (fmt[i] == 'e')
6747 count_reg_usage (XEXP (x, i), counts, dest, incr);
6748 else if (fmt[i] == 'E')
6749 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6750 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6751 }
6752 }
6753 \f
6754 /* Return true if X is a dead register. */
6755
6756 static inline int
6757 is_dead_reg (rtx x, int *counts)
6758 {
6759 return (REG_P (x)
6760 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6761 && counts[REGNO (x)] == 0);
6762 }
6763
6764 /* Return true if set is live. */
6765 static bool
6766 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6767 int *counts)
6768 {
6769 #ifdef HAVE_cc0
6770 rtx tem;
6771 #endif
6772
6773 if (set_noop_p (set))
6774 ;
6775
6776 #ifdef HAVE_cc0
6777 else if (GET_CODE (SET_DEST (set)) == CC0
6778 && !side_effects_p (SET_SRC (set))
6779 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6780 || !INSN_P (tem)
6781 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6782 return false;
6783 #endif
6784 else if (!is_dead_reg (SET_DEST (set), counts)
6785 || side_effects_p (SET_SRC (set)))
6786 return true;
6787 return false;
6788 }
6789
6790 /* Return true if insn is live. */
6791
6792 static bool
6793 insn_live_p (rtx insn, int *counts)
6794 {
6795 int i;
6796 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6797 return true;
6798 else if (GET_CODE (PATTERN (insn)) == SET)
6799 return set_live_p (PATTERN (insn), insn, counts);
6800 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6801 {
6802 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6803 {
6804 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6805
6806 if (GET_CODE (elt) == SET)
6807 {
6808 if (set_live_p (elt, insn, counts))
6809 return true;
6810 }
6811 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6812 return true;
6813 }
6814 return false;
6815 }
6816 else if (DEBUG_INSN_P (insn))
6817 {
6818 rtx next;
6819
6820 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6821 if (NOTE_P (next))
6822 continue;
6823 else if (!DEBUG_INSN_P (next))
6824 return true;
6825 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6826 return false;
6827
6828 return true;
6829 }
6830 else
6831 return true;
6832 }
6833
6834 /* Count the number of stores into pseudo. Callback for note_stores. */
6835
6836 static void
6837 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6838 {
6839 int *counts = (int *) data;
6840 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6841 counts[REGNO (x)]++;
6842 }
6843
6844 struct dead_debug_insn_data
6845 {
6846 int *counts;
6847 rtx *replacements;
6848 bool seen_repl;
6849 };
6850
6851 /* Return if a DEBUG_INSN needs to be reset because some dead
6852 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6853
6854 static int
6855 is_dead_debug_insn (rtx *loc, void *data)
6856 {
6857 rtx x = *loc;
6858 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6859
6860 if (is_dead_reg (x, ddid->counts))
6861 {
6862 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6863 ddid->seen_repl = true;
6864 else
6865 return 1;
6866 }
6867 return 0;
6868 }
6869
6870 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6871 Callback for simplify_replace_fn_rtx. */
6872
6873 static rtx
6874 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6875 {
6876 rtx *replacements = (rtx *) data;
6877
6878 if (REG_P (x)
6879 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6880 && replacements[REGNO (x)] != NULL_RTX)
6881 {
6882 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6883 return replacements[REGNO (x)];
6884 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6885 GET_MODE (replacements[REGNO (x)]));
6886 }
6887 return NULL_RTX;
6888 }
6889
6890 /* Scan all the insns and delete any that are dead; i.e., they store a register
6891 that is never used or they copy a register to itself.
6892
6893 This is used to remove insns made obviously dead by cse, loop or other
6894 optimizations. It improves the heuristics in loop since it won't try to
6895 move dead invariants out of loops or make givs for dead quantities. The
6896 remaining passes of the compilation are also sped up. */
6897
6898 int
6899 delete_trivially_dead_insns (rtx insns, int nreg)
6900 {
6901 int *counts;
6902 rtx insn, prev;
6903 rtx *replacements = NULL;
6904 int ndead = 0;
6905
6906 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6907 /* First count the number of times each register is used. */
6908 if (MAY_HAVE_DEBUG_INSNS)
6909 {
6910 counts = XCNEWVEC (int, nreg * 3);
6911 for (insn = insns; insn; insn = NEXT_INSN (insn))
6912 if (DEBUG_INSN_P (insn))
6913 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6914 NULL_RTX, 1);
6915 else if (INSN_P (insn))
6916 {
6917 count_reg_usage (insn, counts, NULL_RTX, 1);
6918 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6919 }
6920 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6921 First one counts how many times each pseudo is used outside
6922 of debug insns, second counts how many times each pseudo is
6923 used in debug insns and third counts how many times a pseudo
6924 is stored. */
6925 }
6926 else
6927 {
6928 counts = XCNEWVEC (int, nreg);
6929 for (insn = insns; insn; insn = NEXT_INSN (insn))
6930 if (INSN_P (insn))
6931 count_reg_usage (insn, counts, NULL_RTX, 1);
6932 /* If no debug insns can be present, COUNTS is just an array
6933 which counts how many times each pseudo is used. */
6934 }
6935 /* Go from the last insn to the first and delete insns that only set unused
6936 registers or copy a register to itself. As we delete an insn, remove
6937 usage counts for registers it uses.
6938
6939 The first jump optimization pass may leave a real insn as the last
6940 insn in the function. We must not skip that insn or we may end
6941 up deleting code that is not really dead.
6942
6943 If some otherwise unused register is only used in DEBUG_INSNs,
6944 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6945 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6946 has been created for the unused register, replace it with
6947 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6948 for (insn = get_last_insn (); insn; insn = prev)
6949 {
6950 int live_insn = 0;
6951
6952 prev = PREV_INSN (insn);
6953 if (!INSN_P (insn))
6954 continue;
6955
6956 live_insn = insn_live_p (insn, counts);
6957
6958 /* If this is a dead insn, delete it and show registers in it aren't
6959 being used. */
6960
6961 if (! live_insn && dbg_cnt (delete_trivial_dead))
6962 {
6963 if (DEBUG_INSN_P (insn))
6964 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6965 NULL_RTX, -1);
6966 else
6967 {
6968 rtx set;
6969 if (MAY_HAVE_DEBUG_INSNS
6970 && (set = single_set (insn)) != NULL_RTX
6971 && is_dead_reg (SET_DEST (set), counts)
6972 /* Used at least once in some DEBUG_INSN. */
6973 && counts[REGNO (SET_DEST (set)) + nreg] > 0
6974 /* And set exactly once. */
6975 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6976 && !side_effects_p (SET_SRC (set))
6977 && asm_noperands (PATTERN (insn)) < 0)
6978 {
6979 rtx dval, bind;
6980
6981 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
6982 dval = make_debug_expr_from_rtl (SET_DEST (set));
6983
6984 /* Emit a debug bind insn before the insn in which
6985 reg dies. */
6986 bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
6987 DEBUG_EXPR_TREE_DECL (dval),
6988 SET_SRC (set),
6989 VAR_INIT_STATUS_INITIALIZED);
6990 count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
6991
6992 bind = emit_debug_insn_before (bind, insn);
6993 df_insn_rescan (bind);
6994
6995 if (replacements == NULL)
6996 replacements = XCNEWVEC (rtx, nreg);
6997 replacements[REGNO (SET_DEST (set))] = dval;
6998 }
6999
7000 count_reg_usage (insn, counts, NULL_RTX, -1);
7001 ndead++;
7002 }
7003 delete_insn_and_edges (insn);
7004 }
7005 }
7006
7007 if (MAY_HAVE_DEBUG_INSNS)
7008 {
7009 struct dead_debug_insn_data ddid;
7010 ddid.counts = counts;
7011 ddid.replacements = replacements;
7012 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7013 if (DEBUG_INSN_P (insn))
7014 {
7015 /* If this debug insn references a dead register that wasn't replaced
7016 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7017 ddid.seen_repl = false;
7018 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7019 is_dead_debug_insn, &ddid))
7020 {
7021 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7022 df_insn_rescan (insn);
7023 }
7024 else if (ddid.seen_repl)
7025 {
7026 INSN_VAR_LOCATION_LOC (insn)
7027 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7028 NULL_RTX, replace_dead_reg,
7029 replacements);
7030 df_insn_rescan (insn);
7031 }
7032 }
7033 free (replacements);
7034 }
7035
7036 if (dump_file && ndead)
7037 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7038 ndead);
7039 /* Clean up. */
7040 free (counts);
7041 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7042 return ndead;
7043 }
7044
7045 /* This function is called via for_each_rtx. The argument, NEWREG, is
7046 a condition code register with the desired mode. If we are looking
7047 at the same register in a different mode, replace it with
7048 NEWREG. */
7049
7050 static int
7051 cse_change_cc_mode (rtx *loc, void *data)
7052 {
7053 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7054
7055 if (*loc
7056 && REG_P (*loc)
7057 && REGNO (*loc) == REGNO (args->newreg)
7058 && GET_MODE (*loc) != GET_MODE (args->newreg))
7059 {
7060 validate_change (args->insn, loc, args->newreg, 1);
7061
7062 return -1;
7063 }
7064 return 0;
7065 }
7066
7067 /* Change the mode of any reference to the register REGNO (NEWREG) to
7068 GET_MODE (NEWREG) in INSN. */
7069
7070 static void
7071 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7072 {
7073 struct change_cc_mode_args args;
7074 int success;
7075
7076 if (!INSN_P (insn))
7077 return;
7078
7079 args.insn = insn;
7080 args.newreg = newreg;
7081
7082 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7083 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7084
7085 /* If the following assertion was triggered, there is most probably
7086 something wrong with the cc_modes_compatible back end function.
7087 CC modes only can be considered compatible if the insn - with the mode
7088 replaced by any of the compatible modes - can still be recognized. */
7089 success = apply_change_group ();
7090 gcc_assert (success);
7091 }
7092
7093 /* Change the mode of any reference to the register REGNO (NEWREG) to
7094 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7095 any instruction which modifies NEWREG. */
7096
7097 static void
7098 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7099 {
7100 rtx insn;
7101
7102 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7103 {
7104 if (! INSN_P (insn))
7105 continue;
7106
7107 if (reg_set_p (newreg, insn))
7108 return;
7109
7110 cse_change_cc_mode_insn (insn, newreg);
7111 }
7112 }
7113
7114 /* BB is a basic block which finishes with CC_REG as a condition code
7115 register which is set to CC_SRC. Look through the successors of BB
7116 to find blocks which have a single predecessor (i.e., this one),
7117 and look through those blocks for an assignment to CC_REG which is
7118 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7119 permitted to change the mode of CC_SRC to a compatible mode. This
7120 returns VOIDmode if no equivalent assignments were found.
7121 Otherwise it returns the mode which CC_SRC should wind up with.
7122 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7123 but is passed unmodified down to recursive calls in order to prevent
7124 endless recursion.
7125
7126 The main complexity in this function is handling the mode issues.
7127 We may have more than one duplicate which we can eliminate, and we
7128 try to find a mode which will work for multiple duplicates. */
7129
7130 static enum machine_mode
7131 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7132 bool can_change_mode)
7133 {
7134 bool found_equiv;
7135 enum machine_mode mode;
7136 unsigned int insn_count;
7137 edge e;
7138 rtx insns[2];
7139 enum machine_mode modes[2];
7140 rtx last_insns[2];
7141 unsigned int i;
7142 rtx newreg;
7143 edge_iterator ei;
7144
7145 /* We expect to have two successors. Look at both before picking
7146 the final mode for the comparison. If we have more successors
7147 (i.e., some sort of table jump, although that seems unlikely),
7148 then we require all beyond the first two to use the same
7149 mode. */
7150
7151 found_equiv = false;
7152 mode = GET_MODE (cc_src);
7153 insn_count = 0;
7154 FOR_EACH_EDGE (e, ei, bb->succs)
7155 {
7156 rtx insn;
7157 rtx end;
7158
7159 if (e->flags & EDGE_COMPLEX)
7160 continue;
7161
7162 if (EDGE_COUNT (e->dest->preds) != 1
7163 || e->dest == EXIT_BLOCK_PTR
7164 /* Avoid endless recursion on unreachable blocks. */
7165 || e->dest == orig_bb)
7166 continue;
7167
7168 end = NEXT_INSN (BB_END (e->dest));
7169 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7170 {
7171 rtx set;
7172
7173 if (! INSN_P (insn))
7174 continue;
7175
7176 /* If CC_SRC is modified, we have to stop looking for
7177 something which uses it. */
7178 if (modified_in_p (cc_src, insn))
7179 break;
7180
7181 /* Check whether INSN sets CC_REG to CC_SRC. */
7182 set = single_set (insn);
7183 if (set
7184 && REG_P (SET_DEST (set))
7185 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7186 {
7187 bool found;
7188 enum machine_mode set_mode;
7189 enum machine_mode comp_mode;
7190
7191 found = false;
7192 set_mode = GET_MODE (SET_SRC (set));
7193 comp_mode = set_mode;
7194 if (rtx_equal_p (cc_src, SET_SRC (set)))
7195 found = true;
7196 else if (GET_CODE (cc_src) == COMPARE
7197 && GET_CODE (SET_SRC (set)) == COMPARE
7198 && mode != set_mode
7199 && rtx_equal_p (XEXP (cc_src, 0),
7200 XEXP (SET_SRC (set), 0))
7201 && rtx_equal_p (XEXP (cc_src, 1),
7202 XEXP (SET_SRC (set), 1)))
7203
7204 {
7205 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7206 if (comp_mode != VOIDmode
7207 && (can_change_mode || comp_mode == mode))
7208 found = true;
7209 }
7210
7211 if (found)
7212 {
7213 found_equiv = true;
7214 if (insn_count < ARRAY_SIZE (insns))
7215 {
7216 insns[insn_count] = insn;
7217 modes[insn_count] = set_mode;
7218 last_insns[insn_count] = end;
7219 ++insn_count;
7220
7221 if (mode != comp_mode)
7222 {
7223 gcc_assert (can_change_mode);
7224 mode = comp_mode;
7225
7226 /* The modified insn will be re-recognized later. */
7227 PUT_MODE (cc_src, mode);
7228 }
7229 }
7230 else
7231 {
7232 if (set_mode != mode)
7233 {
7234 /* We found a matching expression in the
7235 wrong mode, but we don't have room to
7236 store it in the array. Punt. This case
7237 should be rare. */
7238 break;
7239 }
7240 /* INSN sets CC_REG to a value equal to CC_SRC
7241 with the right mode. We can simply delete
7242 it. */
7243 delete_insn (insn);
7244 }
7245
7246 /* We found an instruction to delete. Keep looking,
7247 in the hopes of finding a three-way jump. */
7248 continue;
7249 }
7250
7251 /* We found an instruction which sets the condition
7252 code, so don't look any farther. */
7253 break;
7254 }
7255
7256 /* If INSN sets CC_REG in some other way, don't look any
7257 farther. */
7258 if (reg_set_p (cc_reg, insn))
7259 break;
7260 }
7261
7262 /* If we fell off the bottom of the block, we can keep looking
7263 through successors. We pass CAN_CHANGE_MODE as false because
7264 we aren't prepared to handle compatibility between the
7265 further blocks and this block. */
7266 if (insn == end)
7267 {
7268 enum machine_mode submode;
7269
7270 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7271 if (submode != VOIDmode)
7272 {
7273 gcc_assert (submode == mode);
7274 found_equiv = true;
7275 can_change_mode = false;
7276 }
7277 }
7278 }
7279
7280 if (! found_equiv)
7281 return VOIDmode;
7282
7283 /* Now INSN_COUNT is the number of instructions we found which set
7284 CC_REG to a value equivalent to CC_SRC. The instructions are in
7285 INSNS. The modes used by those instructions are in MODES. */
7286
7287 newreg = NULL_RTX;
7288 for (i = 0; i < insn_count; ++i)
7289 {
7290 if (modes[i] != mode)
7291 {
7292 /* We need to change the mode of CC_REG in INSNS[i] and
7293 subsequent instructions. */
7294 if (! newreg)
7295 {
7296 if (GET_MODE (cc_reg) == mode)
7297 newreg = cc_reg;
7298 else
7299 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7300 }
7301 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7302 newreg);
7303 }
7304
7305 delete_insn_and_edges (insns[i]);
7306 }
7307
7308 return mode;
7309 }
7310
7311 /* If we have a fixed condition code register (or two), walk through
7312 the instructions and try to eliminate duplicate assignments. */
7313
7314 static void
7315 cse_condition_code_reg (void)
7316 {
7317 unsigned int cc_regno_1;
7318 unsigned int cc_regno_2;
7319 rtx cc_reg_1;
7320 rtx cc_reg_2;
7321 basic_block bb;
7322
7323 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7324 return;
7325
7326 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7327 if (cc_regno_2 != INVALID_REGNUM)
7328 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7329 else
7330 cc_reg_2 = NULL_RTX;
7331
7332 FOR_EACH_BB (bb)
7333 {
7334 rtx last_insn;
7335 rtx cc_reg;
7336 rtx insn;
7337 rtx cc_src_insn;
7338 rtx cc_src;
7339 enum machine_mode mode;
7340 enum machine_mode orig_mode;
7341
7342 /* Look for blocks which end with a conditional jump based on a
7343 condition code register. Then look for the instruction which
7344 sets the condition code register. Then look through the
7345 successor blocks for instructions which set the condition
7346 code register to the same value. There are other possible
7347 uses of the condition code register, but these are by far the
7348 most common and the ones which we are most likely to be able
7349 to optimize. */
7350
7351 last_insn = BB_END (bb);
7352 if (!JUMP_P (last_insn))
7353 continue;
7354
7355 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7356 cc_reg = cc_reg_1;
7357 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7358 cc_reg = cc_reg_2;
7359 else
7360 continue;
7361
7362 cc_src_insn = NULL_RTX;
7363 cc_src = NULL_RTX;
7364 for (insn = PREV_INSN (last_insn);
7365 insn && insn != PREV_INSN (BB_HEAD (bb));
7366 insn = PREV_INSN (insn))
7367 {
7368 rtx set;
7369
7370 if (! INSN_P (insn))
7371 continue;
7372 set = single_set (insn);
7373 if (set
7374 && REG_P (SET_DEST (set))
7375 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7376 {
7377 cc_src_insn = insn;
7378 cc_src = SET_SRC (set);
7379 break;
7380 }
7381 else if (reg_set_p (cc_reg, insn))
7382 break;
7383 }
7384
7385 if (! cc_src_insn)
7386 continue;
7387
7388 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7389 continue;
7390
7391 /* Now CC_REG is a condition code register used for a
7392 conditional jump at the end of the block, and CC_SRC, in
7393 CC_SRC_INSN, is the value to which that condition code
7394 register is set, and CC_SRC is still meaningful at the end of
7395 the basic block. */
7396
7397 orig_mode = GET_MODE (cc_src);
7398 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7399 if (mode != VOIDmode)
7400 {
7401 gcc_assert (mode == GET_MODE (cc_src));
7402 if (mode != orig_mode)
7403 {
7404 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7405
7406 cse_change_cc_mode_insn (cc_src_insn, newreg);
7407
7408 /* Do the same in the following insns that use the
7409 current value of CC_REG within BB. */
7410 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7411 NEXT_INSN (last_insn),
7412 newreg);
7413 }
7414 }
7415 }
7416 }
7417 \f
7418
7419 /* Perform common subexpression elimination. Nonzero value from
7420 `cse_main' means that jumps were simplified and some code may now
7421 be unreachable, so do jump optimization again. */
7422 static bool
7423 gate_handle_cse (void)
7424 {
7425 return optimize > 0;
7426 }
7427
7428 static unsigned int
7429 rest_of_handle_cse (void)
7430 {
7431 int tem;
7432
7433 if (dump_file)
7434 dump_flow_info (dump_file, dump_flags);
7435
7436 tem = cse_main (get_insns (), max_reg_num ());
7437
7438 /* If we are not running more CSE passes, then we are no longer
7439 expecting CSE to be run. But always rerun it in a cheap mode. */
7440 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7441
7442 if (tem == 2)
7443 {
7444 timevar_push (TV_JUMP);
7445 rebuild_jump_labels (get_insns ());
7446 cleanup_cfg (CLEANUP_CFG_CHANGED);
7447 timevar_pop (TV_JUMP);
7448 }
7449 else if (tem == 1 || optimize > 1)
7450 cleanup_cfg (0);
7451
7452 return 0;
7453 }
7454
7455 struct rtl_opt_pass pass_cse =
7456 {
7457 {
7458 RTL_PASS,
7459 "cse1", /* name */
7460 gate_handle_cse, /* gate */
7461 rest_of_handle_cse, /* execute */
7462 NULL, /* sub */
7463 NULL, /* next */
7464 0, /* static_pass_number */
7465 TV_CSE, /* tv_id */
7466 0, /* properties_required */
7467 0, /* properties_provided */
7468 0, /* properties_destroyed */
7469 0, /* todo_flags_start */
7470 TODO_df_finish | TODO_verify_rtl_sharing |
7471 TODO_ggc_collect |
7472 TODO_verify_flow, /* todo_flags_finish */
7473 }
7474 };
7475
7476
7477 static bool
7478 gate_handle_cse2 (void)
7479 {
7480 return optimize > 0 && flag_rerun_cse_after_loop;
7481 }
7482
7483 /* Run second CSE pass after loop optimizations. */
7484 static unsigned int
7485 rest_of_handle_cse2 (void)
7486 {
7487 int tem;
7488
7489 if (dump_file)
7490 dump_flow_info (dump_file, dump_flags);
7491
7492 tem = cse_main (get_insns (), max_reg_num ());
7493
7494 /* Run a pass to eliminate duplicated assignments to condition code
7495 registers. We have to run this after bypass_jumps, because it
7496 makes it harder for that pass to determine whether a jump can be
7497 bypassed safely. */
7498 cse_condition_code_reg ();
7499
7500 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7501
7502 if (tem == 2)
7503 {
7504 timevar_push (TV_JUMP);
7505 rebuild_jump_labels (get_insns ());
7506 cleanup_cfg (CLEANUP_CFG_CHANGED);
7507 timevar_pop (TV_JUMP);
7508 }
7509 else if (tem == 1)
7510 cleanup_cfg (0);
7511
7512 cse_not_expected = 1;
7513 return 0;
7514 }
7515
7516
7517 struct rtl_opt_pass pass_cse2 =
7518 {
7519 {
7520 RTL_PASS,
7521 "cse2", /* name */
7522 gate_handle_cse2, /* gate */
7523 rest_of_handle_cse2, /* execute */
7524 NULL, /* sub */
7525 NULL, /* next */
7526 0, /* static_pass_number */
7527 TV_CSE2, /* tv_id */
7528 0, /* properties_required */
7529 0, /* properties_provided */
7530 0, /* properties_destroyed */
7531 0, /* todo_flags_start */
7532 TODO_df_finish | TODO_verify_rtl_sharing |
7533 TODO_ggc_collect |
7534 TODO_verify_flow /* todo_flags_finish */
7535 }
7536 };
7537
7538 static bool
7539 gate_handle_cse_after_global_opts (void)
7540 {
7541 return optimize > 0 && flag_rerun_cse_after_global_opts;
7542 }
7543
7544 /* Run second CSE pass after loop optimizations. */
7545 static unsigned int
7546 rest_of_handle_cse_after_global_opts (void)
7547 {
7548 int save_cfj;
7549 int tem;
7550
7551 /* We only want to do local CSE, so don't follow jumps. */
7552 save_cfj = flag_cse_follow_jumps;
7553 flag_cse_follow_jumps = 0;
7554
7555 rebuild_jump_labels (get_insns ());
7556 tem = cse_main (get_insns (), max_reg_num ());
7557 purge_all_dead_edges ();
7558 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7559
7560 cse_not_expected = !flag_rerun_cse_after_loop;
7561
7562 /* If cse altered any jumps, rerun jump opts to clean things up. */
7563 if (tem == 2)
7564 {
7565 timevar_push (TV_JUMP);
7566 rebuild_jump_labels (get_insns ());
7567 cleanup_cfg (CLEANUP_CFG_CHANGED);
7568 timevar_pop (TV_JUMP);
7569 }
7570 else if (tem == 1)
7571 cleanup_cfg (0);
7572
7573 flag_cse_follow_jumps = save_cfj;
7574 return 0;
7575 }
7576
7577 struct rtl_opt_pass pass_cse_after_global_opts =
7578 {
7579 {
7580 RTL_PASS,
7581 "cse_local", /* name */
7582 gate_handle_cse_after_global_opts, /* gate */
7583 rest_of_handle_cse_after_global_opts, /* execute */
7584 NULL, /* sub */
7585 NULL, /* next */
7586 0, /* static_pass_number */
7587 TV_CSE, /* tv_id */
7588 0, /* properties_required */
7589 0, /* properties_provided */
7590 0, /* properties_destroyed */
7591 0, /* todo_flags_start */
7592 TODO_df_finish | TODO_verify_rtl_sharing |
7593 TODO_ggc_collect |
7594 TODO_verify_flow /* todo_flags_finish */
7595 }
7596 };